WO2006044653A1 - Iron carbonyl containing coating composition - Google Patents

Iron carbonyl containing coating composition Download PDF

Info

Publication number
WO2006044653A1
WO2006044653A1 PCT/US2005/037008 US2005037008W WO2006044653A1 WO 2006044653 A1 WO2006044653 A1 WO 2006044653A1 US 2005037008 W US2005037008 W US 2005037008W WO 2006044653 A1 WO2006044653 A1 WO 2006044653A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
coating
iron carbonyl
pupo
polyurethane polyol
Prior art date
Application number
PCT/US2005/037008
Other languages
French (fr)
Inventor
Robert Liedtke
Christy Stine
Alexander Yahkind
Original Assignee
Akzo Nobel Coatings International B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo Nobel Coatings International B.V. filed Critical Akzo Nobel Coatings International B.V.
Publication of WO2006044653A1 publication Critical patent/WO2006044653A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes

Definitions

  • the present invention relates to a coating composition for coating metal substrates, which provides both excellent weldability and corrosion resistance.
  • the coating composition includes polyurethane polyol (PUPO) and iron carbonyl.
  • PUPO polyurethane polyol
  • iron carbonyl iron carbonyl
  • the PUPO does an excellent job of binding the iron carbonyl, as well as any additives (e.g., corrosion inhibitors), and the iron carbonyl provides for excellent weldability.
  • the automotive market has long utilized a weldable primer that is applied by a continuous coil coating process for coil sheet steel. After the primer is applied, the coil is recoiled and sent to automotive plants for forming into various body parts. The unique part of this process is that the primer is applied to the metal before it is formed.
  • Zincrometal In the 1970's and 1980's zinc rich coatings were applied as primers to automotive cold rolled steel. Generally, a chromate pre-treatment, for example DacrometTM, was coated on the steel followed by the application of the zinc rich coating. When the zinc rich coating used was ZincrometTM, the pre-coated metal was called Zincrometal. During its peak time, Zincrometal was a product of choice for the passenger car body in the US and also used in Europe. This type of product/process was used extensively on cold rolled steel prior to the use of galvanized steel. The primer used on cold rolled steel was rich in zinc both for weldability and for corrosion resistance. Currently this type of product is being used in isolated markets over galvanized steel as zinc coated cold rolled steel and shows improved corrosion resistance over uncoated galvanized steel.
  • Galvanized steel is steel that is protected against corrosion with a layer of another metal.
  • the protective layer can be applied by thermal (hot dip) or by electrolytic (electrolytic galvanizing) methods.
  • the protective layer on steel substrates usually is a zinc comprising layer.
  • (electro-) galvanized steel is manufactured in a coil. From the coil, (body) parts are formed, which are, optionally, subsequently electro-coated (E- coated) .
  • the parts formed out of either traditional galvanized steel coil or out of (galvanized) steel coil are normally E-coated.
  • This E-coat is a primer that prevents the steel against corrosion.
  • a disadvantage of E-coating is that the coating may not reach a number of areas in the automotive body such as the hem flanges. Therefore, traditional galvanized steel coil is normally coated with a (pre)prime before the parts are formed.
  • the pre-prime preferably is a conductive, anti-corrosive coating which insures the areas, which are not reached in an E- Coat process, have a primed surface to prevent corrosion.
  • pre- prime is applied, then the coil is recoiled, and next sent to automotive plants for forming into various body parts.
  • PUPOs are prepared by the reaction of a multifunctional isocyanate with that of an ⁇ - ⁇ , or ⁇ - ⁇ -diol. Urethane linkages are then built into the backbone of the resin.
  • Gardon US 5155201 A
  • Walker US5130405A
  • Yahkind US6624277B2
  • weldability As noted above, it has been difficult to achieve both weldability and corrosion resistance in a coating composition. Usually, weldability requires a very thin film thickness, while corrosion resistance deteriorates with a thinner film. However, the present invention achieves both excellent weldability and corrosion resistance by combining PUPO and iron carbonyl in a coating composition.
  • One feature of the invention is that it can be applied by conventional coil coating methods, e.g., reverse roll coat, etc.
  • the coating composition of the invention includes PUPO and iron carbonyl, optionally with other resins and additives of the type used in coating compositions, although specific ones used herein might be different from those used before.
  • PUPO and iron carbonyl optionally with other resins and additives of the type used in coating compositions, although specific ones used herein might be different from those used before.
  • Fig. 1 shows panels resulting from a cyclic test of 80 cycles; Fig. 2 shows panels resulting from a cyclic test of 40 cycles; Fig. 3 shows panels resulting from a cyclic test of 20 cycles; Fig. 4 shows panels resulting from a cyclic test of 20 cycles; Fig. 5 shows panels resulting from a spot welding test; Fig. 6 shows panels resulting from a spot welding test; Fig. 7 is a table of results from a spot welding test; Fig. 8 is a graph of results testing the coefficient of friction; Fig. 9 shows photographs of the results of forming tests; and Fig. 10 is a table of results from adhesive bond testing.
  • the coating composition of the present invention includes PUPO and iron carbonyl. Preferably, it also includes other resins and a variety of additives. Polyester resins, epoxy resins, phenoxy resin, etc., can be included in the coating composition.
  • the PUPO in the composition has both flexibility and crosslinking ability.
  • Means for achieving such a PUPO composition are apparent to those skilled in the art.
  • a single PUPO could have both flexibility and crosslinking ability
  • two or more PUPOs can be combined to achieve PUPOs that are flexible and ones that are self-crosslinking
  • a flexible PUPO can be combined with a more traditional blocked isocyanate, etc.
  • the present inventors have tried to increase flexibility using a flexible PUPO with a long chain alcohol group on an isocyanate arm, e.g., Setal 10-9448 from Nuplex Resins.
  • a separate PUPO was utilized by the present inventors to provide crosslinking ability by means of a partially blocked isocyanate (this PUPO is referred to as a modified PUPO in the formulations and is proprietary to Akzo Nobel).
  • this PUPO is referred to as a modified PUPO in the formulations and is proprietary to Akzo Nobel.
  • a single PUPO could be provided which has both flexibility and crosslinking ability.
  • Akzo Nobel's proprietary modified PUPO (used in the formulation examples) is modified by substituting some of the diols with that of a blocking agent that, under high temperature conditions (above 350F), will unblock to yield free isocyanate groups that can further react with other hydroxyl-containing compounds.
  • Blocked isocyanates are described in the patent of Bayer Aktiengesellschaft (US3583943A)
  • the coating composition can also contain a high molecular weight phenoxy resin (e.g., wt. avg. MW 40,000-60,000).
  • a representative example is Paphen PKHS 30 PMA, available from Phenoxy Assoc. This resin has been found to work well together with the PUPO and iron carbonyl of the inventive composition.
  • a lower molecular weight epoxy resin can also be used.
  • Additives used in the inventive composition include those generally found in coating compositions.
  • the inventive composition preferably includes one or more corrosion inhibitors (usually chromate-containing or chromate-free pigments (e.g., Calcium ion exchange silica, e.g., Shieldex AC5, available from Davison Grace)), one or more lubricants (organic (e.g., polytetrafluoroethylene (PTFE), etc.) or inorganic (e.g., graphite, boron nitride, molybdenum disulfide, etc.)), one or more suspension agents (e.g., clay (e.g., Tixogel MP 250, available from Sudchemie), etc.), in one or more solvent carriers.
  • corrosion inhibitors usually chromate-containing or chromate-free pigments (e.g., Calcium ion exchange silica, e.g., Shieldex AC5, available from Davison Grace)
  • lubricants organic (e.g., poly
  • the unique combination of two lubricants, molybdenum disulfide.and PTFE powder provides formability of parts without putting undo stress on the fabrication dyes.
  • molybdenum disulfide.and PTFE powder provides formability of parts without putting undo stress on the fabrication dyes.
  • the inventors have tried MoIy disulfide Tec, available from Amax Inc. and Micropower S1100, available from ISP, but these lubricants are available from other sources as well.
  • solvent carriers include, but are not limited to:
  • the coating composition of the present invention is intended for use on metal substrates, but use on other substrates is not discouraged.
  • metal substrates may be pre-treated and can include many zinc alloys, e.g., EG steel, hot dip galvanized, Galvanneal, etc.
  • the inventive coating composition can be applied by any known coil coating method. Further, it can be formed with a variety of techniques, including blanking dyes, hydroform, etc., without losing its weldability and corrosion-resistant properties.
  • the inventive coating composition exhibits improved adhesive substrate bonding characteristics and a smoother finish.
  • Another important advantage of the invention is that it obtains all of these benefits at very low dry film thicknesses (e.g., about 1 to about 10 microns dry film thickness (DFT), usually about 3 to about 5 microns DFT).
  • DFT microns dry film thickness
  • Phenoxy resin 6.20 5-8 2-10 1-30
  • Suspension aid 0.24 0.1-0.5 0.1-1 0.1-10
  • Formulation Example 2 was coated on panels which were subjected to cyclic tests of repeating cycles of humidity, salt, high temperature and dry conditions. The results of these tests are shown in Figs. 1-4.
  • the coating composition is cured in the oven at about 430F peak metal temperature (PMT), wherein it cures in about 30 seconds at an oven temperature of about 750F.
  • PMT peak metal temperature
  • other means of cure, temperature for curing, etc. are possible and apparent to the skilled artisan.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

A coating composition for coating metal substrates includes polyurethane polyol (PUPO) and iron carbonyl to provide a coating with excellent weldability and corrosion resistance.

Description

IRON CARBONYL CONTAINING COATING COMPOSITION
RELATED APPLICATION
This application claims priority based on U.S. Provisional Application Serial No.
60/618,888, filed October 14, 2004.
FIELD OF THE INVENTION
The present invention relates to a coating composition for coating metal substrates, which provides both excellent weldability and corrosion resistance.
The coating composition includes polyurethane polyol (PUPO) and iron carbonyl.
The PUPO does an excellent job of binding the iron carbonyl, as well as any additives (e.g., corrosion inhibitors), and the iron carbonyl provides for excellent weldability.
BACKGROUND OF THE INVENTION
The automotive market has long utilized a weldable primer that is applied by a continuous coil coating process for coil sheet steel. After the primer is applied, the coil is recoiled and sent to automotive plants for forming into various body parts. The unique part of this process is that the primer is applied to the metal before it is formed.
In the 1970's and 1980's zinc rich coatings were applied as primers to automotive cold rolled steel. Generally, a chromate pre-treatment, for example DacrometTM, was coated on the steel followed by the application of the zinc rich coating. When the zinc rich coating used was ZincrometTM, the pre-coated metal was called Zincrometal. During its peak time, Zincrometal was a product of choice for the passenger car body in the US and also used in Europe. This type of product/process was used extensively on cold rolled steel prior to the use of galvanized steel. The primer used on cold rolled steel was rich in zinc both for weldability and for corrosion resistance. Currently this type of product is being used in isolated markets over galvanized steel as zinc coated cold rolled steel and shows improved corrosion resistance over uncoated galvanized steel.
Galvanized steel is steel that is protected against corrosion with a layer of another metal. The protective layer can be applied by thermal (hot dip) or by electrolytic (electrolytic galvanizing) methods. The protective layer on steel substrates usually is a zinc comprising layer. With the development of galvanized steel in the mid 1980's, the automotive industry started to change from using cold rolled steel that has been coated with a zinc rich coating, to utilizing (electro-) galvanized steel.
Generally, (electro-) galvanized steel is manufactured in a coil. From the coil, (body) parts are formed, which are, optionally, subsequently electro-coated (E- coated) .
As discussed above, the parts formed out of either traditional galvanized steel coil or out of (galvanized) steel coil are normally E-coated. This E-coat is a primer that prevents the steel against corrosion. A disadvantage of E-coating is that the coating may not reach a number of areas in the automotive body such as the hem flanges. Therefore, traditional galvanized steel coil is normally coated with a (pre)prime before the parts are formed. The pre-prime preferably is a conductive, anti-corrosive coating which insures the areas, which are not reached in an E- Coat process, have a primed surface to prevent corrosion. Generally, such pre- prime is applied, then the coil is recoiled, and next sent to automotive plants for forming into various body parts.
Besides the problem of reaching all areas, the use of E-coat is very expensive and requires submersion of the entire automotive body in a bath. The ability to pre-prime the galvanized metal is a way to eliminate the need for E-coat. Therefore, parts formed out of traditional pre-primed galvanized steel coil are sometimes used without subsequently E-coating them. In the preparation of a pre-prime product, improved corrosion resistance can also be obtained by the use of PUPOs. PUPOs are prepared by the reaction of a multifunctional isocyanate with that of an α-β, or α-γ-diol. Urethane linkages are then built into the backbone of the resin. General descriptions of the preparation of conventional PUPOs can be found in the patents of Gardon (US 5155201 A), Walker (US5130405A) and Yahkind (US6624277B2).
As noted above, it has been difficult to achieve both weldability and corrosion resistance in a coating composition. Usually, weldability requires a very thin film thickness, while corrosion resistance deteriorates with a thinner film. However, the present invention achieves both excellent weldability and corrosion resistance by combining PUPO and iron carbonyl in a coating composition. One feature of the invention is that it can be applied by conventional coil coating methods, e.g., reverse roll coat, etc.
SUMMARY OF THE INVENTION
In summary, the coating composition of the invention includes PUPO and iron carbonyl, optionally with other resins and additives of the type used in coating compositions, although specific ones used herein might be different from those used before. As a result, a coating composition, process for coating the same, and a coated metal substrate with excellent weldability and corrosion resistance is realized.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows panels resulting from a cyclic test of 80 cycles; Fig. 2 shows panels resulting from a cyclic test of 40 cycles; Fig. 3 shows panels resulting from a cyclic test of 20 cycles; Fig. 4 shows panels resulting from a cyclic test of 20 cycles; Fig. 5 shows panels resulting from a spot welding test; Fig. 6 shows panels resulting from a spot welding test; Fig. 7 is a table of results from a spot welding test; Fig. 8 is a graph of results testing the coefficient of friction; Fig. 9 shows photographs of the results of forming tests; and Fig. 10 is a table of results from adhesive bond testing.
DETAILED DESCRIPTION OF THE INVENTION The coating composition of the present invention includes PUPO and iron carbonyl. Preferably, it also includes other resins and a variety of additives. Polyester resins, epoxy resins, phenoxy resin, etc., can be included in the coating composition.
Preferably, the PUPO in the composition has both flexibility and crosslinking ability. Means for achieving such a PUPO composition are apparent to those skilled in the art. For example, a single PUPO could have both flexibility and crosslinking ability, two or more PUPOs can be combined to achieve PUPOs that are flexible and ones that are self-crosslinking, a flexible PUPO can be combined with a more traditional blocked isocyanate, etc. The present inventors have tried to increase flexibility using a flexible PUPO with a long chain alcohol group on an isocyanate arm, e.g., Setal 10-9448 from Nuplex Resins. A separate PUPO was utilized by the present inventors to provide crosslinking ability by means of a partially blocked isocyanate (this PUPO is referred to as a modified PUPO in the formulations and is proprietary to Akzo Nobel). However, it is apparent to the skilled artisan that a single PUPO could be provided which has both flexibility and crosslinking ability.
Akzo Nobel's proprietary modified PUPO (used in the formulation examples) is modified by substituting some of the diols with that of a blocking agent that, under high temperature conditions (above 350F), will unblock to yield free isocyanate groups that can further react with other hydroxyl-containing compounds. Blocked isocyanates are described in the patent of Bayer Aktiengesellschaft (US3583943A) The coating composition can also contain a high molecular weight phenoxy resin (e.g., wt. avg. MW 40,000-60,000). A representative example is Paphen PKHS 30 PMA, available from Phenoxy Assoc. This resin has been found to work well together with the PUPO and iron carbonyl of the inventive composition. A lower molecular weight epoxy resin can also be used.
Additives used in the inventive composition include those generally found in coating compositions. In particular, the inventive composition preferably includes one or more corrosion inhibitors (usually chromate-containing or chromate-free pigments (e.g., Calcium ion exchange silica, e.g., Shieldex AC5, available from Davison Grace)), one or more lubricants (organic (e.g., polytetrafluoroethylene (PTFE), etc.) or inorganic (e.g., graphite, boron nitride, molybdenum disulfide, etc.)), one or more suspension agents (e.g., clay (e.g., Tixogel MP 250, available from Sudchemie), etc.), in one or more solvent carriers.
Surprisingly, the unique combination of two lubricants, molybdenum disulfide.and PTFE powder, provides formability of parts without putting undo stress on the fabrication dyes. For example, the inventors have tried MoIy disulfide Tec, available from Amax Inc. and Micropower S1100, available from ISP, but these lubricants are available from other sources as well.
Representative examples of solvent carriers include, but are not limited to:
P. M. Acetate Dow Chemical Solvent
Di Basic Ester DBE Du Pont Solvent
Diacetate Alcohol Dow Chemical Solvent
Cyclo Sol 100 Exxon Chemical Aromatic solvent
The coating composition of the present invention is intended for use on metal substrates, but use on other substrates is not discouraged. Such metal substrates may be pre-treated and can include many zinc alloys, e.g., EG steel, hot dip galvanized, Galvanneal, etc.
The inventive coating composition can be applied by any known coil coating method. Further, it can be formed with a variety of techniques, including blanking dyes, hydroform, etc., without losing its weldability and corrosion-resistant properties.
In addition to excellent weldability and corrosion resistance, the inventive coating composition exhibits improved adhesive substrate bonding characteristics and a smoother finish. Another important advantage of the invention is that it obtains all of these benefits at very low dry film thicknesses (e.g., about 1 to about 10 microns dry film thickness (DFT), usually about 3 to about 5 microns DFT).
Examples of amounts/ranges of a FORMULATION of the inventive composition
Weight Range 1 Range 2 Range 3
Raw Material % wt.% wt.% wt. %
(about) (about) (about) (about)
Phenoxy resin 6.20 5-8 2-10 1-30
P. M. Acetate solvent 8.22 7-9 2-10 1-20
Flexible PUPO 11.57 10-13 2-15 1-50
Akzo Nobel modified
2-10 1-30 PUPO 5.31 4-7
Lubricant 0.36 0.1-0.5 0.1-1 0.1-5
Lubricant 0.51 0.1-0.6 0.1-1 0.1-5
Iron carbonyl 45.86 40-50 30 -60 10-80
Corrosion inhibitor 10.38 8-12 5-15 1-30
Di Basic Ester DBE
1-10 1-30 solvent 5.46 4-6
Diacetone Alcohol
1-5 1-20 solvent 1.59 1-3
Cyclo Sol 100 Aromatic
1-5 1-20 solvent 1.59 1-3
Suspension aid 0.24 0.1-0.5 0.1-1 0.1-10
Di Basic Ester DBE
1-10 1-30 sovent 2.73 1- 5
TOTAL 100.02 The invention is further illustrated in the following Examples which, however, are not intended to limit the same.
Formulation Example 1
Lbs. GaI. Component
22.69 2.65 Phenoxy Resin
30.00 3.73 PM Acetate Solvent
42.36 Akzo Nobel modified PUPO Resin
1.33 0.07 PTFE powder
1.87 0.05 Molybdenum disulfide Powder
167.84 Carbonyl Iron Powder (5micron)
38.01 2.53 Shieldex AC3 Anti-corrosive Pigment
10.00 1.10 DBE Di Basic Ester Solvent
10.00 1.10 DBE Di Basic Ester Solvent
11.62 1.49 Diacetone Alcohol Solvent
11.62 1.60 Aromatic 100 Blend Solvent
1.73 0.12 Bentone Powder
19.44 2.36 flexible PUPO Resin
10.00 1.10 DBE Di Basic Ester Solvent
Formulation Example 2
Figure imgf000008_0001
Formulation Example 2 was coated on panels which were subjected to cyclic tests of repeating cycles of humidity, salt, high temperature and dry conditions. The results of these tests are shown in Figs. 1-4. In one example, the coating composition is cured in the oven at about 430F peak metal temperature (PMT), wherein it cures in about 30 seconds at an oven temperature of about 750F. However, other means of cure, temperature for curing, etc. are possible and apparent to the skilled artisan.
The invention is further illustrated by the following claims, which, however, do not limit the scope thereof.

Claims

1. A coating composition made from a mixture comprising polyurethane polyol and iron carbonyl.
2. The coating composition of claim 1 , wherein the polyurethane polyol portion is flexible and crosslinking.
3. The coating composition of claim 1 , wherein the polyurethane polyol portion is made up of one or more polyurethane polyols that provide both flexability and crosslinking ability.
4. The coating composition of claim 1 , further comprising phenoxy resin having a wt. avg. Mw of about 40,000 to about 60,000, molybdenum disulfide and PTFE powder.
5. A coating composition made from a mixture comprising polyurethane polyol, iron carbonyl and calcium ion-exchange silica, wherein the polyurethane polyol portion is flexible and crosslinking.
6. A coating composition made from a mixture comprising about 2 to about 30 wt. % polyurethane polyol, about 2 to about 10 wt. % phenoxy resin having a wt. avg. Mw of about 40,000 to about 60,000, about 30 to about 60 wt. % iron carbonyl and about 5 to about 15 wt. % calcium ion-exchange silica, wherein the polyurethane polyol portion is flexible and crosslinking.
7. The coating composition of claim 6, further comprising molybdenum disulfide and PTFE powder.
8. The coating composition of claim 6, wherein the coating composition is coated on a metal substrate at a dry film thickness of about 3 to about 5 microns.
9. The coating composition of claim 6, wherein the coating is applied as a coil coating.
PCT/US2005/037008 2004-10-14 2005-10-14 Iron carbonyl containing coating composition WO2006044653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61888804P 2004-10-14 2004-10-14
US60/618,888 2004-10-14

Publications (1)

Publication Number Publication Date
WO2006044653A1 true WO2006044653A1 (en) 2006-04-27

Family

ID=35744782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/037008 WO2006044653A1 (en) 2004-10-14 2005-10-14 Iron carbonyl containing coating composition

Country Status (1)

Country Link
WO (1) WO2006044653A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788853A (en) * 2014-01-21 2014-05-14 江苏大学 Preparation method for polyurethane/molybdenum disulfide superamphiphobic coating layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843593A (en) * 1972-06-05 1974-10-22 Du Pont Radar absorptive coating composition of an acrylic polymer,a polyester and an isocyanate cross-linking agent
EP0650142A1 (en) * 1993-10-22 1995-04-26 Tomoegawa Paper Co. Ltd. Magnetic recording medium and method of manufacture of same
WO2001088012A2 (en) * 2000-05-18 2001-11-22 Akzo Nobel N.V. Aromatic polyurethane polyol
US20050116194A1 (en) * 2003-05-20 2005-06-02 Alan Fuchs Tunable magneto-rheological elastomers and processes for their manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843593A (en) * 1972-06-05 1974-10-22 Du Pont Radar absorptive coating composition of an acrylic polymer,a polyester and an isocyanate cross-linking agent
EP0650142A1 (en) * 1993-10-22 1995-04-26 Tomoegawa Paper Co. Ltd. Magnetic recording medium and method of manufacture of same
WO2001088012A2 (en) * 2000-05-18 2001-11-22 Akzo Nobel N.V. Aromatic polyurethane polyol
US20050116194A1 (en) * 2003-05-20 2005-06-02 Alan Fuchs Tunable magneto-rheological elastomers and processes for their manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788853A (en) * 2014-01-21 2014-05-14 江苏大学 Preparation method for polyurethane/molybdenum disulfide superamphiphobic coating layer
CN103788853B (en) * 2014-01-21 2016-04-27 江苏大学 The preparation method of the super two open coat of a kind of urethane/molybdenumdisulphide

Similar Documents

Publication Publication Date Title
US6835459B2 (en) Conductive organic coatings
KR100740068B1 (en) Conductive organic coatings
EP0659855A2 (en) Water-based coating composition
US7638198B2 (en) Clear coating composition, method of forming multilayer coating film and inmold decoration product
JP4635275B2 (en) CLEAR COATING COMPOSITION, METHOD FOR FORMING MULTILAYER COATING AND DECORATIVE MOLDED ARTICLE
JP5663486B2 (en) Composition for forming an adhesive layer for use in a multilayer surface-treated steel sheet
EP2540865A1 (en) Surface-treating agent for zinc-plated steel sheet, and zinc-plated steel sheet and process for production thereof
US20090324957A1 (en) Conductive, organic coatings having an optimized polymer system
WO2016210237A1 (en) Polyaspartic ester based coatings for metal surfaces
US20080051526A1 (en) Coating composition
KR910002492B1 (en) Highly corrosion-resistant multi-layer coated steel sheets
JPH0655137A (en) Method for formatio of composite film on surface of aluminum or aluminum alloy
AU2004202975A1 (en) Inorganic-organic composite-treated zinc-plated steel sheet
JPH0238583A (en) Double-ply coated steel sheet
US6838118B2 (en) Method of coating bare, untreated metal substrates
WO2006044653A1 (en) Iron carbonyl containing coating composition
US5968662A (en) Coated metal sheet bondable with adhesive
KR101744008B1 (en) Paint composition for coating non-ferrous metal and coated article
AU2004202966A1 (en) Inorganic-organic composite-treated zinc-plated steel sheet
JP3071665B2 (en) Primer composition
WO2007123642A1 (en) Adhesion-promoting compositions and methods of promoting adhesion between a coating and a substrate
JP3124266B2 (en) Painted steel plate with excellent coating film adhesion and corrosion resistance of the processed part and low environmental load
JP3223813B2 (en) Pre-coated steel sheet with excellent formability and corrosion resistance
JP2524886B2 (en) Paint composition and coating film forming method
JPH0448348B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809933

Country of ref document: EP

Kind code of ref document: A1