WO2006034790A1 - Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems - Google Patents

Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems Download PDF

Info

Publication number
WO2006034790A1
WO2006034790A1 PCT/EP2005/010027 EP2005010027W WO2006034790A1 WO 2006034790 A1 WO2006034790 A1 WO 2006034790A1 EP 2005010027 W EP2005010027 W EP 2005010027W WO 2006034790 A1 WO2006034790 A1 WO 2006034790A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
fuel cell
cell system
heat exchanger
inlet
Prior art date
Application number
PCT/EP2005/010027
Other languages
English (en)
French (fr)
Inventor
Philip Anumu
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2006034790A1 publication Critical patent/WO2006034790A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell system and to a method for operating a fuel cell system, wherein the fuel cell system has at least one fuel cell and a cathode inlet supplying the cathode feed and a cathode outlet discharging the cathode outlet.
  • a fuel cell system is known for example from the generic DE 195 48 297 C2.
  • the cathode supply must be cooled again to a required operating temperature range. In conventional systems, this is done by a through-flow of cooling water heat exchanger.
  • the object of the invention is to provide a fuel cell system and a method for operating a
  • This object is achieved in that it is provided that the cathode inlet compressed Kathodenzu Kunststoff is supplied and that a heat exchanger is flowed through by a warmer cathode feed and a colder cathode exhaust gas.
  • an additional cooling capacity is made possible by the cooling of the cathode feed air by means of a heat exchanger through which colder cathode exhaust gas flows.
  • the cathode exhaust gas is heated to a temperature above 100 degrees Celsius, thereby preventing or reducing condensate formation.
  • the additional cooling power also allows a smaller dimensioning of the conventional cooling circuit of the vehicle. Furthermore, at low ambient temperatures by avoiding the formation of condensation in the exhaust of the vehicle resulting in ice formation on roads is avoided.
  • the cathode exhaust gas is passed after the cathode outlet in a gas / gas humidifier through which flows Kathodenzu Kunststoff which is arranged in the flow direction before the cathode inlet or after the cathode outlet, whereby the humidity of the cathode exhaust gas is reduced.
  • a second heat exchanger through which a colder cooling medium flows is arranged downstream of the first heat exchanger in the flow direction of the cathode feed air.
  • the second heat exchanger is preferably integrated into the cooling circuit of the vehicle.
  • the second heat exchanger allows a further cooling of the cathode feed air, which is why the first heat exchanger can thereby be dimensioned smaller.
  • the dependence on the amount and temperature of the cathode exhaust gas with respect to the temperature of the cathode feed to the cathode inlet is reduced.
  • first and the second heat exchanger are arranged adjacent to each other in such a way that results in an advantageously compact design.
  • Fig. 1 shows the schematic structure of a
  • FIG. 2 shows the schematic structure of a
  • FIG. 3 shows the schematic structure of a
  • Fuel cell system with two heat exchangers in a compact design Fuel cell system with two heat exchangers in a compact design.
  • Figure 1 shows the structure of a fuel cell system as it can be used for example in a vehicle.
  • the fuel cell system shown has a compressor 1 for ambient air, a heat exchanger 2, a gas / gas humidifier 3 and a fuel cell 4.
  • the fuel cell 4 is here representative of a fuel cell stack, in which a plurality of fuel cells are electrically connected in series.
  • the fuel cell 4 consists of an anode 5 and a cathode 6, which are separated by a proton permeable and electrically non-conductive proton exchange membrane 7.
  • the anode 5 is supplied via the anode inlet 8 hydrogen as fuel.
  • the cathode 6 is supplied via the cathode inlet 9 with oxygen or air as the oxidant.
  • the amount of the supplied air is controlled by the compressor 1.
  • the spent cathode exhaust gas is passed through a cathode outlet 10 through the gas / gas humidifier 3 in the heat exchanger 2. From there, the cathode exhaust gas is discharged through, for example, an exhaust to the environment.
  • the cathode feed and the cathode off gas have a temperature in the range of 70 to 90 degrees Celsius.
  • the cathode exhaust gas is heated by about 180 degrees Celsius when entering the heat exchanger 2 cathode hot air to over 100 degrees Celsius and the cathode feed cooled accordingly.
  • the heat exchanger 2 should be dimensioned in the illustrated fuel cell system so that the temperature of the cathode inlet before the gas / gas humidifier 3 corresponds approximately to the temperature of the cathode exhaust gas after the gas / gas humidifier 3.
  • a second heat exchanger 11 is shown - is flowed through by a supply line 12 and a discharge line 13 from a cooling medium, preferably cooling water from the cooling circuit of the vehicle.
  • the temperature of the cathode feed air before the gas / gas humidifier 3 should correspond approximately to the temperature of the cathode waste gas downstream of the gas / gas humidifier 3.
  • FIG. 3 shows the components of FIG. 2, wherein the first heat exchanger 2 and the second heat exchanger 11 are arranged adjacent to one another in a form favorable for a compact design.
  • the illustrated arrangement is only one example of a compact design.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft ein Brennstoffzellensystem sowie ein Verfahren zum Betreiben eines Brennstoffzellensystems mit mindestens einer Brennstoffzelle (4), insbesondere einer Brennstoffzelle mit einer Protonenaustauschmembran (7), und einem die Kathodenzuluft zuführenden Kathodeneinlass (9) sowie einem das Kathodenabgas abführenden Kathodenauslass (10). Um ein effizienteres Betreiben des Brennstoffzellensystems zu ermöglichen, wird dem Kathodeneinlass (9) verdichtete Kathodenzuluft zugeführt und ein vorgeschalteter Wärmetauscher (2) von einer wärmeren Kathodenzuluft und einem kälteren Kathodenabgas durchströmt.

Description

Brennstoffzellensystem und Verfahren zum Betreiben eines
Brennstoffzellensystems
Die Erfindung betrifft ein Brennstoffzellensystem sowie ein Verfahren zum Betreiben eines Brennstoffzellensystems, wobei das Brennstoffzellensystem mindestens eine Brennstoffzelle und einen die Kathodenzuluft zuführenden Kathodeneinlass sowie einen das Kathodenabgas abführenden Kathodenauslass aufweist. Ein solches Brennstoffzellensystem ist beispielsweise aus der gattungsgemäßen DE 195 48 297 C2 bekannt.
Um den für einen optimalen Betrieb der Brennstoffzelle erforderlichen Betriebstemperaturbereich einzuhalten, wird in der DE 195 48 297 C2 zumindest ein Teil des Anodenabgases und/oder des Kathodenabgases zum Kathodeneinlass zurückgeführt und dabei die Temperatur des rückgeführten Abgases entsprechend eingestellt. Des Weiteren wird die im Kathodenabgas enthaltene Wärme mittels eines Wärmetauschers an das zugeführte Brenngas übertragen.
Es ist ebenfalls bekannt, die beim Betrieb von Brennstoffzellen anfallende Abwärme als Nutzwärme zu entziehen. Dies geschieht vorzugsweise durch einen Wärmetauscher, der nach dem Kathodenauslass angeordnet ist. Aus der DE 199 23 738 C2 ist bekannt, die Kathode einer Brennstoffzelle mit verdichteter Luft zu speisen. Diese Luft kann entweder aus einem Druckluftreservoir oder von einem Kompressor für Umgebungsluft stammen.
Wird Umgebungsluft mittels eines Kompressors verdichtet, so erhöht sich hierbei die Temperatur der Luft. In einem Brennstoffzellensystem muss deshalb die Kathodenzuluft wieder auf einen erforderlichen Betriebstemperaturbereich gekühlt werden. In herkömmlichen Systemen geschieht dies durch einen mit Kühlwasser durchströmten Wärmetauscher.
Aufgabe der Erfindung ist es, ein Brennstoffzellensystem sowie ein Verfahren zum Betreiben eines
Brennstoffzellensystems vorzusehen, die ein effizienteres Betreiben des Brennstoffzellensystems ermöglichen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass es vorgesehen ist, dass dem Kathodeneinlass verdichtete Kathodenzuluft zugeführt wird und dass ein Wärmetauscher von einer wärmeren Kathodenzuluft und einem kälteren Kathodenabgas durchströmt wird.
Vorteile der erfindungsgemäßen Maßnahmen sind erstens, dass durch die Kühlung der Kathodenzuluft mittels eines von kälterem Kathodenabgas durchströmten Wärmetauschers eine zusätzliche Kühlungsleistung ermöglicht wird. Und zweitens, dass das Kathodenabgas auf eine Temperatur oberhalb von 100 Grad Celsius erwärmt wird, wodurch eine Kondensatbildung vermieden beziehungsweise verringert wird. Bei einer Anwendung des Brennstoffzellensystems in einem Fahrzeug werden somit Kühlungslimitierungen bei hohen Umgebungstemperaturen oder bei hohem Leistungsbedarf, wie beispielsweise bei einer Bergfahrt, durch die zusätzliche Kühlungsleistung beseitigt. Die zusätzliche Kühlungsleistung erlaubt ebenfalls eine geringere Dimensionierung des herkömmlichen Kühlkreislaufes des Fahrzeuges. Des Weiteren wird bei tiefen Umgebungstemperaturen durch die Vermeidung der Kondensatbildung im Auspuff des Fahrzeuges eine hieraus entstehende Eisbildung auf Fahrbahnen vermieden.
In einer Ausgestaltung der Erfindung wird das Kathodenabgas nach dem Kathodenauslass in einen von Kathodenzuluft durchströmten Gas/Gas-Befeuchter, der in Durchströmungsrichtung vor dem Kathodeneinlass beziehungsweise nach dem Kathodenauslass angeordnet ist, geleitet, wodurch die Feuchte des Kathodenabgases reduziert wird.
In einer vorteilhaften Ausgestaltung der Erfindung ist in Durchströmungsrichtung der Kathodenzuluft nach dem ersten Wärmetauscher ein zweiter von einem kälteren Kühlmedium durchströmter Wärmetauscher angeordnet. Bei einer Anwendung des BrennstoffZeilensystems in einem Fahrzeug ist der zweite Wärmetauscher vorzugsweise in den Kühlkreislauf des Fahrzeuges integriert. Der zweite Wärmetauscher ermöglicht eine weitere Abkühlung der Kathodenzuluft, weshalb der erste Wärmetauscher hierdurch geringer dimensioniert werden kann. Als weiterer Vorteil wird die Abhängigkeit von der Menge und Temperatur des Kathodenabgases bezüglich der Temperatur der Kathodenzuluft am Kathodeneinlass reduziert.
In einer weiteren Ausgestaltung der Erfindung sind der erste und der zweite Wärmetauscher derart aneinander angrenzend angeordnet, dass sich eine vorteilhaft kompakte Bauweise ergibt. Weitere Merkmale und Merkmalskombinationen ergeben sich aus der Beschreibung sowie den Zeichnungen. Konkrete Ausführungsbeispiele der Erfindung sind in den Zeichnungen vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen
Fig. 1 den schematischen Aufbau eines
BrennstoffZeilensystems mit einem Wärmetauscher und einem Befeuchter, Fig. 2 den schematischen Aufbau eines
Brennstoffzellensystems mit zwei Wärmetauschern und Fig. 3 den schematischen Aufbau eines
Brennstoffzellensystems mit zwei Wärmetauschern in kompakter Bauweise.
Figur 1 zeigt den Aufbau eines Brennstoffzellensystems wie er beispielsweise in einem Fahrzeug verwendet werden kann. Das dargestellte BrennstoffZeilensystem weist einen Kompressor 1 für Umgebungsluft, einen Wärmetauscher 2, einen Gas/Gas- Befeuchter 3 und eine Brennstoffzelle 4 auf. Die Brennstoffzelle 4 steht hier stellvertretend für einen Brennstoffzellenstapel, bei dem mehrere Brennstoffzellen elektrisch in Reihe geschaltet sind.
Die Brennstoffzelle 4 besteht aus einer Anode 5 und einer Kathode 6, die von einer protonendurchlässigen und elektrisch nicht leitfähigen Protonenaustauschmembran 7 getrennt werden. Der Anode 5 wird über den Anodeneinlass 8 Wasserstoff als Brennstoff zugeführt. Die Kathode 6 wird über den Kathodeneinlass 9 mit Sauerstoff beziehungsweise Luft als Oxidationsmittel versorgt. Die Menge der zugeführten Luft wird durch den Kompressor 1 gesteuert. Das verbrauchte Kathodenabgas wird über einen Kathodenauslass 10 durch den Gas/Gas-Befeuchter 3 in den Wärmetauscher 2 geleitet. Von dort aus wird das Kathodenabgas über beispielsweise einen Auspuff an die Umgebung abgegeben.
Im Gas/Gas-Befeuchter 3 haben die Kathodenzuluft und das Kathodenabgas eine Temperatur im Bereich von 70 bis 90 Grad Celsius. Beim Durchströmen des Wärmetauschers 2 wird das Kathodenabgas durch die beim Eintritt in den Wärmetauscher 2 etwa 180 Grad Celsius heiße Kathodenzuluft auf über 100 Grad Celsius erwärmt und die Kathodenzuluft entsprechend gekühlt.
Der Wärmetauscher 2 sollte im dargestellten Brennstoffzellensystem so dimensioniert sein, dass die Temperatur der Kathodenzuluft vor dem Gas/Gas-Befeuchter 3 etwa der Temperatur des Kathodenabgases nach dem Gas/Gas- Befeuchter 3 entspricht.
In Figur 2 ist neben den in Figur 1 beschriebenen Komponenten ein zweiter Wärmetauscher 11 dargestellt,- der durch eine Zuleitung 12 und eine Ableitung 13 von einem Kühlmedium, vorzugsweise Kühlwasser aus dem Kühlkreislauf des Fahrzeuges, durchströmt wird.
Hierbei gilt ebenfalls, dass die Temperatur der Kathodenzuluft vor dem Gas/Gas-Befeuchter 3 etwa der Temperatur des Kathodenabgases nach dem Gas/Gas-Befeuchter 3 entsprechen sollte.
Figur 3 zeigt die Komponenten der Figur 2, wobei der erste Wärmetauscher 2 und der zweite Wärmetauscher 11 in einer für eine kompakte Bauweise günstigen Form aneinander angrenzend angeordnet sind. Die dargestellte Abordnung stellt nur ein Beispiel einer kompakten Bauweise dar.

Claims

Patentansprüche
1. Verfahren zum Betreiben eines BrennstoffZeilensystems mit mindestens einer Brennstoffzelle (4), insbesondere einer Brennstoffzelle mit einer Protonenaustauschmembran (7), und einem die Kathodenzuluft zuführenden Kathodeneinlass (9) sowie einem das Kathodenabgas abführenden Kathodenauslass (10) , dadurch gekennzeichnet, dass dem Kathodeneinlass (9) verdichtete Kathodenzuluft zugeführt wird und dass ein Wärmetauscher (2) von einer wärmeren
Kathodenzuluft und einem kälteren Kathodenabgas durchströmt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kathodenzuluft vor dem Kathodeneinlass und das Kathodenabgas nach dem Kathodenauslass einen Befeuchter (3) durchströmt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kathodenzuluft nach dem ersten Wärmetauscher (2) einen zweiten Wärmetauscher (11) durchströmt, der von einem kälteren Kühlmedium durchströmt wird.
4. Brennstoffzellensystem mit mindestens einer Brennstoffzelle (4) , insbesondere einer Brennstoffzelle mit einer Protonenaustauschmembran (7), und einem die Kathodenzuluft zuführenden Kathodeneinlass (9) sowie einem das Kathodenabgas abführenden Kathodenauslass (10) , dadurch gekennzeichnet, dass in Durchströmungsrichtung vor dem
Kathodeneinlass (9) eine Vorrichtung (1) zur Verdichtung der Kathodenzuluft und ein von einer wärmeren Kathodenzuluft und einem kälteren Kathodenabgas durchströmter Wärmetauscher (2) angeordnet sind.
5. Brennstoffzellensystem nach Anspruch 4, dadurch gekennzeichnet, dass in Durchströmungsrichtung vor dem Kathodeneinlass (9) beziehungsweise nach dem Kathodenauslass (10) ein Befeuchter (3) angeordnet ist.
6. Brennstoffzellensystem nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass in Durchströmungsrichtung der Kathodenzuluft nach dem ersten Wärmetauscher (2) ein zweiter von einem kälteren Kühlmedium durchströmter Wärmetauscher (11) angeordnet ist.
7. Brennstoffzellensystem nach Anspruch β, dadurch gekennzeichnet, dass der erste (2) und der zweite Wärmetauscher (11) aneinander angrenzend angeordnet sind.
PCT/EP2005/010027 2004-09-28 2005-09-16 Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems WO2006034790A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004046922A DE102004046922A1 (de) 2004-09-28 2004-09-28 Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
DE102004046922.9 2004-09-28

Publications (1)

Publication Number Publication Date
WO2006034790A1 true WO2006034790A1 (de) 2006-04-06

Family

ID=35445693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/010027 WO2006034790A1 (de) 2004-09-28 2005-09-16 Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems

Country Status (2)

Country Link
DE (1) DE102004046922A1 (de)
WO (1) WO2006034790A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216728B2 (en) 2007-01-22 2012-07-10 Daimler Ag Device for treating reaction gases in fuel cells

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007003240B3 (de) * 2007-01-22 2008-09-04 Daimler Ag Rückkühlungs- und Befeuchtungseinrichtung in Brennstoffzellen
DE102008016372A1 (de) 2008-03-29 2009-10-01 Daimler Ag Brennstoffzellensystem für Kraftfahrzeuge
DE102008048894A1 (de) 2008-09-25 2010-04-01 Daimler Ag Brennstoffzellensystem und Verfahren zum Betreiben eines solchen
DE102011109383A1 (de) 2011-08-04 2013-02-07 Daimler Ag Ladeluftkühler für ein Brennstoffzellensystem
DE102011120545A1 (de) 2011-12-08 2013-06-13 Daimler Ag Vorrichtung zur Bereitstellung von Energie
DE102012018874A1 (de) * 2012-09-25 2014-03-27 Daimler Ag Brennstoffzellensystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360679A (en) * 1993-08-20 1994-11-01 Ballard Power Systems Inc. Hydrocarbon fueled solid polymer fuel cell electric power generation system
DE19606665A1 (de) * 1996-02-23 1997-08-28 Aeg Energietechnik Gmbh Anlage zur Erzeugung elektrischer Energie mit Festoxidbrennstoffzellen
US20020006537A1 (en) * 2000-05-30 2002-01-17 Tomoki Kobayashi Gas-supplying apparatus, gas-supplying mechanism and gas-supplying process in fuel cell
DE10152311A1 (de) * 2001-10-26 2003-05-15 Audi Ag Brennstoffzellensystem mit einer Brennstoffzellenabgas-Wasserrückgewinnungseinrichtung
EP1463135A1 (de) * 2003-03-27 2004-09-29 Nissan Motor Co., Ltd. Brennstoffzellensystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360679A (en) * 1993-08-20 1994-11-01 Ballard Power Systems Inc. Hydrocarbon fueled solid polymer fuel cell electric power generation system
DE19606665A1 (de) * 1996-02-23 1997-08-28 Aeg Energietechnik Gmbh Anlage zur Erzeugung elektrischer Energie mit Festoxidbrennstoffzellen
US20020006537A1 (en) * 2000-05-30 2002-01-17 Tomoki Kobayashi Gas-supplying apparatus, gas-supplying mechanism and gas-supplying process in fuel cell
DE10152311A1 (de) * 2001-10-26 2003-05-15 Audi Ag Brennstoffzellensystem mit einer Brennstoffzellenabgas-Wasserrückgewinnungseinrichtung
EP1463135A1 (de) * 2003-03-27 2004-09-29 Nissan Motor Co., Ltd. Brennstoffzellensystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216728B2 (en) 2007-01-22 2012-07-10 Daimler Ag Device for treating reaction gases in fuel cells

Also Published As

Publication number Publication date
DE102004046922A1 (de) 2006-03-30

Similar Documents

Publication Publication Date Title
DE19701560C2 (de) Brennstoffzellensystem
DE112007002347B4 (de) Klimatisierungssteuerungssystem
DE10392693B4 (de) Verfahren zur Kühlung einer Brennstoffzelle sowie Brennstoffzelle und Kühlsystem
EP3747074B1 (de) Kühlsystem für brennstoffzellenstacks
WO2006034790A1 (de) Brennstoffzellensystem und verfahren zum betreiben eines brennstoffzellensystems
DE102017118424A1 (de) Kreislaufsystem für ein Brennstoffzellen-Fahrzeug
WO2008089930A2 (de) Vorrichtung zur aufbereitung von reaktionsgasen in brennstoffzellen
DE102007046056A1 (de) Verbesserung des Wasserübertragungswirkungsgrades in einem Membranbefeuchter durch Reduzierung einer Trockenlufteinlasstemperatur
DE102018106534A1 (de) Brennstoffzellensystem
DE19548297C2 (de) Brennstoffzellenanordnung und Verfahren zum Betreiben einer Solchen
EP2287952B1 (de) Temperiervorrichtung
DE112011102786B4 (de) Lufteinnahmevorrichtung für luftgekühlte Brennstoffzellen und damit durchgeführtes Verfahren
AT526369B1 (de) Brennstoffzellensystem zur Erzeugung elektrischer Energie
AT408915B (de) Heizungsanlage
DE102018222547A1 (de) Brennstoffzellensystem
WO2014012615A1 (de) Brennstoffzellensystem
EP1600314A1 (de) Anordnung in einem Kältemittelkreislauf und Arbeitsverfahren
EP1178552B1 (de) Brennstoffzellensystem
DE102009048394B4 (de) Kühlsystem für Brennstoffzellensysteme, Verfahren zum Kühlen von Brennstoffzellensystemen
DE102008009130B4 (de) Verfahren zum Reduzieren flüssiger Wassertröpfchen in einem Anodeneinlass zu einem Brennstoffzellenstapel und entsprechend ausgebildetes Brennstoffzellensystem
WO2014173529A2 (de) Vorrichtung zur aufbereitung von luft
DE102021201306A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems, Brennstoffzellensystem
WO2017108624A1 (de) Gaszu- und abführsystem
DE102018205995A1 (de) Vorrichtung zur Konditionierung des Kathodengases und Brennstoffzellensystem mit einer solchen Vorrichtung
DE102019101884A1 (de) Brennstoffzellenanordnung mit Wirbelrohr, Brennstoffzellensystem und Fahrzeug mit einer Brennstoffzellenanordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05784054

Country of ref document: EP

Kind code of ref document: A1