WO2006046313A1 - Method for producing cemented carbide wc-copper type composite - Google Patents

Method for producing cemented carbide wc-copper type composite Download PDF

Info

Publication number
WO2006046313A1
WO2006046313A1 PCT/JP2004/016378 JP2004016378W WO2006046313A1 WO 2006046313 A1 WO2006046313 A1 WO 2006046313A1 JP 2004016378 W JP2004016378 W JP 2004016378W WO 2006046313 A1 WO2006046313 A1 WO 2006046313A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
powder
composite
cemented carbide
hardness
Prior art date
Application number
PCT/JP2004/016378
Other languages
French (fr)
Japanese (ja)
Inventor
Kousei Sumizaki
Toyoaki Ishibachi
Original Assignee
York Corporation Co, Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by York Corporation Co, Ltd filed Critical York Corporation Co, Ltd
Priority to PCT/JP2004/016378 priority Critical patent/WO2006046313A1/en
Publication of WO2006046313A1 publication Critical patent/WO2006046313A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to the provision of a method for producing a cemented carbide WC—Cu composite.
  • Non-patent document 1 Kunita Matsubara, Industrial rare metal, N0.77, 1982,
  • Copper is a good electrical conductor, but its ⁇ may be too soft for some applications.
  • One way to achieve both hardness and electrical conductivity is to combine copper and hard powder. The concept of compounding by powder metallurgy is known.
  • the assumed application of the composite material of the present invention is an electrical contact material.
  • Non-patent document 1 is probably the first to disclose a composite material as a contact material in which the conductivity is silver and the hardness is tungsten carbide powder. Japan is thought to have received this disclosure, but this system has been standardized. (Non-patent document 2).
  • Non-Patent Document 1 H. Holzmann: Metall 12, Juli 1958, Heft 7, S630
  • the characteristic cost of the composite relates to the combination of the constituent materials and the composite method. Therefore, the composite is a production-limited product because of its properties. Therefore, the composite will be described as a manufacturing invention.
  • the composite is porous. This is an outline of the manufacturing method, in which a cemented carbide of this type is used as a skeleton and copper or a copper alloy (hereinafter referred to as copper) is infiltrated or impregnated therein. This will be described in detail below.
  • WC hard tungsten monocarbide powder
  • a soft torso it is essential that the WC powder forms a skeleton that is resistant to compression. It is the skeleton, not the bone, that can be distinguished from the WC powder, which can be compacted by pressing and compacting the WC powder, but since it lacks the bonding between the particles, it is difficult to make a sufficiently hard composite.
  • a typical example of a composite that has a strong skeleton structure as a composite is a cemented carbide made of cemented WC powder with cobalt (hereinafter referred to as a cemented cemented carbide). Therefore, the skeleton is modeled on cemented carbide, and copper is infiltrated into it to obtain a composite.
  • the simplest framework is a sintered pair. It is not a matter of course, because ordinary cemented carbide is a liquid-phase sintered pair, it will be a dense pair that does not allow penetration, a porous pair is required, and sintering of a porous pair is a solid phase Only possible with sintering.
  • cemented cemented carbide powder that has been made into a sintered pair and then returned to powder with a cemented slag, called cemented carbide powder (Non-Patent Document 1, 1 0 8 to 1 1 2)
  • the powder can be solid-phase sintered, or can be liquid-phase sintered by increasing the sintering temperature. At this time, the sintered body returns to the starting cemented carbide. It is not unreasonable to call cemented carbide as a sintered pair with a framework.
  • cemented carbide used as the starting material of the cemented carbide powder does not bother to be made, it is sufficient to finish the function as a tool. At this time, the cemented carbide powder is compared with the virgin powder used as the starting material.
  • the text is also called “recycled powder”, but its utilization follows the spirit of resource reuse and energy saving.
  • Recycled powder is supplied after being classified, but the deviation from the nominal composition is unavoidable due to the nature of the starting material, and whether the deviation is acceptable depends on the purpose of use. It is insensitive to.
  • the degreasing process before entering sintering is premised on the darkness.
  • the sintering temperature for the determined holding time and the molding pressure during pressure molding are controlled.
  • penetration is a capillary action
  • placing copper on the skeleton is one of the ways of penetration
  • copper permeated at this time oozes from the side of the skeleton due to gravity action
  • the infiltration of the black pencil with a small gap is one way to suppress the seepage, there are other measures, a thin skeleton There is no need for consideration.
  • the formation of the skeleton can be done by vacuum overheating, but the penetration should be carried out even in a hydrogen atmosphere, because the hydrogen atmosphere has a great advantage for copper permeability. There is also the benefit that it can be covered by conventional equipment for producing copper-tonsten composites.
  • the desired hardness for the electrode material is approximately 30 HRC or more, and more desirably 35 HRC or more.
  • the old copper-tungsten composite is at most 100HRB (equivalent to 22HRC).
  • the WC-Ag composite is 60% by weight 0 and is not as hard as 220HB (equivalent to 18.1HRC).
  • the object of the present invention is to achieve the above goal with a WC-Cu composite.
  • the core image of a WC-Cu composite that resists compression is a state in which copper fills the gaps between WC particles oriented strongly against compression. Such an orientation is obtained by pressing the WC powder particles. To fill the gap, copper can be penetrated later.
  • composites made by mixing, pressing, and sintering copper powder and WC powder do not become hard is because the procedure is reversed, and the effect is naturally reversed. Specifically, one reason is that the presence of copper powder hinders the WC powder from taking a strong orientation against compression when pressed, and the second is the presence of WC that itself does not shrink. However, when the amount is particularly large, the sintering shrinkage of the compact is hindered.
  • voids may become the third component of the composite and prevent curing. This is the reason why the present invention dislikes the sintering method and inclines into the infiltration method.
  • Penetration may mean the effect of penetration of copper into the molded body and the mode of penetration. The immersion in the formed body in the molten copper is one mode of penetration.
  • the problem with the infiltration method is the permeability of the osmotic material to the molded body, or the wettability with the molded body that looks like a material that does not necessarily overlap. If the permeability is poor, a portion (nest) that does not penetrate into the molded body tends to be formed. The penetration of molten copper is definitely better than molten silver.
  • the quality of wettability is related to the penetration temperature as well as the compatibility between the penetration material and the molded body. When the infiltration temperature is 1 1600 ° C, nests can be formed at a considerable frequency in a compact with only WC powder.
  • Example 1 In order to avoid such a situation or to increase the reliability of the composite obtained, it is common knowledge of those skilled in the art to use the same or similar priming as the permeable material for the WC powder before molding. Whether the permeability is good or not, the amount of priming water, the size of the molded body, and the method for determining the penetration temperature are not uniquely determined. In Example 1, it was disliked that the temperature was high, and it was judged that 1 2 0 0 ° C corresponding to the lower limit of the permeation temperature of W—Cu or W—Ag was sufficient, and this temperature was adopted uniformly.
  • the permeation temperature is 120 ° C
  • only a small amount of copper powder as priming water eg 0.2%
  • the priming volume remains indefinite.
  • the present invention stems from the question of what determines the amount.
  • the presence of priming powder affects the orientation of the hard powder by molding. As shown in Comparative Example 1, the molded product shrinks upon penetration. That is, the orientation due to molding is not final but changes upon penetration. Since shrinkage is due to the presence of priming water, the hardness of the composite is related not only to molding pressure but also to the amount of priming water. Both quantities are entangled from the above reasoning and facts. The same is true for the conductivity of the composite.
  • Table 1 summarizes the experience from the above viewpoints, and summarizes the relationship between the effects when considering the amount of priming water in the molded body and molding compression as control factors, and the hardness and conductivity of the composite as effective.
  • Figure 1 is an illustration of it. Molding pressure is 392MPa (4t / ciu) and 192MPa, nominal water volume is 0.05%
  • the hardness-conductivity range for the resulting composite is approximately linear. It can be divided into two areas by the boundary line that can be considered. There is no point on the other side of the origin from this straight line. It is a forbidden area that is inaccessible for the layman. It is always possible to have a point on the origin side, but it is best to have a point on the line because of the wishes of both conductivity and hardness. This is characteristic optimization. Where to choose on the line is a matter of taste. In order to make things, it was natural to optimize.
  • the mixing method of WC powder and priming water powder by the ball mill and the setting of the conditions will be a pitfall. This is because the WC powder functions as an abrasive for the balls used, and when the abrasive debris is metallic, it moves to the infiltrant and lowers the conductivity of the composite. This does not necessarily mean that the ball mill method is not possible. If the ball material, dimensions, and amount used, pot capacity, time and number of revolutions, and amount of powder filling are appropriate, damage can be kept within an acceptable range. The use of ceramic balls or the V-pender blending method may be good. In Example 1, parts that were not familiar with the description of the ball mill conditions were omitted. Just say it was a common sense treatment.
  • the amount of copper in the composite was approximated by the sum of the nominal amount of water in the compact and the amount of copper commensurate with the voids. Regarding the points where the boundary line is placed, 2, 7 and 11, the volume ratio is 58, 54 and 50%, and the weight ratio is 44, 40 and 36%.
  • the conductivity of the composite does not follow the mixing rule in the sense that it is not equal to the volume ratio.
  • the proportionality factor or conduction efficiency is about 0.7. Note that the composition can only be changed as an effect.
  • the heating atmosphere also needs attention. With vacuum heating, there is no risk of gas being trapped in the compact, but at the cost of concern for the higher vapor pressure of copper. A non-oxidizing gas atmosphere is sufficient, but experience has shown that a hydrogen atmosphere is desirable. It seems to affect wettability. In this case, avoid using tough pitch copper containing oxygen. Since there are times when we want to use copper containing oxygen, the atmosphere is also selective.
  • the copper used in the present invention does not exclude solid solution hardening or precipitation hardening type conductive copper other than blunt copper. This is because, in addition to contributing to hardness, there is a benefit in preventing welding.
  • Figure 1 is a graph of Table 1.
  • FIG. 2 is a half sectional view showing one side of a float tender seal for a tank wheeler wheel of the present invention.
  • Fig. 3 is a half sectional view of the material of the present invention welded to a welding tip.
  • Fig. 4 is a half cross-sectional view of the WC-Cu bearing using the recycled powder of the present invention.
  • FIG. 5 is a plan cross-sectional view of a welding tip containing a WC-Cu rod using the new powder of the present invention.
  • Fig. 6 is a front view of a rotating electrode roll for can manufacturing.
  • the process of claim 1 was conditioned as follows to make a cemented carbide-copper-based composite.
  • the characteristics of the commercial recycled powder used were: manufacturing method, high heat method, average particle size 1.05, composition 5.90T, C-6, 02Co ⁇ 0.25Tic 1 0, 17TaC-o, 25TaC-0, 08Fe— 0, 230— 0, 18Cr3C2-0, 09VC—remaining WC, weight 0 /. , C / WC ratio 0.0621, calculated apparent density 14.8g / CM 3.
  • Molding pressure was 196MPa.
  • the molded body was vacuum heated at 1300 ° C for lh to infiltrate copper, and the infiltrated temperature. 1 2 0 0 ° C, holding time 30 minutes, hardness of the resulting composite was 63.8HRC, and it was confirmed by precision cutting that there was no nest inside.
  • Fig. 2 shows an inner wheel of a rocker such as a bull tozer, dirt, mud, flow tender seal peristaltic material as an intrusion prevention mechanism, material (A) for the recycled cemented carbide powder of the present invention, and other items Composite with copper (HRC 6 3 hardness, wrapping the mating surfaces to finish with a high precision flatness roughness of 0.1 / and holding with a seal to hold this, B) is a rubber Z and R casing that is sealed in a sealed container. Epoxy-based, heat resistant, durable, and baked adhesives are used to join them. Clutch type unevenness method is also possible A is hardness HRC 63, the sliding torque value is 150% to 70% compared to the steel seal currently in use. According to the results of the material, and the improvement in durability was measured without the occurrence of ironing. Katatate rubber seal with retainer.
  • HRC 6 3 Composite with copper
  • B is a rubber Z and R casing that is sealed in a sealed container.
  • Figure 3 shows spot welding tips used for joining plates such as automobile bodies and refrigerator cases.
  • the tip member (A) is provided with a new powdered carbide composite. (Hardness: approx. HRC 50) Electric conductivity 50% IACS center 1.5 1.5 and taper fixing part (B) with chrome copper Welded Z body welded parts (conductivity 80% IACS)
  • Fig. 4 is a hard and highly accurate bearing diagram using the magnetic properties of WC. Similar to balls and needle bearings, the reclaimed powder sintered material of the present invention has a self-lubricating property on the periphery of the hardened copper shaft, and a small amount of copper penetrates, hardness, HRC48. Magnetic paste (fluorine oil + silicon oil is impregnated with 50% WT Fe04 ultrafine powder in the air in the middle of the axis of hardened copper HRC40, and the product is mixed with 10% WT morrigate oil.
  • a high magnetic force bearing In order to improve the sealing performance for low pressure, gas, and liquid, use a high magnetic force bearing. If the magnetic N and S are arranged alternately at both ends of the groove, the magnetic bearing becomes a high holding force bearing.
  • Figure 5 shows seven WC wires (approximately W) (approximately 1.5 ⁇ ), aiming to improve durability by improving the electrical conductivity and hardness retention, which are other steel plate spot welding tips.
  • Ag—15% was added to CR—Cu.
  • F Further, the WC—Cu composite of the present invention was joined to the outer periphery only at the tip.
  • the center conductivity (85% IACS) is high, and it is possible to achieve high hardness around.
  • Fig. 6 is used for welding for coffee cans, canned foods, and iron cans for paint cans.
  • the electrical conductivity of 50% IACS and hardness HRC 3 2 of the WC-cu composite of the present invention was joined to the CU wire contact part of the inner one-turn electrode roll (A), and the durability was improved 2 to 3 times. Conventionally, it uses lithium copper or chromium copper. Make a separate WC-cu ring and fit it like a tire. Cost reduction and high electrical conductivity could be secured by molding on one side at the same time.
  • welding was performed with a copper wire passing through the groove, but the roll surface heat generation reached about 1000 ° C, so wear was fast and the number of groove repairs was reduced.
  • the composite hardness is not the strength of the skeleton itself, but the skeleton is strong. There is no reason to compete with a dense cemented carbide, but it is the strength in the balance with the opposite porosity. Fortunately, the skeleton functions as if it has increased the hardness of the penetrant to produce the hardness of the composite, but it can also increase the strength of the skeleton corresponding to the amplification factor. It is better to expect the effect. Pure copper is more advantageous than pure silver for the penetrant, and copper alloy is more advantageous for producing hardness than pure copper. It is easy to reach 64HRC even if it penetrates pure copper.
  • the copper that has entered the skeleton is not the infiltrated copper, but even if pure copper in which the regenerated powder of cobalt is in solid solution is infiltrated, the infiltrated copper is not pure copper in terms of conductivity. Therefore, its use as a contact material is sealed and can be achieved with the new powder described below. This is because of the identity of the phase of what is preserved in composite materials.
  • the atmosphere of penetration can affect the hardness of the composite. This is probably because the skeleton is related to the wettability of copper. This may be the same reason why hydrogen atmosphere is preferred due to the penetration of copper-tungsten.
  • the hardness of the composite material obtained in Comparative Example 1 is the standard value (Non-Patent Document 2) or the maximum hardness at 80% WC—Ag listed in Non-Patent Document 1 270HR B ( 27.6HRC equivalent) is too different. Only the differences are described.
  • Silver powder as priming water has a particle size of 5 to 15 / im, and a mixing ratio with WC of 2.4%. Molding pressure of mixed powder 196MPa. The penetrant is 106% IACS.
  • the resulting composite has a conductivity of 39% and a hardness of 11 HRC. At least 0.7% shrinkage of the original molded product due to penetration
  • Bearing housing Magnetic shaft sleeve Industrial applicability
  • this composite Since this composite has not yet obtained practical trials, its useful applications are not expected.In general, this composite is used as a model, and cemented carbide is not wear resistant except for cutting tools. Because it has a variety of uses as a part, it seems that it will be a substitute for cemented carbide instead of a substitute here. When it is a wear-resistant part, there is always a counterpart material, a mechanical attack in the future To endure WC material is superior. In the case of cemented carbide, the attack may extend physically and chemically to the cement material cobalt. It is attack sensitive by infiltrating copper.
  • Electrode materials such as welding of spot, seam and can-making rotating electrodes are more conventional than many low-hardness copper such as chromium copper, oxidized alumina-dispersed copper, copper tungsten, copper iron HZ alloy and beryllium copper. It can be changed to the WC-Cu composite of the present invention as a much higher performance and higher durability copper. Maintaining the same conductivity as that of conventional electrode materials and increasing the hardness for durability improvement to HRC 50 can improve the productivity of the welding line by 2 to 3 times. Welding electrode contacts and electrodes that conduct electricity efficiently are all made of new WC powder. (Same for item 6)
  • a shaft bearing shield (including the use of sleeves, etc.) is made of a hard shield such as iron or ceramic. It is done. Suitable for wind power bearings.
  • Submersible pumps, construction machinery, military tanks, and agricultural machinery that require a muddy water seal have traditionally been made of materials such as alumina ceramics, tungsten copper, and chrome steel.
  • alumina ceramics such as tungsten copper, and chrome steel.
  • High-conductivity hardness and durability are required for switches for recharging electrical components, general circuit breakers, electrical contacts, electrodes, and rotary slipping contacts.
  • copper tungsten, chrome copper, alumina oxide dispersed copper, etc. have been used in the past. Can be used.
  • a highly conductive fluorine oil impregnated paste of Fe0 4 or a liquid conductive material of gallium, indium, tin, or zinc When the mixture of Fe04 was made transparent, the conductivity could be effectively improved without scattering by magnetic force.
  • the injection needles for animals are thin, small in outer diameter, sharp at the tip and hard enough not to be broken, and are required to have a smooth surface.
  • WC recycled powder Cu alloy with a hardness of about HRC 30 can be processed to approximate the tip dimension of a mosquito mouthpiece, so the conventional Crim steel SUS needle is used as the material of the present invention. By changing it, the wear of the needle is reduced, and if the degreasing and disinfection placement is devised, it can be changed to a needle with improved durability.
  • Iron and other hard (HRC 30 or higher) materials that require good electrical heat transfer have traditionally used copper tungsten, copper iron, high speed steel, etc., but they have high conductivity and heat conductivity. It can be changed to the hard WC-Cu material of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

A method for producing a cemented carbide-Cu type composite, which comprises the following steps of: 1) admixing a regenerated powder of a cemented carbide or a powder of tungsten carbide with a copper powder homogeneously in an appropriate and prescribed ratio, and forming the resultant mixed powder into a desired shape having desired dimensions, 2) heating the above formed product under vacuum or in an non-oxidizing atmosphere to convert it to a sintered article having a desired interstice ratio, and 3) impregnating the sintered formed article with a desired copper or copper article, wherein preferably A) the above impregnation is carried out in a graphite crucible and the oozing of the impregnated copper or copper alloy is inhibited, and B) the impregnation is carried out in a hydrogen atmosphere.

Description

明 細 書  Specification
超硬合金 WC—銅系複合体の製造方法 技術分野 Cemented Carbide WC—Copper Composite Manufacturing Method Technical Field
本発明は超硬合金 WC— Cu系複合体製法の提供にかかわる。 背景技術  The present invention relates to the provision of a method for producing a cemented carbide WC—Cu composite. Background art
二つ以上の金属材料を顕微鏡レベルで相の区別がつく程度に一体化することを複合化 と約する、 結果物を素材を見るか固体と見るかは区別しないことにし、 呼称は複合体で 一貫する、 複合化は複合している構成材をして同時に且つ独自に時には相互の影響下に 機能せしめる鼓世を可能にする、 現今では複合化は当然事になっている。  Combining two or more metallic materials so that the phases can be distinguished at a microscopic level is called “composite”. We do not distinguish between seeing the result as material or solid. Consistent, compounding allows for the ability to make compound components work simultaneously and independently, sometimes under mutual influence. Compounding is now a matter of course.
「非特許文献 1」 松原邦弥太、 工業レアメタル、 N0.77、 1982、  "Non-patent document 1" Kunita Matsubara, Industrial rare metal, N0.77, 1982,
銅は電気の良導体であるが、 用途によってはその βでは柔らかすぎる場合がある。 硬 さと導電率の両立を図る一法は銅と硬質粉との複合化である。 粉末冶金的手法による複 合化の概念は既知とする。  Copper is a good electrical conductor, but its β may be too soft for some applications. One way to achieve both hardness and electrical conductivity is to combine copper and hard powder. The concept of compounding by powder metallurgy is known.
以下にその製法を詳述する本発明の複合材について、 想定している用途は電気接点材 である。  The assumed application of the composite material of the present invention, whose production method is described in detail below, is an electrical contact material.
導電性'を銀に硬さを炭化タングステン粉末に担わせた接点材と しての複合材を開示し たのは非特許文献 1が多分最初である。 我が国もこの開示をうけてとおもわれるが、 こ の系を規格化している。 (非特許文献 2)。  Non-patent document 1 is probably the first to disclose a composite material as a contact material in which the conductivity is silver and the hardness is tungsten carbide powder. Japan is thought to have received this disclosure, but this system has been standardized. (Non-patent document 2).
【非特許文献 1 ] H.Holzmann: Metall 12, Juli 1958, Heft 7,S630  [Non-Patent Document 1] H. Holzmann: Metall 12, Juli 1958, Heft 7, S630
【非特許文献 2】 JPMA5- 1972, SEC3 種 発明の開示  [Non-Patent Document 2] JPMA5- 1972, SEC3, Disclosure of Invention
超硬合金と銅からなる硬い複合体はない。  There is no hard composite consisting of cemented carbide and copper.
複合体の特性コス トは構成材料の組合わせと複合方法に関する、 従って複合体はその 性質から製法限定生産物である、 そこで本複合体を製法発明と して説明する、 本複合体 は多孔質の超硬合金を骨格と し、 これに銅または銅合金 (以下銅を総称) を浸透乃至含 浸させたものである、 因みにこれが製法の概略である。 以下詳述する。  The characteristic cost of the composite relates to the combination of the constituent materials and the composite method. Therefore, the composite is a production-limited product because of its properties. Therefore, the composite will be described as a manufacturing invention. The composite is porous. This is an outline of the manufacturing method, in which a cemented carbide of this type is used as a skeleton and copper or a copper alloy (hereinafter referred to as copper) is infiltrated or impregnated therein. This will be described in detail below.
硬いタングステン一カーバイ ト粉 (以下 WC と略記) と柔らかい胴が複合して硬いも のになるためには、 WC粉が圧縮に強い骨格を形成することが不可欠である、 吾人の身 体を軟体から区別するのは骨ではなく骨格である、 WC 粉を加圧成形して圧縮に強い配 向を取らせることが出来るが、 粒子同士の結合を欠くので充分硬い複合体を造るには至 らない、 複合体と しての硬さが専ら強い骨格構造に由来する典型は、 WC粉をコバルト でセメント付けした超硬合金である (以下峡義の超硬合金)。 そこで骨格は超硬合金に範 をと り、 これに銅を浸透させて複合体をえる事にする。  In order for a hard tungsten monocarbide powder (hereinafter abbreviated as WC) and a soft torso to become hard, it is essential that the WC powder forms a skeleton that is resistant to compression. It is the skeleton, not the bone, that can be distinguished from the WC powder, which can be compacted by pressing and compacting the WC powder, but since it lacks the bonding between the particles, it is difficult to make a sufficiently hard composite. A typical example of a composite that has a strong skeleton structure as a composite is a cemented carbide made of cemented WC powder with cobalt (hereinafter referred to as a cemented cemented carbide). Therefore, the skeleton is modeled on cemented carbide, and copper is infiltrated into it to obtain a composite.
最も簡単な骨格は焼結対である、 範をとるとは超硬合金を得る通常の焼結方法で骨格 が得られるとゆうことではない、 通常の超硬合金は液相焼結対なので浸透を許さない緻 密対になる、 求めているのは多孔質対である、 多孔対の焼結は固相焼結でのみ可能であ る。 The simplest framework is a sintered pair. It is not a matter of course, because ordinary cemented carbide is a liquid-phase sintered pair, it will be a dense pair that does not allow penetration, a porous pair is required, and sintering of a porous pair is a solid phase Only possible with sintering.
一旦焼結対にした超硬合金をセメント材をつけた烬で粉末に戻したものを超硬合金粉 と呼ぶのは不当ではない、 (非特許文献 1、 1 0 8〜 1 1 2貢) 該粉は焼結させる温度に も依るが固相焼結する、 焼結させる温度を高めて液相焼結させることも出来る、 このと き焼結体は出発材の超硬合金に戻る、 因って骨格にする焼結対を超硬合金を呼ぶのも不 当ではない。  It is not unreasonable to call cemented cemented carbide that has been made into a sintered pair and then returned to powder with a cemented slag, called cemented carbide powder (Non-Patent Document 1, 1 0 8 to 1 1 2) Depending on the sintering temperature, the powder can be solid-phase sintered, or can be liquid-phase sintered by increasing the sintering temperature. At this time, the sintered body returns to the starting cemented carbide. It is not unreasonable to call cemented carbide as a sintered pair with a framework.
超硬合金粉の出発材となる超硬合金はわざわざ作ることでもなく工具と しての役目を 終えたもので足りることから、 このとき超硬合金粉は出発材に使用した処女粉との対比 で再生粉と呼ばれる、 本文もこの営みにならうがその活用は資源再利用とエネルギー節 約の精神に叶う。  Since the cemented carbide used as the starting material of the cemented carbide powder does not bother to be made, it is sufficient to finish the function as a tool. At this time, the cemented carbide powder is compared with the virgin powder used as the starting material. The text is also called “recycled powder”, but its utilization follows the spirit of resource reuse and energy saving.
因みに出発材と しての峡義の超硬合金は組成から見て超硬合金の典型であり例示であ る他にも WC と Ticの合金を主な硬質材に持つ超硬合金もある、 セメント材は Niと Cr の合金 (Ni/ Crと略記) のときもある。 Ticを主な硬質材に、 Ni単独又は Ni/ Coをセ メン ト材にした。  By the way, Gorgeous cemented carbide as a starting material is typical of cemented carbide in terms of composition and is also an example. There is also a cemented carbide with WC and Tic alloy as the main hard material. The cement material is sometimes an alloy of Ni and Cr (abbreviated as Ni / Cr). Tic is the main hard material, Ni alone or Ni / Co is the cement material.
削工具用のサーメ ッ ト合金を峡義の超硬合金の同類とみなしても、 本発明にとって不 都合はない。 '  It is not inconvenient for the present invention to consider a cermet alloy for a cutting tool as a kind of cemented cemented carbide. '
再生粉は一応分類分けされて供給されるが、 出発材の性質上公称組成からのずれが避 けられない、 許容できるずれかどうかは利用目的との兼ね合いによる、 幸いにも本発明 は組成変動に対し鈍感である。  Recycled powder is supplied after being classified, but the deviation from the nominal composition is unavoidable due to the nature of the starting material, and whether the deviation is acceptable depends on the purpose of use. It is insensitive to.
骨格化する成形体の作り方は加圧成形たると射出成形たるとを問わない、 後の場合、 焼結に入る前の脱脂工程が闇に前提されていることになる、 焼結体の空隙率は予め決め た保持時間に対しての焼結させる温度と加圧成形のときは成形圧力とで制御する。  Regardless of whether pressure molding or injection molding is used as the method of making a molded body that becomes a skeleton, in the latter case, the degreasing process before entering sintering is premised on the darkness. The sintering temperature for the determined holding time and the molding pressure during pressure molding are controlled.
骨格への銅の浸透を以て複合化する、 浸透は毛細管作用である、 骨格に銅を載せるの は浸透させる態様のひとつある、 このとき浸透した銅が重力作用で骨格の側面から滲み だす、 放置のままでは複合体の上下で硬さに差が出る、 隙間を小さく した黒鉛筆の不活 性容器内で浸透を行うのは滲み出しを抑える一法である、 他にも方策はある、 薄い骨格 について配慮は不要である。  Compounding by penetration of copper into the skeleton, penetration is a capillary action, placing copper on the skeleton is one of the ways of penetration, copper permeated at this time oozes from the side of the skeleton due to gravity action, If there is a difference in hardness between the top and bottom of the composite, the infiltration of the black pencil with a small gap is one way to suppress the seepage, there are other measures, a thin skeleton There is no need for consideration.
骨格の形成は真空過熱でもさしつかえないが、 浸透は望ましくは水素雰囲気中でも行 う ものとする、 水素雰囲気が銅の浸透性に利するところ大だからである。 従来の銅ータ ングステン系複合体製作の設備で賄えるという利益もある。  The formation of the skeleton can be done by vacuum overheating, but the penetration should be carried out even in a hydrogen atmosphere, because the hydrogen atmosphere has a great advantage for copper permeability. There is also the benefit that it can be covered by conventional equipment for producing copper-tonsten composites.
電極材に望ましい硬さは概ね 30HRC 以上、 更に望ましく 35HRC 以上である。 古く からある銅一タングステン複合材は精々 100HRB ( 22HRC 相当) である Iこ過ぎない。 WC-Ag系複合体も文献 1によれば 6 0重量% 0で 220HB ( 18.1HRC相当) とさ して 硬くはない。 本発明の目的は WC-Cu系複合材で上記目標を達成することにある。  The desired hardness for the electrode material is approximately 30 HRC or more, and more desirably 35 HRC or more. The old copper-tungsten composite is at most 100HRB (equivalent to 22HRC). According to Reference 1, the WC-Ag composite is 60% by weight 0 and is not as hard as 220HB (equivalent to 18.1HRC). The object of the present invention is to achieve the above goal with a WC-Cu composite.
接点材と して Cu —Ag系の名称は幾つかの文献にある。 WC— Ag系が可能なら WC - Cu 系も可能とみるのは自然である。 然し文献 1は焼結法又は浸透法で得られた複合 材の特性を述べているだけで、 後製法が前製法に勝る以上のことは教えていない。 更に この文献には組成を同じくする試料について製法による密度の相違を自問自答している 4 016378 As a contact material, the name of Cu-Ag series is found in several documents. If WC-Ag is possible, it is natural to see that WC-Cu is also possible. However, Reference 1 only describes the properties of the composite material obtained by the sintering method or the infiltration method, and does not teach that the post-production method is superior to the pre-production method. In addition, this document asks himself the difference in density due to the manufacturing method for samples with the same composition. 4 016378
3  Three
等の不自然がある。 とすれば上の容易類推はその前提と共に問題無しと しない。 There is unnatural such as. If this is the case, the above easy analogy, together with that premise, is not a problem.
尚接点材料の宿命と して硬さと導電率は交易関係にある。 この関係には何処まで交易 出来るかと何処で交易すべきかの二つの面がある。 前者への答えがあって後者への答え が可能となる。  As the fate of contact materials, there is a trade relationship between hardness and conductivity. This relationship has two aspects: how far you can trade and where you should trade. There is an answer to the former and an answer to the latter becomes possible.
圧縮に強い WC— Cu系複合体の心像は、 圧縮に強く配向した WC粒子間の隙間を銅 が埋めている状態である。 斯様な配向は WC粉末粒子を加圧成形して得られる。 隙間を 埋めるには、 あとで銅を浸透させればよい。 銅粉と WC粉を混合、 加圧成形、 焼結させ た複合体が硬いものにならない理由は、 手順を逆にしているからで、 効果が反対になる のは当然である。 具体的には、 一つには銅粉の存在が加圧時に WC粉が圧縮に強い配向 をとる上での妨げになるからであり、二つにはそれ自体は焼結収縮しない WCの存在が、 特に多いときには、 成形体の焼結収縮の妨げになるからである。 以上に加うるに、 加熱 時に成形体外から銅の補給がない焼結法にあっては、 空隙が複合体の第三の構成成分に なり、 硬化を妨げるということがある。 本発明が焼結法を嫌って浸透法に傾斜した理由 は以上にある。 なお浸透は成形体に銅が浸透する効果と、 浸透させる態様とは意味しう る。 溶銅への形成体への浸漬は浸透させるの一態様である。  The core image of a WC-Cu composite that resists compression is a state in which copper fills the gaps between WC particles oriented strongly against compression. Such an orientation is obtained by pressing the WC powder particles. To fill the gap, copper can be penetrated later. The reason why composites made by mixing, pressing, and sintering copper powder and WC powder do not become hard is because the procedure is reversed, and the effect is naturally reversed. Specifically, one reason is that the presence of copper powder hinders the WC powder from taking a strong orientation against compression when pressed, and the second is the presence of WC that itself does not shrink. However, when the amount is particularly large, the sintering shrinkage of the compact is hindered. In addition to the above, in the sintering method in which copper is not replenished from the outside of the molded body during heating, voids may become the third component of the composite and prevent curing. This is the reason why the present invention dislikes the sintering method and inclines into the infiltration method. Penetration may mean the effect of penetration of copper into the molded body and the mode of penetration. The immersion in the formed body in the molten copper is one mode of penetration.
浸透法で問題になるのは、 成形体に対する浸透材の浸透性、 或いは必ずしも重ならな い素材に見立てた成形体との濡れ性である。 浸透性が悪いと成形体に浸透しない部分 (巣) ができやすい。 溶湯銅の浸透性は溶湯銀よりは確実に良い。 濡れ性の良否は浸透 材と素材と しての成形体との相性の他に浸透温度にも関係する。 浸透温度を 1 1 6 0 °C とするとき、 WC 粉だけの成形体では可成りの頻度で巣ができる。 斯様な事態を避ける ために或いは得られる複合体の信頼性を高めるために、 成形前の WC粉に浸透材を同一 又は類似材の呼び水とすることは現今の当業者の常識である。浸透性の良否は呼び水量、 成形体の寸法、 浸透温度の取り方は一義的に決まらない。 実施例 1では高くなることを 嫌い、 W— Cu又は W— Ag系の浸透温度の下限に相当する 1 2 0 0 °Cで十分と判断して 一律にこの温度を採用した。  The problem with the infiltration method is the permeability of the osmotic material to the molded body, or the wettability with the molded body that looks like a material that does not necessarily overlap. If the permeability is poor, a portion (nest) that does not penetrate into the molded body tends to be formed. The penetration of molten copper is definitely better than molten silver. The quality of wettability is related to the penetration temperature as well as the compatibility between the penetration material and the molded body. When the infiltration temperature is 1 1600 ° C, nests can be formed at a considerable frequency in a compact with only WC powder. In order to avoid such a situation or to increase the reliability of the composite obtained, it is common knowledge of those skilled in the art to use the same or similar priming as the permeable material for the WC powder before molding. Whether the permeability is good or not, the amount of priming water, the size of the molded body, and the method for determining the penetration temperature are not uniquely determined. In Example 1, it was disliked that the temperature was high, and it was judged that 1 2 0 0 ° C corresponding to the lower limit of the permeation temperature of W—Cu or W—Ag was sufficient, and this temperature was adopted uniformly.
浸透温度を 1 2 0 0 °Cと したとき、 呼び水と しての銅粉はほんの少量、 例えば 0.2% で足る。 もっと多いことを妨げない。 即ち、 銅粉の呼び水機能を見ているだけでは、 呼 び水量は不定に留まる。 本発明は該量を確定させるものは何かという疑問に由来する。 呼び水粉の存在は成形による硬質粉の配向に影響する。 比較例 1で示したように、 成 形体は浸透に際して収縮する。即ち成形による配向は最終的ではなく浸透時に変化する。 収縮は呼び水の存在に由来するから、 複合体の硬さは成形圧力だけでなく呼び水の量に も関係することになる。 以上の推論からもそして事実からも両量は交絡する。 複合体の 導電率についても同様のことが言える。  When the permeation temperature is 120 ° C, only a small amount of copper powder as priming water, eg 0.2%, is sufficient. Do not prevent more. In other words, just looking at the priming function of copper powder, the priming volume remains indefinite. The present invention stems from the question of what determines the amount. The presence of priming powder affects the orientation of the hard powder by molding. As shown in Comparative Example 1, the molded product shrinks upon penetration. That is, the orientation due to molding is not final but changes upon penetration. Since shrinkage is due to the presence of priming water, the hardness of the composite is related not only to molding pressure but also to the amount of priming water. Both quantities are entangled from the above reasoning and facts. The same is true for the conductivity of the composite.
表 1は、 以上の視点から経験を整理して、 成形体中の呼び水量と成形圧縮を制御因子 に、 複合体の硬さと導電率を効果に見立てたときの両効果間の関係を纏めたもので、 図 1はそれの図示である。 成形圧力は 392MPa ( 4t/ciu ) と 192MPaの二つに、 呼び水量は 0.05%  Table 1 summarizes the experience from the above viewpoints, and summarizes the relationship between the effects when considering the amount of priming water in the molded body and molding compression as control factors, and the hardness and conductivity of the composite as effective. Figure 1 is an illustration of it. Molding pressure is 392MPa (4t / ciu) and 192MPa, nominal water volume is 0.05%
から 12.7%まで小刻みに、 振るつた。 成形圧力 98MPaの点は、 呼び水量の少ない成形 体では取り扱いに耐える成形強さが出ないことを理由に、 除外した。 偶々扱えたものも ある。 この変動範囲内では、 得られる複合体についての硬さ一導電率域は近似的に直線 と見なせる境界線で二つの領域に分けられる。 この直線を境にして原点の反対側に点が 来ることはない。 そこは吾人にとっては接近不能の禁止区域である。 原点側に点をもつ てく ることは常に可能であるが、 導電率も硬さもという吾人の希望からは、 線上にもつ てく るのが最も得策である。 これを特性の最適化とする。 線上の何処を選ぶかは好みの 問題である。 苟も物を作るからには、 最適化は当然と した。 From 12.7 to 12.7%. The point with a molding pressure of 98 MPa was excluded because a molded product with a small amount of priming water did not have the molding strength to withstand handling. Some could be handled accidentally. Within this variation range, the hardness-conductivity range for the resulting composite is approximately linear. It can be divided into two areas by the boundary line that can be considered. There is no point on the other side of the origin from this straight line. It is a forbidden area that is inaccessible for the layman. It is always possible to have a point on the origin side, but it is best to have a point on the line because of the wishes of both conductivity and hardness. This is characteristic optimization. Where to choose on the line is a matter of taste. In order to make things, it was natural to optimize.
傾向と して、 導電率優先のときは、 呼び水量を増やさなければならない。 適切な成形 圧力がある。 硬さ優先のときは、 成形圧力を増す。 このときは適切な呼び水量がある。 図 1はあくまで一事例である。 境界線の存在及びその右肩下がり性には普遍性がある と思われるが、 実際形状は幾つかの要因により変動するので、 該線の決定とそれに接近 する方法の習得は、 実施者の負担になる。 経済性、 作業性等からの判断はこの者にしか 出来ない。 変動要因には、 使用する材料の純度、 成形体を構成する粉末にあっては粒径 等がある。 結合剤の影響はあると疑った方が安全である。 加熱雰囲気の影響はある。 ボ ールミルによる WC粉と呼び水粉との混合方式とその条件の設定は以外な陥穽となり う る。 WC 粉は使用したボールに対して研磨剤と して機能し、 研磨屑が金属性のときはこ れが浸透材に移行して複合体の導電率を低下させることになるからである。 必ずしもボ ールミル方式が不可という意味ではない。 ボールの材質、 寸法、 及び使用量、 ポッ トの 容量、 時間及び回転数、 並びに粉の重填量等を適切にすれば、 被害を許容範囲内に収め られる。 セラミ ックスボールの使用又は V—プレンダー混合方式がよいかもしれない。 実施例 1ではボールミル条件の記載に馴染まない部分を省略した。 常識的に処置したと 言うに留める。  As a trend, when conductivity is a priority, the volume of priming water must be increased. There is adequate molding pressure. If hardness is a priority, increase molding pressure. At this time, there is an appropriate amount of priming water. Figure 1 is just an example. It seems that the existence of the boundary line and its downward slope are universal, but since the actual shape varies depending on several factors, it is the burden of the practitioner to determine the line and learn how to approach it. become. Only this person can make decisions based on economics and workability. Variation factors include the purity of the materials used and the particle size of the powders that make up the compact. It is safer to suspect the effect of the binder. There is an influence of the heating atmosphere. The mixing method of WC powder and priming water powder by the ball mill and the setting of the conditions will be a pitfall. This is because the WC powder functions as an abrasive for the balls used, and when the abrasive debris is metallic, it moves to the infiltrant and lowers the conductivity of the composite. This does not necessarily mean that the ball mill method is not possible. If the ball material, dimensions, and amount used, pot capacity, time and number of revolutions, and amount of powder filling are appropriate, damage can be kept within an acceptable range. The use of ceramic balls or the V-pender blending method may be good. In Example 1, parts that were not familiar with the description of the ball mill conditions were omitted. Just say it was a common sense treatment.
組成について一言する。 複合体の銅量は成形体の呼び水量と空隙に見合う銅量の和で 近似した。 境界線の載る点、 2,7, 11について言う と、 体積比では各 58,54,50%、 重量比 では各 44,40, 36%となる。 複合体の導電率は、 体積比に等しくならないという意味では 混合則に従わない。 予測値に比例するという意味では従う。 比例係数又は導電効率はほ ぼ 0.7になる。 尚組成は効果と してしか変えられないことに注意する。  A word about the composition. The amount of copper in the composite was approximated by the sum of the nominal amount of water in the compact and the amount of copper commensurate with the voids. Regarding the points where the boundary line is placed, 2, 7 and 11, the volume ratio is 58, 54 and 50%, and the weight ratio is 44, 40 and 36%. The conductivity of the composite does not follow the mixing rule in the sense that it is not equal to the volume ratio. Follow in the sense that it is proportional to the predicted value. The proportionality factor or conduction efficiency is about 0.7. Note that the composition can only be changed as an effect.
浸透に関して以下の補足をする。 浸透のための銅と成形体の加熱は、 黒鉛坩堝の中で 行うのが望ましい。 黒鉛は銅と反応しなくて加工しやすい材質の典型として選んだ。 浸 漬には容器が必要になるが、 他の浸透態様でも、 浸透した銅の過度の浸み出しを防ぐだ けが目的なら、 他に姑息ではあるが手段はある。 坩堝使用のもう一つの効用は電極材の 掴み部をそれもチップ部と一体化して製作可能にする点にある。 掴み部が浸透材と同一 材で足る場合には益がある。 いずれにせよ坩堝を使用しない自由もあるので選択的と し た。  The following supplements are made regarding penetration. It is desirable to heat copper and the compact for infiltration in a graphite crucible. Graphite was selected as a typical material that does not react with copper and is easy to process. Although soaking requires a container, there are other means of stagnation in other infiltration modes as long as the goal is to prevent excessive leaching of the infiltrated copper. Another advantage of using a crucible is that it is possible to manufacture the gripping part of the electrode material by integrating it with the chip part. There is a benefit if the grip is made of the same material as the penetrant. In any case, since there was a freedom not to use a crucible, it was selective.
加熱雰囲気も注意を要する。 真空加熱では、 成形体にガスが封じ込められる虞がない 一方、銅の高目の蒸気圧に対する心配りが代償になる。非酸化性ガス雰囲気で足り るが、 経験からすると水素雰囲気が望ましい。 濡れ性に影響すると思われる。 この際酸素を含 むタフピッチ銅等の使用は避ける。 酸素を含む銅を使いたいときもあるので、 雰囲気も 選択的と した。  The heating atmosphere also needs attention. With vacuum heating, there is no risk of gas being trapped in the compact, but at the cost of concern for the higher vapor pressure of copper. A non-oxidizing gas atmosphere is sufficient, but experience has shown that a hydrogen atmosphere is desirable. It seems to affect wettability. In this case, avoid using tough pitch copper containing oxygen. Since there are times when we want to use copper containing oxygen, the atmosphere is also selective.
終わりに、 本発明に使用する銅は鈍銅以外の固溶硬化型または析析出硬化型の導電性 銅を排除しない。 硬さへの寄与の他に溶着防止等に益があるからである。 図面の簡単な説明 Finally, the copper used in the present invention does not exclude solid solution hardening or precipitation hardening type conductive copper other than blunt copper. This is because, in addition to contributing to hardness, there is a benefit in preventing welding. Brief Description of Drawings
図 1は表 1 をグラフ化したものである。  Figure 1 is a graph of Table 1.
図 2は、 本発明の戦車キヤタビラ一転輪用フローテンダシールの片側を示す半断面図。 図 3は、 溶接チップに本発明の材料を溶着した半断面図。  FIG. 2 is a half sectional view showing one side of a float tender seal for a tank wheeler wheel of the present invention. Fig. 3 is a half sectional view of the material of the present invention welded to a welding tip.
図 4は、 本発明の再生粉利用 WC— Cu軸受半断面図。  Fig. 4 is a half cross-sectional view of the WC-Cu bearing using the recycled powder of the present invention.
図 5は、 本発明の新粉使用 WC-Cu棒をいれた溶接チップ平面断面図。  FIG. 5 is a plan cross-sectional view of a welding tip containing a WC-Cu rod using the new powder of the present invention.
図 6は、 製缶用回転電極ロールの正面図。 発明を実施するための最良の形態  Fig. 6 is a front view of a rotating electrode roll for can manufacturing. BEST MODE FOR CARRYING OUT THE INVENTION
請求 1の工程を以下のように条件付けて超硬合金一銅系複合体を作った、 使用した市 販再生粉の素性は、 製法、 高熱法、 平均粒径 1.05 組成 5.90T, C— 6, 02Co~ 0.25Tic 一 0, 17TaC - o, 25TaC- 0, 08Fe— 0, 230— 0, 18Cr3C2 - 0, 09VC—残 WC、 重量0 /。、 C /WC比 0.0621、 計算した見掛けした密度 14.8g/ CM 3 . The process of claim 1 was conditioned as follows to make a cemented carbide-copper-based composite. The characteristics of the commercial recycled powder used were: manufacturing method, high heat method, average particle size 1.05, composition 5.90T, C-6, 02Co ~ 0.25Tic 1 0, 17TaC-o, 25TaC-0, 08Fe— 0, 230— 0, 18Cr3C2-0, 09VC—remaining WC, weight 0 /. , C / WC ratio 0.0621, calculated apparent density 14.8g / CM 3.
購入促の再生粉を円柱状の試験片に加圧成形した、 成形圧 196MPa、 成形体を 1 3 0 0 °Cで l h真空加熱し、銅を浸透させて、 浸透させた温度 1 2 0 0 °C、保持時間 3 0分、 得られた複合体の硬さ 63.8HRC、 精密切断して内部に巣のないことを確認した。 Pressed recycled powder was pressed into a cylindrical test piece. Molding pressure was 196MPa. The molded body was vacuum heated at 1300 ° C for lh to infiltrate copper, and the infiltrated temperature. 1 2 0 0 ° C, holding time 30 minutes, hardness of the resulting composite was 63.8HRC, and it was confirmed by precision cutting that there was no nest inside.
図 2は、 ブルトーザー等のキヤタビラ一内転輪、 土、 泥、 浸入防止メカニルシールと し てのフローテンダシール擢動材、 材質 (A) を本件発明の再生超硬合金粉、 その他を次 項で述べる、 銅を組み合わせた複合体 (HRC 6 3の硬度を持つものあわせ面をラッピン グして高精度平坦度 粗さ 0.1 / の仕上げと した、 又これを保持するシール付きの保持 , 具 (B) はゴム製 Z、 Rのケーシングに密閉容器ならしめたもの、 両者の接合にエポキシ 系等、耐熱、 耐久性、 焼付け接着剤を使用した、 スリ ップ防止兼髙接合力を維持したが、 クラツチ式凸凹方式も可能。 Aは硬さ HRC 6 3、 摺動トルク値が現在使用中の鉄系シ一 ルに比べ一 5 0 %〜 7 0 %の効果は本発明の自己潤滑性保有材の結果による。 又鉄のよ うな発鲭もなく耐久性向上が測られた。 C一硬盾ゴムシール付保持具。 Fig. 2 shows an inner wheel of a rocker such as a bull tozer, dirt, mud, flow tender seal peristaltic material as an intrusion prevention mechanism, material (A) for the recycled cemented carbide powder of the present invention, and other items Composite with copper (HRC 6 3 hardness, wrapping the mating surfaces to finish with a high precision flatness roughness of 0.1 / and holding with a seal to hold this, B) is a rubber Z and R casing that is sealed in a sealed container. Epoxy-based, heat resistant, durable, and baked adhesives are used to join them. Clutch type unevenness method is also possible A is hardness HRC 63, the sliding torque value is 150% to 70% compared to the steel seal currently in use. According to the results of the material, and the improvement in durability was measured without the occurrence of ironing. Katatate rubber seal with retainer.
図 3は、 自動車ボディ、 冷蔵庫ケース等の板の接合に使用するスポッ ト溶接チップ。 耐 久性向上のため先端部材 (A) に超硬新粉複合体を設け、 (硬さ HRC 5 0程度) 電導度 5 0 % IACS中心部 1.5中とテーパー固定部(B)にクロム銅を溶着した Z体溶接部品(電 導度 8 0 %IACS) Figure 3 shows spot welding tips used for joining plates such as automobile bodies and refrigerator cases. To improve durability, the tip member (A) is provided with a new powdered carbide composite. (Hardness: approx. HRC 50) Electric conductivity 50% IACS center 1.5 1.5 and taper fixing part (B) with chrome copper Welded Z body welded parts (conductivity 80% IACS)
図 4は、 WC の磁気性を利用して、 硬く、 高精度の軸受図である。 ボール、 ニー ドル ベアリ ングと同様中心の焼入銅軸外周に、本発明の再生粉焼結材に自己潤滑性をもたせ、 摺動トルクを小にするため、 銅の少量浸透し、 硬さ、 HRC48。 焼入れ銅 HRC40の軸の 中間に磁性ペース ト (弗素油 +シリ コン油に 5 0 %WT の Fe04超微粉を眞空中で含浸 して製作品に 1 0 % WT モリ コ一ト油を混合して成る特殊ペース トは、 2 0 0 1年発明 品) を溝内に満杯量入れ、 結果トルク 0.19— cm、 回転数 5000RPMに於て、 発熱 60°C 以下、 連続回転で摩耗なし。 高耐久軸受と して、 充分なものとなり、 空気ベアリ ングに 近似品である。 又、 低圧、 気、 液体のシール性向上には、 高磁力軸受付にし対処する。 溝の両端に磁気の N,Sが交互になるよ う配列すると、 益々磁気ペース トの高保持カ軸受 となる。  Fig. 4 is a hard and highly accurate bearing diagram using the magnetic properties of WC. Similar to balls and needle bearings, the reclaimed powder sintered material of the present invention has a self-lubricating property on the periphery of the hardened copper shaft, and a small amount of copper penetrates, hardness, HRC48. Magnetic paste (fluorine oil + silicon oil is impregnated with 50% WT Fe04 ultrafine powder in the air in the middle of the axis of hardened copper HRC40, and the product is mixed with 10% WT morrigate oil. A special paste consisting of a 200-year-old product (invented in 2000) is filled in the groove, resulting in a torque of 0.19 cm and a rotational speed of 5000 RPM, heat generation of 60 ° C or less, continuous rotation and no wear. It is sufficient as a high durability bearing and is an approximation of air bearings. In order to improve the sealing performance for low pressure, gas, and liquid, use a high magnetic force bearing. If the magnetic N and S are arranged alternately at both ends of the groove, the magnetic bearing becomes a high holding force bearing.
さらにネオジゥム等の髙磁気力粉末若干加えると、 高磁力 WC系銅の製法が可能で高 速回転用軸受と して使用できた。 Furthermore, by adding a little magnetic force powder such as neodymium, it is possible to produce high magnetic WC-based copper. It could be used as a fast-rotating bearing.
再生粉の使い勝手のよさは多岐にわたる、 充分細かく して金属で被覆されているので 加圧成形性がよい、 成形圧力は 9 8〜 1 9 6 MPaで足りる、 大型プレスを必要と しない ことは成形金属の長寿命化と相まって大きな利点となる、 同じ理由で成形強さを出すた めだけの結合材は無しに済ませること も出来る、 焼結性もよい。 焼結させる温度は 1300°Cで足り る。  Usability of recycled powder is wide-ranging, sufficiently fine and coated with metal, so good pressure forming property, molding pressure of 98-196 MPa is sufficient, and it is molding that does not require a large press Combined with the long life of the metal, this is a great advantage. For the same reason, it is possible to eliminate the need for a bonding material only to increase the forming strength, and the sinterability is also good. The sintering temperature is 1300 ° C.
図 5は、 自動車組立ライン、 他の鉄板スポッ ト溶接チップである電導度及び硬さ保持 向上による耐久性向上を狙い、 約 1.5 ψの WC線 (W線も可) を 7本いれ、 その中心部 空間に CR— Cu に AgO.15%をいれ (F) さらに、 外周に、 本発明の WC— Cuの複合体 を先端部のみに接合した。 中心部の電導度 (8 5 %IACS) が高く回りの高硬度達成可能 となった。  Figure 5 shows seven WC wires (approximately W) (approximately 1.5 ψ), aiming to improve durability by improving the electrical conductivity and hardness retention, which are other steel plate spot welding tips. In the subspace, Ag—15% was added to CR—Cu. (F) Further, the WC—Cu composite of the present invention was joined to the outer periphery only at the tip. The center conductivity (85% IACS) is high, and it is possible to achieve high hardness around.
図 6は、 コーヒー缶、 缶詰め、 及びペイン ト缶鉄板製等用の溶接に使用する。 インナ 一回転電極ロールの CUワイヤ一触部に本発明の WC-cu複合体の電導度 50% IACS、硬 さ HRC 3 2を接合 (A) 使用し、 耐久性を 2〜 3倍向上した。 従来べリ リ ゥム銅、 又は クロム銅を使ったものである。 WC-cuのリ ングを別製作し、タイヤのようにはめ接合し。 片側に成型同時に製作するとコス ト低下と高電導性が確保できた。 回転溶接時、 溝には 銅ワイヤ一を通しながら溶接するがロール表面発熱は約 1000°Cに達するため、摩耗が早 く、 溝補修回数の減少がはかれた。  Fig. 6 is used for welding for coffee cans, canned foods, and iron cans for paint cans. The electrical conductivity of 50% IACS and hardness HRC 3 2 of the WC-cu composite of the present invention was joined to the CU wire contact part of the inner one-turn electrode roll (A), and the durability was improved 2 to 3 times. Conventionally, it uses lithium copper or chromium copper. Make a separate WC-cu ring and fit it like a tire. Cost reduction and high electrical conductivity could be secured by molding on one side at the same time. At the time of rotary welding, welding was performed with a copper wire passing through the groove, but the roll surface heat generation reached about 1000 ° C, so wear was fast and the number of groove repairs was reduced.
WC粉成形体に銅を浸透させよ う とするときには、 予め銅粉の類を混ぜて置き浸透し てゆく銅の呼び水と しなければならない、 再生粉にあたっては WC粒子の被覆している コバルトが呼び水の役目をするので別に呼び水の富化工程を必要としない、 場合によつ ては再生粉は購入 ί尽で成形に入れる。  When trying to infiltrate copper into a WC powder molded body, it is necessary to mix copper powder in advance and use it as a priming copper to permeate. Coated with WC particles is used for reclaimed powder. Since it serves as a priming water, it does not require a separate priming water enrichment process. In some cases, recycled powder is purchased and put into the mold.
本複合体に求めた特性の一つは硬さである、 複合体の硬さは骨格の強さそのものでは ないが、 骨格が強いのに越したことはない、 しかし多孔質の超硬合金が緻密な超硬合金 に敵うわけはなく、 あくまで相反する空隙率との見合いでの強さである、 先に強い骨格 と言ったが行き過ぎは逆効果である。 幸いに骨格は浸透材の硬さを増幅して複合体の硬 さを生み出すが如く機能する、増幅率に相当する骨格の強さを高めるのも一方である力 同時に入力の増大を図って相乗効果に期待する方が得策である、 浸透材には純銀より も 純銅が、 純銅より も銅合金が硬さを生み出す上では有利である、 尚、 純銅を浸透させて も 64HRC には容易に到達できる、 本格的な硬い銅合金を浸透させた時は、 超硬合金の 硬さ 90HRC は無理と しても 70HRC台には楽に到達可能と予想する。 超硬合金とは雲 泥の差があるように見えるが、 コバルト量を 45 体積%程度に増やせば超硬合金とも、 硬さは本複合体以下になるであろう。 骨格構造を取れなくなるからである。  One of the properties required for this composite is hardness. The composite hardness is not the strength of the skeleton itself, but the skeleton is strong. There is no reason to compete with a dense cemented carbide, but it is the strength in the balance with the opposite porosity. Fortunately, the skeleton functions as if it has increased the hardness of the penetrant to produce the hardness of the composite, but it can also increase the strength of the skeleton corresponding to the amplification factor. It is better to expect the effect. Pure copper is more advantageous than pure silver for the penetrant, and copper alloy is more advantageous for producing hardness than pure copper. It is easy to reach 64HRC even if it penetrates pure copper. It is expected that when the hard copper alloy that can be used is infiltrated, the hardness of the super hard alloy 90HRC will reach the 70HRC level easily even if it is impossible. Although it seems that there is a cloud difference with cemented carbide, if the amount of cobalt is increased to about 45% by volume, the hardness of both cemented carbides will be less than this composite. This is because the skeleton structure cannot be taken.
骨格に入った銅は浸透させた銅ではなく これに再生粉のコバルトが固溶したものにな る純銅を浸透させても浸透したものは硬さを導電率の点で純銅でなくなる、 このことか ら接点材と しての用途は封じられ、 後述の新粉により達成できる。 複合材で保存される ものを相の同一性に見た所以である。  The copper that has entered the skeleton is not the infiltrated copper, but even if pure copper in which the regenerated powder of cobalt is in solid solution is infiltrated, the infiltrated copper is not pure copper in terms of conductivity. Therefore, its use as a contact material is sealed and can be achieved with the new powder described below. This is because of the identity of the phase of what is preserved in composite materials.
数多い構成材料の組み合わせ方の中で、 超硬合金と銅を組み合わせた期待効果につい ては、 多く、 下記で触れる。  Among the many ways to combine components, the expected effects of combining cemented carbide and copper are many and will be discussed below.
上記手順に準じて W C— A g系複合体を一点だけ製作した複合体の硬さは骨格の圧縮 強さと浸透材の硬さの相乗効果と して発見する。 比較例 1の複合体が硬くないのは、 銀 と銅の硬さの違いに由る。見かけ上、骨格は浸透材の硬さ増幅する働きをする。従って、 浸透材を僅かでも硬くする実益はある。 According to the above procedure, only one WC-A g composite was produced. Discovered as a synergistic effect of strength and hardness of the penetrant. The composite of Comparative Example 1 is not hard because of the difference in hardness between silver and copper. Apparently, the skeleton acts to amplify the hardness of the penetrant. Therefore, there is an actual benefit of making the penetrant a little hard.
浸透の雰囲気が複合材の硬さに影響しうる。 骨格を銅の濡れ性に関係しているからで あろう。 銅一タングステンの浸透で水素雰囲気が好まれる理由と同じかも知れない。 次に本邦で得られる複合体の位置づけを試みる。 導電率を高く出来ないのは、 一つに は硬さを WC粉の骨格に負担させることにしたため、 多くの銅をと り こめないからであ る。 二つには、 導電効率が悪いからである。 共に構成からの制約からく る。 大容量の通 電材には不適である。 耐摩耗性が求められる小電流用の接点材が用途になる。 端的に言 えば、 従来の銅タングステンの硬さ不足を補う物となる。  The atmosphere of penetration can affect the hardness of the composite. This is probably because the skeleton is related to the wettability of copper. This may be the same reason why hydrogen atmosphere is preferred due to the penetration of copper-tungsten. Next, we will try to position the complex obtained in Japan. The reason why the electrical conductivity cannot be increased is because, in part, the hardness of the WC powder is borne by the WC powder, so that a large amount of copper cannot be incorporated. Second, the conductivity efficiency is poor. Both come from configuration constraints. Not suitable for large-capacity power materials. A contact material for small current that requires wear resistance is used. In short, it makes up for the lack of hardness of conventional copper tungsten.
終わりに、 比較例 1で得られた複合材の硬さは、 規格値 (非特許文献 2) 又は非特許 文献 1に挙げられている 8 0 %WC— A gでの最高硬さ 270HR B (27.6HRC相当) と違い過ぎる。 相違点だけを述べる。 呼び水と しての銀粉は、 粒径 5〜1 5 /i m、 WC との混合比 2.4%。 混合粉の成形圧力 196MPa。 浸透材は 106%IACSの条。 得られた複合体 の導電率 3 9 %、 硬さ 1 1 HRC。 浸透に伴う元の成形体の収縮率少なく とも 0.7ん  Finally, the hardness of the composite material obtained in Comparative Example 1 is the standard value (Non-Patent Document 2) or the maximum hardness at 80% WC—Ag listed in Non-Patent Document 1 270HR B ( 27.6HRC equivalent) is too different. Only the differences are described. Silver powder as priming water has a particle size of 5 to 15 / im, and a mixing ratio with WC of 2.4%. Molding pressure of mixed powder 196MPa. The penetrant is 106% IACS. The resulting composite has a conductivity of 39% and a hardness of 11 HRC. At least 0.7% shrinkage of the original molded product due to penetration
Figure imgf000009_0001
Figure imgf000009_0001
符号の説明  Explanation of symbols
A. 本発明の WC—銅複合体 B. 銅合金  A. WC-copper composite of the present invention B. Copper alloy
C. シールゴムホルダー D. 磁性ペース ト C. Seal rubber holder D. Magnetic paste
E. 硬質丸棒 7本 F. 銀銅合金 E. 7 hard round bars F. Silver copper alloy
1. 軸受ハウジング 2. 磁気軸スリ 産業上の利用可能性 1. Bearing housing 2. Magnetic shaft sleeve Industrial applicability
本複合体はまだ実地の試練を得てないので、 その有用な用途は期待の域を出ない、 一 般には本複合体が範と して超硬合金は切削工具を除けば耐磨耗の部品と して雑多な用途 を持つので、 ここで超硬合金を代替はでなく補完するものになると思われる、 耐磨耗部 品とゆう ときには、 必ず相手材がある、 これからの機械的攻擊に耐えることにかけては WC材が優れる、 超硬合金にあっては攻撃がセメント材であるコバルトに物理的化学的 に及ぶことがある、 銅を浸透させることにより攻擊感受性はある。 Since this composite has not yet obtained practical trials, its useful applications are not expected.In general, this composite is used as a model, and cemented carbide is not wear resistant except for cutting tools. Because it has a variety of uses as a part, it seems that it will be a substitute for cemented carbide instead of a substitute here. When it is a wear-resistant part, there is always a counterpart material, a mechanical attack in the future To endure WC material is superior. In the case of cemented carbide, the attack may extend physically and chemically to the cement material cobalt. It is attack sensitive by infiltrating copper.
相手材が入れ替わり立ち代ることなく同一物に留まるものであるときは、 これを攻撃 してはならない、 銅には WC材に依る攻擊性を弱める働き或いは自己潤滑性がある、 従 つて、 摺動部材に、 特に相手材の鏡面化が困難なときには、 又は、 摺動部潤滑剤が行き 渡り難しいところには、 大きな利用価値がある、 軸、 軸受け、 コンプレッサーの羽、 メ 力二カルシール、 就中、 ブルドーザー等のキャタピラー転輪中への土砂泥水浸入防止シ —ル用フローテングシ一 ト、 水中底泥水ポンプシール、 等がある、 経験に依れば摺動部 は、 雌雄が異材になるのが望ましい、 鋼材が普通である現今に、 あっては本複合材は確 かに異材ではある。  If the other material stays the same without changing, the copper must not attack, copper has the ability to weaken the aggressiveness due to WC material or has self-lubricating properties. Especially when it is difficult to mirror the moving material, or where the sliding part lubricant is difficult to spread, there is great utility value for shafts, bearings, compressor blades, mechanical seals, There is a float sheet for preventing the intrusion of sediment and mud water into the caterpillar wheel of a bulldozer, etc., and a submersible bottom mud pump seal, etc. In the present situation when steel is desirable, this composite is certainly a different material.
以上のことから産業上の利用可能性を下記する。 From the above, the industrial applicability is described below.
1. 溶接用電極産業には W C新粉。 (図 3参照)  1. W C new powder for welding electrode industry. (See Figure 3)
スポッ ト、 シーム及び製缶の回転電極の溶接等の電極材は、 従来クロム銅、 酸 化アルミナ分散銅、 銅タングステン、 銅鉄 HZ合金及びベリ リ ゥム銅等多くの低 硬度銅より も、 はるかに高性能、 高耐久性銅と して本発明 WC—Cu複合体に変 更できる。 従来の電極材と同電導度を維持し、 耐久性向上のための硬度を HRC 5 0にすると、 2〜 3倍向上をし、 溶接ラインの生産性を著しく あげ得る。 効率よく電気を流す溶接電極接点及ぴ電極等は、 すべて WCの新粉で行う。 ( 6 項も同じ)  Electrode materials such as welding of spot, seam and can-making rotating electrodes are more conventional than many low-hardness copper such as chromium copper, oxidized alumina-dispersed copper, copper tungsten, copper iron HZ alloy and beryllium copper. It can be changed to the WC-Cu composite of the present invention as a much higher performance and higher durability copper. Maintaining the same conductivity as that of conventional electrode materials and increasing the hardness for durability improvement to HRC 50 can improve the productivity of the welding line by 2 to 3 times. Welding electrode contacts and electrodes that conduct electricity efficiently are all made of new WC powder. (Same for item 6)
2. 工業用等の軸受産業には W C再生粉。  2. W C recycled powder for industrial bearing industry.
本発明の WC 再生粉複合体は磁気性が付与されているため、 シリ コン油入り磁 気ペース トの飛散がなく、 軸側等、 摺動側、 小溝を入れ、 ペース ト保持体軸受 の績を増大すると、 尚一層の潤滑性能を増し、 軸受耐久性を向上する。 軸との 隙間を 0.3~8 に精度を保つと、隙間に保持されたペース トは摺動トルクの大巾 低下により、 耐久性向上に大きく寄与する。 複合体 WCの硬度を HRC 6 0にな るよう配合した軸受は、 軸材盾 (ス リーブ等使用を含め) に鉄、 セラミ ック等 の硬材盾の使用により、 更に高耐久軸受が得られる。 風力発電軸受にも適す。  Since the magnetic properties of the WC recycled powder composite of the present invention are imparted, there is no scattering of the magnetic paste containing silicon oil, and the shaft side, sliding side, small grooves are inserted, and the past holder bearing performance is achieved. If this is increased, the lubrication performance will be further increased and the bearing durability will be improved. If the clearance between the shaft and the shaft is kept at 0.3 to 8, the paste held in the clearance greatly contributes to the improvement of durability due to the large decrease in sliding torque. For bearings with a composite WC hardness of HRC 60, a shaft bearing shield (including the use of sleeves, etc.) is made of a hard shield such as iron or ceramic. It is done. Suitable for wind power bearings.
3. メカニカルシール摺動材産業には W C再生粉。 (図 2参照)  3. WC recycled powder for mechanical seal sliding material industry. (See Figure 2)
泥水シールを必要とする、 水中ポンプ、 建設機械及び軍用戦車及び農機等は従 来アルミナセラミ ック及ぴタングステン銅、 ク ロム系鋼等の材料が使われてき たが、 攉動面の高自己潤滑性の本発明材料にすることで、 性能及び、 耐久性向 上ができる。  Submersible pumps, construction machinery, military tanks, and agricultural machinery that require a muddy water seal have traditionally been made of materials such as alumina ceramics, tungsten copper, and chrome steel. By using the lubricating material of the present invention, performance and durability can be improved.
4. インペラ一、 スク リ ユー等のプロペラ産業には W C再生粉。  4. For propeller industries such as impellers and screws, WC recycled powder.
ミキサーアジテーター及びチョ ッパーの羽。 スク リ ュープロペラ羽。 パワース テアリ ング用、 ロータ リーコンプレッサー用及び油瓦ポンプ用べーン等。 多材 料には、 従来銅鉄、 ハイス、 鋼、 硬 SUS及び砲金等が使われていたが、 本発明 の WC— Cu材に変更し、 耐久性及び性能向上ができる。  Mixer agitator and chopper feathers. Screw propeller feather. For power steering, rotary compressor and oil tile pump vanes. Conventionally, multi-materials such as copper iron, high speed steel, steel, hard SUS, and gun metal have been used, but the WC-Cu material of the present invention can be changed to improve durability and performance.
5. 電気接点電極放電電極産業には W C新粉。  5. W C new powder for electrical contact electrode discharge electrode industry.
電気部品の更電用開閉器、 一般遮断器、 電気接点、 電極、 及びロータリースリ ップリ ング接点には、 高電導性硬度、 耐久性が要求されるが、 本発明の複合体 により、 各々の用途に配合を変えて対処できる。 即ち、 従来銅タングステン、 クロム銅、 及ぴ酸化アルミナ分散銅等を使用してきたが、 本発明の WC— Cu材 の電導度 6 0 % IACS、 硬度 HRC 3 8程度で、 充分高性能材料と して使用可能。 又、 特に高速回転電導リ ングに於いては、 軸受の磁気ペース トと同じく、 高 伝導性の弗素油に Fe0 4の含浸ペース ト、 又はガリ ウム、 インジウム、 錫、 亜 鉛液体電導材にさらに、 Fe04を混合したものを透付すると磁気力により飛散な く有効に電導度を向上できた。 High-conductivity hardness and durability are required for switches for recharging electrical components, general circuit breakers, electrical contacts, electrodes, and rotary slipping contacts. By changing the formulation for each application, it can be dealt with. In other words, copper tungsten, chrome copper, alumina oxide dispersed copper, etc. have been used in the past. Can be used. In particular, in the case of high-speed rotating conductive rings, as well as the magnetic paste of the bearing, a highly conductive fluorine oil impregnated paste of Fe0 4 or a liquid conductive material of gallium, indium, tin, or zinc When the mixture of Fe04 was made transparent, the conductivity could be effectively improved without scattering by magnetic force.
6. 医療用注射針等産業には W C再生粉。  6. W C recycled powder for medical needles and other industries.
動物への注射針は、薄肉で外圣小、 先端の鋭利品で折れない硬度が良盾とされ、 しかも表面の滑性が要求される。 WC—再生粉 Cu合金で約 HRC 3 0の硬さを持 つものは、 先端寸法を蚊の吸口と近似寸法に加工が可能のため、 従来のク リム 鋼 SUS製針を本発明の材料に変更することで、 針の磨耗が小さくなり、 脱脂消 毒整置を工夫すれば耐久性向上針に変更できる。 The injection needles for animals are thin, small in outer diameter, sharp at the tip and hard enough not to be broken, and are required to have a smooth surface. WC—recycled powder Cu alloy with a hardness of about HRC 30 can be processed to approximate the tip dimension of a mosquito mouthpiece, so the conventional Crim steel SUS needle is used as the material of the present invention. By changing it, the wear of the needle is reduced, and if the degreasing and disinfection placement is devised, it can be changed to a needle with improved durability.
7. 金型、 治具及び熱伝導体等産業には W C再生粉'。  7. W C recycled powder for industries such as molds, jigs and heat conductors.
プラスチック、 ゴム等成型用電熱盤及び金型。 アイ ロンその他の硬くて (H R C 3 0以上) 良電熱性を必要とする材料には従来、 銅タングステン、 銅鉄、 ハ イス及び鋼鉄等が使われてきたが、 導電性、 導熱性の高く て硬い本発明の W C - C u材料に変更できる。 Electric heating panel and mold for molding plastic, rubber, etc. Iron and other hard (HRC 30 or higher) materials that require good electrical heat transfer have traditionally used copper tungsten, copper iron, high speed steel, etc., but they have high conductivity and heat conductivity. It can be changed to the hard WC-Cu material of the present invention.

Claims

請 求 の 範 囲 次の工程順からなることを特徴とする超硬合金一銅系複合体の製造方法 : ) 超硬合金のセメ ン ト材にっき再生粉又はタングステン炭化物粉と銅粉を然るべ き割合に配合し均一に混合し所望の寸法形状に成形する。Scope of request Manufacturing method of cemented carbide monocopper composite characterized by the following process sequence:) Applying recycled powder or tungsten carbide powder and copper powder to cemented carbide cement material Mix in the proportions and mix evenly to form the desired size and shape.
) 成形体を真空中または非酸化性雰囲気で加熱し、 所望の空隙間率を持つ焼結体 にする。) Heat the compact in a vacuum or in a non-oxidizing atmosphere to obtain a sintered compact with the desired void ratio.
) 焼結体成形体に実施者の判断で選択した銅または銅合金を浸透させる。 この際、 A 浸透は望ましくは黒鉛坩堝内で行い浸透した銅または銅合金の滲みだしは出来 るだけ抑える。 ) Infiltrate the sintered compact with copper or copper alloy selected by the practitioner. At this time, the penetration of A is preferably performed in a graphite crucible, and the seepage of the penetrated copper or copper alloy is suppressed as much as possible.
B 雰囲気は水素が望ましい。 B The atmosphere is preferably hydrogen.
上記 1項配合中に磁気材を若干追加し軸受及び電気接点等の用途に適した超硬 合金一銅系複合体  Cemented carbide alloy copper alloy suitable for applications such as bearings and electrical contacts by adding a small amount of magnetic material during compounding of item 1 above.
工程 1 ) . 配合比と工程 2 ) . の成形圧力は、 予め振ってみて複合材の導電率と硬さ に関係づけておき、 この知見を基にして所望の特性の組み合わせに当たるべく決め る。 材料選択に関する判断の適否も結果にきく ものとする。 Step 1). The compounding ratio and the molding pressure in step 2) are pre-vibrated and related to the electrical conductivity and hardness of the composite material, and based on this knowledge, the combination of the desired properties is determined. Appropriateness of judgment regarding the selection of materials shall also depend on the results.
溶接鉄板材料の表面処理の違い (亜鉛、 アルミ等) 及び酸素含有量の差は、 溶 接電極の W C— C u系複合体の配合比による選択のみでは耐久性に不充分な事があ るため、 図 5のような構成のチップに於ては、 中心部 CR-Cu に Ag0.1〜0.2%をプ ラス含有した硬堂 HV 1 5 0。 電導度 8 7 %IACS であり存がら、 外周硬度が HRC 2 0以上のため電極の耐久性を 2倍以上に向上した特徴を持つ表面処理鋼板用抵抗 溶接電極材料。  Differences in the surface treatment of welded steel sheet materials (zinc, aluminum, etc.) and differences in oxygen content may be insufficient for durability only by selection based on the mixing ratio of the WC-Cu composite in the welding electrode Therefore, in the chip with the configuration shown in Fig. 5, Kendo HV 1 5 0 which contains 0.1 to 0.2% of Ag in the center CR-Cu. A resistance-welded electrode material for surface-treated steel sheets with a characteristic that the electrode durability is more than doubled because the outer peripheral hardness is HRC 20 or higher, although it has an electrical conductivity of 8 7% IACS.
再生 WC 粉使用の軸受は、 コバルトの磁気が特に低い場合に限り、 軸スリープ に磁気鋼材を使う ものと し、 磁気ペース トの飛散を防止する。 その鋼材は高硬度 (HRC 4 0以上) が望ましい。  Bearings using recycled WC powder shall use magnetic steel for the shaft sleep only when the magnetism of cobalt is particularly low to prevent the magnetic paste from scattering. The steel material should have high hardness (HRC 40 or higher).
PCT/JP2004/016378 2004-10-28 2004-10-28 Method for producing cemented carbide wc-copper type composite WO2006046313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016378 WO2006046313A1 (en) 2004-10-28 2004-10-28 Method for producing cemented carbide wc-copper type composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/016378 WO2006046313A1 (en) 2004-10-28 2004-10-28 Method for producing cemented carbide wc-copper type composite

Publications (1)

Publication Number Publication Date
WO2006046313A1 true WO2006046313A1 (en) 2006-05-04

Family

ID=36227564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016378 WO2006046313A1 (en) 2004-10-28 2004-10-28 Method for producing cemented carbide wc-copper type composite

Country Status (1)

Country Link
WO (1) WO2006046313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112059175A (en) * 2020-08-12 2020-12-11 西安理工大学 Preparation method of WC (wolfram carbide) reinforced WCu dual-gradient structure composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509794A (en) * 1973-06-04 1975-01-31
JPS5482308A (en) * 1977-12-15 1979-06-30 Toshiba Corp Current flowing jig for plastic working
JPS5482309A (en) * 1977-12-15 1979-06-30 Toshiba Corp Current flowing jig for plastic working
JPS56126535A (en) * 1980-02-06 1981-10-03 Minnesota Mining & Mfg Electron discharge electrode and its manufacture
JPS61183439A (en) * 1985-02-06 1986-08-16 Hitachi Metals Ltd Wear resistant sintered hard alloy having superior oxidation resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509794A (en) * 1973-06-04 1975-01-31
JPS5482308A (en) * 1977-12-15 1979-06-30 Toshiba Corp Current flowing jig for plastic working
JPS5482309A (en) * 1977-12-15 1979-06-30 Toshiba Corp Current flowing jig for plastic working
JPS56126535A (en) * 1980-02-06 1981-10-03 Minnesota Mining & Mfg Electron discharge electrode and its manufacture
JPS61183439A (en) * 1985-02-06 1986-08-16 Hitachi Metals Ltd Wear resistant sintered hard alloy having superior oxidation resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112059175A (en) * 2020-08-12 2020-12-11 西安理工大学 Preparation method of WC (wolfram carbide) reinforced WCu dual-gradient structure composite material

Similar Documents

Publication Publication Date Title
CN108570571B (en) Sliding material, method for producing same, sliding member, and bearing device
JP3839740B2 (en) Sliding material
CN101775521A (en) Ultrahigh rotating speed oil bearing for powder metallurgy and manufacturing method thereof
WO2008001789A1 (en) Cu-Ni-Sn COPPER BASE SINTERED ALLOY EXCELLENT IN WEAR RESISTANCE AND BEARING MEMBER MADE OF THE ALLOY
JP4857206B2 (en) Infiltration powder
CN105603247A (en) Graphene reinforced copper-rare earth based electrical contact material and preparing method thereof
JP4941236B2 (en) Sintering aid, sintered aluminum-containing copper-based alloy powder, and sintered body obtained by sintering the sintered aluminum-containing copper-based alloy powder
CN107254598A (en) A kind of preparation method of silver-colored MAX phases sliding contact material
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
CN101845568A (en) Oil impregnated bearing of powder metallurgy with ultra-long service life and manufacturing method thereof
JP4410066B2 (en) Manufacturing method of electrical contact material
US11572921B2 (en) Sintered bearing and method for manufacturing sintered bearing
CN104889405A (en) Ceramimetallurgical high-nickel alloy bearing material
CN105977065A (en) Chromium carbide copper-based contact material for low-voltage electric appliance, and processing method for chromium carbide copper-based contact material
WO2006046313A1 (en) Method for producing cemented carbide wc-copper type composite
JP6675886B2 (en) Oil-impregnated bearing and its manufacturing method
CN104532042A (en) Cubic boron nitride granule-enhanced Cu-based composite electrode material and preparation method thereof
JP2017122246A (en) Method for producing copper composite iron powder and method for producing sintered metal
JP6620391B2 (en) Cu-based sintered sliding material and manufacturing method thereof
JP5403707B2 (en) Cu-based infiltration powder
CN106011519A (en) Rare earth carbide copper-based contact material for low voltage electric appliances and processing method thereof
JP7099465B2 (en) Cylinder for molding machine and its manufacturing method
JP2001050273A (en) Copper system sliding material
CN106521223B (en) The preparation method of titanium carbide/Cu-base composites
CN206268269U (en) A kind of thrust bearing shoe valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04793358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP