WO2006057445A1 - 熱可塑性エラストマー組成物及びその製造方法 - Google Patents

熱可塑性エラストマー組成物及びその製造方法 Download PDF

Info

Publication number
WO2006057445A1
WO2006057445A1 PCT/JP2005/022129 JP2005022129W WO2006057445A1 WO 2006057445 A1 WO2006057445 A1 WO 2006057445A1 JP 2005022129 W JP2005022129 W JP 2005022129W WO 2006057445 A1 WO2006057445 A1 WO 2006057445A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic elastomer
mass
elastomer composition
meth
molecular weight
Prior art date
Application number
PCT/JP2005/022129
Other languages
English (en)
French (fr)
Inventor
Kentarou Kanae
Masato Kobayashi
Minoru Maeda
Tsukasa Toyoshima
Minoru Tsuneyoshi
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to JP2006548016A priority Critical patent/JPWO2006057445A1/ja
Priority to EP05811307A priority patent/EP1816163A4/en
Priority to US11/720,161 priority patent/US20080081873A1/en
Publication of WO2006057445A1 publication Critical patent/WO2006057445A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters

Definitions

  • the present invention relates to a thermoplastic elastomer composition and a method for producing the same, and more particularly, a thermoplastic elastomer composition useful as a substitute for acrylic rubber having a good sea-island structure as a whole. It relates to the manufacturing method.
  • thermoplastic elastomer composition As a polymer material having excellent flexibility and rubber elasticity, a thermoplastic elastomer composition has been widely used in addition to a rubber material.
  • a thermoplastic elastomer composition a molded product can be obtained by injection molding, profile extrusion molding, force rendering, blow molding, etc., which are ordinary thermoplastic resin molding methods.
  • demand for energy-saving, resource-saving, recycling, etc. has increased as a substitute for vulcanized rubber and vinyl chloride resin in automotive parts, industrial products, electrical and electronic parts, building materials, etc.
  • thermoplastic elastomer composition having a loose sea-island structure and a method for producing the same are disclosed (for example, see Patent Document 1).
  • an aliphatic or aromatic polycarboxylic acid or an acid anhydride thereof which is known as a general crosslinking agent, is a compound that is known as a crosslinking agent. Used as! /
  • the use temperature of a general crosslinking agent is preferably in the range of 150 to 200 ° C.
  • the crosslinking agent reacts instantaneously.
  • a thermoplastic elastomer with a good sea-island structure There is a problem that a composition cannot be obtained.
  • thermoplastic resin having a high melting point is used as a matrix
  • a dynamic crosslinking can be carried out in a stable state, and a thermoplastic elastomer composition having a good sea-island structure as a whole is provided.
  • thermoplastic elastomer composition capable of this.
  • Patent Document 1 JP-A-9-272788
  • the present invention has been made in view of such problems of the prior art, and the object of the present invention is to have a good sea-island structure as a whole, excellent cold resistance, and acrylic rubber.
  • a thermoplastic elastomer composition useful as an alternative and a relatively high melting point! / ⁇ It is possible to carry out dynamic crosslinking in a stable state even in the presence of a thermoplastic resin.
  • An object of the present invention is to provide a process for producing a thermoplastic elastomer composition having a structure and capable of producing a thermoplastic elastomer composition having excellent cold resistance.
  • the inventors of the present invention specified a specific crosslinking agent as a crosslinking agent when a mixture containing a predetermined thermoplastic resin and elastomer is dynamically heat-treated using a crosslinking agent. It has been found that the above-mentioned problems can be achieved by using / sending a polymer, and the present invention has been completed.
  • thermoplastic elastomer composition and a method for producing the same are provided.
  • the weight average molecular weight Mw is 1000 to 30000, the molecular weight distribution Mw / Mn force .0 to 4.0, and the polymer (C-1) consisting only of (meth) acrylate (c-1) units, and / Or weight average molecular weight] ⁇ 000-30000, molecular weight distribution 1 ⁇ / 1 ⁇ 11 is 1.0-4.0, (meth) acrylate ester ( c — 1) unit 5-35 mass 0 / 0 and aromatic vinyl monomer (c-2) units Thermoplastics dynamically treated in the presence of polymer (C-2) containing 65-95% by mass as structural units Elastomer composition.
  • thermoplastic resin (A) is a polyester resin, a polyamide resin, and a polyester.
  • the thermoplastic elastomer composition according to any one of [1;] to [3].
  • thermoplastic elastomer composition according to any one of [1] to [: 5].
  • thermoplastic elastomer composition according to any one of the above [1:] to [6], comprising (meth) acrylic acid ester (c-1) force methacrylic acid daricidyl ester .
  • the epoxy value of the cross-linking agent (C) is 0, l to 20 meqZg. 7.
  • thermoplastic elastomer composition according to any one of the above.
  • thermoplastic elastomer composition according to any one of the above is molded. Molded product.
  • the weight average molecular weight Mw is 1000 to 30000, the molecular weight distribution MwZMn force S1.0 to 4.
  • thermoplastic elastomer composition obtained by dynamically heat-treating in the presence of
  • thermoplastic elastomer composition according to [13], wherein the heat treatment is dynamically performed by a continuous kneader and / or a continuous extruder.
  • thermoplastic elastomer composition of the present invention has a good sea-island structure as a whole, excellent cold resistance, and is useful as an alternative to acrylic rubber.
  • dynamic crosslinking can be carried out in a stable state even in the presence of a thermoplastic resin having a relatively high melting point. It is possible to produce a thermoplastic elastomer composition having a good sea-island structure and excellent cold resistance.
  • FIG. 1 is an electron micrograph showing the microstructure of the thermoplastic elastomer composition of Example 1.
  • FIG. 2 is an electron micrograph showing the microstructure of the thermoplastic elastomer composition of Comparative Example 2.
  • thermoplastic elastomer composition of the present invention includes a thermoplastic resin (A) having a melting point of 200 ° C or higher, and an elastomer-(B) having a structural unit derived from an ester group-containing monomer.
  • the weight average molecular weight Mw is 1000 to 30000
  • the molecular weight distribution MwZM is 1.0 to 4.0
  • only the (meth) acrylate esterol (cl) unit is A polymer (C-l)
  • a weight average molecular weight Mw of 1000 to 30000, a molecular weight distribution Mw / Mn of 1.0 to 4.0, and a (meth) acrylic acid ester (c-l) Heat treatment in the presence of a polymer (C-2) containing 5 to 35% by mass of units and 65 to 95% by mass of aromatic bule monomer (c-2) units as constituent units. It is a manufacturing method including. The details will be described below.
  • the thermoplastic resin contained in the dynamically heat-treated mixture in the thermoplastic elastomer composition of this embodiment has a melting point of 200 ° C or higher, preferably 210 ° C or higher, more preferably 210 ° C. ⁇ 300 ° C. If the melting point of the thermoplastic resin is less than 200 ° C, the strength of the resulting molded product may be insufficient.
  • the thermoplastic resin is preferably at least one selected from the group consisting of a polyester resin, a polyamide resin, and a polyester elastomer.
  • Polyester resin is a thermoplastic resin generally obtained by polycondensation reaction of saturated dicarboxylic acid and saturated dihydric alcohol, ring-opening reaction of rataton, polycondensation reaction of compounds having hydroxyl group and carboxyl group in one molecule.
  • polyethylene terephthalate polytrimethylene terephthalate (polypropylene terephthalate), polytetramethylene terephthalate (polybutylene terephthalate), polyhexamethylene terephthalate, polycyclohexane-1,4-dimethylol
  • polyethylene terephthalate polytrimethylene terephthalate (polypropylene terephthalate), polytetramethylene terephthalate (polybutylene terephthalate), polyhexamethylene terephthalate, polycyclohexane-1,4-dimethylol
  • terephthalate polyneopentyl terephthalate
  • polyethylene naphthalate polypropylene naphthalate
  • polybutylene naphthalate polycaprolactone
  • p-hydroxybenzoic acid polyester and polyarylate.
  • two or more types of polyester A resin may be used in combination.
  • polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate are preferable.
  • the terephthalic acid moiety may be substituted with an alkyl group, a norogen group or the like.
  • nylon 6 N6
  • nylon 66 N66
  • nylon 11 Nil
  • nylon 12 N12
  • aliphatic polyamide having an aromatic ring Nylon MXD6
  • a copolymer of the above polyamide resin can be used.
  • Specific examples include nylon 6 and nylon 66 copolymer (N6ZN66), nylon 6 and nylon 10 alternating copolymer (nylon 6 10: N610), nylon 6 and nylon 12 alternating copolymer ( Nylon 612: N612) and the like.
  • polyamide resins can be used alone or as a blend of two or more.
  • specific examples of blends include blends of nylon 6 and nylon 66 (N6 ZN66), blends of nylon 6 and nylon 11 (N6 / N11), blends of nylon 6 and nylon 12 (N6 N12), blend of nylon 6 and nylon 610 (N6ZN610), blend of nylon 6 and nylon 612 (N6 / N612), blend of nylon 66 and nylon 11 (N66 / N11), nylon 66 and nylon Blend of 12 (N66 / N12), Blend of nylon 66 and nylon 610 (N66ZN610), Blend of nylon 66 and nylon 612 (N66 / N612), Blend of nylon 11 and nylon 12 (N11ZN1 2), blend of nylon 11 and nylon 610 (N11ZN610), blend of nylon 11 and nylon 612 (NllZN612), blend of nylon 12 and nylon 610 (N12 1 ⁇ 610), nylon 12 and nylon 612 Blended with ⁇ ⁇ ) Nylon 610
  • Polyester elastomers are known as multi-block copolymers having polyesterol and polyether as the main repeating units.
  • a multi-block copolymer containing can be suitably used as a polyester elastomer.
  • the high-melting-point crystalline polymer node segment containing a crystalline aromatic polyester is mainly formed from an aromatic dicarboxylic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof. Polyester.
  • Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, naphthalene-1,6-dicarboxylic acid, naphthalene-1,7-dicarboxylic acid, anthracene dicarboxylic acid, diphenyl 4,4, -dicarboxylic acid , Diphenoxyethane dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sulfoisophthalic acid, sodium 3-sulfoisophthalate, etc., and aromatic dicarboxylic acids are mainly used.
  • a part of the acid may be alicyclic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid, cyclopentanedicarboxylic acid, 4,4,1-dicyclohexyldicarboxylic acid, adipic acid, succinic acid, It may be substituted with an aliphatic dicarboxylic acid such as acid, sepacic acid, decanedicarboxylic acid or dimer acid.
  • ester-forming derivatives of dicarboxylic acids such as lower alkyl esters, aryl esters, carbonates, acid halides and the like can be used equally.
  • diol examples include aliphatic diols having a molecular weight of 400 or less, such as 1,4-butanediol, ethylene glycolol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyldaricol, and decamethylene glycol.
  • Diols 1,1-cyclohexanedimethanol, 1,4-dicyclohexanedimethanol, tricyclodecane dimethanol and other alicyclic diols, xylylene glycol, bis (p-hydroxy) diphenol, bis (p- Hydroxyphenyl) propane, 2, 2-bis [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxy) Ethoxy) phenyl] cyclohexane, 4, 4, -dihydroxy-p-terphenyl, 4, 4, one Hydroxy one p- quota one Fueyunore and aromatic diol favored arbitrariness of.
  • diols can also be used in the form of ester-forming derivatives, such as acetyl groups and alkali metal salts. These dicarboxylic acids and derivatives thereof, or diol components may be used in combination of two or more.
  • An example of the most preferred high-melting crystalline polymer segment is polybutylene terephthalate derived from terephthalic acid and / or dimethyl terephthalate and 1,4-butanediol.
  • the low-melting-point polymer soft segment constituting the polyester elastomer contains aromatic and / or aliphatic polyester units containing an aliphatic polyester. Aliphatic polyester
  • Tells include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene ⁇ side) glycol, poly (hexamethylene oxide) glycol, and a combination of ethylene oxide and propylene oxide.
  • examples thereof include a polymer, an ethylene oxide addition polymer of poly (propylene oxide) glycol, and a copolymer of ethylene oxide and tetrahydrofuran.
  • examples of the aromatic polyester include those similar to the above-described crystalline aromatic polyester of the high melting point crystalline polymer hard segment.
  • examples of the aliphatic polyester poly ( ⁇ -strength prolactone), polyenanthlactone, polycaprylolactone, polybutylene adipate, and the like can be used.
  • poly (tetramethylene oxide) glycol, poly (propylene) are obtained from the elastic properties of the resulting polyester block copolymer.
  • the elastomer ( ⁇ ⁇ ) contained in the dynamically heat-treated mixture in the thermoplastic elastomer composition of the present embodiment has a structural unit derived from an ester group-containing monomer.
  • the ester group-containing monomer include alkyl acrylate and alkoxyalkyl acrylate.
  • ( ⁇ ) elastomers having structural units derived from these esterol group-containing monomers include, for example, acrylic rubber, acrylonitrile. Acrylic rubber (hereinafter also referred to as “( ⁇ 1) acrylic rubber”). ), ( ⁇ 2) Ethylene ⁇ Acrylic rubber.
  • acrylic rubber examples include acrylic rubbers mainly composed of known alkyl acrylates and / or alkoxyalkoxy acrylates, or the acrylic rubbers. And acrylonitrile acrylic rubber, which is a copolymer of acrylonitrile and an unsaturated acrylonitrile monomer.
  • the acrylic acid alkyl ester (b-1) constituting the acrylic rubber includes, for example, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, octyl acrylate, etc. Can be mentioned. Among these, ethyl acrylate, puffy pill acrylate, butyl acrylate and the like are preferable.
  • the alkoxyalkyl acrylate include methoxymethyl acrylate, methoxyethyl acrylate, ethoxy chinenore acrylate, butoxetyl acrylate, methoxy ethoxy acrylate. Of these, methoxyethyl acrylate and ethoxyethyl acrylate are preferred. These alkyl acrylates and alkoxyalkyl acrylates can be used singly or in combination of two or more.
  • the composition ratio of the acrylic acid alkyl ester (b-1) in the acrylic rubber ((B 1) copolymerization ratio in the acrylic rubber) is 20 to 99.99 mass%. 60 to 94.98% by mass is more preferable, and 70 to 90% by mass is particularly preferable. When this proportion is less than 20% by mass, the hardness of the resulting thermoplastic elastomer composition tends to be too high to have a suitable elastic state. On the other hand, if this proportion is more than 99.99% by mass, the resulting thermoplastic elastomer composition tends to have poor oil resistance.
  • Specific examples of the monomer (b_2) having a carbon-carbon double bond in the side chain include dihydrodicyclopentyl acrylate, dihydrodicyclopentenyl methacrylate, and dihydrodicyclopentenyl itaconate.
  • dihydrodicyclopentenyl acrylate dihydrodicyclopentenyl methacrylate
  • dihydrodicyclopentenyl acrylate dihydrodicyclopentenyl methacrylate
  • vinyl acrylate vinyl acrylate
  • composition ratio of the monomer (b-2) having a carbon-carbon double bond in the side chain in the acrylic rubber ((B1) copolymerization ratio in the acrylic rubber) is 0. , 01 to 20% by mass, more preferably 0.02 to 8% by mass. If this ratio is less than 0.01% by mass, the degree of crosslinking of the resulting thermoplastic elastomer composition tends to be insufficient, and the tensile strength tends to be too low to have suitable mechanical strength. . On the other hand, if this proportion exceeds 20% by mass, the hardness of the resulting thermoplastic elastomer composition tends to be excessively high.
  • Examples of the unsaturated acrylonitrile monomer (b-3), such as acrylonitrile, Metakurironito Lil, ethacrylonitrile, alpha - chloro acrylate Roni Turin les, alpha - can be given full O b acrylonitrile. These can be used alone or in combination of two or more. Of these, acrylonitrile is particularly preferred.
  • the composition ratio of the unsaturated acrylonitrile monomer (b-3) in the acrylic rubber ((B1) copolymerization ratio in the acrylic rubber) is preferably 0 to 40% by mass.
  • the content is more preferably 5 to 35% by mass, and particularly preferably 10 to 30% by mass. If this proportion exceeds 40% by mass, the hardness of the resulting thermoplastic elastomer composition tends to be excessively high.
  • this ratio is 5% by mass or more, the oil resistance of the obtained thermoplastic elastomer composition tends to be improved.
  • the polymerizable monomer (b-4) is not particularly limited as long as it is a monomer copolymerizable therewith, but is preferably a monomer having an functional group.
  • “Monomer copolymerizable with these (b-4)" further includes ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4 butanediolo Residue (meth) acrylate, 1,6-hexanediol monodi (meth) acrylate, trimethylolpropane monodi (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, di Polyfunctional unsaturated monomers such as bullbenzene, diisopropenylbenzene, tribylbenzene, and hexamethylene di (meth) acrylate can be used.
  • the resulting (B1) acrylic rubber becomes a partially cross-linked rubber, the skin of the molded product is improved, and a cross-linking agent at the time of dynamic cross-linking
  • the amount of crosslinking aid added can be reduced, which is effective in reducing costs.
  • the monomer that becomes “(B4) a structural unit derived from a monomer copolymerizable with these” after copolymerization, methyl methacrylate, benzyl methacrylate, and phenyl methacrylate are preferred, and methyl methacrylate is particularly preferred. I like it!
  • the acrylic rubber is preferably functionalized. Specifically, it is preferable that the acrylic rubber is strongly ruboxylated, hydroxylated, aminated, or epoxidized.
  • B1 As a copolymerizable monomer for introducing a carboxyl group, a hydroxyl group, an amino group, or an epoxy group into an acrylic rubber, these functional groups! Examples of monomers having the following characteristics are as follows.
  • Monomers having a carboxyl group include (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, tetraconic acid, cinnamic acid and other unsaturated carboxylic acids, phthalic acid, succinic acid, adipic acid
  • a free carboxyl group-containing ester such as a monoester of a non-polymerizable polyvalent carboxylic acid such as (meth) aryl alcohol and a hydroxyl group-containing unsaturated compound such as 2-hydroxyethyl (meth) ate, Examples include salt of piso.
  • unsaturated carboxylic acids are preferred. Moreover, only 1 type may be used among these, and 2 or more types may be used together.
  • Monomers having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate.
  • hydroxyl groups such as 1-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, o-hydroxy-1 a-methylstyrene, m-hydroxy--methylstyrene, p-hydroxy- ⁇ -methylstyrene, ⁇ -vininolevenyl alcohol monoole, etc.
  • examples include butyl aromatic compounds and (meth) aryl alcohol. Of these, hydroxyal Kill (meth) acrylates and hydroxyl group-containing biaromatic compounds are preferred. Moreover, only 1 type may be used among these, and 2 or more types may be used together.
  • Examples of the monomer having an amino group include monomers having at least one of a primary amino group, a secondary amino group, and a tertiary amino group. Of these, monomers having a tertiary amino group are preferred, such as dimethylaminomethyl (meth) acrylate, jetylaminomethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, 2—Jetylaminoethyl (meth) acrylate, 2— (Di-n-propylamino) ethyl (meth) acrylate, 2-dimethylaminopropyl (meth) acrylate, 2-jetylaminopropyl ( (Meth) acrylate, 2— (di-n-propynoleamino) propyl (meth) acrylate, 3—dimethylaminopropyl (meth) acrylate, 3—jetylaminopropyl (meth) acrylate
  • Examples of the monomer having an epoxy group include (meth) allyl glycidyl ether, glycidyl (meth) acrylate, 3,4-oxycyclohexyl (meth) acrylate, and the like. Among these, only 1 type may be used and 2 or more types may be used together.
  • the radical polymerization initiator used when copolymerizing the monomer mixture is not particularly limited.
  • peroxides such as potassium persulfate, p-menthane hydride peroxide, methyl isopropyl ketone peroxide, and azo compounds such as azobisisobutyronitrile can be used.
  • the amount of the radical polymerization initiator used may be 0.0001-1. 0 parts by mass per 100 parts by mass of the monomer mixture.
  • the copolymerization reaction for obtaining the acrylic rubber is a suspension polymerization method.
  • the polymerization can be carried out by a usual polymerization method such as a W-polymerization method or a solution polymerization method.
  • the emulsifying agent used in the emulsion polymerization method any substance capable of emulsifying and dispersing the aforementioned monomer mixture can be used.
  • alkyl sulfate, alkyl aryl sulfonate, and higher fatty acid salt S can be used. It is.
  • the reaction temperature is usually 0 to 80 ° C., and the reaction time is usually about 0.01 to 30 hours.
  • the (B1) acrylic rubber thus obtained preferably has a Mooney viscosity (ML, 100 ° C.) of 10 to 150.
  • Examples of (B2) ethylene 'acrylic rubber include a copolymer of ethylene and acrylate ester, or a copolymer of a copolymer of ethylene and acrylate ester and a crosslinking site monomer. it can. More specifically, VAMAC (trade name (Mitsui's manufactured by DuPont Polychemical Co., Ltd.)) and the like can be mentioned.
  • the ratio of the elastomer (B) in the thermoplastic elastomer composition of this embodiment is 100 masses of the total amount of the thermoplastic resin (A) and the elastomer (B) having a melting point of 200 ° C or higher. If you% and preferably from 40 to 85 weight 0/0, more preferably from 43 to 83 wt%, and particularly preferably 45 to 80 mass 0/0. If the elastomer (B) is less than 40% by mass, the rubber elasticity of the finally obtained thermoplastic elastomer composition tends to decrease.
  • thermoplastic resin (A) is small, the phase structure (morphology) of the finally obtained thermoplastic elastomer composition is a dynamically crosslinked thermoplastic resin.
  • Good sea-island structure thermoplastic resin strength, S-sea (matrix), cross-linked acrylic rubber particles are not likely to be islands (domains)), and the molding processability and mechanical properties tend to decrease. is there.
  • the crosslinking agent (C) used for obtaining the thermoplastic elastomer composition of the present embodiment has a weight average molecular weight Mw of 1000 to 30000, a molecular weight distribution MwZMn of 1.0 to 4.0, and (meta ) Polymer (C-1) consisting only of acrylic acid ester (c-l) units and / or weight average molecular weight Mw of 1000 to 30000 and molecular weight distribution Mw / Mn of 1.0 to 4.0 , (Meth) acrylic acid ester (c_ 1) unit 5 to 35% by mass and aromatic butyl monomer (c 1 2) unit 65 to 95% by mass as a structural unit (C 1 2) .
  • (meth) acrylic acid ester (c-1) for example, a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 20 carbon atoms (the alkyl group is a linear, branched or cyclic chain) Any), (meth) acrylic acid polyalkylene glycol ester, (meth) acrylic acid alkoxyalkyl ester, (meth) acrylic acid hydroxyalkyl ester, (meth) acrylic acid glycidyl ester, (meth) acrylic acid Dialkylaminoalkyl ester, (meth) acrylic acid benzyl ester, (meth) acrylic acid phenoxyalkyl ester, (meth) acrylic acid cyclohexyl ester, (meth) acrylic acid isobornyl ester, (meth) acrylic acid An alcoholoxysilylalkyl ester can be exemplified. These can be used alone or in combination of two or more.
  • the (meth) acrylic acid alkyl ester having an alkyl group having 1 to 6 carbon atoms (the alkyl group is a straight chain, branched chain, or cyclic chain)
  • (Meth) acrylic acid glycidyl ester and (meth) acrylic acid polyalkylene glycol ester are more preferred.
  • aromatic butyl monomer (c-12) examples include styrene, a-methylstyrene, p-methylstyrene, a-methyl-1-p-methylstyrene, p-methoxystyrene, o-methoxystyrene. 2,4-dimethylol styrene, chlorostyrene, promostyrene and the like. These can be used alone or in combination of two or more. Considering compatibility with acrylic rubber, styrene and ⁇ -methylstyrene are preferable.
  • the ratio of the (meth) acrylic acid ester (c-1) and the aromatic vinyl monomer (c1-2), which is a copolymer component of the polymer (C-2), is (meth) acrylic acid.
  • the ester (c-l) is 5 to 35% by mass
  • the aromatic butyl monomer (c-2) is 65 to 95% by mass. If the aromatic bule monomer (c-2) exceeds 95% by mass, the cross-linking reactivity with acrylic rubber tends to deteriorate and the mechanical properties tend to decrease. On the other hand, if it is less than 65% by mass, the compatibility with the rubber is lowered, and the mechanical properties are lowered.
  • the copolymer component of the polymer (C-2) used in the present invention is mainly a (meth) acrylic acid ester (c-1) and an aromatic butyl monomer (c-2).
  • Other vinyl monomers capable of radical copolymerization may also be included, and the proportion of the other bur monomer is preferably 0 to 30% by mass.
  • Specific examples of other bur monomers include (meth) acrylic acid, hydrous maleic acid, fumaric acid, (meth) acrylamide, (meth) acrylic diquinolamide, vinyl esters, butyl ethers, ( And (meth) aryl ethers.
  • the crosslinking agent (C) is preferably obtained by a high-temperature continuous polymerization method having a force of 180 to 300 ° C, which can be obtained by ordinary radical polymerization. According to this high-temperature continuous polymerization method, since it is high-temperature polymerization, the radical branching reaction starting from the hydrogen abstraction reaction from the polymer chain is unlikely to occur. A crosslinking agent (C) can be obtained. In addition, by giving priority to the cleavage reaction, a low molecular weight polymer free from impurities such as a large amount of initiator and chain transfer agent can be easily produced. In addition, if a stirred tank reactor is used as the reactor, it is particularly preferable because a V composition having a narrow composition distribution and molecular weight distribution and a bulle copolymer (crosslinking agent (C)) can be obtained.
  • the high temperature continuous radical polymerization method is disclosed in JP-A-57-502171 and JP-A-59-6207. It is sufficient to follow a known method disclosed in Japanese Patent Laid-Open No. 60-21 S007. For example, after setting a reactor capable of pressurization to a predetermined temperature under pressure, a bulle monomer mixture is supplied to the reactor at a constant supply rate, so that the supply amount of the Biel monomer mixture is reduced. A method of extracting a suitable amount of the polymerization liquid can be mentioned. A polymerization solvent may be added to the reactor as necessary. In addition, a polymerization initiator can be blended in the vinyl monomer mixture as necessary.
  • the blending amount of the polymerization initiator in the case of blending the polymerization initiator is preferably 0.001 to 3 parts by mass with respect to 100 parts by mass of the Biel monomer mixture.
  • the pressure depends on the reaction temperature and the vinyl monomer mixture used and the boiling point of the polymerization solvent. Therefore, the pressure may be any pressure that does not affect the reaction but can maintain the reaction temperature.
  • the reaction temperature for polymerizing the above-mentioned vinyl monomer is preferably 180 to 300 ° C, more preferably 200 to 270 ° C. If it exceeds 300 ° C, there may be a problem of coloring or thermal degradation. If it is less than 180 ° C, a branching reaction tends to occur and the molecular weight distribution tends to be widened. Therefore, a large amount of initiator and chain transfer agent are required to lower the molecular weight, which may adversely affect the weather resistance, heat resistance, and durability of the finally obtained thermoplastic elastomer composition. In addition, production problems such as difficulty in heat removal may occur.
  • the residence time of the vinyl monomer mixture in the polymerization reaction is preferably:!
  • the residence time is less than 1 minute, the bull monomer may not react sufficiently, and if the residence time is more than 60 minutes, the productivity may deteriorate and coloring or thermal degradation may occur.
  • a process using a continuous stirred tank reactor is preferable to a tubular reactor because the composition distribution and molecular weight distribution of the resulting crosslinking agent (C) tend to be narrow.
  • the weight average molecular weight Mw of the crosslinking agent (C) is 1000 to 30000. If the weight average molecular weight Mw of the crosslinking agent (C) is less than 1000, surface bleeding tends to be caused. On the other hand, when the weight average molecular weight Mw of the crosslinking agent (C) is more than 30000, the compatibility is poor and the crosslinking reactivity with the elastomer (B) tends to decrease.
  • the weight average molecular weight Mw of the crosslinking agent (C) is preferably 1500-15000. In view of fluidity, mechanical properties, and heat resistance, the weight average molecular weight Mw of the crosslinking agent (C) is more preferably 2000 to 30000. 00 ⁇ 20000 especially preferred.
  • the molecular weight distribution MwZMn (ratio of the weight average molecular weight Mw to the number average molecular weight Mn) of the polymer (B) is 1.0 to 4.0.
  • the molecular weight distribution Mw / Mn of the cross-linking agent (C) is more than 4.0, the compatibility with the thermoplastic resin (A) tends to decrease due to poor compatibility due to the influence of high molecular weight components. In addition, surface bleed tends to be easily caused by low molecular weight components.
  • the molecular weight distribution MwZMn of the cross-linking agent (C) is preferably 1.2 to 3.5 or less, more preferably 1.2 to 3.0 or less. Although there is no particular problem even if it is smaller than 1.2, the molecular weight distribution Mw / Mn of the usually obtained crosslinking agent (C) is 1.2 or more.
  • crosslinking agent (C) one type may be used alone, or a mixture of two or more types may be used.
  • (meth) acrylic acid ester (c_l) and aromatic butyl monomer (c-2) preferably contain daricidyl groups.
  • the epoxy value of crosslinking agent (C) is 0.01-20 meqZg. It is preferably 0.1 to 15 meq / g, and more preferably 0.5 to 10 meq / g.
  • the crosslinking reactivity tends to be low.
  • the epoxy value is more than 20 meqZg, there is a V tendency that crosslinking cannot be controlled in a stable state.
  • the amount of the crosslinking agent (C) used is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass in total of the thermoplastic resin (A) and the elastomer (B), and 0.3 to More preferably, it is 15 parts by mass, particularly preferably from 0.5 to 10 parts by mass. If the amount of the crosslinking agent (C) used is more than 20 parts by mass, it is difficult to control the crosslinking in a stable state, and the hardness of the resulting crosslinked rubber tends to be excessive, so that the rubber elasticity tends not to be exhibited. On the other hand, if the amount of crosslinking agent (C) used is less than 1 part by mass of SO., The crosslinking density of the resulting crosslinked rubber is low, and the rubber elasticity tends to cease to be suitable.
  • thermoplastic elastomer composition of this embodiment Used to obtain the thermoplastic elastomer composition of this embodiment!
  • the cross-linking agent (C) that can be used include ARUFON UG (trade name (manufactured by Toagosei Co., Ltd.)) series (ARUFON U G4010, UG4030 (trade name (manufactured by Toagosei Co., Ltd.))) .
  • Crosslinking agent (C) can be non-selectively crosslinked regardless of the type of crosslinking point of elastomer (B).
  • the acrylic rubber composition of the present embodiment preferably further contains methyl hydrogen silicone oil (hereinafter also referred to as "SiH oil”) as a crosslinking aid. By including SiH oil as a crosslinking aid, the crosslinking reaction rate can be improved.
  • SiH oil methyl hydrogen silicone oil
  • the content of the SiH oil is preferably 0.01 to 20 parts by mass, more preferably 0.05 to 15 parts by mass, with respect to 100 parts by mass of the elastomer (B). :!-10 parts by mass is particularly preferred. If the SiH oil content exceeds 20 parts by mass, crosslinking tends to be uncontrollable in a stable state. On the other hand, when the amount is less than 0.01 parts by mass, the effect of using SiH oil is not sufficiently exerted, and the crosslinking density of the thermoplastic elastomer tends to be lowered and mechanical properties tend to be deteriorated.
  • crosslinking agent (C) those generally used as a crosslinking agent for elastomers may be used in combination! / ⁇ .
  • the crosslinking agent other than the crosslinking agent (C) may be a compound capable of crosslinking at least one elastomer in the thermoplastic elastomer composition! /.
  • crosslinking agents include sulfur, organic sulfur-containing compounds, organic peroxides, resins, quinone derivatives, polyhalides, bis (dioxotriazoline) derivatives, aldehydes, epoxy compounds, and amine-borane complexes. And bipolar compounds.
  • methylhydrogensiloxane used for platinum crosslinking by hydrosilylation reaction in the presence of a platinum catalyst can be mentioned.
  • these crosslinking agents sulfur, organic sulfur-containing compounds, organic peroxides, and methylhydrogensiloxane are preferable, and organic peroxides are more preferable.
  • These crosslinking agents can be used alone or in combination of two or more. The amount of these cross-linking agents used is usually preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the elastomer (B).
  • the organic peroxide preferably has a temperature of 150 ° C or higher for obtaining a half-life of 1 minute (half-life of 1 minute).
  • the addition amount of the organic peroxide is preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the elastomer (B).
  • IX 0.3 to: More preferably, L0 parts by mass.
  • the amount is less than 3 parts by mass, the crosslinking time becomes very long and the crosslinking tends to be insufficient.
  • the amount added exceeds 15 parts by mass, the cross-linked product tends to be hard and brittle.
  • An organic peroxide can be used individually or in mixture of 2 or more types.
  • a suitable crosslinking aid include, for example, sulfur or sulfur compounds such as powdered sulfur, colloidal sulfur, precipitated sulfur, insoluble sulfur, surface-treated sulfur, dipentamethylene thiuram tetrasulfide; P-quinoneoxime,, P′-dibenzo Oxime compounds such as ylquinone oxime; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol diol di (meth) acrylate, tetraethylene glycol nores (meth) acrylate, polyethylene Glycol di (meth) acrylate, trimethylol propane pantri (meth) acrylate, diallyl phthalate, tetraaryloxetane, triallyl cyanurate, N, N,
  • N, N, -m-phenylene bismaleimide is a compound that can act as a crosslinking agent alone.
  • the crosslinking aids can be used alone or in admixture of two or more.
  • the amount of the crosslinking aid used is preferably 1 to 10 parts by mass, more preferably 0 to 20 parts by mass with respect to 100 parts by mass of the elastomer (B).
  • sulfur as a crosslinking agent, thiazoles such as mercaptobenzothiazole, thiurams such as tetramethylthiuram disulfide, guadins such as diphenylguanidine, zinc dimethyldithiocarbamate, etc. Dithiocarpamate can be effectively used as a crosslinking accelerator.
  • crosslinking agent for example, tetramethylthiuram disulfide or 4,4′-dithiomorpholine, which is a thiuram accelerator, can be effectively used as a crosslinking accelerator.
  • the amount of these crosslinking accelerators used is usually preferably from 0.1 to 20 parts by weight, more preferably from 1 to 10 parts by weight, based on 100 parts by weight of the elastomer (B).
  • thermoplastic elastomer composition of the present embodiment includes a plasticizer, an extender oil, an inorganic filler, a metal oxide, an anti-aging agent, a reinforcing agent, a polymer compound such as a thermoplastic resin, rubber, Various additives can be contained.
  • plasticizer examples include polyether-based, polyetherester-based, and trimellitic acid-based plasticizers that are excellent in heat resistance.
  • polyether plasticizers include those obtained by condensing an alkoxypolyoxyethylene alcohol with an aliphatic dicarboxylic acid.
  • Ade force sizer RS-705 (trade name (manufactured by Asahi Denka Kogyo Co., Ltd.)
  • monosizer I-W-264 brand name (manufactured by Dainippon Ink & Chemicals, Inc.)
  • the method for producing the polyether ester plasticizer is not particularly limited, but it can be easily obtained by reacting 2-ethylhexyl acid and ether glycol in a molar ratio of 2: 1. Obtainable.
  • Ade force sizer RS 1 107, RS-1000, RS-735, RS-700, etc. all trade names (Asahi Denka Kogyo Co., Ltd.) are applicable.
  • trimellitic acid-based plasticizers include trimellitic acid esters formed by condensation of three carboxylic acids of trimellitic acid with alcohol.
  • trimellitic acid esters formed by condensation of three carboxylic acids of trimellitic acid with alcohol.
  • trimellitic acid esters formed by condensation of three carboxylic acids of trimellitic acid with alcohol.
  • trimellitic acid esters formed by condensation of three carboxylic acids of trimellitic acid with alcohol.
  • trimellitic acid-based plasticizers include trimellitic acid esters formed by condensation of three carboxylic acids of trimellitic acid with alcohol.
  • trimellitic acid esters formed by condensation of three carboxylic acids of trimellitic acid with alcohol.
  • trimellitic acid esters formed by condensation of three carboxylic acids of trimellitic acid with alcohol.
  • trimellitic acid esters formed by condensation of three carboxylic acids of trimellitic acid with alcohol.
  • trimellitic acid esters formed by condensation of three carboxylic acids of trimellitic acid with alcohol.
  • trimellitic acid esters formed by condensation
  • Ade force sizer C-8, C-880, C-79, C810, C-9N, C-10, etc. are applicable.
  • a plasticizer can be used individually or in combination of 2 or more types. The plasticizer may be added to the mixture of the thermoplastic resin (A) and the elastomer (B) during the production of the thermoplastic elastomer composition, or may be added to the elastomer (B) in advance. May be.
  • the blending amount of the plasticizer is preferably 0 to L00 parts by mass, preferably 5 to 70 parts by mass, per 100 parts by mass of the total amount of the thermoplastic resin (A) and the elastomer (B). It is particularly preferable that the content be 10 to 50 parts by mass. If it exceeds 100 parts by mass, the thermoplastic elastomer composition strength finally obtained will bleed out, and the mechanical strength and rubber elasticity will tend to decrease.
  • the extender oil a normal extender oil blended in the rubber composition can be used, but an aromatic or naphthenic extender oil is preferable.
  • aroma carbon CA (%)
  • naphthenic carbon CN (%)
  • paraffinic carbon CF (%) in ring analysis by n-d-M method described in ASTM D3238-95 (reapproved in 2000) )
  • CF paraffinic carbon
  • the blending amount of the extender oil is preferably 0 to 50 parts by mass and more preferably 1 to 20 parts by mass per 100 parts by mass of the total amount of the thermoplastic resin (A) and the elastomer (B). Good.
  • An inorganic filler can be blended in the thermoplastic elastomer composition of the present embodiment.
  • a normal one compounded in the rubber composition can be used.
  • silica heavy calcium carbonate, flour, light calcium carbonate, ultra-fine active calcium carbonate, special canolene carbonate, basic magnesium carbonate, kaolin, calcined clay, pie-flight flight clay, silane-treated clay, synthesis Calcium silicate, synthetic magnesium silicate, synthetic aluminum silicate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, magnesium oxide, kaolin, sericite, talc, fine talc, wollastonite, zeolite, bentonite, my strength , Asbestos, PMF (Processed Mineral Fiber), Sepiolite, Potassium titanate, Elastadite, Gypsum fiber, Glass parn, Silica parun, Hyde mouth talcite, Fly ash parun, Shirasu parun, Carbon-based parun, Alumina, Parrium
  • the blending amount of the inorganic filler is preferably 0 to 50 parts by mass per 100 parts by mass of the total amount of the thermoplastic resin (A) and the elastomer (B) 0.5 to 30 parts by mass. More preferably, the content is 1 to 20 parts by mass. If it exceeds 50 parts by mass, the viscosity of the mixture tends to be excessively high, or the compression set, which is an index of the flexibility of the resulting thermoplastic elastomer composition, tends to increase.
  • silica As an inorganic filler, a silane coupling agent is usually used for the surface treatment of silica.
  • the silane coupling agent used is not particularly limited, for example, bitrimethoxysilane, butyltriethoxysilane, buturetris (3-methoxyethoxy) silane, bitrichlorosilane, vinylenotriacetoxysilane, N— (— A Minoechiru) Single y over ⁇ amino propyl trimethoxy silane, ⁇ - ⁇ amino propyl trimethoxysilane down, I over ⁇ amino propyl triethoxy silane, .gamma.-glycidoxypropyltrimethoxysilane, y over glycidoxypropyl methylol Honoré dimethoxy Silane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -methacryloxypropy
  • the blending amount of the silane coupling agent is preferably 0.1 to L0 parts by mass per 100 parts by mass of the total amount of the thermoplastic resin (i) and the elastomer (ii), and 0.5. More preferably, it is set to ⁇ 5 parts by mass.
  • the amount is less than 1 part by mass, the resulting thermoplastic elastomer composition tends to have insufficient tensile properties, compression set, and the like.
  • it exceeds 10 parts by mass the rubber elasticity of the resulting thermoplastic elastomer composition tends to decrease.
  • the ⁇ of silica is preferably 2 to 10, more preferably 3 to 8, and particularly preferably 4 to 6. If ⁇ is less than 2, the crosslinking rate tends to be slow. On the other hand, if ⁇ is more than 10, the scorch stability tends to decrease. Further, the oil absorption amount (ml / lOOg) of silica is preferably 150 to 300, and more preferably 200 to 300. If the oil absorption is less than 150, the viscosity at the time of mixing the elastomer (B) and the extender oil in the production process tends to decrease, the adhesive strength increases, and the handleability tends to decrease. On the other hand, when the oil absorption exceeds 300, the viscosity tends to be excessively high.
  • thermoplastic elastomer composition of the present embodiment a mixture containing the thermoplastic resin (A) and the elastomer (B) is further required in the presence of the crosslinking agent (C).
  • the machine used for kneading in the presence of a plasticizer, an extender oil, or the like that can be combined accordingly. Specifically, it can be kneaded using a melt kneader. More specific apparatuses for kneading can include apparatuses such as a continuous extruder and a closed kneader. Of these, it is preferable to use a continuous extruder from the viewpoint of economy and processing efficiency!
  • the treatment performed in this kneading apparatus may be a patch type or a continuous type.
  • the continuous extruder is not particularly limited as long as it can melt-knead the thermoplastic elastomer composition in the presence of a crosslinking agent.
  • examples thereof include a single screw extruder, a twin screw extruder, and a twin screw rotor type extruder.
  • a twin screw extruder or a twin screw rotor type extruder can be preferably used.
  • an apparatus having L, D (ratio of effective screen length L to outer diameter D) of 5 or more is preferable, and an apparatus having L / D of 10 to 60 is more preferably used.
  • twin-screw extruder for example, any twin-screw extruder can be used, such as one in which two screws mate or one that does not mate, but the rotation direction of the two screws is the same. I prefer a screw that fits in the right direction.
  • twin-screw extruders include GT manufactured by Ikegai Co., Ltd., KTX manufactured by Shishido Steel Co., Ltd., Nippon Steel Works Co., Ltd., Toshiba Machine Co., Ltd., and Warner Co., Ltd. Can be mentioned.
  • twin-screw rotor type extruder any twin-screw one-way type extruder can be used, such as one that two screws mate or one that does not mate, but the direction of rotation of the two screws It is more preferable that the screw is mixed in different directions.
  • twin-screw rotor type extruder examples include CIM manufactured by Nippon Steel Works, Mixtron FC M / NCM / LCM / ACM (V, deviation is a trade name) manufactured by Kobe Steel. .
  • thermoplastic elastomer composition When the thermoplastic elastomer composition is produced by a continuous extruder, the plasticizer and the extender oil may be supplied by using a thermoplastic resin (A), elastomer, which is subjected to a crosslinking reaction using a mixer. There are a method of mixing in advance with (B) and supplying it to the feed hopper of the continuous extruder, or a method of supplying directly from the parel opening provided between the feed hopper and the die.
  • A thermoplastic resin
  • B elastomer
  • the closed kneader is not particularly limited as long as the thermoplastic resin (A) and the elastomer (B) can be melt-kneaded in the presence of the crosslinking agent (C).
  • a pressure type kneader, a bumper mixer, a brabender mixer, and the like can be given.
  • Examples of the kneading method using the various apparatuses described above include, for example, the following first
  • Ingredients other than the cross-linking agent (C) are put into a closed kneader (Ader, Pampari mixer, etc.) In addition, after kneading under heating conditions, it may be processed into pellets using a feeder-louder, or once formed into a sheet by a roll mill and pelletized with a sheet pelletizer. Good. Next, the obtained pellet-like molded product and the crosslinking agent (C) for dynamic crosslinking are added with a crosslinking aid as necessary, and supplied to a continuous extruder, and heated and melted. Force S Lalastomer (B) is dynamically cross-linked.
  • thermoplastic resins (A), elastomers (B), and crosslinkers (C) in continuous extruders (single screw extruders, twin screw extruders, twin screw rotor type extruders, etc.)
  • the ingredients are supplied and the elastomer (B) is dynamically cross-linked while being heated and melted.
  • thermoplastic resin (A), elastomer (B), and cross-linking agent (C) are supplied to the first continuous extruder of two connected continuous extruders, and the first continuous extruder is used.
  • a cross-linking agent the thermoplastic resin (A) and the elastomer (B) are melt-kneaded, and the dynamic cross-linking reaction proceeds substantially.
  • the elastomer (B) is dynamically crosslinked.
  • the elastomer (B) is sufficiently dispersed in the thermoplastic resin (A), and the elastomer (B) is sufficiently dispersed.
  • the particles of elastomer (B) as a dispersed phase (domain) are stably dispersed in the thermoplastic resin (A) forming a continuous phase (matrix).
  • Thermoplastic elastomer compositions can be prepared. To such a thermoplastic elastomer composition!
  • the particle size of the crosslinked acrylic rubber (elastomer) that is the dispersed phase is preferably 50 ⁇ m or less, more preferably 1 to 10 ⁇ m! /.
  • thermoplastic elastomer composition of the present embodiment thus obtained has an advantageous sea-island structure as a whole, has excellent cold resistance, and is useful as an alternative to acrylic rubber. Is. Therefore, the use of the thermoplastic elastomer composition of the present embodiment is not limited, but the characteristics of the thermoplastic elastomer composition of the present embodiment are viable.
  • a transport machine such as an automobile, general equipment 'device, electronic' In a wide range of fields such as electricity and architecture, in addition to sealing materials such as O-rings, oil seals and bearing seals, CVJ boots, shock absorbers, protective materials, electrical It is suitable as a material constituting various molded products such as wire coating materials, industrial benolets, hoses and sheets.
  • thermoplastic elastomer composition Preparation of thermoplastic elastomer composition
  • thermoplastic resin acrylic rubber, plasticizer, cross-linking agent, and other additives were used.
  • PBT Polybutylene terephthalate resin
  • Acrylic rubbers (ACM-1 to ACM-4), which are elastomers (B) having structural units derived from ester group-containing monomers, were synthesized by the method described below.
  • ion-exchanged water 200 parts is placed in a nitrogen-substituted photoclave, and further, 38.2 parts of pentanol acrylate, 38.2 parts of methoxyethyl acrylate, 0.5 part of glycidyl methacrylate, 19.1 parts of methyl methacrylate, And a monomer mixture consisting of 4 parts of dihydrodicyclopentenyl oxychuccinole acrylate, 4 parts of sodium laurate, 0.04 parts of p-menthane hydrated peroxide, 0.011 parts of ferrous sulfate, Sodium ethylenediamine tetraacetate (0.025 part) and sodium formaldehyde sulfoxylate (0.04 part) were charged, and emulsion polymerization was carried out at a reaction temperature of 15 ° C.
  • ACM-4 In a nitrogen-substituted autoclave, 200 parts of ion-exchanged water are added, and a monomer mixture consisting of 100 parts of ethyl acrylate, 4 parts of sodium laurate, and p-menthane hydroxoxide 0.04 parts And 0.01 part of ferrous sulfate, 0.025 part of sodium ethylenediamine tetraacetate, and 0.04 part of sodium formaldehyde hexenoreoxylate, and emulsion polymerization at a reaction temperature of 15 ° C. I let you.
  • Olefin Z acrylic acid copolymer rubber ethylene 'acrylic acid copolymer rubber (Mitsui DuPont Chemicals, trade name "Bomac G” (ethylene 73 mol 0 methinole acrylate 26 mol 0 and carboxylic acid) using 1 mole 0/0 terpolymers)).
  • the crosslinking agent (C) was synthesized by the method described below.
  • Weight of crosslinking agent (C) in terms of polystyrene determined from gel permeation chromatography The average molecular weight Mw was 11,500, the number average molecular weight Mn was 5000, and the molecular weight distribution MwZMn was 2.3.
  • the amount of volatile components in the crosslinking agent (C) by gas chromatography was 1% or less.
  • the glass transition temperature (Tg) was 70 ° C and the epoxy value was 1.8 meq / g.
  • SH1107 (made by Toray 'Dow Corning' Silicone Co.) as methinorehydrogen silicone, 2,5-dimethyl-1,2,5-di (t-petitenoreperoxy) hexyne 1 (Japan)
  • dibulebenzene manufactured by Sankyo Kasei Co., Ltd., trade name “dibulebenzene (56% product)”
  • dibulebenzene 56% product
  • 4, 4′-bis ( ⁇ , -dimethylbenzyl) Luamin trade name “NOCRACK CDJ” manufactured by Taiho Shinsei Chemical Industry Co., Ltd.
  • ACM-1, PBT, crosslinking agent (C), and anti-aging agent were mixed for 30 seconds using a Henschel mixer according to the formulation shown in Table 1 to obtain an additive mixture.
  • a Henschel mixer according to the formulation shown in Table 1 to obtain an additive mixture.
  • two weight feeders made by Kubota, product name “KF-C88” for the additive mixture and the other for the polypropylene terephthalate resin.
  • thermoplastic elastomer composition was obtained by supplying each from the raw material inlet of the shaft extruder and subjecting it to a crosslinking reaction by dynamic heat treatment at a cylinder temperature setting of 230 ° C. and a screw speed of 400 rpm.
  • thermoplastic elastomer composition was obtained in the same manner as in Example 1 except that the formulation shown in Table 1 was used.
  • test piece (molded sheet) of thermoplastic elastomer composition)
  • thermoplastic elastomer composition Examples:! To 5, Comparative Examples 1 and 2) were injection molded using a injection molding machine (trade name “N-100” manufactured by Nippon Steel Co., Ltd.). Then, a molded sheet having a thickness of 2 mm, a length of 120 mm, and a width of 120 mm was produced and subjected to various evaluations.
  • thermoplastic elastomer composition The kneadability of the obtained thermoplastic elastomer composition was measured using a kneader with a capacity of 10 liters. The fluidity was measured as a melt flow rate (MFR) at 230 ° C. and 10 kg load. The results are shown in Table 1. Also, using the obtained thermoplastic elastomer composition molded sheet, mechanical properties at normal temperature (25 ° C) and 140 ° C (surface hardness, tensile strength at break (T),
  • thermoplastic elastomer compositions of Example 1 and Comparative Example 2 were frozen using a microtome, and then dyed with ruthenium tetroxide. Using a microscope (“H-7500”, manufactured by Hitachi, Ltd.), the photograph was taken at a magnification of 2000 times.
  • FIG. 1 shows an electron micrograph showing the microstructure of the thermoplastic elastomer composition of Example 1.
  • FIG. 2 shows an electron micrograph showing the microstructure of the thermoplastic elastomer composition of Comparative Example 2.
  • the portion represented by black to dark gray is polybutylene terephthalate resin
  • white to light gray is acrylic rubber.
  • thermoplastic elastomer compositions of Examples 1 to 5 have higher strength and heat resistance than the thermoplastic elastomer compositions of Comparative Examples 1 and 2. It is easy. Since Comparative Example 1 is not crosslinked, it is inferior in mechanical properties and heat resistance. In Comparative Example 2, since the organic peroxide was crosslinked, PBT was molecularly cut by the organic peroxide, resulting in poor mechanical properties. Therefore, the usefulness of the thermoplastic elastomer composition which is an embodiment of the present invention is improved. I was able to confirm. Further, from the electron micrograph of Example 1 shown in FIG.
  • thermoplastic elastomer composition according to the embodiment of the present invention has a sea-island structure (polybutylene terephthalate resin) in which acrylic rubber crosslinked particles of 3 m or less are uniformly dispersed. Is clearly the sea (matrix), and the crosslinked acrylic rubber particles are islands (domains).
  • the particle diameter of the crosslinked acrylic rubber particles is non-uniform and there are many coarse particles of 3 m or more. It is clear power.
  • thermoplastic elastomer composition of the present invention has high strength and excellent rubber elasticity, heat resistance, and oil resistance, it is suitable as a material for constituting members such as CVJ boots. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 融点が200℃以上である熱可塑性樹脂(A)と、エステル基含有モノマー由来の構成単位を有するエラストマー(B)と、を含む混合物を、架橋剤(C)として、重量平均分子量Mwが1000~30000、分子量分布Mw/Mnが1.0~4.0であり、(メタ)アクリル酸エステル(c−1)単位のみからなる重合体(C−1)、及び/又は、重量平均分子量Mwが1000~30000、分子量分布Mw/Mnが1.0~4.0であり、(メタ)アクリル酸エステル(c−1)単位5~35質量%及び芳香族ビニル単量体(c−2)単位65~95質量%を構成単位として含有する重合体(C−2)、の存在下に動的に熱処理してなる熱可塑性エラストマー組成物である。全体として良好な海島構造を有し、耐寒性に優れ、アクリルゴムの代替品として有用である。

Description

明 細 書
熱可塑性エラストマ一組成物及ぴその製造方法
技惯分野
[0001] 本発明は熱可塑性エラストマ一組成物、及びその製造方法に関し、更に詳しくは、 全体として良好な海島構造を有する、アクリルゴムの代替品として有用な熱可塑性ェ ラストマ一組成物、及ぴその製造方法に関する。
背景技術
[0002] 従来から、柔軟性、ゴム弾性に優れる高分子材料としては、ゴム材料の他、熱可塑 性エラストマ一組成物が広く用いられている。このうち、熱可塑性エラストマ一組成物 については、通常の熱可塑性樹脂の成形方法である射出成形、異形押出成形、力 レンダー加工、ブロー成形等により成形品を得ることができる。そのため、近年、省ェ ネルギー、省資源、リサイクルといった観点力 自動車部品、工業用品、電気電子部 品、建材等に加硫ゴムや塩化ビニル樹脂の代替材用途として需要が拡大してレ、る。
[0003] しかしながら、製造プロセスカ複雑であること、使用できる架橋剤が高価であること や、使用する架橋剤などによる汚染のために用途が限られるなど解決すべき課題を 多く抱えている。
[0004] 関連する従来技術として、 180〜350°Cの温度条件下で混練及び熱処理されてな る、熱可塑性コポリエステルエラストマ—マトリックス中にアクリルゴムのカロ硫ゴム粒子 が分散した構造 ( 、わゆる海島構造)を有する熱可塑性エラストマ一組成物、及ぴそ の製造方法が開示されている (例えば、特許文献 1参照)。この特許文献 1で開示さ れた製造方法にぉ ヽては、脂肪族若しくは芳香族ポリカルボン酸又はこれらの酸無 水物等の、一般的な架橋剤として知られて 、る化合物が架橋剤として用いられて!/ヽ る。
[0005] 一般的な架橋剤の使用温度は、 150〜200°Cの範囲内が好適であることが知られ ている。このため、融点が 200°C以上の熱可塑性樹脂をマトリックスとする熱可塑性 エラストマ一組成物を製造しょうとして 200°Cを超える温度条件下で架橋を実施する と、架橋剤が瞬時に反応してしまい、良好な海島構造を有する熱可塑性エラストマ一 組成物を得ることができないといった問題がある。従って、融点の高い熱可塑性樹脂 をマトリックスとするような であっても、安定した状態で動的架橋を実施することが でき、全体として良好な海島構造を有する熱可塑性エラストマ一組成物を提供するこ とが可能な熱可塑性エラストマ一組成物の製造方法を開発することが必要とされてい る。
特許文献 1 :特開平 9— 272788号公報
発明の開示
[0006] 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その 課題とするところは、全体として良好な海島構造を有し、耐寒性に優れ、アクリルゴム の代替品として有用な熱可塑性エラストマ一組成物、及び比較的融点の高!/ヽ熱可塑 性樹脂存在下であっても安定した状態で動的架橋を実施することができ、全体として 良好な海島構造を有する、耐寒性に優れた熱可塑性エラストマ一組成物を製造する ことが可能な熱可塑性エラストマ一組成物の製造方法を提供することにある。
[0007] 本発明者らは上記課題を達成すべく鋭意検討した結果、所定の熱可塑性樹脂とェ ラストマ一を含む混合物を、架橋剤を用いて動的に熱処理するに際し、架橋剤として 特定の重合体を用!/ヽることによって、上記課題を達成することが可能であることを見 出し、本発明を完成するに至った。
[0008] 即ち、本発明によれば、以下に示す熱可塑性エラストマ 祖成物、及びその製造 方法が提供される。
[0009] [1]融点が 200°C以上である熱可塑性樹脂 (A)と、エステル基含有モノマー由来 の構成単位を有するエラストマ一 (B)と、を含む混合物を、架橋剤 (C)として、重量平 均分子量 Mwが 1000〜30000、分子量分布 Mw/Mn力 . 0〜4. 0であり、(メタ) アクリル酸エステル (c— 1)単位のみからなる重合体 (C— 1)、及び/又は、重量平 均分子量]^ カ 000〜30000、分子量分布1^ /1^11が1. 0〜4. 0であり、(メタ) アクリル酸エステノレ (c— 1)単位 5〜35質量0 /0及ぴ芳香族ビニル単量体 (c— 2)単位 65〜95質量%を構成単位として含有する重合体 (C— 2)、の存在下に動的に熱処 理してなる熱可塑性エラストマ一組成物。
[0010] [2]前記熱可塑性樹脂 (A)が、ポリエステル樹脂、ポリアミド樹脂、及びポリエステ ルエラストマーからなる群より選択される少なくとも一種である前記 [1]に記載の熱可 塑性エラストマ一組成物。
[0011] [3]前記エラストマ一 (B)力 アクリルゴム、ァクリロュトリル'アクリルゴム、及ぴェチ レン ·アクリルゴムからなる群より選択される少なくとも一種である前記 [1 ]又は [2]に 記載の熱可塑性エラストマ一組成物。
[0012] [4]前記エラストマ一 (B)が、(B1)アクリル酸アルキルエステル及ひン又はアタリノレ 酸アルコキシァノレキルエステル単量体由来の構成単位 20〜99. 99質量%、 (B2) 炭素一炭素二重結合を側鎖に有する単量体由来の構成単位 0. 01〜20質量%、 ( B3)不飽和アタリロニトリノレ単量体由来の構成単位 0〜40質量%、及ぴ (B4)これら と共重合可能な単量体由来の構成単位 0〜30質量% (但し、 (Bl) + (B2) + (B3) + (B4) = 100質量0 /0)からなるものである前記 [1;]〜 [3]のレヽずれかに記載の熱可 塑性エラストマ一組成物。
[0013] [5]前記エラストマ一 (B)が、カルボキシル化、ヒドロキシ化、アミノ化、又はエポキシ 化されてなるものである前記 [1]〜 [4]の!/、ずれかに記載の熱可塑性エラストマ一組 成物。
[0014] [6]前記混合物に占める、前記熱可塑性樹脂 (A)と前記エラストマ一 (B)の含有割 合力 質量比で、 (A): (B) =60:40〜15 : 85である前記 [1]〜[: 5]のいずれかに記 載の熱可塑性エラストマ一組成物。
[0015] [7]前記 (メタ)アクリル酸エステル (c— 1)力 メタクリル酸ダリシジルエステルを含む ものである前記 [1:]〜 [6]のいずれかに記載の熱可塑性エラストマ一組成物。
[0016] [8]前記架橋剤 (C)のエポキシ価力 0, l〜20meqZgである前記 [1]〜!: 7]のい ずれかに記載の熱可塑性エラストマ一組成物。
[0017] [9]メチルハイドロジェンシリコーンオイルを更に存在させて動的に熱処理してなる 前記 [1:!〜 [8]の!/、ずれかに記載の熱可塑性エラストマ一組成物。
[0018] [10]エーテル系可塑剤、エーテルエステル系可塑剤、トリメリット酸系可塑剤からな る群より選択される少なくとも一種である可塑剤を、 0〜50質量%含有する前記 [1]
〜 [9]の!/、ずれかに記載の熱可塑性エラストマ一組成物。
[0019] [11]前記 [1]〜!: 10]のレ、ずれかに記載の熱可塑性エラストマ一組成物を成形し てなる成形品。
[0020] [12]前記 [1:!〜 [10]の 、ずれかに記載の熱可塑性エラストマ一組成物力 なる等 速ジョイント (CVJ)ブーツ。
[0021] [13]融点が 200°C以上である熱可塑性樹脂 (A)と、エステル基含有モノマー由来 の構成単位を有するエラストマ一 (B)と、 ¾ ^む混合物を、架橋剤 (C)として、重量平 均分子量 Mwが 1000〜30000、分子量分布 MwZMn力 S1. 0〜4.。であり、(メタ) アクリル酸エステル (c— 1)単位のみからなる重合体 (C一 1)、及び/又は、重量平 均分子量 Mwが 1000〜30000、分子量分布 Mw/Mnが 1. 0〜4.。であり、(メタ) アクリル酸エステル (c— 1)単位 5〜35質量%及ぴ芳香族ビュル単量体 (c—2)単位 65〜95質量%を構成単位として含有する重合体 (C一 2)、の存在下に動的に熱処 理して熱可塑性エラストマ一組成物を得る熱可塑性エラストマ一組成物の製造方法
[0022] [14]連続式混練機及び/又は連続式押出機によって動的に熱処理する前記 [13 ]に記載の熱可塑性エラストマ一組成物の製造方法。
[0023] 本発明の熱可塑性エラストマ一組成物は、全体として良好な海島構造を有し、耐寒 性に優れ、アクリルゴムの代替品として有用であるという効果を奏するものである。ま た、本発明の熱可塑性エラストマ一組成物の製造方法によれば、比較的融点の高い 熱可塑性樹脂存在下であっても安定した状態で動的架橋を実施することができ、全 体として良好な海島構造を有する、耐寒性に優れた熱可塑性エラストマ一組成物を 製造することが可能である。
図面の簡単な説明
[0024] [図 1]実施例 1の熱可塑性エラストマ一組成物の微構造を示す電子顕微鏡写真であ る。
[図 2]比較例 2の熱可塑性エラストマ一組成物の微構造を示す電子顕微鏡写真であ る。
発明を実施するための最良の形態
[0025] 以下、本発明の実施の最良の形態にっ ヽて説明するが、本発明は以下の実施の 形態に限定されるものではなぐ本発明の趣旨を逸脱しない範囲で、当業者の通常 の知識に基づいて、以下の実施の形態に対し適宜変更、改良等力加えられたものも 本発明の範囲に入ることが理解されるべきである。
[0026] 本発明の熱可塑性エラストマ一組成物の一実施形態は、融点が 200°C以上である 熱可塑性樹脂 (A)と、エステル基含有モノマー由来の構成単位を有するエラストマ -(B)とを含む混合物を、架橋剤 (C)として、重量平均分子量 Mwが 1000〜30000 、分子量分布 MwZM が 1. 0〜4. 0であり、(メタ)アクリル酸エステノレ (c—l)単位 のみカゝらなる重合体(C—l)、及ぴ 又は、重量平均分子量 Mwが 1000〜30000 、分子量分布 Mw/Mnが 1. 0〜4. 0であり、(メタ)アクリル酸エステル (c—l)単位 5〜35質量%及び芳香族ビュル単量体 (c-2)単位 65〜95質量%を構成単位とし て含有する重合体 (C— 2)、の存在下に動的に熱処理することを含む製造方法であ る。以下、その詳細について説明する。
[0027] (A)熱可塑性樹脂
本実施形態の熱可塑性エラストマ一組成物における、動的に熱処理される混合物 に含まれる熱可塑性樹脂は、その融点が 200°C以上のものであり、好ましくは 210°C 以上、更に好ましくは 210~300°Cのものである。熱可塑性樹脂の融点が 200°C未 満であると、得られる成形体の強度が不十分になることがある。なお、熱可塑性樹脂 は、ポリエステル樹脂、ポリアミド樹脂、及びポリステルエラストマーカ なる群より選 択される少なくとも一種であることが好まし ヽ。
[0028] (ポリエステル樹脂)
ポリエステル樹脂とは、一般に飽和ジカルボン酸と飽和 2価アルコールとの重縮合 反応、ラタトンの開環反応、一分子内に水酸基とカルボキシル基を持つ化合物の重 縮合反応等により得られる熱可塑性樹脂のことをいう。例えば、ポリエチレンテレフタ レート、ポリトリメチレンテレフタレ一ト(ポリプロピレンテレフタレ—ト)、ポリテトラメチレ ンテレフタレート (ポリブチレンテレフタレート)、ポリへキサメチレンテレフタレート、ポリ シクロへキサン一 1、 4—ジメチロールテレフタレート、ポリネオペンチルテレフタレート 、ポリエチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンナフタレート、ポ リカプロラクトン、 p—ヒドロキシ安息香酸ポリエステル、ポリアリレート等を挙げることが できる。本実施形態の熱可塑性エラストマ一においては、 2種類以上のポリエステル 樹脂を併用してもよい。これらの中でポリエチレンテレフタレート、ポリプロピレンテレ フタレート、ポリブチレンテレフタレートが好ましい。また、テレフタル酸部分は、アルキ ル基、ノヽロゲン基等で置換されていてもよい。
[0029] (ポリアミド樹脂)
ポリアミド樹脂としては、公知の種々のものを用いることができる。具体例としては、 ナイロン 6 (N6)、ナイロン 66 (N66)、ナイロン 11 (Nil)、ナイロン 12 (N12)、芳香 環を有する脂肪族ポリアミド (ナイロン MXD6)等を挙げることができる。また、上記の ポリアミド樹脂の共重合体を用いることもできる。具体例としては、ナイロン 6とナイロン 66との共重合体(N6ZN66)、ナイロン 6とナイロン 10との交互共重合体 (ナイロン 6 10:N610)、ナイロン 6とナイロン 12との交互共重合体(ナイロン 612:N612)等を挙 げることができる。
[0030] また、これらのポリアミド樹脂は、単独で、又は二種以上のブレンド物として用いるこ とができる。ブレンド物の具体例としては、ナイロン 6とナイロン 66とのブレンド物(N6 ZN66)、ナイロン 6とナイロン 11とのブレンド物(N6/N11)、ナイロン 6とナイロン 1 2とのブレンド物(N6ノ N12)、ナイロン 6とナイロン 610とのブレンド物(N6ZN610) 、ナイロン 6とナイロン 612とのブレンド物(N6/N612)、ナイロン 66とナイロン 11と のブレンド物 (N66/N11)、ナイロン 66とナイロン 12とのブレンド物(N66/N12)、 ナイロン 66とナイロン 610とのブレンド物(N66ZN610)、ナイロン 66とナイロン 612 とのブレンド物(N66/N612)、ナイロン 11とナイロン 12とのブレンド物(N11ZN1 2)、ナイロン 11とナイロン 610とのブレンド物(N11ZN610)、ナイロン 11とナイロン 612とのブレンド物(NllZN612)、ナイロン 12とナイロン 610とのブレンド物 (N12 1^610)、ナイロン 12とナイロン 612とのブレンド物(ΝΙ^ΖΝδΙΖ) ナイロン 610と ナイロン 612とのブレンド物(Ν610ZN612)等の 2成分系のブレンド物、ナイロン 6と ナイロン 11とナイロン 610とのブレンド物 (N6/N11/N610)、ナイロン 6とナイロン 11とナイロン 612とのブレンド物(Νδ/ΝΙΙ,Νδ^ ナイロン 6とナイロン 12とナイ ロン 610とのブレンド物(ΝδΖΝΙΖ/ΝΘΙΟ) ナイロン 6とナイロン 12とナイロン 612 とのブレンド物(NSZNIS/NeiS)、ナイロン 6とナイロン 610とナイロン 612とのブ レンド物(N6ZN610ZN612)、ナイロン 66とナイロン 11とナイロン 610とのブレンド 物(N66ZN11/N610)、ナイロン 66とナイロン 11とナイロン 612とのブレンド物(N 66/N11/N612)、ナイロン 66とナイロン 12とナイロン 610とのブレンド物(N66ノ N12ノ N610)、ナイロン 66とナイロン 12とナイロン 612とのブレンド物(N66ZN12 ZN612)、ナイロン 66とナイロン 610とナイロン 612とのブレンド物(N66ZN610/ N612)等の 3成分系のブレンド物、ナイロン 6とナイロン 66とナイロン 11とナイロン 61 0とのブレンド物 (N6/N66/N11/N610)、ナイロン 6とナイロン 66とナイロン 11 とナイロン 612とのブレンド物(N6ZN66/N11/N612)、ナイロン 6とナイロン 66 とナイロン 66とナイロン 12とナイロン 612とのブレンド物 (N6/N66/N12/N612) 、ナイロン 6とナイロン 66とナイロン 610とナイロン 612とのブレンド物 (N6/N66/N 610/N612)、ナイロン 6とナイロン 11とナイロン 12とナイロン 610とのブレンド物 (N 6/N11/N12/N610)、ナイロン 6とナイロン 11とナイロン 12とナイロン 612とのブ レンド物(N6/N 11/N 12/N612)、ナイロン 6とナイロン 11とナイロン 610とナイ口 ン 612とのブレンド物(ΝδΖΝΙΙ/ΝδΙθΖΝδ ) ナイロン 6とナイロン 12とナイ口 ン 610とナイロン 612とのブレンド物(N6ZN12ZN610ZN612)等の 4成分系の ンド物(N6/N66/Nll N610ZN612)、ナイロン 6とナイロン 66とナイロン 12と ナイロン 610とナイロン 612とのブレンド物(ΝδΖΝδθΖΝΙ^/ΝΘΙθ/ΝΘΙ^)等 の 5成分系のブレンド物、ナイロン 6とナイロン 66とナイロン 11とナイロン 12とナイロン
6成分系のブレンド物を挙げることができる。
(ポリエステノレエラストマ一)
ポリエステルエラストマ一は、ポリエステノレとポリエーテルとを主たる反復単位とする 多元ブロック共重合体として知られている。本実施形態においては、結晶性芳香族 ポリエステルを含有する高融点結晶性重合体ノ、ードセグメントと、脂肪族ポリエーテ ルを含む芳香族及び 又は脂肪族ポリエステル単位 ¾: ^有する低融点重合体ソフト セグメントとを含有する多元ブロック共重合体を、ポリエステルエラストマ一として好適 に用いることができる。 [0032] 結晶性芳香族ポリエステルを含有する高融点結晶性重合体ノヽ一ドセグメントは、主 として芳香族ジカルボン酸又はそのエステル形成性誘導体と、ジオール又はそのェ ステル形成性誘導体とから形成されるポリエステルである。芳香族ジカルボン酸とし ては、テレフタル酸、イソフタル酸、フタル酸、ナフタレン一2, 6—ジカルボン酸、ナフ タレン一 2, 7—ジカルボン酸、アントラセンジカルボン酸、ジフエ二ルー 4, 4,ージカ ルボン酸、ジフエノキシエタンジカルボン酸、 4, 4'ージフエニルエーテルジカルボン 酸、 5—スルホイソフタル酸、 3—スルホイソフタル酸ナトリウム等を挙げることができる 主として芳香族ジカルボン酸が用いられるが、芳香族ジカルボン酸の一部を、必要 に応じて 1, 4ーシクロへキサンジカルボン酸、シクロペンタンジカルボン酸、 4, 4,一 ジシクロへキシルジカルボン酸等の脂環族ジカルボン酸、アジピン酸、コハク酸、シュ ゥ酸、セパシン酸、デカンジカルボン酸、ダイマー酸等の脂肪族ジカルボン酸に置換 してもよレ、。もちろん、ジカルボン酸のエステル形成性誘導体、例えば低級アルキル エステル、ァリールエステル、炭酸エステル、酸ハロゲン化物等も同等に用いることが できる。
[0033] ジオールとしては、分子量 400以下のジオール、例えば 1, 4—ブタンジオール、ェ チレングリコーノレ、トリメチレングリコール、ペンタメチレングリコール、へキサメチレン グリコール、ネオペンチルダリコール、デカメチレングリコール等の脂肪族ジオール、 1, 1—シクロへキサンジメタノール、 1, 4ージシクロへキサンジメタノール、トリシクロ デカンジメタノール等の脂環族ジオール、キシリレングリコール、ビス(p—ヒドロキシ) ジフエ二ノレ、ビス(p—ヒドロキシフエニル)プロパン、 2, 2—ビス [4— (2—ヒドロキシェ トキシ)フエニル]プロパン、ビス [4— (2—ヒドロキシ)フエニル]スルホン、 1, 1—ビス [ 4— (2—ヒドロキシエトキシ)フエ二ノレ]シクロへキサン、 4, 4,ージヒドロキシー p—ター フエニル、 4, 4,一ジヒドロキシ一 p—クォータ一フエュノレ等の芳香族ジオールが好ま しい。このようなジオールも、エステル形成性誘導体、例えばァセチル体、アルカリ金 属塩等の状態で使用することができる。これらのジカルボン酸及びその誘導体、又は ジオール成分は、二種以上併用してもよい。そして、最も好ましい高融点結晶性重合 体セグメントの例は、テレフタル酸及ぴ 又はジメチルテレフタレートと、 1, 4—ブタ ンジオールとから誘導されるポリブチレンテレフタレートである。 [0034] ポリエステルエラストマ一を構成する低融点重合体ソフトセグメントは、脂肪族ポリエ —テルを含む芳香族及び _ 又は脂肪族ポリエステル単位を含有する。脂肪族ポリエ
—テルとしては、ポリ(エチレンォキシド)グリコール、ポリ(プロピレンォキシド)グリコー ル、ポリ(テトラメチレン^シド)グリコール、ポリ(へキサメチレンォキシド)グリコール 、エチレンォキシドとプロピレンォキシドの共重合体、ポリ(プロピレンォキシド)グリコ ールのエチレンォキシド付加重合体、エチレンォキシドとテトラヒドロフランの共重合 体等を挙げることができる。このような脂肪族ポリエーテルを含有させることで、ポリエ ステルエラストマーにゴム弾性を付与することができ、熱可塑性エラストマ一組成物の 機械的物性を損なうことなく柔軟性を向上させることができる。
[0035] また、芳香族ポリエステルとしては、前述した高融点結晶性重合体ハードセグメント の結晶性芳香族ポリエステルと同様のものを挙げることができる。更に、脂肪族ポリエ ステルとしては、ポリ( ε一力プロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、 ポリブチレンアジペート等を拳げることができる。これらの脂肪族ポリエーテルを含む 芳香族及ぴ Ζ又は脂肪族ポリエステル単位を含有するものの中で、得られるポリエス テルブロック共重合体の弾性特性から、ポリ (テトラメチレンォキシド)グリコール、ポリ ( プロピレンォキシド)グリコールのエチレンォキシド付加物、ポリ 一力プロラクトン)、 ポリブチレンアジペート等が好まし 1/、。
[0036] (Β)エラストマ一
本実施形態の熱可塑性エラストマ一組成物における、動的に熱処理される混合物 に含まれるエラストマ一 (Β)は、エステル基含有モノマー由来の構成単位を有するも のである。エステル基含有モノマーとしては、例えば、アルキルアタリレート、アルコキ シアルキルアタリレート等を挙げることができる。また、これらのエステノレ基含有モノマ 一に由来する構成単位を有する (Β)エラストマ一としては、例えば、アクリルゴム、ァ クリロニトリル.アクリルゴム(以下、併せて「(Β1)アクリル系ゴム」ともいう)、(Β2)ェチ レン ·アクリルゴムを挙げることができる。
[0037] (B1)アクリル系ゴム
(B1)アクリル系ゴムとしては、公知のアクリル酸アルキルエステル及び/若しくはァ クリル酸アルコキシアルキノレエステルを主成分とするアクリルゴム、又はこのアクリルゴ ムと不飽和アクリロニトリル単量体との共重合体である、アクリロニトリル 'アクリルゴム を挙げることができる。
[0038] (B1)アクリル系ゴムを構成するアクリル酸アルキルエステル (b— 1)としては、例え ば、メチルアタリレート、ェチルアタリレート、プロピルアタリレート、プチルァクリレート、 ォクチルアタリレート等を挙げることができる。これらの中でも、ェチルアタリレート、プ 口ピルアタリレート、プチルアタリレート等が好ましい。また、アルコキシアルキルアタリ レートとしては、例えば、メトキシメチルアタリレート、メトキシェチルアタリレート、ェトキ シェチノレアタリレート、ブトキシェチルアタリレート、メトキシェトキシェチルアタリレート 等を挙げることができる。これらの中でも、メトキシェチルァクリレート、エトキシェチル アタリレート等が好ましレ、。これらのアルキルアタリレートやアルコキシアルキルアタリレ ートは、一種単独で又は二種以上を組み合わせて用いることができる。
[0039] (B1)アクリル系ゴムに占める、アクリル酸アルキルエステル (b— 1)の構成割合((B 1)アクリル系ゴム中の共重合割合)は、 20~99. 99質量%であることが好ましぐ 60 〜94. 98質量%であることが更に好ましく、 70〜90質量%であることが特に好まし い。この割合が 20質量%未満であると、得られる熱可塑性エラストマ一組成物の硬 度が過大となって、好適な弾性状態を有するものとならなくなる傾向にある。一方、こ の割合が 99. 99質量%超であると、得られる熱可塑性エラストマ一組成物の耐油性 が乏しくなる傾向にある。
[0040] 炭素—炭素二重結合を側鎖に有する単量体 (b_2)としては、具体的には、アタリ ル酸ジヒドロジシクロペンテュル、メタクリノレ酸ジヒドロジシクロペンテニル、ィタコン酸 ジヒドロジシクロペンテニル、マレイン酸ジヒドロジシクロペンテュル、フマル酸ジヒドロ ジシクロペンテュル、アクリル酸ジヒドロジシクロペンテュルォキシェチル (DCPEA) 、メタクリル酸ジヒドロジシクロペンテュルォキシェチル、ィタコン酸ジヒドロジシクロべ ンテュルォキシェチル、マレイン酸ジヒドロジシクロペンテニノレオキシェチル、フマル 酸ジヒドロジシクロペンテニルォキシェチル、メタクリル酸ビエル(CAS No. 4245- 38—8)、アクリル酸ビュル(CAS No. 2177— 18— 6)、メタクリル酸 1, 1—ジメチ ノレプロぺエル、アクリル酸 1, 1—ジメチルプロぺニル、メタクリル酸 3, 3—ジメチルブ テュル、アクリル酸 3, 3—ジメチルブテュル、ィタコン酸ジビュル、マレイン酸ジビニ ノレ、フマル酸ジビエル、ジシクロペンタジェン、メチ 7レジシクロペンタジェン、ェチリデ ンノルポルネン、 1, 1—ジメチルプロぺニルメタクリレート、 1, 1一ジメチルプロぺニル アタリレート、 3, 3—ジメチルブテニルメタクリレート、 3, 3—ジメチルブテニノレアクリレ —ト、ビニノレ 1, 1ージメチルプロぺニルエーテル、ビニノレ 3, 3—ジメチルブテュルェ 一テル、 1ーァクリロイルォキシ一 1—フエエルェテン、 1—ァクリロイルォキシ一 2—フ ェニルェテン、 1ーメタクリロイルォキシ _ 1一フエニルェテン、 1—メタクリロイルォキ シ一2—フエニルェテン等を挙げることができる。なお、これらは単独で、又は二種以 上組み合わせて用いることができる。この中で、特にアクリル酸ジヒドロジシクロペンテ ニル、メタクリル酸ジヒドロジシクロペンテニル、アクリル酸ジヒドロジシクロペンテニル ォキシェチル、メタクリル酸ジヒドロジシクロペンテニルォキシェチル、メタクリル酸ビュ ル、アクリル酸ビニルが好ましい。
[0041] (B1)アクリル系ゴムに占める、炭素一炭素二重結合を側鎖に有する単量体 (b— 2 )の構成割合((B1)アクリル系ゴム中の共重合割合)は、 0, 01〜20質量%であるこ とが好ましぐ 0. 02〜8質量%であることが更に好ましい。この割合が 0. 01質量% 未満であると、得られる熱可塑性エラストマ一組成物の架橋度が不十分となり、引張 強度が過小となって好適な機械的強度を有するものとならなくなる傾向にある。一方 、この割合が 20質量%超であると、得られる熱可塑性エラストマ一組成物の硬度が 過度に高くなる傾向にある。
[0042] 不飽和アクリロニトリル単量体 (b— 3)としては、例えばアクリロニトリル、メタクリロニト リル、エタクリロニトリル、 α—クロロアクリロニトリノレ、 α—フルォロアクリロニトリル等を 挙げることができる。なお、これらは単独で、又は二種以上組み合わせて用いること ができる。この中で、特にアクリロニトリルが好ましい。
[0043] (B1)アクリル系ゴムに占める、不飽和アクリロニトリル単量体 (b— 3)の構成割合(( B1)アクリルゴム中の共重合割合)は、 0〜40質量%であることが好ましく、 5〜35質 量%であることが更に好ましく、 10〜30質量%であることが特に好ましい。この割合 が 40質量%超であると、得られる熱可塑性エラストマ一組成物の硬度が過度に高く なる傾向にある。なお、この割合が 5質量%以上であると、得られる熱可塑性エラスト マ一組成物の耐油性が向上する傾向にある。 [0044] 上記のアクリル酸アルキルエステル (b— 1)、炭素一炭素二重結合を側鎖に有する 単量体 (b— 2)、及ぴ不飽和アクリロニトリル単量体 (b— 3)と共重合可能な単量体 (b —4)は、これらと共重合可能な単量体であれば特に限定されるものではないが、官 能基を有するモノマーであることが好ましい。具体的には、メチルメタクリレート、ベン ジルメタクリレート、フエニルメタクリレート、 1ーメチノレシクロへキシルメタクリレート、シ クロへキシルメタクリレート、クロ口べンジルメタクリレート、 1一フエニルェチルメタクリレ ート、 1, 2—ジフエニルェチルメタタリレート、ジフヱニルメチルメタクリレート、フノレフリ ノレメタクリレー卜、 1 _フエニノレシクロへキシノレメタクリレー卜、ペンタクロロフェニルメタク リレート、ペンタブロモフエニルメタクリレート等の単官能メタクリレート類;スチレン、ビ ニノレトノレェン、ビュルピリジン、 aーメチノレスチレン、ビュルナフタレン、ハロゲン化ス チレン、アクリルアミド、メタクリルアミド、 N—メチロールアクリルアミド、酢酸ビュル、塩 化ビュル、塩化ビニリデン、脂環式アルコールの (メタ)アクリル酸エステル (例えばァ クリル酸シクロへキシル)、芳香族アルコールの(メタ)アクリル酸エステル (例えばァク リル酸ベンジル)等を挙げることができる。単官能メタクリレート類を用いることにより、 ( B1)アクリル系ゴムを重合後に得られるクラムのブロッキングがなくなり、ハンドリング が容易になる。
[0045] 「これらと共重合可能な単量体 (b—4)」としては、更に、エチレングリコールジ (メタ) アタリレート、プロピレングリコールジ (メタ)アタリレート、 1, 4ブタンジォーノレジ (メタ) ァクリレート、 1, 6へキサンジオール一ジ (メタ)アタリレート、トリメチロールプロパン一 ジ (メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、ペンタエリスリトール テトラ(メタ)アタリレート、ジビュルベンゼン、ジイソプロぺニルベンゼン、トリビュルべ ンゼン、へキサメチレンジ (メタ)アタリレート等の多官能不飽和単量体を拳げることが できる。
[0046] 多官能不飽和単量体を共重合した場合には、得られる (B1)アクリル系ゴムは部分 架橋されたゴムとなり、成形品の肌が改良され、動的架橋時の架橋剤、架橋助剤の 添加量を低減することができ、コスト低減に効果的である。共重合後の「(B4)これらと 共重合可能な単量体由来の構成単位」となる単量体としては、メチルメタタリレート、 ベンジルメタクリレート、フエニルメタクリレートが好ましぐ特にメチルメタクリレートが 好まし!/、。(Bl)アクリル系ゴムにおける「これらと共重合可能な単量体 (b-4) jの構 成割合は、 0〜30質量0 /0であることが好ましく、 0〜: LO質量%であることが更に好まし い。この割合が 30質量%超であると、過度に架橋が進み機械的物性が低下する傾 向にある。
[0047] (B1)アクリル系ゴムは官能化されて 、ることが好まし 、。具体的には、アクリルゴム 力 力ルポキシル化、ヒドロキシ化、アミノ化、又はエポキシ化されていることが好まし い。(B1)アクリル系ゴム中にカルボキシル基、ヒドロキシル基、アミノ基、又はェポキ シ基を導入するための共重合性単量体としては、これらの官能基の!/ヽずれかを有す る、以下に示すような単量体を挙げることができる。
[0048] カルボキシル基を有する単量体としては、(メタ)アクリル酸、マレイン酸、フマル酸、 ィタコン酸、テトラコン酸、けい皮酸等の不飽和カルボン酸類、フタル酸、こはく酸、ァ ジピン酸等の非重合性多価カルボン酸と、(メタ)ァリルアルコール、 2—ヒドロキシェ チル (メタ)アタリレート等の水酸基含有不飽和化合物とのモノエステル等の遊離カル ボキシル基含有エステル類、及ぴその塩等を挙げることができる。これらのうち不飽 和カルボン酸類が好ましい。また、これらのうち一種のみを用いてもよいし、二種以上 を併用してもよい。
[0049] ヒドロキシル基を有する単量体としては、 2—ヒドロキシェチル (メタ)ァクリレート、 2 —ヒドロキシプロピル (メタ)アタリレート、 3—ヒドロキシプロピル (メタ)ァクリレート、 2— ヒドロキシブチル (メタ)アタリレート、 3—ヒドロキシブチル (メタ)アタリレート、 4ーヒドロ キシブチル (メタ)アタリレート等のヒドロキシアルキル (メタ)アタリレート類、ポリエチレ ングリコール、ポリプロピレングリコール等のポリアルキレングリコール (アルキレングリ コール単位数は、例えば、 2〜23)のモノ (メタ)アタリレート類、 N—ヒドロキシメチル( メタ)アクリルアミド、 N- (2—ヒドロキシェチル)(メタ)アクリルアミド、 , N—ビス(2 ーヒドロキシェチル)(メタ)アクリルアミド等のヒドロキシル基含有不飽和アミド類、。一 ヒドロキシスチレン、 m—ヒドロキシスチレン、 p—ヒドロキシスチレン、 o—ヒドロキシ一 a—メチルスチレン、 m—ヒドロキシー —メチルスチレン、 p—ヒドロキシー α—メチ ルスチレン、 ρ -ビニノレべンジルアルコ一ノレ等のヒドロキシル基含有ビュル芳香族化 合物類、(メタ)ァリルアルコール等を挙げることができる。これらのうちヒドロキシアル キル (メタ)ァクリレート類、ヒドロキシル基含有ビエル芳香族化合物類が好ましい。ま た、これらのうち一種のみを用いてもよいし、二種以上を併用してもよい。
アミノ基を有する単量体としては、一級アミノ基、二級アミノ基、及ぴ三級ァミノ基の うちの少なくとも一種を有する単量体が挙げられる。これらのうち三級アミノ基を有す る単量体が好ましく、ジメチルァミノメチル (メタ)アタリレート、ジェチルァミノメチル (メ タ)アタリレート、 2—ジメチルアミノエチル (メタ)アタリレート、 2—ジェチルアミノエチ ル (メタ)アタリレート、 2—(ジ—n—プロピルァミノ)ェチル (メタ)アタリレート、 2—ジメ チルァミノプロピル (メタ)アタリレート、 2—ジェチルァミノプロピル (メタ)アタリレート、 2—(ジ一n—プロピノレアミノ)プロピル (メタ)アタリレート、 3—ジメチルァミノプロピル( メタ)アタリレート、 3—ジェチルァミノプロピル (メタ)ァクリレート、 3— (ジ一 n—プロピ ルァミノ)プロピル (メタ)アタリレート等のジァルキノレアミノアルキル (メタ)アタリレート 類、 N—ジメチルァミノメチル (メタ)アクリルアミド、 N—ジェチルァミノメチル (メタ)ァク リルアミド、 N- (2—ジメチルアミノエチル)(メタ)アクリルアミド、 - (2—ジェチルァ ミノェチル)(メタ)アクリルアミド、 N- (2—ジメチルァミノプロピル)(メタ)アクリルアミド 、 N— (2—ジェチルァミノプロピル)(メタ)アクリルアミド、 - (3—ジメチルァミノプロ ピル)(メタ)アクリルアミド、 N— (3—ジェチルァミノプロピル)(メタ)アクリルアミド等の N—ジァルキルアミノアルキル基含有不飽和アミド類の他、 N, N—ジメチノレ— p—ァ ミノスチレン、 N, N—ジェチノレ一 p—アミノスチレン、ジメチル(p—ビエルべンジル)ァ ミン、ジェチル (p—ビニルベンジル)ァミン、ジメチノレ (p -ビニルフエネチル)ァミン、 ジェチル (p -ビエルフヱネチル)ァミン、ジメチル (p—ビュルべンジルォキシメチル) ァミン、ジメチル〔2— (p—ビュルべンジルォキシ)ェチル〕ァミン、ジェチル (p—ビニ ルペンジルォキシメチル)ァミン、ジェチノレ〔2—(p—ビエルべンジルォキシ)ェチル〕 ァミン、ジメチル (p—ビニノレフエネチルォキシメチル)ァミン、ジメチル〔2— (p—ビニ ルフエネチルォキシ)ェチル〕ァミン、ジェチル (p—ビュルフエネチルォキシメチル) ァミン、ジェチル〔2—(p_ビュノレフエネチルォキシ)ェチル〕ァミン、 2—ビュルピリジ ン、 3—ビュルピリジン、 4—ビュルピリジン等の三級アミノ基含有ビュル芳香族化合 物等を挙げることができる。これらのうちジァルキルアミノアルキル (メタ)アタリレート類 、三級アミノ基含有ビニル芳香族化合物類が好ましい。また、これらのうち一種のみを 用いてもよいし、二種以上を併用してもよい。
[0051] エポキシ基を有する単量体としては、(メタ)ァリルグリシジルエーテル、グリシジル ( メタ)アタリレート、 3, 4—ォキシシクロへキシル (メタ)アタリレート等を挙げることがで きる。これらのうち一種のみを用いてもよいし、二種以上を併用してもよい。
[0052] 単量体混合物を共重合させる際に使用するラジカル重合開始剤は、特に限定され るものではない。例えば、過硫酸カリウム、 p—メンタンハイド口パーオキサイド、メチル イソプロピルケトンパーオキサイド等の過酸化物、ァゾビスイソブチロニトリル等のァゾ ィ匕合物を挙げることができる。ラジカル重合開始剤の使用量としては、単量体混合物 100質量部当たり、 0. 001-1. 0質量部とすればよい。
[0053] (B1)アクリル系ゴムを得るための共重合反応は、懸濁重合法、? W匕重合法、溶液 重合法等の通常の重合法によって行うことができる。乳化重合法に際して用いる乳 ィ匕剤としては、前述の単量体混合物を乳化分散可能な物質であれば使用可能であ る力 例えばアルキルサルフェート、アルキルァリールスルホネート、高級脂肪酸の塩 力 S使用可能である。また、反応温度は通常 0〜80°Cであり、反応時間は通常 0. 01 〜30時間程度である。このようにして得られる(B1)アクリル系ゴムは、そのムーニー 粘度(ML , 100°C)が 10~150であることが好ましい。
1+4
[0054] (B2)エチレン ·アクリルゴム
(B2)エチレン 'アクリルゴムとしては、例えば、エチレンとアクリル酸エステノレの共重 合体や、エチレンとアクリル酸エステルの共重合体に、更に架橋サイトモノマーが重 合された共重合体を挙げることができる。より具体的には、 VAMAC (商品名(三井' デュポンポリケミカル社製) )等を挙げることができる。
[0055] 本実施形態の熱可塑性エラストマ一組成物中のエラストマ一 (B)の割合は、融点が 200°C以上である熱可塑性樹脂 (A)とエラストマ一 (B)の合計量を 100質量%とした 場合、 40〜85質量0 /0であることが好ましく、 43〜83質量%であることが更に好ましく 、 45〜80質量0 /0であることが特に好ましい。エラストマ一 (B)が 40質量%未満である と、最終的に得られる熱可塑性エラストマ一組成物のゴム弾性が低下する傾向にある 。一方、 85質量%超であると、熱可塑性樹脂 (A)が少ないために、最終的に得られ る熱可塑性エラストマ一組成物の相構造 (モルホロジー)が、動的架橋型熱可塑性ェ ラストマー組成物の特徴である良好な海島構造 (熱可塑性樹脂力 S海 (マトリックス)、 架橋したアクリルゴムの粒子が島(ドメイン))になり難く、成形加工性、機械物性が低 下する傾向にある。
[0056] (C)架橋剤
本実施形態の熱可塑性エラストマ一組成物を得るに際して用 1/ヽられる架橋剤 (C) は、重量平均分子量 Mwが 1000〜30000、分子量分布 MwZMnが 1. 0〜4· 0で あり、(メタ)アクリル酸エステル (c—l)単位のみからなる重合体 (C—1)、及び/又 は、重量平均分子量 Mwが 1000〜30000、分子量分布 Mw/Mnが 1. 0〜4. 0で あり、(メタ)アクリル酸エステル (c_ 1)単位 5〜35質量%及び芳香族ビュル単量体 ( c一 2)単位 65〜95質量%を構成単位として含有する重合体 (C一 2)である。
[0057] (メタ)アクリル酸エステル(c— 1)としては、例えば炭素数が 1〜 20のアルキル基を 有する (メタ)アクリル酸アルキルエステル (アルキル基は直鎖、分岐鎖、又は環状鎖 のいずれでもよい)、(メタ)アクリル酸ポリアルキレングリコールエステル、(メタ)アタリ ル酸アルコキシアルキルエステル、 (メタ)アクリル酸ヒドロキシァノレキルエステル、 (メ タ)アクリル酸グリシジルエステル、 (メタ)アクリル酸ジアルキルアミノアルキルエステ ル、(メタ)アクリル酸べンジルエステル、(メタ)アクリル酸フエノキシアルキルエステル 、(メタ)アクリル酸シクロへキシルエステル、 (メタ)アクリル酸イソボルエルエステル、 ( メタ)アクリル酸ァノレコキシシリルアルキルエステル等を挙げることができる。これらは、 一種又は二種以上を用いることができる。
[0058] 熱可塑性エラストマ一組成物の流動性及び相溶性を考慮すると、炭素数が 1〜6の アルキル基を有する(メタ)アクリル酸アルキルエステル (アルキル基は直鎖、分岐鎖 、又は環状鎖のいずれでもよい)、(メタ)アクリル酸グリシジルエステル、(メタ)アタリ ル酸ポルアルキレングリコールエステルが更に好ましい。
[0059] 芳香族ビュル単量体(c一 2)の具体例としては、スチレン、 a—メチルスチレン、 p —メチルスチレン、 a—メチル一 p—メチルスチレン、 p—メトキシスチレン, o—メトキ シスチレン、 2, 4ージメチノレスチレン、クロロスチレン、プロモスチレン等を挙げること ができる。これらは一種又は二種以上を併用できる。アクリルゴムとの相溶性を考慮 すると、スチレン、 α—メチルスチレンが好ましい。 [0060] 重合体 (C— 2)の共重合成分である、(メタ)アクリル酸エステル (c一 1)と、芳香族 ビニル単量体 (c一 2)の割合は、(メタ)アクリル酸エステル (c—l)が 5〜35質量%、 芳香族ビュル単量体 (c-2)が 65〜95質量%である。芳香族ビュル単量体 (c-2) が 95質量%超であると、アクリルゴムとの架橋反応性が悪化し、機械的物性が低下 する傾向にある。一方、 65質量%未満であると、ゴムと相溶性が低下し、機械的物性 の低下を引き起こす。また、(メタ)アクリル酸エステル (c—l)が 5質量%未満であると 、アクリルゴムとの架橋反応性が悪化し、機械的物性が低下する傾向がある。(メタ) アクリル酸エステル (C— 1)が 35質量%超であると相溶性が低下し、機械的物性の低 下が引き起こされる。よりバランスのとれた熱可塑性エラストマ一組成物を得るには、 ( メタ)アクリル酸エステル (c一 1)が 5〜33質量%、及び芳香族ビエル単量体 (c— 2) 力 S67〜95質量0 /0であることが好ましぐ(メタ)アクリル酸エステル (c— 1)が 5〜30質 量0ん及び芳香族ビュル単量体 (c-2)が 70〜95質量%であることが更に好まし!/ヽ
[0061] 本発明で用いる重合体 (C— 2)の共重合成分は (メタ)アクリル酸エステル (c— 1)、 芳香族ビュル単量体 (c— 2)が主であるが、これらとラジカル共重合可能なその他の ビエル単量体も含まれてもよく、該その他のビュル単量体の割合は 0〜30質量%で あることが好ましい。その他のビュル単量体の具体例としては、(メタ)アクリル酸、無 水マレイン酸、フマル酸、 (メタ)アクリルアミド、 (メタ)アクリルジァルキノレアミド、ビニ ルエステル類、ビュルエーテル類、(メタ)ァリルエーテル類が挙げられる。
[0062] 架橋剤 (C)は、通常のラジカル重合によって得ることができるものである力 180〜 300°Cの高温連続重合方法により得られるものであることが好まし ヽ。この高温連続 重合方法によれば、高温重合であるために高分子鎖からの水素引き抜き反応に始ま るラジカル分岐反応が起こり難く、切断反応が優先するために分岐成分の少ない、 直鎮成分の多い架橋剤 (C)を得ることができる。また、切断反応が優先することにより 多量の開始剤や連鎖移動剤等の不純物を含まない低分子量ポリマーが容易に製造 できる。更に、反応器に撹拌槽型反応器を用いれば、組成分布や分子量分布の狭 V、ビュル系共重合体 (架橋剤 (C) )を得ることができるため特に好ましレヽ。
[0063] 高温連続ラジカル重合法は、特表昭 57— 502171号公報、特開昭 59— 6207号 公報、又は特開昭 60— 21 S007号公報等に開示された公知の方法に従えばよい。 例えば、加圧可能な反応器を加圧下で所定温度に設定した後、この反応器に、ビュ ル系単量体混合物を一定の供給速度で供給し、ビエル系単量体混合物の供給量に 見合う量の重合液を抜き出す方法を挙げることができる。なお、反応器には、必要に 応じて重合溶媒を添加してもよい。また、ビニル系単量体混合物には、必要に応じて 重合開始剤を配合することもできる。重合開始剤を配合する場合における重合開始 剤の配合量は、ビエル系単量体混合物 100質量部に対して 0. 001〜3質量部であ ることが好ましい。圧力は、反応温度と使用するビニル系単量体混合物及び重合溶 媒の沸点に依存する。従って、反応に影響を及ぼさないが、反応温度を維持できる 圧力であればよい。
[0064] 上記のビニル系単量体を重合させるに際しての反応温度は、 180〜300°Cが好ま しく、 200〜270°Cが更に好ましい。 300°C超であると、着色や熱劣化の問題が生じ る場合があり、 180°C未満であると、分岐反応が起こり易く、分子量分布が広がる傾 向にある。従って、分子量を下げるのに多量の開始剤や連鎖移動剤が必要となり、 最終的に得られる熱可塑性エラストマ一組成物の耐候性、耐熱性、耐久性に悪影響 を与える場合がある。また、除熱が難しい等の生産上の問題が起こる場合もある。ま た、重合反応におけるビニル系単量体混合物の滞留時間は、:!〜 60分であることが 好ましく、 5〜30分であることが更に好ましい。滞留時間が 1分未満であると、ビュル 系単量体が十分に反応しない恐れがあり、滞留時間が 60分超であると、生産性が悪 ぐ着色や熱劣化が起こる場合がある。また、管状型反応器よりも連続撹拌槽型反応 器を用いるプロセスの方が、得られる架橋剤 (C)の組成分布、分子量分布が狭くなり 易いので好ましい。
[0065] 架橋剤 (C)の重量平均分子量 Mwは、 1000〜30000である。架橋剤 (C)の重量 平均分子量 Mwが 1000未満であると、表面ブリードが引き起こされる傾向にある。一 方、架橋剤(C)の重量平均分子量 Mwが 30000超であると、相溶性が乏しくなり、ェ ラストマ一 (B)との架橋反応性が低下する傾向にある。なお、架橋剤 (C)の重量平均 分子量 Mwは、 1500〜15000が好ましい。また、流動性、機械的物性、耐熱性を考 慮すると、架橋剤 (C)の重量平均分子量 Mwは、 2000〜30000が更に好ましぐ 25 00〜20000カ特に好まし 、。
[0066] 重合体 (B)の分子量分布 MwZMn (重量平均分子量 Mwと数平均分子量 Mnの 比)は 1. 0〜4. 0である。架橋剤(C)の分子量分布 Mw/Mnが 4. 0超であると、高 分子量成分の影響で相溶性が乏しくなり、熱可塑性樹脂 (A)との架橋反応性が低下 する傾向にあるとともに、低分子量成分によっても表面ブリードが引き起こされ易くな る傾向にある。架橋剤(C)の分子量分布 MwZMnは、 1. 2〜3. 5以下であることが 好ましく、 1. 2〜3. 0以下であることが更に好ましい。なお、 1. 2より小さくても特に問 題はないが、通常得られる架橋剤 (C)の分子量分布 Mw/Mnは 1. 2以上である。
[0067] 架橋剤 (C)は、一種類を単独で用いてもよ!、し、二種以上の混合物として用いても よい。また、(メタ)アクリル酸エステル (c_ l)や芳香族ビュル単量体 (c— 2)は、ダリ シジル基等を含むことが好ましレ、。(メタ)アクリル酸エステル (c— 1)や芳香族ビュル 単量体 (C— 2)は、グリシジル基等を含むものである場合における、架橋剤 (C)のェ ポキシ価は、 0. 01〜20meqZgであることが好ましく、 0. l〜15meq/gであること が更に好ましく、 0. 5〜10meq/gであることが特に好ましい。架橋剤 (C)のェポキ シ価が 0. lmeqZg未満であると、架橋反応性低くなる傾向にある。一方、エポキシ 価が 20meqZg超であると、安定した状態で架橋が制御できな Vヽ傾向にある。
[0068] 架橋剤 (C)の使用量は、熱可塑性樹脂 (A)とエラストマ一 (B)の合計 100質量部 に対し、 0. 1〜20質量部であることが好ましく、 0. 3〜15質量部であることが更に好 ましく、 0. 5〜: 10質量部であることが特に好ましい。架橋剤 (C)の使用量が 20質量 部超であると、安定した状態で架橋を制御し難ぐまた、得られる架橋ゴムの硬度が 過大となり、好適なゴム弾性を示さなくなる傾向にある。一方、架橋剤 (C)の使用量 力 SO. 1質量部未満であると、架橋反応性が低ぐ得られる架橋ゴムの架橋密度が低く なり、好適なゴム弾性を示さなくなる傾向にある。
[0069] 本実施形態の熱可塑性エラストマ一組成物を得るために用!/ヽられる架橋剤 (C)とし ては、例えば、 ARUFON UG (商品名(東 合成社製))シリーズ (ARUFON U G4010、 UG4030 (商品名(東亞合成社製))等)を挙げることができる。架橋剤 (C) は、エラストマ一 (B)の架橋点の種類に左右されず非選択的に架橋することができる [0070] また、本実施形態のアクリルゴム組成物は、メチルハイドロジェンシリコーンオイル ( 以下、「SiHオイル」ともいう)を架橋助剤として更に含むことが好ましい。架橋助剤と して SiHオイルを含有させることにより、架橋反応速度を向上することが可能となる。
[0071] SiHオイルの含有量は、エラストマ一 (B) 100質量部に対し、 0. 01〜20質量部で あることが好ましく、 0. 05〜15質量部であることが更に好ましく、 0.:!〜 10質量部で あることが特に好ましい。 SiHオイルの含有量が 20質量部超であると、安定した状態 で架橋が制御できない傾向にある。一方、 0. 01質量部未満であると、 SiHオイルを 使用する効果が十分に発揮されず、熱可塑性エラストマ一の架橋密度が低下し機械 物性が悪化する傾向にある。
[0072] 架橋剤 (C)以外に、一般的にエラストマ一の架橋剤として用いられるものを併用し てもよ!/ヽ。架橋剤 (C)以外の架橋剤は、熱可塑性エラストマ一組成物中の少なくとも 一種のエラストマ一を架橋し得る化合物であればよ!/、。このような架橋剤としては、例 えば硫黄、有機含硫黄化合物、有機過酸化物、樹脂、キノン誘導体、ポリハロゲン化 物、ビス (ジォキソトリァゾリン)誘導体、アルデヒド、エポキシ化合物、アミンーボランコ ンプレックス、双極性化合物等を挙げることができる。更に、白金触媒の存在下、ヒド ロシリル化反応による白金架橋に使用されるメチルハイドロジェンシロキサンを挙げる ことができる。これらの架橋剤の中で硫黄、有機含硫黄化合物、有機過酸化物、メチ ルハイドロジェンシロキサンが好ましく、有機過酸化物が更に好ましい。これらの架橋 剤は、単独で、又は二種以上を組み合わせて用いることができる。これらの架橋剤の 使用量は、通常、エラストマ一 (B) 100質量部に対して、 0. 1〜20質量部であること が好ましぐ 1〜: L0質量部であることが更に好ましい。
[0073] 有機過酸化物としては、 1分半減期(半減期が 1分間)を得るための^^温度が 15 0°C以上のものが好ましい。具体的には、 1, 1—ビス (t—ブチルパーォキシ)シクロ へキサン、 2, 2—ビス(4, 4—ジ一 t—ブチルパーォキシシクロへキシル)プロパン、 1 , 1一ビス (t—ブチルパーォキシ)シクロドデカン、 t一へキシルパ一ォキシイソプロピ ノレモノカーボネート、 tーブチノレパーォキシマレイン酸、 t—プチノレパーォキシ一 3, 5 , 5—トリメチルへキサノエート、 t一ブチルパーォキシラウレート、 2, 5—ジメチノレー 2 , 5—ジ (m—トルオイルパーォキシ)へキサン、 t一ブチルパーォキシイソプロビルモ ノカ一ポネート、 tーブチルバ一ォキシ 2—ェチルへキシルモノカーボネート、 t一へキ シルパーォキシベンゾエート、 2, 5—ジメチル— 2, 5—ジ(ベンゾィルバーオキシ)へ キサン、 t—ブチルパーォキシアセテート、 2, 2—ビス(t—ブチルパーォキシ)ブタン 、 t一ブチルパーォキシベンゾェ一ト、 n—プチル一 4, 4—ビス(t—ブチルバ一ォキ シ)パレレート、ジ一 t一ブチルバーオキシイソフタレート、 α , α '—ビス(t_プチノレ パーォキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、 2, 5—ジメチルー 2, 5—ジ (t—ブチルパーォキシ)へキサン、 t—ブチルクミルパ一オキサイド、ジ— tープ チルバ一オキサイド、 p—メンタンヒドロパ一オキサイド、 2, 5—ジメチルー 2, 5—ジ (t 一ブチルバーオキシ)へキシン一 3、ジイソプロピルベンゼンヒドロパーオキサイド、 t ーブチルトリメチルシリルパーオキサイド、 1, 1, 3, 3—テトラメチルブチルヒドロパー オキサイド、クメンヒドロパーオキサイド、 t一へキシルヒドロパーオキサイド、 t—ブチノレ ヒドロパーオキサイド等を挙げることができる。有機過酸化物の添加量は、エラストマ 一 (B) 100質量部に対して、 0. 1〜15質量部であることが好ま IX、 0. 3〜: L0質量 部であることが更に好ましい。 0. 3質量部未満であると、架橋時間が非常に長くなる 上、架橋が不十分となる傾向にある。添加量が 15質量部超であると、架橋物が硬く なり、脆くなる傾向にある。
有機過酸化物は、単独で、又は二種以上を混合して使用することができる。なお、 有機過酸化物と適当な架橋助剤とを併用することにより、均一かつ穏ゃ力な架橋反 応を行うことができる。このような架橋助剤としては、例えば粉末硫黄、コロイド硫黄、 沈降硫黄、不溶性硫黄、表面処理硫黄、ジペンタメチレンチウラムテトラスルフイド等 の硫黄又は硫黄化合物; P—キノンォキシム、 , P '—ジベンゾィルキノンォキシム等 のォキシムィ匕合物;エチレングリコールジ (メタ)アタリレート、ジエチレングリコールジ( メタ)アタリレート、トリエチレングリコ一ルジ (メタ)アタリレート、テトラエチレングリコー ノレジ (メタ)アタリレート、ポリエチレングリコールジ (メタ)アタリレート、トリメチロールプ 口パントリ(メタ)アタリレート、ジァリルフタレート、テトラァリルォキシェタン、トリアリル シァヌレート、 N, N,一m—フエ二レンビスマレイミド、 N, N,一トルイレンビスマレイミ ド、無水マレイン酸、ジビュルベンゼン、ジ (メタ)アクリル酸亜鉛等の多官能性モノマ 一類等を挙げることができる。これらの架橋助剤のうち、 p, p'ージベンゾィルキノンォ キシム、 N, N,一 m—フエ二レンビスマレイミド、ジビュルベンゼンが好ましい。なお、 N, N,—m—フエ二レンビスマレイミドは、単独でも架橋剤として作用し得る化合物で める。
[0075] 架橋助剤は、単独で、又は二種以上を混合して使用することができる。架橋助剤の 使用量は、エラストマ一 (B) 100質量部に対して 0〜20質量部であることが好ましぐ 1〜10質量部であることが更に好ましい。架橋剤として硫黄を使用する には、メ ルカプトべンゾチアゾール等のチアゾ一ル類、テトラメチルチウラムジスルフイド等の チウラム類、ジフエ二ルグァ二ジン等のグァェジン類、ジメチルジチォカルバミン酸亜 鉛等のジチォカルパミン酸塩等が架橋促進剤として有効に使用できる。架橋剤として 有機含硫黄化合物を使用する場合には、例えばチウラム系促進剤であるテトラメチ ルチウラムジスルフイドや 4, 4'—ジチオモルホリン等が架橋促進剤として有効に使 用できる。これらの架橋促進剤の使用量は、通常、エラストマ一 (B) 100質量部に対 して 0. 1〜 20質量部であることが好ましく、 1〜 10質量部であることが更に好ましい。
[0076] 本実施形態の熱可塑性エラストマ一組成物には、可塑剤、伸展油、無機充填剤、 金属酸化物、老ィ匕防止剤、補強剤、熱可塑性樹脂、ゴム等の高分子化合物、各種 添加剤を含有させることができる。
[0077] (可塑剤)
可塑剤としては、例えば、耐熱性に優れたポリエーテル系、ポリエーテルエステル 系、トリメリット酸系可塑剤を挙げることができる。
[0078] ポリエーテル系可塑剤としては、脂肪族ジカルボン酸にアルコキシポリオキシェチ レンアルコールを縮合させたものを挙げることができる。具体的には、アデ力サイザ一 RS— 705 (商品名(旭電化工業社製))、モノサイザ一 W— 264 (商品名(大日本 インキ化学工業社製) )等が該当する。ポリエーテルエステル系可塑剤の製造方法に 関しては特に限定されるものではな 、が、 2—ェチルへキシル酸とエーテルグリコ一 ルとを、 2: 1のモル比で反応させることにより容易に得ることができる。例えば、ペンタ エチレングリコール、へキサエチレングリコール、又はヘプタエチレングリコール等を 所定 ft^"む混合エーテルグリコールと、 2一ェチルへキシル酸とを常法により反応さ せて得ることができる力 ペンタエチレングリコール、へキサエチレングリコール、又は ヘプタエチレングリコール等をそれぞれ別々に 2 _ェチルへキシル酸と常法により反 応させて得られたジエステルを使用し、ポリエチレングリコール平均重合度が、 5〜1 0となるように混合することによつても製造できる。具体的には、アデ力サイザ一 RS 一 107、 RS— 1000、 RS— 735、 RS— 700等(いずれも商品名(旭電化工業社製) )が該当する。
[0079] トリメリット酸系可塑剤としては、トリメリット酸の 3つのカルボン酸がそれぞれアルコー ルと縮合してなるトリメリット酸エステルを挙げることができる。例えば、トリメリット酸トリ メチル、トリメリット酸トリェチル、トリメリット酸トリプロピル、トリメリット酸トリプチル、トリメ リット酸トリァミル、トリメリット酸トリへキシル、トリメリット酸トリへプチル、トリメリット酸トリ 一 n—ォクチル、トリメリット酸トリー 2—ェチルへキシル、トリメリット酸トリノニル、トリメリ ット酸トリス (デシル)、トリメリット酸トリス (ドデシル)、トリメリット酸トリス (テトラデシル)、 トリメリット酸トリス (C8〜C12混合アルキル)、トリメリット酸トリス (C7〜C9混合アルキ ル)、トリメリット酸トリラウリル等を挙げることができる。具体的には、アデ力サイザ一 C— 8、 C-880, C一 79、 C810、 C一 9N、 C— 10等(いずれも商品名(旭電化工業 社製))が該当する。なお、可塑剤は、単独で、又は二種以上を組み合わせて使用す ることができる。また、可塑剤は、熱可塑性エラストマ一組成物の製造時に、熱可塑 性樹脂 (A)とエラストマ一 (B)との混合物に添加してもよ 、し、予めエラストマ一 (B) に添加してもよい。
[0080] 可塑剤の配合量は、熱可塑性樹脂 (A)とエラストマ一 (B)の合計量 100質量部当 たり、 0〜: L00質量部とすることが好ましく、 5〜70質量部とすることが更に好ましぐ 1 0〜50質量部とすることが特に好ましい。 100質量部超とすると、最終的に得られる 熱可塑性エラストマ 組成物力 可塑剤がブリードアウトし、機械的強度及びゴム弾 性が低下する傾向にある。
[0081] (伸展油)
伸展油としては、ゴム組成物に配合される通常の伸展油を使用することができるが 、ァロマティック系又はナフテン系伸展油が好ましい。特に、 ASTM D3238— 95 ( 2000年再承認)記載の n—d—M法による環分析のァロマ炭素 (CA(%;) )、ナフテ ン炭素(CN(%) )、パラフィン炭素 (CF(%) )がそれぞれ 3〜60%、 20〜50%、 0〜 60% (但し、 CA+CN+CF= 100%)であることがより好ましい。 CFが 60%超であ ると、熱可塑性エラストマ一組成物の機械的強度及び成形品の表面肌が不良になる がある。伸展油の配合量は、熱可塑性樹脂 (A)とエラストマ一 (B)の合計量 100 質量部当たり、 0〜50質量部であることが好ましぐ 1〜20質量部であることが更に好 ましい。
[0082] (無機充填剤)
本実施形態の熱可塑性エラストマ一組成物には、無機充填剤を配合することがで きる。無機充填剤としては、ゴム組成物に配合される通常のものを使用することができ る。例えば、シリカ、重質炭酸カルシウム、胡粉、軽微性炭酸カルシウム、極微細活性 ィ匕炭酸カルシウム、特殊炭酸カノレンゥム、塩基性炭酸マグネシウム、カオリン、焼成ク レ一、パイ口フライトクレー、シラン処理クレー、合成ケィ酸カルシウム、合成ケィ酸マ グネシゥム、合成ケィ酸アルミニウム、炭酸マグネシウム、水酸化アルミニウム、水酸 ィ匕マグネシウム、酸化マグネシウム、カオリン、セリサイト、タルク、微粉タルク、ウォラス ナイト、ゼォライト、ベントナイト、マイ力、アスベスト、 PMF (Processed Mineral Fi ber)、セピオライト、チタン酸カリウム、エレスタダイト、石膏繊維、ガラスパルン、シリ カパルン、ハイド口タルサイト、フライアシュパルン、シラスパルン、カーボン系パルン、 アルミナ、硫酸パリゥム、硫酸アルミニウム、硫酸カルシウム、二硫化モリブデン等を 挙げることができる。これらは、一種単独で又は二種以上を混合して使用することが できる。この中でも、吸油性が高いことから特にシリカが好ましい。
[0083] 無機充填剤の配合量は、熱可塑性樹脂 (A)とエラストマ一 (B)の合計量 100質量 部当たり、 0〜50質量部とすることが好ましぐ 0. 5〜30質量部とすることが更に好ま しぐ 1〜20質量部とすることが特に好ましい。 50質量部超とすると、混合物の粘度 が過度に高くなり、又は得られる熱可塑性エラストマ一組成物の柔軟性の指標である 圧縮永久歪が大きくなる傾向にある。
[0084] 無機充填剤としてシリカを使用する には、通常、シリカの表面処理にシランカツ プリング剤が用いられる。用いられるシランカップリング剤は特に限定されるものでは なぐ例えば、ビエルトリメトキシシラン、ビュルトリエトキシシラン、ビュルトリス(3—メト キシエトキシ)シラン、ビエルトリクロロシラン、ビニノレトリァセトキシシラン、 N— ( —ァ ミノェチル)一 yーァミノプロピルトリメトキシシラン、 Ί—ァミノプロピルトリメトキシシラ ン、 Ίーァミノプロピルトリエトキシシラン、 γ—グリシドキシプロピルトリメトキシシラン、 yーグリシドキシプロピルメチノレジメトキシシラン、 β - (3, 4一エポキシシクロへキシ ル)ェチルトリメトキシシラン、 γ—メタクリロキシプロピルトリメトキシシラン、 γ—メタク リロキシプロピノレトリス ーメトキシェトキシ)シラン、 Ί—メルカプトプロピルトリメトキ シシラン、メチルトリメトキシラン、メチルトリエトキシラン、へキサメチノレジシラザン、 γ ーァニリノプロピルトリメトキシシラン、 Ν—〔 /3—(Ν—ビュルベンザノレアミノ)ェチル〕 ― 7一ァミノプロピルトリメトキシシラン'塩酸塩等を挙げることができる。これらのシラ ンカップリング剤は、一種単独で又は二種以上を混合して使用することができる。
[0085] シランカップリング剤の配合量は、熱可塑性樹脂 (Α)とエラストマ一 (Β)の合計量 1 00質量部当たり、 0. 1〜: L0質量部とすることが好ましく、 0. 5〜5質量部とすることが 更に好ましい。 0. 1質量部未満であると、得られる熱可塑性エラストマ一組成物の引 張特性、圧縮永久歪等が不十分となる傾向にある。一方、 10質量部超であると、得ら れる熱可塑性エラストマ一組成物のゴム弾性が低下する傾向にある。
[0086] シリカの ρΗは、 2〜10であることが好ましぐ 3〜8であることが更に好ましく、 4〜6 であることが特に好ましい。 ρΗが 2未満であると、架橋速度が遅くなる傾向にある。一 方、 ρΗが 10超であると、スコーチ安定性が低下する傾向にある。また、シリカの吸油 量 (ml/lOOg)は、 150〜300であることが好ましぐ 200〜300であることが更に好 ましい。吸油量が 150未満であると、製造工程におけるエラストマ一 (B)と伸展油との 混合時の粘度が低下して粘着力が上昇し、取り扱い性が低下する傾向にある。一方 、吸油量が 300超であると、粘度が過度に高くなる傾向にある。
[0087] 本実施形態の熱可塑性エラストマ一組成物の製造方法にぉ ヽて、熱可塑性樹脂 ( A)とエラストマ一 (B)を含む混合物を、架橋剤 (C)の存在下、更に必要に応じて配 合することのできる可塑剤、伸展油等の存在下に混練するに際して使用する機械に は特に限定はない。具体的には、溶融混練装置を用いて混練することができる。より 具体的な混練を行うための装置としては、連続式押出機、密閉式混練機等の装置を 挙げることができる。これらのうち、経済性、処理効率等の観点から連続式押出機を 用!/、ることが好まし 、。この混練装置で行う処理はパッチ式でも連続式であってもよ レ、
[0088] 連続式押出機としては、熱可塑性エラストマ一組成物を架橋剤の存在下で溶融混 練することができるものであれば特に限定されない。例えば、一軸押出機、二軸押出 機、二軸ローター型押出機等を挙げることができる。これらのうち、二軸押出機、又は 二軸ローター型押出機を好適に用いることができる。更には、 L,D (スクリユー有効 長さ Lと外径 Dとの比)が、 5以上である装置が好ましく、 L/Dが 10〜60である装置 が更に好ましく用いられる。二軸押出機としては、例えば、 2本のスクリューが嚙み合 うもの、嚙み合わないもの等任意の二軸押出機を使用することができるが、 2本のスク リューの回転方向が同一方向でスクリューが嚙み合うものがより好ま Ι 、。このような 二軸押出機としては、池貝社製 GT、祌戸製鋼所社製 KTX、日本製鋼所社製 ΤΕΧ、 東芝機械社製 ΤΕΜ、ワーナ一社製 ZSK ( ヽずれも商品名)等を挙げることができる。 二軸ロータ一式押出機としては、 2本のスクリューが嚙み合うもの、嚙み合わないもの 等任意の二軸口一ター式押出機を使用することができるが、 2本のスクリューの回転 方向が異方向でスクリューが嚙み合わなレ、のがより好まし 、。このような二軸ロータ一 式押出機としては、例えば、日本製鋼所社製 CIM、神戸製鋼所社製ミクストロン FC M/NCM/LCM/ACM (V、ずれも商品名)等を挙げることができる。
[0089] 連続式押出機で熱可塑性エラストマ一組成物を製造する場合における、可塑剤や 伸展油の供給方法としては、ミキサーを用いて架橋反応に供される熱可塑性樹脂 (A )、エラストマ一 (B)と予め混合して連続式押出機のフィードホッパーに供給する方法 、又はフィードホッパーとダイとの間に設けられたパレル開口部から直接供給する方 法等がある。
[0090] 密閉式混練機としては、熱可塑性樹脂 (A)、エラストマ一 (B)を、架橋剤 (C)の存 在下で溶融混練することができるならば特に限定されない。例えば、加圧型ニーダー 、バンパリ一ミキサー、ブラベンダーミキサー等を挙げることができる。
[0091] 上述してきた各種装置を用いた混練加工方法としては、例えば、以下に示す第一
〜第三の方法を挙げることができる。
[0092] (第一の方法)
架橋剤 (C)以外の成分を、密閉型混練機 (エーダー、パンパリミキサー等)に投入 するとともに加熱条件下にて混練した後、フィーダ一ルーダーを用いてペレット状に 加工してもよいし、一旦、ロールミルにてシート化したものをシートペレタイザ一でペレ ット加ェしてもよい。次に、得られたペレット状の成形体と、動的架橋のための架橋剤 (C)とを、必要に応じて架橋助剤を添加して、連続式押出機に供給し、加熱溶融しな 力 Sらェラストマー (B)を動的に架橋する。
[0093] (第二の方法)
連続式押出機 (一軸押出機、二軸押出機、二軸ロータ一型押出機等)に、熱可塑 性樹脂 (A)、エラストマ一 (B)、及び架橋剤 (C)等のすべての原料成分を供給し、加 熱溶融しながらエラストマ一 (B)を動的に架橋する。
[0094] (第三の方法)
熱可塑性樹脂 (A)、エラストマ一 (B)、及び架橋剤 (C)を 2台の連結した連続式押 出機のうちの第 1連続式押出機に供給し、第 1連続式押出機内で架橋剤の存在下で 、熱可塑性樹脂 (A)とエラストマ一 (B)とを溶融混練し、実質的に動的架橋反応が進 行してレ、な V、段階で第 2連続式押出機に供給して、エラストマ一 (B)を動的に架橋す る。
[0095] このようにして、エラストマ一 (B)の架橋を行うことにより、エラストマ一 (B)を熱可塑 性樹脂 (A)に十分に分散させた状態で、しかもエラストマ一 (B)を十分に微細な状態 に保持したまま架橋することができ、連続相 (マトリックス)をなす熱可塑性樹脂 (A)中 に、分散相(ドメイン)としてエラストマ一 (B)の粒子が安定に分散してなる熱可塑性ェ ラストマー組成物を調製することができる。このような熱可塑性エラストマ一組成物に お!/、ては、分散相である架橋したアクリルゴム (エラストマ一)の粒子の粒子径は 50 μ m以下であることが好ましぐ 1〜10 μ mであることが更に好まし!/、。
[0096] このようにして得られる本実施形態の熱可塑性エラストマ一組成物は、全体として良 好な海島構造を有し、耐寒性に優れ、アクリルゴムの代替品として有用であるという 効果を奏するものである。従って、その用途が限定されるものではないが、本実施形 態の熱可塑性エラストマ—組成物のこのような特性を生力し、例えば、自動車等の輸 送機械、一般機器'装置、電子'電気、建築等の幅広い分野において、 O—リング、 オイルシール、ベアリングシール等のシール材の他、 CVJブーツ、緩衝'保護材、電 線被覆材、工業用べノレト類、ホース類、シート類等の各種成形品を構成する材料とし て好適である。
実施例
[0097] 以下、本発明を実施例に基づ ヽて具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。なお、実施例、比較例中の「部」及ぴ「%」は、特に断ら ない限り質量基準である。
[0098] (熱可塑性エラストマ一組成物の調製)
以下に示す熱可塑性樹脂、アクリルゴム、可塑剤、架橋剤、及ぴその他添加剤を用 いた。
[0099] く融点 200°C以上の熱可塑性樹脂 (A) >
ポリブチレンテレフタレート樹脂 (PBT) (ウィンテックポリマー社製、商品名「ジユラネ ックス 500FP」(MFR(235°C, 21N) =23g/10分, Tm=230°C))を使用した。
[0100] くエラストマ一(B) >
以下の記載の方法により、エステル基含有モノマー由来の構成単位を有するエラス トマ一 (B)であるアクリルゴム (ACM- 1〜ACM— 4)を合成した。
[0101] (ACM-1)
窒素置換されたオートクレ一ブ内に、イオン交換水 200部を入れ、更にアクリル酸 プチル 38. 4部、アクリル酸メトキシェチル 38. 4部、メタクリル酸メチル 19. 2部、及 ぴアクリル酸ジヒドロジシクロペンテニルォキシェチル 4. 0部からなる単量体混合物と 、ラウリル酸ナトリウム 4部と、 p—メンタンハイド口パーオキサイド 0· 04部と、硫酸第一 鉄 0. 01部と、エチレンジァミン四酢酸ナトリウム 0. 025部と、ソジゥムホルムアルデヒ ドスルホキシレート 0. 04部とを仕込み、反応温度 15°Cで乳ィ匕重合させた。重合転化 率がほぼ 100%に達したところで、 N, N—ジェチルヒドロキシルァミン 0. 5部を反応 系に添加して共重合反応を停止させた (反応時間 7時間)。次いで、反応生成物 (ラ テックス)を取り出し、反応生成物に塩化カルシウム水溶液 (0. 25%)を添加して不 飽和基含有アクリルゴムを凝固させた。この凝固物を十分に水洗した後、約 90°Cで 3 〜4時間乾燥させることにより、ムーニー粘度 [MS (100°C) ]45の炭素-炭素二
1+4
重結合を側鎖に有するアクリルゴム (ACM-1)を得た。 [0102] (ACM- 2)
窒素置換されたオートクレープ内に、イオン交換水 200部を入れ、更にアクリル酸 プチル 37. 6部、アクリル酸メトキシェチル 37. 6部、メタクリル酸メチル 18. 8部、 2— ヒドロキシェチル (メタ)アタリレート 2, 0部、及ぴアクリル酸ジヒドロジシクロペンテュル ォキシェチル 4. 0部力 なる単量体混合物と、ラウリル酸ナトリウム 4部と、 P—メンタ ンハイド口パーオキサイド 0. 04部と、硫酸第一鉄 0. 01部と、エチレンジァミン四酢 酸ナトリウム 0. 025部と、ソジゥムホノレムアルデヒドスルホキシレート 0. 04部とを仕込 み、反応温度 15°Cで乳化重合させた。重合転化率がほぼ 100%に達したところで、 N, N—ジェチルヒドロキシルァミン 0. 5部を反応系に添加して共重合反応を停止さ せた (反応時間 7時間)。次いで、反応生成物 (ラテックス)を取り出し、反応生成物に 塩化カノレンゥム水溶液 (0. 25%)を添加して不飽和基含有アクリルゴムを凝固させた 。この凝固物を十分に水洗した後、約 90°Cで 3〜4時間乾燥させることにより、ム一二 —粘度 [MS (100°C) ]45の炭素—炭素二重結合を側鎖に有するアクリルゴム (A
1+4
CM— 2)を得た。
[0103] (ACM-3)
窒素置換されたォ一トクレーブ内に、イオン交換水 200部を入れ、更にアクリル酸 プチノレ 38. 2部、アクリル酸メトキシェチル 38. 2部、グリシジルメタクリレート 0. 5部、 メタクリル酸メチル 19. 1部、及ぴアクリル酸ジヒドロジシクロペンテ二ルォキシェチノレ 4部からなる単量体混合物と、ラウリル酸ナトリウム 4部と、 p—メンタンハイド口パーォ キサイド 0. 04部と、硫酸第一鉄 0. 01部と、エチレンジァミン四酢酸ナトリウム 0. 025 部と、ソジゥムホルムアルデヒドスルホキシレート 0. 04部とを仕込み、反応温度 15°C で乳化重合させた。重合転化率がほぼ 100%に達したところで、 N, N—ジェチルヒ ドロキシノレアミン 0. 5部を反応系に添加して共重合反応を停止させた (反応時間 7時 間)。次いで、反応生成物 (ラテックス)を取り出し、反応生成物に塩化カノレンゥム水 溶液 (0. 25%)を添加して不飽和基含有アクリルゴムを凝固させた。この凝固物を十 分に水洗した後、約 90°Cで 3〜4時間乾燥させることにより、ムーニー粘度 [MS (1
1+4
00°C) ] 47の炭素—炭素二重結合を側鎖に有するアクリルゴム (ACM— 3)を得た。
[0104] (ACM-4) 窒素置換されたオートクレープ内に、イオン交換水 200部を入れ、更にアクリル酸 ェチル 100部からなる単量体混合物と、ラウリル酸ナトリウム 4部と、 p—メンタンハイド ロパ一オキサイド 0. 04部と、硫酸第一鉄 0. 01部と、エチレンジァミン四酢酸ナトリウ ム 0. 025部と、ソジゥムホルムァノレデヒドスノレホキシレート 0. 04部とを仕込み、反応 温度 15°Cで乳化重合させた。重合転化率がほぼ 100%に達したところで、 N, N- ジェチルヒドロキシノレアミン 0· 5部を反応系に添加して共重合反応を停止させた (反 応時間 7時間)。次いで、反応生成物 (ラテックス)を取り出し、反応生成物に塩化力 ノレンゥム水溶液 (0. 25%)を添加して不飽和基含有アクリルゴムを凝固させた。この 凝固物を十分に水洗した後、約 90°Cで 3〜4時間乾燥させることにより、ムーニー粘 度 [MS (100°C) ]47のアクリルゴム (ACM— 4)を得た。
1+4
[0105] ォレフィン Zアクリル酸共重合体ゴムとして、エチレン 'アクリル酸共重合ゴム (三井 デュポンケミカル社製、商品名「ベーマック G」(エチレン 73モル0んアクリル酸メチノレ 26モル0ん及ぴカルボン酸 1モル0 /0のターポリマー))を使用した。
[0106] く架橋剤 (C) >
以下の記載の方法により、架橋剤 (C)を合成した。
[0107] オイルジャケットを備えた容量 1リットルの加圧式撹拌槽型反応器のオイノレジャケット 温度を、 225°Cに保った。次いで、スチレン 38部、メタクリル酸メチル 28部、グリシジ ルメタタリレート 25部、ブチルアタリレート 8部、芳香族系溶剤としてキリレン 10部、及 ぴ重合開始剤であるジターシャリーブチルバ一オキサイド 2. 5部からなる単量体混 合液を調製し原料タンクに仕込んだ。一定の供給速度 (48gZ分、滞留時間: 12分) で単量体混合液を原料タンクから反応器に連続供給し、反応器内の混合液質量が 5 80g—定になるように反応液を反応器出口から連続的に抜き出した。その時の反応 器内温は、 235°Cに保持した。更に、抜き出した反応物を減圧度 30kPa、温度 250 °Cに保った薄隱発機で連続的に揮発成分を分離し、揮発成分をほとんど含まな 、 共重合体を回収した。単量体混合物の供給開始後、反応器内部の温度が安定して 力も更に 36分後をほぼ 状態に達したと判断し、薄膜蒸発後の重合体の回収開 始点とし、それから 180分反応を継続した結果、約 8kgの架橋剤 (C)を回収した。ゲ ルパーミエ一シヨンクロマトグラフより求めたポリスチレン換算による架橋剤 (C)の重量 平均分子量 Mwは 11500、数平均分子量 Mnは 5000、分子量分布 MwZMnは 2. 3であった。また、ガスクロマトグラフによる架橋剤 (C)中の揮発成分量は 1%以下で あった。ガラス転移温度 (Tg)は 70°C、エポキシ価は 1. 8meq/gであった。
[0108] くその他添加剤 >
メチノレハイドロジェンシリコーンとして、 SH1107 (東レ 'ダウコーニング 'シリコーン 社製)、有機過酸化物架橋剤として、 2, 5—ジメチル一 2, 5—ジ (t—プチノレパーォ キシ)へキシン一 3 (日本油脂社製、商品名「パーへキシン 25B— 40」 )を使用した。 また、架橋助剤として、ジビュルベンゼン (三共化成社製、商品名「ジビュルベンゼン (56%品)」)、老化防止剤として、 4, 4'一ビス( α , ージメチルベンジル)ジフエ- ルァミン (大內新興化学工業社製、商品名「ノクラック CDJ )を使用した。
[0109] (実施例 1)
ACM— 1、 PBT、架橋剤 (C)、及ぴ老ィ匕防止剤を、表 1に示す配合処方に従って ヘンシェルミキサーを用いて 30秒間混合し、添加剤混合物を得た。次に、同じく表 1 に示す配合処方に従って、同方向回転二軸押出機 (同方向非嚙み合い型スクリュー 、 LZD=49、日本製鋼所社製、商品名「ΤΕΧ44 α ΙΙ」)に、 1台は添加剤混合物用 、もう 1台はポリプチレンテレフタレート樹脂用の、計 2台の重量式フィーダ一 (クボタ 社製、商品名「KF- C88」)を用いて、吐出量 40kg7hで同方向二軸押出機の原料 導入口よりそれぞれ供給し、シリンダー温度設定 230°C、スクリュー回転数 400rpm で動的熱処理による架橋反応を施して、熱可塑性エラストマ一組成物を得た。
[0110] (実施例 2〜5、比較例 1, 2)
表 1に示す配合処方とすること以外は、上述した実施例 1の場合と同様にして、熱 可塑性エラストマ—組成物を得た。
[0111] (熱可塑性エラストマ一組成物の試験片 (成形シート)の作製)
得られた熱可塑性エラストマ一組成物 (実施例:!〜 5、比較例 1, 2)のペレットを射 出成形機(日本製鋼社製、商品名「N— 100」)を用いて射出成形を行い、厚み 2mm 、長さ 120mm、幅 120mmの成形シートを作製し各種評価に供した。
[0112] (熱可塑性エラストマ一組成物の評価)
得られた熱可塑性エラストマ一組成物の混練性を、容量 10リットルのニーダ一にて 測定し、流動性をメルトフローレート (MFR)として 230°C、 10kg荷重にて測定した。 結果を表 1に示す。また、得られた熱可塑性エラストマ一組成物の成形シートを用い て、常温 (25°C)、及び 140°Cにおける機械的物性 (表面硬度、引張破断強度 (T )、
B
引張破断伸ぴ (E )等)、耐油性、耐熱性、及び圧縮永久歪みを以下に示す方法に
B
より各々測定'評価した。結果を表 1に示す。また、耐熱性の指標として、 140°Cにお ける機械的物性評価後サンプルの測定機治具掴み部の熱変形を目視で観察した。
[0113] [表面硬度 (デュ口 D) ]: JIS— K6253に準拠して測定した。
[0114] [引張破断強度 (T )、及ぴ引張破断伸ぴ (E )] :JIS—K6251に準拠して測定した
B B
[0115] [TEM写真の撮影]:実施例 1、及び比較例 2の熱可塑性エラストマ一組成物を凍結 ミクロトームにて薄片とした後、四酸化ルテニウムを使用して染色したものを、透過型 電子顕微鏡 (日立製作所社製、「H— 7500」型)を用いて倍率 2000倍に拡大して写 真撮影した。図 1に、実施例 1の熱可塑性エラストマ一組成物の微構造を示す電子 顕微鏡写真を示す。また、図 2に、比較例 2の熱可塑性エラストマ一組成物の微構造 を示す電子顕微鏡写真を示す。なお、図 1中、黒色〜濃灰色で表される部分がポリ ブチレンテレフタレート樹脂であり、白色〜淡灰色で表される部分がアクリルゴムであ る。
[0116] [表 1]
Figure imgf000034_0001
表 1に示す結果から、実施例 1〜5の熱可塑性エラストマ一組成物は、比較例 1, 2 の熱可塑性エラストマ一組成物に比して高強度で耐熱性を有するものであることが明 らかである。比較例 1は架橋しないため、機械物性及ぴ耐熱性に劣る。比較例 2は有 機過酸化物架橋したため、 PBTが有機過酸化物によって分子切断され、機械物性 に劣る。従って、本発明の実施形態である熱可塑性エラストマ一組成物の有用性を 確認することができた。また、図 1に示す実施例 1の電子顕微鏡写真から、本発明の 実施形態である熱可塑性エラストマ一組成物は、 3 m以下のアクリルゴム架橋粒子 が均一に分散した海島構造 (ポリブチレンテレフタレート樹脂が海 (マトリックス)、架 橋したアクリルゴムの粒子が島 (ドメイン))となっていることが明らかである。一方、図 2 に示す比較例 2の電子顕微鏡写真から、海島構造を有しているものの、アクリルゴム 架橋粒子の粒子径が不均一で、且つ 3 m以上の粗大な粒子が多数存在すること が明ら力である。
産業上の利用可能性
本発明の熱可塑性エラストマ一組成物は、高強度であるとともに優れたゴム弾性、 耐熱性、及ぴ耐油性を有するものであるため、 CVJブーツ等の部材を構成するため の材料として好適である。

Claims

請求の範囲 [1] 融点が 200°C以上である熱可塑性樹脂 (A)と、 エステル基含有モノマー由来の構成単位を有するエラストマ一 (B)と、を含む混合 物を、 架橋剤 (C)として、重量平均分子量 Mwが 1000〜30000、分子量分布 MwZMn が 1. 0〜 0であり、(メタ)アクリル酸エステル (c—1)単位のみからなる重合体 (C — 1)、及び/又は、 重量平均分子量 Mwが 1000~30000、分子量分布 MwZMnが 1. 0〜4. 0であ り、(メタ)アクリル酸エステル (c— 1)単位 5〜35質量0 /0及び芳香族ビエル単量体 (c -2)単位 65〜95質量%を構成単位として含有する重合体 (C— 2)、の存在下に動 的に熱処理してなる熱可塑性エラストマ一組成物。 [2] 前記熱可塑性樹脂 (A)が、ポリエステル樹脂、ポリアミド樹脂、及ぴポリエステルエ ラストマーカ、らなる群より選択される少なくとも一種である請求項 1に記載の熱可塑性 エラストマ一組成物。 [3] 前記エラストマ一 (B)力 アクリルゴム、アクリロニトリル 'アクリルゴム、及びエチレン 'アクリルゴムからなる群より選択される少なくとも一種である請求項 1又は 2に記載の 熱可塑性エラストマ一組成物。 [4] 前記エラストマ一 (B)が、
(B1)アクリル酸アルキルエステル及びノ又はアクリル酸アルコキシアルキルエステ ル単量体由来の構成単位 20〜99. 99質量%、
(B2)炭素—炭素二重結合を側鎖に有する単量体由来の構成単位 0. 01~20質 量0
(B3)不飽和アタリロニトリル単量体由来の構成単位。〜 40質量0 /0、及ぴ
(B4)これらと共重合可能な単量体由来の構成単位 0〜30質量% (但し、 (B1) + (
B2) + (B3) + (B4) =100質量0 /0)からなるものである請求項 1〜3のいずれか一項 に記載の熱可塑性エラストマ一組成物。
[5] 前記エラストマ一 (B)力 カルボキシル化、ヒドロキシ化、アミノ化、又はエポキシ化 されてなるものである請求項 1〜4のいずれか一項に記載の熱可塑性エラストマ一組 成物。
[6] 前記混合物に占める、前記熱可塑性樹脂 (A)と前記エラストマ一 (B)の含有割合 力 質量比で、 (A): (B) =60 :40〜15: 85である請求項 1〜5のいずれか一項に記 載の熱可塑性エラストマ一組成物。
[7] 前記 (メタ)アクリル酸エステル (c— l)が、メタクリル酸グリシジルエステルを含むも のである請求項 1〜6のいずれか一項に記載の熱可塑性エラストマ一組成物。
[8] 前記架橋剤 (C)のエポキシ価が、 0. l SOmeqZgである請求項 1〜7の!/、ずれ 一項に記載の熱可塑性エラストマ一組成物。
[9] メチルハイドロジェンシリコーンオイルを更に存在させて動的に熱処理してなる請求 項 1〜8のいずれか一項に記載の熱可塑性エラストマ一組成物。
[10] エーテル系可塑剤、エーテルエステル系可塑剤、トリメリット酸系可塑剤力もなる群 より選択される少なくとも一種である可塑剤を、 0〜50質量。 /0含有する請求項:!〜 9の いずれか一項に記載の熱可塑性エラストマ一組成物。
[11] 請求項 1〜10の!/、ずれか一項に記載の熱可塑性エラストマ一組成物を成形してな る成形品。
[12] 請求項 1〜: L0の ヽずれか一項に記載の熱可塑性エラストマ一組成物からなる等速 ジョイント(CVJ)ブーツ。
[13] 融点が 200°C以上である熱可塑性樹脂 (A)と、
エステル基含有モノマー由来の構成単位を有するエラストマ一 (B)と、を含む混合 物を、
架橋剤(C)として、重量平均分子量 Mwが 1000〜30000、分子量分布 Mw/Mn が 1. 0〜4. 0であり、(メタ)アクリル酸エステル (c—l)単位のみ力もなる重合体 (C —1)、及び/又は、
重量平均分子量 Mwが 1000〜30000、分子量分布 MwZMnが 1. 0〜4. 0であ り、(メタ)アクリル酸エステル (c— 1)単位 5〜35質量%及び芳香族ビエル単量体 (c —2)単位 65〜95質量%を構成単位として含有する重合体 (C— 2)、の存在下に動 的に熱処理して熱可塑性エラストマ一組成物を得る熱可塑性エラストマ一組成物の 製造方法。 連続式混練機及び/又は連続式押出機によって動的に熱処理する請求項 13に 記載の熱可塑性エラストマ一糸且成物の製造方法。
PCT/JP2005/022129 2004-11-26 2005-11-25 熱可塑性エラストマー組成物及びその製造方法 WO2006057445A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006548016A JPWO2006057445A1 (ja) 2004-11-26 2005-11-25 熱可塑性エラストマー組成物及びその製造方法
EP05811307A EP1816163A4 (en) 2004-11-26 2005-11-25 THERMOPLASTIC ELASTOMER FORMULA AND METHOD FOR PRODUCING THE SAME
US11/720,161 US20080081873A1 (en) 2004-11-26 2005-11-25 Thermoplastic Elastomer Composition And Method For Producing Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-342013 2004-11-26
JP2004342013 2004-11-26

Publications (1)

Publication Number Publication Date
WO2006057445A1 true WO2006057445A1 (ja) 2006-06-01

Family

ID=36498169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022129 WO2006057445A1 (ja) 2004-11-26 2005-11-25 熱可塑性エラストマー組成物及びその製造方法

Country Status (4)

Country Link
US (1) US20080081873A1 (ja)
EP (1) EP1816163A4 (ja)
JP (1) JPWO2006057445A1 (ja)
WO (1) WO2006057445A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509485A (ja) * 2006-11-14 2010-03-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 難燃性熱可塑性エラストマー組成物
WO2013157593A1 (ja) * 2012-04-19 2013-10-24 東洋紡株式会社 ポリエステルエラストマ樹脂組成物及びそれを用いてなる成形体
JP2014210873A (ja) * 2013-04-19 2014-11-13 日油株式会社 熱可塑性エラストマー
JP2016027155A (ja) * 2014-07-04 2016-02-18 日本ゼオン株式会社 アクリルゴム、アクリルゴム組成物及びアクリルゴム架橋物
US9842704B2 (en) 2015-08-04 2017-12-12 Avx Corporation Low ESR anode lead tape for a solid electrolytic capacitor
WO2021112190A1 (ja) * 2019-12-05 2021-06-10 デンカ株式会社 アクリルゴム、アクリルゴム組成物及びその架橋物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201105B2 (ja) * 2008-10-23 2013-06-05 日立電線株式会社 ポリブチレンナフタレート系樹脂組成物及びポリブチレンナフタレート系樹脂組成物を用いた電線
KR20100060848A (ko) * 2008-11-28 2010-06-07 에스케이케미칼주식회사 공중합 폴리에스테르 및 이를 이용한 성형 제품
TWI503334B (zh) * 2009-02-19 2015-10-11 Jsr Corp 聚合物及敏輻射線性組成物、及單體
JP5720282B2 (ja) * 2010-02-17 2015-05-20 日立金属株式会社 耐放射線性電線・ケーブル
KR101251165B1 (ko) * 2011-09-20 2013-04-04 씨제이제일제당 (주) 포장용기
EP3778745A1 (en) * 2016-07-12 2021-02-17 Hitachi-Ge Nuclear Energy, Ltd. Polyethylene resin composition, and pipe material, pipe, and joint including the composition
WO2021021274A1 (en) * 2019-07-29 2021-02-04 Bridgestone Americas Tire Operations, Llc Temperature stable polymeric blends for use in non-pneumatic tires
JP7361195B2 (ja) * 2019-07-29 2023-10-13 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー 非空気圧タイヤで使用するための温度安定性ポリマーブレンド

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306456A (ja) * 1988-04-11 1989-12-11 Monsanto Co 高温で安定な溶剤低膨潤性の熱可塑性エラストマー組成物
JPH02191656A (ja) * 1989-01-20 1990-07-27 Japan Synthetic Rubber Co Ltd 熱可塑性重合体組成物
JPH06107804A (ja) * 1991-12-14 1994-04-19 Nippon Zeon Co Ltd チューブおよびホース
JPH06228402A (ja) * 1992-12-08 1994-08-16 Japan Synthetic Rubber Co Ltd アクリルゴム組成物
JPH07126500A (ja) * 1993-11-05 1995-05-16 Japan Synthetic Rubber Co Ltd ジョイントブーツ用熱可塑性エラストマー組成物
JPH10182952A (ja) * 1996-10-25 1998-07-07 Yokohama Rubber Co Ltd:The 高圧柔軟ホース用熱可塑性エラストマー組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146928A (ja) * 1986-08-28 1988-06-18 Sumitomo Chem Co Ltd 熱可塑性エラストマー組成物の製造方法
JP3073800B2 (ja) * 1991-07-18 2000-08-07 日本ゼオン株式会社 熱可塑性エラストマー組成物
JPH09272788A (ja) * 1996-02-09 1997-10-21 Yokohama Rubber Co Ltd:The 熱可塑性エラストマー組成物並びにその製造方法及びそれを用いたホース
US5916950A (en) * 1996-07-26 1999-06-29 Mitsui Chemicals, Inc. Resin composition and molded articles thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306456A (ja) * 1988-04-11 1989-12-11 Monsanto Co 高温で安定な溶剤低膨潤性の熱可塑性エラストマー組成物
JPH02191656A (ja) * 1989-01-20 1990-07-27 Japan Synthetic Rubber Co Ltd 熱可塑性重合体組成物
JPH06107804A (ja) * 1991-12-14 1994-04-19 Nippon Zeon Co Ltd チューブおよびホース
JPH06228402A (ja) * 1992-12-08 1994-08-16 Japan Synthetic Rubber Co Ltd アクリルゴム組成物
JPH07126500A (ja) * 1993-11-05 1995-05-16 Japan Synthetic Rubber Co Ltd ジョイントブーツ用熱可塑性エラストマー組成物
JPH10182952A (ja) * 1996-10-25 1998-07-07 Yokohama Rubber Co Ltd:The 高圧柔軟ホース用熱可塑性エラストマー組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1816163A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010509485A (ja) * 2006-11-14 2010-03-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 難燃性熱可塑性エラストマー組成物
WO2013157593A1 (ja) * 2012-04-19 2013-10-24 東洋紡株式会社 ポリエステルエラストマ樹脂組成物及びそれを用いてなる成形体
JP5472545B1 (ja) * 2012-04-19 2014-04-16 東洋紡株式会社 ポリエステルエラストマ樹脂組成物及びそれを用いてなる成形体
JP2014210873A (ja) * 2013-04-19 2014-11-13 日油株式会社 熱可塑性エラストマー
JP2016027155A (ja) * 2014-07-04 2016-02-18 日本ゼオン株式会社 アクリルゴム、アクリルゴム組成物及びアクリルゴム架橋物
JPWO2016002936A1 (ja) * 2014-07-04 2017-04-27 日本ゼオン株式会社 アクリルゴム、アクリルゴム組成物、アクリルゴム架橋物及びシール部材
US9842704B2 (en) 2015-08-04 2017-12-12 Avx Corporation Low ESR anode lead tape for a solid electrolytic capacitor
WO2021112190A1 (ja) * 2019-12-05 2021-06-10 デンカ株式会社 アクリルゴム、アクリルゴム組成物及びその架橋物

Also Published As

Publication number Publication date
EP1816163A1 (en) 2007-08-08
EP1816163A4 (en) 2008-01-23
JPWO2006057445A1 (ja) 2008-06-05
US20080081873A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
WO2006057445A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP4685406B2 (ja) 改質耐候性ポリエステル成形用組成物
WO2007015448A1 (ja) 樹脂組成物およびそれからなる成形品
JP4379187B2 (ja) 熱可塑性エラストマー組成物の製造方法
JPWO2007037526A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2007191695A (ja) 樹脂組成物およびそれからなる成形品
JP5581606B2 (ja) 成形性の優れた樹脂組成物、及びその成形体
JP2006104363A (ja) ポリブチレンテレフタレート樹脂組成物
JP2007138020A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2007308648A (ja) 熱可塑性樹脂組成物およびシート
JP2002105343A (ja) 熱可塑性樹脂組成物、その製造方法および自動車用成形品
JP2010018697A (ja) 熱可塑性エラストマ樹脂組成物およびその成形体
JP3493983B2 (ja) 液晶ポリエステル樹脂組成物、それを用いてなるシートもしくはフィルム、および該シートもしくはフィルムの製造方法
JP2004524422A (ja) ポリエステル−ポリアミド成形組成物
JP2010195914A (ja) ガラス系無機充填材強化ポリエステル樹脂組成物
JP4691957B2 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP5144886B2 (ja) 樹脂組成物
JP3743198B2 (ja) 変性ポリエステル弾性体の製造方法
JPH07188527A (ja) 強化樹脂組成物およびその成形品
JPH07188519A (ja) 強化樹脂組成物およびその成形品
JP2006152050A (ja) アクリルゴム組成物及び架橋ゴム
JP2010254973A (ja) 熱可塑性ポリエステルエラストマ樹脂組成物およびそれからなる成形体
JPS63245427A (ja) 耐衝撃性ポリエステル樹脂組成物
JP2011132292A (ja) 基板収納容器ガスケット用熱可塑性エラストマー樹脂組成物および基板収納容器用ガスケット成形体
JP3475503B2 (ja) 樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005811307

Country of ref document: EP

Ref document number: 2006548016

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11720161

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005811307

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11720161

Country of ref document: US