WO2006057425A1 - 量子ドットアレイ及びその製造方法、並びに量子ドットアレイ素子及びその製造方法 - Google Patents

量子ドットアレイ及びその製造方法、並びに量子ドットアレイ素子及びその製造方法 Download PDF

Info

Publication number
WO2006057425A1
WO2006057425A1 PCT/JP2005/022029 JP2005022029W WO2006057425A1 WO 2006057425 A1 WO2006057425 A1 WO 2006057425A1 JP 2005022029 W JP2005022029 W JP 2005022029W WO 2006057425 A1 WO2006057425 A1 WO 2006057425A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
substrate
dot array
barrier layer
quantum dots
Prior art date
Application number
PCT/JP2005/022029
Other languages
English (en)
French (fr)
Inventor
Yasuhiko Takeda
Tomoyoshi Motohiro
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to AU2005307998A priority Critical patent/AU2005307998B2/en
Priority to US11/791,445 priority patent/US7737046B2/en
Priority to EP05811356.4A priority patent/EP1826822B1/en
Publication of WO2006057425A1 publication Critical patent/WO2006057425A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/068Nanowires or nanotubes comprising a junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/962Quantum dots and lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots

Definitions

  • Quantum dot array and manufacturing method thereof and quantum dot array element and manufacturing method thereof
  • the present invention relates to a quantum dot array and a manufacturing method thereof, and a quantum dot array element and a manufacturing method thereof.
  • Quantum dots are generally small lumps of several nanometers to several tens of nanometers made of semiconductors or metals, and can confine electrons and holes in three dimensions. As a result, the movement of electrons and holes in the quantum dot is quantized, and discrete energy levels are formed. By arranging a plurality of such quantum dots in an array to form a quantum dot array, a quantum dot laser having excellent energy efficiency and temperature stability can be realized.
  • a quantum dot array is manufactured by patterning using photolithography, or a quantum dot array is formed by self-organization using the SK (Stransiki-Krastanov) growth mode in thin film growth. Manufacturing methods are also known.
  • the difference in lattice constant between the constituent material of the quantum dot and the constituent material of the barrier layer is used. Combinations with the constituent materials of the layers are limited. It is also difficult to control the number density of quantum dots on the substrate. Furthermore, if the quantum dots and the barrier layers are alternately stacked in the film thickness direction, the film thickness of the barrier layer must be increased in order to alleviate the lattice strain of the barrier layer.
  • the present inventors have found the following. That is, in the quantum dot array manufacturing method described in the above-mentioned document, when the constituent material of the quantum dots is obliquely evaporated on the substrate, a small lump of non-uniform size is formed on the substrate in the initial stage. Depending on the force applied, a block of specific size grows selectively into a pillar. In other words, since finer lumps are formed between the pillars, quantum dots having irregular sizes are formed on the substrate. For this reason, it becomes difficult to obtain desired characteristics for the quantum dot array and the quantum dot array element using the quantum dot array.
  • the present invention has been made in view of the above circumstances, and a quantum dot array capable of improving the uniformity of the size of a plurality of quantum dots, a method for manufacturing the same, and a quantum dot array.
  • An object of the present invention is to provide a dot array element and a manufacturing method thereof.
  • the present invention provides a first barrier serving as an energy barrier for the quantum dots in a method of manufacturing a quantum dot array having a plurality of columnar portions having quantum dots on a substrate.
  • a second step of forming the quantum dot on each of the first barrier layers, and a constituent material of the second barrier layer serving as an energy barrier against the quantum dots are obliquely deposited on the surface of the substrate.
  • a third step of forming the second barrier layer on each of the quantum dots are obliquely deposited on the surface of the substrate.
  • the first barrier layer is first formed on the substrate.
  • the constituent material of the first barrier layer is obliquely deposited with respect to the surface of the substrate.
  • a smaller lump is formed between the adjacent first barrier layers. That is, the first barrier layer and the lump are not uniform in size.
  • the first barrier layer and the lump itself do not have a function of confining electrons and holes and do not function as a quantum dot, even if the sizes of the first barrier layer and the lump are uneven, It does not affect the performance of the device using the obtained quantum dot array.
  • the quantum dot constituent material is obliquely deposited on the surface of the substrate, a quantum dot is formed on each of the first clear layers. That is, since the first barrier layer is grown from the substrate, penetration of the constituent material of the quantum dots between the first barrier layers is sufficiently prevented even when oblique deposition is performed. For this reason, quantum dots are formed on the first barrier layer and not on the mass. Therefore, the uniformity of the quantum dot size can be improved.
  • the constituent material of the second barrier layer serving as an energy barrier against the quantum dot is obliquely deposited on the surface of the substrate on the quantum dot, the second barrier layer is formed on the quantum dot.
  • the first barrier layer, the quantum dots, and the second barrier layer are obliquely deposited on the surface of the substrate, thereby simplifying the process and improving the production efficiency.
  • the cost of the elements using the array can be reduced.
  • the formation of columnar structures by oblique deposition is basically caused by the geometrical arrangement during the deposition, the degree of freedom in combining the constituent materials of the quantum dots and the constituent materials of the barrier layer is increased. It is possible to manufacture various types of quantum dot arrays.
  • the number density of the quantum dots on the substrate can be easily controlled, and the lattice distortion between the quantum dots and the first or second barrier layer does not matter, so that the first barrier layer or the second barrier layer can be controlled.
  • the film thickness can be made sufficiently small.
  • the substrate in the first step, the second step, and the third step, is preferably rotated about a normal line of the surface of the substrate. Good. In this case, the uniformity of the quantum dot size can be further improved.
  • the manufacturing method includes a fourth step of forming the quantum dots on each of the second barrier layers by obliquely vapor-depositing the constituent material of the quantum dots on the surface of the substrate; A fifth step of forming a third barrier layer on each of the quantum dots by obliquely vapor-depositing a material of the third barrier layer serving as an energy barrier for the quantum dots on the surface of the substrate; It is preferable. In this case, since the quantum dots can be arranged three-dimensionally, the surface density of the quantum dots can be increased.
  • the substrate is rotated about a normal line of the surface of the substrate. In this case, the uniformity of the size of the quantum dots can be further improved.
  • the present invention also provides a quantum dot array obtained by the method for producing a quantum dot array. According to this quantum dot array, since the uniformity of the quantum dot size can be improved, an element having desired characteristics can be realized.
  • the present invention further includes a quantum dot array obtained by the method of manufacturing a quantum dot array, and a conductive film provided on the plurality of columnar portions of the quantum dot array, A method of manufacturing a quantum dot array element having a conductive portion, comprising: a conductive film forming step of forming the conductive film on the plurality of columnar portions of the quantum dot array by vapor deposition of a first conductive material; After forming the plurality of columnar portions before the forming step, the first conductive material enters between the plurality of columnar portions by vapor deposition of a second conductive material on each of the plurality of columnar portions.
  • an intrusion prevention layer forming step of forming an intrusion prevention layer for preventing intrusion includes not only vapor deposition by electric heating and vapor deposition by electron beam, but also vapor deposition by sputtering.
  • the uniformity of the size of the quantum dots can be improved, so that a quantum dot array device having desired characteristics can be realized.
  • an intrusion prevention layer is formed to prevent the first conductive material from entering between the plurality of columnar parts.
  • the first conductive material is sufficiently prevented from entering between the plurality of columnar portions. Therefore, it is sufficiently prevented that the quantum dots in the adjacent columnar portions are short-circuited or the quantum dots in one columnar portion are short-circuited, and the quantum dot array element cannot sufficiently function normally. To be prevented.
  • the intrusion prevention layer specifically,
  • the second conductive material is obliquely deposited on the surface of the substrate, and when viewed from the normal of the surface of the substrate, the front end portion of the intrusion prevention layer is less on the front end surface of the adjacent columnar portion. Or form the intrusion prevention layer until it reaches,
  • the present invention is a quantum dot array device obtained by the method for producing a quantum dot array device.
  • quantum dot array element it is possible to improve the uniformity of the size of the quantum dots, and thus it is possible to realize a quantum dot array element having desired characteristics. Moreover, since the penetration of the conductive material between the plurality of columnar portions is sufficiently prevented, quantum dots in adjacent columnar portions are short-circuited or quantum dots in one columnar portion are short-circuited. Is sufficiently prevented, and the situation where the quantum dot array element cannot perform its normal function is sufficiently prevented.
  • FIG. 1 is a perspective view showing an embodiment of the quantum dot array according to the present invention.
  • FIG. 2 is a partially enlarged front view of the quantum dot array of FIG. [0 0 2 1]
  • FIG. 3 is a series of process charts showing a part of the process of the quantum dot array manufacturing method of the present invention.
  • FIG. 4 is a perspective view showing another embodiment of the quantum dot array of the present invention.
  • FIG. 5 is a cross-sectional view showing an embodiment of the quantum dot array element of the present invention.
  • FIG. 6 is a front view showing a modification of the substrate of FIG.
  • FIG. 7 is a diagram showing an intrusion prevention layer forming step in an embodiment of the method for producing a quantum dot array element of the present invention.
  • FIG. 8 is a sectional view showing another embodiment of the quantum dot array element of the present invention.
  • FIG. 9 is a diagram showing an intrusion prevention layer forming step in another embodiment of the method for producing a quantum dot array device of the present invention.
  • FIG. 10 is a perspective view showing still another embodiment of the quantum dot array of the present invention.
  • FIG. 11 is a perspective view showing still another embodiment of the quantum dot array of the present invention.
  • FIG. 12 is a cross-sectional view showing still another embodiment of the quantum dot array element of the present invention.
  • FIG. 13 is a drawing showing a SEM photographic image of the quantum dot array according to Example 1.
  • FIG. 14 is a drawing showing a SEM photographic image of the quantum dot array according to Example 2.
  • FIG. 15 is a drawing showing an SEM photographic image of the quantum dot array according to Example 3.
  • FIG. 16 is a drawing showing an SEM photographic image of the quantum dot array according to Example 8.
  • FIG. 17 is a drawing showing an SEM photographic image of the quantum dot array device according to Example 9.
  • FIG. 1 is a perspective view showing a first embodiment of the quantum dot array of the present invention
  • FIG. 2 is a partially enlarged front view of the quantum dot array 100 of FIG.
  • the quantum dot array 100 has a substrate 2 and a plurality of columnar portions 4 provided on the substrate 2.
  • the plurality of columnar portions 4 extend in an oblique direction with respect to the normal 3 of the surface 2 a of the substrate 2.
  • Each columnar portion 4 is formed by alternately stacking quantum dots 6 and barrier layers 8.
  • the columnar part 4 has a barrier layer 8 provided on the substrate 2, and the quantum dot 6 and the barrier layer 8 are arranged on the barrier layer 8 along the extending direction of the columnar part 4. They are stacked alternately. Therefore, in the quantum dot array 100, the quantum dots 6. are arranged three-dimensionally.
  • Examples of the constituent material of the quantum dots 6 include semiconductors and metals.
  • Examples of the semiconductor include Si, Ge, CdS, ZnS, ZnTe, and CdTe.
  • Examples of the metal include Au, Ag, and Cu.
  • the constituent material of the barrier layer 8 serves as an energy barrier with respect to the constituent material of the quantum dots 6, and can thereby confine electrons or holes in the quantum dots 6.
  • the constituent material of the barrier layer 8 is not particularly limited as long as it is an energy barrier with respect to the constituent material of the quantum dots 6, and examples thereof include S i 0 2 , A 1 2 0 3 , and S i 3 N 4. Used.
  • the quantum dot 6 can be composed of S i and the barrier layer 8 can be composed of S i 0 2 .
  • the quantum dot array 100 described above is manufactured by the following manufacturing method. Built.
  • the substrate 2 is prepared first.
  • a silicon wafer can be used as the substrate 2 for example.
  • the substrate 2 is placed in, for example, an electron beam evaporation apparatus.
  • the electron beam evaporation apparatus includes a container (not shown) and a lid.
  • a barrier layer deposition source housing (not shown) for housing the deposition source for the barrier layer 8
  • a quantum dot deposition source housing for housing the quantum dot deposition source.
  • the vapor deposition sources for the barrier layer and the quantum dots are heated and evaporated by, for example, an electron beam.
  • a fixed base is provided in the container, and the substrate 2 is fixed on the fixed base.
  • the vapor deposition source accommodating portions for the barrier layer and the quantum dot are arranged in an oblique direction with respect to the normal 3 of the surface 2 a of the substrate 2.
  • the angle (deposition angle) 0 of the deposition direction (direction of arrow A in FIG. 2) with respect to the normal 3 of the surface 2a of the substrate 2 is larger than 0 °.
  • the deposition angle 0 is preferably 30 ° or more.
  • the deposition angle ⁇ is less than 30 °, the columns tend to be relatively thick or the diameters are relatively uneven as compared to when the deposition angle is 30 ° or more.
  • the deposition angle ⁇ is 90 ° or less.
  • the substrate temperature is usually room temperature, but is preferably 1 to 3 or less of the melting point (absolute temperature notation) of each vapor deposition material.
  • the substrate temperature is the melting point of the deposition material (absolute temperature notation)
  • the column tends to be thicker or the diameters are uneven compared to the case of less than 1/3.
  • the constituent material of the barrier layer 8 is accommodated as a vapor deposition source in the barrier layer vapor deposition source accommodating part in the container, and the quantum dot 6 component is accommodated in the vapor deposition source accommodating part for quantum dots.
  • the material is accommodated as a deposition source.
  • the container is covered, and the electron beam is irradiated to the vapor deposition source for the barrier layer. Then, the evaporation source is heated and evaporated. At this time, since the vapor deposition source container for the barrier layer is provided at an oblique position with respect to the normal line of the surface 2 a of the substrate 2, the vapor deposition source for the barrier layer with respect to the surface 2 a of the substrate 2 Is obliquely deposited.
  • the oblique deposition means that the deposition source is attached to the surface 2 a of the substrate from the direction oblique to the normal 3 of the surface 2 a of the substrate 2.
  • a plurality of barrier layers 8 are formed on the surface 2a of the substrate 2 (first step). At this time, a lump 9 smaller than the NORIA layer 8 is formed between adjacent barrier layers 8.
  • the electron beam is irradiated to the vapor deposition source for quantum dots, and the vapor deposition source is heated and evaporated.
  • the deposition source container for the quantum dots is provided at an oblique position with respect to the normal 3 of the surface 2 a of the substrate 2, so that the quantum dot deposition for the surface 2 a of the substrate 2 is performed.
  • the source is obliquely deposited.
  • quantum dots 6 are formed on each barrier layer 8, and quantum dots 6 are not formed on the small mass 9 (second step). That is, the quantum dots 6 are selectively formed on each barrier layer 8.
  • the evaporation source for the barrier layer is irradiated with an electron beam, and the evaporation source is heated to be evaporated.
  • the barrier layer 8 is formed on the quantum dots 6 as shown in (c) of FIG. 3 (third step).
  • the electron beam is again irradiated onto the vapor deposition source for the quantum dots, and the vapor deposition source is heated and evaporated.
  • the quantum dot deposition source is obliquely deposited on the barrier layer 8 to form the quantum dots 6 on each barrier layer 8 (fourth step).
  • the evaporation source for the barrier layer is again irradiated with an electron beam, and the evaporation source is heated to evaporate.
  • the barrier layer 8 is formed on the quantum dots 6 in the same manner as described above (fifth step).
  • the quantum dots 6 and the NOR layer 8 are alternately formed in the same manner as described above. In this way, a plurality of columnar portions 4 are formed on the substrate 2, and the manufacture of the quantum dot array 100 is completed.
  • the barrier layer 8 is first formed on the substrate 2. At this time, the barrier layer 8 is formed by obliquely depositing the constituent material of the barrier layer 8 on the surface 2 a of the substrate 2. At this time, a smaller lump 9 is formed on the substrate 2 between the adjacent barrier layers 8. In other words, the size of the noria layer 8 and the lump 9 is not uniform.
  • the rear layer 8 and the block 9 themselves do not have the function of confining electrons and holes and do not function as quantum dots, so that the performance of the device using the obtained quantum dot array 100 is not improved. Has no effect.
  • the constituent material of the quantum dots 6 is obliquely deposited on the surface 2 a of the substrate 2, the quantum dots 6 are formed on the barrier layer 8. That is, since the barrier layer 8 is grown from the substrate 2, the intrusion of the constituent material of the quantum dot 6 between the barrier layers 8 is sufficiently prevented even when oblique deposition is performed. For this reason, the uniformity of the size of the quantum dots 6 can be improved.
  • the constituent material of the barrier layer 8 serving as an energy barrier for the quantum dot 6 is obliquely deposited on the surface 2 a of the substrate 2 on the quantum dot 6, the barrier layer 8 is formed on the quantum dot 6. It is formed.
  • the current-voltage characteristics of each columnar part 4 are not reflected as they are in the entire quantum dot array 100, and the function of each columnar part 4 is degraded.
  • the uniformity of the size of the quantum dots 6 is improved, the current-voltage characteristics of each columnar part 4
  • the current-voltage characteristics of each columnar section 4 are also the current-voltage characteristics of the quantum dot array 100 as a whole.
  • the barrier layer 8 ', the quantum dots 6 and the barrier layer 8 are obliquely deposited on the surface 2a of the substrate 2, the process is simplified and the production efficiency is improved. Therefore, the cost of the device using the quantum dot array 100 can be reduced. Also, since it is not necessary to use expensive equipment, it is easy to realize a large area at a low cost. In addition, since vapor deposition is used, it becomes possible to increase the degree of freedom of the combination of the constituent material of the quantum dots 6 and the constituent material of the barrier layer 8, and various types of quantum dot arrays can be manufactured. .
  • the quantum dots 6 can be arranged three-dimensionally, so that the surface density of the quantum dots can be increased.
  • a rotatable turntable is used instead of the fixed stand in the electron beam evaporation apparatus, and this turntable is used. It differs from the manufacturing method of the first embodiment in that the substrate 2 is rotated by rotating it. At this time, as shown in FIG. 4, the substrate 2 is rotated around a rotation axis 5 extending in a direction perpendicular to the surface 2 a of the substrate 2, that is, in a normal direction of the surface 2 a. In FIG. 4, the illustration of the turntable is omitted. When the substrate 2 is rotated in this way, as shown in FIG.
  • the columnar portion 4 in the quantum dot array 200, the columnar portion 4 extends in a direction perpendicular to the surface 2a of the substrate 2 and forms a substantially cylindrical shape. It becomes like this. In this case, the uniformity of the size of the quantum dots 6 can be further improved. Monkey.
  • FIG. 5 is a cross-sectional view schematically showing a quantum dot array element manufactured by the first embodiment of the method for manufacturing a quantum dot array element according to the present invention.
  • the quantum dot array element 300 includes a quantum dot array 3 0 1 and a conductive film 3 0 2 provided on a plurality of columnar portions 3 0 4 of the quantum dot array 3 0 1.
  • each of the plurality of columnar portions 30 4 is inclined with respect to the normal line of the surface 2 a of the substrate 2, and each columnar portion 30 4 includes an electrode layer 3 0 5, a noria layer 8, a quantum It consists of a dot 6 and a barrier layer 8.
  • the electrode layer 30 5 has a size larger than that of the quantum dots and does not have a function as a quantum dot, and is made of a conductive material such as B-doped silicon.
  • a conductive intrusion prevention layer 303 is provided.
  • the intrusion prevention layer 30 3 on each columnar part 30 4 is connected to the conductive film 30 2.
  • the intrusion prevention layers 303 are electrically connected to each other through the conductive film 302.
  • the intrusion prevention layers 30 3 extend in the extending direction of the columnar portions 30 4.
  • the intrusion prevention layer 30 3 is conductive because, for example, when the intrusion prevention layer 30 3 is made of an insulating material, the current due to the tunnel effect does not flow through the intrusion prevention layer 3 This is because it becomes impossible to pass a current through 3 04.
  • the conductive film 3 0 2 is usually made of a metal material such as aluminum. However, it may be composed of a conductive oxide such as tin-doped indium oxide or antimony-doped tin oxide, or a semiconductor material such as boron (B) -doped silicon. [0 0 5 8]
  • the substrate 2 is entirely composed of a conductive portion made of a conductive material.
  • the conductive material is composed of, for example, a semiconductor material such as boron (B) -doped silicon, a metal material such as aluminum, or a conductive oxide such as tin-doped indium oxide or antimony-doped tin oxide. As shown in FIG.
  • the substrate 2 may be a laminated body of a conductive portion 30 6 made of the conductive material and an insulating main body portion 30 7.
  • the conductive portion 30 06 is provided on the side of the columnar portion 3 0 4 with respect to the main body portion 30 07 so as to contact the columnar portion 30 4.
  • Deposition source housing portion intrusion prevention layer deposition source housing portion for accommodating second conductive material as a deposition source for intrusion prevention layer 303, and conductive material serving as a deposition source for electrode layer 300
  • An electrode layer 3 0 5 is formed by electron beam evaporation between the substrate 2 and the barrier layer 8 when the columnar part 3 4 is formed,
  • a quantum dot array 301 is manufactured in the same manner as in the first embodiment of the quantum dot array manufacturing method except that only one quantum dot 6 is formed and two barrier layers 8 are formed.
  • the conductive film vapor deposition source accommodating portion is disposed in front of the fixed base.
  • the conductive film deposition source accommodating portion and The first conductive material and the second conductive material are accommodated in the intrusion prevention layer deposition source accommodating portions, respectively.
  • the second conductive material which is a deposition source for the intrusion prevention layer 303, is irradiated with the electron beam while the quantum dot array 301 is accommodated in the container of the electron beam deposition apparatus.
  • the evaporation source is heated and evaporated.
  • the second conductive material is a conductive material.
  • examples of the second conductive material include semiconductor materials such as B-doped silicon, and conductive oxides such as tin-doped indium oxide and antimony tin oxide.
  • the vapor deposition source accommodating portion for the intrusion prevention layer is provided at an oblique position with respect to the normal line of the surface 2 a of the substrate 2, so the vapor deposition for the intrusion prevention layer with respect to the surface 2 a of the substrate 2
  • the source is obliquely deposited.
  • an intrusion prevention layer 3 3 for preventing the first conductive material from entering between the plurality of columnar portions 304 is formed on each of the plurality of columnar portions 304. (Intrusion prevention layer forming step).
  • the intrusion prevention layer 30 3 has at least the front end portion of the intrusion prevention layer 30 3 at the front end surface of the adjacent columnar portion 30 4 when viewed from the normal direction of the surface 2 a of the substrate 2.
  • the second conductive material is deposited until the intrusion prevention layer 300 is formed.
  • the deposition angle 0 is the same as that in the case where the rear layer 8 and the quantum dot 6 are formed, and is preferably 30 ° or more.
  • the vapor deposition angle ⁇ is not necessarily the same as in the case of forming the barrier layer 8 and the quantum dots 6.
  • the intrusion prevention layer 303 can be formed in a shorter time if the deposition angle ⁇ is made larger than when the barrier layer 8 and the quantum dots 6 are formed.
  • the first conductive material which is an evaporation source for the conductive film is irradiated with an electron beam, and the evaporation source is heated to be evaporated.
  • the first conductive material is not particularly limited as long as it is a conductive material.
  • the first conductive material include metal materials such as aluminum, and conductive oxides such as tin-doped indium oxide and antimony-doped tin oxide. Things.
  • the deposition source accommodating portion for the conductive film 30 2 is provided at the front position of the surface 2 a of the substrate 2, so that the deposition source for the conductive film 30 2 is located with respect to the surface 2 a of the substrate 2. Vapor deposition from the front.
  • a conductive film 30 2 is formed on the plurality of intrusion prevention layers 30 3 (conductive film forming step). In this way, the manufacture of the quantum dot array element 300 is completed.
  • the uniformity of the size of the quantum dots 6 can be improved. Can be realized.
  • an intrusion prevention layer 3 0 3 that prevents the first conductive material from entering between the plurality of columnar portions 3 0 4. Therefore, when forming the conductive film 302 by electron beam evaporation of the first conductive material, it is sufficient to prevent the conductive material from entering between the plurality of columnar sections 304. Is done.
  • FIG. 8 is a cross-sectional view schematically showing a quantum dot array element manufactured by the second embodiment of the method for manufacturing a quantum dot array element according to the present invention.
  • the quantum dot array element 400 includes a quantum dot array 40 1 and a conductive film 4 0 2 provided on a plurality of columnar portions 4 0 4 of the quantum dot array 4 0 1.
  • each of the plurality of columnar parts 40 4 extends in a direction orthogonal to the surface 2 a of the substrate 2, and each columnar part 40 4 includes an electrode layer 4 0 5, a barrier layer 8, a quantum dot 6, composed of a noria layer 8 and an electrode layer 4 0 5.
  • the electrode layer 40 5 has a size larger than that of the quantum dot and does not have a function as a quantum dot, and is made of a conductive material such as B-doped silicon.
  • a conductive material such as B-doped silicon.
  • Intrusion prevention layer 4 0 3 is provided.
  • the intrusion prevention layer 40 3 increases in diameter as it moves away from the columnar portion 40 4, that is, from the columnar portion 4 0 4 toward the conductive film 4 0 2. They are integrated on the conductive film 402 side.
  • the conductive film 40 2 is usually made of a metal material such as aluminum, like the conductive film 30 2, but is made of a conductive oxide such as tin-doped indium oxide or antimony-doped tin oxide. It can also be made of semiconductor materials such as B-doped silicon.
  • the intrusion prevention layer 40 3 has the same configuration as the intrusion prevention layer 30 3.
  • a quantum dot array element 4 0 0 manufacturing method first t [0 0 6 9] describing, as the substrate 2, Rukoto using boron (B) doped silicon wafer, an electron beam evaporation
  • the apparatus includes a conductive film deposition source housing section that houses a first conductive material as a deposition source for the conductive film 402, and an intrusion housing a second conductive material as a deposition source for the intrusion prevention layer 403.
  • the quantum dot array is the same as the second embodiment of the quantum dot array manufacturing method except that the layer is formed. Get 4 0 1 That is, a quantum dot array 4101 in which a plurality of columnar portions 404 extending in a direction orthogonal to the surface 2a from the surface 2a of the substrate 2 is obtained.
  • the conductive film evaporation source accommodating portion is disposed in front of the turntable.
  • the turntable is movable along a certain direction.
  • the housing portion, the intrusion prevention layer deposition source housing portion, and the electrode layer deposition source housing portion store the first conductive material, the second conductive material, and the constituent material of the electrode layer, respectively.
  • the second conductive material which is a deposition source for the intrusion prevention layer 40 3
  • the quantum dot array 40 1 was housed in the container of the electron beam deposition apparatus.
  • the evaporation source is heated and evaporated.
  • rotate the turntable Specifically, the turntable is rotated so that the substrate 2 rotates about the normal line 5 of the surface 2 a of the substrate 2.
  • the turntable is moved with time to move away from the evaporation source of the second conductive material.
  • the moving direction of the turntable is a direction along the normal line of the surface 2 a of the substrate 2.
  • the deposition angle ⁇ with respect to the normal of the surface 2 a of the substrate 2 is decreased by changing with time.
  • the diameter of the intrusion prevention layer 40 3 increases with time on each columnar portion 40 4, and the adjacent intrusion prevention layers 40 3 are eventually integrated.
  • the gaps between the plurality of columnar parts 40 4 are closed.
  • an intrusion prevention layer 40 3 for preventing the first conductive material from entering between the plurality of columnar portions 40 4 is formed on each of the plurality of columnar portions 40 4. It is formed
  • the first conductive material which is an evaporation source for the conductive film is irradiated with an electron beam, and the evaporation source is heated to be evaporated.
  • the deposition source container for the conductive film is provided at the front position of the surface 2 a of the substrate 2, the deposition source for the conductive film is deposited from the front with respect to the surface 2 a of the substrate 2. .
  • a conductive film 40 2 is formed on the plurality of intrusion prevention layers 40 3 (conductive film forming step).
  • the uniformity of the size of the quantum dots 6 can be improved, so that the desired characteristics are obtained.
  • a quantum dot array element 400 can be realized.
  • an intrusion prevention layer 4 0 3 that prevents the first conductive material from entering between the plurality of columnar portions 40 4. Therefore, when the conductive film 402 is formed by electron beam evaporation of the first conductive material, the first conductive material is sufficiently prevented from entering between the plurality of columnar parts 404.
  • one columnar portion 4 includes three quantum dots 6, and when viewed as a whole, the quantum dots 6 are arranged three-dimensionally.
  • the number of quantum dots 6 may be any number as long as it is one or more.
  • the quantum dot array is arranged two-dimensionally as shown in FIG. Will be.
  • one columnar part 4 includes three quantum dots 6, and when viewed as a whole, quantum dot 6 force S 3 Although it is dimensionally arranged, it can be any number as long as the number of quantum dots 6 is one or more. However, in the case where only one quantum dot 6 is included in one columnar part 4, in the quantum dot array, as shown in Fig. 11, the quantum dots 6 are two-dimensionally arranged as a whole. It will be.
  • an electron beam is used as the evaporation source.
  • Vapor deposition is performed by heating and evaporating, but even if vapor deposition is performed using resistance opening thermal vapor deposition method, sputtering method, ion beam sputtering method, ion plating method, laser ablation method, etc. Good.
  • the columnar portion 4 is formed on the substrate 2 so as to extend straight in a direction perpendicular to the surface 2a of the substrate 2.
  • a spiral columnar portion can be obtained.
  • the quantum dots 6 Annealing may be performed to crystallize or improve crystallinity.
  • an electric furnace or a lamp annealing furnace can be used as the antenna.
  • a laser annealing method can also be used.
  • the columnar parts 4, 3 0 4, 4 0 4 may be partially oxidized.
  • the oxidized portion functions as an energy barrier against the quantum dots 6, so that the size of the quantum dots 6 can be adjusted.
  • the barrier layer 8 is formed on the surface 2a of the substrate 2. Prior to the formation of the barrier layer 8, for example. An electrode layer for applying a voltage may be formed.
  • the columnar portion 4 may be configured to further include, for example, an electrode layer on the barrier layer 8 on the top thereof.
  • the electrode layer has a size larger than that of the quantum dot and does not have a function as a quantum dot.
  • the columnar portions 3 0 4 and 4 0 4 include the electrode layers 3 0 5 and 4 0 5, respectively. May be omitted.
  • a quantum dot array 4 0 1 may be used instead of the quantum dot array 3 0 1. That is, when manufacturing the quantum dot array, the substrate 2 may be rotated about the surface normal. In this case, a quantum dot array element 500 as shown in FIG. 12 is obtained. .
  • a substrate was prepared.
  • a natural oxide film on the surface is made of dilute hydrofluoric acid
  • a B-doped silicon wafer that had been removed and cut to 2 O mm square was used.
  • this substrate was placed in an electron beam evaporation apparatus. At this time, in the electron beam evaporation system, the substrate was fixed on a turntable. In the electron beam deposition apparatus, the deposition layers for the barrier layer, the quantum dot, and the electrode layer were arranged in an oblique direction with respect to the normal line of the surface 2 a of the substrate 2.
  • Si 0 2 particles having a particle diameter of 2 to 3 mm are accommodated as a deposition source in the barrier layer deposition source accommodating portion in the container, and the diameter is deposited in the deposition source accommodating portion for quantum dots.
  • a non-doped Si pellet with a thickness of 1 O mm and a thickness of 5 mm is accommodated as a deposition source, and the deposition source housing for the electrode layer has a diameter of 1 O mm and a thickness of 5 mn ⁇ B-doped Si pellets as a deposition source. It was accommodated.
  • the electron beam was irradiated to the vapor deposition source container for the barrier layer, and Si 0 2 was heated and evaporated.
  • the substrate was rotated at 10 rpm.
  • S i 0 2 was obliquely deposited on the surface 2 a of the substrate 2.
  • the deposition angle at this time was 75 ° from the normal of the substrate surface.
  • the deposition rate was 2 nmZ. In this way, a plurality of barrier layers 8 having a thickness of 25 nm were obtained on the surface 2 a of the substrate 2.
  • the non-doped S i was irradiated again with an electron beam to heat and evaporate the non-doped S i, and the non-doped S i was obliquely deposited on the barrier layer 8.
  • a quantum dot 6 made of Si and having a thickness of 25 nm was formed on each barrier layer 8.
  • a barrier layer 8 made of S i 0 2 was formed on the quantum dot 6.
  • the B-dope Si was irradiated with an electron beam to the B-dope Si accommodated in the electrode-layer deposition source accommodating part, and the B-doped Si was heated and evaporated.
  • the substrate was rotated at 10 rpm.
  • B-doped Si was obliquely deposited on the surface 2 a of the substrate 2.
  • the deposition angle at this time was 75 ° from the normal of the substrate surface.
  • the deposition rate was 2 nmZ.
  • an electrode layer made of B-doped Si was formed on each barrier layer 8 to obtain a plurality of columnar portions 4.
  • the plurality of columnar parts 4 formed on the substrate are put together with the substrate into a furnace (a table lamp heating device MI LA-3000 manufactured by ULVAC-RIKO Co., Ltd.), under a nitrogen atmosphere, 900
  • the columnar part 4 was annealed at ° C for 10 minutes to crystallize the quantum dots 6 made of non-dope Si and the electrode layer made of B-doped Si.
  • a quantum dot array was obtained.
  • Example 2 The quantum dot array obtained in Example 1 was observed using SEM. The results are shown in Figure 13.
  • the lowermost part is the substrate 2.
  • the lowermost part is the substrate 2, and an electrode layer made of B-doped S i, a barrier layer made of S i 0 2 , and a non-doped S on the substrate 2 quantum dots, a barrier layer consisting of S i 0 2 consisting of i, and it can be seen that the electrode layer made of B-doped S i are sequentially provided. From this result, it was found that in the case of Example 2, the size of the quantum dots was uniform in each columnar part.
  • the lowermost part is the substrate 2, and on the substrate 2, an electrode layer made of B-doped S i, a barrier layer made of S i 0 2, a quantum dot made of non-doped S i, S i 0 2 the barrier layer, and it is understood that the electrode layer made of B-doped S i are sequentially provided. From this result, it was found that in the case of Example 3, the size of the quantum dots was uniform in each columnar part.
  • the material of the quantum dots respectively a material for construction material and the barrier layer of the electrode layer, B-doped G e wafers, undoped G e, B-doped G e, as in Example 3 except that a G E_ ⁇ 2
  • a quantum dot array was obtained. This quantum dot array was observed using SEM in the same manner as in Example 1. As a result, as in Example 1, it was found that the size of the quantum dots was uniform in each columnar part. won.
  • the substrate material used was a glass substrate instead of a B-doped silicon wafer, the barrier layer thickness was 50 nm, the quantum dot thickness was 20 nm, and no electrode layer was formed.
  • Si 0 2 having a thickness of 100 nm was formed by sputtering, and then in a N 2 atmosphere 600 A quantum dot array was obtained in the same manner as in Example 2 except that heat treatment was performed at ° C for 30 minutes. This quantum dot array was observed using SEM in the same manner as in Example 1. As a result, as in Example 1, it was found that the size of the quantum dots was uniform in each columnar part.
  • a glass substrate was used instead of the B-doped silicon wafer as the constituent material of the substrate, CdS was used as the constituent material of the quantum dot, the barrier layer thickness was 5 O nm, and the quantum dot thickness was In order to prevent the oxidation of the surface of the columnar part composed of the barrier layer, quantum dots, and barrier layer, the thickness of 100 nm SiO
  • a quantum dot array was obtained in the same manner as in Example 3 except that 2 was sputtered and then heat-treated at 300 ° C. for 30 minutes in an N 2 atmosphere. This quantum dot array was observed using SEM in the same manner as in Example 1. As a result, as in Example 1, it was found that the quantum dot sizes were uniform in each columnar part. '[0100] (Example 8)
  • Example 16 Except that the substrate was not rotated during deposition of S i O 2 as the constituent material of the barrier layer on the surface 2 a of the substrate 2 and B-doped Si as the constituent material of the quantum dots, the same as in Example 2, A quantum dot array was obtained. This quantum dot array was observed using SEM in the same manner as in Example 1. The results are shown in Figure 16.
  • the lowermost part is the substrate 2, and on the substrate 2, B-doped Si or Ranaru electrode layer, a barrier layer consisting of S io 2, the quantum dots of non-doped S i, the barrier layer consisting of S I_ ⁇ 2, and it is understood that the electrode layer made of B-doped S i are sequentially provided. From this result, it was found that in the case of Example 8, the size of the quantum dots was uniform in each columnar part.
  • a quantum dot array was obtained in the same manner as in Example 3.
  • the conductive film deposition source container is disposed in front of the quantum dot array, and the barrier layer 8 is configured in the barrier layer deposition source container and the quantum dot deposition source container.
  • the first conductive material (A 1) and the second conductivity are respectively provided in the conductive film deposition source housing and the intrusion prevention layer deposition source housing.
  • the material (B-doped S i) was accommodated.
  • a quantum dot array element was produced in the same manner as in Example 9 except that the quantum dot array was manufactured in the same manner as in Example 8, and the vapor deposition angle of the constituent material of the quantum dots and the vapor deposition angle of the constituent material of the barrier layer were 85 °. Got.
  • a quantum dot array is manufactured in the same manner as in Example 3.
  • the vapor deposition angle of the constituent material of the quantum dot and the vapor deposition angle of the constituent material of the barrier layer are 85 °, and the second conductive material which is the constituent material of the intrusion prevention layer is formed.
  • the quantum dot array element is the same as in Example 9, except that the deposition angle is initially 85 °, and then gradually decreased until the deposition angle reaches 15 ° at a rate of 2 ° // min. Got.
  • a quantum dot array was obtained in the same manner as in Example 6 except that the barrier layer and the electrode layer were not formed. This quantum dot array was observed using SEM in the same manner as in Example 1. As a result, in the case of Comparative Example 1, it was found that the sizes of the quantum dots were different in each columnar part and not aligned.
  • a quantum dot array was obtained in the same manner as in Example 7 except that the barrier layer and the electrode layer were not formed. This quantum dot array was observed using SEM in the same manner as in Example 1. As a result, in the case of Comparative Example 2, the quantum dots are It was found that the sizes of the kits were disjointed and not aligned.
  • the manufacturing method of the quantum dot array of the present invention the quantum dot array manufactured using the same, the manufacturing method of the quantum dot array element, and the quantum dot array element using the quantum dot array, Since the uniformity of the size of the quantum dots can be improved, desired characteristics can be realized in each of the quantum dot array and the quantum dot array element using the quantum dot array.

Abstract

本発明は、量子ドットを有する柱状部を基板上に複数有する量子ドットアレイの製造方法において、量子ドットに対してエネルギー障壁となる第1バリア層の構成材料を基板の表面に斜方蒸着し第1バリア層を複数形成する工程と、量子ドットの構成材料を基板の表面に斜方蒸着し第1バリア層上に量子ドットを形成する工程と、量子ドットに対してエネルギー障壁となる第2バリア層の構成材料を基板の表面に対して斜方蒸着し量子ドット上に第2バリア層を形成する工程とを含む。

Description

明糸田書
量子ドットアレイ及びその製造方法、 並びに量子ドットアレイ素子及びその製造 方法
技術分野
【0 0 0 1】 本発明は、 量子ドッ トアレイ及びその製造方法、 並びに量子ドッ トアレイ素子及びその製造方法に関する。
¾ 技 丁
【0 0 0 2】 量子ドットとは一般に、 半導体や金属などからなる数 n m〜数十 n m程度の微小な塊であり、 電子やホールを 3次元的に閉じ込めることができる < このような閉じ込め効果により、 量子ドットの中では電子やホールの運動が量子 化され、 離散的なエネルギー準位が形成される。 このような量子ドットをアレイ 状に複数並べて量子ドットアレイとすることで、 エネルギー効率及び温度安定性 に優れた量子ドットレーザなどの実現が可能となる。
このような量子ドットアレイの製造方法として、 フォ トリソグラフィーを利用 したパターニングにより量子ドットアレイを製造する方法や、 薄膜成長における S K (Stransiki -Krastanov) 成長モードを利用した自己組織化により量子ドッ トアレイを製造する方法も知られている。
ところが、 フォトリソグラフィーを利用した製造方法では、 プロセスが複雑と なり生産効率が低下するため、 量子ドッ トアレイを用いた素子のコストが高くな る。 一方、 低コス ト化を図ろうとすると、 大面積化が困難となる。
【0 0 0 3】 また、 S K成長モードを利用した製造方法では、 量子ドッ トの構 成材料とバリア層の構成材料との格子定数差が利用されるため、 量子ドットの構 成材料どバリア層の構成材料との組合せが限定される。 また基板上の量子ドット の数密度を制御することも困難である。 更に、 量子ドットとバリア層とを膜厚方 向に交互に積層しょうとすると、 バリア層の格子歪を緩和させるためにバリア層 の膜厚を大きくせざるを得ない。 【0 0 0 4】 そこで、 基板上に量子ドッ トの構成材料を斜方蒸着することによ り基板上に柱状の量子ドットを複数形成する方法が提案されている (Suzuki、 他 2 名 、 「 Morphological Stabi l ity of Ti02 Thin Fi lmswith Isolated
ColumnsJ 、 Japanese Journal of Applied Physics Part 2、 第 4 0巻、 p . L 3 9 8 _L 4 0 0、 2 0 0 1参照) 。
発明の開示
【0 0 0 5】 本発明者らは、 以下のことを見出した。 即ち、 前述した文献に記 載の量子ドットァレイの製造方法では、 基板上に量子ドットの構成材料が斜方蒸 着される場合、 初期段階では基板上に不均一な大きさの微小な塊が形成される力 次第に、 特定の大きさの塊が選択的に成長して柱となる。 つまり、 柱間に、 より 微小な塊が形成されているので、 大きさの不揃いな量子ドットが基板上に形成さ れることとなる。 このため、 量子ドットアレイ及びこれを用いた量子ドットァレ ィ素子について所望の特性を得ることが困難となる。
【0 0 0 6】 本発明は、 上記事情に鑑みてなされたものであり、 複数の量子ド ットの大きさの均一性を向上することができる量子ドットアレイ及びその製造方 法、 並びに量子ドットアレイ素子及びその製造方法を提供することを目的とする。
【0 0 0 7】 上記目的を達成するため、 本発明は、 量子ドッ トを有する柱状部 を基板上に複数有する量子ドットアレイの製造方法において、 前記量子ドットに 対するエネルギー障壁となる第 1バリァ層の構成材料を前記基板の表面に対して 斜方蒸着し前記第 1バリア層を複数形成する第 1工程と、 前記量子ドッ トの構成 材料を前記基板の表面に対して斜方蒸着し前記第 1バリァ層のそれぞれの上に前 記量子ドッ トを形成する第 2工程と、 前記量子ドッ卜に対するエネルギー障壁と なる第 2バリァ層の構成材料を前記基板の表面に対して斜方蒸着し前記量子ドッ トのそれぞれの上に前記第 2バリァ層を形成する第 3工程と、 を含むことを特徴 とする。
【0 0 0 8】 この製造方法によれば、 まず基板上に第 1バリア層が形成される。 このとき、 第 1バリア層の構成材料を基板の表面に対して斜方蒸着するが、 基板 上には、 隣接する第 1バリア層同士間にこれより小さい塊が形成される。 つまり、 第 1バリア層と塊とでは大きさが不揃いとなる。 ところが、 第 1バリア層及び塊 はそれ自体、 電子やホールを閉じ込める機能を有しておらず、 量子ドッ トとして 機能しないため、 第 1バリア層と塊とで大きさが不揃いであっても、 得られる量 子ドットアレイを用いた素子の性能には影響しない。 次に、 量子ドッ トの構成材 料を基板の表面に対して斜方蒸着すると、 第 1ノくリァ層のそれぞれの上に量子ド ットが形成される。 即ち、 第 1バリア層が基板から成長しているため、 斜方蒸着 をしても第 1バリア層間への量子ドットの構成材料の侵入が十分に防止される。 このため、 量子ドットが第 1バリア層上に形成され、 塊上には形成されない。 よ つて、 量子ドットの大きさの均一性を向上させることができる。 その後、 量子ド ットの上に、 当該量子ドットに対するエネルギー障壁となる第 2バリア層の構成 材料を基板の表面に対して斜方蒸着すると、 量子ドットの上に第 2バリア層が形 成される。
【0 0 0 9】 また第 1バリア層、 量子ドットおよび第 2バリア層が、 基板の表 面に対して斜方蒸着されることで、 プロセスが簡単となり生産効率が向上するた め、 量子ドッ トアレイを用いた素子のコス トを低減できる。 また、 高価な装置を 使用せずに済むため、 低コス トで大面積化を実現することも容易となる。 また、 斜方蒸着による柱状の構造の形成は基本的には蒸着の際の幾何学的配置を原因と するので、 量子ドットの構成材料とバリア層の構成材料との組合せの自由度を高 くすることが可能となり、 さまざまな種類の量子ドットアレイを製造することが できる。 さらに基板上の量子ドットの数密度を制御することも容易となり、 また、 量子ドットと第 1又は第 2バリア層との格子歪が問題とならないため、 第 1バリ ァ層又は第 2バリア層の膜厚を十分に小さくすることができる。
【0 0 1 0】 上記製造方法においては、 前記第 1工程、 前記第 2工程及び前記 第 3工程において、 前記基板を前記基板の表面の法線を軸に回転させることが好 ましい。 この場合、 量子ドッ トの大きさの均一性をより向上させることができる。
【0 0 1 1】 上記製造方法は、 前記量子ドットの構成材料を前記基板の表面に 対して斜方蒸着し前記第 2バリァ層のそれぞれの上に前記量子ドットを形成する 第 4工程と、 前記量子ドットに対するエネルギー障壁となる第 3バリア層の構成 材料を前記基板の表面に対して斜方蒸着し前記量子ドットのそれぞれの上に前記 第 3バリア層を形成する第 5工程とを更に含むことが好ましい。 この場合、 量子 ドットを 3次元的に並べることができるので、 量子ドットの面密度を増大させる ことができる。
【0 0 1 2】 前記第 1〜前記第 5工程において、 前記基板を前記基板の表面の 法線を軸に回転させることが好ましい。 この場合、 量子ドットの大きさの均一性 をより向上させることができる。
【0 0 1 3】 また本発明は、 上記量子ドットアレイの製造方法により得られる 量子ドットアレイである。 この量子ドットアレイによれば、 量子ドッ トの大きさ の均一性を向上させることができるため、 所望の特性を持った素子を実現できる。 【0 0 1 4】 さらに本発明は、 上記量子ドットアレイの製造方法により得られ る量子ドットアレイと、 前記量子ドットアレイの前記複数の柱状部上に設けられ る導電膜とを備え、 前記基板が導電部を有する量子ドットアレイ素子の製造方法 において、 前記量子ドットアレイの前記複数の柱状部上に、 第 1導電材料の蒸着 により前記導電膜を形成する導電膜形成工程を含み、 前記導電膜形成工程の前で 前記複数の柱状部を形成した後に、 前記複数の柱状部のそれぞれの上に、 第 2導 電材料の蒸着により、 前記複数の柱状部間への前記第 1導電材料の侵入を防止す る侵入防止層を形成する侵入防止層形成工程を含むこと、 を特徴とする。 なお、 本発明において、 「蒸着」 には、 通電加熱による蒸着、 電子ビームによる蒸着の みならず、 スパッタによる蒸着も含まれるものとする。
【0 0 1 5】 この製造方法によれば、 量子ドットの大きさの均一性を向上させ ることができるため、 所望の特性を持った量子ドッ 卜アレイ素子を実現できる。 また、 柱状部を形成した後、 導電膜を形成する前に、 複数の柱状部間への第 1導 電材料の侵入を防止する侵入防止層が形成されるため、 第 1導電材料を蒸着して 導電膜を形成するときに、 第 1導電材料が複数の柱状部間に侵入することが十分 に防止される。 したがって、 隣り合う柱状部の量子ドット同士が短絡したり、 1 つの柱状部における量子ドット同士が短絡したりすることが十分に防止され、 量 子ドットアレイ素子が正常な機能を果たせなくなる事態が十分に防止される。 【0 0 1 6】 上記侵入防止層を形成する好適な方法としては、 具体的には、
( 1 ) 前記第 2導電材料を前記基板の表面に対して斜方蒸着し、 前記基板の表面 の法線から見て、 前記侵入防止層の先端部が、 隣りの柱状部の先端面に少なくと も差掛かるまで前記侵入防止層を形成したり、
( 2 ) 前記第 2導電材料を前記基板の表面に対して蒸着するときに、 前記基板を 回転させながら、 前記基板の表面の法線に対する蒸着角度を徐々に小さく変化さ せることにより、 前記複数の柱状部のそれぞれの上に形成される前記侵入防止層 を一体化させること、
が挙げられる。
【0 0 1 7】 本発明は、 上記量子ドットアレイ素子の製造方法により得られる 量子ドットアレイ素子である。
【0 0 1 8】 この量子ドットアレイ素子によれば、 量子ドットの大きさの均一 性を向上させることができるため、 所望の特性を持った量子ドットアレイ素子を 実現できる。 また、 複数の柱状部間への導電材料の侵入が十分に防止されている ため、 隣り合う柱状部の量子ドット同士が短絡したり、 1つの柱状部における量 子ドット同士が短絡したりすることが十分に防止され、 量子ドットアレイ素子が 正常な機能を果たせなくなる事態が十分に防止される。
図面の簡単な説明
【0 0 1 9】 図 1は、 本発明め量子ドットァレイの一実施形態を示す斜視図で ある。 【0 0 2 0】 図 2は、 図 1の量子ドッ トアレイの部分拡大正面図である。 【0 0 2 1】 図 3は、 本発明の量子ドットアレイの製造方法の一部の工程を示 す一連の工程図である。
【0 0 2 2】 図 4は、 本発明の量子ドットアレイの他の実施形態を示す斜視図 である。
【0 0 2 3】 図 5は、 本発明の量子ドットアレイ素子の一実施形態を示す断面 図である。
【0 0 2 4】 図 6は、 図 5の基板の変形例を示す正面図である。
【0 0 2 5】 図 7は、 本発明の量子ドットアレイ素子の製造方法の一実施形態 における侵入防止層形成工程を示す図である。
【0 0 2 6】 図 8は、 本発明の量子ドットアレイ素子の他の実施形態を示す断 面図である。
【0 0 2 7】 図 9は、 本発明の量子ドットアレイ素子の製造方法の他の実施形 態における侵入防止層形成工程を示す図である。
【0 0 2 8】 図 1 0は、 本発明の量子ドッ トアレイのさらに他の実施形態を示 す斜視図である。
【0 0 2 9】 図 1 1は、 本発明の量子ドッ 卜アレイのさらにまた他の実施形態 を示す斜視図である。
【0 0 3 0】 図 1 2は、 本発明の量子ドットアレイ素子のさらに他の実施形態 を示す断面図である。
【0 0 3 1】 図 1 3は、 実施例 1に係る量子ドッ トアレイの S E M写真像を示 す図面である。
【0 0 3 2】 図 1 4は、 実施例 2に係る量子ドットアレイの S E M写真像を示 す図面である。
【0 0 3 3】 図 1 5は、 実施例 3に係る量子ドットァレイの S E M写真像を示 す図面である。 【0034】 図 16は、 実施例 8に係る量子ドットアレイの S EM写真像を示 す図面である.。
【0035】 図 1 7は、 実施例 9に係る量子ドットアレイ素子の SEM写真像 を示す図面である。
発明を実施するための最良の形態
【0036】 以下、 本発明の実施形態について詳細に説明する。
【0037】 (量子ドットァレイの製造方法の第 1実施形態)
図 1は、 本発明の量子ドッ トアレイの第 1実施形態を示す斜視図、 図 2は、 図 1の量子ドットアレイ 100の部分拡大正面図である。 図 1に示すように、 量子 ドットアレイ 100は、 基板 2と、 基板 2上に設けられる複数の柱状部 4とを有 している。 複数の柱状部 4は、 基板 2の表面 2 aの法線 3に対して斜め方向に延 びている。 各柱状部 4は、 量子ドット 6とバリア層 8とを交互に積層してなるも のである。 具体的には、 柱状部 4は、 基板 2上に設けられるバリア層 8を有し、 バリア層 8の上には、 柱状部 4の延び方向に沿って量子ドッ ト 6とバリア層 8と が交互に積層されている。 従って、 量子ドットアレイ 100において、 量子ドッ ト 6.は 3次元的に配列されている。
【0038】 量子ドット 6の構成材料としては、 例えば半導体や金属が挙げら れる。 半導体としては、 例えば S i、 G e、 C d S、 Z n S、 Z nT e、 C dT eなどが挙げられる。 金属としては、 例えば Au、 Ag、 C uなどが挙げられる。 バリア層 8の構成材料は、 量子ドット 6の構成材料に対してエネルギー障壁とな るものであり、 これにより、 量子ドット 6に電子又はホールを閉じ込めることが 可能である。 バリア層 8の構成材料は、 量子ドット 6の構成材料に対してエネル ギー障壁となるものであれば特に限定されず、 例えば S i 02、 A 1203、 S i 3N4などが用いられる。 例えば量子ドッ ト 6を S iで、 バリア層 8を S i 02で 構成することができる。
【0039】 上述した量子ドットアレイ 100は、 以下の製造方法によって製 造される。
【0 0 4 0】 即ち、 まず基板 2を用意する。 基板 2としては、 例えばシリ コン ウェハなどを用いることができる。
【0 0 4 1】 次に、 基板 2を、 例えば電子ビーム蒸着装置内に設置する。 ここ で、 電子ビーム蒸着装置は、 容器 (図示せず) と蓋とを備えている。 容器内には、 バリア層 8用の蒸着源を収容するバリア層用蒸着源収容部 (図示せず) 及び量子 ドット用の蒸着源を収容する量子ドッ ト用蒸着源収容部が設けられており、 バリ ァ層用及び量子ドット用の蒸着源は、 例えば電子ビームにより加熱されて蒸発す るようになっている。 この電子ビーム蒸着装置において、 容器内には固定台が設 けられており、 基板 2はこの固定台の上に固定される。 このとき、 バリア層用及 び量子ドッ ト用の蒸着源収容部は、 基板 2の表面 2 aの法線 3に対して斜めの方 向に配置されている。 言い換えると、 基板 2の表面 2 aの法線 3に対する蒸着方 向 (図 2の矢印 A方向) の角度 (蒸着角度) 0は 0 ° より大きい。 蒸着角度 0は、 好ましくは 3 0 ° 以上である。 蒸着角度 Θが 3 0 ° 未満では、 3 0 ° 以上である 場合に比べて、 柱が相対的に太く、 あるいは直径が相対的に不揃いとなる傾向が ある。 但し、 蒸着角度 0が 3 0 ° 未満であっても、 基板 2上に第 1バリア層を介 さずに量子ドットを形成する場合に比べれば、 複数の量子ドットの大きさの均一 性を向上させることは可能である。 なお、 蒸着角度 Θは 9 0 ° 以下である。 この とき、 基板温度は通常は室温であるが、 各蒸着材料の融点 (絶対温度表記) の 1 ノ 3以下であることが好ましい。 基板温度が蒸着材料の融点 (絶対温度表記) の
1 / 3よりも高い場合には、 1 3以下の場合に比べて、 柱が太く、 あるいは直 径が不揃いとなる傾向がある。
【0 0 4 2】 次に、 容器内のバリア層用蒸着源収容部にバリア層 8の構成材料 を蒸着源として収容し、 量子ドット用の蒸着源収容部には量子ドッ 卜 6の構成材 料を蒸着源として収容する。
【0 0 4 3】 次いで、 容器に蓋をし、 電子ビームをバリア層用の蒸着源に照射 し蒸着源を加熱して蒸発させる。 このとき、 バリア層用の蒸着源収容部は、 基板 2の表面 2 aの法線に対して斜めの位置に設けられているため、 基板 2の表面 2 aに対してバリア層用の蒸着源が斜方蒸着される。 なお、 斜方蒸着とは、 基板 2 の表面 2 aの法線 3に対して斜めの方向から、 蒸着源を基板の表面 2 aに向かつ て付着させることを言う。 こうして、 図 3の (a ) に示すように、 基板 2の表面 2 a上に複数のバリア層 8を形成する (第 1工程) 。 このとき、 隣接するバリア 層 8同士間には、 ノ リア層 8よりも小さな塊 9が形成される。
【0 0 4 4】 次に、 電子ビームを量子ドット用の蒸着源に照射して蒸着源を加 熱して蒸発させる。 このとき、 量子ドット用の蒸着源収容部は、 基板 2の表面 2 aの法線 3に対して斜めの位置に設けられているため、 基板 2の表面 2 aに対し て量子ドット用の蒸着源が斜方蒸着される。 こうして、 図 3の (b ) に示すよう に、 各バリア層 8の上に量子ドット 6が形成され、 小さな塊 9上には量子ドット 6は形成されない (第 2工程) 。 即ち、 量子ドット 6は、 各バリア層 8の上に選 択的に形成されることになる。
【0 0 4 5】 次に、 電子ビームをバリア層用の蒸着源に照射し蒸着源を加熱し て蒸発させる。 こうして、 上記と同様にして、 図 3の (c ) に示すように、 量子 ドット 6の上にバリア層 8を形成する (第 3工程) 。
【0 0 4 6】 次に、 再び電子ビームを量子ドット用の蒸着源に照射して蒸着源 を加熱して蒸発させる。 こうして、 バリア層 8の上に量子ドット用の蒸着源が斜 方蒸着され、 各バリア層 8の上に量子ドット 6が形成される (第 4工程) 。
【0 0 4 7】 次に、 再び電子ビームをバリア層用の蒸着源に照射し蒸着源を加 熱して蒸発させる。 こうして、 上記と同様にして、 量子ドット 6の上にバリア層 8を形成する (第 5工程) 。
【0 0 4 8】 これ以降は、 量子ドット 6 、 ノ リア層 8を上記と同様にして交互 に形成する。 こうして基板 2上に複数の柱状部 4が形成され、 量子ドットアレイ 1 0 0の製造が完了する。 【0 0 4 9】 上記の製造方法によれば、 まず基板 2上にバリア層 8が形成され る。 このとき、 バリア層 8は、 当該バリア層 8の構成材料を基板 2の表面 2 aに 対して斜方蒸着することにより形成される。 このとき、 基板 2上には、 隣接する バリア層 8同士間にこれよりも小さい塊 9が形成される。 つまり、 ノ リア層 8と 塊 9とでは大きさが不揃いとなる。 ところが、 ノくリア層 8及び塊 9はそれ自体、 電子やホールを閉じ込める機能を有しておらず、 量子ドットとして機能しないた め、 得られる量子ドットアレイ 1 0 0を用いた素子の性能には影響しない。 次に、 量子ドット 6の構成材料を基板 2の表面 2 aに対して斜方蒸着すると、 バリア層 8上に量子ドット 6が形成される。 即ち、 バリア層 8が基板 2から成長している ため、 斜方蒸着をしてもバリア層 8間への量子ドッ ト 6の構成材料の侵入が十分 に防止される。 このため、 量子ドット 6の大きさの均一性を向上させることがで きる。 その後、 量子ドッ ト 6の上に、 当該量子ドット 6に対するエネルギー障壁 となるバリア層 8の構成材料を基板 2の表面 2 aに対して斜方蒸着すると、 量子 ドット 6の上にバリア層 8が形成される。
【0 0 5 0】 このように上記製造方法により量子ドット 6の大きさの均一性を 向上させることができるだめ、 各量子ドット 6を例えば発光素子の発光部とすれ ば、 各量子ドット 6から発せられる光の波長を揃えることができるので、 各量子 ドット 6から発せられるそのままのスぺク トルの光を、 量子ドットアレイ 1 0 0 から出射させることができる。 また、 量子ドット 6の大きさの均一性を向上させ ることができるため、 柱状部 4が特定の電流電圧特性を有している場合、 その電 流電圧特性をそのまま量子ドットアレイ 1 ◦ 0に反映させることもできる。 即ち、 量子ドット 6の大きさの均一性が向上しないと、 柱状部 4ごとに電流電圧特性が 異なるので、 全体としての電流電圧特性は各柱状部 4のものを平均したものとな る。 従って、 各柱状部 4の電流電圧特性の持つ特徴が、 全体としての量子ドット アレイ 1 0 0にそのまま反映されず、 各柱状部 4の持つ機能が低下してしまう。 しかし、 量子ドット 6の大きさの均一性が向上すれば、 各柱状部 4の電流電圧特 性が同様となり、 各柱状部 4の電流電圧特性は、 全体としての量子ドットアレイ 1 0 0の電流電圧特性ともなるのである。
【0 0 5 1】 またバリア層 8'、 量子ドット 6およびバリア層 8が、 基板 2の表 面 2 aに対して斜方蒸着されることで、 プロセスが簡単となり生産効率が向上す るため、 量子ドッ トアレイ 1 0 0を用いた素子のコス トを低減できる。 また、 高 価な装置を使用しないで済むため、 低コス トで大面積化を実現することも容易と なる。 また、 蒸着を利用するため、 量子ドット 6の構成材料とバリア層 8の構成 材料との組合せの自由度を高くすることが可能となり、 さまざまな種類の量子ド ッ 卜アレイを製造することができる。 さらに基板上の量子ドットの数密度を制御 することも容易となり、 また量子ドット 6とバリア層 8との格子歪が問題となら ないため、 バリア層 8の膜厚を十分に小さくすることができる。 また上記のよう にして量子ドットアレイ 1 0 0を製造すると、 量子ドット 6を 3次元的に並べる ことができるので、 量子ドットの面密度を増大させることができる。
【0 0 5 2】 (量子ドットァレイの製造方法の第 2実施形態)
次に、 本発明の量子ドットアレイの製造方法の第 2実施形態について説明する < なお、 第 1実施形態と同一又は同等の構成要素については同一符号を付し、 重複 する説明は省略する。
【0 0 5 3】 本実施形態の製造方法は、 量子ドット 6及びバリア層 8の形成時 に、 電子ビーム蒸着装置において固定台に代えて、 回転可能な回転台を用い、 こ の回転台を回転させることによって基板 2を回転させる点で第 1実施形態の製造 方法と相違する。 このとき、 基板 2は、 図 4に示すように、 基板 2の表面 2 aに 直交する方向、 即ち表面 2 aの法線方向に延びる回転軸 5の回りに回転させる。 なお、 図 4において、 回転台については図示を省略している。 このように基板 2 を回転させると、 図 4に示すように、 量子ドットアレイ 2 0 0において、 柱状部 4は、 基板 2の表面 2 aに対して垂直な方向に延び、 ほぼ円柱形状をなすように なる。 またこの場合、 量子ドット 6の大きさの均一性をより向上させることがで さる。
【0 0 5 4】 (量子ドットァレイ素子の製造方法の第 1実施形態)
次に、 本発明の量子ドットアレイ素子の製造方法の第 1実施形態について詳細 に説明する。
【0 0 5 5】 まず本発明による量子ドッ トアレイ素子の製造方法の第 1実施形 態の説明に先立ち、 この製造方法により製造される量子ドッ トアレイ素子につい て図 5を用いて説明する。
【0 0 5 6】 図 5は、 本発明による量子ドットアレイ素子の製造方法の第 1実 施形態により製造される量子ドットアレイ素子を概略的に示す断面図である。 図 5に示すように、 量子ドットァレイ素子 3 0 0は、 量子ドットアレイ 3 0 1と、 量子ドットアレイ 3 0 1の複数の柱状部 3 0 4上に設けられる導電膜 3 0 2とを 備えている。 ここで、 複数の柱状部 3 0 4はそれぞれ、 基板 2の表面 2 aの法線 に対して傾斜しており、 各柱状部 3 0 4は、 電極層 3 0 5、 ノ リア層 8、 量子ド ッ ト 6およびバリア層 8によって構成されている。 ここで、 電極層 3 0 5は、 量 子ドットよりも大きいサイズを有し、 量子ドッ トとしての機能を有しないもので あり、 例えば Bドープシリコンなどの導電材料で構成される。 各柱状部 3 0 4と 導電膜 3 0 2との間にはそれぞれ、 量子ドットアレイ素子 3◦ 0の製造時におい て複数の柱状部 3 0 4間への導電材料の侵入を防止するための導電性の侵入防止 層 3 0 3が設けられている。 ここで、 各柱状部 3 0 4上の侵入防止層 3 0 3は導 電膜 3 0 2に接続されている。 即ち、 侵入防止層 3 0 3同士は、 導電膜 3 0 2を 介して電気的に接続されている。 また侵入防止層 3 0 3は、 それぞれ柱状部 3 0 4の延び方向に延びている。 なお、 侵入防止層 3 0 3が導電性を有する理由は、 例えば侵入防止層 3 0 3が絶縁性材料で構成されると、 トンネル効果による電流 が侵入防止層 3 0 3を流れなくなり、 柱状部 3 0 4に電流を流すことができなく なるためである。
【0 0 5 7】 導電膜 3 0 2は、 通常は、 アルミニウムなどの金属材料で構成さ れるが、 スズドープ酸化インジウム、 アンチモンドープ酸化スズなどの導電性酸 化物や、 ボロン (B ) ドープシリコンなどの半導体材料で構成されてもよい。 【0 0 5 8】 また基板 2は、 全体が導電材料からなる導電部で構成されている。 ここで、 導電材料は、 例えば、 ボロン (B ) ドープシリコンなどの半導体材料や、 アルミニウムなどの金属材料、 スズド一プ酸化インジウム、 アンチモンドープ酸 化スズなどの導電性酸化物で構成される。 なお、 基板 2は、 図 6に示すように、 上記導電材料からなる導電部 3 0 6と、 絶縁性の本体部 3 0 7との積層体であつ てもよい。 この場合、 導電部 3 0 6は、 本体部 3 0 7に対して柱状部 3 0 4側に、 柱状部 3 0 4と接触するように設けられる。
【0 0 5 9】 次に、 量子ドットアレイ素子 3 0 0の製造方法について説明する。 【0 0 6 0】 まず、 基板 2として、 ボロン (B ) ドープシリコンウェハを用い ること、 電子ビーム蒸着装置が、 導電膜 3 0 2の蒸着源としての第 1導電材料を 収容する導電膜用蒸着源収容部と、 侵入防止層 3 0 3用の蒸着源としての第 2導 電材料を収容する侵入防止層用蒸着源収容部と、 電極層 3 0 5の蒸着源としての 導電材料を収容する電極層用.蒸着源収容部とを更に有すること、 及び柱状部 3 0 4を形成する際に、 基板 2とバリア層 8との間に電極層 3 0 5を電子ビーム蒸着 により形成し、 量子ドット 6は 1層のみ、 バリア層 8は 2層形成したこと以外は、 量子ドッ トァレイの製造方法の第 1実施形態と同様にして量子ドットアレイ 3 0 1を製造する。 なお、 電子ビーム蒸着装置において、 導電膜用蒸着源収容部は、 固定台の正面に配置される。 また、 バリア層用蒸着源収容部及び量子ドット用の 蒸着源収容部にそれぞれバリア層 8の構成材料、 量子ドット 6の構成材料を蒸着 源として収容するときに、 導電膜用蒸着源収容部及び侵入防止層用蒸着源収容部 にはそれぞれ、 第 1導電材料、 第 2導電材料を収容しておく。
【0 0 6 1】 続いて、 量子ドットアレイ 3 0 1を電子ビーム蒸着装置の容器内 に収容したまま、 電子ビームを侵入防止層 3 0 3用の蒸着源である第 2導電材料 に照射し蒸着源を加熱して蒸発させる。 ここで、 第 2導電材料は、 導電材料であ れば特に限定されないが、 かかる第 2導電材料としては、 例えば Bドープシリコ ンなどの半導体材料、 スズドープ酸化インジウム、 アンチモンド一プ酸化スズな どの導電性酸化物が挙げられる。 このとき、 侵入防止層用の蒸着源収容部は、 基 板 2の表面 2 aの法線に対して斜めの位置に設けられるため、 基板 2の表面 2 a に対して侵入防止層用の蒸着源が斜方蒸着される。 こうして、 図 7に示すように、 複数の柱状部 3 0 4のそれぞれの上に、 複数の柱状部 3 0 4間への第 1導電材料 の侵入を防止する侵入防止層 3◦ 3が形成される (侵入防止層形成工程) 。 この とき、 侵入防止層 3 0 3は、 基板 2の表面 2 aの法線方向から見て、 侵入防止層 3 0 3の先端部が、 隣りの柱状部 3 0 4の先端面に少なくとも差掛かるまで第 2 導電材料を堆積させ、 侵入防止層 3 0 3を形成する。 またこのとき、 蒸着角度 0 は、 ノくリア層 8及び量子ドッ ト 6を形成する場合と同様であり、 好ましくは 3 0 ° 以上である。 但し、 蒸着角度 Θは必ずしもバリア層 8及び量子ドット 6を形 成する場合と同様にする必要はない。 例えば、 バリア層 8及び量子ドット 6を形 成する場合よりも蒸着角度 Θを大きくすれば、 より短時間で侵入防止層 3 0 3を 形成することができる。
【0 0 6 2】 次に、 電子ビームを導電膜用の蒸着源である第 1導電材料に照射 し蒸着源を加熱して蒸発させる。 ここで、 第 1導電材料は、 導電材料であれば特 に限定されないが、 かかる第 1導電材料としては、 例えばアルミニウムなどの金 属材料や、 スズドープ酸化インジウム、 アンチモンドープ酸化スズなどの導電性 酸化物が挙げられる。 このとき、 導電膜 3 0 2用の蒸着源収容部は、 基板 2の表 面 2 aの正面位置に設けられるため、 導電膜 3 0 2用の蒸着源が基板 2の表面 2 aに対して正面より蒸着される。 こうして、.図 5に示すように、 複数の侵入防止 層 3 0 3の上に導電膜 3 0 2が形成される (導電膜形成工程) 。 こうして量子ド ッ卜アレイ素子 3 0 0の製造が完了する。
【0 0 6 3】 上記の製造方法によれば、 得られる量子ドッ トアレイ 3 0 1にお いて、 量子ドット 6の大きさの均一性を向上させることができるため、 所望の特 性を持った量子ドットアレイ素子 3 0 0を実現できる。 また、 柱状部 3 0 4を形 成した後、 導電膜 3 0 2を形成する前に、 複数の柱状部 3 0 4間への第 1導電材 料の侵入を防止する侵入防止層 3 0 3が形成されるため、 第 1導電材料を電子ビ ーム蒸着により導電膜 3 0 2を形成するときに、 第].導電材料が複数の柱状部 3 0 4間に侵入することが十分に防止される。 したがって、 隣り合う柱状部 3 0 4 の量子ドット 6同士が短絡したり、 1つの柱状部 3 0 4において量子ドット 6同 土が短絡したりすることが十分に防止され、 量子ドッ トアレイ素子 3 0 0が正常 な機能を果たせなくなる事態が十分に防止される。
【0 0 6 4】 (量子ドットァレイ素子の製造方法の第 2実施形態)
次に、 本発明の量子ドットアレイ素子の製造方法の第 2実施形態について詳細 に説明する。 なお、 量子ドットアレイの第 1及び第 2実施形態と同一又は同等の 構成要素については同一符号を付し、 重複する説明を省略する。
【0 0 6 5】 まず本発明による量子ドッ トアレイ素子の製造方法の第 2実施形 態の説明に先立ち、 この製造方法により製造される量子ドッ トアレイ素子につい て図 8を用いて説明する。 '
【0 0 6 6】 図 8は、 本発明による量子ドットアレイ素子の製造方法の第 2実 施形態により製造される量子ドットアレイ素子を概略的に示す断面図である。 図 8に示すように、 量子ドッ トアレイ素子 4 0 0は、 量子ドットアレイ 4 0 1と、 量子ドットアレイ 4 0 1の複数の柱状部 4 0 4上に設けられる導電膜 4 0 2とを 備えている。 ここで、 複数の柱状部 4 0 4はそれぞれ、 基板 2の表面 2 aに対し て直交する方向に延びており、 各柱状部 4 0 4は、 電極層 4 0 5、 バリア層 8、 量子ドット 6、 ノ リア層 8および電極層 4 0 5によって構成されている。 ここで、 電極層 4 0 5は、 量子ドッ トよりも大きいサイズを有し、 量子ドットとしての機 能を有しないものであり、 例えば Bドープシリコンなどの導電材料で構成される。 各柱状部 4 0 4と導電膜 4 0 2との間にはそれぞれ、 量子ドットアレイ素子 4 0 0の製造時において、 複数の柱状部 4 0 4間への導電材料の侵入を防止するため の侵入防止層 4 0 3が設けられている。 ここで、 侵入防止層 4 0 3は、 柱状部 4 0 4から遠ざかるにつれて、 即ち柱状部 4 0 4から導電膜 4 0 2に向かうにつれ て大径化されており、 侵入防止層 4 0 3は導電膜 4 0 2側で一体化されている。 【0 0 6 7】 導電膜 4 0 2は、 導電膜 3 0 2と同様、 通常は、 アルミニウムな どの金属材料で構成されるが、 スズドープ酸化インジウム、 アンチモンドープ酸 化スズなどの導電性酸化物や、 Bドープシリコンなどの半導体材料で構成されて もよレ、。 また侵入防止層 4 0 3は、 侵入防止層 3 0 3と同様の構成を有する。 【0 0 6 8】 次に、 量子ドットアレイ素子 4 0 0の製造方法について説明する t 【0 0 6 9】 まず、 基板 2として、 ボロン (B ) ドープシリコンウェハを用い ること、 電子ビーム蒸着装置が、 導電膜 4 0 2の蒸着源としての第 1導電材料を 収容する導電膜用蒸着源収容部と、 侵入防止層 4 0 3用の蒸着源としての第 2導 電材料を収容する侵入防止層用蒸着源収容部と、 電極層 4 0 5の蒸着源としての 導電材料を収容する電極層用蒸着源収容部とを更に有すること、 及び柱状部 4 0 4を形成する際に、 基板 2とバリア層 8との間、 及びバリア層 8と侵入防止層 4 0 3との間に電極層 4 0 5を電子ビーム蒸着により形成し、 量子ドット 6は 1層 のみ、 バリア層 8は 2層形成したこと以外は量子ドッ トアレイの製造方法の第 2 実施形態と同様にして量子ドットアレイ 4 0 1を得る。 即ち、 基板 2の表面 2 a から当該表面 2 aに直交する方向に延びる複数の柱状部 4 0 4が形成された量子 ドッ トアレイ 4 0 1が得られる。
【0 0 7 0】 なお、 このとき、 電子ビーム蒸着装置において、 導電膜用蒸着源 収容部は、 回転台の正面に配置される。 回転台は、 一定方向に沿って移動可能と なっている。 またバリア層用蒸着源収容部及び量子ドッ 卜用の蒸着源収容部にそ れぞれバリア層 8の構成材料、 量子ドット 6の構成材料を蒸着源として収容する ときに、 導電膜用蒸着源収容部、 侵入防止層用蒸着源収容部及び電極層用蒸着源 収容部にはそれぞれ、 第 1導電材料、 第 2導電材料及び電極層の構成材料を収容 しておく。 【0 0 7 1】 続いて、 量子ドッ トアレイ 4 0 1を電子ビーム蒸着装置の容器内 に収容したまま、 電子ビームを侵入防止層 4 0 3用の蒸着源である第 2導電材料 に照射し蒸着源を加熱して蒸発させる。 このとき、 回転台を回転させる。 具体的 には、 基板 2の表面 2 aの法線 5を軸に基板 2が回転するように回転台を回転さ せる。 またこのとき、 回転台を時間とともに、 第 2導電材料の蒸着源から遠ざか るように移動させる。 ここで、 回転台の移動方向は、 基板 2の表面 2 aの法線に 沿った方向とする。 こうして、 基板 2の表面 2 aの法線に対する蒸着角度 Θを時 間とともに変化させて小さくする。 これにより、 侵入防止層 4 0 3は、 各柱状部 4 0 4上で時間とともに大径化し、 やがて、 隣り合う侵入防止層 4 0 3同士が一 体化する。 これにより、 複数の柱状部 4 0 4間の隙間が塞がれることとなる。 こ うして、 図 9に示すように、 複数の柱状部 4 0 4のそれぞれの上に、 複数の柱状 部 4 0 4間への第 1導電材料の侵入を防止する侵入防止層 4 0 3が形成される
(侵入防止層形成工程) 。
【0 0 7 2】 次に、 電子ビームを導電膜用の蒸着源である第 1導電材料に照射 し蒸着源を加熱して蒸発させる。 このとき、 導電膜用の蒸着源収容部は、 基板 2 の表面 2 aの正面位置に設けられているため、 導電膜用の蒸着源が基板 2の表面 2 aに対して正面より蒸着される。 これにより、 図 8に示すように、 複数の侵入 防止層 4 0 3の上に、 導電膜 4 0 2が形成される (導電膜形成工程) 。 こうして 量子ドットアレイ素子 4 0 0の製造が完了する。
【0 0 7 3】 上記の製造方法によれば、 得られる量子ドットアレイ 4 0 1にお いて、 量子ドット 6の大きさの均一性を向上させることができるため、 所望の特 性を持った量子ドットアレイ素子 4 0 0を実現できる。 また、 柱状部 4 0 4を形 成した後、 導電膜 4 0 2を形成する前に、 複数の柱状部 4 0 4間への第 1導電材 料の侵入を防止する侵入防止層 4 0 3が形成されるため、 第 1導電材料を電子ビ ーム蒸着により導電膜 4 0 2を形成するときに、 第 1導電材料が複数の柱状部 4 0 4間に侵入することが十分に防止される。 したがって、 隣り合う柱状部 4 0 4 の量子ドット 6同士が短絡したり、 1つの柱状部 4 0 4における量子ドッ ト 6同 士が短絡したりすることが十分に防止され、 量子ドットアレイ素子 4 0 0が正常 な機能を果たせなくなる事態が十分に防止される。
【0 0 7 4】 本発明は、 上記実施形態に限定されるものではない。 例えば上記 量子ドットアレイの製造方法の第 1実施形態では、 1つの柱状部 4に量子ドット 6が 3つ含まれており、 全体で見ると、 量子ドット 6が 3次元的に配列されてい るが、 量子ドット 6の数は 1つ以上であれば、 如何なる数であってもよい。 但し、 1つの柱状部 4に量子ドット 6が 1つのみ含まれる場合は、 量子ドットアレイに おいては、 図 1 0に示すように、 量子ドット 6は全体で見ると 2次元的に配列さ れることになる。
【0 0 7 5】 また上記量子ドットアレイの製造方法の第 2実施形態では、 1つ の柱状部 4に量子ドット 6が 3つ含まれており、 全体で見ると、 量子ドット 6力 S 3次元的に配列されているが、 量子ドッ ト 6の数は 1つ以上であれば、 如何なる 数であってもよい。 但し、 1つの柱状部 4に量子ドット 6が 1つのみ含まれる場 合は、 量子ドットアレイにおいては、 図 1 1に示すように、 量子ドット 6は全体 で見ると 2次元的に配列されることになる。
【0 0 7 6】 更に、 上記量子ドットアレイの製造方法の第 1及び第 2実施形態、 並びに量子ドッ トアレイ素子の製造方法の第 1及び第 2実施形態では、 電子ビー ムを用いて蒸着源を加熱し蒸発させることにより蒸着が行われているが、 抵抗力口 熱蒸着法、 スパッタ法、 イオンビームスパッタ法、 イオンプレーティング法、 レ 一ザ一アブレーシヨン法などを用いて蒸着を行ってもよい。
【0 0 7 7】 更にまた、 上記量子ドットアレイの製造方法の第 2実施形態では、 基板 2上に、 基板 2の表面 2 aに対して垂直な方向に真っ直ぐに延びる柱状部 4 が形成されているが、 基板 2の回転数を第 2実施形態の場合よりも遅くすること により、 螺旋形状の柱状部を得ることができる。
【0 0 7 8】 更に、 柱状部 4 , 3 0 4 , 4 0 4を作製した後に、 量子ドッ ト 6 の結晶化又は結晶性向上のためにァニールを行ってもよい。 ァエールとしては、 例えば電気炉ゃランプアニール炉を用いることができる。 またレーザァニール法 を用いることもできる。
【0 0 7 9】 また、 上記実施形態において、 上記柱状部 4 , 3 0 4, 4 0 4を 得た後、 あるいは上記のようにァニールを行った後に、 柱状部 4, 3 0 4 , 4 0 4を部分的に酸化させてもよい。 この場合、 酸化させた部分は量子ドット 6に対 するエネルギー障壁として機能するので、 量子ドット 6のサイズを調製すること ができる。
【0 0 8 0】 更に、 上記量子ドットアレイの第 1及び第 2実施形態では、 基板 2の表面 2 a上にバリア層 8を形成しているが、 バリア層 8を形成するに先立ち. 例えば電圧印加のための電極層を形成してもよい。 この場合、 柱状部 4は、 その 頂部にあるバリア層 8の上に例えば電極層を更に含めた構成としてもよい。 なお, ここでいう電極層は、 量子ドットよりも大きいサイズを有し、 量子ドットとして の機能を有しないものである。
【0 0 8 1】 また上記量子ドットアレイ素子の第 1及び第 2実施形態では、 柱 状部 3 0 4 , 4 0 4がそれぞれ電極層 3 0 5、 4 0 5を含んでいるが、 これらは 省略されてもよレ、。
【0 0 8 2】 更にまた、 上記量子ドットアレイ素子の第 1実施形態では、 量子 ドットアレイ 3 0 1に代えて、 量子ドットアレイ 4 0 1を用いてもよい。 即ち、 量子ドットアレイの製造時に、 基板 2をその表面の法線を軸に回転させてもよい。 この場合、 図 1 2に示すような量子ドットアレイ素子 5 0 0が得られる。.
実施例
【0 0 8 3】 以下、 本発明の内容を、 実施例及び比較例を挙げてより具体的に 説明するが、 本発明は、 以下の実施例に限定されるものではない。
【0 0 8 4】 (実施例 1 )
まず基板を用意した。 基板としては、 希フッ酸水溶液にて表面の自然酸化膜が 除去され、 2 O mm角に切断された Bドープのシリコンウェハを用いた。
【0 0 8 5】 そして、 この基板を、 電子ビーム蒸着装置内に設置した。 このと き、 電子ビーム蒸着装置において、 基板は、 回転台の上に固定した。 また電子ビ ーム蒸着装置においては、 バリア層用、 量子ドッ ト用及び電極層用の蒸着源収容 部は、 基板 2の表面 2 aの法線に対して斜めの方向に配置した。
【0 0 8 6】 次に、 容器内のバリァ層用蒸着源収容部に粒径 2〜 3 mmの S i 0 2粒を蒸着源として収容し、 量子ドット用の蒸着源収容部には直径 1 O mm、 厚さ 5 mmのノンドープ S iペレッ トを蒸着源として収容し、 電極層用の蒸着源 収容部には直径 1 O mm、 厚さ 5 mn^ B ドープ S iペレツトを蒸着源として収 容した。
【0 0 8 7】 次いで、 容器に蓋をし、 内部を 5 X 1 0 6 P a以下に減圧した 後、 電子ビームを電極雇用蒸着源収容部に収容された Bドープ S iに照射して B ドープ S iを加熱して蒸発させた。 このとき、 基板を 1 0 r p mで回転させた。 こうして基板 2の表面 2 aに対して Bドープ S iを斜方蒸着した。 このときの蒸 着角度は、 基板表面の法線から 7 5 ° であった。- また蒸着速度は 2 n mZ分とし た。 こうして、 各バリア層 8の上に Bドープ S iからなる厚さ 4 0 n mの電極層 を形成した。
【ひ 0 8 8】 次に、 電子ビ一ムをバリア層用の蒸着源収容部に照射し S i 0 2 を加熱して蒸発させた。 このとき、 基板を 1 0 r p mで回転させた。 こうして基 板 2の表面 2 aに対して S i 0 2を斜方蒸着した。 このときの蒸着角度は、 基板 表面の法線から 7 5 ° であった。 また蒸着速度は 2 n mZ分とした。 こう して、 基板 2の表面 2 a上に厚さ 2 5 n mの複数のバリア層 8を得た。
【0 0 8 9】 次に、 再び電子ビームをノンドープ S iに照射してノンドープ S iを加熱して蒸発させ、 バリア層 8の上にノンドープ S iを斜方蒸着した。 こう して、 各バリア層 8の上に S iからなる厚さ 2 5 n-mの量子ドット 6を形成した。 【 0 0 9 0】 次に、 再び電子ビームを S i 〇2に照射し S i 0 2を加熱して蒸 発させて、 上記と同様にして、 量子ドッ ト 6の上に S i 02からなるバリア層 8 を形成した。
【009 1】 そして、 電子ビームを電極層用蒸着源収容部に収容された B ドー プ S iに照射して Bドープ S iを加熱して蒸発させた。 このとき、 基板を 1 0 r pmで回転させた。 こうして基板 2の表面 2 aに対して Bドープ S iを斜方蒸着 した。 このときの蒸着角度は、 基板表面の法線から 75° であった。 また蒸着速 度は 2 nmZ分とした。 こうして、 各バリア層 8の上に Bドープ S iからなる電 極層を形成し、 複数の柱状部 4を得た。
【0092】 最後に、 基板上に形成された複数の柱状部 4を、 基板とともに炉 (アルバック理工 (株) 製卓上型ランプ加熱装置 M I LA— 3000) の中に入 れ、 窒素雰囲気下、 900°Cで 10分間、 柱状部 4のァニールを行い、 ノンドー プ S iからなる量子ドット 6及び B ドープ S iからなる電極層の結晶化を行った。 こうして量子ドットアレイを得た。
【0093】 実施例 1で得られた量子ドットアレイについて SEMを用いて観 察を行った。 結果を図 1 3に示す。 図 1 3において、 一番下側の部分が基板 2で あり、 基板 2上に、 B ドープ S iからなる電極層、 S i 02からなるバリア層、 ノンドープ S iからなる量子ドット、 S i 02からなるバリア層、 及び B ドープ S iからなる電極層が順次設けられていることが分かる。 この結果より、 実施例
1の場合、 各柱状部において量子ドットのサイズが揃っていることが分かった。
【0094】 (実施例 2 )
基板 2の表面 2 aに対するバリア層の構成材料としての S i 02の蒸着角度、 及び量子ドットの構成材料としてのノンドープ S iの蒸着角度を 7 5° から 8 0° に変更したこと以外は実施例 1と同様にして量子ドッ トアレイを得た。 この 量子ドッ 卜アレイについて、 実施例 1と同様にして S EMを用いた観察を行った。 結果を図 14に示す。 図 14において、 一番下側の部分が基板 2であり、 基板 2 上に、 Bドープ S iからなる電極層、 S i 02からなるバリア層、 ノンドープ S iからなる量子ドット、 S i 0 2からなるバリア層、 及び Bドープ S iからなる 電極層が順次設けられていることが分かる。 この結果より、 実施例 2の場合、 各 柱状部において量子ドットのサイズが揃っていることが分かった。
【0 0 9 5】 (実施例 3 )
基板 2の表面 2 aに対するバリア層の構成材料としての S i O 2の蒸着角度、 及び量子ドットの構成材料としてのノンドープ S i の蒸着角度を 7 5 ° から 8 5 ° に変更したこと以外は実施例 1と同様にして量子ドッ トアレイを得た。 この 量子ドットアレイについて、 実施例 1と同様にして S E Mを用いた観察を行った, 結果を図 1 5に示す。 図 1 5において、 一番下側の部分が基板 2であり、 基板 2 上に、 B ドープ S iからなる電極層、 S i 0 2からなるバリア層、 ノンドープ S iからなる量子ドット、 S i 0 2からなるバリア層、 及び Bドープ S iからなる 電極層が順次設けられていることが分かる。 この結果より、 実施例 3の場合、 各 柱状部において量子ドットのサイズが揃っていることが分かった。
【0 0 9 6】 (実施例 4 )
バリア層の構成材料を S i 0 2から S i 3 N 4に変更するとともに、 バリァ層の 構成材料を蒸着する際に、 電子ビーム蒸着装置を構成する容器内に 0 . 1 P aの N 2ガスを導入したこと以外は実施例 2と同様にして量子ドットアレイを得た。 この量子ドットアレイについて、 実施例 1と同様にして S E Mを用いた観察を行 つた。 その結果、 実施例 1と同様に、 各柱状部において量子ドットのサイズが揃 つていることが分かった。
【0 0 9 7】 (実施例 5 )
基板、 量子ドットの構成材料、 電極層の構成材料およびバリア層の構成材料を それぞれ、 Bドープ G eウェハ、 ノンドープ G e、 B ドープ G e、 G e〇2とし たこと以外は実施例 3と同様にして量子ドッ 卜アレイを得た。 この量子ドットァ レイについて、 実施例 1と同様にして S E Mを用いた観察を行った。 その結果、 実施例 1と同様に、 各柱状部において量子ドットのサイズが揃っていることが分 かった。
【0098】 (実施例 6 )
基板の構成材料として、 B ドープのシリコンウェハに代えてガラス基板を用い たこと、 バリア層の厚さを 50 nm、 量子ドッ トの厚さを 20 nmとしたこと、 電極層を形成しなかったこと、 並びに、 バリア層、 量子ドットおよびバリア層か らなる柱状部に対し、 表面の酸化を防ぐために厚さ 1 00 nmの S i 02をスパ ッタ製膜した後、 N2雰囲気中 600°Cで 30分間の熱処理を行ったこと以外は 実施例 2と同様にして量子ドットアレイを得た。 この量子ドッ トアレイについて、 実施例 1と同様にして S EMを用いた観察を行った。 その結果、 実施例 1と同様 に、 各柱状部において量子ドットのサイズが揃っていることが分かった。
【0099】 (実施例 7 )
基板の構成材料として、 Bドープのシリコンウェハに代えてガラス基板を用い たこと、 量子ドッ トの構成材料として C d Sを用いたこと、 バリア層の厚さを 5 O nm、 量子ドットの厚さを 30 nmとしたこと、 電極層を形成しなかったこと、 並びに、 バリア層、 量子ドットおよびバリア層からなる柱状部に対し、 表面の酸 化を防ぐために厚さ 1 00 nmの S i O 2をスパッタ製膜した後、 N2雰囲気中 300°Cで 30分間の熱処理を行ったこと以外は実施例 3と同様にして量子ドッ トアレイを得た。 この量子ドッ トアレイについて、 実施例 1と同様にして S EM を用いた観察を行った。 その結果、 実施例 1と同様に、 各柱状部において量子ド ットのサイズが揃っていることが分かった。 ' 【0100】 (実施例 8 )
基板 2の表面 2 aに対するバリア層の構成材料としての S i O 2及び量子ドッ トの構成材料として Bドープ S iの蒸着時に基板を回転させなかったこと以外は 実施例 2と同様にして、 量子ドットアレイを得た。 この量子ドットアレイについ て、 実施例 1と同様にして SEMを用いた観察を行った。 結果を図 1 6に示す。 図 16において、 一番下側の部分が基板 2であり、 基板 2上に、 Bドープ S iか らなる電極層、 S i o 2からなるバリア層、 ノンドープ S iからなる量子ドッ ト、 S i〇2からなるバリア層、 及び B ドープ S iからなる電極層が順次設けられて いることが分かる。 この結果より、 実施例 8の場合、 各柱状部において量子ドッ トのサイズが揃っていることが分かった。
【0 1 0 1】 (実施例 9 )
まず、 実施例 3と同様にして量子ドッ トアレイを得た。 なお、 電子ビーム蒸着 装置において、 導電膜用蒸着源収容部は量子ドッ トアレイの正面に配置し、 バリ ァ層用蒸着源収容部及び量子ドット用の蒸着源収容部にそれぞれバリア層 8の構 成材料、.量子ドット 6の構成材料を蒸着源として収容するときに、 導電膜用蒸着 源収容部及び侵入防止層用蒸着源収容部にはそれぞれ、 第 1導電材料 (A 1 ) 、 第 2導電材料 (Bドープ S i ) を収容した。
【0 1 0 2】 続いて、 量子ドットアレイを電子ビーム蒸着装置の容器内に収容 したまま、 電子ビームを侵入防止層用の蒸着源である Bドープ S iに照射し蒸着 源を加熱して蒸発させ、 基板の表面に対して侵入防止層用の蒸着源である Bドー プ S iを斜方蒸着させた。 このとき、 基板は固定したままとした。 こうして、 複 数の柱状部のそれぞれの上に、 複数の柱状部間への第 1導電材料の侵入を防止す る侵入防止層を形成した。 このとき、 侵入防止層は、 基板の表面の法線から見て、 侵入防止層の先端部が、 隣りの柱状部の先端面に差掛かるまで侵入防止層を形成 した。 またこのとき、 蒸着角度 Θは 8 0 ° とした。
【0 1 0 3】 最後に、 電子ビームを、 導電膜用の蒸着源である A 1に照射し蒸 着源を加熱して蒸発させ、 導電膜を形成した。 このとき、 基板を固定したまま、 導電膜用の蒸着源を基板の表面に対して正面より蒸着した。 こうして量子ドット アレイ素子を得た。
【0 1 0 4】 こうして得られた量子ドッ トアレイ素子について、 2次イオン質 量分析により第 1導電材料の厚さ方向分布を調べた。 その結果、 侵入防止層より 下側に、 第 1導電材料である A 1が確認できなかった。 このことから、 柱状部間 に第 1導電材料が侵入していないことが確認された。
【0105】 (実施例 10).
量子ドットァレイを実施例 8と同様にして製造し、 且つ量子ドットの構成材料 の蒸着角度及びバリア層の構成材料の蒸着角度を 85° としたこと以外は実施例 9と同様にして量子ドットアレイ素子を得た。
【0106】 こうして得られた量子ドットアレイ素子について、 実施例 9と同 様にして柱状部間への第 1導電材料の侵入の有無を確認した。 その結果、 柱状部 間に第 1導電材料の侵入は確認されなかった。
【0107】 (実施例 1 1 )
量子ドットァレイを実施例 3と同様にして製造し、 量子ドットの構成材料の蒸 着角度及びバリア層の構成材料の蒸着角度を 85° とし、 且つ侵入防止層の構成 材料である第 2導電材料の蒸着角度を、 最初 85° とし、 その後、 2° //分の速 度で 15° となるまで、 蒸着角度を徐々に変化させて小さく したこと以外は実施 例 9と同様にして量子ドッ トァレイ素子を得た。
【0108】 こうして得られた量子ドットアレイ素子について、 実施例 9と同 様にして柱状部間への第 1導電材料の侵入の有無を確認した。 その結果、 柱状部 間に第 1導電材料の侵入は確認されなかった。
【0109】 (比較例 1 )
バリァ層及び電極層を形成しなかったこと以外は実施例 6と同様にして量子ド ットアレイを得た。 この量子ドットアレイについて、 実施例 1と同様にして SE Mを用いた観察を行った。 その結果、 比較例 1の場合、 各柱状部において量子ド ットのサイズがバラバラであり、 揃っていないことが分かった。
【01 10】 (比較例 2 )
バリァ層及び電極層を形成しなかったこと以外は実施例 7と同様にして量子ド ッ トアレイを得た。 この量子ドットアレイについて、 実施例 1と同様にして SE Mを用いた観察を行った。 その結果、 比較例 2の場合、 各柱状部において量子ド ッ卜のサイズがバラバラであり、 揃っていないことが分かった。
【0 1 1 1】 以上の結果より、 本発明の量子ドットアレイの製造方法及び量子 ドッ トアレイ素子の製造方法によれば、 量子ドッ トのサイズの均一性を向上させ ることができることが確認された。 また本発明の量子ドットアレイ素子の製造方 法によれば、 導電膜を構成する第 1導電材料の柱状部間への侵入が防止できるこ とが確認された。 このことから、 本発明による量子ドットアレイ素子の製造方法 によれば、 隣り合う柱状部の量子ドット同士が短絡したり、 1つの柱状部におけ る量子ドット同士が短絡したりすることが十分に防止され、 量子ドッ トアレイ素 子が正常な機能を果たせなくなる事態が十分に防止されるものと考えられる。 産業上の利用可能性
【0 1 1 2】 本発明の量子ドットアレイの製造方法及びこれを用いて製造され る量子ドットアレイ、 並びに量子ドットアレイ素子の製造方法及びこれを用いた 量子ドットアレイ素子によれば、 複数の量子ドットの大きさの均一性を向上させ ることができるため、 量子ドットアレイ及びこれを利用した量子ドットアレイ素 子のそれぞれにおいて所望の特性を実現することができる。

Claims

言青求の範囲
1 . 量子ドットを有する柱状部を基板上に複数有する量子ドッドアレイの製 造方法において、
前記量子ドットに対してエネルギー障壁となる第 1バリア層の構成材料を前記 基板の表面に対して斜方蒸着し前記第 1バリァ層を複数形成する第 1工程と、 前記量子ドットの構成材料を前記基板の表面に対して斜方蒸着し前記第 1バリ ァ層のそれぞれの上に前記量子ドットを形成する第 2工程と、
前記量子ドットに対してエネルギー障壁となる第 2バリア層の構成材料を前記 基板の表面に対して斜方蒸着し前記量子ドッ トのそれぞれの上に前記第 2バリア 層を形成する第 3工程と、
を含むことを特徴とする量子ドットアレイの製造方法。
2 . 前記第 1工程、 前記第 2工程及び前記第 3工程において、 前記基板を前 記基板の表面の法線を軸に回転させる請求項 1に記載の量子ドットアレイの製造 方法。
3 . 前記第 1工程、 前記第 2工程及び前記第 3工程において、 前記基板の表 面の法線に対する蒸着角度を 3 0 ° 以上とする、 請求項 1又は 2に記載の量子ド ッ トアレイの製造方法。
4 . 前記第 1工程において、 前記基板の温度を、 前記第 1バリア層の構成材 料の絶対温度表記の融点の 1 / 3以下とし、 前記第 2工程において、 前記基板の 温度を、 前記量子ドットの構成材料の絶対温度表記の融点の 1 Z 3以下とし、 前 記第 3工程において、 前記基板の温度を、 前記第 2バリァ層の構成材料の絶対温 度表記の融点の 1ノ 3以下とする、 請求項 1〜 3のいずれか一項に記載の量子ド ッ トアレイの製造方法。
5 . 前記量子ドットの構成材料を前記基板の表面に対して斜方蒸着し前記第 2バリア層のそれぞれの上に前記量子ドッ トを形成する第 4工程と、
前記量子ドッ 卜に対してエネルギー障壁となる第 3バリア層の構成材料を前記 基板の表面に対して斜方蒸着し前記量子ドットのそれぞれの上に前記第 3バリア 層を形成する第 5工程とを更に含む、 請求項 1に記載の量子ドットアレイの製造 方法。
6 . 前記第 1〜前記第 5工程において、 前記基板を前記基板の表面の法線を 軸に回転させる請求項 5に記載の量子ドットアレイの製造方法。
7 . 請求項 1〜6のいずれか一項に記載の量子ドットアレイの製造方法によ り得られる量子ドットアレイ。
8 . 請求項 1〜6のいずれか一項に記載の量子ドットアレイの製造方法によ り得られる量子ドットアレイと、 前記量子ドットアレイの前記複数の柱状部上に 設けられる導電膜とを備え、 前記基板が導電部を有する量子ドットアレイ素子の 製造方法において、
前記複数の柱状部上に、 第 1導電材料の蒸着により、 前記導電膜を形成する導 電膜形成工程を含み、
前記導電膜形成工程の前で前記複数の柱状部を形成した後に、 前記複数の柱状 部のそれぞれの上に、 第 2導電材料の蒸着により、 前記複数の柱状部間への前記 第 1導電材料の侵入を防止する侵入防止層を形成する侵入防止層形成工程を含む こと、
を特徴とする量子ドットアレイ素子の製造方法。
9 . 前記侵入防止層形成工程において、 前記第 2導電材料を前記基板の表面 に対して斜方蒸着し、 前記基板の表面の法線から見て、 前記侵入防止層の先端部 力 隣りの柱状部の先端面に少なくとも差掛かるまで前記侵入防止層を形成する こと、
を特徴とする請求項 8に記載の量子ドットアレイ素子の製造方法。
1 0 . 前記侵入防止層形成工程において、 前記第 2導電材料を蒸着するとき に、 前記基板を回転させながら、 前記基板の表面の法線に対する蒸着角度を徐々 に変化させて小さくすることにより、 前記複数の柱状部のそれぞれの上に形成さ れる前記侵入防止層を一体化させること、
を特徴とする請求項 8に記載の量子ドッ トァレイ素子の製造方法。
1 1 . 請求項 8〜1 0のいずれか一項に記載の量子ドッ トアレイ素子の製造 方法により得られる量子ドッ 卜アレイ素子。
PCT/JP2005/022029 2004-11-24 2005-11-24 量子ドットアレイ及びその製造方法、並びに量子ドットアレイ素子及びその製造方法 WO2006057425A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2005307998A AU2005307998B2 (en) 2004-11-24 2005-11-24 Quantum dot array and production method therefor, and dot array element and production method therefor
US11/791,445 US7737046B2 (en) 2004-11-24 2005-11-24 Quantum dot array and production method therefor, and dot array element and production method therefor
EP05811356.4A EP1826822B1 (en) 2004-11-24 2005-11-24 Quantum dot array and production method therefor, and quantum dot array element and production method thererfor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004339625 2004-11-24
JP2004-339625 2004-11-24
JP2005-236057 2005-08-16
JP2005236057A JP4923477B2 (ja) 2004-11-24 2005-08-16 量子ドットアレイ及びその製造方法、並びに量子ドットアレイ素子及びその製造方法

Publications (1)

Publication Number Publication Date
WO2006057425A1 true WO2006057425A1 (ja) 2006-06-01

Family

ID=36498156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022029 WO2006057425A1 (ja) 2004-11-24 2005-11-24 量子ドットアレイ及びその製造方法、並びに量子ドットアレイ素子及びその製造方法

Country Status (5)

Country Link
US (1) US7737046B2 (ja)
EP (1) EP1826822B1 (ja)
JP (1) JP4923477B2 (ja)
AU (1) AU2005307998B2 (ja)
WO (1) WO2006057425A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9804319B2 (en) 2008-12-30 2017-10-31 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US10544362B2 (en) 2008-12-30 2020-01-28 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130898A (ja) * 2006-11-22 2008-06-05 Toyota Motor Corp 量子ドットアレイおよびその製造方法
US8030664B2 (en) * 2006-12-15 2011-10-04 Samsung Led Co., Ltd. Light emitting device
FR2926675B1 (fr) * 2008-01-18 2011-07-29 Univ Paris Sud Methode d'obtention d'un materiau structure d'ouvertures traversantes, en particulier de nitrures de semi-conducteurs de type iii structures selon des motifs de cristaux photoniques
US8415759B2 (en) 2010-11-23 2013-04-09 Raytheon Company Down-converting and detecting photons
JP2013239690A (ja) * 2012-04-16 2013-11-28 Sharp Corp 超格子構造、前記超格子構造を備えた半導体装置および半導体発光装置、ならびに前記超格子構造の製造方法
US9091748B2 (en) 2012-04-18 2015-07-28 Raytheon Company Methods and apparatus for 3D UV imaging
KR102165441B1 (ko) * 2013-01-21 2020-10-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 양자점 필름
JP6380932B2 (ja) * 2014-10-21 2018-08-29 株式会社日立製作所 ナノオーダ構造体の製造方法および製造装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590612A (ja) * 1991-09-30 1993-04-09 Nec Corp 半導体細線形成方法
US5381753A (en) 1992-04-30 1995-01-17 Matsushita Electric Industrial Co., Ltd. Fabrication method of fine structures
US20020175408A1 (en) 2001-03-30 2002-11-28 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP2004193525A (ja) * 2002-12-13 2004-07-08 Canon Inc 柱状構造体及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332910A (en) * 1991-03-22 1994-07-26 Hitachi, Ltd. Semiconductor optical device with nanowhiskers
JPH06309645A (ja) * 1993-04-28 1994-11-04 Hitachi Ltd 磁気記録媒体
US5932354A (en) * 1996-07-11 1999-08-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Obliquely deposited film element
JP2001523049A (ja) * 1997-11-10 2001-11-20 スターメガ コーポレイション 量子稜線および量子頂上
JP2002372620A (ja) * 2001-06-13 2002-12-26 Toyota Central Res & Dev Lab Inc 偏光制御素子及びその製造方法
JP3622147B2 (ja) * 2001-06-19 2005-02-23 独立行政法人産業技術総合研究所 柱状ピン止め中心を有する超伝導薄膜及びその製造方法
TWI233697B (en) * 2003-08-28 2005-06-01 Genesis Photonics Inc AlInGaN light-emitting diode with wide spectrum and solid-state white light device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590612A (ja) * 1991-09-30 1993-04-09 Nec Corp 半導体細線形成方法
US5381753A (en) 1992-04-30 1995-01-17 Matsushita Electric Industrial Co., Ltd. Fabrication method of fine structures
US20020175408A1 (en) 2001-03-30 2002-11-28 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
JP2004193525A (ja) * 2002-12-13 2004-07-08 Canon Inc 柱状構造体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MESSIER R ET AL.: "Sculptured thin films - II. Experiments and applications", MATERIALS RESEARCH INNOVATIONS, SPRINGER, HEIDELBERG, DE, vol. 2, no. 4, 1 January 1999 (1999-01-01), pages 217 - 222

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9804319B2 (en) 2008-12-30 2017-10-31 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10214686B2 (en) 2008-12-30 2019-02-26 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US10302845B2 (en) 2008-12-30 2019-05-28 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US10544362B2 (en) 2008-12-30 2020-01-28 Nanosys, Inc. Methods for encapsulating nanocrystals and resulting compositions
US10899105B2 (en) 2008-12-30 2021-01-26 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11198270B2 (en) 2008-12-30 2021-12-14 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11396158B2 (en) 2008-12-30 2022-07-26 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
US11420412B2 (en) 2008-12-30 2022-08-23 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods

Also Published As

Publication number Publication date
EP1826822A1 (en) 2007-08-29
JP4923477B2 (ja) 2012-04-25
AU2005307998A1 (en) 2006-06-01
JP2006179858A (ja) 2006-07-06
EP1826822A4 (en) 2010-07-07
US20090011579A1 (en) 2009-01-08
EP1826822B1 (en) 2016-04-27
US7737046B2 (en) 2010-06-15
AU2005307998B2 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
WO2006057425A1 (ja) 量子ドットアレイ及びその製造方法、並びに量子ドットアレイ素子及びその製造方法
KR100567198B1 (ko) 막 전극 어셈블리를 위한 촉매
KR101263174B1 (ko) 배터리 디바이스를 위한 증착 장치 및 방법
JP5299105B2 (ja) 二酸化バナジウムナノワイヤとその製造方法、及び二酸化バナジウムナノワイヤを用いたナノワイヤデバイス
KR101713281B1 (ko) 코팅층 함유 열전재료, 그의 제조방법과 이를 포함하는 열전장치
Mannu et al. Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In–Te–Se nanocomposite thin films
TW201251160A (en) Method of fabricating memory device
KR20120102067A (ko) n형 칼코게나이드 합성물의 제조 및 광전지 디바이스에서의 그 용도
FR2701601A1 (fr) Elément d&#39;émission de champ et procédé de fabrication de celui-ci.
DE102013112532A1 (de) Strahlungsabsorber zum Absorbieren elektromagnetischer Strahlung, Solarabsorber-Anordnung, und Verfahren zum Herstellen eines Strahlungsabsorbers
Acosta Thin films/properties and applications
US11765987B2 (en) Phase change memory device based on nano current channel
JP6440169B2 (ja) 有機el素子及びその製造方法
EP2765625B1 (en) Method of Forming Nano Crystals and Method of Manufacturing Organic Light-Emitting Display Apparatus Including Thin Film Having the Same
KR20210030775A (ko) 금속 칼코게나이드 박막의 형성방법 및 이를 포함하는 전자 소자의 제조방법
JP4397451B2 (ja) 透明導電性薄膜及びその製造方法
JP6597333B2 (ja) 層状カルコゲナイド膜の成長方法
CN108004506A (zh) 一种基于In合金的贵金属纳米颗粒及其制备方法
KR20090012198A (ko) 금속 나노 입자 형성 방법
Chatterjee The optoelectronic properties of titania–germanium nanocomposites
KR102450023B1 (ko) 칼코지나이드 나노선 메모리 소자 및 그의 제조방법
JP3966723B2 (ja) レーザーアブレーション法による半導体FeSi2の成膜方法
TW200917509A (en) Solar cell having improved electron emission using amorphous diamond materials
van Sebille et al. Optimizing silicon oxide embedded silicon nanocrystal inter-particle distances
KR102278221B1 (ko) 희생 인듐 층을 사용하여 백금 나노 구조를 생성하는 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005307998

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005811356

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005307998

Country of ref document: AU

Date of ref document: 20051124

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005307998

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005811356

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11791445

Country of ref document: US