WO2006019029A1 - Polymer electrolyte membrane, polymer film as material for same, method for producing electrolyte membrane, and solid polymer fuel cell using such electrolyte membrane - Google Patents

Polymer electrolyte membrane, polymer film as material for same, method for producing electrolyte membrane, and solid polymer fuel cell using such electrolyte membrane Download PDF

Info

Publication number
WO2006019029A1
WO2006019029A1 PCT/JP2005/014730 JP2005014730W WO2006019029A1 WO 2006019029 A1 WO2006019029 A1 WO 2006019029A1 JP 2005014730 W JP2005014730 W JP 2005014730W WO 2006019029 A1 WO2006019029 A1 WO 2006019029A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
electrolyte membrane
polymer electrolyte
fuel cell
polymer film
Prior art date
Application number
PCT/JP2005/014730
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Kuromatsu
Tomokazu Yamane
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006531721A priority Critical patent/JP4995568B2/en
Publication of WO2006019029A1 publication Critical patent/WO2006019029A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polymer electrolyte membrane, a polymer film as a material thereof, a method for producing the electrolyte membrane, and a solid polymer fuel cell using the electrolyte membrane.
  • Polymer compounds containing proton conductive groups such as sulfonic acid groups are solid polymer fuel cells, direct liquid fuel cells, direct methanol fuel cells, humidity sensors, gas sensors, and electochromic display elements. Used as a raw material for electrochemical devices such as
  • polymer electrolyte fuel cells are expected as one of the pillars of new energy technology.
  • Solid polymer fuel cells using a polymer electrolyte membrane made of a polymer compound containing a proton-conducting group have features such as operation at a low temperature and small size and light weight.
  • Direct liquid fuel cells, especially direct methanol fuel cells that use methanol directly as a fuel have features such as a simple structure and ease of fuel supply and maintenance, as well as high energy density.
  • lithium-ion secondary batteries it is expected to be applied to small consumer portable devices such as mobile phones and notebook computers.
  • Polymer compounds containing proton-conducting substituents such as sulfonic acid groups include solid polymer fuel cells, direct liquid fuel cells, direct methanol fuel cells, humidity sensors, gas sensors, and electochromic. Used as a raw material for electrochemical elements such as display elements. Among these, polymer electrolyte fuel cells are expected as one of the pillars of new energy technology.
  • a solid polymer fuel cell that uses an electrolyte membrane made of a polymer compound having a proton-conducting substituent is an automatic sensor that can operate at low temperatures and is small and lightweight.
  • Application to mobile vehicles such as cars, home cogeneration systems, and small portable devices for consumer use is under consideration.
  • Direct liquid fuel cells, particularly direct methanol fuel cells that use methanol as the direct fuel have features such as a simple structure, ease of fuel supply and maintenance, and high energy density. As a replacement for the next battery, it is expected to be applied to small consumer portable devices such as mobile phones and laptop computers.
  • a perfluorocarbon sulfonic acid membrane represented by Nafion has been widely studied.
  • Perfluorocarbon sulfonic acid membranes have high proton conductivity and are excellent in chemical stability such as acid resistance and acid resistance.
  • naphthion registered trademark
  • a so-called chemical short reaction occurs in which the permeation (also referred to as crossover) of a hydrogen-containing liquid such as methanol, which is a raw material for direct liquid fuel cells, is large.
  • Proton conductive electrolyte membranes used in polymer electrolyte fuel cells include naphthion ions.
  • Perfluorocarbon sulfonic acid membranes represented by (Nafion) (registered trademark) have been widely studied. Perfluorocarbon sulfonic acid membranes have high proton conductivity and excellent chemical stability such as acid resistance and acid resistance.
  • Nafion registered trademark
  • Nafion has a disadvantage that it is very expensive because it uses a complicated manufacturing process in which raw materials used are high.
  • naphthion registered trademark
  • Patent Document 1 proposes a sulfonic acid group-containing polyphenylene sulfide that is soluble in an aprotic polar solvent. It is disclosed that by introducing a sulfonic acid group in a chlorosulfonic acid homogeneous solution of poly (phenylene sulfide), solubility in an aprotic polar solvent can be imparted and the film can be easily covered.
  • solubility in methanol which is considered as a fuel for a fuel cell, may be imparted at the same time, and the range of use is remarkably restricted.
  • chlorosulfonic acid is used as a solvent and a sulfonating agent, it is difficult to control the amount of sulfonic acid group introduced or it may cause deterioration of the polysulfide sulfide.
  • a large amount of acid waste liquid is discharged at the time of reaction, at the time of collecting the resin, and at the time of washing.
  • suppressing permeation also called crossover
  • Patent Document 2 discloses a method for producing a polymer electrolyte membrane (proton conductive polymer membrane) made of a sulfonic acid group-containing polysulfide sulfide. According to this method, a polymer electrolyte membrane made of a solvent-insoluble sulfonic acid group-containing polyphenylene sulfide can be obtained. Well, it ’s been cunning.
  • Patent Document 3 discloses a polymer electrolyte membrane obtained by a method in which a polymer porous support is filled with an electrolyte monomer to increase the molecular weight.
  • Patent Document 4 discloses a polymer electrolyte membrane obtained by a method of introducing a sulfonic acid group into a polymer porous support having a high molecular weight by filling with a monomer. These are said to suppress the permeation (crossover) of the fuel and methanol used as fuel because they are suppressed by the porous support.
  • the manufacturing process is complicated, it is easily assumed that there will be problems in terms of manufacturing cost and productivity.
  • Patent Document 3 discloses a polymer electrolyte membrane in which a polymer porous support is filled with an electrolyte monomer to increase the molecular weight. Meta used as fuel It is said that the permeation (crossover) of these materials is suppressed because swelling with respect to knoll and water is suppressed by the porous support.
  • the manufacturing process is complicated, there are problems in terms of manufacturing costs.
  • Patent Document 1 Japanese Patent Publication No. 11 510198
  • Patent Document 2 Pamphlet of International Publication No. 02Z062896
  • Patent Document 3 Republished WO00Z54531
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-5171
  • the object of the present invention has been made in view of the above problems, and has excellent proton conductivity useful as a constituent material for polymer electrolyte fuel cells, direct liquid fuel cells, and direct methanol fuel cells.
  • the first of the present invention is
  • the third of the present invention is (A) is selected from the group consisting of polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyethersulfone, polyetherolene ketone and polyphenylene sulfide, and derivatives thereof.
  • 1 4 3 3 3 4 9 is selected from the group consisting of:
  • a sixth aspect of the present invention is
  • the above-mentioned) is at least one selected from polyethylene, polypropylene, and polymethylpentene, and the group force that is also a derivative force thereof.
  • (C) is polystyrene or a polystyrene derivative
  • R ⁇ is C H, and R ⁇ are independent of each other and are the same or different.
  • Said (C) is polystyrene polyisobutylene-polystyrene triblock copolymer, polystyrene poly (ethylene Z propylene) block copolymer, polystyrene poly (ethylene Z propylene) -polystyrene triblock copolymer, polystyrene-poly (ethylene Z).
  • (Butylene) polystyrene triblock copolymer and polystyrene poly (ethylene ether) The polymer according to any one of (2) to (7), characterized in that it is at least one selected from the group force consisting of (len) Z-propylene) -polystyrene triblock copolymer and derivatives thereof.
  • polymer electrolyte membrane has a methanol permeability coefficient of 2, OOO ⁇ mol / Ccm-day) or less for a 64 wt% aqueous methanol solution at 25 ° C.
  • a method for producing a polymer electrolyte membrane for use in a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, wherein the polymer according to any one of (1) to (10) above A method for producing a polymer electrolyte membrane, comprising contacting the film with a sulfonating agent in the presence of an organic solvent;
  • the twentieth aspect of the present invention is The halogenated hydrocarbon power dichloromethane, 1,2-dichloromouth ethane, and the group power of 1 chlorobutane power is at least one selected, and V of (17) to (19) A method for producing the polymer electrolyte membrane according to
  • a direct liquid fuel cell characterized in that
  • a direct methanol fuel cell characterized in that
  • (1) to (23) are the following (A-1) to (A-15), (B-1) to (B-13), (C1) to (C1)
  • thermoplastic elastomer (A) a polymer compound having an aromatic unit, (B) a thermoplastic elastomer,
  • A-2 of the present invention is
  • (A) is selected from the group consisting of polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyethersulfone, polyetherolene ketone and polyphenylene sulfide, and derivatives thereof.
  • the polymer phenolic as described in item (A-1) of the present invention characterized in that it is at least one selected.
  • this film As a material, it is preferable to realize a polymer electrolyte membrane in view of its high chemical and thermal stability and easy introduction of proton conductive groups.
  • Said (B) is a copolymer of polystyrene or a polystyrene derivative and the following general formula (2) and Z or (3): (A-1) to (A-2) of the present invention, A polymer film according to any one of
  • R ⁇ is C H, and R ⁇ may be the same or different from each other.
  • n, n, and x are integers of 0 or more.
  • this film As a material, it is preferable to realize a polymer electrolyte membrane in view of excellent processability and easy introduction of proton conductive groups.
  • polystyrene-polyisobutylene-polystyrene triblock copolymer polystyrene poly (ethylene Z propylene) block copolymer, polystyrene poly (ethylene Z propylene) -polystyrene triblock copolymer, polystyrene-poly (ethylene Z block).
  • Tylene Polystyrene triblock copolymer and polystyrene poly (ethylene-ethylene Z-propylene) -polystyrene triblock copolymer, and their at least one selected from the group force consisting of derivatives thereof.
  • A-1) to (A-3) the polymer film according to any of the above,
  • this film improves the compatibility and dispersibility of each component. It is preferable in that it has excellent processability and mechanical properties and is easy to introduce proton conductive groups.
  • V ⁇ Polymer electrolyte membrane can be realized.
  • the above (C) is at least one selected from polymer compounds having the following general formula (1): (A-1) to (A-4) of the present invention, A polymer Finolem as described in
  • this film By using this film as a material, a polymer electrolyte membrane having high chemical stability and excellent methanol blocking properties as described below can be realized.
  • the polymer film of the present invention described in the above (A-1) to (A-7) is a polymer used for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell. It is suitably used as a material for the electrolyte membrane.
  • the (A-8) of the present invention is
  • the present invention is a high polymer used for solid polymer fuel cells, direct liquid fuel cells, and direct methanol fuel cells.
  • the present invention relates to a molecular electrolyte membrane and a polymer film which is a material of the polymer electrolyte membrane.
  • the polymer electrolyte membrane of the present invention has at least three kinds of polymer compound powers of a polymer compound having an aromatic unit, a thermoplastic elastomer, and a polymer compound having no aromatic unit, and has an excellent proton. Both conductivity and high methanol barrier properties can be achieved.
  • the polymer compound having an aromatic unit includes polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, and polyphenylene sulfide.
  • at least one selected from the group consisting of these derivatives is preferable because of high chemical and thermal stability and easy introduction of proton conductive groups.
  • thermoplastic elastomer is a copolymer of polystyrene or a polystyrene derivative and the following general formula (2) and Z or (3)
  • the obtained polymer film and polymer electrolyte membrane It is preferable because it is excellent in processability and mechanical properties and is easy to introduce a proton conductive group.
  • R ⁇ is C H, and R ⁇ may be the same as or different from each other.
  • n, n, and x are integers of 0 or more.
  • thermoplastic elastomer polystyrene, polyisobutylene, polystyrene, triblock copolymer, polystyrene-poly (ethylene Z propylene) block copolymer, polystyrene, poly (ethylene Z propylene), polystyrene triblock copolymer, polystyrene Poly (ethylene Z butylene) polystyrene triblock copolymer and polystyrene Poly (ethylene ethylene Z propylene) polystyrene triblock copolymer, and at least one selected from the group consisting of derivatives thereof, each component If the compatibility and dispersibility of the resin is improved, the processability and mechanical properties are excellent, and the sulfonic acid group can be easily introduced, this is preferable.
  • the polymer compound having no aromatic unit is at least one selected from the following general formula (1) because of high chemical stability and excellent methanol blocking properties. [0063] [Chemical 8]
  • the polymer compound having no aromatic unit is polyethylene, Z, or polypropylene because it has high chemical stability and excellent methanol barrier properties, and can be produced at low cost.
  • the polymer compound is contained in an amount of 40% by weight or more and 90% by weight or less without an aromatic unit, since both excellent proton conductivity and high methanol blocking property are compatible.
  • the proton conductive group is preferably a sulfonic acid group from the viewpoint of easy introduction of the proton conductive group and proton conductivity of the obtained polymer electrolyte membrane.
  • the method for producing a polymer film comprising producing the polymer film according to any one of
  • (A-12) of the present invention is The method for producing a polymer electrolyte membrane according to (A-11) of the present invention, wherein the sulfonating agent is chlorosulfonic acid,
  • the present invention further relates to a high polymer used for a polymer electrolyte fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell.
  • the present invention relates to a method for producing a molecular electrolyte membrane and a method for producing a polymer film that is a material of a polymer electrolyte membrane. By producing the polymer film by melt extrusion, a polymer film material suitable for obtaining a polymer electrolyte membrane can be obtained with high productivity.
  • a high-molecular electrolyte membrane that achieves both excellent proton conductivity and high methanol barrier properties can be produced easily and with high production. It is preferable because it is obtained.
  • the sulfonating agent has a strong S-chlorosulfonic acid because a polymer electrolyte membrane having high proton conductivity can be easily obtained as soon as a sulfonic acid group as a proton conductive group is introduced.
  • a polymer electrolyte fuel cell characterized in that
  • a direct liquid fuel cell characterized in that
  • polymer electrolyte membrane according to any one of (A-8) or (A-9) of the present invention, or any of (A-11) or (A-12) of the present invention Listed polymer A polymer electrolyte membrane obtained by a method for producing a denatured membrane,
  • the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention is further provided.
  • the direct polymer electrolyte fuel cell used is excellent as a polymer electrolyte fuel cell because it has excellent proton conductivity and high durability.
  • the direct liquid fuel cell using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention has excellent proton conductivity and high liquid fuel barrier properties. It is excellent as a direct liquid fuel cell.
  • the direct methanol fuel cell using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention has excellent proton conductivity and high! It is compatible as a direct methanol fuel cell.
  • a material for a polymer electrolyte membrane used in a polymer electrolyte fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell at least,
  • Said (A) is polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyether sulfone, polyetherolene ketone and polyphenylene sulfide, and derivatives or copolymers thereof.
  • the (B-1) of the present invention is characterized in that at least one kind of group force is selected.
  • this film As a material, it is preferable to realize a polymer electrolyte membrane from the viewpoints of high chemical and thermal stability and easy introduction of proton conductive groups.
  • this film By using this film as a material, a polymer electrolyte membrane having high chemical stability and excellent methanol blocking properties as described below can be realized.
  • the polymer film of the present invention described in the above (B-1) to (B-5) of the present invention is used for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell.
  • High minute It is suitably used as a material for the child electrolyte membrane.
  • the polymer electrolyte membrane according to the sixth aspect of the present invention wherein the proton conductive group is a sulfonic acid group,
  • the present invention is a high polymer used for a polymer electrolyte fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell.
  • the present invention relates to a polymer electrolyte membrane and a polymer film which is a material of a polymer electrolyte membrane.
  • the polymer electrolyte membrane of the present invention has at least two kinds of polymer compound forces, ie, a polymer compound having an aromatic unit and a polymer compound having no aromatic unit.
  • the polymer compound having the aromatic unit includes polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, and polyphenylene sulfide.
  • at least one selected from the group consisting of derivatives and copolymers thereof is preferred because it has high chemical and thermal stability and facilitates the introduction of proton conductive groups.
  • polymer compound having no aromatic unit is at least one selected from polymer compounds represented by the following general formula (1), methanol-blocking property with high chemical stability Is preferable because it is excellent. [0088] [Chemical 10]
  • 1-4 may be the same or different from each other.
  • the polymer compound having no aromatic unit is polyethylene, Z, or polypropylene because the chemical stability is high, the methanol blocking property is excellent, and the polymer can be produced at low cost.
  • the polymer compound is contained in an amount of 40% by weight or more and 90% by weight or less without an aromatic unit, it is particularly preferable since both excellent proton conductivity and high methanol blocking properties are achieved.
  • the proton conductive group is preferably a sulfonic acid group from the viewpoint of ease of introduction of the proton conductive group and proton conductivity of the obtained polymer electrolyte membrane.
  • the method for producing a polymer film comprising producing the polymer film according to any one of
  • (B-10) of the present invention is The method for producing a polymer electrolyte membrane according to (B-9) of the present invention, wherein the sulfonating agent is chlorosulfonic acid,
  • the present invention further includes a high polymer used for a polymer electrolyte fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell.
  • the present invention relates to a method for producing a molecular electrolyte membrane and a method for producing a polymer film that is a material of the polymer electrolyte membrane. By producing the polymer film by melt extrusion, a polymer film material suitable for obtaining a polymer electrolyte membrane can be obtained with high productivity.
  • a polymer electrolyte membrane that achieves both excellent proton conductivity and high methanol barrier properties can be obtained with high productivity. Obtained and preferred.
  • the sulfonating agent is chlorosulfonic acid because a polymer electrolyte membrane having high proton conductivity is easily obtained as soon as a sulfonic acid group as a proton conductive group is introduced.
  • (B-11) of the present invention is (B-11)
  • polymer electrolyte membrane according to any one of (B-6) and (B-7) of the present invention, or any one of (B-9) or (B-10) of the present invention A polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to claim 1,
  • a polymer electrolyte fuel cell characterized in that
  • polymer electrolyte membrane according to any one of (B-6) and (B-7) of the present invention, or any one of (B-9) or (B-10) of the present invention A polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to claim 1,
  • a direct liquid fuel cell characterized in that
  • the polymer electrolyte membrane according to any one of (B-6) and (B-7) of the present invention, or any one of (B-9) or (B-10) of the present invention The polymer electrolysis described A polymer electrolyte membrane obtained by a method for producing a membrane,
  • the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention is further used.
  • the direct solid polymer fuel cell is excellent as a solid polymer fuel cell because it has excellent proton conductivity and high durability.
  • the direct liquid fuel cell using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention has excellent proton conductivity and high liquid fuel blocking properties. Therefore, it is excellent as a direct liquid fuel cell.
  • the direct methanol fuel cell using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention has excellent proton conductivity and high methanol barrier properties. It is compatible as a direct methanol fuel cell.
  • the aliphatic polymer compound has the following formulas (4) to (6):
  • Any of atomic groups selected from 3 3 3 4 9, and X and Y may be the same or different from each other. )
  • the aromatic polymer compound is at least one of polyphenylene sulfide, polyphenylene ether, polystyrene, syndiotactic polystyrene, polyether sulfone, polyether ether ketone (C-1)
  • a polymer film according to any one of (C-3) is at least one of polyphenylene sulfide, polyphenylene ether, polystyrene, syndiotactic polystyrene, polyether sulfone, polyether ether ketone (C-1)
  • the polymer film of the present invention described above is suitably used as a material for a polymer electrolyte membrane used for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell.
  • a proton-conducting polymer electrolyte membrane for use in a polymer electrolyte fuel cell, a direct liquid fuel cell, or a direct methanol fuel cell, and any one of (C-1) to (C-4) A polymer electrolyte membrane characterized in that a proton conductive group is bonded to an aromatic polymer compound present in the polymer film described above,
  • the present invention relates to a polymer electrolyte membrane used for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell.
  • the polymer electrolyte membrane of the present invention has at least two kinds of polymer compound forces, that is, an aliphatic polymer compound and an aromatic polymer compound containing a proton-conducting group. High methanol barrier properties.
  • the aliphatic polymer compound is contained in the polymer electrolyte membrane in an amount of 10% by weight to 95% by weight because both excellent proton conductivity and high methanol blocking properties are achieved.
  • the aliphatic polymer compound has the following formulas (4) to (6):
  • X and Y are ⁇ , CH, Cl, F, OCOCH, CN, COOH, COOCH, OC H, or
  • Any of atomic groups selected from 3 3 3 4 9, and X and Y may be the same or different from each other. And at least one selected from an aliphatic polymer compound having a repeating unit represented by formula (1) as a constituent component because it has excellent chemical and thermal stability and processability. It is preferable because it is available.
  • X in formula (4) is H, CH, Cl, F, and X and Y in formula (5) are ( ⁇ ,
  • F and X in formula (6) are at least one selected from aliphatic polymer compounds having a repeating unit represented by F or H as a constituent, particularly chemically and thermally stable. Sex, processing
  • the aromatic polymer compound is at least one of polyphenylene sulfide, polyphenylene ether, polystyrene, syndiotactic polystyrene, polyether sulfone, and polyether ether ketone
  • Prototype with high thermal stability Since it is easy to introduce a conductive group, it is preferable because it is a membrane having high proton conductivity, and high methanol barrier properties.
  • the proton-conductive substituent is preferably a sulfonic acid group from the viewpoint of ease of introduction of the proton-conductive substituent and proton conductivity of the resulting proton-conductive polymer electrolyte membrane. .
  • the contact with the sulfonating agent is carried out in an organic solvent (C-7) to (
  • the halogenated hydrocarbon compound is 1-chlorobutane (C-10).
  • the present invention further provides a polymer having at least two kinds of polymer compounds, ie, an aliphatic polymer compound and an aromatic polymer compound.
  • the present invention relates to a method for producing a polymer electrolyte membrane in which a film is brought into contact with a sulfonating agent. This manufacturing method and By doing so, it becomes a method for producing a polymer electrolyte membrane with high productivity.
  • the method for producing a polymer electrolyte membrane of the present invention when the aliphatic polymer compound is contained in an amount of 10% by weight to 95% by weight in the polymer film, the obtained polymer electrolyte membrane is obtained. It is preferable because it has both excellent proton conductivity and high methanol blocking property.
  • the aliphatic polymer compound is represented by the following formulas (4) to (6):
  • Any of atomic groups selected from 3 3 3 4 9, and X and Y may be the same or different from each other. )
  • At least one selected from the aliphatic polymer compounds having a repeating unit represented by the formula is excellent in chemical and thermal stability and processability, it is also inexpensive. Favorable because it is industrially available.
  • X in the formula (4) is H, CH, Cl, F, and X and Y in the formula (5) are (
  • X is at least one selected from aliphatic polymer compounds having a repeating unit represented by F, H as a constituent component. It is preferable because it is excellent in mechanical and thermal stability and processability, and is industrially available at a low cost.
  • the aromatic polymer compound is an aromatic polymer compound because it is commercially available at low cost. Further, when the aromatic polymer compound is at least one of polyphenylene sulfide, polyphenylene ether, polystyrene, syndiotactic polystyrene, polyether sulfone, polyether ether ketone, It is preferable because a proton-conductive group having high stability can be easily introduced, so that it becomes a membrane having high proton conductivity and higher methanol blocking property.
  • the method for producing a polymer electrolyte membrane of the present invention when the sulfonating agent power is chlorosulfonic acid, sulfonating can be performed in a short time, and the production method of a proton-conducting polymer electrolyte with low production cost is possible. I prefer U ⁇ .
  • the method for producing a proton conductive polymer electrolyte membrane of the present invention when the contact with the sulfonating agent is carried out in an organic solvent, a sulfonative reaction can be carried out uniformly, and a membrane having high mechanical strength is preferred.
  • the organic solvent is a halogenated hydrocarbon-based compound
  • it can be industrially obtained at a low cost, which is preferable as a method for manufacturing a polymer electrolyte membrane at a low manufacturing cost.
  • the halogenated hydrocarbon-based compound is 1 chlorobutane because the obtained proton-conducting polymer electrolyte membrane has both excellent proton conductivity, high properties, and methanol blocking property.
  • the direct liquid fuel cell is a direct methanol fuel cell, the direct liquid fuel cell according to (C13),
  • the polymer electrolyte membrane of the present invention As shown in the above (C-12) to (C-14), the polymer electrolyte membrane of the present invention, a certain ⁇ , is a solid using the polymer electrolyte membrane obtained by the production method of the present invention.
  • Polymer fuel cells are excellent as solid polymer fuel cells because they have high proton conductivity and high durability.
  • direct liquid fuel cells using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention have a high proton conductivity and a high liquid fuel barrier property. Therefore, it is excellent as a direct liquid fuel cell.
  • the direct methanol fuel cell using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention has a high proton conductivity and a high methanol blocking property. Excellent as a methanol fuel cell! / Speak.
  • a polymer electrolyte membrane having at least two kinds of compound power that is, an aliphatic polymer compound and an aromatic polymer compound containing a proton conductive group. It became possible to express a high methanol barrier property. These have excellent proton conductivity and high methanol barrier properties, and are useful as polymer electrolyte membranes for polymer electrolyte fuel cells, direct liquid fuel cells, and direct methanol fuel cells. Further, the polymer electrolyte membrane can be realized by using the polymer film of the present invention as a material.
  • At least three polymer compounds including a polymer compound having an aromatic unit, a thermoplastic elastomer, and a polymer compound having no aromatic unit are included as essential components.
  • High molecular electrolyte membranes in which proton conductive groups are introduced into aromatic units in polymer films, have excellent proton conductivity and high methanol barrier properties, such as solid polymer fuel cells and direct liquid fuels. It is useful as a polymer electrolyte membrane for batteries and direct methanol fuel cells. Further, by using the polymer film of the present invention as a material, It became possible to realize a molecular electrolyte membrane.
  • At least two kinds of polymer compounds, a polymer compound having an aromatic unit, and a polymer compound having no aromatic unit are included,
  • the derivative means that at least one of hydrogen atoms that can be substituted in the basic compound is an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, A compound substituted with a substituent such as a hydroxyl group, a carbonyl group, a carboxyl group, an ether group, an ester group, an acyl group or an amino group.
  • the copolymer may be any of a block copolymer and a random copolymer.
  • the polymer electrolyte of the present invention and the polymer film of the material preferably include a polymer compound having an aromatic unit.
  • a proton conductive group such as a sulfonic acid group can be substituted for the aromatic unit contained in the polymer compound, and when the polymer electrolyte membrane is formed, the proton conductivity can be expressed.
  • the polymer compound having an aromatic unit include polystyrene, syndiotactic polystyrene, polyaryl ether sulfone, polyether ether sulfone, polyether ether ketone, polyether ether ketone, polysulfone, polyparaphenylene, and polyphenylene.
  • Rensulfide polyphenylene ether, modified polyphenylene ether, polyphenylene sulfoxide, polyphenylene sulfide sulfone, polyphenylene sulfone, polybenzimidazole, polybenzoxazole, polybenzothiazole, polyethersulfone, Poly 1, 4 Biff Examples include ether ether sulfone, polyarylene ether sulfone, polyimide, polyether imide, cyanate ester resin, and polyether ether ketone. In addition, derivatives and copolymers thereof are also within the scope of the present invention.
  • compatibility and dispersibility with other polymer compound components ease of introduction of proton-conducting groups, and handling properties of the resulting polymer film, Furthermore, in consideration of proton conductivity, methanol blocking property, chemical 'thermal stability, etc. of the polymer electrolyte obtained therefrom, polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone It is preferably at least one selected from the group strength of polyethersulfone, polyetheretherketone and polyphenylene sulfide, and derivatives and copolymers thereof.
  • the copolymer of the high molecular compound include a copolymer of polystyrene or a polystyrene derivative and the following general formula (2) and Z or (3).
  • the polymer electrolyte of the present invention and the polymer film of the material preferably include a thermoplastic elastomer.
  • the presence of the thermoplastic elastomer improves the compatibility and dispersibility with other polymer compound components and, as a result, improves the film properties, etc., and the mechanical strength of the polymer film and polymer electrolyte membrane of the present invention. Nyanoding performance is improved, which is preferable
  • thermoplastic elastomer used in the present invention is preferably a copolymer of a polystyrene or polystyrene derivative and the following general formula (2) and Z or (3).
  • R ⁇ is C H, and R ⁇ may be the same or different from each other.
  • n, n, and x are integers of 0 or more.
  • polystyrene or polystyrene derivatives having aromatic units are excellent in compatibility with the polymer compound having the aromatic units.
  • other components do not have aromatic units, they are preferably excellent in compatibility with high molecular compounds having no aromatic units, which will be described later.
  • polystyrene polyisobutylene polystyrene triblock copolymer Polystyrene poly (ethylene Z propylene) block copolymer, polystyrene monopoly (ethylene Z propylene) monopolystyrene triblock copolymer, polystyrene poly (ethylene Z butylene) polystyrene triblock copolymer and polystyrene poly (ethylene ethylene Z) Propylene) polystyrene triblock copolymers, and at least one selected from the group consisting of derivatives thereof Preferred to be a seed. Since these components have a block unit without an aromatic unit, they are preferably excellent in compatibility with a polymer compound having no aromatic unit, which will be described later.
  • the polymer electrolyte of the present invention and the polymer film of the material thereof preferably contain a polymer compound having no aromatic unit. Since there is no aromatic unit in these structures, proton conductive groups such as sulfonic acid groups are not introduced into the aromatic unit. Therefore, the polymer electrolyte membranes obtained from these have hydrophilic proton conductive groups such as sulfonic acid groups introduced into the aromatic units of other polymer compounds! It is difficult to swell, and a polymer electrolyte membrane having a high methanol barrier property can be obtained.
  • Examples of the polymer compound having no aromatic unit that can be used in the present invention include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl 1-butene, and 4-methyl 1 Polyolefin resins such as pentene, 5-methyl-1-heptene homopolymers or copolymers such as polyolefin resin, polychlorinated bulu, salt-vinyl bis-acetate vinyl copolymer, salt hydruvyl monosalt hibilidene Polymers, salt-based resin such as salt-hybryl 1-year-old refin copolymer, polyamide resin such as nylon 6 and nylon 66, polytetrafluoroethylene, tetrafluoroethylene perfluoroalkyl vinyl ether Polymer, Tetrafluoroethylene Exafluoropropylene Copolymer, Tetrafluoroethylene Ethylene Copolymer Ruoroechiren, polyvinylidene off Ruoraido,
  • the polymer compound is preferably a polymer compound represented by the following general formula (1).
  • the content of the polymer compound having no aromatic unit is preferably 40 wt% or more and 90 wt% or less. If the content is less than 40% by weight, the polymer electrolyte membrane is not sufficiently effective in suppressing swelling of the polymer electrolyte membrane with water or methanol aqueous solution, and the desired methanol barrier property may not be exhibited. On the other hand, if the amount is more than 90% by weight, the amount of the polymer compound having an aromatic unit capable of introducing a proton conductive group becomes too small, and there is a possibility that desired proton conductivity may be exhibited.
  • any material that dissociates protons in a water-containing state can be used.
  • the power that can be exemplified by sulfonic acid group, phosphoric acid group, carboxylic acid group, phenolic hydroxyl group and the like is not limited to these.
  • a sulfonic acid group is preferable.
  • the ion exchange capacity of the polymer electrolyte derived from the content of the proton conductive group is preferably 0.3 meq Zg or more, and more preferably 0.5 meq Zg or more. If the ion exchange capacity is lower than 0.3 milliequivalent Zg, the desired proton conductivity may not be exhibited, which is not preferable.
  • the proton-conductive substituent contained in the proton-conductive polymer electrolyte of the present invention can be used as long as it dissociates protons in a water-containing state.
  • the power that can be exemplified by sulfonic acid group, phosphoric acid group, carboxylic acid group, phenolic hydroxyl group and the like is not limited to these.
  • a sulfonic acid group is preferable.
  • the ion exchange capacity of the proton conducting polymer electrolyte derived from the content of the proton conducting substituent is
  • it is 0.3 meq Zg or more, more preferably 0.5 meq Zg or more. If the ion exchange capacity is lower than 0.3 milliequivalent Zg, the desired proton conductivity may not be exhibited, which is not preferable.
  • a known method can be used to obtain a polymer film.
  • melt extrusion molding such as inflation method and T-die method, calendar method, casting method, cutting method, emulsion method, and hot press method.
  • a treatment such as biaxial stretching in order to control the molecular orientation or the like, or a heat treatment to control the crystallinity.
  • a known method can be used to obtain a polymer film.
  • a polymer film for example, a high molecular film
  • Those obtained by the inflation method, T-die method, calendar method, cast method, cutting method, emulsion method, hot press method, etc. can be used. Further, a treatment such as biaxial stretching may be performed to control the molecular orientation or the like, or a heat treatment may be performed to control the crystallinity.
  • a polymer compound having an aromatic unit which is a main raw material of the polymer film, a thermoplastic elastomer, and a polymer compound having no aromatic unit.
  • Pellet and powder are mixed in advance at the specified blending ratio and put into the extruder set with ⁇ die.
  • a method of forming a film while melt kneading can be applied.
  • Pellet and powder are mixed in advance at the specified blending ratio and put into the extruder set with ⁇ die.
  • a method of forming a film while melt kneading can be applied.
  • the extruder used is a twin screw extruder, a polymer film in which these components are melted and uniformly dispersed can be obtained.
  • the film may be formed using pellets melt-kneaded with a twin-screw extruder so as to obtain a predetermined blending ratio in advance, or a masterbatch pellet may be used to achieve a predetermined blending ratio. It may be formed into a film while being melt-kneaded.
  • the film may be formed with a single-screw extruder with a T-die set.
  • the thickness of the polymer film of the present invention any thickness can be selected depending on the application. In consideration of reducing the internal resistance of the polymer electrolyte membrane obtained from the polymer film of the present invention, the thinner the polymer film, the better. On the other hand, in view of methanol blocking property and nanoring property of the obtained polymer electrolyte membrane, it is not preferable that the polymer film is too thin. In view of these, the thickness of the polymer film is preferably 1.2 / ⁇ ⁇ to 350 m. If the thickness of the polymer film is less than 1.2 m, it is difficult to form a film, and it is likely to become wrinkled at the time of processing when a proton conductive group is introduced or dried, and damage may occur. There is a risk that handling will be significantly reduced. If the thickness of the polymer film exceeds 350 m, the proton conductivity of the obtained polymer electrolyte membrane may be manifested.
  • the polymer film of the present invention comprises at least a polymer compound having an aromatic unit and an aromatic unit, and a polymer compound, wherein the aromatic unit is not! It is preferable that the polymer compound has a structure in which a polymer compound having an aromatic unit is dispersed in the polymer compound. It is difficult to introduce hydrophilic proton-conducting groups represented by sulfonic acid groups! ⁇ No aromatic units ⁇ Swelling of polymer electrolyte membranes against hydrogen-containing liquids such as water and methanol is suppressed It is possible to exhibit excellent methanol barrier properties.
  • the dispersion state is not particularly limited. ⁇ 10m sea island structure (structure without aromatic unit, polymer compound is ⁇ sea '', polymer compound with aromatic unit is ⁇ island '') or layer structure of ⁇ m order It can be enumerated as an example of a preferable form.
  • the swelling suppression effect of the polymer compound without the aromatic unit may be reduced.
  • the dispersion state of the polymer compound having an aromatic unit is extremely poor, there is a possibility that proton conductivity may be insufficient or methanol blocking property may be insufficient when a polymer electrolyte membrane is obtained. .
  • the above-described polymer film is contacted with a sulfonating agent in the presence of an organic solvent.
  • a sulfonating agent in the presence of an organic solvent.
  • sulfonating agents examples include known sulfonating agents such as chlorosulfonic acid, fuming sulfuric acid, sulfur trioxide, sulfur trioxide, sulfur triethyl phosphate, concentrated sulfuric acid, and trimethylsilyl chloride sulfate. It is preferable to illustrate. Considering the ease of industrial availability, the ease of introduction of sulfonic acid groups, and the properties of the resulting polymer electrolyte membrane, chlorosulfonic acid is preferred.
  • sulfonating agent of the present invention a known sulfonating agent such as chlorosulfonic acid, fuming sulfuric acid, sulfur trioxide, sulfur trioxide triethyl phosphate, concentrated sulfuric acid, trimethylsilyl chlorosulfate, or the like may be used.
  • chlorosulfonic acid fuming sulfuric acid, sulfur trioxide, sulfur trioxide triethyl phosphate, concentrated sulfuric acid, trimethylsilyl chlorosulfate, or the like
  • chlorosulfonic acid fuming sulfuric acid, sulfur trioxide, sulfur trioxide triethyl phosphate, concentrated sulfuric acid, trimethylsilyl chlorosulfate, or the like.
  • chlorosulfonic acid it is more preferable to use from the viewpoint of easy introduction of sulfonic acid groups, characteristics of the obtained membrane, industrial availability, and the like.
  • the organic solvent that can be used in the present invention is not particularly limited as long as it does not deteriorate the polymer film or lose the sulfonating ability of the sulfonating agent.
  • the organic solvent used in the present invention is a halogenated hydrocarbon compound. Considering characteristics such as ringability, ease of control of introduction of sulfonic acid groups, etc., it is a halogenated hydrocarbon containing 3 or more carbon atoms and at least 1 or more chlorine atoms in the molecular structural formula.
  • the organic solvent that can be used in the present invention is not particularly limited, but is preferably a halogenated hydrocarbon compound.
  • the organic solvent is preferably an organic solvent containing 3 or more carbon atoms and at least one or more chlorine atoms in its molecular structural formula.
  • 1 Chloroprone, 1 chlorobutane, 2 chlorobutane, 1, 4 -Dichlorobutane, 1 chloro-2-methinolepronone, 1 black mouth pentane, 1 black mouth hexane, chlorocyclohexane power is also preferred, but it is preferably at least one selected. Absent.
  • 1-chlorobutane is preferred from the viewpoint of industrial availability and the characteristics of the obtained proton conductive polymer membrane.
  • the amount of the sulfonating agent used is preferably 0.1 to: LOO times (weight ratio), more preferably 0.5 to 50 times (weight ratio) with respect to the polymer film. . If the amount of the sulfonating agent used is less than 0.1 times, the amount of sulfonic acid groups introduced will be small, and the resulting polymer electrolyte membrane may have insufficient properties such as proton conductivity. There is. On the other hand, when the amount exceeds 100 times, the polymer film is chemically deteriorated, the mechanical strength of the resulting polymer electrolyte membrane is lowered, handling becomes difficult, and the introduction amount of sulfonic acid groups is large. As a result, the practical properties of the polymer electrolyte membrane may be impaired, for example, the methanol barrier property may be lowered, or it may become water-soluble or soluble in an aqueous methanol solution.
  • the amount of the sulfonating agent to be used is preferably 0.5 to 50 times, more preferably 0.5 to 30 times the weight of the polymer film.
  • the amount of sulfonating agent used If the amount is less than 0.5 times the weight of the polymer film, the amount of sulfonic acid groups introduced will be small, and the properties of the resulting proton conducting polymer membrane will be insufficient. Tend to be. On the other hand, when the amount exceeds 50 times, the polymer film is chemically deteriorated and the resulting proton conductivity is high.
  • the concentration of the sulfonating agent in the organic solvent may be appropriately set in consideration of the target introduction amount of the sulfonic acid group and the reaction conditions (temperature and time). Specifically, a more preferable range of 0.05 to 20% by weight is 0.2 to 10% by weight. If the content is lower than 0.05% by weight, the sulfonating agent and the aromatic unit in the polymer film come into contact with each other, and it is difficult to introduce the desired amount of sulfonic acid groups, or it takes time to introduce them. There is a risk of overloading. On the other hand, if it exceeds 20% by weight, the introduction of sulfonic acid groups may become uneven, and the mechanical properties of the resulting polymer electrolyte membrane may be impaired.
  • the concentration of the sulfonating agent in the solvent may be appropriately set in consideration of the target introduction amount of the sulfonic acid group and the reaction conditions (temperature 'time). Specifically, a more preferred range of 0.1 to 10% by weight is 0.2 to 10% by weight. 0. If it is lower than 1% by weight, the sulfonating agent and the aromatic unit in the polymer compound come into contact with each other, and the desired sulfonic acid group cannot be introduced, or it takes too much time to introduce it. Tend. On the other hand, if it exceeds 10% by weight, the introduction of sulfonic acid groups tends to be uneven, and the mechanical properties of the resulting proton conducting polymer membrane tend to be impaired.
  • the reaction temperature and reaction time for contacting are not particularly limited, but 0 to: L00. C, more preferably 10 to 30 ° C., 0.5 hour or more, and more preferably 2 to: L00 hours. If the reaction temperature is lower than o ° c, measures such as cooling on the equipment will be required, and the reaction may take longer than necessary. If the reaction temperature exceeds 100 ° C, the reaction will proceed excessively, There is a risk of causing side reactions and deteriorating the characteristics of the film.
  • it is less than the boiling point of the organic solvent to be used because it is not necessary to use a pressure vessel.
  • reaction time is shorter than 0.5 hour
  • the polymer electrolyte membrane having desired characteristics may be set so that it can be produced efficiently.
  • the reaction temperature and reaction time for contacting are not particularly limited, but 0 to: LOO. C, more preferably 10 to 30 ° C., 0.5 hours or more, and more preferably 2 to: LOO time.
  • LOO. C lower than o ° c
  • measures such as cooling are required on the equipment, and there is a tendency that more time is required for the reaction, and when it exceeds 100 ° C, the reaction proceeds excessively. There is a tendency to cause side reactions and to deteriorate the characteristics of the film.
  • reaction time is shorter than 0.5 hour
  • the proton conducting polymer membrane having the desired characteristics is efficiently produced in consideration of the reaction system such as the sulfonating agent and solvent used and the target production volume.
  • a polymer film composed of an aliphatic polymer compound and an aromatic polymer compound is produced by using an extruder in which a T-die is set in a twin-screw kneading extruder, and using an aliphatic polymer compound such as polyethylene or aromatic polymer. It can be obtained by melt-kneading pellets of two kinds of polymer compounds, polyphenylene sulfide as a polymer compound. When the obtained polymer film and 1-chlorobutane are used as the solvent and chlorosulfonic acid is used as the sulfonating agent, the amount of chlorosulfonic acid added is based on the weight of the polymer film.
  • the desired ion exchange capacity is achieved under the conditions that the concentration of chlorosulfonic acid in a chlorobutane solution is 0.1% by weight or more, the reaction temperature is 10 ° C or more, and the reaction time is 3 hours or more.
  • a proton conducting polymer membrane can be prepared.
  • Nyachlorosulfonic acid is removed, and sulfonic acid group-containing polyphenylene sulfide is obtained.
  • sulfonic acid groups can be introduced in the form of a film (membrane). Therefore, compared to the conventional method of synthesizing a sulfonated polymer with a homogeneous reaction system and then processing it into a membrane shape, the process of recovering and purifying the reactants, drying, etc., dissolving the sulfonated polymer in a solvent In addition, it is preferable because steps such as coating on the support and solvent removal can be omitted. Furthermore, since the film is continuously supplied, its productivity is remarkably improved.
  • the proton conductive polymer membrane can be recovered in a form that can be actually used.
  • the drying conditions may be appropriately set in consideration of the type of polymer film to be used and the characteristics of the proton conductive polymer membrane to be obtained. Since the sulfonic acid group has a strong hydrophilicity, it may contain water and swell significantly during the washing process. Therefore, it shrinks during drying and may cause wrinkles and swelling. Therefore, when drying, it is preferable to dry by applying an appropriate tension in the surface direction of the proton conducting polymer membrane. Moreover, in order to suppress rapid drying, you may dry gradually under humidity control.
  • the method for producing a polymer electrolyte membrane of the present invention may be carried out continuously. That is, a polymer film of the present invention is produced from a polymer compound prepared at a predetermined compounding ratio by melt extrusion using a twin-screw extruder with a T-die set, and the polymer film is made up of a sulfonating agent and an organic solvent. It may be supplied to the sulfonation reaction tank, and the washing process and the drying process may be continuously performed as necessary. By this method, the productivity of the polymer electrolyte membrane is improved. [0171] The method for producing a proton-conductive polymer membrane of the present invention may be carried out continuously.
  • a film made of a polymer compound to be processed is supplied to the stretching process, and further supplied to a reaction tank with a sulfonating agent, and a washing process or a drying process is performed as necessary. You may carry out continuously. This method improves the productivity of the proton conductive polymer membrane.
  • the sulfonic acid group can be introduced in the form of the film (membrane) by bringing the polymer film into contact with the sulfonating agent in the presence of the organic solvent in the sulfone reaction vessel. . Therefore, compared to the conventional method of synthesizing a polymer compound with a sulfonic acid group introduced in a homogeneous reaction system and then processing it into a membrane shape, the process of recovering and purifying the reactants, drying, and other processes, It is preferable because steps such as dissolution of a molecular compound, coating on a support during casting and removal of a solvent can be omitted. Furthermore, since the polymer film is continuously supplied, the productivity is significantly improved.
  • the conditions for removal and washing can be set appropriately in consideration of the type of sulphonating agent and organic solvent used, and the composition of the polymer film. Alternatively, neutralization may be performed using an alkali.
  • the polymer electrolyte membrane can be recovered in a practically usable form. The drying conditions may be appropriately set in consideration of the type of polymer film used and the characteristics of the polymer electrolyte membrane to be obtained.
  • the sulfonic acid group Since the sulfonic acid group has strong hydrophilicity, it may contain water and swell significantly during the washing process. For this reason, it may shrink during drying, causing wrinkles and swelling. Therefore, it is preferable to dry by applying an appropriate tension in the surface direction of the polymer electrolyte membrane during drying. Moreover, in order to suppress rapid drying, it may be gradually dried under humidity control.
  • sulfide unit (-S-) of the ido is a sulfoxide unit (so) or a sulfone unit (so
  • Oxidation or side reactions may occur where the hydrogen of the aromatic unit is replaced by a substituent such as —C1.
  • a structural unit resulting from the side reaction may be included as long as the properties of the obtained polymer electrolyte membrane are not significantly deteriorated.
  • the sulfide unit (S) in the polymer film is changed to the sulfoxide unit ( SO) to sulfone unit (SO)
  • sulfoxide unit (monoso-) is oxidized to sulfone unit (monoso2-), and hydrogen of the phenolic unit is substituted with a substituent such as C1.
  • a reaction may occur.
  • a structural unit resulting from the side reaction may be included.
  • FIG. 1 is a cross-sectional view of the main part of a solid polymer fuel cell (direct liquid fuel cell, direct methanol fuel cell) using the polymer electrolyte membrane of the present invention.
  • a polymer electrolyte membrane 1, a catalyst layer 2 in contact with the polymer electrolyte membrane 1, a catalyst layer 2, a diffusion layer 3 in contact with the polymer electrolyte membrane 1, and a separator 5 on the outer side thereof are disposed, and a solid polymer type It consists of fuel cell (direct liquid fuel cell, direct methanol fuel cell) cells. Separator 5 is formed with fuel gas or liquid (such as aqueous methanol solution) and 5 for feeding an oxidant.
  • a polymer electrolyte membrane 1 joined with a catalyst layer 2 or a polymer electrolyte membrane 1 joined with a catalyst layer 2 and a diffusion layer 3 is a membrane-electrode assembly (hereinafter referred to as a membrane-electrode assembly).
  • a membrane-electrode assembly Is called the base of solid polymer fuel cells (direct liquid fuel cells, direct methanol fuel cells). Used as this member.
  • the catalyst layer 2 is formed by dispersing a metal-supported catalyst in a polymer electrolyte solution or dispersion to prepare a dispersion for forming the catalyst layer.
  • This dispersion solution is applied onto a release film such as polytetrafluoroethylene by spraying, and the solvent in the dispersion solution is dried and removed to form a predetermined catalyst layer 2 on the release film.
  • the catalyst layer 2 formed on the release film is disposed on both surfaces of the polymer electrolyte membrane 1, and hot-pressed under a predetermined heating and pressurizing condition to join the polymer electrolyte membrane 1 and the catalyst layer 2, By peeling off the release film, an MEA in which the catalyst layer 2 is formed on both surfaces of the polymer electrolyte membrane 1 can be produced. Further, the dispersion solution is applied onto the diffusion layer 3 using a coater or the like, and the solvent in the dispersion solution is dried and removed to form a catalyst-carrying gas diffusion electrode in which the catalyst layer 2 is formed on the diffusion layer 3.
  • both sides of the polymer electrolyte membrane 1 are prepared.
  • An MEA having a catalyst layer 2 and a diffusion layer 3 formed thereon can be produced.
  • a commercially available gas diffusion electrode manufactured by E-TEK, USA, etc. may be used.
  • an alcohol solution of a perfluorocarbon sulfonic acid polymer compound such as a naphthion (registered trademark) solution manufactured by Aldrich
  • a sulfonated aromatic polymer compound for example, Sulfonized polyetheretherketone, sulfonated polyethersulfone, sulfonated polysulfone, sulfonated polyimide, sulfonated polyphenylene sulfide
  • a perfluorocarbon sulfonic acid polymer compound such as a naphthion (registered trademark) solution manufactured by Aldrich
  • a sulfonated aromatic polymer compound for example, Sulfonized polyetheretherketone, sulfonated polyethersulfone, sulfonated polysulfone, sulfonated polyimide, sulfonated polyphenylene sulfide
  • metal-supported catalyst conductive particles having a high specific surface area can be used as
  • activated carbon, carbon black, ketjen black, vulcan, carbon nanohorn examples thereof include carbon materials such as allene and carbon nanotubes.
  • Any metal catalyst can be used as long as it promotes the acid-rich reaction of the fuel and the oxygen reduction reaction, and the fuel electrode and the oxidant electrode may be the same or different.
  • noble metals such as platinum and ruthenium or alloys thereof can be exemplified, and a promoter for promoting their catalytic activity and suppressing poisoning by reaction by-products may be added.
  • the dispersion solution for forming the catalyst layer may be appropriately diluted with water or an organic solvent in order to adjust the viscosity so that it can be applied with a spray or easily applied with a coater.
  • a fluorine compound such as tetrafluoroethylene may be mixed to impart water repellency to the catalyst layer 2.
  • a porous conductive material such as carbon cloth or carbon paper can be used.
  • an adhesive layer containing the polymer electrolyte as described above may be provided between the polymer electrolyte membrane 1 and the catalyst layer 2 as necessary.
  • the conditions under which the polymer electrolyte membrane 1 and the catalyst layer 2 are heated and hot pressed under pressure are appropriately set according to the type of polymer electrolyte contained in the polymer electrolyte membrane 1 and the catalyst layer 2 to be used. There is a need.
  • the temperature is lower than the thermal deterioration or thermal decomposition temperature of the polymer electrolyte membrane or the polymer electrolyte, and the temperature of the polymer electrolyte membrane 1 is higher than the glass transition point or the soft melting point of the polymer electrolyte. Is preferably carried out under temperature conditions above the glass transition point and softening point of the polymer electrolyte membrane 1 and the polymer electrolyte.
  • the pressurizing condition is preferably in the range of about 0.1 MPa to 20 MPa because there is sufficient contact between the polymer electrolyte membrane 1 and the catalyst layer 2 and there is no deterioration in characteristics due to significant deformation of the materials used.
  • the diffusion layer 3 may be disposed outside the catalyst layer 2 and used only by contacting them without any particular bonding. .
  • the MEA obtained by the method as described above is inserted between a pair of separators 4 in which a flow path 5 for feeding fuel gas or liquid and an oxidant is formed.
  • a polymer electrolyte fuel cell (direct liquid fuel cell, direct methanol fuel cell) containing an electrolyte membrane can be obtained.
  • a fuel gas or liquid a gas mainly composed of hydrogen or a gas or liquid mainly composed of methanol is used as an oxidizing agent.
  • the polymer electrolyte fuel cell generates electric power by supplying gas (oxygen or air) containing element to the catalyst layer 2 via the diffusion layer 3 from the respective separate flow paths 5.
  • gas oxygen or air
  • a force bone graphite or a stainless steel conductive material can be used. Especially when using metal materials such as stainless steel, it is preferable to apply a corrosion-resistant treatment!
  • the polymer electrolyte fuel cells of the present invention may be used alone or in a stack to form a stack, and a fuel cell system incorporating them may be used.
  • FIG. 13 is a cross-sectional view of a main part of a solid polymer fuel cell (direct liquid fuel cell, direct methanol fuel cell) using the proton conductive polymer membrane of the present invention.
  • a method of joining the catalyst-carrying gas diffusion electrode 22 to the proton conductive polymer membrane 21 has been studied, and a proton conductive polymer membrane made of a perfluorocarbon sulfonic acid membrane, Proton conducting polymer membranes made of polymer compounds
  • an alcohol solution of a perfluorocarbon sulfonic acid polymer such as a naphthion (registered trademark) solution manufactured by Aldrich
  • a sulfonated polymer constituting the proton conductive polymer membrane of the present invention Compound or known sulfonated polymer compound
  • the proton conductive polymer membrane of the present invention using, as a binder, an organic solvent solution (for example, sulfonated polyetheretherketone, sulfonated polyethersulfone, sulfonated polysulfone, sulfonated polyimide, sulfonated polyphenylene sulfide).
  • the surface on the catalyst layer side of the catalyst-carrying gas diffusion electrode 22 is aligned with both surfaces of 21, and using a press such as a hot press or a portal press, the press temperature is typically about 120 to 250 ° C. Can be joined. Moreover, it is not necessary to use a binder as needed. Furthermore, the catalyst-supporting gas diffusion electrode 22 may be prepared using the following materials and bonded to the proton conducting polymer membrane 21 for use.
  • the material used to prepare the catalyst-carrying gas diffusion electrode 22 is a metal such as platinum or ruthenium or an alloy thereof that promotes the oxidation reaction of fuel and the reduction reaction of oxygen as a catalyst.
  • carbon cloth, carbon paper, etc. as a support for the above materials, and perfluorocarbon sulfonic acid polymer as an impregnated coating material can be exemplified.
  • the present invention is not limited to this. is not.
  • the proton-conductive polymer membrane 21 obtained by the method as described above and the catalyst-supported gas diffusion electrode 22 are joined to form a flow path 23 for feeding fuel gas or liquid and an oxidant.
  • the polymer electrolyte fuel cell comprising the proton conducting polymer membrane of the present invention (direct liquid fuel cell, direct methanol fuel) Battery).
  • a gas containing hydrogen as a main component, a gas or liquid mainly containing methanol as a fuel gas or liquid, and a gas containing oxygen (oxygen or air) as an oxidizing agent are provided in separate flow paths.
  • the solid polymer fuel cell is operated by supplying the catalyst-carrying gas diffusion electrode 22 from 23. In this case, when methanol is used as the fuel, a direct methanol fuel cell is obtained.
  • Fig. 2 is a cross-sectional view of a principal part of a direct methanol fuel cell including the polymer electrolyte membrane of the present invention.
  • the required number of MEAs 6 obtained by the above method is arranged in a plane on both sides of a fuel (methanol or methanol aqueous solution) tank 7 having a fuel (methanol or methanol aqueous solution) filling section 8 and a supply section 8. Further, a support 9 having an oxidant flow path 10 formed thereon is disposed on the outer side, and these cells are sandwiched to form a direct methanol fuel cell cell and stack.
  • Fig. 14 is a cross-sectional view of a main part of a direct methanol fuel cell comprising the proton conductive polymer membrane of the present invention.
  • the proton conducting polymer membrane 25 and the catalyst-supporting electrode 26 are joined to both sides of the membrane 25 to form a membrane-electrode assembly.
  • This membrane-electrode assembly is arranged in a planar form on both sides of a fuel (methanol or methanol aqueous solution) tank 27 having a fuel (methanol or methanol aqueous solution) filling section 28 and a supply section 28.
  • a support 29 having an oxidant flow path 30 formed thereon is disposed on the outside thereof, and these cells are sandwiched to form a direct methanol fuel cell cell and stack.
  • the polymer electrolyte membrane of the present invention is disclosed in JP 2001-313046, JP 2001-313047, JP 2001-93551, and JP 2001-93558.
  • the proton conductive polymer membrane of the present invention is disclosed in JP-A-2001-313046, JP-A-2001-313047, JP-A-2001-93551, and JP-A-2001-93.
  • JP 2001-283888 JP 2000-268835, JP 2000-268836, JP 2001-283892, etc. It can be used as an electrolyte membrane of a direct methanol fuel cell.
  • the aliphatic polymer compound X XYIII used in the proton-conductive polymer electrolyte of the present invention and the polymer film of the material thereof refers to a compound that does not have an aromatic unit in its structural unit. In the case of a conductive polymer electrolyte membrane, it constitutes a structural unit that does not contain a proton conductive substituent. Examples of such aliphatic polymer compounds include the following formulas (4) to (6):
  • X and Y are H, CH, Cl, F, OCOCH, CN, COOH, COOCH, OC H, or
  • any of atomic groups selected from 3 3 3 4 9, and X and Y may be the same or different from each other.
  • at least one selected from the aliphatic polymer compounds having a repeating unit represented by the formula is excellent in chemical and thermal stability and processability, it is also inexpensive. Favorable because it is industrially available.
  • X in the formula (4) is H, CH, Cl, F, and X and Y in the formula (5) are (X,
  • X in (F, F) and formula (6) is at least one selected from an aliphatic polymer compound comprising a repeating unit represented by F or H as a chemical or thermal compound. It is preferable because it is excellent in stability and processability, and is industrially available at a low cost.
  • the aromatic polymer compound in the present invention is a high molecular compound having an aromatic ring in the main chain or side chain, and is not particularly limited.
  • Examples of the aromatic polymer compound containing a proton conductive group of the present invention include polyaryl ether sulfone, polyether ether sulfone, polyether ether ketone, polyether ketone ketone, polysulfone, and polyparaphenylene.
  • the polymer is at least one of polyethylene-polysulfide, polyphenylene ether, polystyrene, syndiotactic polystyrene, polyethersulfone, and polyetheretherketone.
  • the content of the aliphatic polymer compound in the proton conductive polymer electrolyte is preferably 10 wt% or more and 95 wt% or less. If the aliphatic polymer compound content is smaller than the above range, There is a possibility that the inclusion effect of the group-based polymer compound becomes unclear. On the other hand, when the content of the aliphatic polymer compound is larger than the above range, proton conductivity may be difficult to express.
  • a high proton conductivity is obtained by contacting a polymer film having at least two kinds of polymer compounds of the aliphatic polymer compound of the present invention and an aromatic polymer compound with a sulfonating agent.
  • a method for producing a molecular electrolyte membrane and a method for producing a polymer film as the material will be described.
  • At least two kinds of high molecular compounds that is, an aliphatic high molecular compound and an aromatic high molecular compound
  • a known method can be applied.
  • the casting method it may be mixed in a solution. Further, it may be uniformly dispersed by melt kneading. In this case, melt kneading may be performed twice in order to increase dispersibility.
  • melt kneading may be performed twice in order to increase dispersibility.
  • melt kneading may be performed twice in order to increase dispersibility.
  • melt kneading may be performed twice in order to increase dispersibility.
  • melt kneading may be performed twice in order to increase dispersibility.
  • melt kneading may be performed twice in order to increase dispersibility.
  • the thickness of the polymer film consisting of an aliphatic polymer compound and an aromatic polymer compound having at least two kinds of polymer compounds can be any thickness depending on the application. Can be selected. In consideration of reducing the internal resistance of the obtained polymer electrolyte membrane, the thinner the polymer film, the better. On the other hand, considering the methanol blocking properties of the obtained polymer electrolyte membrane, the polymer film thickness is not preferable if it is too thin. Considering these, the thickness of the polymer film is 1.! It is preferably ⁇ 350 / z m.
  • the thickness of the polymer film is thinner than 1., it is difficult to produce, and it tends to become wrinkled during processing, and the handling property tends to be difficult due to breakage. If the thickness of the polymer film exceeds 350 m, the resulting polymer electrolyte membrane may not exhibit the effect of improving the methanol barrier property.
  • the issues are "solid polymer fuel cell, direct liquid fuel cell, direct methanol fuel A polymer electrolyte membrane having excellent proton conductivity and high methanol-blocking properties useful as a constituent material of a battery and a method for producing the same, and a polymer film as a material for the polymer electrolyte membrane and the polymer film A manufacturing method is provided. That ’s it.
  • a polymer electrolyte membrane useful as a constituent material of a solid polymer fuel cell, a direct liquid fuel cell, a direct methanol fuel cell, a polymer film that is a material thereof, and production of the electrolyte membrane The present invention provides a polymer electrolyte fuel cell using a method and an electrolyte membrane.
  • the means for solving the problem is that "a high-molecular compound containing at least three kinds of polymer compounds having an aromatic unit, a thermoplastic elastomer, and a polymer compound having no aromatic unit as essential components. It is assumed that the proton conductive group is introduced into the aromatic unit in the molecular film. "
  • the solving means is that "the polymer compound having at least two kinds of polymer compounds, that is, the polymer compound having an aromatic unit and the polymer compound having no aromatic unit, and having no said aromatic unit".
  • the polymer compound having an aromatic unit is dispersed therein, and a proton conductive group is introduced into the aromatic unit in the polymer film having the above structure.
  • the solving means is "a polymer electrolyte membrane having at least two kinds of polymer compound power of an aliphatic polymer compound and an aromatic polymer compound containing a proton conductive group.
  • the electrolyte membrane has a structure in which a proton conductive group is bonded to an aromatic polymer compound present in a polymer film as a material.
  • Polyphenylene sulfide manufactured by Dainippon Ink & Chemicals, LDlOplll
  • high density as a polymer compound having no aromatic unit
  • Polyethylene manufactured by Mitsui Engineering Co., Ltd., HI-ZEX 3300F
  • a polymer electrolyte membrane (about 10 mm ⁇ 40 mm) was immersed in 20 mL of a saturated aqueous solution of sodium chloride at 25 ° C., and subjected to an ion exchange reaction at 60 ° C. for 3 hours in a water bath. After cooling to 25 ° C, the membrane was thoroughly washed with ion-exchanged water, and all the sodium chloride saturated aqueous solution and washing water were collected. To this recovered solution, a phenolphthalein solution was added as an indicator, and neutralization titration with 0.01N sodium hydroxide aqueous solution was performed to calculate the ion exchange capacity.
  • 2-pole non-sealed polytetrafluoroethylene A polymer electrolyte membrane was placed in a cell made of copper, and a platinum electrode was placed on the membrane surface (on the same side) so that the distance between the electrodes was 30 mm.
  • Membrane resistance at 23 ° C was measured by an AC impedance method (frequency: 42 Hz to 5 MHz, applied voltage: 0.2 V, Hioki LCR meter 3531Z HIT ESTER), and proton conductivity was calculated.
  • ion exchange water and a 64 wt% aqueous methanol solution were isolated with a polymer electrolyte membrane using a membrane permeation experiment apparatus (KH-5PS) manufactured by Beadrex. After a predetermined time (2 hours), a solution containing methanol that had permeated to the ion-exchanged water was collected, and the amount of methanol permeated was measured with a gas chromatograph (Shimadzu Gas Chromatography GC -2010). From this quantitative result, the methanol permeation rate was determined, and the methanol permeation coefficient was calculated.
  • the methanol permeability coefficient was calculated according to Equation 1 below.
  • a polymer film of the present invention was obtained in the same manner as in Example 1 except that 50 parts by weight of pellets of polyphenylene sulfide and 50 parts by weight of high density polyethylene pellets were used (high density polyethylene in the polymer film). 50% by weight). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in Fig. 4.
  • the polymer film obtained by the above method was used.
  • a polymer electrolyte was prepared in the same manner as in Example 1 except that 141 g of 1-chlorobutane and 4.2 g of chlorosulfonic acid were weighed to prepare a 3% by weight chlorosulfonic acid solution and the polymer film was adjusted to 0.33 g.
  • a membrane was obtained (the amount of chlorosulfonic acid added was 13 times that of the polymer film). The results are shown in Table 1.
  • a polymer film of the present invention was obtained in the same manner as in Example 1 except that 30 parts by weight of polyphenylene sulfide pellets and 70 parts by weight of high density polyethylene pellets were used (high density polyethylene in the polymer film). 70% by weight). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in FIG.
  • the polymer film obtained by the above method was used.
  • a polymer electrolyte was prepared in the same manner as in Example 1, except that 145 g of 1-chlorobutane and 5.8 g of chlorosulfonic acid were weighed to prepare a 4 wt% chlorosulfonic acid solution and the polymer film was adjusted to 0.33 g.
  • a membrane was obtained (the amount of chlorosulfonic acid added was 17 times that of the polymer film). The results are shown in Table 1.
  • a polymer film of the present invention was obtained in the same manner as in Example 3 except that polyphenylene sulfide (manufactured by Dainippon Ink & Chemicals, Inc., ML320p) was used as the polymer compound having an aromatic unit. (The polymer film contains 70% by weight of high-density polyethylene). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The result is shown in FIG.
  • the polymer film obtained by the above method was used.
  • Og was weighed to prepare a 5 wt% chlorosulfonic acid solution, and the polymer film was changed to 0.28 g.
  • a membrane was obtained (the amount of chlorosulfonic acid added was 22 times that of the polymer film). The results are shown in Table 1.
  • a polymer film of the present invention was obtained in the same manner as in Example 3 except that polypropylene (Mitsui Chemicals, Mitsui Polypro F107DV) was used as the polymer compound having no aromatic unit (high The molecular film contains 70% by weight of polypropylene). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in FIG.
  • the polymer film obtained by the above method was used.
  • a polymer electrolyte was prepared in the same manner as in Example 1 except that 136 g of 1-chlorobutane and 5.4 g of chlorosulfonic acid were weighed to prepare a 4 wt% chlorosulfonic acid solution and the polymer film was adjusted to 0.31 g.
  • a membrane was obtained (the amount of chlorosulfonic acid added was 17 times that of the polymer film). The results are shown in Table 1.
  • a polymer film of the present invention was obtained in the same manner as in Example 5 except that polyphenylene sulfide (ML320p, manufactured by Dainippon Ink & Chemicals, Inc.) was used as the polymer compound having an aromatic unit. (The polymer film contains 70% by weight of polypropylene). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in Fig. 8.
  • the polymer film obtained by the above method was used.
  • Og was weighed to prepare a 5 wt% chlorosulfonic acid solution, and the polymer film was changed to 0.28 g.
  • a membrane was obtained (chlorosulfo (The amount of acid added is 22 times the amount of polymer film). The results are shown in Table 1.
  • Polystyrene PS Japan Polystyrene G8102
  • a polymer compound with aromatic units a polymer compound with aromatic units
  • high-density polyethylene HI-ZEX 3300F, Mitsui Chemicals
  • the polymer film obtained by the above method was used.
  • a polymer electrolyte was prepared in the same manner as in Example 1 except that 128 g of 1-chlorobutane and 3.9 g of chlorosulfonic acid were weighed to prepare a 3% by weight chlorosulfonic acid solution and the polymer film was changed to 0.30 g.
  • a membrane was obtained (the amount of chlorosulfonic acid added was 13 times that of the polymer film). The results are shown in Table 1.
  • Polystyrene PS Japan Co., Ltd., PSJ Polystyrene G8102 was used as the polymer compound having aromatic units, and Polypropylene (Mitsui Polytechnics Corp., Mitsui Polypro F107DV) was used as the polymer compound having no aromatic units. .
  • the polymer film obtained by the above method was used.
  • a polymer electrolyte was prepared in the same manner as in Example 1 except that 91 g of 1-chlorobutane and 4.6 g of chlorosulfonic acid were weighed to prepare a 5 wt% chlorosulfonic acid solution and the polymer film was changed to 0.21 g.
  • a membrane was obtained (the amount of chlorosulfonic acid added was 22 times that of the polymer film). The results are shown in Table 1.
  • Modified polyphenylene ether (GE Japan, EFN4230) was used as the polymer compound having an aromatic unit, and high-density polyethylene (HI-ZEX 3300F, manufactured by Mitsui Chemicals, Inc.) was used as the polymer compound having no aromatic unit.
  • the polymer film obtained by the above method was used. Except for weighing 91 g of 1-chlorobutane and 1.4 g of chlorosulfonic acid, preparing a 1.5 wt% chlorosulfonic acid solution and changing the polymer film to 0.21 g, the same procedure as in Example 1 was followed. A molecular electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 6.7 times that of the polymer film). The results are shown in Table 1.
  • a polymer film of the present invention was obtained in the same manner as in Example 9 except that polypropylene (Mitsui Chemicals, Mitsui Polypro F107DV) was used as the polymer compound having no aromatic unit. Contains 70% by weight polypropylene). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in FIG.
  • Polyphenylene sulfide (manufactured by Dainippon Ink & Chemicals, Inc., DIC-PPS LDlOpl) was used as a polymer compound having an aromatic unit.
  • the polyphenylene sulfide pellets were melt-extruded using a twin-screw extruder in which a T-die was set in a twin-screw kneading extruder under the conditions of a screw temperature of 290 ° C and a T-die temperature of 290 ° C. A polymer film was obtained.
  • the polymer film obtained by the above method was used.
  • lg was weighed to prepare a 1.5% by weight chlorosulfonic acid solution, and the polymer film was adjusted to 0.16 g.
  • a polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 6.9 times that of the polymer film). The results are shown in Table 1.
  • Nafion (registered trademark) 115 manufactured by DuPont was used as the polymer electrolyte membrane. The results are shown in Table 1.
  • the polymer film of the present invention has an aromatic in the polymer compound (whitish portion) having no aromatic unit. It became clear that the polymer compound with the unit (black part) showed a dispersed structure.
  • Examples 1 to in Table 1 From the comparison between LO and Comparative Example 2, the polymer electrolyte membrane obtained according to the present invention was a polymer electrolyte membrane for a polymer electrolyte fuel cell. It became clear that it has proton conductivity of the same order as that of a certain comparative example 2, and was shown to be useful as a polymer electrolyte membrane of a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell. . [0259] Examples 1 to in Table 1: From the comparison between LO and Comparative Examples 1 and 2, the polymer electrolyte membrane obtained with the polymer film strength of the present invention has a conventional high conductivity that exhibits equivalent proton conductivity.
  • Example 1 From a comparison between Example 1 and Tables 2 and 3 in Table 1, it is clear that the content of the polymer compound having no aromatic unit is 40% by weight or more, indicating a higher methanol barrier property. Thus, the usefulness of the present invention was demonstrated.
  • Polystyrene PS Japan Co., Ltd., PSJ Polystyrene G8102
  • Polystyrene polyethylene Z-butylene
  • Polystyrene triblock copolymer (Septon 8104, manufactured by Kuraray Co., Ltd.) as a thermoplastic elastomer
  • High-density polyethylene manufactured by Mitsui Chemicals, Inc., HI-ZEX 3300F was used as a polymer compound having no aromatic unit.
  • a polymer electrolyte membrane (about 10 mm ⁇ 40 mm) was immersed in 20 mL of a saturated aqueous solution of sodium chloride at 25 ° C., and subjected to an ion exchange reaction at 60 ° C. for 3 hours in a water bath. After cooling to 25 ° C, the membrane was thoroughly washed with ion-exchanged water, and all the sodium chloride saturated aqueous solution and washing water were collected. To this recovered solution, a phenolphthalein solution was added as an indicator, and neutralization titration with 0.01N sodium hydroxide aqueous solution was performed to calculate the ion exchange capacity.
  • a polyelectrolyte membrane was placed in a cell made of polytetrafluoroethylene in a nonpolar hermetic system, and a platinum electrode was placed on the membrane surface (on the same side) so that the distance between the electrodes was 30 mm.
  • the membrane resistance at 23 ° C was measured by the AC impedance method (frequency: 42 Hz to 5 MHz, applied voltage: 0.2 V, Hioki LCR meter 3531Z HIT ESTER), and proton conductivity was calculated.
  • ion exchange water and a 64 wt% aqueous methanol solution were isolated with a polymer electrolyte membrane using a membrane permeation experiment apparatus (KH-5PS) manufactured by Beadrex. After a predetermined time (2 hours), a solution containing methanol permeated to the ion-exchanged water was collected, and the amount of methanol permeated was quantified with a gas chromatograph (Shimadzu Gas Chromatography GC-2010). From this quantitative result, the methanol permeation rate was determined, and the methanol permeation coefficient was calculated.
  • the methanol permeability coefficient was calculated according to Equation 1 below.
  • the present invention was carried out in the same manner as in Example 11, except that 20 parts by weight of polystyrene pellets, 5 parts by weight of polystyrene poly (ethylene Z-butylene) polystyrene triblock copolymer pellets, and 80 parts by weight of high-density polyethylene pellets were used.
  • Polymer film contains 76% by weight of high-density polyethylene.
  • the polymer film obtained by the above method was used.
  • 1-Chlorobutane 84.7 g and chlorosulfonic acid 0.21 g were weighed to prepare a 0.25 wt% chlorosulfonic acid solution, and the polymer film was changed to 0.20 g.
  • the polymer electrolyte membrane was obtained by this method (the amount of chlorosulfonic acid added was 1.1 times that of the polymer film). The results are shown in Table 2.
  • a polymer film of the present invention was obtained in the same manner as in Example 12 (76% by weight of high-density polyethylene was contained in the polymer film).
  • Polystyrene PS Japan Co., Ltd., PSJ Polystyrene G8102 as a polymer compound having an aromatic unit
  • Polystyrene poly (ethylene Z propylene) -polystyrene triblock copolymer as a thermoplastic elastomer (Kuraray Co., Ltd., Septon 2104)
  • Polypropylene Mitsubishi Chemicals, Mitsui Polypro F107DV was used as a high molecular compound having no aromatic unit.
  • polystyrene pellets 5 parts by weight of polystyrene poly (ethylene Z propylene) polystyrene triblock copolymer pellets, and 70 parts by weight of high density polyethylene pellets were dry blended.
  • the dry blended pellet mixture was melt-extruded by a twin screw extruder with a T die set under the conditions of a screw temperature of 265 ° C and a T die temperature of 265 ° C to obtain the polymer film of the present invention (high polypropylene 67 weight 0/0 contained in the molecule film).
  • the polymer film obtained by the above method was used. 1 Weigh 93.0 g of chlorobutane and 0.12 g of chlorosulfonic acid to prepare a 0.13% by weight chlorosulfonic acid solution and change the polymer film to 0.22 g. A polymer electrolyte membrane was obtained (the amount of black sulfonic acid added was 0.5 times that of the polymer film). The results are shown in Table 2.
  • the polymer film obtained by the above method was used. Except that 101-lg of 1-chlorobutane and 0.51 g of chlorosulfonic acid were weighed to prepare a chlorosulfonic acid solution of 0.50% by weight and the polymer film was changed to 0.23 g, the same as in Example 11. Thus, a polymer electrolyte membrane was obtained (the amount of blackened sulfonic acid added was 2.2 times that of the polymer film). The results are shown in Table 2.
  • polystyrene-poly (ethylene Z-butylene) -polystyrene triblock copolymer Kuraray Co., Ltd., Septon 8104
  • polystyrene-poly (ethylene Z propylene) -polystyrene triblock copolymer ethylene Z propylene
  • the polymer film obtained by the above method was used. 1 Weigh 70.lg of chlorobutane and 0.18 g of chlorosulfonic acid, prepare a 0.25 wt% chlorosulfonic acid solution, and adjust the polymer film to 0.16 g. A polymer electrolyte membrane was obtained (the amount of black sulfonic acid added was 1.1 times that of the polymer film). The results are shown in Table 2.
  • Polyphenylene sulfide manufactured by Dainippon Ink & Chemicals, Inc., DIC-PPS LDlOpl l l was used as a polymer compound having an aromatic unit.
  • the polyphenylene sulfide pellets were melt-extruded by a twin-screw extruder in which a T-die was set in a twin-screw kneading extruder under the conditions of a screw temperature of 290 ° C and a T-die temperature of 290 ° C. A polymer film was obtained.
  • Nafion (registered trademark) 115 manufactured by DuPont was used as the polymer electrolyte membrane. The results are shown in Table 2.
  • the polymer electrolyte membrane obtained according to the present invention was a polymer electrolyte membrane for a polymer electrolyte fuel cell. It was revealed that the proton conductivity was of the same order as in Comparative Example 3, and it was shown that the polymer was useful as a polymer electrolyte membrane for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell.
  • the polymer electrolyte membrane from which the polymer film force of the present invention was obtained is a conventional polymer exhibiting equivalent proton conductivity. Compared with electrolyte membranes, it has a low methanol permeability coefficient and a high methanol barrier property, and is useful as a polymer electrolyte membrane for direct liquid fuel cells such as direct methanol fuel cells. It has been shown.
  • high-density polyethylene manufactured by Mitsui Engineering Co., Ltd., HI-Z EX 3300F
  • Polyphenylene sulfide manufactured by Dainippon Ink Industries, Ltd., DIC-PPS LDlOpl l
  • aromatic polymer compound was used as the aromatic polymer compound.
  • the ion exchange capacity of the polymer electrolyte membrane was measured by the following method.
  • a polymer electrolyte membrane of about 10 mm ⁇ 40 mm was immersed in 20 mL of a saturated sodium chloride aqueous solution at 25 ° C. and reacted at 60 ° C. for 3 hours in a water bath. After cooling to 25 ° C, the membrane was thoroughly washed with ion-exchanged water, and all sodium chloride saturated aqueous solution and washing water were collected. To this collected solution, a phenolphthalein solution was added as an indicator, and neutralization titration with 0.01N aqueous sodium hydroxide was performed to calculate the ion exchange capacity. The results are shown in Table 3.
  • the proton conductivity of the polymer electrolyte membrane was measured by the following method.
  • Proton conductivity The polymer electrolyte membrane was cut into a circular shape with a diameter of 16 mm, and excess moisture was wiped off with filter paper before being used for measurement.
  • Stainless steel electrodes are attached to both front and back sides of the test specimen, and these are placed in a bipolar metal cell. Then, the AC impedance method (frequency: 42Hz, 5MHz) LCR meter 3531Z HITESTER) was used to measure membrane resistance and calculate film thickness proton conductivity. The results are shown in Table 3. [0294] Further, the methanol blocking property of the polymer electrolyte membrane was measured by the following method.
  • a membrane permeation experiment apparatus manufactured by Beadrex was used.
  • Proton-conducting Polymer electrolyte membrane separates ion-exchanged water and methanol solution of a predetermined concentration, and after a predetermined time (2 hours) has elapsed, a solution containing methanol that has permeated the ion-exchanged water is collected.
  • the amount of methanol permeated by gas chromatography GC-2010 was quantified. From this quantitative result, the methanol permeation rate was determined, and the methanol permeation coefficient and methanol permeation coefficient were calculated.
  • the methanol permeability coefficient and the methanol cutoff coefficient were calculated according to the following formulas 1 and 2. The results are shown in Table 3.
  • Example 17 A polymer film obtained in the same manner as in Example 17 was used. 1-Chlorobutane 15 Og, 4.5 g of chlorosulfonic acid were weighed, 3. Proton conductivity high as in Example 17 except that an Owt% chlorosulfonic acid solution was prepared and the high molecular weight film was 0.35 g. A molecular electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 12.9 times the weight of the polymer film). The results are shown in Table 3.
  • Example 17 A polymer film obtained in the same manner as in Example 17 was used. 1-Chlorobutane 12 7g and chlorosulfonic acid 4.4g were weighed to prepare a 3.5wt% chlorosulfonic acid solution, and the high molecular film was changed to 0.29g. An electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 15.1 times the weight of the polymer film). The results are shown in Table 3.
  • Example 20 A polymer film obtained in the same manner as in Example 17 was used. 1-Chlorobutane 14 5 g and chlorosulfonic acid 5.8 g were weighed, 4. Proton conduction was conducted in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution was prepared and the high molecular weight film was changed to 0.33 g. A polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 17.3 times the weight of the polymer film). The results are shown in Table 3.
  • Example 17 A polymer film obtained in the same manner as in Example 17 was used. 1-Chlorobutane 13 8 g and chlorosulfonic acid 6.2 g were weighed, a 4.5 wt% chlorosulfonic acid solution was prepared, and proton conduction was performed in the same manner as in Example 17 except that the high molecular weight film was 0.32 g. A polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 19.4 times the weight of the polymer film). The results are shown in Table 3.
  • Example 17 A polymer film obtained in the same manner as in Example 17 was used. 1-Chlorobutane 12 9 g, chlorosulfonic acid 6.5 g were weighed, 5. Owt% chlorosulfonic acid solution was prepared, and proton conduction was performed in the same manner as in Example 17 except that the high molecular weight film was changed to 0.30 g. A conductive polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 21.6 times the weight of the polymer film). The results are shown in Table 3.
  • Example 17 A polymer film obtained in the same manner as in Example 17 was used. Dichloromethane was used in place of 1-chlorobutane. A polymer electrolyte membrane was prepared in the same manner as in Example 17 except that 798 g of dichloromethane and 8.Og of chlorosenophonic acid were weighed, 1. Owt% chlorosulfonic acid solution was prepared, and the polymer film was changed to 1.8 g. Obtained. The results are shown in Table 3.
  • a force sword catalyst 50% platinum-supported carbon (SA50BK manufactured by Ny Chemcat) was used. A 5% naphthion (registered trademark) dispersion (manufactured by Aldrich) was used as a binder. A force sword catalyst and pure water were mixed at a weight ratio of 1:10 to obtain a solution A. The solution A and the binder were mixed with the force sword catalyst so that the binder had a weight ratio of 1: 7.3 to obtain a solution B. Platinum 27% ruthenium 13% supported carbon as anode catalyst Mcat SA27-13RCBK) was used. An anode catalyst and pure water were mixed at a weight ratio of 1:10 to obtain a solution C.
  • the solution C and the binder were mixed with the anode catalyst so that the binder had a weight ratio of 1: 7.1 to obtain a solution D.
  • the process of applying the solution B onto a 22 mm square, 50 ⁇ m thick Teflon (registered trademark) sheet washed with acetone and drying was repeated several times to obtain a platinum amount of lmg / cm 2 to obtain a force sword catalyst sheet.
  • solution D was applied to a platinum amount of lmg / cm 2 to obtain an anode catalyst sheet.
  • the polymer electrolyte membrane described in Example 23 is used, and is sandwiched between the anode catalyst sheet and the force sword catalyst sheet, and is further sandwiched in the order of 50 m thick Teflon (registered trademark) sheet, filter paper, and SUS plate. did. This was hot pressed at 150 ° C and 50 kgfZcm 2 and held for 5 minutes. After pressing, the Teflon (registered trademark) sheet, the filter paper, and the SUS plate were removed, and the Teflon (registered trademark) sheet of the catalyst sheet was removed to obtain a membrane-electrode assembly.
  • Teflon (registered trademark) dispersion (Daikin Industries POLYFLON PTFE D-1E) is applied and baked at 360 ° C for 1 hour for water repellent treatment.
  • a diffusion layer subjected to was obtained.
  • a 180 m thick, 80-square Teflon (registered trademark) sheet was cut into a 25-corner center and used as a gasket.
  • the MEA was sandwiched between a diffusion layer and a gasket and attached to a fuel cell (ElectroChem FC05-01 SP) with an electrode area of 5 cm 2 .
  • the torque pressure holding the cell at this time gradually increased from 1N'm to 2N'm, 3N'm, and 4N'm.
  • a GFT-MW manufactured by Toyo Corporation was used as the evaluation device. 1M methanol aqueous solution was supplied to the anode electrode side at a flow rate of 0.5 mLZmin, and air was supplied as an oxidizing agent to the force sword electrode side at a flow rate of 160 mLZmin. The power generation characteristics of a direct methanol fuel cell were evaluated at a cell temperature of 60 ° C. The results are shown in FIG.
  • aliphatic polymer compound high-density polyethylene (manufactured by Mitsui Engineering Co., Ltd., HI-Z EX 3300F) was used.
  • Polyphenylene sulfide manufactured by Dainippon Ink Industries, Ltd., DIC-PPS LDlOpl l was used as the aromatic polymer compound.
  • the polymer film was used. 1 Weigh 121 g of chlorobutane and 3.6 g of chlorosulfonic acid. 3. Prepare a polymer electrolyte membrane in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution is prepared and the polymer film is 0.28 g. (The amount of chlorosulfonic acid added was 12.9 times the weight of the polymer film). The results are shown in Table 3.
  • Example 24 A polymer film obtained in the same manner as in Example 24 was used. Polymer electrolyte membrane in the same manner as in Example 23, except that 851 g of dichloromethane and 8.5 g of chlorosulfonic acid were weighed, and 1. Owt% chlorosulfonic acid solution was prepared and the polymer film was changed to 2. Og. Got. The results are shown in Table 3.
  • high-density polyethylene manufactured by Mitsui Engineering Co., Ltd., HI-Z EX 3300F
  • Polyphenylene sulfide manufactured by Dainippon Ink Industries, Ltd., DIC-PPS LDlOpl l
  • aromatic polymer compound was used as the aromatic polymer compound.
  • the polymer film was used. 1 Weigh 136 g of chlorobutane and 2.7 g of chlorosulfonic acid. 2. Prepare a polymer electrolyte membrane in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution is prepared and the polymer film is 0.32 g. (The amount of chlorosulfonic acid added was 8.6 times the weight of the polymer film). The results are shown in Table 3.
  • Example 26 A polymer film obtained in the same manner as in Example 26 was used. 1 Weigh 14 g of chlorobutane and 4.2 g of chlorosulfonic acid, 3. Proton conductivity in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution is prepared and the high molecular weight film is 0.33 g. A conductive polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 12.9 times the weight of the polymer film). The results are shown in Table 3.
  • Example 26 A polymer film obtained in the same manner as in Example 26 was used.
  • a polymer electrolyte membrane was prepared in the same manner as in Example 23 except that 875 g of dichloromethane and 4.4 g of chlorosulfonic acid were weighed to prepare a 0.5 wt% chlorosulfonic acid solution and the polymer film was changed to 2. Og. Got. The results are shown in Table 3.
  • high-density polyethylene manufactured by Mitsui Engineering Co., Ltd., HI-Z EX 3300F
  • Polyphenylene sulfide manufactured by Dainippon Ink Industries, Ltd., DIC-PPS LDlOpl l
  • aromatic polymer compound was used as the aromatic polymer compound.
  • the polymer film was used. 1 Weigh 116 g of chlorobutane and 2.3 g of chlorosulfonic acid. 2. Prepare a polymer electrolyte membrane in the same way as in Example 17 except that an Owt% chlorosulfonic acid solution is prepared and the polymer film is 0.27 g. (The amount of chlorosulfonic acid added was 8.6 times the weight of the polymer film). The results are shown in Table 3.
  • Example 29 A polymer film obtained in the same manner as in Example 29 was used. 1 Proton conductivity in the same manner as in Example 17 except that 12 g of chlorobutane and 3.6 g of chlorosulfonic acid were weighed, 3. A chlorosulfonic acid solution of Owt% was prepared, and the high molecular weight film was changed to 0.28 g. A polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 12.9 times the weight of the polymer film). The results are shown in Table 3.
  • high-density polyethylene manufactured by Mitsui Engineering Co., Ltd., HI-Z EX 3300F
  • Polyphenylene sulfide manufactured by Dainippon Ink Industries, Ltd., DIC-PPS LDlOpl l
  • aromatic polymer compound was used as the aromatic polymer compound.
  • the polymer film was used. 1 114 g of chlorobutane, 2.3 g of chlorosulfonic acid Weighed and prepared a polymer electrolyte membrane in the same manner as in Example 17 except that 2.Owt% chlorosulfonic acid solution was prepared and the polymer film was changed to 0.27 g (the amount of chlorosulfonic acid added was 8.6 times the weight of the polymer film). The results are shown in Table 3.
  • Polypropylene (manufactured by Mitsui Engineering Co., Ltd., F107DV) was used as the aliphatic polymer compound.
  • poly-phenylene sulfide manufactured by Dainippon Ink & Chemicals, Inc., DIC-PPS LDlOpl was used.
  • the polymer film was used.
  • a polymer electrolyte was prepared in the same manner as in Example 17 except that 109 g of 1-chlorobutane and 4.9 g of chlorosulfonic acid were weighed to prepare a 4.5 wt% chlorosulfonic acid solution and the polymer film was changed to 0.25 g. A membrane was obtained (the amount of chlorosulfonic acid added was 19.4 times the weight of the polymer film). The results are shown in Table 3.
  • Example 32 A polymer film obtained in the same manner as in Example 32 was used. 1-Chlorobutane 103 g and chlorosulfonic acid 5.2 g were weighed, 5. Produced protons in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution was prepared and the high molecular weight film was changed to 0.24 g. A conductive polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 21.6 times the weight of the polymer film). The results are shown in Table 3.
  • the polymer film was used. 1-chlorobutane ll lg, 4.4 g of chlorosulfonic acid was weighed, 4. Owt% chlorosulfonic acid solution was prepared, and the polymer film was changed to 0.26 g. An electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 17.3 times the weight of the polymer film). The results are shown in Table 3.
  • Example 34 A polymer film obtained in the same manner as in Example 34 was used. 1-Chlorobutane 12 2 g and chlorosulfonic acid 5.5 g were weighed, a 4.5 wt% chlorosulfonic acid solution was prepared, and proton conduction was performed in the same manner as in Example 17 except that the high molecular weight film was changed to 0.28 g. A polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 19.4 times the weight of the polymer film). The results are shown in Table 3.
  • Example 34 A polymer film obtained in the same manner as in Example 34 was used. 1-Chlorobutane 11 9 g, chlorosulfonic acid 6. Og was weighed, 5. Owt% chlorosulfonic acid solution was prepared, and proton conduction was performed in the same manner as in Example 17 except that the high molecular weight film was changed to 0.28 g. A conductive polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 21.6 times the weight of the polymer film). The results are shown in Table 3.
  • Polyphenylene sulfide (Dainippon Ink Industries Ltd.) as an aromatic polymer A company-made DIC—PPS LDlOpl l) was used.
  • pellets of the aromatic polymer compound were melt-extruded with an extruder in which a T-die was set in a twin-screw kneading extruder at a screw temperature of 290 ° C and a T-die temperature of 290 ° C.
  • the polymer film was used. 1 Weigh 119 g of chlorobutane and 1.2 g of chlorosulfonic acid, 1. Prepare a polymer electrolyte membrane in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution was prepared and the polymer film was 0.28 g. (The amount of chlorosulfonic acid added was 4.3 times the weight of the polymer film). The results are shown in Table 3.
  • polyphenylene sulfide manufactured by Dainippon Ink & Chemicals, Inc., DIC—PPS ML320p was used.
  • the aromatic polymer compound pellets were melt-extruded with a twin-screw kneading extruder with a T-die set under conditions of a screw temperature of 290 ° C and a T-die temperature of 290 ° C. A molecular film was obtained.
  • the polymer film was used. 1 Polymer electrolyte membrane in the same manner as in Example 17 except that 128 g of chlorobutane and 1.9 g of chlorosulfonic acid were weighed to prepare a 1.5 wt% chlorosulfonic acid solution and the polymer film was changed to 0.30 g. (The amount of chlorosulfonic acid added was 6.5 times the weight of the polymer film). The results are shown in Table 3.
  • the proton conductive polymer electrolyte membrane of the present invention has proton conductivity in the same order as that of the conventional polymer electrolyte membrane. It was revealed that it is useful as a polymer electrolyte membrane.
  • the polymer electrolyte membrane of the present invention is more than the conventional polymer electrolyte membrane. It is clear that the methanol permeation coefficient is low and that it shows a high methanol barrier coefficient. It was shown to be useful as a polymer electrolyte membrane for batteries.
  • FIG. 1 is a cross-sectional view of a main part of a polymer electrolyte fuel cell (direct methanol fuel cell) of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of a direct methanol fuel cell according to the present invention.
  • FIG. 3 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 1).
  • FIG. 4 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 2).
  • FIG. 5 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 3).
  • FIG. 6 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 4).
  • FIG. 7 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 5).
  • FIG. 8 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 6).
  • FIG. 9 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 7).
  • FIG. 10 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 8).
  • FIG. 11 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 9).
  • FIG. 12 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 10).
  • FIG. 13 is a cross-sectional view of a main part of a solid polymer fuel cell (direct methanol fuel cell) of the present invention.
  • FIG. 14 is an embodiment of a cross-sectional view of the main part of the direct methanol fuel cell of the present invention.
  • FIG. 15 shows the results of evaluation of power generation characteristics of a direct methanol fuel cell in Example 23 of the present invention.
  • FIG. 16 is a result of evaluation of power generation characteristics of a direct methanol fuel cell in Example 25 of the present invention.
  • FIG. 17 shows the evaluation results of power generation characteristics of a direct methanol fuel cell in Example 28 of the present invention.
  • a polymer electrolyte membrane having at least two kinds of compound power that is, an aliphatic polymer compound and an aromatic polymer compound containing a proton conductive group. It became possible to express a high methanol barrier property. These have excellent proton conductivity and high methanol barrier properties, and are useful as polymer electrolyte membranes for polymer electrolyte fuel cells, direct liquid fuel cells, and direct methanol fuel cells. Further, the polymer electrolyte membrane can be realized by using the polymer film of the present invention as a material.
  • At least three kinds of polymer compounds including a polymer compound having an aromatic unit, a thermoplastic elastomer, and a polymer compound having no aromatic unit are included as essential components.
  • High molecular electrolyte membranes in which proton conductive groups are introduced into aromatic units in polymer films, have excellent proton conductivity and high methanol barrier properties, such as solid polymer fuel cells and direct liquid fuels. It is useful as a polymer electrolyte membrane for batteries and direct methanol fuel cells. Further, by using the polymer film of the present invention as a material, It became possible to realize a molecular electrolyte membrane.
  • At least two kinds of polymer compounds that is, a polymer compound having an aromatic unit and a polymer compound having no aromatic unit are included,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Disclosed is a polymer electrolyte membrane useful as a constituent of a solid polymer fuel cell, a direct liquid fuel cell or a direct methanol fuel cell. Also disclosed are a polymer film as the material for such a polymer electrolyte membrane, a method for producing an electrolyte membrane, and a solid polymer fuel cell using an electrolyte membrane. Further disclosed are a polymer electrolyte membrane having excellent proton conductivity and high methanol barrier properties which is useful as a constituent of a solid polymer fuel cell, a direct liquid fuel cell or a direct methanol fuel cell and a method for producing such a polymer electrolyte membrane. Still further disclosed are a polymer film as the material for such a polymer electrolyte membrane, and a method for producing such a polymer film. Specifically disclosed is 'a polymer film essentially containing a polymer compound (A) having an aromatic unit and a polymer compound (B) having no aromatic unit'. Also specifically disclosed is 'a polymer film further containing a thermoplastic elastomer (C) as another essential component'.

Description

明 細 書  Specification
高分子電解質膜、その材料である高分子フィルム、電解質膜の製造方法 並びに電解質膜を使用した固体高分子形燃料電池  POLYMER ELECTROLYTE MEMBRANE, POLYMER FILM AS ITS MATERIAL, METHOD FOR PRODUCING ELECTROLYTE MEMBRANE, AND SOLID POLYMER FUEL CELL USING ELECTROLYTE MEMBRANE
技術分野  Technical field
[0001] 本発明は、高分子電解質膜、その材料である高分子フィルム、電解質膜の製造方 法並びに電解質膜を使用した固体高分子形燃料電池に関する。  The present invention relates to a polymer electrolyte membrane, a polymer film as a material thereof, a method for producing the electrolyte membrane, and a solid polymer fuel cell using the electrolyte membrane.
背景技術  Background art
[0002] スルホン酸基などのプロトン伝導性基を含有する高分子化合物は、固体高分子形 燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、湿度センサー、ガス センサー、エレクト口クロミック表示素子などの電気化学素子の原料として使用される [0002] Polymer compounds containing proton conductive groups such as sulfonic acid groups are solid polymer fuel cells, direct liquid fuel cells, direct methanol fuel cells, humidity sensors, gas sensors, and electochromic display elements. Used as a raw material for electrochemical devices such as
。これらの中でも、固体高分子形燃料電池は、新エネルギー技術の柱の一つとして 期待されている。 . Among these, polymer electrolyte fuel cells are expected as one of the pillars of new energy technology.
[0003] プロトン伝導性基を含有する高分子化合物からなる高分子電解質膜を使用した固 体高分子形燃料電池は、低温における作動、小型軽量ィ匕が可能などの特徴を有し、 自動車などの移動体、家庭用コージェネレーションシステム、および民生用小型携帯 機器などへの適用が検討されている。直接液体形燃料電池、特に、メタノールを直 接燃料に使用する直接メタノール形燃料電池は、単純な構造と燃料供給やメンテナ ンスの容易さ、さらには高エネルギー密度化が可能などの特徴を有し、リチウムィォ ン二次電池代替として、携帯電話やノート型パソコンなどの民生用小型携帯機器へ の応用が期待されている。  [0003] Solid polymer fuel cells using a polymer electrolyte membrane made of a polymer compound containing a proton-conducting group have features such as operation at a low temperature and small size and light weight. Application to mobile objects, household cogeneration systems, and small portable devices for consumer use is under consideration. Direct liquid fuel cells, especially direct methanol fuel cells that use methanol directly as a fuel, have features such as a simple structure and ease of fuel supply and maintenance, as well as high energy density. As an alternative to lithium-ion secondary batteries, it is expected to be applied to small consumer portable devices such as mobile phones and notebook computers.
[0004] スルホン酸基などのプロトン伝導性置換基を含有する高分子化合物は、固体高分 子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、湿度センサー、 ガスセンサー、エレクト口クロミック表示素子などの電気化学素子の原料として使用さ れる。これらの中でも、固体高分子形燃料電池は、新エネルギー技術の柱の一つと して期待されている。  [0004] Polymer compounds containing proton-conducting substituents such as sulfonic acid groups include solid polymer fuel cells, direct liquid fuel cells, direct methanol fuel cells, humidity sensors, gas sensors, and electochromic. Used as a raw material for electrochemical elements such as display elements. Among these, polymer electrolyte fuel cells are expected as one of the pillars of new energy technology.
[0005] プロトン伝導性置換基を有する高分子化合物からなる電解質膜を使用する固体高 分子形燃料電池は、低温における作動、小型軽量ィ匕が可能などの特徴から、自動 車などの移動体、家庭用コージェネレーションシステム、および民生用小型携帯機器 などへの適用が検討されている。直接液体形燃料電池、特に、メタノールを直接燃 料に使用する直接メタノール形燃料電池は、単純な構造と燃料供給やメンテナンス の容易さ、さらには高エネルギー密度などの特徴を有し、リチウムイオン二次電池代 替として、携帯電話やノート型パソコンなどの民生用小型携帯機器への応用が期待 されている。 [0005] A solid polymer fuel cell that uses an electrolyte membrane made of a polymer compound having a proton-conducting substituent is an automatic sensor that can operate at low temperatures and is small and lightweight. Application to mobile vehicles such as cars, home cogeneration systems, and small portable devices for consumer use is under consideration. Direct liquid fuel cells, particularly direct methanol fuel cells that use methanol as the direct fuel, have features such as a simple structure, ease of fuel supply and maintenance, and high energy density. As a replacement for the next battery, it is expected to be applied to small consumer portable devices such as mobile phones and laptop computers.
[0006] 固体高分子形燃料電池に使用される高分子電解質膜としては、ナフイオン (Nafio n) (登録商標)に代表されるパーフルォロカーボンスルホン酸膜が広く検討されてい る。パーフルォロカーボンスルホン酸膜は、高いプロトン伝導度を有し、耐酸性、耐酸 化性などの化学的安定性に優れている。しかしながらナフイオン (登録商標)は、使 用原料が高ぐ複雑な製造工程を経るため、非常に高価であるという欠点がある。さ らに直接液体形燃料電池の原料になるメタノールなどの水素含有液体などの透過 ( クロスオーバーともいう)が大きぐいわゆる化学ショート反応が起こる。これにより、力 ソード電位、燃料効率、セル特性などの低下が生じ、直接メタノール形燃料電池など の直接液体形燃料電池の高分子電解質膜として用いるのが困難である。またナフィ オン (登録商標)では、未発電時にもクロスオーバーによる燃料の消失が懸念される  [0006] As a polymer electrolyte membrane used in a polymer electrolyte fuel cell, a perfluorocarbon sulfonic acid membrane represented by Nafion (registered trademark) has been widely studied. Perfluorocarbon sulfonic acid membranes have high proton conductivity and are excellent in chemical stability such as acid resistance and acid resistance. However, naphthion (registered trademark) has a disadvantage that it is very expensive because it requires a complicated manufacturing process in which raw materials used are high. In addition, a so-called chemical short reaction occurs in which the permeation (also referred to as crossover) of a hydrogen-containing liquid such as methanol, which is a raw material for direct liquid fuel cells, is large. As a result, force sword potential, fuel efficiency, cell characteristics and the like are lowered, and it is difficult to use as a polymer electrolyte membrane of a direct liquid fuel cell such as a direct methanol fuel cell. In addition, Nafion (registered trademark) is worried about the loss of fuel due to crossover even when power is not generated
[0007] 固体高分子形燃料電池に使用されるプロトン伝導性電解質膜としては、ナフイオン [0007] Proton conductive electrolyte membranes used in polymer electrolyte fuel cells include naphthion ions.
(Nafion) (登録商標)に代表されるパーフルォロカーボンスルホン酸膜が広く検討さ れている。パーフルォロカーボンスルホン酸膜は、高いプロトン伝導度を有し、耐酸 性、耐酸ィ匕性などの化学的安定性に優れている。し力しながらナフイオン (登録商標 )は、使用原料が高ぐ複雑な製造工程を経るため、非常に高価であるという欠点が ある。さらにナフイオン (登録商標)では、メタノールなどの水素含有液体などの透過( クロスオーバーともいう)が大きぐいわゆる化学ショート反応が起こる。これにより、力 ソード電位、燃料効率、セル特性などの低下が生じ、直接メタノール形燃料電池の電 解質膜として用いるのが困難である。またナフイオン (登録商標)では、未発電時にも クロスオーバーによる燃料の消失が懸念される。  Perfluorocarbon sulfonic acid membranes represented by (Nafion) (registered trademark) have been widely studied. Perfluorocarbon sulfonic acid membranes have high proton conductivity and excellent chemical stability such as acid resistance and acid resistance. However, Nafion (registered trademark) has a disadvantage that it is very expensive because it uses a complicated manufacturing process in which raw materials used are high. Further, naphthion (registered trademark) causes a so-called chemical short reaction in which permeation (also referred to as crossover) of a hydrogen-containing liquid such as methanol is large. As a result, the force sword potential, fuel efficiency, cell characteristics, and the like are lowered, and it is difficult to directly use as an electrolyte membrane of a methanol fuel cell. In addition, naphthion (registered trademark) is concerned about the loss of fuel due to crossover even when power is not generated.
[0008] このような背景から、高分子電解質膜として、種々のものが提案されている。 [0009] 例えば、特許文献 1には、非プロトン性極性溶媒に可溶なスルホン酸基含有ポリフ ェ-レンサルファイドが提案されて 、る。これはポリフエ-レンサルファイドのクロロス ルホン酸均一溶液下でスルホン酸基を導入することにより、非プロトン性極性溶媒へ の溶解性が付与でき、容易にフィルムにカ卩ェできることが開示されている。しかし、こ こに開示されて ヽる方法では、燃料電池の燃料として検討されて ヽるメタノールへの 溶解性も同時に付与される恐れがあり、その使用範囲が著しく制約されるものである[0008] Against this background, various types of polymer electrolyte membranes have been proposed. [0009] For example, Patent Document 1 proposes a sulfonic acid group-containing polyphenylene sulfide that is soluble in an aprotic polar solvent. It is disclosed that by introducing a sulfonic acid group in a chlorosulfonic acid homogeneous solution of poly (phenylene sulfide), solubility in an aprotic polar solvent can be imparted and the film can be easily covered. However, in the method disclosed here, there is a possibility that the solubility in methanol, which is considered as a fuel for a fuel cell, may be imparted at the same time, and the range of use is remarkably restricted.
。また、溶媒およびスルホン化剤としてクロロスルホン酸を使用するため、スルホン酸 基導入量の制御が困難であったり、ポリフエ-レンサルファイドの劣化を引き起こす恐 れがある。さらに、反応時ゃ榭脂回収時、さらには洗浄時に多量の酸廃液を排出す る。また、メタノールなどの水素含有液体などの透過(クロスオーバーともいう)の抑制 効果については、言及されていない。 . In addition, since chlorosulfonic acid is used as a solvent and a sulfonating agent, it is difficult to control the amount of sulfonic acid group introduced or it may cause deterioration of the polysulfide sulfide. In addition, a large amount of acid waste liquid is discharged at the time of reaction, at the time of collecting the resin, and at the time of washing. In addition, there is no mention of the effect of suppressing permeation (also called crossover) of hydrogen-containing liquids such as methanol.
[0010] また、特許文献 2には、スルホン酸基含有ポリフ -レンサルファイドからなる高分 子電解質膜 (プロトン伝導性高分子膜)の製造方法などにっ ヽて開示されて!ヽる。こ の方法に従えば、溶媒不溶性のスルホン酸基含有ポリフエ-レンサルファイドからな る高分子電解質膜が得られるが、メタノールなどの水素含有液体などの透過 (クロス オーバーとも 、う)の抑制効果にっ 、ては、言及されて ヽな 、。  [0010] Further, Patent Document 2 discloses a method for producing a polymer electrolyte membrane (proton conductive polymer membrane) made of a sulfonic acid group-containing polysulfide sulfide. According to this method, a polymer electrolyte membrane made of a solvent-insoluble sulfonic acid group-containing polyphenylene sulfide can be obtained. Well, it ’s been cunning.
[0011] 例えば、特許文献 3には、高分子の多孔質支持体に、電解質モノマーを充填して、 高分子量化する方法によって得られる高分子電解質膜にっ ヽて開示されて ヽる。ま た、特許文献 4には、高分子の多孔質支持体に、モノマーを充填して高分子量化し たものにスルホン酸基を導入する方法によって得られる高分子電解質膜について開 示されている。これらは、燃料として使用するメタノールや水に対する膨潤を多孔質 支持体によって抑制するため、それらの透過(クロスオーバー)が抑制されるとされて いる。し力しながら、その製造工程が複雑であるため、製造コストや生産性の面で課 題があることが容易に想定される。また、充分なプロトン伝導性を発現させるためには 、電解質部分のプロトン伝導性基の含有量を高く設定する必要があり、この部分での 耐久性や、電解質と支持体界面の耐久性に懸念がある。  [0011] For example, Patent Document 3 discloses a polymer electrolyte membrane obtained by a method in which a polymer porous support is filled with an electrolyte monomer to increase the molecular weight. Patent Document 4 discloses a polymer electrolyte membrane obtained by a method of introducing a sulfonic acid group into a polymer porous support having a high molecular weight by filling with a monomer. These are said to suppress the permeation (crossover) of the fuel and methanol used as fuel because they are suppressed by the porous support. However, since the manufacturing process is complicated, it is easily assumed that there will be problems in terms of manufacturing cost and productivity. In order to develop sufficient proton conductivity, it is necessary to set the content of the proton conductive group in the electrolyte part to be high, and there is concern about the durability in this part and the durability of the electrolyte / support interface. There is.
[0012] 例えば、特許文献 3には、高分子の多孔質支持体に、電解質モノマーを充填して、 高分子量ィ匕する高分子電解質膜について開示されている。燃料として使用するメタ ノールや水に対する膨潤を多孔質支持体によって抑制するため、それらの透過(クロ スオーバー)が抑制されるとされている。し力しながら、その製造工程が複雑であるた め、製造コストの面で課題があるとされている。また、充分なプロトン伝導性を発現さ せるためには、電解質部分のプロトン伝導性置換基の含有量を高く設定する必要が あり、この部分での耐久性や、電解質と支持体界面の耐久性に懸念がある。 [0012] For example, Patent Document 3 discloses a polymer electrolyte membrane in which a polymer porous support is filled with an electrolyte monomer to increase the molecular weight. Meta used as fuel It is said that the permeation (crossover) of these materials is suppressed because swelling with respect to knoll and water is suppressed by the porous support. However, since the manufacturing process is complicated, there are problems in terms of manufacturing costs. In addition, in order to develop sufficient proton conductivity, it is necessary to set the content of the proton conductive substituent in the electrolyte part to be high, and durability in this part and durability of the electrolyte / support interface There are concerns.
特許文献 1 :特表平 11 510198号公報  Patent Document 1: Japanese Patent Publication No. 11 510198
特許文献 2:国際公開第 02Z062896号パンフレット  Patent Document 2: Pamphlet of International Publication No. 02Z062896
特許文献 3 :再公表 WO00Z54531号公報  Patent Document 3: Republished WO00Z54531
特許文献 4:特開 2005— 5171号公報  Patent Document 4: Japanese Patent Laid-Open No. 2005-5171
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 本発明の目的は、上記問題を鑑みてなされたものであり、固体高分子形燃料電池 、直接液体形燃料電池、直接メタノール形燃料電池の構成材料として有用な、優れ たプロトン伝導性を有し、かつ高!ゝメタノール遮断性を有する高分子電解質膜および その製造方法、またその高分子電解質膜の材料である高分子フィルムおよびその製 造方法を提供することである。 The object of the present invention has been made in view of the above problems, and has excellent proton conductivity useful as a constituent material for polymer electrolyte fuel cells, direct liquid fuel cells, and direct methanol fuel cells. A polymer electrolyte membrane having high methanol barrier properties and a method for producing the same, and a polymer film that is a material for the polymer electrolyte membrane and a method for producing the polymer film.
課題を解決するための手段  Means for solving the problem
[0014] (1)本発明の第 1は、 [0014] (1) The first of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の材料であって、  A polymer electrolyte membrane material used in solid polymer fuel cells, direct liquid fuel cells, and direct methanol fuel cells,
(A)芳香族単位を有する高分子化合物、  (A) a polymer compound having an aromatic unit,
(B)芳香族単位がな!、高分子化合物、  (B) No aromatic unit !, polymer compound,
を必須成分として含む、高分子フィルム、  A polymer film containing, as an essential component,
である。  It is.
[0015] (2)本発明の第 2は、  [0015] (2) The second of the present invention is
さらに、(C)熱可塑性エラストマ一を必須成分として含む(1)記載の高分子フィルム、 である。  Furthermore, (C) the polymer film according to (1), which contains a thermoplastic elastomer as an essential component.
[0016] (3)本発明の第 3は、 前記(A)がポリスチレン、シンジオタクチックポリスチレン、ポリフエ-レンエーテル、変 性ポリフエ二レンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエーテノレエーテ ルケトンおよびポリフエ-レンサルファイド、並びに、それらの誘導体からなる群から選 択される少なくとも 1種であることを特徴とする、(1)または(2)のいずれかに記載の高 分子フィルム、 [0016] (3) The third of the present invention is (A) is selected from the group consisting of polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyethersulfone, polyetherolene ketone and polyphenylene sulfide, and derivatives thereof. The high molecular film according to either (1) or (2), characterized in that it is at least one selected
である。  It is.
[0017] (4)本発明の第 4は、  [0017] (4) The fourth of the present invention,
前記(A)がポリスチレン、シンジオタクチックポリスチレンおよびポリフエ-レンサルフ アイドからなる群力も選択される少なくとも 1種であることを特徴とする、 (1)〜(3)のい ずれかに記載の高分子フィルム、  The polymer according to any one of (1) to (3), wherein (A) is at least one selected from the group force consisting of polystyrene, syndiotactic polystyrene, and polyphenylene sulfide. the film,
である。  It is.
[0018] (5)本発明の第 5は、  [0018] (5) The fifth of the present invention is
前記 (B)が下記一般式(1)  (B) is represented by the following general formula (1)
[0019] [化 3] [0019] [Chemical 3]
Figure imgf000006_0001
Figure imgf000006_0001
[0020] (式中、 X〜は、 H、 CH、 Cl、 F、 OCOCH、 CN、 COOHゝ COOCH、 OC H、 [0020] (wherein X to H, CH, Cl, F, OCOCH, CN, COOH COCOOCH, OC H,
1 4 3 3 3 4 9 力 なる群から選択されるいずれかであって、 X〜は互いに独立で同一であっても  1 4 3 3 3 4 9 is selected from the group consisting of:
1 4  14
異なって!/、てもよ 、)力 なる高分子化合物から選択される少なくとも 1種であることを 特徴とする、 (1)〜 (4)の 、ずれかに記載の高分子フィルム、  No! (1) to (4), the polymer film according to any one of the above, wherein the polymer film is at least one selected from powerful polymer compounds
である。  It is.
[0021] (6)本発明の第 6は、  (6) A sixth aspect of the present invention is
前記 )がポリエチレン、ポリプロピレンおよびポリメチルペンテン、並びに、それらの 誘導体力もなる群力も選択される少なくとも 1種であることを特徴とする、 (1)〜(5)の Vヽずれかに記載の高分子フィルム、  The above-mentioned) is at least one selected from polyethylene, polypropylene, and polymethylpentene, and the group force that is also a derivative force thereof. Molecular film,
である。 [0022] (7)本発明の第 7は、 It is. [0022] (7) The seventh of the present invention is
「前記 (C)がポリスチレンまたはポリスチレン誘導体と  “(C) is polystyrene or a polystyrene derivative
下記一般式 (2)および Zまたは一般式 (3)との  The following general formula (2) and Z or general formula (3)
共重合体であることを特徴とする、 (2)〜(6)の 、ずれか〖こ記載の高分子フィルム。  The polymer film according to any one of (2) to (6), wherein the polymer film is a copolymer.
[0023] [化 4] [0023] [Chemical 4]
Figure imgf000007_0001
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0002
[0024] (式中、 R〜 は C H であって、 R〜 は互いに独立で同一であっても異なってい [Wherein R˜ is C H, and R˜ are independent of each other and are the same or different.
1 12 2x+l 1 12  1 12 2x + l 1 12
てもよい。また、 1、 m、 n、 xは 0以上の整数である。)」、  May be. 1, m, n, and x are integers of 0 or more. ) ",
である。  It is.
[0025] (8)本発明の第 8は、  (8) The eighth of the present invention is
前記(C)がポリスチレン ポリイソブチレン—ポリスチレントリブロック共重合体、ポリス チレン ポリ(エチレン Zプロピレン)ブロック共重合体、ポリスチレン ポリ(エチレン Zプロピレン)一ポリスチレントリブロック共重合体、ポリスチレン一ポリ(エチレン Zブ チレン) ポリスチレントリブロック共重合体およびポリスチレン ポリ(エチレンーェチ レン Zプロピレン)—ポリスチレントリブロック共重合体、並びに、それらの誘導体から なる群力も選択される少なくとも 1種であることを特徴とする、 (2)〜(7)のいずれかに 記載の高分子フィルム、 Said (C) is polystyrene polyisobutylene-polystyrene triblock copolymer, polystyrene poly (ethylene Z propylene) block copolymer, polystyrene poly (ethylene Z propylene) -polystyrene triblock copolymer, polystyrene-poly (ethylene Z). (Butylene) polystyrene triblock copolymer and polystyrene poly (ethylene ether) The polymer according to any one of (2) to (7), characterized in that it is at least one selected from the group force consisting of (len) Z-propylene) -polystyrene triblock copolymer and derivatives thereof. the film,
である。  It is.
[0026] (9)本発明の第 9は、  (9) The ninth of the present invention is
前記 (B)が 10重量%以上 95重量%以下含まれることを特徴とする(1)〜(8)の 、ず れかに記載の高分子フィルム、  The polymer film according to any one of (1) to (8), wherein (B) is contained in an amount of 10 wt% to 95 wt%,
である。  It is.
[0027] (10)本発明の第 10は、  (10) The tenth aspect of the present invention is
前記 (B)中に前記 (A)が分散されて!ヽることを特徴とする、(1)〜(9)の ヽずれかに 記載の高分子フィルム、  The polymer film according to any one of (1) to (9), wherein (A) is dispersed in (B)!
である。  It is.
[0028] (11)本発明の第 11は、  (11) The eleventh aspect of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜であって、(1)〜( 10)のいずれかに記載の高分子フィルム中 に存在する芳香族単位にプロトン伝導性基が導入されていることを特徴とする、高分 子電解質膜、  A polymer electrolyte membrane used for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, and present in the polymer film according to any one of (1) to (10) A polymer electrolyte membrane, wherein a proton conductive group is introduced into the aromatic unit,
である。  It is.
[0029] (12)本発明の第 12は、  [0029] (12) The twelfth aspect of the present invention is
前記プロトン伝導性基がスルホン酸基であることを特徴とする、(11)記載の高分子電 解質膜、  The polymer electrolyte membrane according to (11), wherein the proton conductive group is a sulfonic acid group,
である。  It is.
[0030] (13)本発明の第 13は、  [0030] (13) The thirteenth aspect of the present invention is
前記高分子電解質膜のイオン交換容量が、 0. 5〜3. 0ミリ当量 Zgであることを特徴 とする、(11)または(12)のいずれかに記載の高分子電解質膜、  The polymer electrolyte membrane according to any one of (11) and (12), characterized in that an ion exchange capacity of the polymer electrolyte membrane is 0.5 to 3.0 milliequivalent Zg,
である。  It is.
[0031] (14)本発明の第 14は、  [0031] (14) The fourteenth aspect of the present invention is
前記高分子電解質膜の 23°Cにおけるプロトン伝導度が、 1. 0 X 10— 3SZcm以上で あることを特徴とする、(11)〜(13)の ヽずれかに記載の高分子電解質膜、 である。 In the proton conductivity at 23 ° C of the polymer electrolyte membrane, 1. 0 X 10- 3 SZcm more The polymer electrolyte membrane according to any one of (11) to (13), which is characterized in that:
[0032] (15)本発明の第 15は、  [0032] (15) The fifteenth aspect of the present invention is
前記高分子電解質膜の 25°Cにおける 64重量%メタノール水溶液に対するメタノー ル透過係数が、 2, OOO ^ mol/ Ccm-日)以下であることを特徴とする、(11)〜(14) の!、ずれかに記載の高分子電解質膜、  (11) to (14), characterized in that the polymer electrolyte membrane has a methanol permeability coefficient of 2, OOO ^ mol / Ccm-day) or less for a 64 wt% aqueous methanol solution at 25 ° C. The polymer electrolyte membrane according to any one of the above,
である。  It is.
[0033] (16)本発明の第 16は、  (16) The sixteenth aspect of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の材料の製造方法であって、前記(1)〜(10)のいずれかに 記載の高分子フィルムを溶融押出成形で製造することを特徴とする、高分子フィルム の製造方法、  A method for producing a polymer electrolyte membrane material for use in a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, according to any one of (1) to (10) above. A method for producing a polymer film, characterized by producing a polymer film by melt extrusion molding,
である。  It is.
[0034] (17)本発明の第 17は、  [0034] (17) The seventeenth aspect of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の製造方法であって、前記(1)〜(10)のいずれかに記載の 高分子フィルムを有機溶媒存在下でスルホン化剤と接触させることを特徴とする、高 分子電解質膜の製造方法、  A method for producing a polymer electrolyte membrane for use in a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, wherein the polymer according to any one of (1) to (10) above A method for producing a polymer electrolyte membrane, comprising contacting the film with a sulfonating agent in the presence of an organic solvent;
である。  It is.
[0035] (18)本発明の第 18は、  (18) The eighteenth aspect of the present invention is
前記スルホン化剤がクロロスルホン酸であることを特徴とする、 (17)記載の高分子電 解質膜の製造方法、  The method for producing a polymer electrolyte membrane according to (17), wherein the sulfonating agent is chlorosulfonic acid,
である。  It is.
[0036] (19)本発明の第 19は、  (19) The nineteenth aspect of the present invention is
前記有機溶媒がハロゲンィ匕炭化水素であることを特徴とする、(17)または(18)のい ずれかに記載の高分子電解質膜の製造方法、  The method for producing a polymer electrolyte membrane according to any one of (17) and (18), wherein the organic solvent is a halogenated hydrocarbon,
である。  It is.
[0037] (20)本発明の第 20は、 前記ハロゲン化炭化水素力 ジクロロメタン、 1, 2—ジクロ口エタンぉよび 1 クロロブ タン力もなる群力も選択される少なくとも 1種であることを特徴とする、(17)〜(19)の V、ずれかに記載の高分子電解質膜の製造方法、 [0037] (20) The twentieth aspect of the present invention is The halogenated hydrocarbon power dichloromethane, 1,2-dichloromouth ethane, and the group power of 1 chlorobutane power is at least one selected, and V of (17) to (19) A method for producing the polymer electrolyte membrane according to
である。  It is.
[0038] (21)本発明の第 21は、  [0038] (21) The twenty-first aspect of the present invention provides
(11)〜(15)のいずれかに記載の高分子電解質膜、あるいは、(17)〜(20)のいず れかに記載の高分子電解質膜の製造方法で得られる高分子電解質膜、を使用して いることを特徴とする、固体高分子形燃料電池、  A polymer electrolyte membrane according to any one of (11) to (15), or a polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to any one of (17) to (20); A polymer electrolyte fuel cell, characterized in that
である。  It is.
[0039] (22)本発明の第 22は、  [0039] (22) According to the twenty-second aspect of the present invention,
(11)〜(15)のいずれかに記載の高分子電解質膜、あるいは、(17)〜(20)のいず れかに記載の高分子電解質膜の製造方法で得られる高分子電解質膜、を使用して いることを特徴とする、直接液体形燃料電池、  A polymer electrolyte membrane according to any one of (11) to (15), or a polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to any one of (17) to (20); A direct liquid fuel cell, characterized in that
である。  It is.
[0040] (23)本発明の第 23は、  [0040] (23) The twenty-third aspect of the present invention provides
(11)〜(15)のいずれかに記載の高分子電解質膜、あるいは、(17)〜(20)のいず れかに記載の高分子電解質膜の製造方法で得られる高分子電解質膜、を使用して いることを特徴とする、直接メタノール形燃料電池、  A polymer electrolyte membrane according to any one of (11) to (15), or a polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to any one of (17) to (20); A direct methanol fuel cell, characterized in that
である。  It is.
[0041] 具体的には、本発明(上記(1)〜(23) )は、下記の発明も開示する。なお、本発明 の(1)〜(23)は、下記(A— 1)〜(A— 15)、(B— 1)〜(B— 13)、(C 1)〜(C 1 [0041] Specifically, the present invention (above (1) to (23)) also discloses the following inventions. In the present invention, (1) to (23) are the following (A-1) to (A-15), (B-1) to (B-13), (C1) to (C1)
4)を包含するものである。 4) is included.
[0042] 概念的に広いのは(C 1)〜(C—14)であり、(A— 1)〜(A—15)、(B— 1)〜(B [0042] Conceptually wide are (C1) to (C-14), (A-1) to (A-15), (B-1) to (B
13)は、その一態様である。  13) is one embodiment thereof.
[0043] (A—1) .本発明の第 A—1は、 [0043] (A-1). The A-1 of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の材料であって、  A polymer electrolyte membrane material used in solid polymer fuel cells, direct liquid fuel cells, and direct methanol fuel cells,
(A)芳香族単位を有する高分子化合物、 (B)熱可塑性エラストマ一、 (A) a polymer compound having an aromatic unit, (B) a thermoplastic elastomer,
(C)芳香族単位がな!、高分子化合物、  (C) No aromatic unit !, high molecular compound,
を必須成分として含む、高分子フィルム、  A polymer film containing, as an essential component,
である。このフィルムを材料とすることによって、後述のような優れたプロトン伝導性か つ高いメタノール遮断性を有する高分子電解質膜を実現できる。  It is. By using this film as a material, a polymer electrolyte membrane having excellent proton conductivity and high methanol barrier properties as described below can be realized.
[0044] (A—2) .本発明の第 A—2は、 [0044] (A-2). A-2 of the present invention is
前記(A)がポリスチレン、シンジオタクチックポリスチレン、ポリフエ-レンエーテル、変 性ポリフエ二レンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエーテノレエーテ ルケトンおよびポリフエ-レンサルファイド、並びに、それらの誘導体からなる群から選 択される少なくとも 1種であることを特徴とする、本発明の第 (A—1)に記載の高分子 フイノレム、  (A) is selected from the group consisting of polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyethersulfone, polyetherolene ketone and polyphenylene sulfide, and derivatives thereof. The polymer phenolic as described in item (A-1) of the present invention, characterized in that it is at least one selected.
である。このフィルムを材料とすることによって、化学的'熱的安定性が高ぐかつプロ トン伝導性基の導入がし易 、と 、う点で、好まし 、高分子電解質膜を実現できる。  It is. By using this film as a material, it is preferable to realize a polymer electrolyte membrane in view of its high chemical and thermal stability and easy introduction of proton conductive groups.
[0045] (A—3) .本発明の第 (A—3)は、  [0045] (A-3). (A-3) of the present invention is
前記 (B)がポリスチレンまたはポリスチレン誘導体と下記一般式(2)および Zまたは( 3)との共重合体であることを特徴とする、本発明の第 (A— 1)〜 (A— 2)のいずれか に記載の高分子フィルム、  Said (B) is a copolymer of polystyrene or a polystyrene derivative and the following general formula (2) and Z or (3): (A-1) to (A-2) of the present invention, A polymer film according to any one of
[0046] [化 5] [0046] [Chemical 5]
Figure imgf000012_0001
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0002
[0047] (式中、 R〜 は C H であって、 R〜 は互いに同一であっても異なっていてもよい [Wherein R˜ is C H, and R˜ may be the same or different from each other.
1 12 2x+l 1 12  1 12 2x + l 1 12
。また、 1、 m、 n、 xは 0以上の整数である。 )  . 1, m, n, and x are integers of 0 or more. )
である。このフィルムを材料とすることによって、加工性が優れ、プロトン伝導性基の 導入がし易 、と 、う点で、好ま U、高分子電解質膜を実現できる。  It is. By using this film as a material, it is preferable to realize a polymer electrolyte membrane in view of excellent processability and easy introduction of proton conductive groups.
[0048] (A-4) .本発明の第 (A—4)は、 [0048] (A-4). (A-4) of the present invention is
前記 )がポリスチレン—ポリイソブチレン—ポリスチレントリブロック共重合体、ポリス チレン ポリ(エチレン Zプロピレン)ブロック共重合体、ポリスチレン ポリ(エチレン Zプロピレン)一ポリスチレントリブロック共重合体、ポリスチレン一ポリ(エチレン Zブ チレン) ポリスチレントリブロック共重合体およびポリスチレン ポリ(エチレンーェチ レン Zプロピレン)—ポリスチレントリブロック共重合体、並びに、それらの誘導体から なる群力も選択される少なくとも 1種であることを特徴とする、本発明の第 (A— 1)〜( A— 3)の!、ずれかに記載の高分子フィルム、  ) Is polystyrene-polyisobutylene-polystyrene triblock copolymer, polystyrene poly (ethylene Z propylene) block copolymer, polystyrene poly (ethylene Z propylene) -polystyrene triblock copolymer, polystyrene-poly (ethylene Z block). Tylene) Polystyrene triblock copolymer and polystyrene poly (ethylene-ethylene Z-propylene) -polystyrene triblock copolymer, and their at least one selected from the group force consisting of derivatives thereof. Of (A-1) to (A-3) !, the polymer film according to any of the above,
である。このフィルムを材料とすることによって、各成分の相溶性、分散性が改善され 、加工性や機械的特性に優れ、プロトン伝導性基の導入がし易いという点で、好ましIt is. Using this film as a material improves the compatibility and dispersibility of each component. It is preferable in that it has excellent processability and mechanical properties and is easy to introduce proton conductive groups.
Vヽ高分子電解質膜を実現できる。 V ヽ Polymer electrolyte membrane can be realized.
[0049] (A—5) .本発明の第 (A—5)は、 [0049] (A-5). (A-5) of the present invention is
前記 (C)が下記一般式(1)からなる高分子化合物力 選択される少なくとも 1種で あることを特徴とする、本発明の第 (A— 1)〜 (A— 4)の 、ずれかに記載の高分子フ イノレム、  The above (C) is at least one selected from polymer compounds having the following general formula (1): (A-1) to (A-4) of the present invention, A polymer Finolem as described in
[0050] [化 6]
Figure imgf000013_0001
[0050] [Chemical 6]
Figure imgf000013_0001
[0051] (式中、 X〜は、 H、 CH、 Cl、 F、 OCOCH、 CN、 COOHゝ COOCH、 OC H、 [0051] (wherein X is H, CH, Cl, F, OCOCH, CN, COOH COCOOCH, OC H,
1 4 3 3 3 4 9 力 なる群から選択されるいずれかであって、 X  1 4 3 3 3 4 9 Power
1〜 4は互いに同一であっても異なって いてもよい)  1-4 may be the same or different from each other)
である。このフィルムを材料とすることによって、後述のような化学的安定性が高ぐメ タノール遮断性が優れた高分子電解質膜を実現できる。  It is. By using this film as a material, a polymer electrolyte membrane having high chemical stability and excellent methanol blocking properties as described below can be realized.
[0052] (A— 6) .本発明の第 (A— 6)は、  [0052] (A-6). The (A-6) of the present invention is
前記 (C)がポリエチレンおよび/またはポリプロピレンであることを特徴とする、本発 明の第 (A— 1)〜 (A— 5)の 、ずれかに記載の高分子フィルム。  The polymer film according to any one of (A-1) to (A-5) of the present invention, wherein (C) is polyethylene and / or polypropylene.
である。このフィルムを材料とすることによって、後述のような化学的安定性が高ぐメ タノール遮断性が優れた高分子電解質膜を実現できる。  It is. By using this film as a material, a polymer electrolyte membrane having high chemical stability and excellent methanol blocking properties as described below can be realized.
[0053] (A— 7) .本発明の第 (A— 7)は、  [0053] (A-7). The (A-7) of the present invention is
前記高分子フィルム中に、前記 )が 40重量%以上 90重量%以下含まれることを 特徴とする、本発明の第 (A— 1)〜 (A— 6)の 、ずれかに記載の高分子フィルム。 である。このフィルムを材料とすることによって、後述のような化学的安定性が高ぐメ タノール遮断性が優れた高分子電解質膜を実現できる。  The polymer according to any one of (A-1) to (A-6) of the present invention, wherein the polymer film comprises 40% by weight or more and 90% by weight or less. the film. It is. By using this film as a material, a polymer electrolyte membrane having high chemical stability and excellent methanol blocking properties as described below can be realized.
[0054] 上記 (A— 1)〜 (A— 7)で説明した本発明の高分子フィルムは、固体高分子形燃 料電池、直接液体形燃料電池、直接メタノール形燃料電池に用いる、高分子電解質 膜の材料として、好適に用いられる。 [0055] (A— 8) .本発明の第 (A— 8)は、 [0054] The polymer film of the present invention described in the above (A-1) to (A-7) is a polymer used for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell. It is suitably used as a material for the electrolyte membrane. [0055] (A-8). The (A-8) of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜であって、前記本発明の第 (A— 1)〜(A— 7)のいずれかに 記載の高分子フィルム中に存在する芳香族単位にプロトン伝導性基が導入されて 、 ることを特徴とする、高分子電解質膜、  A polymer electrolyte membrane for use in a solid polymer fuel cell, a direct liquid fuel cell, or a direct methanol fuel cell, wherein any one of (A-1) to (A-7) of the present invention is used. A polymer electrolyte membrane, wherein a proton conductive group is introduced into an aromatic unit present in the polymer film according to
である。  It is.
[0056] (A— 9) .本発明の第 (A— 9)は、  [0056] (A-9). The (A-9) of the present invention is
前記プロトン伝導性基がスルホン酸基であることを特徴とする、本発明の第 (A—8) に記載の高分子電解質膜、  The polymer electrolyte membrane according to (A-8) of the present invention, wherein the proton conductive group is a sulfonic acid group,
である。  It is.
[0057] 上記本発明の第 (A— 1)〜(A— 9)に示す通り、すなわち本発明は、固体高分子 形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池に用いられる高分子 電解質膜、および高分子電解質膜の材料である高分子フィルムに関する。本発明の 高分子電解質膜は、芳香族単位を有する高分子化合物と、熱可塑性エラストマ一と 、芳香族単位がない高分子化合物、との少なくとも 3種の高分子化合物力 なり、優 れたプロトン伝導性と高いメタノール遮断性を両立できる。  [0057] As shown in the above (A-1) to (A-9) of the present invention, that is, the present invention is a high polymer used for solid polymer fuel cells, direct liquid fuel cells, and direct methanol fuel cells. The present invention relates to a molecular electrolyte membrane and a polymer film which is a material of the polymer electrolyte membrane. The polymer electrolyte membrane of the present invention has at least three kinds of polymer compound powers of a polymer compound having an aromatic unit, a thermoplastic elastomer, and a polymer compound having no aromatic unit, and has an excellent proton. Both conductivity and high methanol barrier properties can be achieved.
[0058] 前記芳香族単位を有する高分子化合物が、ポリスチレン、シンジォタクチックポリス チレン、ポリフエ-レンエーテル、変性ポリフエ-レンエーテル、ポリスルホン、ポリエ 一テルスルホン、ポリエーテルエーテルケトンおよびポリフエ-レンサルファイド、並び に、それらの誘導体からなる群から選択される少なくとも 1種であると、化学的'熱的 安定性が高ぐかつプロトン伝導性基の導入がし易くなるので好ましい。  [0058] The polymer compound having an aromatic unit includes polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, and polyphenylene sulfide. In addition, at least one selected from the group consisting of these derivatives is preferable because of high chemical and thermal stability and easy introduction of proton conductive groups.
[0059] また、前記熱可塑性エラストマ一力 ポリスチレンまたはポリスチレン誘導体と下記 一般式(2)および Zまたは(3)との共重合体であると、得られる高分子フィルムおよ び高分子電解質膜の加工性や機械的特性が優れるとともに、プロトン伝導性基の導 入がし易くなるので好ましい。  [0059] Further, when the thermoplastic elastomer is a copolymer of polystyrene or a polystyrene derivative and the following general formula (2) and Z or (3), the obtained polymer film and polymer electrolyte membrane It is preferable because it is excellent in processability and mechanical properties and is easy to introduce a proton conductive group.
[0060] [化 7]
Figure imgf000015_0001
[0060] [Chemical 7]
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0002
[0061] (式中、 R〜 は C H であって、 R〜 は互いに同一であっても異なっていてもよい [0061] (In the formula, R ~ is C H, and R ~ may be the same as or different from each other.
1 12 2x+l 1 12  1 12 2x + l 1 12
。また、 1、 m、 n、 xは 0以上の整数である。 )  . 1, m, n, and x are integers of 0 or more. )
さらに、前記熱可塑性エラストマ一力 ポリスチレン ポリイソブチレン一ポリスチレ ントリブロック共重合体、ポリスチレン—ポリ(エチレン Zプロピレン)ブロック共重合体 、ポリスチレン一ポリ(エチレン Zプロピレン)一ポリスチレントリブロック共重合体、ポリ スチレン ポリ(エチレン Zブチレン) ポリスチレントリブロック共重合体およびポリス チレン ポリ(エチレン エチレン Zプロピレン) ポリスチレントリブロック共重合体、 並びに、それらの誘導体からなる群から選択される少なくとも 1種であると、各成分の 相溶性、分散性が改善され、加工性や機械的特性に優れ、スルホン酸基が導入しや すくなると!ヽぅ点で好ま ヽ。  Further, the above-mentioned thermoplastic elastomer, polystyrene, polyisobutylene, polystyrene, triblock copolymer, polystyrene-poly (ethylene Z propylene) block copolymer, polystyrene, poly (ethylene Z propylene), polystyrene triblock copolymer, polystyrene Poly (ethylene Z butylene) polystyrene triblock copolymer and polystyrene Poly (ethylene ethylene Z propylene) polystyrene triblock copolymer, and at least one selected from the group consisting of derivatives thereof, each component If the compatibility and dispersibility of the resin is improved, the processability and mechanical properties are excellent, and the sulfonic acid group can be easily introduced, this is preferable.
[0062] また、前記芳香族単位がない高分子化合物が、下記一般式(1)からなる選択され る少なくとも 1種であると、化学的安定性が高ぐメタノール遮断性が優れるため好ま しい。 [0063] [化 8] [0062] In addition, it is preferable that the polymer compound having no aromatic unit is at least one selected from the following general formula (1) because of high chemical stability and excellent methanol blocking properties. [0063] [Chemical 8]
一 (cx^z— CX3X4)— ( 1 ) One (cx ^ z— CX 3 X 4 ) — (1)
[0064] (式中、 X〜は、 H、 CH、 Cl、 Fゝ OCOCH、 CN、 COOHゝ COOCH、 OC H、 [0064] (wherein X is H, CH, Cl, F 、 OCOCH, CN, COOH ゝ COOCH, OC H,
1 4 3 3 3 4 9 力 なる群から選択されるいずれかであって、 X  1 4 3 3 3 4 9 Power
1〜 4は互いに同一であっても異なって いてもよい)  1-4 may be the same or different from each other)
さらに、前記芳香族単位がない高分子化合物が、ポリエチレンおよび Zまたはポリ プロピレンであると、化学的安定性が高ぐメタノール遮断性が優れ、さらには安価に 製造できるため好ましい。  Furthermore, it is preferable that the polymer compound having no aromatic unit is polyethylene, Z, or polypropylene because it has high chemical stability and excellent methanol barrier properties, and can be produced at low cost.
[0065] 芳香族単位がな 、高分子化合物を 40重量%以上 90重量%以下含むと、特に、優 れたプロトン伝導性と高!ヽメタノール遮断性が両立するので好ま 、。  [0065] It is particularly preferable that the polymer compound is contained in an amount of 40% by weight or more and 90% by weight or less without an aromatic unit, since both excellent proton conductivity and high methanol blocking property are compatible.
[0066] 前記プロトン伝導性基は、プロトン伝導性基の導入のし易さや得られる高分子電解 質膜のプロトン伝導性などの点から、スルホン酸基であることが好まし 、。  [0066] The proton conductive group is preferably a sulfonic acid group from the viewpoint of easy introduction of the proton conductive group and proton conductivity of the obtained polymer electrolyte membrane.
[0067] (A- 10) .本発明の第 (A— 10)は、  [0067] (A-10). The (A-10) of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の材料の製造方法であって、前記本発明の第 (A—1)〜(A 7)の ヽずれかに記載の高分子フィルムを溶融押出成形で製造することを特徴とす る、高分子フィルムの製造方法、  A method for producing a material for a polymer electrolyte membrane used in a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, wherein the methods (A-1) to (A 7) of the present invention are used. The method for producing a polymer film, comprising producing the polymer film according to any one of
である。  It is.
[0068] (A— 11) .本発明の第 (A— 11)は、  [0068] (A-11). The (A-11) of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の製造方法であって、前記本発明の第 (Α—1)〜(Α—7)の いずれかに記載の高分子フィルムを有機溶媒存在下でスルホン化剤と接触させるこ とを特徴とする、高分子電解質膜の製造方法、  A method for producing a polymer electrolyte membrane for use in a polymer electrolyte fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, wherein the above-mentioned (V-1) to (V-7) of the present invention are used. A method for producing a polymer electrolyte membrane, comprising contacting the polymer film according to any one of the above with a sulfonating agent in the presence of an organic solvent,
である。  It is.
[0069] (A— 12) .本発明の第 (A— 12)は、 前記スルホン化剤がクロロスルホン酸であることを特徴とする、本発明の第 (A— 11) に記載の高分子電解質膜の製造方法、 [0069] (A-12). (A-12) of the present invention is The method for producing a polymer electrolyte membrane according to (A-11) of the present invention, wherein the sulfonating agent is chlorosulfonic acid,
である。  It is.
[0070] 上記本発明の第 (A— 10)〜(A— 12)に示す通り、さらに本発明は、固体高分子 形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用いる高分子電 解質膜の製造方法、および、高分子電解質膜の材料である高分子フィルムの製造方 法に関する。前記高分子フィルムを溶融押出成形で製造方法することで、高分子電 解質膜を得るのに好適な高分子フィルム材料を高い生産性で得ることができ好まし い。また、前記高分子フィルムを有機溶媒存在下でスルホン化剤と接触させる製造方 法とすることで、優れたプロトン伝導性および高 ヽメタノール遮断性を両立する高分 子電解質膜が簡便かつ高い生産性で得られ好ましい。このとき、前記スルホン化剤 力 Sクロロスルホン酸であると、プロトン伝導性基であるスルホン酸基が導入しやすぐ 高 ヽプロトン伝導性を有する高分子電解質膜を得やすくなり好まし ヽ。  [0070] As shown in the above (A-10) to (A-12) of the present invention, the present invention further relates to a high polymer used for a polymer electrolyte fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell. The present invention relates to a method for producing a molecular electrolyte membrane and a method for producing a polymer film that is a material of a polymer electrolyte membrane. By producing the polymer film by melt extrusion, a polymer film material suitable for obtaining a polymer electrolyte membrane can be obtained with high productivity. In addition, by adopting a production method in which the polymer film is brought into contact with a sulfonating agent in the presence of an organic solvent, a high-molecular electrolyte membrane that achieves both excellent proton conductivity and high methanol barrier properties can be produced easily and with high production. It is preferable because it is obtained. At this time, it is preferred that the sulfonating agent has a strong S-chlorosulfonic acid because a polymer electrolyte membrane having high proton conductivity can be easily obtained as soon as a sulfonic acid group as a proton conductive group is introduced.
[0071] (A— 13) .本発明の第 (A— 13)は、  [0071] (A-13). The (A-13) of the present invention is
前記本発明の第 8または 9のいずれかに記載の高分子電解質膜、  The polymer electrolyte membrane according to any one of the eighth and ninth aspects of the present invention,
あるいは、前記本発明の第 (A— 11)または (A— 12)のいずれかに記載の高分子電 解質膜の製造方法で得られる高分子電解質膜、  Alternatively, a polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to any one of (A-11) or (A-12) of the present invention,
を使用していることを特徴とする、固体高分子形燃料電池、  A polymer electrolyte fuel cell, characterized in that
である。  It is.
[0072] (A- 14) .本発明の第 (A— 14)は、  [0072] (A-14). (A-14) of the present invention is
前記本発明の第 8または 9のいずれかに記載の高分子電解質膜、  The polymer electrolyte membrane according to any one of the eighth and ninth aspects of the present invention,
あるいは、前記本発明の第 (A— 11)または (A— 12)のいずれかに記載の高分子電 解質膜の製造方法で得られる高分子電解質膜、  Alternatively, a polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to any one of (A-11) or (A-12) of the present invention,
を使用していることを特徴とする、直接液体形燃料電池、  A direct liquid fuel cell, characterized in that
である。  It is.
[0073] (A— 15) .本発明の第 (A— 15)は、  [0073] (A-15). The (A-15) of the present invention is
前記本発明の第 (A— 8)または (A— 9)の 、ずれかに記載の高分子電解質膜、 あるいは、前記本発明の第 (A— 11)または (A— 12)のいずれかに記載の高分子電 解質膜の製造方法で得られる高分子電解質膜、 The polymer electrolyte membrane according to any one of (A-8) or (A-9) of the present invention, or any of (A-11) or (A-12) of the present invention Listed polymer A polymer electrolyte membrane obtained by a method for producing a denatured membrane,
を使用して ヽることを特徴とする、直接メタノール形燃料電池、  Direct methanol fuel cell, characterized by using
である。  It is.
[0074] 上記本発明の第 (A— 13)〜 (A— 15)に示す通り、さらに、本発明の高分子電解 質膜、あるいは、本発明の製造方法により得られた高分子電解質膜を使用した直接 固体高分子形燃料電池は、優れたプロトン伝導性、高い耐久性を有するため、固体 高分子形燃料電池として優れている。さらに、本発明の高分子電解質膜、あるいは、 本発明の製造方法により得られた高分子電解質膜を使用した直接液体形燃料電池 は、優れたプロトン伝導性、高い液体燃料の遮断性を有するため、直接液体形燃料 電池として優れている。さら〖こ、本発明の高分子電解質膜、あるいは、本発明の製造 方法により得られた高分子電解質膜を使用した直接メタノール形燃料電池は、優れ たプロトン伝導性および高!、メタノール遮断性を両立し、直接メタノール形燃料電池 として優れている。  [0074] As shown in the above (A-13) to (A-15) of the present invention, the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention is further provided. The direct polymer electrolyte fuel cell used is excellent as a polymer electrolyte fuel cell because it has excellent proton conductivity and high durability. Furthermore, the direct liquid fuel cell using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention has excellent proton conductivity and high liquid fuel barrier properties. It is excellent as a direct liquid fuel cell. Furthermore, the direct methanol fuel cell using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention has excellent proton conductivity and high! It is compatible as a direct methanol fuel cell.
[0075] (B—1) .本発明の第 (B—1)は、  [0075] (B-1). The (B-1) of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の材料であって、少なくとも、  A material for a polymer electrolyte membrane used in a polymer electrolyte fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, at least,
(A)芳香族単位を有する高分子化合物、および、  (A) a polymer compound having an aromatic unit, and
(B)芳香族単位がな!、高分子化合物、  (B) No aromatic unit !, polymer compound,
を含み、  Including
前記 (B)中に前記 (A)が分散されて!、ることを特徴とする構造を有する高分子フィル ム、  A polymer film having a structure, wherein (A) is dispersed in (B) !,
である。このフィルムを材料とすることによって、後述のような優れたプロトン伝導性か つ高いメタノール遮断性を有する高分子電解質膜を実現できる。  It is. By using this film as a material, a polymer electrolyte membrane having excellent proton conductivity and high methanol barrier properties as described below can be realized.
[0076] (B—2) .本発明の第 (B— 2)は、 [0076] (B-2). The (B-2) of the present invention is
前記(A)がポリスチレン、シンジオタクチックポリスチレン、ポリフエ-レンエーテル、変 性ポリフエ二レンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエーテノレエーテ ルケトンおよびポリフエ-レンサルファイド、並びに、それらの誘導体または共重合体 力もなる群力も選択される少なくとも 1種であることを特徴とする、本発明の第 (B—1) に記載の高分子フィルム、 Said (A) is polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyether sulfone, polyetherolene ketone and polyphenylene sulfide, and derivatives or copolymers thereof. The (B-1) of the present invention is characterized in that at least one kind of group force is selected. A polymer film according to
である。このフィルムを材料とすることによって、化学的'熱的安定性が高ぐかつプロ トン伝導性基の導入がし易 、と 、う点で、好ま 、高分子電解質膜を実現できる。  It is. By using this film as a material, it is preferable to realize a polymer electrolyte membrane from the viewpoints of high chemical and thermal stability and easy introduction of proton conductive groups.
[0077] (B— 3) .本発明の第 (B— 3)は、 [0077] (B-3). The (B-3) of the present invention is
前記 (B)が下記一般式(1)からなる高分子化合物から選択される少なくとも 1種で あることを特徴とする、本発明の第 1〜2のいずれかに記載の高分子フィルム、  The polymer film according to any one of the first and second aspects of the present invention, wherein (B) is at least one selected from polymer compounds represented by the following general formula (1):
[0078] [化 9]
Figure imgf000019_0001
[0078] [Chemical 9]
Figure imgf000019_0001
[0079] (式中、 X〜は、 H、 CH、 Cl、 F、 OCOCH、 CN、 COOHゝ COOCH、 OC H、 [0079] (where X is H, CH, Cl, F, OCOCH, CN, COOH ゝ COOCH, OC H,
1 4 3 3 3 4 9 力 なる群から選択されるいずれかであって、 X  1 4 3 3 3 4 9 Power
1〜 4は互いに同一であっても異なって いてもよい)  1-4 may be the same or different from each other)
である。このフィルムを材料とすることによって、後述のような化学的安定性が高ぐメ タノール遮断性が優れた高分子電解質膜を実現できる。  It is. By using this film as a material, a polymer electrolyte membrane having high chemical stability and excellent methanol blocking properties as described below can be realized.
[0080] (B—4) .本発明の第 (B—4)は、 [0080] (B-4). The (B-4) of the present invention is
前記 )がポリエチレンおよび zまたはポリプロピレンであることを特徴とする、本発 明の第(B— 1)〜(B— 3)の 、ずれかに記載の高分子フィルム、  The polymer film according to any one of (B-1) to (B-3) of the present invention, wherein the above is polyethylene and z or polypropylene,
である。このフィルムを材料とすることによって、後述のような化学的安定性が高ぐメ タノール遮断性が優れた高分子電解質膜を実現できる。  It is. By using this film as a material, a polymer electrolyte membrane having high chemical stability and excellent methanol blocking properties as described below can be realized.
[0081] (B—5) .本発明の第 (B— 5)は、  [0081] (B-5). The (B-5) of the present invention is
前記高分子フィルム中に、前記 )が 40重量%以上 90重量%以下含まれることを 特徴とする、本発明の第 (B— 1)〜 (B— 4)の 、ずれかに記載の高分子フィルム、 である。このフィルムを材料とすることによって、後述のような化学的安定性が高ぐメ タノール遮断性が優れた高分子電解質膜を実現できる。  The polymer according to any one of (B-1) to (B-4) of the present invention, wherein the polymer film contains 40% by weight or more and 90% by weight or less. Film. By using this film as a material, a polymer electrolyte membrane having high chemical stability and excellent methanol blocking properties as described below can be realized.
[0082] 上記本発明の第 (B— 1)〜(B— 5)で説明した本発明の高分子フィルムは、固体高 分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池に用いる、高分 子電解質膜の材料として、好適に用いられる。 [0082] The polymer film of the present invention described in the above (B-1) to (B-5) of the present invention is used for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell. , High minute It is suitably used as a material for the child electrolyte membrane.
[0083] (B—6) .本発明の第 (B— 6)は、  [0083] (B-6). The (B-6) of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜であって、前記本発明の第 (B— 1)〜(B— 5)のいずれかに 記載の高分子フィルム中に存在する芳香族単位にプロトン伝導性基が導入されて 、 ることを特徴とする、高分子電解質膜、  A polymer electrolyte membrane for use in a polymer electrolyte fuel cell, a direct liquid fuel cell, or a direct methanol fuel cell, wherein any of (B-1) to (B-5) of the present invention is used. A polymer electrolyte membrane, wherein a proton conductive group is introduced into an aromatic unit present in the polymer film according to
である。  It is.
[0084] (B—7) .本発明の第 (B— 7)は、  [0084] (B-7). (B-7) of the present invention is
前記プロトン伝導性基がスルホン酸基であることを特徴とする、本発明の第 6に記載 の高分子電解質膜、  The polymer electrolyte membrane according to the sixth aspect of the present invention, wherein the proton conductive group is a sulfonic acid group,
である。  It is.
[0085] 上記本発明の第 (B— 1)〜(B— 7)に示す通り、すなわち本発明は、固体高分子形 燃料電池、直接液体形燃料電池、直接メタノール形燃料電池に用いられる高分子電 解質膜、および高分子電解質膜の材料である高分子フィルムに関する。本発明の高 分子電解質膜は、芳香族単位を有する高分子化合物と、芳香族単位がない高分子 化合物、との少なくとも 2種の高分子化合物力 なり、  [0085] As shown in the above (B-1) to (B-7) of the present invention, that is, the present invention is a high polymer used for a polymer electrolyte fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell. The present invention relates to a polymer electrolyte membrane and a polymer film which is a material of a polymer electrolyte membrane. The polymer electrolyte membrane of the present invention has at least two kinds of polymer compound forces, ie, a polymer compound having an aromatic unit and a polymer compound having no aromatic unit.
芳香族単位のな ヽ高分子化合物中に芳香族単位を有する高分子化合物が分散さ れて ヽる構造とすることで、優れたプロトン伝導性と高 ヽメタノール遮断性を両立でき る。  By using a structure in which a polymer compound having an aromatic unit is dispersed in a polymer compound having no aromatic unit, both excellent proton conductivity and high methanol blocking properties can be achieved.
[0086] 前記芳香族単位を有する高分子化合物が、ポリスチレン、シンジォタクチックポリス チレン、ポリフエ-レンエーテル、変性ポリフエ-レンエーテル、ポリスルホン、ポリエ 一テルスルホン、ポリエーテルエーテルケトンおよびポリフエ-レンサルファイド、並び に、それらの誘導体および共重合体からなる群から選択される少なくとも 1種であると 、化学的'熱的安定性が高ぐかつプロトン伝導性基の導入がし易くなるので好まし い。  [0086] The polymer compound having the aromatic unit includes polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, and polyphenylene sulfide. In addition, at least one selected from the group consisting of derivatives and copolymers thereof is preferred because it has high chemical and thermal stability and facilitates the introduction of proton conductive groups.
[0087] また、前記芳香族単位がない高分子化合物が、下記一般式(1)からなる高分子化 合物から選択される少なくとも 1種であると、化学的安定性が高ぐメタノール遮断性 が優れるため好ましい。 [0088] [化 10] [0087] Further, when the polymer compound having no aromatic unit is at least one selected from polymer compounds represented by the following general formula (1), methanol-blocking property with high chemical stability Is preferable because it is excellent. [0088] [Chemical 10]
一 (cx^z— CX3X4)— ( 1 ) One (cx ^ z— CX 3 X 4 ) — (1)
[0089] (式中、 X〜は、 H、 CH、 Cl、 Fゝ OCOCH、 CN、 COOHゝ COOCH、 OC H、 [0089] (wherein X is H, CH, Cl, F 、 OCOCH, CN, COOH ゝ COOCH, OC H,
1 4 3 3 3 4 9 力 なる群から選択されるいずれかであって、 X  1 4 3 3 3 4 9 Power
1〜 4は互いに同一であっても異なって いてもよい)。  1-4 may be the same or different from each other.
[0090] さらに、前記芳香族単位がない高分子化合物が、ポリエチレンおよび Zまたはポリ プロピレンであると、化学的安定性が高ぐメタノール遮断性が優れ、さらには安価に 製造できるため好ましい。  [0090] Further, it is preferable that the polymer compound having no aromatic unit is polyethylene, Z, or polypropylene because the chemical stability is high, the methanol blocking property is excellent, and the polymer can be produced at low cost.
[0091] 芳香族単位がな 、高分子化合物を 40重量%以上 90重量%以下含むと、特に、優 れたプロトン伝導性と高!ヽメタノール遮断性が両立するので好ま 、。 [0091] When the polymer compound is contained in an amount of 40% by weight or more and 90% by weight or less without an aromatic unit, it is particularly preferable since both excellent proton conductivity and high methanol blocking properties are achieved.
[0092] 前記プロトン伝導性基は、プロトン伝導性基の導入のし易さや得られる高分子電解 質膜のプロトン伝導性などの点から、スルホン酸基であることが好まし 、。 [0092] The proton conductive group is preferably a sulfonic acid group from the viewpoint of ease of introduction of the proton conductive group and proton conductivity of the obtained polymer electrolyte membrane.
[0093] (B—8) .本発明の第 (B— 8)は、  [0093] (B-8). The (B-8) of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の材料の製造方法であって、前記本発明の第 (B—1)〜(B 5)の ヽずれかに記載の高分子フィルムを溶融押出成形で製造することを特徴とす る、高分子フィルムの製造方法、  A method for producing a material for a polymer electrolyte membrane used in a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, wherein the above (B-1) to (B 5) of the present invention are used. The method for producing a polymer film, comprising producing the polymer film according to any one of
である。  It is.
[0094] (B—9) .本発明の第 (B 9)は、  [0094] (B-9). (B 9) of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の製造方法であって、前記本発明の第 (Β—1)〜(Β— 7)の いずれかに記載の高分子フィルムを有機溶媒存在下でスルホン化剤と接触させるこ とを特徴とする、高分子電解質膜の製造方法、  A method for producing a polymer electrolyte membrane for use in a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, wherein the above-mentioned (Β-1) to (Β-7) of the present invention are used. A method for producing a polymer electrolyte membrane, comprising contacting the polymer film according to any one of the above with a sulfonating agent in the presence of an organic solvent,
である。  It is.
[0095] (B—10) .本発明の第(B—10)は、 前記スルホン化剤がクロロスルホン酸であることを特徴とする、本発明の第 (B— 9)に 記載の高分子電解質膜の製造方法、 [0095] (B-10). (B-10) of the present invention is The method for producing a polymer electrolyte membrane according to (B-9) of the present invention, wherein the sulfonating agent is chlorosulfonic acid,
である。  It is.
[0096] 上記本発明の第 (B— 8)〜(B— 10)に示す通り、さらに本発明は、固体高分子形 燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用いる高分子電解 質膜の製造方法、および、高分子電解質膜の材料である高分子フィルムの製造方法 に関する。前記高分子フィルムを溶融押出成形で製造方法することで、高分子電解 質膜を得るのに好適な高分子フィルム材料を高い生産性で得ることができ好ましい。 また、前記高分子フィルムを有機溶媒存在下でスルホン化剤と接触させる製造方法 とすることで、優れたプロトン伝導性および高 ヽメタノール遮断性を両立する高分子 電解質膜が簡便かつ高い生産性で得られ好ましい。このとき、前記スルホン化剤がク ロロスルホン酸であると、プロトン伝導性基であるスルホン酸基が導入しやすぐ高い プロトン伝導性を有する高分子電解質膜を得やすくなり好ましい。  [0096] As shown in the above (B-8) to (B-10) of the present invention, the present invention further includes a high polymer used for a polymer electrolyte fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell. The present invention relates to a method for producing a molecular electrolyte membrane and a method for producing a polymer film that is a material of the polymer electrolyte membrane. By producing the polymer film by melt extrusion, a polymer film material suitable for obtaining a polymer electrolyte membrane can be obtained with high productivity. In addition, by employing a production method in which the polymer film is brought into contact with a sulfonating agent in the presence of an organic solvent, a polymer electrolyte membrane that achieves both excellent proton conductivity and high methanol barrier properties can be obtained with high productivity. Obtained and preferred. At this time, it is preferable that the sulfonating agent is chlorosulfonic acid because a polymer electrolyte membrane having high proton conductivity is easily obtained as soon as a sulfonic acid group as a proton conductive group is introduced.
[0097] (B— 11) .本発明の第 (B— 11)は、  [0097] (B-11) of the present invention is (B-11)
前記本発明の第 (B— 6)または (B— 7)の 、ずれかに記載の高分子電解質膜、 あるいは、前記本発明の第 (B— 9)または(B— 10)のいずれかに記載の高分子電解 質膜の製造方法で得られる高分子電解質膜、  The polymer electrolyte membrane according to any one of (B-6) and (B-7) of the present invention, or any one of (B-9) or (B-10) of the present invention A polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to claim 1,
を使用していることを特徴とする、固体高分子形燃料電池、  A polymer electrolyte fuel cell, characterized in that
である。  It is.
[0098] (B—12) .本発明の第(B—12)は、  [0098] (B-12). (B-12) of the present invention is
前記本発明の第 (B— 6)または (B— 7)の 、ずれかに記載の高分子電解質膜、 あるいは、前記本発明の第 (B— 9)または(B— 10)のいずれかに記載の高分子電解 質膜の製造方法で得られる高分子電解質膜、  The polymer electrolyte membrane according to any one of (B-6) and (B-7) of the present invention, or any one of (B-9) or (B-10) of the present invention A polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to claim 1,
を使用していることを特徴とする、直接液体形燃料電池、  A direct liquid fuel cell, characterized in that
である。  It is.
[0099] (B—13) .本発明の第(B—13)は、  [0099] (B-13). (B-13) of the present invention is
前記本発明の第 (B— 6)または (B— 7)の 、ずれかに記載の高分子電解質膜、 あるいは、前記本発明の第 (B— 9)または(B— 10)のいずれかに記載の高分子電解 質膜の製造方法で得られる高分子電解質膜、 The polymer electrolyte membrane according to any one of (B-6) and (B-7) of the present invention, or any one of (B-9) or (B-10) of the present invention The polymer electrolysis described A polymer electrolyte membrane obtained by a method for producing a membrane,
を使用して ヽることを特徴とする、直接メタノール形燃料電池、  Direct methanol fuel cell, characterized by using
である。  It is.
[0100] 上記本発明の第 (B— 11)〜(B— 13)に示す通り、さらに、本発明の高分子電解質 膜、あるいは、本発明の製造方法により得られた高分子電解質膜を使用した直接固 体高分子形燃料電池は、優れたプロトン伝導性、高い耐久性を有するため、固体高 分子形燃料電池として優れている。さら〖こ、本発明の高分子電解質膜、あるいは、本 発明の製造方法により得られた高分子電解質膜を使用した直接液体形燃料電池は 、優れたプロトン伝導性、高い液体燃料の遮断性を有するため、直接液体形燃料電 池として優れている。さら〖こ、本発明の高分子電解質膜、あるいは、本発明の製造方 法により得られた高分子電解質膜を使用した直接メタノール形燃料電池は、優れた プロトン伝導性および高 ヽメタノール遮断性を両立し、直接メタノール形燃料電池と して優れている。  [0100] As shown in the above (B-11) to (B-13) of the present invention, the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention is further used. The direct solid polymer fuel cell is excellent as a solid polymer fuel cell because it has excellent proton conductivity and high durability. Furthermore, the direct liquid fuel cell using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention has excellent proton conductivity and high liquid fuel blocking properties. Therefore, it is excellent as a direct liquid fuel cell. Furthermore, the direct methanol fuel cell using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention has excellent proton conductivity and high methanol barrier properties. It is compatible as a direct methanol fuel cell.
[0101] (C— 1) .本発明の第 (C— 1)は、  [0101] (C-1). The (C-1) of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、プロトン伝導性高分子電解質膜の材料であって、脂肪族系高分子化合物と、 芳香族系高分子化合物との、少なくとも 2種の高分子化合物力もなる、高分子フィル ム、  Proton-conducting polymer electrolyte membrane materials used for polymer electrolyte fuel cells, direct liquid fuel cells, and direct methanol fuel cells, including aliphatic polymer compounds and aromatic polymer compounds A polymer film that also has the power of at least two polymer compounds,
である。このフィルムを材料とすることによって、後述のような優れたプロトン伝導性か つ高いメタノール遮断性を有する高分子電解質膜を実現できる。  It is. By using this film as a material, a polymer electrolyte membrane having excellent proton conductivity and high methanol barrier properties as described below can be realized.
[0102] (C— 2) .本発明の第 (C— 2)は、 [0102] (C-2). The (C-2) of the present invention is
前記脂肪族系高分子化合物が、 10重量%以上 95重量%以下含まれることを特徴と する、請求項 1記載の高分子フィルム、  2. The polymer film according to claim 1, wherein the aliphatic polymer compound is contained in an amount of 10 wt% to 95 wt%.
である。このフィルムを材料とすることによって、後述のような優れたプロトン伝導性か つ高いメタノール遮断性が両立した高分子電解質膜を実現できる。  It is. By using this film as a material, it is possible to realize a polymer electrolyte membrane having both excellent proton conductivity and high methanol barrier properties as described later.
[0103] (C— 3) .本発明の第 (C— 3)は、  [0103] (C-3). The (C-3) of the present invention is
前記脂肪族系高分子化合物が、下記式 (4)〜 (6)  The aliphatic polymer compound has the following formulas (4) to (6):
[0104] [化 11] [0104] [Chemical 11]
Figure imgf000024_0001
Figure imgf000024_0001
Figure imgf000024_0002
Figure imgf000024_0002
Figure imgf000024_0003
Figure imgf000024_0003
[0105] (Xおよび Yは、 Η、 CH、 Cl、 F、 OCOCH、 CN、 COOH、 COOCH、 OC H、力 [0105] (X and Y are Η, CH, Cl, F, OCOCH, CN, COOH, COOCH, OC H, force
3 3 3 4 9 ら選ばれる原子団の内、いずれかであって、 Xと Yは互いに同一であっても異なって いても良い。)  Any of atomic groups selected from 3 3 3 4 9, and X and Y may be the same or different from each other. )
で表される繰り返し単位を構成成分とする脂肪族系高分子化合物から選択される少 なくとも 1種であることを特徴とする(C— 1)、(C— 2)のいずれかに記載の高分子フィ ノレム、  (C-1) or (C-2), characterized in that it is at least one selected from aliphatic polymer compounds having a repeating unit represented by Polymeric finalem,
である。このフィルムを材料とすることによって、化学的'熱的安定性、加工性が優れ て 、る高分子電解質膜を実現できる。  It is. By using this film as a material, a polymer electrolyte membrane having excellent chemical and thermal stability and processability can be realized.
[0106] (C— 4) .本発明の第 (C— 4)は、 [0106] (C-4). The (C-4) of the present invention is
前記芳香族系高分子化合物が、ポリフエ-レンサルファイド、ポリフエ-レンエーテル 、ポリスチレン、シンジオタクチックポリスチレン、ポリエーテルスルホン、ポリエーテル エーテルケトンの少なくとも 1種であることを特徴とする(C— 1)〜(C— 3)のいずれか に記載の高分子フィルム、  The aromatic polymer compound is at least one of polyphenylene sulfide, polyphenylene ether, polystyrene, syndiotactic polystyrene, polyether sulfone, polyether ether ketone (C-1) A polymer film according to any one of (C-3),
である。このフィルムを材料とすることによって、化学的'熱的安定性が高ぐかつプロ トン伝導性基の導入がし易 、と 、う点で、好ま 、高分子電解質膜を実現できる。 It is. By using this film as a material, chemical 'thermal stability is high and professional From the viewpoint of easy introduction of the ton conductive group, a polymer electrolyte membrane can be realized.
[0107] 上記で説明した本発明の高分子フィルムは、固体高分子形燃料電池、直接液体形 燃料電池、直接メタノール形燃料電池に用いる、高分子電解質膜の材料として、好 適に用いられる。 The polymer film of the present invention described above is suitably used as a material for a polymer electrolyte membrane used for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell.
[0108] (C— 5) .本発明の第 (C— 5)は、 [0108] (C-5). The (C-5) of the present invention is
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、プロトン伝導性高分子電解質膜であって、(C— 1)〜(C— 4)のいずれか〖こ記 載の高分子フィルム中に存在する芳香族系高分子化合物にプロトン伝導性基が結 合していることを特徴とする、高分子電解質膜、  A proton-conducting polymer electrolyte membrane for use in a polymer electrolyte fuel cell, a direct liquid fuel cell, or a direct methanol fuel cell, and any one of (C-1) to (C-4) A polymer electrolyte membrane characterized in that a proton conductive group is bonded to an aromatic polymer compound present in the polymer film described above,
である。  It is.
[0109] (C— 6) .本発明の第 (C— 6)は、  [0109] (C-6). The (C-6) of the present invention is
前記プロトン伝導性基がスルホン酸基であることを特徴とする、 (C- 5)に記載のプロ 卜  The proton conductive group according to (C-5), wherein the proton conductive group is a sulfonic acid group.
ン伝導性高分子電解質膜、  Conductive polymer electrolyte membrane,
である。  It is.
[0110] 上記 (C 1)〜(C 6)に示す通り、すなわち本発明は、固体高分子形燃料電池、 直接液体形燃料電池、直接メタノール形燃料電池に用いられる高分子電解質膜に 関する。本発明の高分子電解質膜は、脂肪族系高分子化合物と、プロトン伝導性基 を含有する芳香族系高分子化合物との、少なくとも 2種の高分子化合物力 なり、優 れたプロトン伝導性かつ高いメタノール遮断性を有する。このとき、前記脂肪族系高 分子化合物を、前記高分子電解質膜中に 10重量%以上 95重量%以下含有すると 、特に、優れたプロトン伝導性及び高いメタノール遮断性が両立するので好ましい。 また、前記脂肪族系高分子化合物が下記式 (4)〜 (6)  [0110] As shown in the above (C1) to (C6), the present invention relates to a polymer electrolyte membrane used for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell. The polymer electrolyte membrane of the present invention has at least two kinds of polymer compound forces, that is, an aliphatic polymer compound and an aromatic polymer compound containing a proton-conducting group. High methanol barrier properties. At this time, it is preferable that the aliphatic polymer compound is contained in the polymer electrolyte membrane in an amount of 10% by weight to 95% by weight because both excellent proton conductivity and high methanol blocking properties are achieved. Further, the aliphatic polymer compound has the following formulas (4) to (6):
[0111] [化 12] [0111] [Chemical 12]
Figure imgf000026_0001
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0002
Figure imgf000026_0003
Figure imgf000026_0003
[0112] (Xおよび Yは、 Η、 CH、 Cl、 F、 OCOCH、 CN、 COOH、 COOCH、 OC H、か [0112] (X and Y are Η, CH, Cl, F, OCOCH, CN, COOH, COOCH, OC H, or
3 3 3 4 9 ら選ばれる原子団の内、いずれかであって、 Xと Yは互いに同一であっても異なって いても良い。)で表される繰り返し単位を構成成分とする脂肪族系高分子化合物から 選択される少なくとも 1種であると、化学的'熱的安定性、加工性が優れているので、 また、安価に工業的に入手可能なので好ましい。  Any of atomic groups selected from 3 3 3 4 9, and X and Y may be the same or different from each other. And at least one selected from an aliphatic polymer compound having a repeating unit represented by formula (1) as a constituent component because it has excellent chemical and thermal stability and processability. It is preferable because it is available.
[0113] さらに、式(4)における Xは H、 CH、 Cl、 F、式(5)における X、 Yはそれぞれ、(Χ、  [0113] Further, X in formula (4) is H, CH, Cl, F, and X and Y in formula (5) are (Χ,
3  Three
Υ) = (CH、 CH )、(X、 Y) = (Cl、 CI)、(X、 Y) = (F  Υ) = (CH, CH), (X, Y) = (Cl, CI), (X, Y) = (F
3 3  3 3
、 F)、式 (6)における Xは F、 H、で表される繰り返し単位を構成成分とする脂肪族 系高分子化合物から選択される少なくとも 1種であると、特に化学的,熱的安定性、 加工  F) and X in formula (6) are at least one selected from aliphatic polymer compounds having a repeating unit represented by F or H as a constituent, particularly chemically and thermally stable. Sex, processing
性が優れているので、また、安価に工業的に入手可能なので好ましい。  It is preferable because it has excellent properties and is industrially available at a low cost.
[0114] さらに、前記芳香族系高分子化合物が、ポリフエ-レンサルファイド、ポリフエ-レン エーテル、ポリスチレン、シンジオタクチックポリスチレン、ポリエーテルスルホン、ポリ エーテルエーテルケトンの少なくとも 1種であると、化学的 ·熱的安定性が高ぐプロト ン伝導性基の導入がし易 、ので高 、プロトン伝導性、さらに高 、メタノール遮断性を 有する膜となるので好まし 、。 [0114] Further, when the aromatic polymer compound is at least one of polyphenylene sulfide, polyphenylene ether, polystyrene, syndiotactic polystyrene, polyether sulfone, and polyether ether ketone, Prototype with high thermal stability Since it is easy to introduce a conductive group, it is preferable because it is a membrane having high proton conductivity, and high methanol barrier properties.
[0115] 前記プロトン伝導性置換基は、プロトン伝導性置換基の導入のし易さや得られるプ 口トン伝導性高分子電解質膜のプロトン伝導性などの点から、スルホン酸基であるこ とが好ましい。 [0115] The proton-conductive substituent is preferably a sulfonic acid group from the viewpoint of ease of introduction of the proton-conductive substituent and proton conductivity of the resulting proton-conductive polymer electrolyte membrane. .
[0116] (C— 7) .本発明の第 (C— 7)は、 [0116] (C-7). The (C-7) of the present invention is
請求項 1〜4のいずれかに記載の高分子フィルムをスルホン化剤と接触させることを 特徴とする、請求項 (C 6)に記載の高分子電解質膜の製造方法、  The method for producing a polymer electrolyte membrane according to claim (C6), wherein the polymer film according to any one of claims 1 to 4 is contacted with a sulfonating agent.
である。  It is.
[0117] (C— 8) .本発明の第 (C— 8)は、  [0117] (C-8). The (C-8) of the present invention is
前記スルホン化剤がクロロスルホン酸であることを特徴とする請求項 7に記載のプロト ン伝導性高分子電解質膜の製造方法、  The method for producing a proton conductive polymer electrolyte membrane according to claim 7, wherein the sulfonating agent is chlorosulfonic acid,
である。  It is.
[0118] (C— 9) .本発明の第 (C— 9)は、  [0118] (C-9). The (C-9) of the present invention is
前記スルホン化剤と接触させる際に、有機溶媒中で行うことを特徴とする (C— 7)〜( The contact with the sulfonating agent is carried out in an organic solvent (C-7) to (
C 8)の 、ずれかに記載の高分子電解質膜の製造方法、 C 8), the method for producing a polymer electrolyte membrane according to any one of the above,
である。  It is.
[0119] (C— 10) .本発明の第 (C— 10)は、  [0119] (C-10). (C-10) of the present invention is
前記有機溶媒が、ハロゲンィ匕炭化水素系化合物であることを特徴とする (C 9)に記 載の高分子電解質膜の製造方法、  The method for producing a polymer electrolyte membrane according to (C9), wherein the organic solvent is a halogenated hydrocarbon compound,
である。  It is.
[0120] (C— 11) .本発明の第 (C— 11)は、  [0120] (C-11). (C-11) of the present invention is
前記ハロゲンィ匕炭化水素系化合物が 1—クロロブタンであることを特徴とする(C— 10 The halogenated hydrocarbon compound is 1-chlorobutane (C-10
)に記載の高分子電解質膜の製造方法、 ) Manufacturing method of the polymer electrolyte membrane according to
である。  It is.
[0121] 上記 (C 7)〜(C 11)に示す通り、さらに本発明は、脂肪族系高分子化合物と、 芳香族系高分子化合物との、少なくとも 2種の高分子化合物力 なる高分子フィルム をスルホン化剤と接触させる高分子電解質膜の製造方法に関する。この製造方法と することで、生産性の高い高分子電解質膜の製造方法となる。さらに、本発明の高分 子電解質膜の製造方法において、前記脂肪族系高分子化合物を、前記高分子フィ ルム中に 10重量%以上 95重量%以下含有すると、得られた高分子電解質膜が、優 れたプロトン伝導性及び高いメタノール遮断性を両立するので好ましい。また、前記 脂肪族系高分子化合物が下記式 (4)〜 (6) [0121] As shown in the above (C7) to (C11), the present invention further provides a polymer having at least two kinds of polymer compounds, ie, an aliphatic polymer compound and an aromatic polymer compound. The present invention relates to a method for producing a polymer electrolyte membrane in which a film is brought into contact with a sulfonating agent. This manufacturing method and By doing so, it becomes a method for producing a polymer electrolyte membrane with high productivity. Furthermore, in the method for producing a polymer electrolyte membrane of the present invention, when the aliphatic polymer compound is contained in an amount of 10% by weight to 95% by weight in the polymer film, the obtained polymer electrolyte membrane is obtained. It is preferable because it has both excellent proton conductivity and high methanol blocking property. Further, the aliphatic polymer compound is represented by the following formulas (4) to (6):
[0122] [化 13] [0122] [Chemical 13]
X xYII  X xYII
CH2 式 (4)CH 2 formula (4)
Figure imgf000028_0001
Figure imgf000028_0001
CH2 式(5) CH 2 formula (5)
Figure imgf000028_0002
式(6)
Figure imgf000028_0002
Formula (6)
[0123] (Xおよび Yは、 H、 CH、 Cl、 F、 OCOCH、 CN、 COOH、 COOCH、 OC H、力 [0123] (X and Y are H, CH, Cl, F, OCOCH, CN, COOH, COOCH, OC H, force
3 3 3 4 9 ら選ばれる原子団の内、いずれかであって、 Xと Yは互いに同一であっても異なって いても良い。)  Any of atomic groups selected from 3 3 3 4 9, and X and Y may be the same or different from each other. )
で表される繰り返し単位を構成成分とする脂肪族系高分子化合物から選択される少 なくとも 1種であると、化学的'熱的安定性、加工性が優れているので、また、安価に 工業的に入手可能なので好ま 、。  When at least one selected from the aliphatic polymer compounds having a repeating unit represented by the formula is excellent in chemical and thermal stability and processability, it is also inexpensive. Favorable because it is industrially available.
[0124] さらに、式(4)における、 Xは H、 CH、 Cl、 F、式(5)における、 X、 Yはそれぞれ、( [0124] Furthermore, X in the formula (4) is H, CH, Cl, F, and X and Y in the formula (5) are (
3  Three
X、 Υ) = (CH、 CH )、(X、 Y) = (Cl、 CI)、(X、 Y ) = (F、 F)、式 (6)における、 Xは F、 H、で表される繰り返し単位を構成成分とする脂 肪族系高分子化合物から選択される少なくとも 1種であると、化学的 ·熱的安定性、 加工性が優れているので、また、安価に工業的に入手可能なので好ましい。 X, Υ) = (CH, CH), (X, Y) = (Cl, CI), (X, Y ) = (F, F), in formula (6), X is at least one selected from aliphatic polymer compounds having a repeating unit represented by F, H as a constituent component. It is preferable because it is excellent in mechanical and thermal stability and processability, and is industrially available at a low cost.
さらに、前記芳香族系高分子化合物が、芳香族系高分子化合物であると安価にェ 業的に入手可能なので好ましい。さらに、前記芳香族系高分子化合物が、ポリフエ二 レンサルファイド、ポリフエ-レンエーテル、ポリスチレン、シンジオタクチックポリスチ レン、ポリエーテルスルホン、ポリエーテルエーテルケトンの少なくとも 1種であると、 化学的'熱的安定性が高ぐプロトン伝導性基の導入がし易いので高いプロトン伝導 性、さらに高 、メタノール遮断性を有する膜となるので好ま 、。  Furthermore, it is preferable that the aromatic polymer compound is an aromatic polymer compound because it is commercially available at low cost. Further, when the aromatic polymer compound is at least one of polyphenylene sulfide, polyphenylene ether, polystyrene, syndiotactic polystyrene, polyether sulfone, polyether ether ketone, It is preferable because a proton-conductive group having high stability can be easily introduced, so that it becomes a membrane having high proton conductivity and higher methanol blocking property.
[0125] 本発明の高分子電解質膜の製造方法において、スルホン化剤力 クロロスルホン 酸であると、短時間でスルホンィ匕が可能となり、製造コストが安価なプロトン伝導性高 分子電解質の製造方法となるので好ま Uヽ。本発明のプロトン伝導性高分子電解質 膜の製造方法において、前記スルホン化剤と接触させる際に、有機溶媒中で行うと、 スルホンィ匕反応が均一に行えるので、機械的強度が高い膜となり好ましい。さらに、 前記有機溶媒が、ハロゲンィ匕炭化水素系化合物であると、安価に工業的に入手が 可能なので、製造コストが安価な高分子電解質膜の製造方法となり好ましい。さらに 、前記ハロゲン化炭化水素系化合物が 1 クロロブタンであると、得られるプロトン伝 導性高分子電解質膜が、優れたプロトン伝導性及び高!、メタノール遮断性を両立す るので好ましい。  [0125] In the method for producing a polymer electrolyte membrane of the present invention, when the sulfonating agent power is chlorosulfonic acid, sulfonating can be performed in a short time, and the production method of a proton-conducting polymer electrolyte with low production cost is possible. I prefer U 好. In the method for producing a proton conductive polymer electrolyte membrane of the present invention, when the contact with the sulfonating agent is carried out in an organic solvent, a sulfonative reaction can be carried out uniformly, and a membrane having high mechanical strength is preferred. Furthermore, when the organic solvent is a halogenated hydrocarbon-based compound, it can be industrially obtained at a low cost, which is preferable as a method for manufacturing a polymer electrolyte membrane at a low manufacturing cost. Furthermore, it is preferable that the halogenated hydrocarbon-based compound is 1 chlorobutane because the obtained proton-conducting polymer electrolyte membrane has both excellent proton conductivity, high properties, and methanol blocking property.
[0126] (C— 12) .本発明の第(C— 12)は、  [0126] (C-12). The (C-12) of the present invention is
請求項 5〜6のいずれかに記載の高分子電解質膜、あるいは、(C— 7)〜(C— 11) のいずれかに記載の製造方法により得られたことを特徴とするプロトン伝導性高分子 電解質膜、を使用した固体高分子形燃料電池、  A polymer electrolyte membrane according to any one of claims 5 to 6, or a production method according to any one of (C-7) to (C-11), wherein the proton conductivity is high. Polymer electrolyte fuel cell, using polymer electrolyte membrane,
である。  It is.
[0127] (C— 13) .本発明の第(C— 13)は、  [0127] (C-13). The (C-13) of the present invention is
請求項 5〜6のいずれかに記載の高分子電解質膜、あるいは、(C— 7)〜(C— 11) のいずれかに記載の製造方法により得られたことを特徴とするプロトン伝導性高分子 電解質膜、を使用した直接液体形燃料電池、 である。 A polymer electrolyte membrane according to any one of claims 5 to 6, or a production method according to any one of (C-7) to (C-11), wherein the proton conductivity is high. Direct liquid fuel cell using molecular electrolyte membrane, It is.
[0128] (C— 14) .本発明の第 (C— 14)は、  [0128] (C-14). The (C-14) of the present invention is
前記直接液体形燃料電池が、直接メタノール形燃料電池であることを特徴とする (C 13)記載の直接液体形燃料電池、  The direct liquid fuel cell is a direct methanol fuel cell, the direct liquid fuel cell according to (C13),
である。  It is.
[0129] 上記 (C— 12)〜 (C— 14)に示す通り、さらに、本発明の高分子電解質膜、ある ヽ は、本発明の製造方法により得られた高分子電解質膜を使用した固体高分子形燃 料電池は、高いプロトン伝導度、高い耐久性を有するため、固体高分子形燃料電池 として優れている。さら〖こ、本発明の高分子電解質膜、あるいは、本発明の製造方法 により得られた高分子電解質膜を使用した直接液体形燃料電池は、高いプロトン伝 導度、高い液体燃料の遮断性を有するため、直接液体形燃料電池として優れている 。さらに、本発明の高分子電解質膜、あるいは、本発明の製造方法により得られた高 分子電解質膜を使用した直接メタノール形燃料電池は、高いプロトン伝導度、高いメ タノール遮断性を有するため、直接メタノール形燃料電池として優れて!/ヽる。  [0129] As shown in the above (C-12) to (C-14), the polymer electrolyte membrane of the present invention, a certain 、, is a solid using the polymer electrolyte membrane obtained by the production method of the present invention. Polymer fuel cells are excellent as solid polymer fuel cells because they have high proton conductivity and high durability. Furthermore, direct liquid fuel cells using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention have a high proton conductivity and a high liquid fuel barrier property. Therefore, it is excellent as a direct liquid fuel cell. Furthermore, the direct methanol fuel cell using the polymer electrolyte membrane of the present invention or the polymer electrolyte membrane obtained by the production method of the present invention has a high proton conductivity and a high methanol blocking property. Excellent as a methanol fuel cell! / Speak.
発明の効果  The invention's effect
[0130] 本発明によれば、脂肪族系高分子化合物と、プロトン伝導性基を含有する芳香族 系高分子化合物との、少なくとも 2種の化合物力 なる高分子電解質膜によって高い プロトン伝導性と高いメタノール遮断性を発現することが可能となった。これらは、優 れたプロトン伝導性、高いメタノール遮断性を有し、固体高分子形燃料電池、直接液 体形燃料電池、直接メタノール形燃料電池の高分子電解質膜として有用である。ま た、本発明の高分子フィルムを材料とすることで、上記の高分子電解質膜を実現する ことが可能となった。  [0130] According to the present invention, high proton conductivity is achieved by a polymer electrolyte membrane having at least two kinds of compound power, that is, an aliphatic polymer compound and an aromatic polymer compound containing a proton conductive group. It became possible to express a high methanol barrier property. These have excellent proton conductivity and high methanol barrier properties, and are useful as polymer electrolyte membranes for polymer electrolyte fuel cells, direct liquid fuel cells, and direct methanol fuel cells. Further, the polymer electrolyte membrane can be realized by using the polymer film of the present invention as a material.
[0131] 本発明によれば、芳香族単位を有する高分子化合物と、熱可塑性エラストマ一と、 芳香族単位がない高分子化合物、との少なくとも 3種の高分子化合物を必須成分と して含む、高分子フィルム中の芳香族単位にプロトン伝導性基が導入されている高 分子電解質膜は、優れたプロトン伝導性かつ高いメタノール遮断性を有し、固体高 分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池の高分子電解 質膜として有用である。また、本発明の高分子フィルムを材料とすることで、上記の高 分子電解質膜を実現することが可能となった。 [0131] According to the present invention, at least three polymer compounds including a polymer compound having an aromatic unit, a thermoplastic elastomer, and a polymer compound having no aromatic unit are included as essential components. High molecular electrolyte membranes, in which proton conductive groups are introduced into aromatic units in polymer films, have excellent proton conductivity and high methanol barrier properties, such as solid polymer fuel cells and direct liquid fuels. It is useful as a polymer electrolyte membrane for batteries and direct methanol fuel cells. Further, by using the polymer film of the present invention as a material, It became possible to realize a molecular electrolyte membrane.
[0132] 本発明によれば、芳香族単位を有する高分子化合物と、芳香族単位がな!ヽ高分子 化合物、との少なくとも 2種の高分子化合物を含み、  [0132] According to the present invention, at least two kinds of polymer compounds, a polymer compound having an aromatic unit, and a polymer compound having no aromatic unit are included,
前記芳香族単位のな!ヽ高分子化合物中に芳香族単位を有する高分子化合物が分 散されていることを特徴とする構造を有する高分子フィルム中の芳香族単位にプロト ン伝導性基が導入されて!、る高分子電解質膜は、優れたプロトン伝導性かつ高!、メ タノール遮断性を有し、固体高分子形燃料電池、直接液体形燃料電池、直接メタノ ール形燃料電池の高分子電解質膜として有用である。また、本発明の高分子フィル ムを材料とすることで、上記の高分子電解質膜を実現することが可能となった。  Of the aromatic unit!プ ロ Proton conductive groups are introduced into the aromatic unit in the polymer film having a structure characterized in that the polymer compound having an aromatic unit is dispersed in the polymer compound! Molecular electrolyte membranes have excellent proton conductivity, high! And methanol blocking properties, and are useful as polymer electrolyte membranes for solid polymer fuel cells, direct liquid fuel cells, and direct methanol fuel cells. is there. In addition, by using the polymer film of the present invention as a material, the above-described polymer electrolyte membrane can be realized.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0133] 本発明の固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料 電池に用いる、高分子電解質膜およびその材料である高分子フィルムについて説明 する。 [0133] The polymer electrolyte membrane and the polymer film as the material thereof used for the solid polymer fuel cell, direct liquid fuel cell, and direct methanol fuel cell of the present invention will be described.
[0134] なお本発明で、誘導体とは、その基本形となる化合物において置換可能な水素原 子のうち少なくとも 1つを、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素 基、水酸基、カルボニル基、カルボキシル基、エーテル基、エステル基、ァシル基ま たはアミノ基などの置換基に置換した化合物をいう。  [0134] In the present invention, the derivative means that at least one of hydrogen atoms that can be substituted in the basic compound is an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, A compound substituted with a substituent such as a hydroxyl group, a carbonyl group, a carboxyl group, an ether group, an ester group, an acyl group or an amino group.
[0135] 共重合体とは、ブロック共重合体、ランダム共重合体の 、ずれであってもよ 、。 [0135] The copolymer may be any of a block copolymer and a random copolymer.
[0136] 本発明の高分子電解質およびその材料の高分子フィルムは、芳香族単位を有する 高分子化合物を含むことが好まし ヽ。この高分子化合物中に含まれる芳香族単位に スルホン酸基などのプロトン伝導性基を置換することができ、高分子電解質膜とした 場合にプロトン伝導性を発現することが可能となる。芳香族単位を有する高分子化合 物としては、例えば、ポリスチレン、シンジオタクチックポリスチレン、ポリアリールエー テルスルホン、ポリエーテルエーテルスルホン、ポリエーテノレケトン、ポリエーテノレケト ンケトン、ポリスルホン、ポリパラフエ-レン、ポリフエ-レンサルファイド、ポリフエ-レ ンエーテル、変性ポリフエ-レンエーテル、ポリフエ-レンスルホキシド、ポリフエ-レ ンスルフイドスルホン、ポリフエ-レンスルホン、ポリべンズイミダゾール、ポリべンゾォ キサゾール、ポリべンゾチアゾール、ポリエーテルスルホン、ポリ 1, 4 ビフヱ二レン エーテルエーテルスルホン、ポリアリーレンエーテルスルホン、ポリイミド、ポリエーテ ルイミド、シアン酸エステル榭脂、ポリエーテルエーテルケトンなどが例示できる。また 、それらの誘導体および共重合体なども本発明の範疇である。特に、他の高分子化 合物成分に対する相溶性や分散性、プロトン伝導性基の導入のし易さ、高分子フィ ルムを製造する際の加ェ性ゃ得られる高分子フィルムのハンドリング性、さらにはそ れから得られる高分子電解質のプロトン伝導性やメタノール遮断性、化学的'熱的安 定性などを考慮すると、ポリスチレン、シンジオタクチックポリスチレン、ポリフエ-レン エーテル、変性ポリフエ-レンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエ 一テルエーテルケトンおよびポリフエ-レンサルファイド、並びに、それらの誘導体お よび共重合体力 なる群力 選択される少なくとも 1種であることが好ましい。前記高 分子化合物の共重合体としては、例えば、ポリスチレンまたはポリスチレン誘導体と下 記一般式 (2)および Zまたは(3)との共重合体などが例示できる。 [0136] The polymer electrolyte of the present invention and the polymer film of the material preferably include a polymer compound having an aromatic unit. A proton conductive group such as a sulfonic acid group can be substituted for the aromatic unit contained in the polymer compound, and when the polymer electrolyte membrane is formed, the proton conductivity can be expressed. Examples of the polymer compound having an aromatic unit include polystyrene, syndiotactic polystyrene, polyaryl ether sulfone, polyether ether sulfone, polyether ether ketone, polyether ether ketone, polysulfone, polyparaphenylene, and polyphenylene. Rensulfide, polyphenylene ether, modified polyphenylene ether, polyphenylene sulfoxide, polyphenylene sulfide sulfone, polyphenylene sulfone, polybenzimidazole, polybenzoxazole, polybenzothiazole, polyethersulfone, Poly 1, 4 Biff Examples include ether ether sulfone, polyarylene ether sulfone, polyimide, polyether imide, cyanate ester resin, and polyether ether ketone. In addition, derivatives and copolymers thereof are also within the scope of the present invention. In particular, compatibility and dispersibility with other polymer compound components, ease of introduction of proton-conducting groups, and handling properties of the resulting polymer film, Furthermore, in consideration of proton conductivity, methanol blocking property, chemical 'thermal stability, etc. of the polymer electrolyte obtained therefrom, polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone It is preferably at least one selected from the group strength of polyethersulfone, polyetheretherketone and polyphenylene sulfide, and derivatives and copolymers thereof. Examples of the copolymer of the high molecular compound include a copolymer of polystyrene or a polystyrene derivative and the following general formula (2) and Z or (3).
[0137] 本発明の高分子電解質およびその材料の高分子フィルムは、熱可塑性エラストマ 一を含むことが好ましい。熱可塑性エラストマ一があることで、他の高分子化合物成 分との相溶性や分散性、それに伴ってフィルム物性などが改善され、本発明の高分 子フィルムや高分子電解質膜の機械的強度ゃノヽンドリング性などが向上し、好ましい[0137] The polymer electrolyte of the present invention and the polymer film of the material preferably include a thermoplastic elastomer. The presence of the thermoplastic elastomer improves the compatibility and dispersibility with other polymer compound components and, as a result, improves the film properties, etc., and the mechanical strength of the polymer film and polymer electrolyte membrane of the present invention. Nyanoding performance is improved, which is preferable
。また、熱可塑性エラストマ一成分に芳香族単位が含まれていれば、高分子電解質 膜のプロトン伝導性の向上が期待でき、芳香族単位が含まれていなくてもメタノール 遮断性の向上が期待できる。本発明で使用する熱可塑性エラストマ一としては、ポリ スチレンまたはポリスチレン誘導体と下記一般式(2)および Zまたは(3)との共重合 体であることが好ましい。 . In addition, if an aromatic unit is contained in one component of the thermoplastic elastomer, an improvement in proton conductivity of the polymer electrolyte membrane can be expected, and an improvement in methanol blocking ability can be expected even if no aromatic unit is contained. . The thermoplastic elastomer used in the present invention is preferably a copolymer of a polystyrene or polystyrene derivative and the following general formula (2) and Z or (3).
[0138] [化 14]
Figure imgf000033_0001
[0138] [Chemical 14]
Figure imgf000033_0001
Figure imgf000033_0002
Figure imgf000033_0002
[0139] (式中、 R〜 は C H であって、 R〜 は互いに同一であっても異なっていてもよい [Wherein R˜ is C H, and R˜ may be the same or different from each other.
1 12 2x+l 1 12  1 12 2x + l 1 12
。また、 1、 m、 n、 xは 0以上の整数である。 )  . 1, m, n, and x are integers of 0 or more. )
これらは芳香族単位を有するポリスチレンまたはポリスチレン誘導体のユニットが存在 するため、前記芳香族単位を有する高分子化合物との相溶性に優れる。また、それ 以外の成分中には芳香族単位をもたな ヽため、後述する芳香族単位を持たな ヽ高 分子化合物との相溶性にも優れ好まし ヽ。  Since these have units of polystyrene or polystyrene derivatives having aromatic units, they are excellent in compatibility with the polymer compound having the aromatic units. In addition, since other components do not have aromatic units, they are preferably excellent in compatibility with high molecular compounds having no aromatic units, which will be described later.
[0140] これらの中でも工業的入手の容易さや他の高分子化合物成分との分散性、得られ る高分子フィルムや高分子電解質膜の物性などを考慮すると、ポリスチレン ポリイソ ブチレン ポリスチレントリブロック共重合体、ポリスチレン ポリ(エチレン Zプロピレ ン)ブロック共重合体、ポリスチレン一ポリ(エチレン Zプロピレン)一ポリスチレントリブ ロック共重合体、ポリスチレン ポリ(エチレン Zブチレン) ポリスチレントリブロック 共重合体およびポリスチレン ポリ(エチレン エチレン Zプロピレン) ポリスチレン トリブロック共重合体、並びに、それらの誘導体からなる群から選択される少なくとも 1 種であることが好ま 、。これらは成分中には芳香族単位をもたな 、ブロック単位を 有するため、後述する芳香族単位を持たない高分子化合物との相溶性にも優れ好ま しい。 [0140] Among these, in view of industrial availability, dispersibility with other polymer compound components, physical properties of the resulting polymer film and polymer electrolyte membrane, etc., polystyrene polyisobutylene polystyrene triblock copolymer , Polystyrene poly (ethylene Z propylene) block copolymer, polystyrene monopoly (ethylene Z propylene) monopolystyrene triblock copolymer, polystyrene poly (ethylene Z butylene) polystyrene triblock copolymer and polystyrene poly (ethylene ethylene Z) Propylene) polystyrene triblock copolymers, and at least one selected from the group consisting of derivatives thereof Preferred to be a seed. Since these components have a block unit without an aromatic unit, they are preferably excellent in compatibility with a polymer compound having no aromatic unit, which will be described later.
[0141] 本発明の高分子電解質およびその材料の高分子フィルムは、芳香族単位がない 高分子化合物を含むことが好ましい。これらは構造中に芳香族単位がないため、ス ルホン酸基などのプロトン伝導性基が芳香族単位に導入されることがな 、。従って、 これらから得られる高分子電解質膜は、スルホン酸基などの親水性のプロトン伝導性 基が他の高分子化合物の芳香族単位に導入されて!、ても、水やメタノール水溶液に 対して膨潤しにくい構成となり、高いメタノール遮断性を有する高分子電解質膜を得 ることがでさる。  [0141] The polymer electrolyte of the present invention and the polymer film of the material thereof preferably contain a polymer compound having no aromatic unit. Since there is no aromatic unit in these structures, proton conductive groups such as sulfonic acid groups are not introduced into the aromatic unit. Therefore, the polymer electrolyte membranes obtained from these have hydrophilic proton conductive groups such as sulfonic acid groups introduced into the aromatic units of other polymer compounds! It is difficult to swell, and a polymer electrolyte membrane having a high methanol barrier property can be obtained.
[0142] 本発明に使用可能な芳香族単位がない高分子化合物としては、例えばエチレン、 プロピレン、 1—ブテン、 1—ペンテン、 1—へキセン、 3—メチル 1—ブテン、 4—メ チルー 1 ペンテン、 5—メチルー 1 ヘプテンなどの α—ォレフインの単独重合体 または共重合体などのポリオレフイン榭脂、ポリ塩化ビュル、塩ィ匕ビ二ルー酢酸ビ- ル共重合体、塩ィヒビュル一塩ィヒビユリデン共重合体、塩ィヒビュル一才レフイン共重 合体などの塩ィ匕ビュル系榭脂、ナイロン 6、ナイロン 66などのポリアミド榭脂、ポリテト ラフルォロエチレン、テトラフルォロエチレン パーフルォロアルキルビニルエーテル 共重合体、テトラフルォロエチレン ェキサフルォロプロピレン共重合体、テトラフル ォロエチレン エチレン共重合体、ポリクロ口トリフルォロエチレン、ポリビニリデンフ ルォライド、ポリビュルフルオライドなどのフッ素系榭脂などが例示できる。特に他の 高分子化合物成分に対する相溶性や分散性、高分子フィルムを製造する際の加工 性や得られる高分子フィルムのハンドリング性、さらにはそれから得られる高分子電 解質のメタノール遮断性、化学的'熱的安定性などを考慮すると、下記一般式(1)か らなる高分子化合物であることが好まし 、。  [0142] Examples of the polymer compound having no aromatic unit that can be used in the present invention include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl 1-butene, and 4-methyl 1 Polyolefin resins such as pentene, 5-methyl-1-heptene homopolymers or copolymers such as polyolefin resin, polychlorinated bulu, salt-vinyl bis-acetate vinyl copolymer, salt hydruvyl monosalt hibilidene Polymers, salt-based resin such as salt-hybryl 1-year-old refin copolymer, polyamide resin such as nylon 6 and nylon 66, polytetrafluoroethylene, tetrafluoroethylene perfluoroalkyl vinyl ether Polymer, Tetrafluoroethylene Exafluoropropylene Copolymer, Tetrafluoroethylene Ethylene Copolymer Ruoroechiren, polyvinylidene off Ruoraido, and fluorine-based 榭脂 such as polyethylene Bulle fluoride can be exemplified. In particular, compatibility and dispersibility with other polymer compound components, processability when producing polymer films, handling properties of the resulting polymer films, and methanol barrier properties of the resulting polymer electrolytes, chemical properties In consideration of the thermal stability and the like, the polymer compound is preferably a polymer compound represented by the following general formula (1).
[0143] [化 15] [0143] [Chemical 15]
Figure imgf000034_0001
X 一し人 3八 4)一 [0144] (式中、 X〜は、 H、 CH、 Cl、 F、 OCOCH、 CN、 COOHゝ COOCH、 OC H、
-
Figure imgf000034_0001
X One person 3 8 4) One [Wherein X to H, CH, Cl, F, OCOCH, CN, COOH ゝ COOCH, OC H,
1 4 3 3 3 4 9 力もなる群力 選択されるいずれかであって、 X 1 4 3 3 3 4 9 Group force that also has power
1〜 4は互いに同一であっても異なって いてもよい)  1-4 may be the same or different from each other)
さら〖こ、工業的入手の容易さや得られる高分子フィルムの機械的特性やハンドリン グ性、得られる高分子電解質膜のプロトン伝導性やメタノール遮断性、化学的安定 性などを考慮すると、ポリエチレンおよび Zまたはポリプロピレンであることが好まし 、  Furthermore, considering the ease of industrial availability, mechanical properties and handling properties of the resulting polymer film, proton conductivity, methanol blocking properties, and chemical stability of the resulting polymer electrolyte membrane, polyethylene and Preferably Z or polypropylene,
[0145] 本発明の高分子フィルムにおいて、芳香族単位がない高分子化合物の含有量は、 40重量%以上 90重量%以下であることが好ましい。含有量が 40重量%よりも少ない 場合は、高分子電解質膜の水やメタノール水溶液に対する膨潤抑制効果が不充分 となり、所望のメタノール遮断性を発現しない恐れがある。また、 90重量%よりも多い と、プロトン伝導性基を導入可能な芳香族単位を有する高分子化合物量が少なくな りすぎ、所望のプロトン伝導性を発現しに《なる恐れがある。 [0145] In the polymer film of the present invention, the content of the polymer compound having no aromatic unit is preferably 40 wt% or more and 90 wt% or less. If the content is less than 40% by weight, the polymer electrolyte membrane is not sufficiently effective in suppressing swelling of the polymer electrolyte membrane with water or methanol aqueous solution, and the desired methanol barrier property may not be exhibited. On the other hand, if the amount is more than 90% by weight, the amount of the polymer compound having an aromatic unit capable of introducing a proton conductive group becomes too small, and there is a possibility that desired proton conductivity may be exhibited.
[0146] 本発明の高分子電解質に含有されるプロトン伝導性基としては、  [0146] As the proton conductive group contained in the polymer electrolyte of the present invention,
含水状態でプロトンを解離するものであれば使用可能である。例えば、スルホン酸基 、リン酸基、カルボン酸基、フエノール性水酸基などが例示できる力 これらのみに限 定されるものではな 、。特にプロトン伝導性基の導入のし易さや得られる  Any material that dissociates protons in a water-containing state can be used. For example, the power that can be exemplified by sulfonic acid group, phosphoric acid group, carboxylic acid group, phenolic hydroxyl group and the like is not limited to these. In particular, it is easy to introduce proton conductive groups
高分子電解質の  Polyelectrolyte
プロトン伝導性などを考慮すると、スルホン酸基であることが好ましい。前記プロトン伝 導性基の含有量に由来する高分子電解質のイオン交換容量は、好ましくは 0. 3ミリ 当量 Zg以上であり、より好ましくは 0. 5ミリ当量 Zg以上である。イオン交換容量が、 0. 3ミリ当量 Zgよりも低い場合には、所望のプロトン伝導性を発現しない恐れがあり 、好ましくない。  In view of proton conductivity and the like, a sulfonic acid group is preferable. The ion exchange capacity of the polymer electrolyte derived from the content of the proton conductive group is preferably 0.3 meq Zg or more, and more preferably 0.5 meq Zg or more. If the ion exchange capacity is lower than 0.3 milliequivalent Zg, the desired proton conductivity may not be exhibited, which is not preferable.
[0147] 本発明のプロトン伝導性高分子電解質に含有されるプロトン伝導性置換基としては 含水状態でプロトンを解離するものであれば使用可能である。例えば、スルホン酸基 、リン酸基、カルボン酸基、フエノール性水酸基などが例示できる力 これらのみに限 定されるものではな 、。特にプロトン伝導性置換基の導入のし易さや得られる プロトン伝導性高分子電解質の [0147] The proton-conductive substituent contained in the proton-conductive polymer electrolyte of the present invention can be used as long as it dissociates protons in a water-containing state. For example, the power that can be exemplified by sulfonic acid group, phosphoric acid group, carboxylic acid group, phenolic hydroxyl group and the like is not limited to these. Especially easy to introduce proton-conductive substituents Of proton conducting polymer electrolyte
プロトン伝導性などを考慮すると、スルホン酸基であることが好ましい。前記プロトン伝 導性置換基の含有量に由来するプロトン伝導性高分子電解質のイオン交換容量は In view of proton conductivity and the like, a sulfonic acid group is preferable. The ion exchange capacity of the proton conducting polymer electrolyte derived from the content of the proton conducting substituent is
、好ましくは 0. 3ミリ当量 Zg以上であり、より好ましくは 0. 5ミリ当量 Zg以上である。 イオン交換容量が、 0. 3ミリ当量 Zgよりも低い場合には、所望のプロトン伝導度を発 現しない恐れがあり、好ましくない。 Preferably, it is 0.3 meq Zg or more, more preferably 0.5 meq Zg or more. If the ion exchange capacity is lower than 0.3 milliequivalent Zg, the desired proton conductivity may not be exhibited, which is not preferable.
[0148] つぎに、本発明の高分子フィルムの製造方法について説明する。 [0148] Next, a method for producing a polymer film of the present invention will be described.
本発明において、高分子フィルムを得るには公知の方法が使用できる。例えば、 インフレーション法、 Tダイ法などの溶融押出成形、カレンダ一法、キャスト法、切削 法、エマルシヨン法、ホットプレス法、などが例示できる。さらに、高分子フィルムを得 た後に、分子配向などを制御するため二軸延伸などの処理を施したり、結晶化度を 制御するための熱処理を施しても構わな 、。  In the present invention, a known method can be used to obtain a polymer film. Examples thereof include melt extrusion molding such as inflation method and T-die method, calendar method, casting method, cutting method, emulsion method, and hot press method. Further, after obtaining the polymer film, it may be subjected to a treatment such as biaxial stretching in order to control the molecular orientation or the like, or a heat treatment to control the crystallinity.
本発明において、高分子フィルムを得るには公知の方法が使用できる。例えば、高 分子フィルムは、  In the present invention, a known method can be used to obtain a polymer film. For example, a high molecular film
インフレーション法、 Tダイ法、カレンダ一法、キャスト法、切削法、エマルシヨン法、ホ ットプレス法、などで得られるものが使用可能である。また、分子配向などを制御する ため二軸延伸などの処理を施したり、結晶化度を制御するための熱処理を施しても 構わない。  Those obtained by the inflation method, T-die method, calendar method, cast method, cutting method, emulsion method, hot press method, etc. can be used. Further, a treatment such as biaxial stretching may be performed to control the molecular orientation or the like, or a heat treatment may be performed to control the crystallinity.
[0149] さらに、必要に応じて架橋剤や開始剤を添加して、高分子フィルム中に架橋構造を 導入することも本発明の範疇である。上記方法の中でも生産性や得られる高分子フィ ルムの機械的特性、フィルム厚みの制御のし易さ、種々の榭脂への適用性、環境へ の負荷などを考慮すると、溶融押出成形で製造する方法が好ましい。  [0149] Further, it is also within the scope of the present invention to add a crosslinking agent or an initiator as necessary to introduce a crosslinked structure into the polymer film. Considering productivity, mechanical properties of the polymer film obtained, ease of control of film thickness, applicability to various types of resin, environmental load, etc., among the above methods, it is manufactured by melt extrusion molding. Is preferred.
[0150] 具体的には、高分子フィルムの主原料である芳香族単位を有する高分子化合物と 熱可塑性エラストマ一と、芳香族単位がな 、高分子化合物の  [0150] Specifically, a polymer compound having an aromatic unit, which is a main raw material of the polymer film, a thermoplastic elastomer, and a polymer compound having no aromatic unit.
ペレットやパウダーを所定の配合比で予め混合し、 τダイをセットした押出機に投入し Pellet and powder are mixed in advance at the specified blending ratio and put into the extruder set with τ die.
、溶融混練しながらフィルム化を行う方法が適用できる。 A method of forming a film while melt kneading can be applied.
[0151] また具体的には、高分子フィルムの主原料である芳香族単位を有する高分子化合 物と、芳香族単位がない高分子化合物の [0151] Also, specifically, a polymer compound having an aromatic unit, which is the main raw material of the polymer film. And high molecular compounds without aromatic units
ペレットやパウダーを所定の配合比で予め混合し、 τダイをセットした押出機に投入し Pellet and powder are mixed in advance at the specified blending ratio and put into the extruder set with τ die.
、溶融混練しながらフィルム化を行う方法が適用できる。 A method of forming a film while melt kneading can be applied.
[0152] このとき、使用する押出機が二軸押出機であれば、これらの成分を溶融して均一に 分散させた高分子フィルムを得ることができる。  [0152] At this time, if the extruder used is a twin screw extruder, a polymer film in which these components are melted and uniformly dispersed can be obtained.
さらに、予め所定の配合比になるように二軸押出機で溶融混練したペレットを使用し てフィルム化を実施しても構わないし、マスターバッチ化したペレットを使用して、所 定の配合比になるように溶融混練しながらフィルム化しても構わな 、。  Furthermore, the film may be formed using pellets melt-kneaded with a twin-screw extruder so as to obtain a predetermined blending ratio in advance, or a masterbatch pellet may be used to achieve a predetermined blending ratio. It may be formed into a film while being melt-kneaded.
また、組み合わせる成分の分散性に問題がない場合には、 Tダイをセットした単軸押 出機でフィルム化を実施しても構わな 、。  If there is no problem in the dispersibility of the components to be combined, the film may be formed with a single-screw extruder with a T-die set.
[0153] 本発明の高分子フィルムの厚さは、用途に応じて任意の厚さを選択することができ る。本発明の高分子フィルムから得られる高分子電解質膜の内部抵抗を低減するこ とを考慮した場合、高分子フィルムの厚みは薄い程良い。一方、得られた高分子電 解質膜のメタノール遮断性ゃノヽンドリング性を考慮すると、高分子フィルムの厚みは 薄すぎると好ましくない。これらを考慮すると、高分子フィルムの厚みは、 1. 2 /ζ πι〜 350 mであるのが好ましい。前記高分子フィルムの厚さが 1. 2 mより薄いと、フィ ルム化が困難であるとともに、プロトン伝導性基を導入する際の加工時や乾燥時にシ ヮになりやすくまた、破損が生じるなどハンドリング性が著しく低下する恐れがある。前 記高分子フィルムの厚さが 350 mを超えると、得られた高分子電解質膜のプロトン 伝導性が発現しに《なる恐れがある。  [0153] As the thickness of the polymer film of the present invention, any thickness can be selected depending on the application. In consideration of reducing the internal resistance of the polymer electrolyte membrane obtained from the polymer film of the present invention, the thinner the polymer film, the better. On the other hand, in view of methanol blocking property and nanoring property of the obtained polymer electrolyte membrane, it is not preferable that the polymer film is too thin. In view of these, the thickness of the polymer film is preferably 1.2 / ζ πι to 350 m. If the thickness of the polymer film is less than 1.2 m, it is difficult to form a film, and it is likely to become wrinkled at the time of processing when a proton conductive group is introduced or dried, and damage may occur. There is a risk that handling will be significantly reduced. If the thickness of the polymer film exceeds 350 m, the proton conductivity of the obtained polymer electrolyte membrane may be manifested.
[0154] 本発明の高分子フィルムは、少なくとも芳香族単位を有する高分子化合物と芳香族 単位がな!ヽ高分子化合物を含み、前記芳香族単位がな!ヽ高分子化合物中に芳香 族単位を有する高分子化合物が分散されて 、る構造であることが好ま 、。スルホン 酸基に代表される親水性のプロトン伝導性基が導入されにく!ヽ芳香族単位がな ヽ高 分子化合物によって、高分子電解質膜の水やメタノールなどの含水素液体に対する 膨潤が抑制され、優れたメタノール遮断性を発現することが可能となる。本発明にお いては、芳香族単位がな!ヽ高分子化合物中に芳香族単位を有する高分子化合物が 分散されている構造となっていれば、その分散状態は特に限定されないが、数 /z m 〜数 10 mの海島構造 (芳香族単位がな 、高分子化合物が「海」であり、芳香族単 位を有する高分子化合物が「島」である構造)や、 μ mオーダーの層状構造であるこ とが好ましい形態の一例として列挙できる。このとき、芳香族単位を有する高分子化 合物が分散ある 、は相溶しすぎると、芳香族単位がな 、高分子化合物の膨潤抑制 効果が低下する恐れがある。また、逆に芳香族単位を有する高分子化合物の分散状 態が著しく悪いと、高分子電解質膜とした場合に、プロトン伝導性が不充分となったり 、メタノール遮断性不充分となる恐れがある。 [0154] The polymer film of the present invention comprises at least a polymer compound having an aromatic unit and an aromatic unit, and a polymer compound, wherein the aromatic unit is not! It is preferable that the polymer compound has a structure in which a polymer compound having an aromatic unit is dispersed in the polymer compound. It is difficult to introduce hydrophilic proton-conducting groups represented by sulfonic acid groups! ヽ No aromatic units ヽ Swelling of polymer electrolyte membranes against hydrogen-containing liquids such as water and methanol is suppressed It is possible to exhibit excellent methanol barrier properties. In the present invention, there are no aromatic units!れ ば As long as the polymer compound has a structure in which an aromatic unit is dispersed in the polymer compound, the dispersion state is not particularly limited. ~ 10m sea island structure (structure without aromatic unit, polymer compound is `` sea '', polymer compound with aromatic unit is `` island '') or layer structure of μm order It can be enumerated as an example of a preferable form. At this time, if the polymer compound having an aromatic unit is dispersed or is too compatible, the swelling suppression effect of the polymer compound without the aromatic unit may be reduced. On the contrary, if the dispersion state of the polymer compound having an aromatic unit is extremely poor, there is a possibility that proton conductivity may be insufficient or methanol blocking property may be insufficient when a polymer electrolyte membrane is obtained. .
[0155] 次に本発明の高分子電解質膜の製造方法について説明する。本発明において、 前述した高分子フィルムを有機溶媒存在下でスルホン化剤と接触させる方法である ことが好ま ヽ。有機溶媒存在下で高分子フィルムとスルホン化剤を接触させること で、スルホン化剤が高分子フィルムと直接接触し劣化するのを抑制しつつ、所望量の スルホン酸基を導入することが可能となる。 Next, a method for producing the polymer electrolyte membrane of the present invention will be described. In the present invention, it is preferable that the above-described polymer film is contacted with a sulfonating agent in the presence of an organic solvent. By contacting the polymer film with the sulfonating agent in the presence of an organic solvent, it is possible to introduce a desired amount of sulfonic acid groups while suppressing the sulfonating agent from directly contacting the polymer film and deteriorating. Become.
本発明で使用可能なスルホン化剤としては、例えば、クロロスルホン酸、発煙硫酸、 三酸化硫黄、三酸ィ匕硫黄 トリェチルフォスフェート、濃硫酸、トリメチルシリルクロ口 サルフェートなどの公知のスルホンィ匕剤が例示でき好まし 、。工業的入手の容易さや スルホン酸基の導入の容易さや得られる高分子電解質膜の特性を考慮すると、クロ ロスルホン酸であることが好まし 、。  Examples of sulfonating agents that can be used in the present invention include known sulfonating agents such as chlorosulfonic acid, fuming sulfuric acid, sulfur trioxide, sulfur trioxide, sulfur triethyl phosphate, concentrated sulfuric acid, and trimethylsilyl chloride sulfate. It is preferable to illustrate. Considering the ease of industrial availability, the ease of introduction of sulfonic acid groups, and the properties of the resulting polymer electrolyte membrane, chlorosulfonic acid is preferred.
[0156] 本発明のスルホン化剤としては、クロロスルホン酸、発煙硫酸、三酸化硫黄、三酸 化硫黄 トリェチルフォスフェート、濃硫酸、トリメチルシリルクロロサルフェートなどの 公知のスルホン化剤を使用することが好ま 、。工業的入手の容易さやスルホン酸 基の導入の容易さや得られるプロトン伝導性高分子膜の特性を考慮すると、これらの スルホン化剤の使用が好ましい。とくに本発明においては、スルホン酸基の導入の容 易さや得られた膜の特性、工業的入手の容易さなどから、クロロスルホン酸を使用す るのがより好ましい。 [0156] As the sulfonating agent of the present invention, a known sulfonating agent such as chlorosulfonic acid, fuming sulfuric acid, sulfur trioxide, sulfur trioxide triethyl phosphate, concentrated sulfuric acid, trimethylsilyl chlorosulfate, or the like may be used. Favored ,. Considering the ease of industrial availability, the ease of introduction of sulfonic acid groups, and the properties of the resulting proton conducting polymer membrane, the use of these sulfonating agents is preferred. Particularly in the present invention, it is more preferable to use chlorosulfonic acid from the viewpoint of easy introduction of sulfonic acid groups, characteristics of the obtained membrane, industrial availability, and the like.
[0157] 本発明に使用可能な有機溶媒としては、高分子フィルムを劣化させたり、スルホン ィ匕剤のスルホンィ匕能を消失させたりしな 、ものであれば特に制限を受けな 、。スルホ ン酸基の導入のしゃすさなどを考慮すると、本発明に使用する有機溶媒はハロゲン 化炭化水素系化合物であることが好ましぐさらに得られる高分子電解質膜の機械的 特性ゃノ、ンドリング性、スルホン酸基の導入制御のし易さなどを考慮すると、分子構 造式中に 3個以上の炭素原子および、少なくとも 1個以上の塩素原子を含むハロゲン 化炭化水素であることが好ましぐ 1 クロ口プロパン、 1 クロロブタン、 2—クロロブタ ン、 1, 4ージクロロブタン、 1 クロロー 2—メチノレプロノ ン、 1 クロ口ペンタン、 1ーク ロロへキサン、クロロシクロへキサン力もなる群力 選択される少なくとも 1種であること が好ましい。前記溶媒のなかでも、工業的入手の容易さや得られる高分子電解質膜 の特性などの点から、 1—クロロブタンが好ましい。 [0157] The organic solvent that can be used in the present invention is not particularly limited as long as it does not deteriorate the polymer film or lose the sulfonating ability of the sulfonating agent. In consideration of the introduction of sulfonic acid groups, it is preferable that the organic solvent used in the present invention is a halogenated hydrocarbon compound. Considering characteristics such as ringability, ease of control of introduction of sulfonic acid groups, etc., it is a halogenated hydrocarbon containing 3 or more carbon atoms and at least 1 or more chlorine atoms in the molecular structural formula. It is preferred to have 1 chloropropane, 1 chlorobutane, 2-chlorobutane, 1,4-dichlorobutane, 1 chloro-2-methinolepronone, 1 chloropentane, 1 chlorohexane, chlorocyclohexane power It is preferable that at least one selected. Among the solvents, 1-chlorobutane is preferable from the viewpoints of industrial availability and characteristics of the obtained polymer electrolyte membrane.
[0158] 本発明に使用可能な有機溶媒としては、特に制限を受けないが、ハロゲン化炭化 水素系化合物であることが好ましい。有機溶媒は、その分子構造式中に 3個以上の 炭素原子及び、少なくとも 1個以上の塩素原子を含む有機溶媒であることが好ましく 、 1 クロ口プロノ ン、 1 クロロブタン、 2 クロロブタン、 1, 4ージクロロブタン、 1 クロロー 2—メチノレプロノ ン、 1 クロ口ペンタン、 1 クロ口へキサン、クロロシクロへキ サン力もなる群力 選択される少なくとも 1種であることが好ましいが、これらのみに限 定されるものではない。前記溶媒のなかでも、工業的入手の容易さや得られるプロト ン伝導性高分子膜の特性などの点から、 1—クロロブタンが好ま 、。  [0158] The organic solvent that can be used in the present invention is not particularly limited, but is preferably a halogenated hydrocarbon compound. The organic solvent is preferably an organic solvent containing 3 or more carbon atoms and at least one or more chlorine atoms in its molecular structural formula. 1 Chloroprone, 1 chlorobutane, 2 chlorobutane, 1, 4 -Dichlorobutane, 1 chloro-2-methinolepronone, 1 black mouth pentane, 1 black mouth hexane, chlorocyclohexane power is also preferred, but it is preferably at least one selected. Absent. Among these solvents, 1-chlorobutane is preferred from the viewpoint of industrial availability and the characteristics of the obtained proton conductive polymer membrane.
[0159] スルホン化剤の使用量としては、高分子フィルムに対して、 0. 1〜: LOO倍量(重量 比)、さらには 0. 5〜50倍量 (重量比)であるのが好ましい。スルホン化剤の使用量が 、 0. 1倍量よりも少ない場合には、スルホン酸基の導入量が少なくなり、得られる高分 子電解質膜のプロトン伝導性などの特性が不充分となる恐れがある。一方、 100倍 量を超える場合には、高分子フィルムが化学的に劣化し、得られる高分子電解質膜 の機械的強度が低下し、ハンドリングが困難となったり、スルホン酸基の導入量が多く なりすぎて、メタノール遮断性が低下したり、水溶性やメタノール水溶液に可溶になる など、高分子電解質膜の実用的な特性が損なわれる恐れがある。  [0159] The amount of the sulfonating agent used is preferably 0.1 to: LOO times (weight ratio), more preferably 0.5 to 50 times (weight ratio) with respect to the polymer film. . If the amount of the sulfonating agent used is less than 0.1 times, the amount of sulfonic acid groups introduced will be small, and the resulting polymer electrolyte membrane may have insufficient properties such as proton conductivity. There is. On the other hand, when the amount exceeds 100 times, the polymer film is chemically deteriorated, the mechanical strength of the resulting polymer electrolyte membrane is lowered, handling becomes difficult, and the introduction amount of sulfonic acid groups is large. As a result, the practical properties of the polymer electrolyte membrane may be impaired, for example, the methanol barrier property may be lowered, or it may become water-soluble or soluble in an aqueous methanol solution.
[0160] スルホン化剤の使用量としては、高分子フィルムの重量に対して、 0. 5〜50倍量、 さらには 0. 5〜30倍量であるのが好ましい。スルホン化剤の使用量力 高分子フィル ムの重量に対して、 0. 5倍量よりも少ない場合には、スルホン酸基の導入量が少なく なり、得られるプロトン伝導高分子膜の特性が不充分となる傾向がある。一方、 50倍 量を超える場合には、高分子フィルムが化学的に劣化し、得られるプロトン伝導性高 分子膜の機械的強度が低下し、ハンドリングが困難となったり、スルホン酸基の導入 量が多くなりすぎて、メタノール遮断性が低下するなど、かえってプロトン伝導性高分 子膜の実用的な特性が損なわれる傾向がある。 [0160] The amount of the sulfonating agent to be used is preferably 0.5 to 50 times, more preferably 0.5 to 30 times the weight of the polymer film. The amount of sulfonating agent used If the amount is less than 0.5 times the weight of the polymer film, the amount of sulfonic acid groups introduced will be small, and the properties of the resulting proton conducting polymer membrane will be insufficient. Tend to be. On the other hand, when the amount exceeds 50 times, the polymer film is chemically deteriorated and the resulting proton conductivity is high. Practical properties of proton-conducting polymer membranes, such as the mechanical strength of molecular membranes decreasing, making handling difficult, and the amount of sulfonic acid groups introduced too much, resulting in a decrease in methanol barrier properties. Tend to be damaged.
[0161] 有機溶媒中のスルホン化剤の濃度は、スルホン酸基の目標とする導入量や反応条 件 (温度 ·時間)を勘案して適宜設定すればよい。具体的には、 0. 05〜20重量%で あることが好ましぐより好ましい範囲は、 0. 2〜10重量%である。 0. 05重量%より 低いとスルホン化剤と高分子フィルム中の芳香族単位とが接触しに《なり、所望のス ルホン酸基量が導入できな力つたり、導入するのに時間が力かりすぎたりする恐れが ある。一方、 20重量%を超えるとスルホン酸基の導入が不均一となったり、得られた 高分子電解質膜の機械的特性が損なわれる恐れがある。  [0161] The concentration of the sulfonating agent in the organic solvent may be appropriately set in consideration of the target introduction amount of the sulfonic acid group and the reaction conditions (temperature and time). Specifically, a more preferable range of 0.05 to 20% by weight is 0.2 to 10% by weight. If the content is lower than 0.05% by weight, the sulfonating agent and the aromatic unit in the polymer film come into contact with each other, and it is difficult to introduce the desired amount of sulfonic acid groups, or it takes time to introduce them. There is a risk of overloading. On the other hand, if it exceeds 20% by weight, the introduction of sulfonic acid groups may become uneven, and the mechanical properties of the resulting polymer electrolyte membrane may be impaired.
[0162] 溶媒中のスルホン化剤の濃度は、スルホン酸基の目標とする導入量や反応条件( 温度 '時間)を勘案して適宜設定すればよい。具体的には、 0. 1〜10重量%である ことが好ましぐより好ましい範囲は、 0. 2〜10重量%である。 0. 1重量%より低いと スルホン化剤と高分子化合物中の芳香族単位とが接触しに《なり、所望のスルホン 酸基が導入できなかったり、導入するのに時間が力かりすぎたりする傾向がある。一 方、 10重量%を超えるとスルホン酸基の導入が不均一となったり、得られたプロトン 伝導性高分子膜の機械的特性が損なわれる傾向がある。  [0162] The concentration of the sulfonating agent in the solvent may be appropriately set in consideration of the target introduction amount of the sulfonic acid group and the reaction conditions (temperature 'time). Specifically, a more preferred range of 0.1 to 10% by weight is 0.2 to 10% by weight. 0. If it is lower than 1% by weight, the sulfonating agent and the aromatic unit in the polymer compound come into contact with each other, and the desired sulfonic acid group cannot be introduced, or it takes too much time to introduce it. Tend. On the other hand, if it exceeds 10% by weight, the introduction of sulfonic acid groups tends to be uneven, and the mechanical properties of the resulting proton conducting polymer membrane tend to be impaired.
[0163] また、接触させる際の反応温度、反応時間については特に限定は無いが、 0〜: L00 。C、さらには 10〜30°C、 0. 5時間以上、さらには 2〜: L00時間の範囲で設定するの が好ましい。反応温度が、 o°cより低い場合は、設備上冷却等の措置が必要になると ともに、反応に必要以上の時間がかかる恐れがあり、 100°Cを超えると反応が過度に 進行したり、副反応を生じたりして、膜の特性を低下させる恐れがある。  [0163] The reaction temperature and reaction time for contacting are not particularly limited, but 0 to: L00. C, more preferably 10 to 30 ° C., 0.5 hour or more, and more preferably 2 to: L00 hours. If the reaction temperature is lower than o ° c, measures such as cooling on the equipment will be required, and the reaction may take longer than necessary.If the reaction temperature exceeds 100 ° C, the reaction will proceed excessively, There is a risk of causing side reactions and deteriorating the characteristics of the film.
より好ましくは、使用する有機溶媒の沸点以下であることが、耐圧容器を用いる必要 がないため好ましい。  More preferably, it is less than the boiling point of the organic solvent to be used because it is not necessary to use a pressure vessel.
また、反応時間が、 0. 5時間より短い場合は、スルホン化剤と  If the reaction time is shorter than 0.5 hour,
高分子フィルム中の  In polymer film
芳香族単位との接触が不充分となり、所望のスルホン酸基が導入しにくくなる恐れが あり、反応時間が 100時間を超える場合は、生産性が著しく低下する恐れがあるとと もに、高分子電解質膜の特性向上にあまり寄与しない恐れがある。実際には、使用 するスルホン化剤や有機溶媒などの反応雰囲気、目標とする生産量などを考慮してThere is a risk that the contact with the aromatic unit will be insufficient, making it difficult to introduce the desired sulfonic acid group, and if the reaction time exceeds 100 hours, the productivity may be significantly reduced. In addition, there is a possibility that it does not contribute much to the improvement of the properties of the polymer electrolyte membrane. Actually, consider the reaction atmosphere of the sulfonating agent and organic solvent used, the target production volume, etc.
、所望の特性を有する高分子電解質膜を効率的に製造することができるように設定 すればよい。 The polymer electrolyte membrane having desired characteristics may be set so that it can be produced efficiently.
[0164] また、接触させる際の反応温度、反応時間については特に限定は無いが、 0〜: LOO 。C、さらには 10〜30°C、 0. 5時間以上、さらには 2〜: LOO時間の範囲で設定するの が好ましい。反応温度が、 o°cより低い場合は、設備上冷却等の措置が必要になると ともに、反応に必要以上の時間が力かる傾向があり、 100°Cを超えると反応が過度に 進行したり、副反応を生じたりして、膜の特性を低下させる傾向がある。  [0164] The reaction temperature and reaction time for contacting are not particularly limited, but 0 to: LOO. C, more preferably 10 to 30 ° C., 0.5 hours or more, and more preferably 2 to: LOO time. When the reaction temperature is lower than o ° c, measures such as cooling are required on the equipment, and there is a tendency that more time is required for the reaction, and when it exceeds 100 ° C, the reaction proceeds excessively. There is a tendency to cause side reactions and to deteriorate the characteristics of the film.
また、反応時間が、 0. 5時間より短い場合は、スルホン化剤と  If the reaction time is shorter than 0.5 hour,
高分子化合物中の  In polymer compounds
芳香族単位との接触が不充分となり、所望のスルホン酸基が導入しにくくなる傾向が あり、反応時間が 100時間を超える場合は、生産性が著しく低下する傾向を示すとと もに、膜特性の大きな向上は期待できなくなる傾向がある。実際には、使用するスル ホン化剤や溶媒などの反応系、目標とする生産量などを考慮して、所望の特性を有 するプロトン伝導性高分子膜を効率的に製造す  Insufficient contact with the aromatic unit tends to make it difficult to introduce the desired sulfonic acid group. When the reaction time exceeds 100 hours, the productivity tends to decrease significantly, and the membrane There is a tendency that a large improvement in characteristics cannot be expected. In practice, the proton conducting polymer membrane having the desired characteristics is efficiently produced in consideration of the reaction system such as the sulfonating agent and solvent used and the target production volume.
ることができるように設定すればよ!、。  You can set it so that you can!
[0165] さらに具体的な事例をあげて説明する。脂肪族系高分子化合物と、芳香族系高分 子化合物とからなる高分子フィルムは、 2軸混練押出し機に Tダイをセットした押出し 機により、脂肪族系高分子化合物としてポリエチレン、芳香族系高分子化合物として ポリフエ-レンサルファイドの、 2種の高分子化合物のペレットを溶融混練することで 得られる。得られた高分子フィルムと、溶媒として 1—クロロブタンを使用し、スルホン ィ匕剤としてクロロスルホン酸を使用する場合には、クロロスルホン酸の添カ卩量が高分 子フィルムの重量に対して 1倍量以上、 1 クロロブタン溶液中のクロロスルホン酸濃 度が、 0. 1重量%以上、反応温度が 10°C以上、反応時間が 3時間以上、の条件で、 所望のイオン交換容量を有するプロトン伝導性高分子膜を調製することができる。 [0165] Further specific examples will be described. A polymer film composed of an aliphatic polymer compound and an aromatic polymer compound is produced by using an extruder in which a T-die is set in a twin-screw kneading extruder, and using an aliphatic polymer compound such as polyethylene or aromatic polymer. It can be obtained by melt-kneading pellets of two kinds of polymer compounds, polyphenylene sulfide as a polymer compound. When the obtained polymer film and 1-chlorobutane are used as the solvent and chlorosulfonic acid is used as the sulfonating agent, the amount of chlorosulfonic acid added is based on the weight of the polymer film. The desired ion exchange capacity is achieved under the conditions that the concentration of chlorosulfonic acid in a chlorobutane solution is 0.1% by weight or more, the reaction temperature is 10 ° C or more, and the reaction time is 3 hours or more. A proton conducting polymer membrane can be prepared.
[0166] このとき、所定量'所定濃度のクロロスルホン酸 Z1—クロロブタン溶液を調製し、そ れに高分子フィルムを浸漬させることにより、高分子フィルム中の芳香族単位中の水 素原子と一 SO CI基が置換される。さらにこれを水と接触させることにより、 -so C1 [0166] At this time, by preparing a predetermined amount of a chlorosulfonic acid Z1-chlorobutane solution having a predetermined concentration and immersing the polymer film in it, the water in the aromatic unit in the polymer film is immersed. Elementary atoms and one SOCI group are replaced. By contacting it with water, -so C1
2 2 基が加水分解され、スルホン酸基(一SO H)になるとともに、残存する 1—クロロブタ  2 2 groups are hydrolyzed into sulfonic acid groups (one SO H) and the remaining 1-chlorobuta
3  Three
ンゃクロロスルホン酸が除去され、スルホン酸基含有ポリフエ-レンサルファイドが得 られる。  Nyachlorosulfonic acid is removed, and sulfonic acid group-containing polyphenylene sulfide is obtained.
[0167] また、高分子フィルムを反応槽内でスルホン化剤と接触させることによって、フィル ム (膜)形状のままスルホン酸基を導入することができる。したがって、従来の均一反 応系でスルホン化高分子を合成した後、膜形状に加工する方法と比較して、反応物 の回収 ·精製'乾燥などの工程、溶媒へのスルホン化高分子の溶解や支持体への塗 布、溶媒除去などの工程が省略できるため好ましい。さらに、フィルムを連続供給す るため、その生産性は著しく向上する。  [0167] Further, by bringing the polymer film into contact with a sulfonating agent in the reaction vessel, sulfonic acid groups can be introduced in the form of a film (membrane). Therefore, compared to the conventional method of synthesizing a sulfonated polymer with a homogeneous reaction system and then processing it into a membrane shape, the process of recovering and purifying the reactants, drying, etc., dissolving the sulfonated polymer in a solvent In addition, it is preferable because steps such as coating on the support and solvent removal can be omitted. Furthermore, since the film is continuously supplied, its productivity is remarkably improved.
[0168] また、反応槽に浸漬したフィルムに付着および/または包含されたスルホン化剤を 除去 ·洗浄することを連続的に実施することにより、スルホン化剤による周辺機器の腐 食の防止やフィルムのハンドリング性が改善する。除去'洗浄の条件は、使用するス ルホン化剤や高分子化合物の種類を考慮して適宜設定すればよいが、水洗により、 残存したスルホン化剤を不活性ィ匕したり、アルカリを使用して中和処理してもよ ヽ。  [0168] Further, by continuously removing and washing the sulfonating agent adhering to and / or included in the film immersed in the reaction vessel, it is possible to prevent corrosion of peripheral devices due to the sulfonating agent and the film. Improved handling. The conditions for removal and washing may be set as appropriate in consideration of the type of sulfonating agent and polymer compound used, but the remaining sulfonating agent is deactivated by washing with water or an alkali is used. Can be neutralized.
[0169] さらに、得られたプロトン伝導性高分子膜を連続して乾燥することによって、プロトン 伝導性高分子膜を実際に使用可能な形態で回収することができる。乾燥条件は、使 用する高分子フィルムの種類や得られるプロトン伝導性高分子膜の特性を考慮して 適宜設定すればよい。スルホン酸基が強い親水性を示すため、洗浄過程において、 含水して著しく膨潤している恐れがある。そのため、乾燥時に収縮し、皺や脹れなど が生じる恐れがある。したがって、乾燥時にはプロトン伝導性高分子膜の面方向に適 度なテンションをかけて乾燥することが好ましい。また、急激な乾燥を抑制するため、 湿度の調節下で徐々に乾燥してもよい。  [0169] Further, by continuously drying the obtained proton conductive polymer membrane, the proton conductive polymer membrane can be recovered in a form that can be actually used. The drying conditions may be appropriately set in consideration of the type of polymer film to be used and the characteristics of the proton conductive polymer membrane to be obtained. Since the sulfonic acid group has a strong hydrophilicity, it may contain water and swell significantly during the washing process. Therefore, it shrinks during drying and may cause wrinkles and swelling. Therefore, when drying, it is preferable to dry by applying an appropriate tension in the surface direction of the proton conducting polymer membrane. Moreover, in order to suppress rapid drying, you may dry gradually under humidity control.
[0170] 本発明の高分子電解質膜の製造方法は、連続的に実施してもよい。すなわち、所 定の配合比に調合された高分子化合物から、 Tダイをセットした二軸押出機による溶 融押出成形によって本発明の高分子フィルムを製造し、それをスルホン化剤と有機 溶媒の入ったスルホン化反応槽に供給し、必要に応じて、洗浄工程や乾燥工程を連 続的に実施してもよい。この方法によって、高分子電解質膜の生産性が向上する。 [0171] 本発明のプロトン伝導性高分子膜の製造方法は、連続的に実施してもよい。すな わち、被処理物である高分子化合物からなるフィルムを延伸処理をする工程に供給 し、さらに、スルホン化剤との反応槽に供給し、必要に応じて、洗浄工程や乾燥工程 を連続的に実施してもよい。この方法によって、プロトン伝導性高分子膜の生産性が 向上する。 [0170] The method for producing a polymer electrolyte membrane of the present invention may be carried out continuously. That is, a polymer film of the present invention is produced from a polymer compound prepared at a predetermined compounding ratio by melt extrusion using a twin-screw extruder with a T-die set, and the polymer film is made up of a sulfonating agent and an organic solvent. It may be supplied to the sulfonation reaction tank, and the washing process and the drying process may be continuously performed as necessary. By this method, the productivity of the polymer electrolyte membrane is improved. [0171] The method for producing a proton-conductive polymer membrane of the present invention may be carried out continuously. In other words, a film made of a polymer compound to be processed is supplied to the stretching process, and further supplied to a reaction tank with a sulfonating agent, and a washing process or a drying process is performed as necessary. You may carry out continuously. This method improves the productivity of the proton conductive polymer membrane.
[0172] また、上記方法によると高分子フィルムをスルホンィ匕反応槽内において、有機溶媒 存在下でスルホン化剤と接触させることによって、フィルム (膜)形状のままスルホン酸 基を導入することができる。したがって、従来の均一反応系でスルホン酸基を導入し た高分子化合物を合成した後、膜形状に加工する方法と比較して、反応物の回収 · 精製'乾燥などの工程、溶媒への高分子化合物の溶解やキャスト製膜時の支持体へ の塗布、溶媒除去などの工程が省略できるため好ましい。さらに、高分子フィルムを 連続供給するため、その生産性は著しく向上する。また、スルホンィ匕反応槽に浸漬し た高分子フィルムに付着および Zまたは包含されたスルホン化剤や有機溶媒の除去 •洗浄を連続的に実施することにより、スルホン化剤による周辺機器の腐食の防止や 高分子フィルムのハンドリング性が改善する。除去'洗浄の条件は、使用するスルホ ン化剤や有機溶媒の種類、高分子フィルムの構成を考慮して適宜設定すればょ 、 力 水洗により、残存したスルホン化剤を不活性ィ匕したり、アルカリを使用して中和処 理してもよい。さらに、得られた高分子電解質膜を連続して乾燥することによって、高 分子電解質膜を実際に使用可能な形態で回収することができる。乾燥条件は、使用 する高分子フィルムの種類や得られる高分子電解質膜の特性を考慮して適宜設定 すればよい。スルホン酸基が強い親水性を示すため、洗浄過程において、含水して 著しく膨潤している恐れがある。そのため、乾燥時に収縮し、皺や脹れなどが生じる 恐れがある。したがって、乾燥時には高分子電解質膜の面方向に適度なテンション をかけて乾燥することが好ましい。また、急激な乾燥を抑制するため、湿度の調節下 で徐々に乾燥してもよい。  [0172] According to the above method, the sulfonic acid group can be introduced in the form of the film (membrane) by bringing the polymer film into contact with the sulfonating agent in the presence of the organic solvent in the sulfone reaction vessel. . Therefore, compared to the conventional method of synthesizing a polymer compound with a sulfonic acid group introduced in a homogeneous reaction system and then processing it into a membrane shape, the process of recovering and purifying the reactants, drying, and other processes, It is preferable because steps such as dissolution of a molecular compound, coating on a support during casting and removal of a solvent can be omitted. Furthermore, since the polymer film is continuously supplied, the productivity is significantly improved. Also, removal of Z or contained sulfonating agent and organic solvent on the polymer film immersed in the sulfone tank reaction tank • Prevents corrosion of peripheral equipment by sulfonating agent by continuously washing And Handling property of polymer film is improved. The conditions for removal and washing can be set appropriately in consideration of the type of sulphonating agent and organic solvent used, and the composition of the polymer film. Alternatively, neutralization may be performed using an alkali. Further, by continuously drying the obtained polymer electrolyte membrane, the polymer electrolyte membrane can be recovered in a practically usable form. The drying conditions may be appropriately set in consideration of the type of polymer film used and the characteristics of the polymer electrolyte membrane to be obtained. Since the sulfonic acid group has strong hydrophilicity, it may contain water and swell significantly during the washing process. For this reason, it may shrink during drying, causing wrinkles and swelling. Therefore, it is preferable to dry by applying an appropriate tension in the surface direction of the polymer electrolyte membrane during drying. Moreover, in order to suppress rapid drying, it may be gradually dried under humidity control.
[0173] 本発明の製造方法に従って高分子電解質膜を製造する場合、使用するスルホン ィ匕剤の種類ゃスルホン化の反応条件によっては、例えば、芳香族単位を有する高分 子化合物として、ポリフエ-レンサルファイドを使用した場合、ポリフエ-レンサルファ イドのスルフイド単位 (-S-)がスルホキシド単位( so )ゃスルホン単位( so [0173] When producing a polymer electrolyte membrane according to the production method of the present invention, depending on the type of sulfonating agent to be used, depending on the reaction conditions for sulfonation, for example, as a polymer compound having an aromatic unit, When using Rensulfide, Polyphenol-Rensulfa The sulfide unit (-S-) of the ido is a sulfoxide unit (so) or a sulfone unit (so
2 2
-)に酸化されたり、また、スルホキシド単位(一so— )がスルホン単位(一so -)に -) Or sulfoxide units (one so-) into sulfone units (one so-)
2 酸化されたり、また、芳香族単位の水素が— C1などの置換基で置換される副反応が 生じる可能性がある。しかし、得られた高分子電解質膜の特性を著しく低下させるも のでなければ、前記副反応の結果生じた構造単位が含まれて 、ても構わな 、。  2 Oxidation or side reactions may occur where the hydrogen of the aromatic unit is replaced by a substituent such as —C1. However, a structural unit resulting from the side reaction may be included as long as the properties of the obtained polymer electrolyte membrane are not significantly deteriorated.
[0174] 使用するスルホン化剤ゃスルホンィ匕の反応条件によっては、例えば、芳香族系高 分子化合物として、ポリフエ-レンサルファイドを使用した場合、高分子フィルム中の スルフイド単位( S )がスルホキシド単位( SO )ゃスルホン単位( SO )に  [0174] Depending on the reaction conditions of the sulfonating agent to be used, for example, when polyphenylene sulfide is used as the aromatic high molecular compound, the sulfide unit (S) in the polymer film is changed to the sulfoxide unit ( SO) to sulfone unit (SO)
2 酸化されたり、また、スルホキシド単位(一so— )がスルホン単位(一so 2 -)に酸ィ匕 されたり、また、フエ-レン単位の水素が— C1などの置換基で置換される副反応が生 じる可能性がある。しかし、得られたプロトン伝導性高分子膜の特性を著しく低下させ るものでなけば、前記副反応の結果生じた構造単位が含まれて 、ても構わな 、。  2 Oxidized, sulfoxide unit (monoso-) is oxidized to sulfone unit (monoso2-), and hydrogen of the phenolic unit is substituted with a substituent such as C1. A reaction may occur. However, as long as the properties of the obtained proton conductive polymer membrane are not significantly deteriorated, a structural unit resulting from the side reaction may be included.
[0175] 前記方法で製造した高分子電解質膜の特性をさらに向上させるために、電子線、 γ線、イオンビーム等の放射線を照射させることが好ましい。これらにより、高分子電 解質膜中に架橋構造などが導入でき、メタノール遮断性が向上する場合がある。  [0175] In order to further improve the properties of the polymer electrolyte membrane produced by the above method, it is preferable to irradiate radiation such as an electron beam, a γ-ray, and an ion beam. As a result, a crosslinked structure or the like can be introduced into the polymer electrolyte membrane, and the methanol barrier property may be improved.
[0176] つぎに、本発明の高分子電解質膜を使用した固体高分子形燃料電池 (直接液体 形燃料電池、直接メタノール形燃料電池)について、一例として、図面を引用して説 明する。  Next, a solid polymer fuel cell (direct liquid fuel cell, direct methanol fuel cell) using the polymer electrolyte membrane of the present invention will be described with reference to the drawings as an example.
[0177] 図 1は、本発明の高分子電解質膜を使用した固体高分子形燃料電池 (直接液体形 燃料電池、直接メタノール形燃料電池)の要部断面図である。  FIG. 1 is a cross-sectional view of the main part of a solid polymer fuel cell (direct liquid fuel cell, direct methanol fuel cell) using the polymer electrolyte membrane of the present invention.
[0178] これは、高分子電解質膜 1と、高分子電解質膜 1に接触する触媒層 2、触媒層 2〖こ 接触する拡散層 3、さらにその外側にセパレーター 5が配置され、固体高分子形燃料 電池 (直接液体形燃料電池、直接メタノール形燃料電池)のセルが構成される。セパ レーター 5には、燃料ガスまたは液体 (メタノール水溶液など)、並びに、酸化剤を送り 込むための 5が形成されている。  [0178] This is because a polymer electrolyte membrane 1, a catalyst layer 2 in contact with the polymer electrolyte membrane 1, a catalyst layer 2, a diffusion layer 3 in contact with the polymer electrolyte membrane 1, and a separator 5 on the outer side thereof are disposed, and a solid polymer type It consists of fuel cell (direct liquid fuel cell, direct methanol fuel cell) cells. Separator 5 is formed with fuel gas or liquid (such as aqueous methanol solution) and 5 for feeding an oxidant.
[0179] 一般的に、高分子電解質膜 1に触媒層 2を接合したものや、高分子電解質膜 1に触 媒層 2と拡散層 3を接合したものは、膜-電極接合体 (以下、 ΜΕΑと表記)といわれ 、固体高分子形燃料電池 (直接液体形燃料電池、直接メタノール形燃料電池)の基 本部材として使用される。 [0179] Generally, a polymer electrolyte membrane 1 joined with a catalyst layer 2 or a polymer electrolyte membrane 1 joined with a catalyst layer 2 and a diffusion layer 3 is a membrane-electrode assembly (hereinafter referred to as a membrane-electrode assembly). Is called the base of solid polymer fuel cells (direct liquid fuel cells, direct methanol fuel cells). Used as this member.
[0180] MEAを作製する方法は、従来検討されて!ヽる、パーフルォロカーボンスルホン酸 からなる高分子電解質膜やその他の炭化水素系高分子電解質膜  [0180] Methods for producing MEA have been studied in the past! Polymer electrolyte membranes made of perfluorocarbon sulfonic acid and other hydrocarbon-based polymer electrolyte membranes have been studied.
(例えば、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルスルホン、 スルホン化ポリスルホン、スルホン化ポリイミド、スルホン化ポリフ -レンサルファイド など)で行われる公知の方法が適用可能である。  For example, known methods carried out with sulfonated polyetheretherketone, sulfonated polyethersulfone, sulfonated polysulfone, sulfonated polyimide, sulfonated polyphenylene sulfide, etc. are applicable.
[0181] MEAの具体的作製方法の一例を下記に示すが、本発明はこれに限定されるもの ではない。  [0181] An example of a specific method for producing MEA is shown below, but the present invention is not limited thereto.
[0182] 触媒層 2の形成は、高分子電解質の溶液あるいは分散液に、金属担持触媒を分散 させて、触媒層形成用の分散溶液を調合する。この分散溶液をポリテトラフルォロェ チレンなどの離型フィルム上にスプレーで塗布して分散溶液中の溶媒を乾燥 ·除去し 、離型フィルム上に所定の触媒層 2を形成させる。この離型フィルム上に形成した触 媒層 2を高分子電解質膜 1の両面に配置し、所定の加熱'加圧条件下でホットプレス し、高分子電解質膜 1と触媒層 2を接合し、離型フィルムをはがすことによって、高分 子電解質膜 1の両面に触媒層 2が形成された MEAが作製できる。また、前記分散溶 液をコーターなどを用いて拡散層 3上に塗工して、分散溶液中の溶媒を乾燥 '除去し 、拡散層 3上に触媒層 2が形成された触媒担持ガス拡散電極を作製し、高分子電解 質膜 1の両側にその触媒担持ガス拡散電極の触媒層 2側を配置し、所定の加熱 ·加 圧条件下でホットプレスすることによって、高分子電解質膜 1の両面に触媒層 2と拡 散層 3とが形成された MEAが製造できる。前記触媒担持ガス拡散電極には、市販の ガス拡散電極 (米国 E—TEK社製、など)を使用しても構わない。  [0182] The catalyst layer 2 is formed by dispersing a metal-supported catalyst in a polymer electrolyte solution or dispersion to prepare a dispersion for forming the catalyst layer. This dispersion solution is applied onto a release film such as polytetrafluoroethylene by spraying, and the solvent in the dispersion solution is dried and removed to form a predetermined catalyst layer 2 on the release film. The catalyst layer 2 formed on the release film is disposed on both surfaces of the polymer electrolyte membrane 1, and hot-pressed under a predetermined heating and pressurizing condition to join the polymer electrolyte membrane 1 and the catalyst layer 2, By peeling off the release film, an MEA in which the catalyst layer 2 is formed on both surfaces of the polymer electrolyte membrane 1 can be produced. Further, the dispersion solution is applied onto the diffusion layer 3 using a coater or the like, and the solvent in the dispersion solution is dried and removed to form a catalyst-carrying gas diffusion electrode in which the catalyst layer 2 is formed on the diffusion layer 3. By placing the catalyst layer 2 side of the catalyst-carrying gas diffusion electrode on both sides of the polymer electrolyte membrane 1 and hot-pressing it under the prescribed heating and pressure conditions, both sides of the polymer electrolyte membrane 1 are prepared. An MEA having a catalyst layer 2 and a diffusion layer 3 formed thereon can be produced. As the catalyst-carrying gas diffusion electrode, a commercially available gas diffusion electrode (manufactured by E-TEK, USA, etc.) may be used.
[0183] 前記高分子電解質の溶液としては、パーフルォロカーボンスルホン酸高分子化合 物のアルコール溶液 (アルドリッチ社製ナフイオン (登録商標)溶液など)ゃスルホン 化された芳香族高分子化合物(例えば、スルホンィ匕ポリエーテルエーテルケトン、ス ルホン化ポリエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリイミド、スル ホンィ匕ポリフエ-レンサルファイドなど)の有機溶媒溶液などが使用できる。前記金属 担持触媒としては、高比表面積の導電性粒子が担体として使用可能であり、例えば 活性炭、カーボンブラック、ケッチェンブラック、バルカン、カーボンナノホーン、フラ 一レン、カーボンナノチューブなどの炭素材料が例示できる。金属触媒としては、燃 料の酸ィヒ反応および酸素の還元反応を促進するものであれば使用可能であり、燃 料極と酸化剤極で同じであっても異なっていても構わない。例えば、白金、ルテユウ ムなどの貴金属あるいはそれらの合金などが例示でき、それらの触媒活性の促進や 、反応副生物による被毒を抑制するための助触媒を添加しても構わない。前記触媒 層形成用の分散溶液は、スプレーで塗布したり、コーターで塗工しやすい粘度に調 整するため、水や有機溶媒で適宜希釈しても構わない。また、必要に応じて触媒層 2 に撥水性を付与するため、テトラフルォロエチレンなどのフッ素系化合物を混合して もよい。前記拡散層 3としては、カーボンクロスやカーボンペーパーなどの多孔質の 導電性材料が使用可能である。これらは燃料や酸化剤の拡散性や反応副生物や未 反応物質の排出性を促進するため、テトラフルォロエチレンなどで被覆して撥水性を 付与したものを使用するのが好ましい。また、高分子電解質膜 1と触媒層 2との間に 必要に応じて前述したような高分子電解質を含む接着層を設けてもよい。高分子電 解質膜 1と触媒層 2を加熱'加圧条件下でホットプレスする条件は、使用する高分子 電解質膜 1や触媒層 2に含まれる高分子電解質の種類に応じて適宜設定する必要 がある。一般的には、高分子電解質膜や高分子電解質の熱劣化や熱分解温度以下 であって、高分子電解質膜 1ある ヽは高分子電解質のガラス転移点や軟ィ匕点以上の 温度、さらには高分子電解質膜 1および高分子電解質のガラス転移点や軟化点以 上の温度条件下で実施するのが好ましい。加圧条件としては、概ね 0. lMPa〜20 MPaの範囲であることが、高分子電解質膜 1と触媒層 2が充分に接触するとともに、 使用材料の著しい変形にともなう特性低下がなく好ましい。特に MEAが高分子電解 質膜 1と触媒層 2とからのみ形成される場合は、拡散層 3を触媒層 2の外側に配置し て特に接合することなく接触させるのみで使用しても構わない。 [0183] As the polymer electrolyte solution, an alcohol solution of a perfluorocarbon sulfonic acid polymer compound (such as a naphthion (registered trademark) solution manufactured by Aldrich) or a sulfonated aromatic polymer compound (for example, Sulfonized polyetheretherketone, sulfonated polyethersulfone, sulfonated polysulfone, sulfonated polyimide, sulfonated polyphenylene sulfide) and the like can be used. As the metal-supported catalyst, conductive particles having a high specific surface area can be used as a carrier. For example, activated carbon, carbon black, ketjen black, vulcan, carbon nanohorn, Examples thereof include carbon materials such as allene and carbon nanotubes. Any metal catalyst can be used as long as it promotes the acid-rich reaction of the fuel and the oxygen reduction reaction, and the fuel electrode and the oxidant electrode may be the same or different. For example, noble metals such as platinum and ruthenium or alloys thereof can be exemplified, and a promoter for promoting their catalytic activity and suppressing poisoning by reaction by-products may be added. The dispersion solution for forming the catalyst layer may be appropriately diluted with water or an organic solvent in order to adjust the viscosity so that it can be applied with a spray or easily applied with a coater. If necessary, a fluorine compound such as tetrafluoroethylene may be mixed to impart water repellency to the catalyst layer 2. As the diffusion layer 3, a porous conductive material such as carbon cloth or carbon paper can be used. In order to promote the diffusibility of fuel and oxidant and the discharge of reaction by-products and unreacted substances, it is preferable to use those coated with tetrafluoroethylene to give water repellency. Further, an adhesive layer containing the polymer electrolyte as described above may be provided between the polymer electrolyte membrane 1 and the catalyst layer 2 as necessary. The conditions under which the polymer electrolyte membrane 1 and the catalyst layer 2 are heated and hot pressed under pressure are appropriately set according to the type of polymer electrolyte contained in the polymer electrolyte membrane 1 and the catalyst layer 2 to be used. There is a need. In general, the temperature is lower than the thermal deterioration or thermal decomposition temperature of the polymer electrolyte membrane or the polymer electrolyte, and the temperature of the polymer electrolyte membrane 1 is higher than the glass transition point or the soft melting point of the polymer electrolyte. Is preferably carried out under temperature conditions above the glass transition point and softening point of the polymer electrolyte membrane 1 and the polymer electrolyte. The pressurizing condition is preferably in the range of about 0.1 MPa to 20 MPa because there is sufficient contact between the polymer electrolyte membrane 1 and the catalyst layer 2 and there is no deterioration in characteristics due to significant deformation of the materials used. In particular, when the MEA is formed only from the polymer electrolyte membrane 1 and the catalyst layer 2, the diffusion layer 3 may be disposed outside the catalyst layer 2 and used only by contacting them without any particular bonding. .
上記のような方法で得られた MEAを、燃料ガスまたは液体、並びに、酸化剤を送り 込む流路 5が形成された一対のセパレーター 4などの間に挿入することにより、本発 明の高分子電解質膜を含む固体高分子形燃料電池 (直接液体形燃料電池、直接メ タノール形燃料電池)が得られる。これに燃料ガスまたは液体として、水素を主たる成 分とするガスや、メタノールを主たる成分とするガスまたは液体を、酸化剤として、酸 素を含むガス (酸素あるいは空気)を、それぞれ別個の流路 5より、拡散層 3を経由し て触媒層 2に供給することにより、固体高分子形燃料電池は発電する。このとき燃料 として含水素液体を使用する場合には直接液体形燃料電池となるし、メタノールを使 用する場合には直接メタノール形燃料電池となる。 The MEA obtained by the method as described above is inserted between a pair of separators 4 in which a flow path 5 for feeding fuel gas or liquid and an oxidant is formed. A polymer electrolyte fuel cell (direct liquid fuel cell, direct methanol fuel cell) containing an electrolyte membrane can be obtained. As a fuel gas or liquid, a gas mainly composed of hydrogen or a gas or liquid mainly composed of methanol is used as an oxidizing agent. The polymer electrolyte fuel cell generates electric power by supplying gas (oxygen or air) containing element to the catalyst layer 2 via the diffusion layer 3 from the respective separate flow paths 5. At this time, when a hydrogen-containing liquid is used as the fuel, a direct liquid fuel cell is obtained, and when methanol is used, a direct methanol fuel cell is obtained.
[0185] 前記セパレーター 4としては力ボーングラフアイトやステンレス鋼の導電性材料のも のが使用できる。特にステンレス鋼などの金属製材料を使用する場合は、耐腐食性 の処理を施して 、ることが好まし!/、。 [0185] As the separator 4, a force bone graphite or a stainless steel conductive material can be used. Especially when using metal materials such as stainless steel, it is preferable to apply a corrosion-resistant treatment!
[0186] 本発明の固体高分子形燃料電池を単独で、あるいは複数積層して、スタックを形成 し、使用することや、それらを組み込んだ燃料電池システムとすることもできる。 [0186] The polymer electrolyte fuel cells of the present invention may be used alone or in a stack to form a stack, and a fuel cell system incorporating them may be used.
[0187] 図 13は、本発明のプロトン伝導性高分子膜を使用した固体高分子形燃料電池 (直 接液体形燃料電池、直接メタノール形燃料電池)の要部断面図である。 FIG. 13 is a cross-sectional view of a main part of a solid polymer fuel cell (direct liquid fuel cell, direct methanol fuel cell) using the proton conductive polymer membrane of the present invention.
[0188] つぎに、本発明のプロトン伝導性高分子膜を使用した固体高分子形燃料電池 (直 接液体形燃料電池、直接メタノール形燃料電池)について、一例として、図面を引用 して説明する。 Next, a solid polymer fuel cell (direct liquid fuel cell, direct methanol fuel cell) using the proton conductive polymer membrane of the present invention will be described with reference to the drawings as an example. .
[0189] これは、プロトン伝導性高分子膜 21と、 21の膜に接触する触媒担持ガス拡散電極 [0189] This is a proton conducting polymer membrane 21 and a catalyst-carrying gas diffusion electrode in contact with the membrane 21
22、セパレーター 24に形成された燃料ガスまたは液体、並びに、酸化剤を送り込む 流路 3、の構成よりなるものである。 22 and the fuel gas or liquid formed in the separator 24 and the flow path 3 for feeding the oxidant.
[0190] プロトン伝導性高分子膜 21に、触媒担持ガス拡散電極 22を接合する方法は、従 来検討されて 、る、パーフルォロカーボンスルホン酸膜からなるプロトン伝導性高分 子膜や高分子化合物からなるプロトン伝導性高分子膜 [0190] A method of joining the catalyst-carrying gas diffusion electrode 22 to the proton conductive polymer membrane 21 has been studied, and a proton conductive polymer membrane made of a perfluorocarbon sulfonic acid membrane, Proton conducting polymer membranes made of polymer compounds
(例えば、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルスルホン、 スルホン化ポリスルホン、スルホン化ポリイミド、スルホン化ポリフ -レンサルファイド など)で行われる公知の方法が適用可能である。  For example, known methods carried out with sulfonated polyetheretherketone, sulfonated polyethersulfone, sulfonated polysulfone, sulfonated polyimide, sulfonated polyphenylene sulfide, etc. are applicable.
[0191] 具体的には、市販のガス拡散電極 (米国 E— TEK社製、など)を用いる方法が例示 できるが、これに限定されるものではない。  [0191] Specifically, a method using a commercially available gas diffusion electrode (manufactured by E-TEK, USA, etc.) can be exemplified, but is not limited thereto.
[0192] 実際の方法としては、パーフルォロカーボンスルホン酸高分子のアルコール溶液( アルドリッチ社製ナフイオン (登録商標)溶液など)や本発明のプロトン伝導性高分子 膜を構成するスルホン化高分子化合物、あるいは、公知のスルホン化高分子化合物 (例えば、スルホン化ポリエーテルエーテルケトン、スルホン化ポリエーテルスルホン、 スルホン化ポリスルホン、スルホン化ポリイミド、スルホン化ポリフ -レンサルファイド など)の有機溶媒溶液などをバインダーとして、本発明のプロトン伝導性高分子膜 21 の両面に、触媒担持ガス拡散電極 22の触媒層側の面を合わせ、ホットプレス機や口 ールプレス機などのプレス機を使用して、一般的には 120〜250°C程度のプレス温 度で接合できる。また必要に応じて、バインダーを使用しなくても構わない。さらに、 下記に示すような材料を使用して触媒担持ガス拡散電極 22を調製し、プロトン伝導 性高分子膜 21に接合させて使用しても構わな ヽ。 [0192] As an actual method, an alcohol solution of a perfluorocarbon sulfonic acid polymer (such as a naphthion (registered trademark) solution manufactured by Aldrich) or a sulfonated polymer constituting the proton conductive polymer membrane of the present invention. Compound or known sulfonated polymer compound The proton conductive polymer membrane of the present invention using, as a binder, an organic solvent solution (for example, sulfonated polyetheretherketone, sulfonated polyethersulfone, sulfonated polysulfone, sulfonated polyimide, sulfonated polyphenylene sulfide). The surface on the catalyst layer side of the catalyst-carrying gas diffusion electrode 22 is aligned with both surfaces of 21, and using a press such as a hot press or a portal press, the press temperature is typically about 120 to 250 ° C. Can be joined. Moreover, it is not necessary to use a binder as needed. Furthermore, the catalyst-supporting gas diffusion electrode 22 may be prepared using the following materials and bonded to the proton conducting polymer membrane 21 for use.
[0193] ここで、触媒担持ガス拡散電極 22を調製するのに使用する材料としては、触媒とし て燃料の酸化反応および酸素の還元反応を促進する、白金、ルテニウムなどの金属 あるいはそれらの合金、触媒の担体'導電材として、微粒子の炭素材料 (例えば、力 一ボンナノホーン、フラーレン、活性炭、カーボンナノチューブなど)などの導電性物 質など、結着剤として、撥水性を有する含フッ素榭脂など、必要に応じて、上記材料 の支持体として、カーボンクロスやカーボンペーパーなど、更に、含浸'被覆材として 、パーフルォロカーボンスルホン酸高分子が例示できる力 本発明はこれに限定され るものではない。 Here, the material used to prepare the catalyst-carrying gas diffusion electrode 22 is a metal such as platinum or ruthenium or an alloy thereof that promotes the oxidation reaction of fuel and the reduction reaction of oxygen as a catalyst. Catalyst carrier 'as conductive material, conductive material such as fine carbon material (for example, bonbon nanohorn, fullerene, activated carbon, carbon nanotube, etc.), fluorinated resin having water repellency as binder, etc. As required, carbon cloth, carbon paper, etc. as a support for the above materials, and perfluorocarbon sulfonic acid polymer as an impregnated coating material can be exemplified. The present invention is not limited to this. is not.
[0194] 上記のような方法で得られたプロトン伝導性高分子膜 21と、触媒担持ガス拡散電 極 22の接合体を、燃料ガスまたは液体、並びに、酸化剤を送り込む流路 23が形成さ れた一対のグラフアイト製などのガスセパレーター 24などの間に挿入することにより、 本発明のプロトン伝導性高分子膜からなる固体高分子形燃料電池 (直接液体形燃 料電池、直接メタノール形燃料電池)が得られる。これに燃料ガスまたは液体として、 水素を主たる成分とするガスや、メタノールを主たる成分とするガスまたは液体を、酸 ィ匕剤として、酸素を含むガス (酸素あるいは空気)を、それぞれ別個の流路 23より、触 媒担持ガス拡散電極 22に供給することにより、該固体高分子形燃料電池は作動す る。このとき燃料としてメタノールを使用する場合には、直接メタノール形燃料電池と なる。  [0194] The proton-conductive polymer membrane 21 obtained by the method as described above and the catalyst-supported gas diffusion electrode 22 are joined to form a flow path 23 for feeding fuel gas or liquid and an oxidant. The polymer electrolyte fuel cell comprising the proton conducting polymer membrane of the present invention (direct liquid fuel cell, direct methanol fuel) Battery). In addition, a gas containing hydrogen as a main component, a gas or liquid mainly containing methanol as a fuel gas or liquid, and a gas containing oxygen (oxygen or air) as an oxidizing agent are provided in separate flow paths. The solid polymer fuel cell is operated by supplying the catalyst-carrying gas diffusion electrode 22 from 23. In this case, when methanol is used as the fuel, a direct methanol fuel cell is obtained.
[0195] さらに、本発明の高分子電解質膜を使用した直接メタノール形燃料電池について、 一例として、図面を引用して説明する。 [0196] さらに、本発明の高分子電解質膜を使用した直接メタノール形燃料電池について、 一例として、図面を引用して説明する。 Furthermore, a direct methanol fuel cell using the polymer electrolyte membrane of the present invention will be described with reference to the drawings as an example. [0196] Further, a direct methanol fuel cell using the polymer electrolyte membrane of the present invention will be described with reference to the drawings as an example.
[0197] 図 2は、本発明の高分子電解質膜を含む直接メタノール形燃料電池の要部断面図 である。上記方法で得られた MEA6が、燃料 (メタノールあるいはメタノール水溶液) 充填部 8や供給部 8を有する燃料 (メタノールある 、はメタノール水溶液)タンク 7の両 側に必要数が平面状に配置される。さらにその外側には、酸化剤流路 10が形成され た支持体 9が配置され、これら〖こ狭持されること〖こよって、直接メタノール形燃料電池 のセル、スタックが構成される。  [0197] Fig. 2 is a cross-sectional view of a principal part of a direct methanol fuel cell including the polymer electrolyte membrane of the present invention. The required number of MEAs 6 obtained by the above method is arranged in a plane on both sides of a fuel (methanol or methanol aqueous solution) tank 7 having a fuel (methanol or methanol aqueous solution) filling section 8 and a supply section 8. Further, a support 9 having an oxidant flow path 10 formed thereon is disposed on the outer side, and these cells are sandwiched to form a direct methanol fuel cell cell and stack.
[0198] さらに、本発明のプロトン伝導性高分子膜を使用した直接メタノール形燃料電池に ついて、一例として、図面を引用して説明する。  Furthermore, a direct methanol fuel cell using the proton conductive polymer membrane of the present invention will be described with reference to the drawings as an example.
[0199] 図 14は、本発明のプロトン伝導性高分子膜からなる直接メタノール形燃料電池の 要部断面図である。これは、プロトン伝導性高分子膜 25と、 25の膜の両側には触媒 担持電極 26が接合され、膜—電極接合体が構成される。この膜—電極接合体は、 燃料 (メタノールあるいはメタノール水溶液)充填部 28や供給部 28を有する燃料 (メ タノールあるいはメタノール水溶液)タンク 27の両側に必要数が平面状に配置される 。さらにその外側には、酸化剤流路 30が形成された支持体 29が配置され、これら〖こ 狭持されること〖こよって、直接メタノール形燃料電池のセル、スタックが構成される。  [0199] Fig. 14 is a cross-sectional view of a main part of a direct methanol fuel cell comprising the proton conductive polymer membrane of the present invention. The proton conducting polymer membrane 25 and the catalyst-supporting electrode 26 are joined to both sides of the membrane 25 to form a membrane-electrode assembly. This membrane-electrode assembly is arranged in a planar form on both sides of a fuel (methanol or methanol aqueous solution) tank 27 having a fuel (methanol or methanol aqueous solution) filling section 28 and a supply section 28. Further, a support 29 having an oxidant flow path 30 formed thereon is disposed on the outside thereof, and these cells are sandwiched to form a direct methanol fuel cell cell and stack.
[0200] 前記の例以外にも、本発明の高分子電解質膜は、特開 2001— 313046号公報、 特開 2001— 313047号公報、特開 2001— 93551号公報、特開 2001— 93558号 公報、特開 2001— 93561号公報、特開 2001— 102069号公報、特開 2001— 10 2070号公報、特開 2001— 283888号公報、特開 2000— 268835号公報、特開 2 [0200] In addition to the above examples, the polymer electrolyte membrane of the present invention is disclosed in JP 2001-313046, JP 2001-313047, JP 2001-93551, and JP 2001-93558. JP-A-2001-93561, JP-A-2001-102069, JP-A-2001-102070, JP-A-2001-283888, JP-A-2000-268835, JP-A-2.
000— 268836号公報、特開 2001— 283892号公報などで公知【こなって!/ヽる直接 メタノール形燃料電池の電解質膜として、使用可能である。 It can be used as an electrolyte membrane of a direct methanol fuel cell known from 000-268836 and JP-A-2001-283892.
[0201] 前記の例以外にも、本発明のプロトン伝導性高分子膜は、特開 2001— 313046号 公報、特開 2001— 313047号公報、特開 2001— 93551号公報、特開 2001— 93 558号公報、特開 2001— 93561号公報、特開 2001— 102069号公報、特開 200 [0201] In addition to the above examples, the proton conductive polymer membrane of the present invention is disclosed in JP-A-2001-313046, JP-A-2001-313047, JP-A-2001-93551, and JP-A-2001-93. JP 558, JP 2001-93561, JP 2001-102069, JP 200
1— 102070号公報、特開 2001— 283888号公報、特開 2000— 268835号公報、 特開 2000— 268836号公報、特開 2001— 283892号公報などで公知【こなって!/ヽ る直接メタノール形燃料電池の電解質膜として、使用可能である。 1-102070, JP 2001-283888, JP 2000-268835, JP 2000-268836, JP 2001-283892, etc. It can be used as an electrolyte membrane of a direct methanol fuel cell.
[0202] 本発明の固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料 電池に用いられる、脂肪族系高分子化合物と、プロトン伝導性基を含有する芳香族 系高分子化合物との、少なくとも 2種の高分子化合物力 なる高分子電解質膜およ びその材料の高分子フィルムにつ 、て説明する。  [0202] An aliphatic polymer compound used in the solid polymer fuel cell, direct liquid fuel cell, and direct methanol fuel cell of the present invention, and an aromatic polymer compound containing a proton conductive group, and The polymer electrolyte membrane having at least two kinds of polymer compounds and the polymer film of the material will be described.
[0203] 本発明のプロトン伝導性高分子電解質およびその材料の高分子フィルムに使用さ れる脂肪族系高分子化合 X XYIIIとは、その構造単位に芳香族単位を有さないものを指し 、プロトン伝導性高分子電解質膜とした場合に、プロトン伝導性置換基を含有しない 構造単位を構成する。このような脂肪族系高分子化合物としては、例えば、下記式( 4)〜(6)  [0203] The aliphatic polymer compound X XYIII used in the proton-conductive polymer electrolyte of the present invention and the polymer film of the material thereof refers to a compound that does not have an aromatic unit in its structural unit. In the case of a conductive polymer electrolyte membrane, it constitutes a structural unit that does not contain a proton conductive substituent. Examples of such aliphatic polymer compounds include the following formulas (4) to (6):
[0204] [化 16]  [0204] [Chemical 16]
CH2 CH 2
Figure imgf000050_0001
式 (4)
Figure imgf000050_0001
Formula (4)
CH2 式(5) CH 2 formula (5)
CFつ 式(6) CF type (6)
(Xおよび Yは、 H、 CH、 Cl、 F、 OCOCH、 CN、 COOH、 COOCH、 OC H、か (X and Y are H, CH, Cl, F, OCOCH, CN, COOH, COOCH, OC H, or
3 3 3 4 9 ら選ばれる原子団の内、いずれかであって、 Xと Yは互いに同一であっても異なって いても良い。) で表される繰り返し単位を構成成分とする脂肪族系高分子化合物から選択される少 なくとも 1種であると、化学的'熱的安定性、加工性が優れているので、また、安価に 工業的に入手可能なので好ま 、。 Any of atomic groups selected from 3 3 3 4 9, and X and Y may be the same or different from each other. ) When at least one selected from the aliphatic polymer compounds having a repeating unit represented by the formula is excellent in chemical and thermal stability and processability, it is also inexpensive. Favorable because it is industrially available.
[0206] さらに、式(4)における Xは H、 CH、 Cl、 F、式(5)における X、 Yはそれぞれ、(X、 [0206] Furthermore, X in the formula (4) is H, CH, Cl, F, and X and Y in the formula (5) are (X,
3  Three
Y) = (CH、 CH )、(X、 Y) = (Cl、 CI)、(X、 Y) =  Y) = (CH, CH), (X, Y) = (Cl, CI), (X, Y) =
3 3  3 3
(F、 F)、式 (6)における Xは F、 H、で表される繰り返し単位を構成成分とする脂肪族 系高分子化合物から選択される少なくとも 1種であると、化学的 ·熱的安定性、加工 性が優れているので、また、安価に工業的に入手可能なので好ましい。  X in (F, F) and formula (6) is at least one selected from an aliphatic polymer compound comprising a repeating unit represented by F or H as a chemical or thermal compound. It is preferable because it is excellent in stability and processability, and is industrially available at a low cost.
[0207] 本発明でいう芳香族系高分子化合物とは、主鎖または側鎖に芳香族環を有する高 分子化合物であり、特に限定されない。  [0207] The aromatic polymer compound in the present invention is a high molecular compound having an aromatic ring in the main chain or side chain, and is not particularly limited.
[0208] 本発明のプロトン伝導性基を含有する芳香族系高分子化合物としては、例えば、ポ リアリールエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテノレケトン、ポ リエーテルケトンケトン、ポリスルホン、ポリパラフエ二レン、ポリフエ二レンサルファイド 、ポリフエ二レンエーテル、ポリフエ二レンスルホキシド、ポリフエ二レンスルフイドスル ホン、ポリフエ-レンスルホン、ポリべンズイミダゾール、ポリべンゾォキサゾール、ポリ ベンゾチアゾール、ポリスチレン、シンジオタクチックポリスチレン、ポリエーテルスル ホン、スチレン (エチレンーブチレン)スチレン共重合体、スチレン (ポリイソブチ レン)一スチレン共重合体、ポリ 1, 4 ビフエ-レンエーテルエーテルスルホン、ポリ ァリーレンエーテルスルホン、ポリイミド、ポリエーテルイミド、シアン酸エステル榭脂、 ポリエーテルエーテルケトン、などが例示できる。特に、化学的'熱的安定性や、プロ トン伝導性置換基の導入のし易さ、得られるプロトン伝導性高分子電解質のプロトン 伝導性、さらに得られ高分子電解質膜のメタノール遮断性、などを考慮すると、ポリフ 工-レンサルファイド、ポリフエ-レンエーテル、ポリスチレン、シンジオタクチックポリス チレン、ポリエーテルスルホン、ポリエーテルエーテルケトンの少なくとも 1種であるこ とが好ましい。  [0208] Examples of the aromatic polymer compound containing a proton conductive group of the present invention include polyaryl ether sulfone, polyether ether sulfone, polyether ether ketone, polyether ketone ketone, polysulfone, and polyparaphenylene. , Polyphenylene sulfide, Polyphenylene ether, Polyphenylene sulfoxide, Polyphenylene sulfide sulfone, Polyphenylene sulfone, Polybenzimidazole, Polybenzoxazole, Polybenzothiazole, Polystyrene, Syndiotactic polystyrene, Poly Ether sulfone, Styrene (ethylene-butylene) styrene copolymer, Styrene (polyisobutylene) monostyrene copolymer, Poly 1,4 biphenylene ether ether sulfone, Polyarylene ether sulfo Examples include Hong, polyimide, polyetherimide, cyanate ester resin, and polyetheretherketone. In particular, chemical 'thermal stability, ease of introduction of proton-conductive substituents, proton conductivity of the resulting proton-conductive polymer electrolyte, and methanol barrier properties of the resulting polymer electrolyte membrane, etc. In view of the above, it is preferable that the polymer is at least one of polyethylene-polysulfide, polyphenylene ether, polystyrene, syndiotactic polystyrene, polyethersulfone, and polyetheretherketone.
[0209] 本発明のプロトン伝導性高分子電解質において、前記プロトン伝導性高分子電解 質中の脂肪族系高分子化合物含有量は、 10重量%以上 95重量%以下であること が好ましい。脂肪族系高分子化合物含有量が、前記範囲よりも小さい場合は、脂肪 族系高分子化合物の含有効果が不明確となる恐れがある。一方、脂肪族系高分子 化合物含有量が、前記範囲よりも大きい場合は、プロトン伝導度が発現しにくくなる 恐れがある。 [0209] In the proton conductive polymer electrolyte of the present invention, the content of the aliphatic polymer compound in the proton conductive polymer electrolyte is preferably 10 wt% or more and 95 wt% or less. If the aliphatic polymer compound content is smaller than the above range, There is a possibility that the inclusion effect of the group-based polymer compound becomes unclear. On the other hand, when the content of the aliphatic polymer compound is larger than the above range, proton conductivity may be difficult to express.
[0210] つぎに、本発明の脂肪族系高分子化合物と、芳香族系高分子化合物との、少なく とも 2種の高分子化合物力 なる高分子フィルムをスルホン化剤と接触させるプロトン 伝導性高分子電解質膜の製造方法およびその材料である高分子フィルムの製造方 法について説明する。  [0210] Next, a high proton conductivity is obtained by contacting a polymer film having at least two kinds of polymer compounds of the aliphatic polymer compound of the present invention and an aromatic polymer compound with a sulfonating agent. A method for producing a molecular electrolyte membrane and a method for producing a polymer film as the material will be described.
[0211] また、脂肪族系高分子化合物と、芳香族系高分子化合物との、少なくとも 2種の高 分子化合物を混合するが、これは公知の方法が適用できる。キャスト法の場合などは 溶液中で混合しても良い。また、溶融混練して均一に分散させても良い。この場合は 分散性を上げるために溶融混練を 2度おこなっても良い。また、脂肪族系高分子化 合物と、芳香族系高分子化合物との、少なくとも 2種の高分子化合物の混合およびフ イルム作製を同時に行うことも可能である。例えば、 2軸混練押出し機に Tダイをセット した押出し機により、溶融混練しフィルム化を行う方法が適用できる。  [0211] Further, at least two kinds of high molecular compounds, that is, an aliphatic high molecular compound and an aromatic high molecular compound, are mixed, and a known method can be applied. In the case of the casting method, it may be mixed in a solution. Further, it may be uniformly dispersed by melt kneading. In this case, melt kneading may be performed twice in order to increase dispersibility. It is also possible to simultaneously mix and prepare a film of at least two kinds of polymer compounds of an aliphatic polymer compound and an aromatic polymer compound. For example, a method of melt-kneading and forming a film with an extruder in which a T-die is set in a twin-screw kneading extruder can be applied.
[0212] 本発明において、脂肪族系高分子化合物と、芳香族系高分子化合物との、少なく とも 2種の高分子化合物力 なる高分子フィルムの厚さは、用途に応じて任意の厚さ を選択することが可能である。得られた高分子電解質膜の内部抵抗を低減することを 考慮した場合、高分子フィルムの厚みは薄い程良い。一方、得られた高分子電解質 膜のメタノール遮断性ゃノヽンドリング性を考慮すると、高分子フィルムの厚みは薄す ぎると好ましくない。これらを考慮すると、高分子フィルムの厚みは、 1. !〜 350 /z mであるのが好ましい。前記高分子フィルムの厚さが 1. より薄いと、製造が 困難であるとともに、加工時にシヮになりやすくまた、破損が生じるなどハンドリング性 が困難となる傾向がある。前記高分子フィルムの厚さが 350 mを超えると、得られた 高分子電解質膜のメタノール遮断性向上の効果が発現しない恐れがある。  [0212] In the present invention, the thickness of the polymer film consisting of an aliphatic polymer compound and an aromatic polymer compound having at least two kinds of polymer compounds can be any thickness depending on the application. Can be selected. In consideration of reducing the internal resistance of the obtained polymer electrolyte membrane, the thinner the polymer film, the better. On the other hand, considering the methanol blocking properties of the obtained polymer electrolyte membrane, the polymer film thickness is not preferable if it is too thin. Considering these, the thickness of the polymer film is 1.! It is preferably ~ 350 / z m. If the thickness of the polymer film is thinner than 1., it is difficult to produce, and it tends to become wrinkled during processing, and the handling property tends to be difficult due to breakage. If the thickness of the polymer film exceeds 350 m, the resulting polymer electrolyte membrane may not exhibit the effect of improving the methanol barrier property.
[0213] 前記方法で製造したプロトン伝導性高分子膜の特性をさらに向上させるために、電 子線、 Ύ線、イオンビーム等の放射線を照射させることが好ましい。  [0213] In order to further improve the properties of the proton-conductive polymer membrane produced by the above-described method, it is preferable to irradiate radiation such as an electron beam, a wire, an ion beam.
[0214] 要約すると、下記のとおりである。  [0214] The summary is as follows.
[0215] 課題は、「固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料 電池の構成材料として有用な、優れたプロトン伝導性を有し、かつ高いメタノール遮 断性を有する高分子電解質膜およびその製造方法、またその高分子電解質膜の材 料である高分子フィルムおよびその製造方法を提供する。」ことである。 [0215] The issues are "solid polymer fuel cell, direct liquid fuel cell, direct methanol fuel A polymer electrolyte membrane having excellent proton conductivity and high methanol-blocking properties useful as a constituent material of a battery and a method for producing the same, and a polymer film as a material for the polymer electrolyte membrane and the polymer film A manufacturing method is provided. That ’s it.
[0216] また、課題は、「固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形 燃料電池の構成材料として有用な高分子電解質膜、その材料である高分子フィルム 、電解質膜の製造方法並びに電解質膜を試用した固体高分子形燃料電池を提供す る。」ことである。  [0216] Further, the problem is that "a polymer electrolyte membrane useful as a constituent material of a solid polymer fuel cell, a direct liquid fuel cell, a direct methanol fuel cell, a polymer film that is a material thereof, and production of the electrolyte membrane" The present invention provides a polymer electrolyte fuel cell using a method and an electrolyte membrane. "
[0217] 解決手段は、「芳香族単位を有する高分子化合物と、熱可塑性エラストマ一と、芳 香族単位がない高分子化合物、との少なくとも 3種の高分子化合物を必須成分として 含む、高分子フィルム中の芳香族単位にプロトン伝導性基が導入されている構成と する。」である。  [0217] The means for solving the problem is that "a high-molecular compound containing at least three kinds of polymer compounds having an aromatic unit, a thermoplastic elastomer, and a polymer compound having no aromatic unit as essential components. It is assumed that the proton conductive group is introduced into the aromatic unit in the molecular film. "
[0218] また、解決手段は、「芳香族単位を有する高分子化合物と、芳香族単位がない高 分子化合物、との少なくとも 2種の高分子化合物力 なり、前記芳香族単位のない高 分子化合物中に芳香族単位を有する高分子化合物が分散されて 、る構造を有する 高分子フィルム中の芳香族単位にプロトン伝導性基が導入されている構成とする。」 である。  [0218] Further, the solving means is that "the polymer compound having at least two kinds of polymer compounds, that is, the polymer compound having an aromatic unit and the polymer compound having no aromatic unit, and having no said aromatic unit". The polymer compound having an aromatic unit is dispersed therein, and a proton conductive group is introduced into the aromatic unit in the polymer film having the above structure.
[0219] また、解決手段は、「脂肪族系高分子化合物と、プロトン伝導性基を含有する芳香 族系高分子化合物との、少なくとも 2種の高分子化合物力 なる高分子電解質膜。こ の電解質膜は、材料である高分子フィルム中に存在する芳香族系高分子化合物に プロトン伝導性基が結合して 、る構成である。」である。  [0219] Further, the solving means is "a polymer electrolyte membrane having at least two kinds of polymer compound power of an aliphatic polymer compound and an aromatic polymer compound containing a proton conductive group. The electrolyte membrane has a structure in which a proton conductive group is bonded to an aromatic polymer compound present in a polymer film as a material.
実施例  Example
[0220] 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例 によって何ら限定されるものではなぐその要旨を変更しない範囲において適宜変更 可能である。  [0220] Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples, and various modifications can be made without departing from the scope of the present invention.
[0221] (実施例 1)  [0221] (Example 1)
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位を有する高分子化合物としてポリフエ-レンサルファイド (大日本インキ 化学工業株式会社製、 LDlOpl l l l)、芳香族単位がない高分子化合物として高密 度ポリエチレン (三井ィ匕学株式会社製、 HI-ZEX 3300F)を使用した。 Polyphenylene sulfide (manufactured by Dainippon Ink & Chemicals, LDlOplll) as a polymer compound having an aromatic unit, and high density as a polymer compound having no aromatic unit Polyethylene (manufactured by Mitsui Engineering Co., Ltd., HI-ZEX 3300F) was used.
[0222] ポリフエ-レンサルファイドのペレット 70重量部、高密度ポリエチレンのペレット 30重 量部とをドライブレンドした。ドライブレンドしたペレット混合物を、スクリュー温度 290 °C、 Tダイ温度 290°Cの条件で、 Tダイをセットした二軸押出機により、溶融押出成形 し、本発明の高分子フィルムを得た (高分子フィルム中に高密度ポリエチレンを 30重 量%含有する)。  [0222] 70 parts by weight of polyphenylene sulfide pellets and 30 parts by weight of high density polyethylene pellets were dry blended. The dry blended pellet mixture was melt-extruded using a twin-screw extruder with a T-die set under the conditions of a screw temperature of 290 ° C and a T-die temperature of 290 ° C to obtain the polymer film of the present invention (high (Contain 30% by weight of high-density polyethylene in the molecular film).
[0223] <高分子化合物の分散状態の観察 >  [0223] <Observation of dispersion state of polymer compound>
高分子フィルムを超薄切片法にて観察試料を調製した。 日本電子製透過型電子顕 微鏡 (JEM— 1200EX)を用いて、加速電圧 80kV、 10, 000倍の条件で、前記高分 子フィルムの厚さ方向の断面中央部を観察した。結果を図 3に示す。  An observation sample of a polymer film was prepared by an ultrathin section method. Using a transmission electron microscope (JEM-1200EX) manufactured by JEOL, the central portion of the polymer film in the thickness direction was observed under the conditions of an acceleration voltage of 80 kV and 10,000 times. The results are shown in Figure 3.
[0224] <高分子電解質膜の調製 >  [0224] <Preparation of polymer electrolyte membrane>
ガラス容器に、 1—クロロブタン 114g、クロロスルホン酸 2. 3gを秤量し、 2重量0 /0の クロロスルホン酸溶液を調製した。前記高分子フィルムを 0. 27g秤量し、前記クロロス ルホン酸溶液に浸漬し、 25°Cで 20時間、放置した (クロロスルホン酸添カ卩量は、高分 子フィルムの重量に対して 8. 6倍量)。室温で 20時間放置後に、高分子フィルムを 回収し、イオン交換水で中性になるまで洗浄した。 In a glass container, 1-chlorobutane 114 g, were weighed chlorosulfonic acid 2. 3 g, was prepared 2 wt 0/0 of chlorosulfonic acid solution. 0.27 g of the polymer film was weighed, immersed in the chlorosulfonic acid solution, and allowed to stand at 25 ° C. for 20 hours (the amount of chlorosulfonic acid added was 8. 6 times the amount). After standing at room temperature for 20 hours, the polymer film was collected and washed with ion-exchanged water until neutral.
[0225] 洗浄後の高分子フィルムを 23°Cに調温した恒温恒湿器内で、相対湿度 98%、 80 %、 60%および 50%の湿度調節下で、それぞれ 30分間放置してフィルムを乾燥し、 本発明の高分子電解質膜を得た。  [0225] The polymer film after washing is left in a thermo-hygrostat controlled at 23 ° C under relative humidity of 98%, 80%, 60% and 50% humidity for 30 minutes each. Was dried to obtain the polymer electrolyte membrane of the present invention.
[0226] <イオン交換容量の測定方法 >  [0226] <Method for measuring ion exchange capacity>
高分子電解質膜 (約 10mm X 40mm)を 25°Cでの塩化ナトリウム飽和水溶液 20m Lに浸漬し、ウォーターバス中で 60°C、 3時間イオン交換反応させた。 25°Cまで冷却 し、次いで膜をイオン交換水で充分に洗浄し、塩ィ匕ナトリウム飽和水溶液および洗浄 水をすベて回収した。この回収した溶液に、指示薬としてフエノールフタレイン溶液を 加え、 0. 01Nの水酸ィ匕ナトリウム水溶液で中和滴定し、イオン交換容量を算出した。  A polymer electrolyte membrane (about 10 mm × 40 mm) was immersed in 20 mL of a saturated aqueous solution of sodium chloride at 25 ° C., and subjected to an ion exchange reaction at 60 ° C. for 3 hours in a water bath. After cooling to 25 ° C, the membrane was thoroughly washed with ion-exchanged water, and all the sodium chloride saturated aqueous solution and washing water were collected. To this recovered solution, a phenolphthalein solution was added as an indicator, and neutralization titration with 0.01N sodium hydroxide aqueous solution was performed to calculate the ion exchange capacity.
[0227] <プロトン伝導度の測定方法 >  [0227] <Measurement method of proton conductivity>
イオン交換水中に保管した高分子電解質膜 (約 10mm X 40mm)を取り出し、高分 子電解質膜表面の水をろ紙で拭き取った。 2極非密閉系のポリテトラフルォロェチレ ン製のセルに高分子電解質膜を設置し、さらに白金電極を電極間距離 30mmとなる ように、膜表面(同一側)に設置した。 23°Cでの膜抵抗を、交流インピーダンス法 (周 波数: 42Hz〜5MHz、印可電圧: 0.2V、 日置電機製 LCRメーター 3531Z HIT ESTER)により測定し、プロトン伝導度を算出した。 The polymer electrolyte membrane (about 10 mm x 40 mm) stored in the ion exchange water was taken out, and the water on the surface of the polymer electrolyte membrane was wiped off with a filter paper. 2-pole non-sealed polytetrafluoroethylene A polymer electrolyte membrane was placed in a cell made of copper, and a platinum electrode was placed on the membrane surface (on the same side) so that the distance between the electrodes was 30 mm. Membrane resistance at 23 ° C was measured by an AC impedance method (frequency: 42 Hz to 5 MHz, applied voltage: 0.2 V, Hioki LCR meter 3531Z HIT ESTER), and proton conductivity was calculated.
[0228] <メタノール遮断性の測定方法 >  [0228] <Method for measuring methanol blocking properties>
25°Cの環境下で、ビードレックス社製膜透過実験装置 (KH— 5PS)を使用して、 高分子電解質膜でイオン交換水と 64重量%のメタノール水溶液を隔離した。所定時 間(2時間)経過後にイオン交換水側に透過したメタノールを含む溶液を採取し、ガス クロマトグラフ(島津製作所製ガスクロマトグラフィー GC— 2010)で透過したメタノー ル量を定量した。この定量結果から、メタノール透過速度を求め、メタノール透過係 数を算出した。メタノール透過係数は、以下の数式 1にしたがって算出した。 In a 25 ° C environment, ion exchange water and a 64 wt% aqueous methanol solution were isolated with a polymer electrolyte membrane using a membrane permeation experiment apparatus (KH-5PS) manufactured by Beadrex. After a predetermined time (2 hours), a solution containing methanol that had permeated to the ion-exchanged water was collected, and the amount of methanol permeated was measured with a gas chromatograph (Shimadzu Gas Chromatography GC -2010). From this quantitative result, the methanol permeation rate was determined, and the methanol permeation coefficient was calculated. The methanol permeability coefficient was calculated according to Equation 1 below.
[0229] [数 1] メタノ一ル透過係数 ( mo I (cm■日) )  [0229] [Equation 1] Methanol transmission coefficient (mo I (cm ■ day))
=メタノール透過量 (//mo I ) X膜厚 (cm) / (膜面積 (cm2) x透過時間 (日) )  = Methanol permeation rate (// mo I) X film thickness (cm) / (membrane area (cm2) x permeation time (days))
数式 1  Formula 1
[0230] 実験結果を、表 1に示す。 [0230] Table 1 shows the experimental results.
[0231] [表 1] 高分子電解質膜の特性評価結果 [0231] [Table 1] Results of characterization of polymer electrolyte membrane
イオン交換容量 プロトン伝導度 メタノール透過係数  Ion exchange capacity Proton conductivity Methanol permeability coefficient
(ミリ当量/ g) (SZcm) molZ(cm-曰)) 実施例 1 1. 6 5. 8x 10— 2 1564 (Milli-equivalent / g) (SZcm) molZ (cm- 曰)) Example 1 1. 6 5. 8x 10— 2 1564
実施例 2 1. 6 6. OX 10~2 1130 Example 2 1. 6 6.OX 10 ~ 2 1130
実施例 3 1. 2 2. 2X 10—2 376 Example 3 1. 2 2. 2X 10— 2 376
実施例 4 1. 2 5. 1 X 10~2 314 Example 4 1. 2 5. 1 X 10 ~ 2 314
実施例 5 1. 0 2. 8X 10-2 592 Example 5 1. 0 2. 8X 10 -2 592
実施例 6 1. 2 5. 3X 10— 2 789 Example 6 1. 2 5. 3X 10— 2 789
実施例 7 1. 4 7. 7X 10— 2 304 Example 7 1. 4 7. 7X 10— 2 304
実施例 8 2. 2 4. 2X 10— 2 34 Example 8 2. 2 4. 2X 10— 2 34
実施例 9 1. 4 3. 1 X 10— 2 728 Example 9 1. 4 3. 1 X 10— 2 728
実施例 10 1. 3 4. 0X 10—2 881 Example 10 1. 3 4. 0X 10— 2 881
比較例 1 1. 5 5. 9X 10— 2 2000 Comparative Example 1 1. 5 5. 9X 10— 2 2000
比較例 2 0. 9 5. 8X10—2 4115 [0232] (実施例 2) Comparative Example 2 0. 9 5. 8X10— 2 4115 [0232] (Example 2)
<高分子フィルムの調製 >  <Preparation of polymer film>
ポリフエ-レンサルファイドのペレット 50重量部、高密度ポリエチレンのペレット 50重 量部とした以外は、実施例 1と同様の方法で本発明の高分子フィルムを得た (高分子 フィルム中に高密度ポリエチレンを 50重量%含有する)。また、実施例 1と同様の方 法で、高分子化合物の分散状態を観察した。結果を図 4に示す。  A polymer film of the present invention was obtained in the same manner as in Example 1 except that 50 parts by weight of pellets of polyphenylene sulfide and 50 parts by weight of high density polyethylene pellets were used (high density polyethylene in the polymer film). 50% by weight). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in Fig. 4.
[0233] <高分子電解質膜の調製 > [0233] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 141g、クロロスル ホン酸 4. 2gを秤量し、 3重量%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 33gとした以外は、実施例 1と同様の方法で高分子電解質膜を得た (クロロスルホ ン酸添加量は、高分子フィルムに対して 13倍量)。結果を表 1に示す。  The polymer film obtained by the above method was used. A polymer electrolyte was prepared in the same manner as in Example 1 except that 141 g of 1-chlorobutane and 4.2 g of chlorosulfonic acid were weighed to prepare a 3% by weight chlorosulfonic acid solution and the polymer film was adjusted to 0.33 g. A membrane was obtained (the amount of chlorosulfonic acid added was 13 times that of the polymer film). The results are shown in Table 1.
[0234] (実施例 3) [0234] (Example 3)
<高分子フィルムの調製 >  <Preparation of polymer film>
ポリフエ-レンサルファイドのペレット 30重量部、高密度ポリエチレンのペレット 70重 量部とした以外は、実施例 1と同様の方法で本発明の高分子フィルムを得た (高分子 フィルム中に高密度ポリエチレンを 70重量%含有する)。また、実施例 1と同様の方 法で、高分子化合物の分散状態を観察した。結果を図 5に示す。  A polymer film of the present invention was obtained in the same manner as in Example 1 except that 30 parts by weight of polyphenylene sulfide pellets and 70 parts by weight of high density polyethylene pellets were used (high density polyethylene in the polymer film). 70% by weight). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in FIG.
[0235] <高分子電解質膜の調製 > [0235] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 145g、クロロスル ホン酸 5. 8gを秤量し、 4重量%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 33gとした以外は、実施例 1と同様の方法で高分子電解質膜を得た (クロロスルホ ン酸添加量は、高分子フィルムに対して 17倍量)。結果を表 1に示す。  The polymer film obtained by the above method was used. A polymer electrolyte was prepared in the same manner as in Example 1, except that 145 g of 1-chlorobutane and 5.8 g of chlorosulfonic acid were weighed to prepare a 4 wt% chlorosulfonic acid solution and the polymer film was adjusted to 0.33 g. A membrane was obtained (the amount of chlorosulfonic acid added was 17 times that of the polymer film). The results are shown in Table 1.
[0236] (実施例 4) [0236] (Example 4)
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位を有する高分子化合物として、ポリフエ-レンサルファイド (大日本イン キ化学工業株式会社製、 ML320p)を使用した以外は、実施例 3と同様の方法で本 発明の高分子フィルムを得た(高分子フィルム中に高密度ポリエチレンを 70重量% 含有する)。また、実施例 1と同様の方法で、高分子化合物の分散状態を観察した。 結果を図 6に示す。 A polymer film of the present invention was obtained in the same manner as in Example 3 except that polyphenylene sulfide (manufactured by Dainippon Ink & Chemicals, Inc., ML320p) was used as the polymer compound having an aromatic unit. (The polymer film contains 70% by weight of high-density polyethylene). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The result is shown in FIG.
[0237] <高分子電解質膜の調製 > [0237] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 119g、クロロスル ホン酸 6. Ogを秤量し、 5重量%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 28gとした以外は、実施例 1と同様の方法で高分子電解質膜を得た (クロロスルホ ン酸添加量は、高分子フィルムに対して 22倍量)。結果を表 1に示す。  The polymer film obtained by the above method was used. 1-Chlorobutane 119 g, chlorosulfonic acid 6. Og was weighed to prepare a 5 wt% chlorosulfonic acid solution, and the polymer film was changed to 0.28 g. A membrane was obtained (the amount of chlorosulfonic acid added was 22 times that of the polymer film). The results are shown in Table 1.
[0238] (実施例 5) [Example 5]
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位がない高分子化合物として、ポリプロピレン (三井ィ匕学株式会社製、三 井ポリプロ F107DV)を使用した以外は、実施例 3と同様の方法で本発明の高分子 フィルムを得た (高分子フィルム中にポリプロピレンを 70重量%含有する)。また、実 施例 1と同様の方法で、高分子化合物の分散状態を観察した。結果を図 7に示す。  A polymer film of the present invention was obtained in the same manner as in Example 3 except that polypropylene (Mitsui Chemicals, Mitsui Polypro F107DV) was used as the polymer compound having no aromatic unit (high The molecular film contains 70% by weight of polypropylene). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in FIG.
[0239] <高分子電解質膜の調製 > [0239] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 136g、クロロスル ホン酸 5. 4gを秤量し、 4重量%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 31gとした以外は、実施例 1と同様の方法で高分子電解質膜を得た (クロロスルホ ン酸添加量は、高分子フィルムに対して 17倍量)。結果を表 1に示す。  The polymer film obtained by the above method was used. A polymer electrolyte was prepared in the same manner as in Example 1 except that 136 g of 1-chlorobutane and 5.4 g of chlorosulfonic acid were weighed to prepare a 4 wt% chlorosulfonic acid solution and the polymer film was adjusted to 0.31 g. A membrane was obtained (the amount of chlorosulfonic acid added was 17 times that of the polymer film). The results are shown in Table 1.
[0240] (実施例 6) [0240] (Example 6)
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位を有する高分子化合物として、ポリフエ-レンサルファイド (大日本イン キ化学工業株式会社製、 ML320p)を使用した以外は、実施例 5と同様の方法で本 発明の高分子フィルムを得た(高分子フィルム中にポリプロピレンを 70重量%含有す る)。また、実施例 1と同様の方法で、高分子化合物の分散状態を観察した。結果を 図 8に示す。  A polymer film of the present invention was obtained in the same manner as in Example 5 except that polyphenylene sulfide (ML320p, manufactured by Dainippon Ink & Chemicals, Inc.) was used as the polymer compound having an aromatic unit. (The polymer film contains 70% by weight of polypropylene). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in Fig. 8.
[0241] <高分子電解質膜の調製 > [0241] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 119g、クロロスル ホン酸 6. Ogを秤量し、 5重量%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 28gとした以外は、実施例 1と同様の方法で高分子電解質膜を得た (クロロスルホ ン酸添加量は、高分子フィルムに対して 22倍量)。結果を表 1に示す。 The polymer film obtained by the above method was used. 1-Chlorobutane 119 g, chlorosulfonic acid 6. Og was weighed to prepare a 5 wt% chlorosulfonic acid solution, and the polymer film was changed to 0.28 g. A membrane was obtained (chlorosulfo (The amount of acid added is 22 times the amount of polymer film). The results are shown in Table 1.
[0242] (実施例 7) [0242] (Example 7)
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位を有する高分子化合物としてポリスチレン (PSジャパン株式会社製、 P SJポリスチレン G8102)、芳香族単位がない高分子化合物として高密度ポリエチレン (三井ィ匕学株式会社製、 HI-ZEX 3300F)を使用した。  Polystyrene (PS Japan Polystyrene G8102), a polymer compound with aromatic units, and high-density polyethylene (HI-ZEX 3300F, Mitsui Chemicals) as a polymer compound without aromatic units. used.
[0243] ポリスチレンのペレット 20重量部、高密度ポリエチレンのペレット 80重量部とをドラ ィブレンドした。ドライブレンドしたペレット混合物を、スクリュー温度 265°C、 Tダイ温 度 265°Cの条件で、 Tダイをセットした二軸押出機により、溶融押出成形し、本発明 の高分子フィルムを得た(高分子フィルム中に高密度ポリエチレンを 80重量%含有 する)。また、実施例 1と同様の方法で、高分子化合物の分散状態を観察した。結果 を図 9に示す。  [0243] 20 parts by weight of polystyrene pellets and 80 parts by weight of high density polyethylene pellets were dry blended. The dry blended pellet mixture was melt-extruded using a twin-screw extruder with a T-die set under the conditions of a screw temperature of 265 ° C and a T-die temperature of 265 ° C to obtain the polymer film of the present invention ( (Contain 80% by weight of high-density polyethylene in the polymer film). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in Fig. 9.
[0244] <高分子電解質膜の調製 >  [0244] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 128g、クロロスル ホン酸 3. 9gを秤量し、 3重量%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 30gとした以外は、実施例 1と同様の方法で高分子電解質膜を得た (クロロスルホ ン酸添加量は、高分子フィルムに対して 13倍量)。結果を表 1に示す。  The polymer film obtained by the above method was used. A polymer electrolyte was prepared in the same manner as in Example 1 except that 128 g of 1-chlorobutane and 3.9 g of chlorosulfonic acid were weighed to prepare a 3% by weight chlorosulfonic acid solution and the polymer film was changed to 0.30 g. A membrane was obtained (the amount of chlorosulfonic acid added was 13 times that of the polymer film). The results are shown in Table 1.
[0245] (実施例 8)  [Example 8]
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位を有する高分子化合物としてポリスチレン (PSジャパン株式会社製、 P SJポリスチレン G8102)、芳香族単位がない高分子化合物としてポリプロピレン(三 井ィ匕学株式会社製、三井ポリプロ F107DV)を使用した。  Polystyrene (PS Japan Co., Ltd., PSJ Polystyrene G8102) was used as the polymer compound having aromatic units, and Polypropylene (Mitsui Polytechnics Corp., Mitsui Polypro F107DV) was used as the polymer compound having no aromatic units. .
[0246] ポリスチレンのペレット 30重量部、ポリプロピレンのペレット 70重量部とをドライブレ ンドした。ドライブレンドしたペレット混合物を、スクリュー温度 265°C、 Tダイ温度 265 °Cの条件で、 Tダイをセットした二軸押出機により、溶融押出成形し、本発明の高分 子フィルムを得た(高分子フィルム中にポリプロピレンを 70重量%含有する)。また、 実施例 1と同様の方法で、高分子化合物の分散状態を観察した。結果を図 10に示 す。 [0247] <高分子電解質膜の調製 > [0246] 30 parts by weight of polystyrene pellets and 70 parts by weight of polypropylene pellets were driven. The dry blended pellet mixture was melt-extruded by a twin-screw extruder with a T-die set under the conditions of a screw temperature of 265 ° C and a T-die temperature of 265 ° C to obtain the polymer film of the present invention ( 70% by weight polypropylene is contained in the polymer film). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in Fig. 10. [0247] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 91g、クロロスルホ ン酸 4. 6gを秤量し、 5重量%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 21gとした以外は、実施例 1と同様の方法で高分子電解質膜を得た (クロロスルホン 酸添加量は、高分子フィルムに対して 22倍量)。結果を表 1に示す。  The polymer film obtained by the above method was used. A polymer electrolyte was prepared in the same manner as in Example 1 except that 91 g of 1-chlorobutane and 4.6 g of chlorosulfonic acid were weighed to prepare a 5 wt% chlorosulfonic acid solution and the polymer film was changed to 0.21 g. A membrane was obtained (the amount of chlorosulfonic acid added was 22 times that of the polymer film). The results are shown in Table 1.
[0248] (実施例 9) [Example 9]
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位を有する高分子化合物として変性ポリフエ-レンエーテル (GEジャパン 製、 EFN4230)、芳香族単位がない高分子化合物として高密度ポリエチレン (三井 化学株式会社製、 HI— ZEX 3300F)を使用した。  Modified polyphenylene ether (GE Japan, EFN4230) was used as the polymer compound having an aromatic unit, and high-density polyethylene (HI-ZEX 3300F, manufactured by Mitsui Chemicals, Inc.) was used as the polymer compound having no aromatic unit.
[0249] 変性ポリフエ-レンエーテルのペレット 30重量部、高密度ポリエチレンのペレット 70 重量部とをドライブレンドした。ドライブレンドしたペレット混合物を、スクリュー温度 26 5°C、 Tダイ温度 265°Cの条件で、 Tダイをセットした二軸押出機により、溶融押出成 形し、本発明の高分子フィルムを得た (高分子フィルム中に高密度ポリエチレンを 70 重量%含有する)。また、実施例 1と同様の方法で、高分子化合物の分散状態を観 察した。結果を図 11に示す。  [0249] 30 parts by weight of modified polyphenylene ether pellets and 70 parts by weight of high density polyethylene pellets were dry blended. The dry blended pellet mixture was melt-extruded using a twin-screw extruder with a T die set under the conditions of a screw temperature of 265 ° C and a T die temperature of 265 ° C to obtain the polymer film of the present invention. (The polymer film contains 70% by weight of high-density polyethylene). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in FIG.
[0250] <高分子電解質膜の調製 >  [0250] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 91g、クロロスルホ ン酸 1. 4gを秤量し、 1. 5重量%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 21gとした以外は、実施例 1と同様の方法で高分子電解質膜を得た (クロロスルホ ン酸添加量は、高分子フィルムに対して 6. 7倍量)。結果を表 1に示す。  The polymer film obtained by the above method was used. Except for weighing 91 g of 1-chlorobutane and 1.4 g of chlorosulfonic acid, preparing a 1.5 wt% chlorosulfonic acid solution and changing the polymer film to 0.21 g, the same procedure as in Example 1 was followed. A molecular electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 6.7 times that of the polymer film). The results are shown in Table 1.
[0251] (実施例 10)  [Example 10]
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位がな ヽ高分子化合物としてポリプロピレン (三井化学株式会社製、三井 ポリプロ F107DV)を使用した以外は、実施例 9と同様にして本発明の高分子フィル ムを得た(高分子フィルム中にポリプロピレンを 70重量%含有する)。また、実施例 1 と同様の方法で、高分子化合物の分散状態を観察した。結果を図 12に示す。  A polymer film of the present invention was obtained in the same manner as in Example 9 except that polypropylene (Mitsui Chemicals, Mitsui Polypro F107DV) was used as the polymer compound having no aromatic unit. Contains 70% by weight polypropylene). Further, the dispersion state of the polymer compound was observed in the same manner as in Example 1. The results are shown in FIG.
[0252] <高分子電解質膜の調製 > 上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 98g、クロロスルホ ン酸 3. 9gを秤量し、 4重量%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 23gとした以外は、実施例 1と同様の方法で高分子電解質膜を得た (クロロスルホン 酸添加量は、高分子フィルムに対して 17倍量)。結果を表 1に示す。 [0252] <Preparation of polymer electrolyte membrane> The polymer film obtained by the above method was used. A polymer electrolyte was prepared in the same manner as in Example 1 except that 98 g of 1-chlorobutane and 3.9 g of chlorosulfonic acid were weighed to prepare a 4 wt% chlorosulfonic acid solution and the polymer film was changed to 0.23 g. A membrane was obtained (the amount of chlorosulfonic acid added was 17 times that of the polymer film). The results are shown in Table 1.
[0253] (比較例 1) [0253] (Comparative Example 1)
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位を有する高分子化合物として、ポリフエ-レンサルファイド (大日本イン キエ業株式会社製、 DIC-PPS LDlOpl l)を使用した。  Polyphenylene sulfide (manufactured by Dainippon Ink & Chemicals, Inc., DIC-PPS LDlOpl) was used as a polymer compound having an aromatic unit.
[0254] 前記ポリフエ-レンサルファイドのペレットを、スクリュー温度 290°C、 Tダイ温度 290 °Cの条件で、 2軸混練押出し機に Tダイをセットした二軸押出機により、溶融押出成 形し、高分子フィルムを得た。 [0254] The polyphenylene sulfide pellets were melt-extruded using a twin-screw extruder in which a T-die was set in a twin-screw kneading extruder under the conditions of a screw temperature of 290 ° C and a T-die temperature of 290 ° C. A polymer film was obtained.
[0255] <高分子電解質膜の調製 > [0255] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 70. 9g、クロロス ルホン酸 1. lgを秤量し、 1. 5重量%のクロロスルホン酸溶液を調製し、高分子フィ ルムを 0. 16gとした以外は、実施例 1と同様にして高分子電解質膜を得た (クロロス ルホン酸添加量は、高分子フィルムに対して 6. 9倍量)。結果を表 1に示す。  The polymer film obtained by the above method was used. 1-Chlorobutane 70.9 g, chlorosulfonic acid 1. lg was weighed to prepare a 1.5% by weight chlorosulfonic acid solution, and the polymer film was adjusted to 0.16 g. As a result, a polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 6.9 times that of the polymer film). The results are shown in Table 1.
[0256] (比較例 2) [0256] (Comparative Example 2)
デュポン社製ナフイオン (登録商標) 115を高分子電解質膜とした。結果を表 1に示 す。  Nafion (registered trademark) 115 manufactured by DuPont was used as the polymer electrolyte membrane. The results are shown in Table 1.
[0257] 図 3〜12の実施例 1〜10の高分子化合物の分散状態の観察結果から、本発明の 高分子フィルム中において、芳香族単位がない高分子化合物(白っぽい部分)中に 芳香族単位を有する高分子化合物 (黒つぽ ヽ部分)が分散されて ヽる構造を示すこ とが明ら力となった。  [0257] From the observation results of the dispersion state of the polymer compounds of Examples 1 to 10 in Figs. 3 to 12, the polymer film of the present invention has an aromatic in the polymer compound (whitish portion) having no aromatic unit. It became clear that the polymer compound with the unit (black part) showed a dispersed structure.
[0258] 表 1の実施例 1〜: LOと比較例 2との比較から、本発明の高分子フィルム力 得られ た高分子電解質膜は、固体高分子形燃料電池用の高分子電解質膜である比較例 2 と同オーダーのプロトン伝導度を有することが明らかとなり、固体高分子形燃料電池 、直接液体形燃料電池、直接メタノール形燃料電池の高分子電解質膜として有用で あることが示された。 [0259] 表 1の実施例 1〜: LOと比較例 1、 2との比較より、本発明の高分子フィルム力も得ら れた高分子電解質膜は、同等のプロトン伝導度を示す従来の高分子電解質膜と比 較して、メタノール透過係数が低ぐ高いメタノール遮断性を有することが明ら力となり 、直接メタノール形燃料電池などの直接液体形燃料電池用の高分子電解質膜として 有用であることが示された。 [0258] Examples 1 to in Table 1: From the comparison between LO and Comparative Example 2, the polymer electrolyte membrane obtained according to the present invention was a polymer electrolyte membrane for a polymer electrolyte fuel cell. It became clear that it has proton conductivity of the same order as that of a certain comparative example 2, and was shown to be useful as a polymer electrolyte membrane of a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell. . [0259] Examples 1 to in Table 1: From the comparison between LO and Comparative Examples 1 and 2, the polymer electrolyte membrane obtained with the polymer film strength of the present invention has a conventional high conductivity that exhibits equivalent proton conductivity. Compared to molecular electrolyte membranes, it has a low methanol permeability and a high methanol barrier property, and is useful as a polymer electrolyte membrane for direct liquid fuel cells such as direct methanol fuel cells. It was shown that.
[0260] 表 1の実施例 1と実施例 2、 3との比較から、芳香族単位がない高分子化合物の含 有量は、 40重量%以上であるほうが高いメタノール遮断性を示すことが明ら力となり 、本発明の有用性が示された。  [0260] From a comparison between Example 1 and Tables 2 and 3 in Table 1, it is clear that the content of the polymer compound having no aromatic unit is 40% by weight or more, indicating a higher methanol barrier property. Thus, the usefulness of the present invention was demonstrated.
[0261] (実施例 11)  [0261] (Example 11)
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位を有する高分子化合物としてポリスチレン (PSジャパン株式会社製、 P SJポリスチレン G8102)、熱可塑性エラストマ一としてポリスチレン ポリ(エチレン Z ブチレン)—ポリスチレントリブロック共重合体 (株式会社クラレ製、セプトン 8104)、 芳香族単位がな ヽ高分子化合物として高密度ポリエチレン (三井化学株式会社製、 HI-ZEX 3300F)を使用した。  Polystyrene (PS Japan Co., Ltd., PSJ Polystyrene G8102) as a polymer compound having an aromatic unit, Polystyrene (polyethylene Z-butylene) -polystyrene triblock copolymer (Septon 8104, manufactured by Kuraray Co., Ltd.) as a thermoplastic elastomer ), High-density polyethylene (manufactured by Mitsui Chemicals, Inc., HI-ZEX 3300F) was used as a polymer compound having no aromatic unit.
[0262] ポリスチレンのペレット 20重量部、ポリスチレン ポリ(エチレン Zブチレン) ポリス チレントリブロック共重合体のペレット 30重量部、高密度ポリエチレンのペレット 70重 量部とをドライブレンドした。ドライブレンドしたペレット混合物を、スクリュー温度 265 °C、 Tダイ温度 265°Cの条件で、 Tダイをセットした二軸押出機により、溶融押出成形 し、本発明の高分子フィルムを得た (高分子フィルム中に高密度ポリエチレンを 58重 量%含有する)。  [0262] 20 parts by weight of polystyrene pellets, 30 parts by weight of polystyrene poly (ethylene Z-butylene) polystyrene triblock copolymer, and 70 parts by weight of high-density polyethylene pellets were dry blended. The dry blended pellet mixture was melt-extruded using a twin-screw extruder with a T-die set under the conditions of a screw temperature of 265 ° C and a T-die temperature of 265 ° C to obtain the polymer film of the present invention (high (Contains 58% by weight of high-density polyethylene in the molecular film).
[0263] <高分子電解質膜の調製 >  [0263] <Preparation of polymer electrolyte membrane>
ガラス容器に、 1—クロロブタン皿. 7g、クロロスルホン酸 0. 13gを秤量し、 0. 13 重量%のクロロスルホン酸溶液を調製した。前記高分子フィルムを 0. 24g秤量し、前 記クロロスルホン酸溶液に浸漬し、 25°Cで 20時間、放置した(クロロスルホン酸添カロ 量は、高分子フィルムの重量に対して 0. 5倍量)。室温で 20時間放置後に、高分子 フィルムを回収し、イオン交換水で中性になるまで洗浄した。  In a glass container, 1 g of a 1-chlorobutane dish and 0.13 g of chlorosulfonic acid were weighed to prepare a 0.13 wt% chlorosulfonic acid solution. 0.24 g of the polymer film was weighed, immersed in the chlorosulfonic acid solution and allowed to stand at 25 ° C. for 20 hours (the amount of chlorosulfonic acid-added calorie was 0.5% of the weight of the polymer film). Double). After standing at room temperature for 20 hours, the polymer film was collected and washed with ion exchange water until neutral.
[0264] 洗浄後の高分子フィルムを 23°Cに調温した恒温恒湿器内で、相対湿度 98%、 80 %、 60%および 50%の湿度調節下で、それぞれ 30分間放置してフィルムを乾燥し、 本発明の高分子電解質膜を得た。 [0264] Relative humidity 98%, 80 Under the humidity control of%, 60% and 50%, the film was left to stand for 30 minutes to dry the polymer electrolyte membrane of the present invention.
[0265] <イオン交換容量の測定方法 >  [0265] <Measurement method of ion exchange capacity>
高分子電解質膜 (約 10mm X 40mm)を 25°Cでの塩化ナトリウム飽和水溶液 20m Lに浸漬し、ウォーターバス中で 60°C、 3時間イオン交換反応させた。 25°Cまで冷却 し、次いで膜をイオン交換水で充分に洗浄し、塩ィ匕ナトリウム飽和水溶液および洗浄 水をすベて回収した。この回収した溶液に、指示薬としてフエノールフタレイン溶液を 加え、 0. 01Nの水酸ィ匕ナトリウム水溶液で中和滴定し、イオン交換容量を算出した。  A polymer electrolyte membrane (about 10 mm × 40 mm) was immersed in 20 mL of a saturated aqueous solution of sodium chloride at 25 ° C., and subjected to an ion exchange reaction at 60 ° C. for 3 hours in a water bath. After cooling to 25 ° C, the membrane was thoroughly washed with ion-exchanged water, and all the sodium chloride saturated aqueous solution and washing water were collected. To this recovered solution, a phenolphthalein solution was added as an indicator, and neutralization titration with 0.01N sodium hydroxide aqueous solution was performed to calculate the ion exchange capacity.
[0266] <プロトン伝導度の測定方法 >  [0266] <Measurement method of proton conductivity>
イオン交換水中に保管した高分子電解質膜 (約 10mm X 40mm)を取り出し、高分 子電解質膜表面の水をろ紙で拭き取った。 2極非密閉系のポリテトラフルォロェチレ ン製のセルに高分子電解質膜を設置し、さらに白金電極を電極間距離 30mmとなる ように、膜表面(同一側)に設置した。 23°Cでの膜抵抗を、交流インピーダンス法 (周 波数: 42Hz〜5MHz、印可電圧: 0. 2V、 日置電機製 LCRメーター 3531Z HIT ESTER)により測定し、プロトン伝導度を算出した。  The polymer electrolyte membrane (about 10 mm x 40 mm) stored in the ion exchange water was taken out, and the water on the surface of the polymer electrolyte membrane was wiped off with a filter paper. A polyelectrolyte membrane was placed in a cell made of polytetrafluoroethylene in a nonpolar hermetic system, and a platinum electrode was placed on the membrane surface (on the same side) so that the distance between the electrodes was 30 mm. The membrane resistance at 23 ° C was measured by the AC impedance method (frequency: 42 Hz to 5 MHz, applied voltage: 0.2 V, Hioki LCR meter 3531Z HIT ESTER), and proton conductivity was calculated.
[0267] <メタノール遮断性の測定方法 >  [0267] <Measurement method of methanol blocking properties>
25°Cの環境下で、ビードレックス社製膜透過実験装置 (KH— 5PS)を使用して、 高分子電解質膜でイオン交換水と 64重量%のメタノール水溶液を隔離した。所定時 間(2時間)経過後にイオン交換水側に透過したメタノールを含む溶液を採取し、ガス クロマトグラフ(島津製作所製ガスクロマトグラフィー GC— 2010)で透過したメタノー ル量を定量した。この定量結果から、メタノール透過速度を求め、メタノール透過係 数を算出した。メタノール透過係数は、以下の数式 1にしたがって算出した。  In a 25 ° C environment, ion exchange water and a 64 wt% aqueous methanol solution were isolated with a polymer electrolyte membrane using a membrane permeation experiment apparatus (KH-5PS) manufactured by Beadrex. After a predetermined time (2 hours), a solution containing methanol permeated to the ion-exchanged water was collected, and the amount of methanol permeated was quantified with a gas chromatograph (Shimadzu Gas Chromatography GC-2010). From this quantitative result, the methanol permeation rate was determined, and the methanol permeation coefficient was calculated. The methanol permeability coefficient was calculated according to Equation 1 below.
[0268] [数 2] メタノ一ル透過係数 ( m o I / ( c m■日) )  [0268] [Equation 2] Methanol transmission coefficient (m o I / (cm m day))
=メタノール透過量 (// m o I ) X膜厚 (c m) Z (膜面積 (c m 2 ) x透過時間 (曰) )  = Methanol permeation rate (// m o I) X film thickness (cm) Z (membrane area (cm2) x permeation time (曰))
数式 1  Formula 1
[0269] 実験結果を、表 2に示す, [0269] The experimental results are shown in Table 2,
[0270] [表 2] 表 2 高分子電解質膜の特性評価結果 [0270] [Table 2] Table 2 Results of characterization of polymer electrolyte membrane
Figure imgf000063_0001
Figure imgf000063_0001
[0271] (実施例 12) [Example 12]
<高分子フィルムの調製 >  <Preparation of polymer film>
ポリスチレンのペレット 20重量部、ポリスチレン ポリ(エチレン Zブチレン) ポリス チレントリブロック共重合体のペレット 5重量部、高密度ポリエチレンのペレット 80重量 部とした以外は、実施例 11と同様の方法で本発明の高分子フィルムを得た (高分子 フィルム中に高密度ポリエチレンを 76重量%含有する)。  The present invention was carried out in the same manner as in Example 11, except that 20 parts by weight of polystyrene pellets, 5 parts by weight of polystyrene poly (ethylene Z-butylene) polystyrene triblock copolymer pellets, and 80 parts by weight of high-density polyethylene pellets were used. (Polymer film contains 76% by weight of high-density polyethylene).
[0272] <高分子電解質膜の調製 > [0272] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 84. 7g、クロロス ルホン酸 0. 21gを秤量し、 0. 25重量%のクロロスルホン酸溶液を調製し、高分子フ イルムを 0. 20gとした以外は、実施例 11と同様の方法で高分子電解質膜を得た (ク ロロスルホン酸添加量は、高分子フィルムに対して 1. 1倍量)。結果を表 2に示す。  The polymer film obtained by the above method was used. 1-Chlorobutane 84.7 g and chlorosulfonic acid 0.21 g were weighed to prepare a 0.25 wt% chlorosulfonic acid solution, and the polymer film was changed to 0.20 g. The polymer electrolyte membrane was obtained by this method (the amount of chlorosulfonic acid added was 1.1 times that of the polymer film). The results are shown in Table 2.
(実施例 13)  (Example 13)
<高分子フィルムの調製 >  <Preparation of polymer film>
ポリスチレン一ポリ(エチレン Zブチレン)一ポリスチレントリブロック共重合体の代わ りにポリスチレン—ポリ(エチレン Zプロピレン)—ポリスチレントリブロック共重合体 (株 式会社クラレ製、セプトン 2104)を使用した以外は、実施例 12と同様の方法で本発 明の高分子フィルムを得た(高分子フィルム中に高密度ポリエチレンを 76重量%含 有する)。  Except for using polystyrene-poly (ethylene Z-propylene) -polystyrene triblock copolymer (Septon 2104, manufactured by Kuraray Co., Ltd.) instead of polystyrene-poly (ethylene Z-butylene) -polystyrene triblock copolymer, A polymer film of the present invention was obtained in the same manner as in Example 12 (76% by weight of high-density polyethylene was contained in the polymer film).
[0273] <高分子電解質膜の調製 > 上記方法で得られた高分子フィルムを使用した。 1 クロロブタン 108. 6g、クロロス ルホン酸 0. 54gを秤量し、 0. 50重量%のクロロスルホン酸溶液を調製し、高分子フ イルムを 0. 25gとした以外は、実施例 11と同様の方法で高分子電解質膜を得た (ク ロロスルホン酸添カ卩量は、高分子フィルムに対して 2倍量)。結果を表 2に示す。 [0273] <Preparation of polymer electrolyte membrane> The polymer film obtained by the above method was used. 1 The same method as in Example 11 except that 108.6 g of chlorobutane and 0.54 g of chlorosulfonic acid were weighed to prepare a 0.50 wt% chlorosulfonic acid solution and the polymer film was changed to 0.25 g. In this way, a polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was twice that of the polymer film). The results are shown in Table 2.
[0274] (実施例 14) [Example 14]
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位を有する高分子化合物としてポリスチレン (PSジャパン株式会社製、 P SJポリスチレン G8102)、熱可塑性エラストマ一としてポリスチレン ポリ(エチレン Z プロピレン)—ポリスチレントリブロック共重合体 (株式会社クラレ製、セプトン 2104)、 芳香族単位がな ヽ高分子化合物としてポリプロピレン (三井化学株式会社製、三井 ポリプロ F107DV)を使用した。  Polystyrene (PS Japan Co., Ltd., PSJ Polystyrene G8102) as a polymer compound having an aromatic unit, Polystyrene poly (ethylene Z propylene) -polystyrene triblock copolymer as a thermoplastic elastomer (Kuraray Co., Ltd., Septon 2104) ), Polypropylene (Mitsui Chemicals, Mitsui Polypro F107DV) was used as a high molecular compound having no aromatic unit.
[0275] ポリスチレンのペレット 30重量部、ポリスチレン ポリ(エチレン Zプロピレン) ポリ スチレントリブロック共重合体のペレット 5重量部、高密度ポリエチレンのペレット 70重 量部とをドライブレンドした。ドライブレンドしたペレット混合物を、スクリュー温度 265 °C、 Tダイ温度 265°Cの条件で、 Tダイをセットした二軸押出機により、溶融押出成形 し、本発明の高分子フィルムを得た(高分子フィルム中にポリプロピレンを 67重量0 /0 含有する)。 [0275] 30 parts by weight of polystyrene pellets, 5 parts by weight of polystyrene poly (ethylene Z propylene) polystyrene triblock copolymer pellets, and 70 parts by weight of high density polyethylene pellets were dry blended. The dry blended pellet mixture was melt-extruded by a twin screw extruder with a T die set under the conditions of a screw temperature of 265 ° C and a T die temperature of 265 ° C to obtain the polymer film of the present invention (high polypropylene 67 weight 0/0 contained in the molecule film).
[0276] <高分子電解質膜の調製 >  [0276] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1 クロロブタン 93. 0g、クロロス ルホン酸 0. 12gを秤量し、 0. 13重量%のクロロスルホン酸溶液を調製し、高分子フ イルムを 0. 22gとした以外は、実施例 11と同様にして高分子電解質膜を得た (クロ口 スルホン酸添カ卩量は、高分子フィルムに対して 0. 5倍量)。結果を表 2に示す。  The polymer film obtained by the above method was used. 1 Weigh 93.0 g of chlorobutane and 0.12 g of chlorosulfonic acid to prepare a 0.13% by weight chlorosulfonic acid solution and change the polymer film to 0.22 g. A polymer electrolyte membrane was obtained (the amount of black sulfonic acid added was 0.5 times that of the polymer film). The results are shown in Table 2.
[0277] (実施例 15)  [Example 15]
<高分子フィルムの調製 >  <Preparation of polymer film>
ポリスチレンのペレット 20重量部、ポリスチレン ポリ(エチレン Zプロピレン) ポリ スチレントリブロック共重合体のペレット 5重量部、ポリプロピレンのペレット 80重量部 とした以外は、実施例 14と同様の方法で本発明の高分子フィルムを得た (高分子フィ ルム中に高密度ポリエチレンを 76重量%含有する)。 [0278] <高分子電解質膜の調製 > Except for 20 parts by weight of polystyrene pellets, 5 parts by weight of polystyrene poly (ethylene Z propylene) polystyrene triblock copolymer pellets, and 80 parts by weight of polypropylene pellets, A molecular film was obtained (polymer film contains 76% by weight of high-density polyethylene). [0278] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 101. lg、クロロス ルホン酸 0. 51gを秤量し、 0. 50重量%のクロロスルホン酸溶液を調製し、高分子フ イルムを 0. 23gとした以外は、実施例 11と同様にして高分子電解質膜を得た (クロ口 スルホン酸添カ卩量は、高分子フィルムに対して 2. 2倍量)。結果を表 2に示す。  The polymer film obtained by the above method was used. Except that 101-lg of 1-chlorobutane and 0.51 g of chlorosulfonic acid were weighed to prepare a chlorosulfonic acid solution of 0.50% by weight and the polymer film was changed to 0.23 g, the same as in Example 11. Thus, a polymer electrolyte membrane was obtained (the amount of blackened sulfonic acid added was 2.2 times that of the polymer film). The results are shown in Table 2.
[0279] (実施例 16) [Example 16]
<高分子フィルムの調製 >  <Preparation of polymer film>
ポリスチレン一ポリ(エチレン Zプロピレン)一ポリスチレントリブロック共重合体の代 わりにポリスチレン一ポリ(エチレン Zブチレン)一ポリスチレントリブロック共重合体( 株式会社クラレ製、セプトン 8104)を使用した以外は、実施例 15と同様の方法で本 発明の高分子フィルムを得た(高分子フィルム中に高密度ポリエチレンを 76重量% 含有する)。  Except for using polystyrene-poly (ethylene Z-butylene) -polystyrene triblock copolymer (Kuraray Co., Ltd., Septon 8104) instead of polystyrene-poly (ethylene Z propylene) -polystyrene triblock copolymer. The polymer film of the present invention was obtained in the same manner as in Example 15 (76% by weight of high-density polyethylene was contained in the polymer film).
[0280] <高分子電解質膜の調製 > [0280] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1 クロロブタン 70. lg、クロロス ルホン酸 0. 18gを秤量し、 0. 25重量%のクロロスルホン酸溶液を調製し、高分子フ イルムを 0. 16gとした以外は、実施例 11と同様にして高分子電解質膜を得た (クロ口 スルホン酸添加量は、高分子フィルムに対して 1. 1倍量)。結果を表 2に示す。  The polymer film obtained by the above method was used. 1 Weigh 70.lg of chlorobutane and 0.18 g of chlorosulfonic acid, prepare a 0.25 wt% chlorosulfonic acid solution, and adjust the polymer film to 0.16 g. A polymer electrolyte membrane was obtained (the amount of black sulfonic acid added was 1.1 times that of the polymer film). The results are shown in Table 2.
[0281] (比較例 3) [0281] (Comparative Example 3)
<高分子フィルムの調製 >  <Preparation of polymer film>
芳香族単位を有する高分子化合物として、ポリフエ-レンサルファイド (大日本イン キエ業株式会社製、 DIC-PPS LDlOpl l l l)を使用した。  Polyphenylene sulfide (manufactured by Dainippon Ink & Chemicals, Inc., DIC-PPS LDlOpl l l) was used as a polymer compound having an aromatic unit.
[0282] 前記ポリフエ-レンサルファイドのペレットを、スクリュー温度 290°C、 Tダイ温度 290 °Cの条件で、 2軸混練押出し機に Tダイをセットした二軸押出機により、溶融押出成 形し、高分子フィルムを得た。 [0282] The polyphenylene sulfide pellets were melt-extruded by a twin-screw extruder in which a T-die was set in a twin-screw kneading extruder under the conditions of a screw temperature of 290 ° C and a T-die temperature of 290 ° C. A polymer film was obtained.
[0283] <高分子電解質膜の調製 > [0283] <Preparation of polymer electrolyte membrane>
上記方法で得られた高分子フィルムを使用した。 1—クロロブタン 70. 9g、クロロス ルホン酸 1. lgを秤量し、 1. 5重量%のクロロスルホン酸溶液を調製し、高分子フィ ルムを 0. 16gとした以外は、実施例 11と同様にして高分子電解質膜を得た (クロロス ルホン酸添加量は、高分子フィルムに対して 6. 9倍量)。結果を表 2に示す。 The polymer film obtained by the above method was used. 1-Chlorobutane 70.9 g, chlorosulfonic acid 1. lg was weighed to prepare a 1.5% by weight chlorosulfonic acid solution, and the polymer film was adjusted to 0.16 g. To obtain a polymer electrolyte membrane (chloros The amount of sulfonic acid added is 6.9 times that of the polymer film). The results are shown in Table 2.
[0284] (比較例 4) [0284] (Comparative Example 4)
デュポン社製ナフイオン (登録商標) 115を高分子電解質膜とした。結果を表 2に示 す。  Nafion (registered trademark) 115 manufactured by DuPont was used as the polymer electrolyte membrane. The results are shown in Table 2.
[0285] 表 2の実施例 11〜16と比較例 4との比較から、本発明の高分子フィルム力 得られ た高分子電解質膜は、固体高分子形燃料電池用の高分子電解質膜である比較例 3 と同オーダーのプロトン伝導度を有することが明らかとなり、固体高分子形燃料電池 、直接液体形燃料電池、直接メタノール形燃料電池の高分子電解質膜として有用で あることが示された。  [0285] From the comparison between Examples 11 to 16 in Table 2 and Comparative Example 4, the polymer electrolyte membrane obtained according to the present invention was a polymer electrolyte membrane for a polymer electrolyte fuel cell. It was revealed that the proton conductivity was of the same order as in Comparative Example 3, and it was shown that the polymer was useful as a polymer electrolyte membrane for a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell.
[0286] 表 2の実施例 11〜16と比較例 3、 4との比較より、本発明の高分子フィルム力も得ら れた高分子電解質膜は、同等のプロトン伝導度を示す従来の高分子電解質膜と比 較して、メタノール透過係数が低ぐ高いメタノール遮断性を有することが明ら力となり 、直接メタノール形燃料電池などの直接液体形燃料電池用の高分子電解質膜として 有用であることが示された。  [0286] From the comparison between Examples 11 to 16 in Table 2 and Comparative Examples 3 and 4, the polymer electrolyte membrane from which the polymer film force of the present invention was obtained is a conventional polymer exhibiting equivalent proton conductivity. Compared with electrolyte membranes, it has a low methanol permeability coefficient and a high methanol barrier property, and is useful as a polymer electrolyte membrane for direct liquid fuel cells such as direct methanol fuel cells. It has been shown.
[0287] (実施例 17)  [0287] (Example 17)
<脂肪族系高分子化合物と芳香族系高分子化合物とからなる高分子フィルムの調 製 >  <Preparation of polymer films composed of aliphatic polymer compounds and aromatic polymer compounds>
脂肪族系高分子化合物として、高密度ポリエチレン (三井ィ匕学株式会社製、 HI— Z EX 3300F)を使用した。芳香族系高分子化合物として、ポリフエ二レンサルファイド (大日本インキ工業株式会社製、 DIC-PPS LDlOpl l)を使用した。  As the aliphatic polymer compound, high-density polyethylene (manufactured by Mitsui Engineering Co., Ltd., HI-Z EX 3300F) was used. Polyphenylene sulfide (manufactured by Dainippon Ink Industries, Ltd., DIC-PPS LDlOpl l) was used as the aromatic polymer compound.
[0288] 前記脂肪族系高分子化合物のペレット 70重量部と、前記芳香族系高分子化合物 のペレット 30重量部を、ドライブレンドした。ドライブレンドしたペレットの混合物を、ス クリュー温度 290°C、 Tダイ温度 290°Cの条件で、 2軸混練押出し機に Tダイをセット した押出し機により、溶融押出しし、高分子フィルムを得た (脂肪族系高分子化合物 である高密度ポリエチレンを、高分子フィルム中に 70重量%含有する)。  [0288] 70 parts by weight of the aliphatic polymer compound pellets and 30 parts by weight of the aromatic polymer compound pellets were dry blended. The mixture of the dry blended pellets was melt-extruded with a twin-screw kneading extruder with a T-die set under a screw temperature of 290 ° C and a T-die temperature of 290 ° C to obtain a polymer film. (The polymer film contains 70% by weight of high-density polyethylene, an aliphatic polymer compound).
[0289] <高分子電解質膜の調製 >  [0289] <Preparation of polymer electrolyte membrane>
ガラス容器に、 1—クロロブタン 149g、クロロスルホン酸 3. Ogを秤量し、 2. Owt% のクロロスルホン酸溶液を調製した。前記高分子フィルムを 0. 35g秤量し、クロロスル ホン酸溶液に浸漬し、 25°Cで 20時間、放置した (クロロスルホン酸添カ卩量は、高分子 フィルムの重量に対して 8. 6倍量)。室温で 20時間放置後に、高分子フィルムを回 収し、イオン交換水で中性になるまで洗浄した。 In a glass container, 149 g of 1-chlorobutane and 3. Og of chlorosulfonic acid were weighed to prepare a 2. Owt% chlorosulfonic acid solution. 0.35 g of the polymer film was weighed and chlorosul It was immersed in a phonic acid solution and allowed to stand at 25 ° C for 20 hours (the amount of chlorosulfonic acid added was 8.6 times the weight of the polymer film). After standing at room temperature for 20 hours, the polymer film was collected and washed with ion-exchanged water until neutral.
[0290] 洗浄後の高分子フィルムを 23°Cに調温した恒温恒湿器内で、相対湿度 98%、 80 %、 60%および 50%の湿度調節下で、それぞれ 30分間放置してフィルムを乾燥し、 本発明の高分子電解質膜を得た。  [0290] The polymer film after washing is left in a thermo-hygrostat controlled at 23 ° C under relative humidity of 98%, 80%, 60% and 50% for 30 minutes respectively. Was dried to obtain the polymer electrolyte membrane of the present invention.
[0291] この高分子電解質膜のイオン交換容量を次の方法で測定した。約 10mm X 40m mの高分子電解質膜を 25°Cでの塩ィ匕ナトリウム飽和水溶液 20mLに浸漬し、ウォー ターバス中で 60°C、 3時間反応させた。 25°Cまで冷却し、次いで膜をイオン交換水 で充分に洗浄し、塩ィ匕ナトリウム飽和水溶液および洗浄水をすベて回収した。この回 収した溶液に、指示薬としてフエノールフタレイン溶液を加え、 0. 01Nの水酸化ナト リウム水溶液で中和滴定し、イオン交換容量を算出した。結果を表 3に示す。  [0291] The ion exchange capacity of the polymer electrolyte membrane was measured by the following method. A polymer electrolyte membrane of about 10 mm × 40 mm was immersed in 20 mL of a saturated sodium chloride aqueous solution at 25 ° C. and reacted at 60 ° C. for 3 hours in a water bath. After cooling to 25 ° C, the membrane was thoroughly washed with ion-exchanged water, and all sodium chloride saturated aqueous solution and washing water were collected. To this collected solution, a phenolphthalein solution was added as an indicator, and neutralization titration with 0.01N aqueous sodium hydroxide was performed to calculate the ion exchange capacity. The results are shown in Table 3.
[0292] [表 3] [0292] [Table 3]
Figure imgf000068_0001
Figure imgf000068_0002
さらに、咼分子電解質膜のプロトン伝導度を次の方法で測定した。プロトン伝導性 高分子電解質膜を直径 16mmの円形状に切り出し、余分な水分を濾紙でふき取つ てから測定に供した。試験体の表裏両面にステンレス製電極を取り付け、これらを 2 極系の金属製セルに設置した後、室温下で電圧 0. 5Vの条件で、交流インピーダン ス法(周波数: 42Hz 5MHzゝ日置電気製 LCRメーター 3531Z HITESTER )により、膜抵抗を測定し、膜厚プロトン伝導度を算出した。結果を表 3に示す。 [0294] さらに、高分子電解質膜のメタノール遮断性を次の方法で測定した。 25°Cの環境 下で、ビードレックス社製膜透過実験装置 (KH—5PS)を使用した。プロトン伝導性 高分子電解質膜でイオン交換水と所定濃度のメタノール水溶液を隔離し、所定時間 (2時間)経過後にイオン交換水側に透過したメタノールを含む溶液を採取し、ガスク 口マトグラフ島津製作所製ガスクロマトグラフィー GC— 2010で透過したメタノール量 を定量した。この定量結果から、メタノール透過速度を求め、メタノール透過係数およ びメタノール透過係数を算出した。メタノール透過係数およびメタノール遮断係数は 、以下の数式 1及び数式 2にしたがって算出した。結果を表 3に示す。
Figure imgf000068_0001
Figure imgf000068_0002
Furthermore, the proton conductivity of the polymer electrolyte membrane was measured by the following method. Proton conductivity The polymer electrolyte membrane was cut into a circular shape with a diameter of 16 mm, and excess moisture was wiped off with filter paper before being used for measurement. Stainless steel electrodes are attached to both front and back sides of the test specimen, and these are placed in a bipolar metal cell. Then, the AC impedance method (frequency: 42Hz, 5MHz) LCR meter 3531Z HITESTER) was used to measure membrane resistance and calculate film thickness proton conductivity. The results are shown in Table 3. [0294] Further, the methanol blocking property of the polymer electrolyte membrane was measured by the following method. In an environment of 25 ° C, a membrane permeation experiment apparatus (KH-5PS) manufactured by Beadrex was used. Proton-conducting Polymer electrolyte membrane separates ion-exchanged water and methanol solution of a predetermined concentration, and after a predetermined time (2 hours) has elapsed, a solution containing methanol that has permeated the ion-exchanged water is collected. The amount of methanol permeated by gas chromatography GC-2010 was quantified. From this quantitative result, the methanol permeation rate was determined, and the methanol permeation coefficient and methanol permeation coefficient were calculated. The methanol permeability coefficient and the methanol cutoff coefficient were calculated according to the following formulas 1 and 2. The results are shown in Table 3.
[0295] [数 3] メタノール透過係数 ( mo 1 / (cm .日) )  [0295] [Equation 3] Methanol permeability coefficient (mo 1 / (cm.day))
=メタノール透過量 ( mo I ) X膜厚 (cm) ノ (膜面積 (cm2) x透過時間 (日) )  = Methanol permeation rate (moI) X film thickness (cm) No (membrane area (cm2) x permeation time (days))
数式 1  Formula 1
[0296] [数 4] メタノール遮断係数 ( (cm '日) mo l ) [0296] [Equation 4] Methanol cutoff coefficient ((cm 'day) mo l)
=1 メタノ一ル透過係数 (/ mo l Z (Cm '日) ) = 1 methanol transmission coefficient (/ mo l Z ( C m 'day))
数式 2  Formula 2
[0297] (実施例 18) [Example 18]
実施例 17と同様の方法で得られた高分子フィルムを使用した。 1—クロロブタン 15 Og、クロロスルホン酸 4.5gを秤量し、 3. Owt%のクロロスルホン酸溶液を調製し、高 分子フィルムを 0.35gとした以外は、実施例 17と同様にしてプロトン伝導性高分子 電解質膜を得た(クロロスルホン酸添カ卩量は、高分子フィルムの重量に対して 12.9 倍量)。結果を表 3に示す。  A polymer film obtained in the same manner as in Example 17 was used. 1-Chlorobutane 15 Og, 4.5 g of chlorosulfonic acid were weighed, 3. Proton conductivity high as in Example 17 except that an Owt% chlorosulfonic acid solution was prepared and the high molecular weight film was 0.35 g. A molecular electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 12.9 times the weight of the polymer film). The results are shown in Table 3.
[0298] (実施例 19)  [0298] (Example 19)
実施例 17と同様の方法で得られた高分子フィルムを使用した。 1—クロロブタン 12 7g、クロロスルホン酸 4.4gを秤量し、 3.5wt%のクロロスルホン酸溶液を調製し、高 分子フィルムを 0.29gとした以外は、実施例 17と同様にしてプロトン伝導性高分子 電解質膜を得た (クロロスルホン酸添加量は、高分子フィルムの重量に対して 15.1 倍量)。結果を表 3に示す。  A polymer film obtained in the same manner as in Example 17 was used. 1-Chlorobutane 12 7g and chlorosulfonic acid 4.4g were weighed to prepare a 3.5wt% chlorosulfonic acid solution, and the high molecular film was changed to 0.29g. An electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 15.1 times the weight of the polymer film). The results are shown in Table 3.
[0299] (実施例 20) 実施例 17と同様の方法で得られた高分子フィルムを使用した。 1—クロロブタン 14 5g、クロロスルホン酸 5. 8gを秤量し、 4. Owt%のクロロスルホン酸溶液を調製し、高 分子フィルムを 0. 33gとした以外は、実施例 17と同様にしてプロトン伝導性高分子 電解質膜を得た(クロロスルホン酸添カ卩量は、高分子フィルムの重量に対して 17. 3 倍量)。結果を表 3に示す。 [0299] (Example 20) A polymer film obtained in the same manner as in Example 17 was used. 1-Chlorobutane 14 5 g and chlorosulfonic acid 5.8 g were weighed, 4. Proton conduction was conducted in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution was prepared and the high molecular weight film was changed to 0.33 g. A polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 17.3 times the weight of the polymer film). The results are shown in Table 3.
[0300] (実施例 21) [0300] (Example 21)
実施例 17と同様の方法で得られた高分子フィルムを使用した。 1—クロロブタン 13 8g、クロロスルホン酸 6. 2gを秤量し、 4. 5wt%のクロロスルホン酸溶液を調製し、高 分子フィルムを 0. 32gとした以外は、実施例 17と同様にしてプロトン伝導性高分子 電解質膜を得た(クロロスルホン酸添カ卩量は、高分子フィルムの重量に対して 19. 4 倍量)。結果を表 3に示す。  A polymer film obtained in the same manner as in Example 17 was used. 1-Chlorobutane 13 8 g and chlorosulfonic acid 6.2 g were weighed, a 4.5 wt% chlorosulfonic acid solution was prepared, and proton conduction was performed in the same manner as in Example 17 except that the high molecular weight film was 0.32 g. A polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 19.4 times the weight of the polymer film). The results are shown in Table 3.
[0301] (実施例 22) [0301] (Example 22)
実施例 17と同様の方法で得られた高分子フィルムを使用した。 1—クロロブタン 12 9g、クロロスルホン酸 6. 5gを秤量し、 5. Owt%のクロロスルホン酸溶液を調製し、高 分子フィルムを 0. 30gとした以外は、実施例 17と同様にしてプロトン伝導性高分子 電解質膜を得た(クロロスルホン酸添カ卩量は、高分子フィルムの重量に対して 21. 6 倍量)。結果を表 3に示す。  A polymer film obtained in the same manner as in Example 17 was used. 1-Chlorobutane 12 9 g, chlorosulfonic acid 6.5 g were weighed, 5. Owt% chlorosulfonic acid solution was prepared, and proton conduction was performed in the same manner as in Example 17 except that the high molecular weight film was changed to 0.30 g. A conductive polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 21.6 times the weight of the polymer film). The results are shown in Table 3.
[0302] (実施例 23) [0302] (Example 23)
実施例 17と同様の方法で得られた高分子フィルムを使用した。また、 1—クロロブタ ンの代わりにジクロロメタンを使用した。ジクロロメタン 798g、クロロスノレホン酸 8. Ogを 秤量し、 1. Owt%のクロロスルホン酸溶液を調製し、高分子フィルムを 1. 8gとした以 外は、実施例 17と同様にして高分子電解質膜を得た。結果を表 3に示す。  A polymer film obtained in the same manner as in Example 17 was used. Dichloromethane was used in place of 1-chlorobutane. A polymer electrolyte membrane was prepared in the same manner as in Example 17 except that 798 g of dichloromethane and 8.Og of chlorosenophonic acid were weighed, 1. Owt% chlorosulfonic acid solution was prepared, and the polymer film was changed to 1.8 g. Obtained. The results are shown in Table 3.
[0303] <触媒シートの作製 > [0303] <Production of catalyst sheet>
力ソード触媒として白金 50%担持カーボン(ェヌ 'ィー ケムキャット製 SA50BK)を 用いた。結着剤として 5%ナフイオン (登録商標)分散溶液 (アルドリッチ製)を用いた 。力ソード触媒と純水とを、重量比 1 : 10となる割合で混合し溶液 Aを得た。前記溶液 Aと結着剤とを力ソード触媒に対して結着剤が重量比 1 : 7. 3となるように混合し、溶 液 Bを得た。アノード触媒として白金 27%ルテニウム 13%担持カーボン (ェヌィーケ ムキャット製 SA27— 13RCBK)を用いた。アノード触媒と純水とを、重量比 1 : 10とな る割合で混合し溶液 Cを得た。前記溶液 Cと結着剤とをアノード触媒に対して結着剤 が重量比 1 : 7. 1となるように混合し溶液 Dを得た。アセトンで洗浄した 22mm角、厚 さ 50 μ mのテフロン (登録商標)シート上に溶液 Bを塗布し乾燥させる工程を数回繰り 返し、白金量 lmg/cm2とし、力ソード触媒シートとした。同様に溶液 Dを塗布し白金 量 lmg/cm2とし、アノード触媒シートとした。 As a force sword catalyst, 50% platinum-supported carbon (SA50BK manufactured by Ny Chemcat) was used. A 5% naphthion (registered trademark) dispersion (manufactured by Aldrich) was used as a binder. A force sword catalyst and pure water were mixed at a weight ratio of 1:10 to obtain a solution A. The solution A and the binder were mixed with the force sword catalyst so that the binder had a weight ratio of 1: 7.3 to obtain a solution B. Platinum 27% ruthenium 13% supported carbon as anode catalyst Mcat SA27-13RCBK) was used. An anode catalyst and pure water were mixed at a weight ratio of 1:10 to obtain a solution C. The solution C and the binder were mixed with the anode catalyst so that the binder had a weight ratio of 1: 7.1 to obtain a solution D. The process of applying the solution B onto a 22 mm square, 50 μm thick Teflon (registered trademark) sheet washed with acetone and drying was repeated several times to obtain a platinum amount of lmg / cm 2 to obtain a force sword catalyst sheet. Similarly, solution D was applied to a platinum amount of lmg / cm 2 to obtain an anode catalyst sheet.
[0304] く膜—電極接合体の作製 > [0304] Fabrication of membrane-electrode assembly>
高分子電解質膜として上記実施例 23記載のものを用い、これを上記アノード触媒 シート、力ソード触媒シートで挟持し、さらに厚さ 50 mのテフロン (登録商標)シート 、ろ紙、 SUS板の順に挟持した。これを 150°C、 50kgfZcm2で熱プレスし、 5分間保 持した。プレス後テフロン (登録商標)シート、ろ紙、 SUS板をはずし、さらに触媒シー トのテフロン (登録商標)シートをはずして膜—電極接合体とした。 The polymer electrolyte membrane described in Example 23 is used, and is sandwiched between the anode catalyst sheet and the force sword catalyst sheet, and is further sandwiched in the order of 50 m thick Teflon (registered trademark) sheet, filter paper, and SUS plate. did. This was hot pressed at 150 ° C and 50 kgfZcm 2 and held for 5 minutes. After pressing, the Teflon (registered trademark) sheet, the filter paper, and the SUS plate were removed, and the Teflon (registered trademark) sheet of the catalyst sheet was removed to obtain a membrane-electrode assembly.
[0305] <セルの作製 >  [0305] <Cell fabrication>
東レ製 TGP—H— 60カーボンペーパーをアセトンで洗浄し、さらにテフロン (登録 商標)分散溶液 (ダイキン工業製 POLYFLON PTFE D— 1E)を塗布し 360°Cで 1 時間焼成することで、撥水処理を施した拡散層を得た。厚さ 180 m、 80角のテフ口 ン (登録商標)シートの中心を 25角に切り抜きガスケットとした。 MEAを拡散層、ガス ケットで挟持し、電極面積 5cm2の燃料電池用セル(ElectroChem社製 FC05— 01 SP)に装着した。このときのセルを挟持するトルク圧は、 lN'mから 2N'm、 3N'm、 4N'mと徐々に締め上げていった。 Toray TGP-H-60 carbon paper is washed with acetone, and then Teflon (registered trademark) dispersion (Daikin Industries POLYFLON PTFE D-1E) is applied and baked at 360 ° C for 1 hour for water repellent treatment. A diffusion layer subjected to was obtained. A 180 m thick, 80-square Teflon (registered trademark) sheet was cut into a 25-corner center and used as a gasket. The MEA was sandwiched between a diffusion layer and a gasket and attached to a fuel cell (ElectroChem FC05-01 SP) with an electrode area of 5 cm 2 . The torque pressure holding the cell at this time gradually increased from 1N'm to 2N'm, 3N'm, and 4N'm.
[0306] <直接メタノール形燃料電池の発電特性評価 >  [0306] <Evaluation of power generation characteristics of direct methanol fuel cell>
評価装置には株式会社東陽テク二力製 GFT—MWを用いた。 1Mメタノール水溶 液をアノード極側に流量 0. 5mLZminで供給し、酸化剤として空気を力ソード極側 に流量 160mLZmin供給した。セル温度を 60°Cとして、直接メタノール形燃料電池 の発電特性を評価した。結果を図 15に示す。  A GFT-MW manufactured by Toyo Corporation was used as the evaluation device. 1M methanol aqueous solution was supplied to the anode electrode side at a flow rate of 0.5 mLZmin, and air was supplied as an oxidizing agent to the force sword electrode side at a flow rate of 160 mLZmin. The power generation characteristics of a direct methanol fuel cell were evaluated at a cell temperature of 60 ° C. The results are shown in FIG.
[0307] (実施例 24)  [Example 24]
<脂肪族系高分子化合物と芳香族系高分子化合物とからなる高分子フィルムの調 製 > 脂肪族系高分子化合物として、高密度ポリエチレン (三井ィ匕学株式会社製、 HI— Z EX 3300F)を使用した。芳香族系高分子化合物として、ポリフエ二レンサルファイド (大日本インキ工業株式会社製、 DIC-PPS LDlOpl l)を使用した。 <Preparation of polymer films composed of aliphatic polymer compounds and aromatic polymer compounds> As the aliphatic polymer compound, high-density polyethylene (manufactured by Mitsui Engineering Co., Ltd., HI-Z EX 3300F) was used. Polyphenylene sulfide (manufactured by Dainippon Ink Industries, Ltd., DIC-PPS LDlOpl l) was used as the aromatic polymer compound.
[0308] 前記脂肪族系高分子化合物のペレット 60重量部と、前記芳香族系高分子化合物 のペレット 40重量部を、ドライブレンドした。ドライブレンドしたペレットの混合物を、ス クリュー温度 290°C、 Tダイ温度 290°Cの条件で、 2軸混練押出し機に Tダイをセット した押出し機により、溶融押出しし、高分子フィルムを得た (脂肪族系高分子化合物 である高密度ポリエチレンを、高分子フィルム中に 60重量%含有する)。  [0308] 60 parts by weight of the aliphatic polymer compound pellets and 40 parts by weight of the aromatic polymer compound pellets were dry blended. The mixture of the dry blended pellets was melt-extruded with a twin-screw kneading extruder with a T-die set under a screw temperature of 290 ° C and a T-die temperature of 290 ° C to obtain a polymer film. (The polymer film contains 60% by weight of high-density polyethylene, an aliphatic polymer compound).
[0309] <高分子電解質膜の調製 >  <Preparation of polymer electrolyte membrane>
前記高分子フィルムを使用した。 1 クロロブタン 121g、クロロスルホン酸 3. 6gを 秤量し、 3. Owt%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 28gとした 以外は、実施例 17と同様にして高分子電解質膜を得た (クロロスルホン酸添加量は、 高分子フィルムの重量に対して 12. 9倍量)。結果を表 3に示す。  The polymer film was used. 1 Weigh 121 g of chlorobutane and 3.6 g of chlorosulfonic acid. 3. Prepare a polymer electrolyte membrane in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution is prepared and the polymer film is 0.28 g. (The amount of chlorosulfonic acid added was 12.9 times the weight of the polymer film). The results are shown in Table 3.
[0310] (実施例 25)  [0310] (Example 25)
実施例 24と同様の方法で得られた高分子フィルムを使用した。ジクロロメタン 851g 、クロロスルホン酸 8. 5gを秤量し、 1. Owt%のクロロスルホン酸溶液を調製し、高分 子フィルムを 2. Ogとした以外は、実施例 23と同様にして高分子電解質膜を得た。結 果を表 3に示す。  A polymer film obtained in the same manner as in Example 24 was used. Polymer electrolyte membrane in the same manner as in Example 23, except that 851 g of dichloromethane and 8.5 g of chlorosulfonic acid were weighed, and 1. Owt% chlorosulfonic acid solution was prepared and the polymer film was changed to 2. Og. Got. The results are shown in Table 3.
[0311] この高分子電解質膜を使用した以外は実施例 23と同様にして、直接メタノール形 燃料電池の発電特性評価を実施した。結果を図 16に示す。  [0311] The power generation characteristics of the direct methanol fuel cell were evaluated in the same manner as in Example 23 except that this polymer electrolyte membrane was used. The results are shown in FIG.
[0312] (実施例 26) [0312] (Example 26)
<脂肪族系高分子化合物と芳香族系高分子化合物とからなる高分子フィルムの調 製 >  <Preparation of polymer films composed of aliphatic polymer compounds and aromatic polymer compounds>
脂肪族系高分子化合物として、高密度ポリエチレン (三井ィ匕学株式会社製、 HI— Z EX 3300F)を使用した。芳香族系高分子化合物として、ポリフエ二レンサルファイド (大日本インキ工業株式会社製、 DIC-PPS LDlOpl l)を使用した。  As the aliphatic polymer compound, high-density polyethylene (manufactured by Mitsui Engineering Co., Ltd., HI-Z EX 3300F) was used. Polyphenylene sulfide (manufactured by Dainippon Ink Industries, Ltd., DIC-PPS LDlOpl l) was used as the aromatic polymer compound.
[0313] 前記脂肪族系高分子化合物のペレット 50重量部と、前記芳香族系高分子化合物 のペレット 50重量部を、ドライブレンドした。ドライブレンドしたペレットの混合物を、ス クリュー温度 290°C、 Tダイ温度 290°Cの条件で、 2軸混練押出し機に Tダイをセット した押出し機により、溶融押出しし、高分子フィルムを得た (脂肪族系高分子化合物 である高密度ポリエチレンを、高分子フィルム中に 50重量%含有する)。 [0313] 50 parts by weight of the aliphatic polymer compound pellets and 50 parts by weight of the aromatic polymer compound pellets were dry blended. Mix the dry blended pellets Under the conditions of a clew temperature of 290 ° C and a T-die temperature of 290 ° C, a polymer film was obtained by melt extrusion using an extruder in which a T-die was set in a twin-screw kneading extruder (an aliphatic polymer compound). High density polyethylene is contained in the polymer film at 50% by weight).
[0314] <高分子電解質膜の調製 >  [0314] <Preparation of polymer electrolyte membrane>
前記高分子フィルムを使用した。 1 クロロブタン 136g、クロロスルホン酸 2. 7gを 秤量し、 2. Owt%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 32gとした 以外は、実施例 17と同様にして高分子電解質膜を得た (クロロスルホン酸添加量は、 高分子フィルムの重量に対して 8. 6倍量)。結果を表 3に示す。  The polymer film was used. 1 Weigh 136 g of chlorobutane and 2.7 g of chlorosulfonic acid. 2. Prepare a polymer electrolyte membrane in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution is prepared and the polymer film is 0.32 g. (The amount of chlorosulfonic acid added was 8.6 times the weight of the polymer film). The results are shown in Table 3.
[0315] (実施例 27)  [0315] (Example 27)
実施例 26と同様の方法で得られた高分子フィルムを使用した。 1 クロロブタン 14 lg、クロロスルホン酸 4. 2gを秤量し、 3. Owt%のクロロスルホン酸溶液を調製し、高 分子フィルムを 0. 33gとした以外は、実施例 17と同様にしてプロトン伝導性高分子 電解質膜を得た(クロロスルホン酸添カ卩量は、高分子フィルムの重量に対して 12. 9 倍量)。結果を表 3に示す。 A polymer film obtained in the same manner as in Example 26 was used. 1 Weigh 14 g of chlorobutane and 4.2 g of chlorosulfonic acid, 3. Proton conductivity in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution is prepared and the high molecular weight film is 0.33 g. A conductive polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 12.9 times the weight of the polymer film). The results are shown in Table 3.
[0316] (実施例 28)  [0316] (Example 28)
実施例 26と同様の方法で得られた高分子フィルムを使用した。ジクロロメタン 875g 、クロロスルホン酸 4. 4gを秤量し、 0. 5wt%のクロロスルホン酸溶液を調製し、高分 子フィルムを 2. Ogとした以外は、実施例 23と同様にして高分子電解質膜を得た。結 果を表 3に示す。  A polymer film obtained in the same manner as in Example 26 was used. A polymer electrolyte membrane was prepared in the same manner as in Example 23 except that 875 g of dichloromethane and 4.4 g of chlorosulfonic acid were weighed to prepare a 0.5 wt% chlorosulfonic acid solution and the polymer film was changed to 2. Og. Got. The results are shown in Table 3.
[0317] この高分子電解質膜を使用した以外は実施例 23と同様にして、直接メタノール形 燃料電池の発電特性評価を実施した。結果を図 17に示す。  [0317] The power generation characteristics of the direct methanol fuel cell were evaluated in the same manner as in Example 23 except that this polymer electrolyte membrane was used. The results are shown in FIG.
[0318] (実施例 29) [0318] (Example 29)
<脂肪族系高分子化合物と芳香族系高分子化合物とからなる高分子フィルムの調 製 >  <Preparation of polymer films composed of aliphatic polymer compounds and aromatic polymer compounds>
脂肪族系高分子化合物として、高密度ポリエチレン (三井ィ匕学株式会社製、 HI— Z EX 3300F)を使用した。芳香族系高分子化合物として、ポリフエ二レンサルファイド (大日本インキ工業株式会社製、 DIC-PPS LDlOpl l)を使用した。  As the aliphatic polymer compound, high-density polyethylene (manufactured by Mitsui Engineering Co., Ltd., HI-Z EX 3300F) was used. Polyphenylene sulfide (manufactured by Dainippon Ink Industries, Ltd., DIC-PPS LDlOpl l) was used as the aromatic polymer compound.
[0319] 前記脂肪族系高分子化合物のペレット 40重量部と、前記芳香族系高分子化合物 のペレット 60重量部を、ドライブレンドした。ドライブレンドしたペレットの混合物を、ス クリュー温度 290°C、 Tダイ温度 290°Cの条件で、 2軸混練押出し機に Tダイをセット した押出し機により、溶融押出しし、高分子フィルムを得た (脂肪族系高分子化合物 である高密度ポリエチレンを、高分子フィルム中に 40重量%含有する)。 [0319] 40 parts by weight of the aliphatic polymer compound pellets and the aromatic polymer compound 60 parts by weight of the pellets were dry blended. The mixture of the dry blended pellets was melt-extruded with a twin-screw kneading extruder with a T-die set under a screw temperature of 290 ° C and a T-die temperature of 290 ° C to obtain a polymer film. (The polymer film contains 40% by weight of high-density polyethylene, an aliphatic polymer compound).
[0320] <高分子電解質膜の調製 >  [0320] <Preparation of polymer electrolyte membrane>
前記高分子フィルムを使用した。 1 クロロブタン 116g、クロロスルホン酸 2. 3gを 秤量し、 2. Owt%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 27gとした 以外は、実施例 17と同様にして高分子電解質膜を得た (クロロスルホン酸添加量は、 高分子フィルムの重量に対して 8. 6倍量)。結果を表 3に示す。  The polymer film was used. 1 Weigh 116 g of chlorobutane and 2.3 g of chlorosulfonic acid. 2. Prepare a polymer electrolyte membrane in the same way as in Example 17 except that an Owt% chlorosulfonic acid solution is prepared and the polymer film is 0.27 g. (The amount of chlorosulfonic acid added was 8.6 times the weight of the polymer film). The results are shown in Table 3.
[0321] (実施例 30)  [0321] (Example 30)
実施例 29と同様の方法で得られた高分子フィルムを使用した。 1 クロロブタン 12 Og、クロロスルホン酸 3. 6gを秤量し、 3. Owt%のクロロスルホン酸溶液を調製し、高 分子フィルムを 0. 28gとした以外は、実施例 17と同様にしてプロトン伝導性高分子 電解質膜を得た(クロロスルホン酸添カ卩量は、高分子フィルムの重量に対して 12. 9 倍量)。結果を表 3に示す。  A polymer film obtained in the same manner as in Example 29 was used. 1 Proton conductivity in the same manner as in Example 17 except that 12 g of chlorobutane and 3.6 g of chlorosulfonic acid were weighed, 3. A chlorosulfonic acid solution of Owt% was prepared, and the high molecular weight film was changed to 0.28 g. A polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 12.9 times the weight of the polymer film). The results are shown in Table 3.
[0322] (実施例 31)  [0322] (Example 31)
<脂肪族系高分子化合物と芳香族系高分子化合物とからなる高分子フィルムの調 製 >  <Preparation of polymer films composed of aliphatic polymer compounds and aromatic polymer compounds>
脂肪族系高分子化合物として、高密度ポリエチレン (三井ィ匕学株式会社製、 HI— Z EX 3300F)を使用した。芳香族系高分子化合物として、ポリフエ二レンサルファイド (大日本インキ工業株式会社製、 DIC-PPS LDlOpl l)を使用した。  As the aliphatic polymer compound, high-density polyethylene (manufactured by Mitsui Engineering Co., Ltd., HI-Z EX 3300F) was used. Polyphenylene sulfide (manufactured by Dainippon Ink Industries, Ltd., DIC-PPS LDlOpl l) was used as the aromatic polymer compound.
[0323] 前記脂肪族系高分子化合物のペレット 30重量部と、前記芳香族系高分子化合物 のペレット 70重量部を、ドライブレンドした。ドライブレンドしたペレットの混合物を、ス クリュー温度 290°C、 Tダイ温度 290°Cの条件で、 2軸混練押出し機に Tダイをセット した押出し機により、溶融押出しし、高分子フィルムを得た (脂肪族系高分子化合物 である高密度ポリエチレンを、高分子フィルム中に 30重量%含有する)。  [0323] 30 parts by weight of the aliphatic polymer compound pellets and 70 parts by weight of the aromatic polymer compound pellets were dry blended. The mixture of the dry blended pellets was melt-extruded with a twin-screw kneading extruder with a T-die set under a screw temperature of 290 ° C and a T-die temperature of 290 ° C to obtain a polymer film. (Contains 30% by weight of high-density polyethylene, an aliphatic polymer compound, in the polymer film).
[0324] <高分子電解質膜の調製 >  [0324] <Preparation of polymer electrolyte membrane>
前記高分子フィルムを使用した。 1 クロロブタン 114g、クロロスルホン酸 2. 3gを 秤量し、 2. Owt%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 27gとした 以外は、実施例 17と同様にして高分子電解質膜を得た (クロロスルホン酸添加量は、 高分子フィルムの重量に対して 8. 6倍量)。結果を表 3に示す。 The polymer film was used. 1 114 g of chlorobutane, 2.3 g of chlorosulfonic acid Weighed and prepared a polymer electrolyte membrane in the same manner as in Example 17 except that 2.Owt% chlorosulfonic acid solution was prepared and the polymer film was changed to 0.27 g (the amount of chlorosulfonic acid added was 8.6 times the weight of the polymer film). The results are shown in Table 3.
[0325] (実施例 32) [0325] (Example 32)
<脂肪族系高分子化合物と芳香族系高分子化合物とからなる高分子フィルムの調 製 >  <Preparation of polymer films composed of aliphatic polymer compounds and aromatic polymer compounds>
脂肪族系高分子化合物として、ポリプロピレン (三井ィ匕学株式会社製、 F107DV) を使用した。芳香族系高分子化合物として、ポリフエ-レンサルファイド(大日本イン キエ業株式会社製、 DIC-PPS LDlOpl l)を使用した。  Polypropylene (manufactured by Mitsui Engineering Co., Ltd., F107DV) was used as the aliphatic polymer compound. As an aromatic polymer compound, poly-phenylene sulfide (manufactured by Dainippon Ink & Chemicals, Inc., DIC-PPS LDlOpl) was used.
[0326] 前記脂肪族系高分子化合物のペレット 70重量部と、前記芳香族系高分子化合物 のペレット 30重量部を、ドライブレンドした。ドライブレンドしたペレットの混合物を、ス クリュー温度 290°C、 Tダイ温度 290°Cの条件で、 2軸混練押出し機に Tダイをセット した押出し機により、溶融押出しし、高分子フィルムを得た (脂肪族系高分子化合物 であるポリプロピレンを、高分子フィルム中に 70重量0 /0含有する)。 [0326] 70 parts by weight of the aliphatic polymer compound pellets and 30 parts by weight of the aromatic polymer compound pellets were dry blended. The mixture of the dry blended pellets was melt-extruded with a twin-screw kneading extruder with a T-die set under a screw temperature of 290 ° C and a T-die temperature of 290 ° C to obtain a polymer film. (polypropylene is an aliphatic polymer compound, 70 weight 0/0 contained in the polymer film).
[0327] <高分子電解質膜の調製 >  [0327] <Preparation of polymer electrolyte membrane>
前記高分子フィルムを使用した。 1—クロロブタン 109g、クロロスルホン酸 4. 9gを 秤量し、 4. 5wt%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 25gとした 以外は、実施例 17と同様にして高分子電解質膜を得た (クロロスルホン酸添加量は、 高分子フィルムの重量に対して 19. 4倍量)。結果を表 3に示す。  The polymer film was used. A polymer electrolyte was prepared in the same manner as in Example 17 except that 109 g of 1-chlorobutane and 4.9 g of chlorosulfonic acid were weighed to prepare a 4.5 wt% chlorosulfonic acid solution and the polymer film was changed to 0.25 g. A membrane was obtained (the amount of chlorosulfonic acid added was 19.4 times the weight of the polymer film). The results are shown in Table 3.
[0328] (実施例 33)  [0328] (Example 33)
実施例 32と同様の方法で得られた高分子フィルムを使用した。 1—クロロブタン 10 3g、クロロスルホン酸 5. 2gを秤量し、 5. Owt%のクロロスルホン酸溶液を調製し、高 分子フィルムを 0. 24gとした以外は、実施例 17と同様にしてプロトン伝導性高分子 電解質膜を得た(クロロスルホン酸添カ卩量は、高分子フィルムの重量に対して 21. 6 倍量)。結果を表 3に示す。  A polymer film obtained in the same manner as in Example 32 was used. 1-Chlorobutane 103 g and chlorosulfonic acid 5.2 g were weighed, 5. Produced protons in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution was prepared and the high molecular weight film was changed to 0.24 g. A conductive polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 21.6 times the weight of the polymer film). The results are shown in Table 3.
[0329] (実施例 34)  [0329] (Example 34)
<脂肪族系高分子化合物と芳香族系高分子化合物とからなる高分子フィルムの調 製 > 脂肪族系高分子化合物として、ポリプロピレン (三井ィ匕学株式会社製、 F107DV) を使用した。芳香族系高分子化合物として、ポリフエ-レンサルファイド(大日本イン キエ業株式会社製、 DIC— PPS ML320p)を使用した。 <Preparation of polymer films composed of aliphatic polymer compounds and aromatic polymer compounds> Polypropylene (manufactured by Mitsui Engineering Co., Ltd., F107DV) was used as the aliphatic polymer compound. As an aromatic polymer compound, polyphenylene sulfide (Dainippon Ink Industries Co., Ltd., DIC—PPS ML320p) was used.
[0330] 前記脂肪族系高分子化合物のペレット 70重量部と、前記芳香族系高分子化合物 のペレット 30重量部を、ドライブレンドした。ドライブレンドしたペレットの混合物を、ス クリュー温度 290°C、 Tダイ温度 290°Cの条件で、 2軸混練押出し機に Tダイをセット した押出し機により、溶融押出しし、高分子フィルムを得た (脂肪族系高分子化合物 であるポリプロピレンを、高分子フィルム中に 70重量0 /0含有する)。 [0330] 70 parts by weight of the aliphatic polymer compound pellets and 30 parts by weight of the aromatic polymer compound pellets were dry blended. The mixture of the dry blended pellets was melt-extruded with a twin-screw kneading extruder with a T-die set under a screw temperature of 290 ° C and a T-die temperature of 290 ° C to obtain a polymer film. (polypropylene is an aliphatic polymer compound, 70 weight 0/0 contained in the polymer film).
[0331] <高分子電解質膜の調製 > [0331] <Preparation of polymer electrolyte membrane>
前記高分子フィルムを使用した。 1—クロロブタン l l lg、クロロスルホン酸 4. 4gを 秤量し、 4. Owt%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 26gとした 以外は、実施例 17と同様にして高分子電解質膜を得た (クロロスルホン酸添加量は、 高分子フィルムの重量に対して 17. 3倍量)。結果を表 3に示す。  The polymer film was used. 1-chlorobutane ll lg, 4.4 g of chlorosulfonic acid was weighed, 4. Owt% chlorosulfonic acid solution was prepared, and the polymer film was changed to 0.26 g. An electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 17.3 times the weight of the polymer film). The results are shown in Table 3.
(実施例 35)  (Example 35)
実施例 34と同様の方法で得られた高分子フィルムを使用した。 1—クロロブタン 12 2g、クロロスルホン酸 5. 5gを秤量し、 4. 5wt%のクロロスルホン酸溶液を調製し、高 分子フィルムを 0. 28gとした以外は、実施例 17と同様にしてプロトン伝導性高分子 電解質膜を得た(クロロスルホン酸添カ卩量は、高分子フィルムの重量に対して 19. 4 倍量)。結果を表 3に示す。  A polymer film obtained in the same manner as in Example 34 was used. 1-Chlorobutane 12 2 g and chlorosulfonic acid 5.5 g were weighed, a 4.5 wt% chlorosulfonic acid solution was prepared, and proton conduction was performed in the same manner as in Example 17 except that the high molecular weight film was changed to 0.28 g. A polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 19.4 times the weight of the polymer film). The results are shown in Table 3.
[0332] (実施例 36) [0332] (Example 36)
実施例 34と同様の方法で得られた高分子フィルムを使用した。 1—クロロブタン 11 9g、クロロスルホン酸 6. Ogを秤量し、 5. Owt%のクロロスルホン酸溶液を調製し、高 分子フィルムを 0. 28gとした以外は、実施例 17と同様にしてプロトン伝導性高分子 電解質膜を得た(クロロスルホン酸添カ卩量は、高分子フィルムの重量に対して 21. 6 倍量)。結果を表 3に示す。  A polymer film obtained in the same manner as in Example 34 was used. 1-Chlorobutane 11 9 g, chlorosulfonic acid 6. Og was weighed, 5. Owt% chlorosulfonic acid solution was prepared, and proton conduction was performed in the same manner as in Example 17 except that the high molecular weight film was changed to 0.28 g. A conductive polymer electrolyte membrane was obtained (the amount of chlorosulfonic acid added was 21.6 times the weight of the polymer film). The results are shown in Table 3.
[0333] (比較例 5) [0333] (Comparative Example 5)
<芳香族系高分子化合物からなる高分子フィルムの調製 >  <Preparation of polymer film composed of aromatic polymer compound>
芳香族系高分子化合物として、ポリフエ-レンサルファイド (大日本インキ工業株式 会社製、 DIC— PPS LDlOpl l)を使用した。 Polyphenylene sulfide (Dainippon Ink Industries Ltd.) as an aromatic polymer A company-made DIC—PPS LDlOpl l) was used.
[0334] 前記芳香族系高分子化合物のペレットを、スクリュー温度 290°C、 Tダイ温度 290 °Cの条件で、 2軸混練押出し機に Tダイをセットした押出し機により、溶融押出しし、 高 [0334] The pellets of the aromatic polymer compound were melt-extruded with an extruder in which a T-die was set in a twin-screw kneading extruder at a screw temperature of 290 ° C and a T-die temperature of 290 ° C.
分子フィルムを得た。  A molecular film was obtained.
[0335] <高分子電解質膜の調製 >  [0335] <Preparation of polymer electrolyte membrane>
前記高分子フィルムを使用した。 1 クロロブタン 119g、クロロスルホン酸 1. 2gを 秤量し、 1. Owt%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 28gとした 以外は、実施例 17と同様にして高分子電解質膜を得た (クロロスルホン酸添加量は、 高分子フィルムの重量に対して 4. 3倍量)。結果を表 3に示す。  The polymer film was used. 1 Weigh 119 g of chlorobutane and 1.2 g of chlorosulfonic acid, 1. Prepare a polymer electrolyte membrane in the same manner as in Example 17 except that an Owt% chlorosulfonic acid solution was prepared and the polymer film was 0.28 g. (The amount of chlorosulfonic acid added was 4.3 times the weight of the polymer film). The results are shown in Table 3.
[0336] (比較例 6)  [0336] (Comparative Example 6)
<芳香族系高分子化合物からなる高分子フィルムの調製 >  <Preparation of polymer film composed of aromatic polymer compound>
芳香族系高分子化合物として、ポリフエ-レンサルファイド (大日本インキ工業株式 会社製、 DIC— PPS ML320p)を使用した。  As an aromatic polymer compound, polyphenylene sulfide (manufactured by Dainippon Ink & Chemicals, Inc., DIC—PPS ML320p) was used.
[0337] 前記芳香族系高分子化合物のペレットを、スクリュー温度 290°C、 Tダイ温度 290 °Cの条件で、 2軸混練押出し機に Tダイをセットした押出し機により、溶融押出しし、 高分子フィルムを得た。  [0337] The aromatic polymer compound pellets were melt-extruded with a twin-screw kneading extruder with a T-die set under conditions of a screw temperature of 290 ° C and a T-die temperature of 290 ° C. A molecular film was obtained.
[0338] <高分子電解質膜の調製 >  <Preparation of polymer electrolyte membrane>
前記高分子フィルムを使用した。 1 クロロブタン 128g、クロロスルホン酸 1. 9gを 秤量し、 1. 5wt%のクロロスルホン酸溶液を調製し、高分子フィルムを 0. 30gとした 以外は、実施例 17と同様にして高分子電解質膜を得た (クロロスルホン酸添加量は、 高分子フィルムの重量に対して 6. 5倍量)。結果を表 3に示す。  The polymer film was used. 1 Polymer electrolyte membrane in the same manner as in Example 17 except that 128 g of chlorobutane and 1.9 g of chlorosulfonic acid were weighed to prepare a 1.5 wt% chlorosulfonic acid solution and the polymer film was changed to 0.30 g. (The amount of chlorosulfonic acid added was 6.5 times the weight of the polymer film). The results are shown in Table 3.
[0339] 表 3の実施例 17〜36と比較例 5, 6との比較から、本発明のプロトン伝導性高分子 電解質膜は、従来の高分子電解質膜と同オーダーのプロトン伝導度を有し、高分子 電解質膜として有用であることが明らかとなった。  [0339] From the comparison between Examples 17 to 36 in Table 3 and Comparative Examples 5 and 6, the proton conductive polymer electrolyte membrane of the present invention has proton conductivity in the same order as that of the conventional polymer electrolyte membrane. It was revealed that it is useful as a polymer electrolyte membrane.
[0340] 表 3の実施例 17〜33と比較例 5との比較および実施例 34〜36と比較例 6との比較 から、本発明の高分子電解質膜は、従来の高分子電解質膜よりもメタノール透過係 数が低ぐ高いメタノール遮断係数を示すことが明らかとなり、直接メタノール形燃料 電池用の高分子電解質膜として有用であることが示された。 [0340] From the comparison between Examples 17 to 33 and Comparative Example 5 in Table 3 and the comparison between Examples 34 to 36 and Comparative Example 6, the polymer electrolyte membrane of the present invention is more than the conventional polymer electrolyte membrane. It is clear that the methanol permeation coefficient is low and that it shows a high methanol barrier coefficient. It was shown to be useful as a polymer electrolyte membrane for batteries.
図面の簡単な説明  Brief Description of Drawings
[0341] [図 1]本発明の固体高分子形燃料電池 (直接メタノール形燃料電池)の要部断面図 である。  FIG. 1 is a cross-sectional view of a main part of a polymer electrolyte fuel cell (direct methanol fuel cell) of the present invention.
[図 2]本発明の直接メタノール形燃料電池の要部断面図である。  FIG. 2 is a cross-sectional view of a main part of a direct methanol fuel cell according to the present invention.
[図 3]本発明の高分子フィルム (実施例 1)の断面の透過型電子顕微鏡像である。  FIG. 3 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 1).
[図 4]本発明の高分子フィルム (実施例 2)の断面の透過型電子顕微鏡像である。  FIG. 4 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 2).
[図 5]本発明の高分子フィルム (実施例 3)の断面の透過型電子顕微鏡像である。  FIG. 5 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 3).
[図 6]本発明の高分子フィルム (実施例 4)の断面の透過型電子顕微鏡像である。  FIG. 6 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 4).
[図 7]本発明の高分子フィルム (実施例 5)の断面の透過型電子顕微鏡像である。  FIG. 7 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 5).
[図 8]本発明の高分子フィルム (実施例 6)の断面の透過型電子顕微鏡像である。  FIG. 8 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 6).
[図 9]本発明の高分子フィルム (実施例 7)の断面の透過型電子顕微鏡像である。  FIG. 9 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 7).
[図 10]本発明の高分子フィルム (実施例 8)の断面の透過型電子顕微鏡像である。  FIG. 10 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 8).
[図 11]本発明の高分子フィルム (実施例 9)の断面の透過型電子顕微鏡像である。  FIG. 11 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 9).
[図 12]本発明の高分子フィルム (実施例 10)の断面の透過型電子顕微鏡像である。  FIG. 12 is a transmission electron microscope image of a cross section of the polymer film of the present invention (Example 10).
[図 13]本発明の固体高分子形燃料電池 (直接メタノール形燃料電池)の要部断面図 の一態様である。  FIG. 13 is a cross-sectional view of a main part of a solid polymer fuel cell (direct methanol fuel cell) of the present invention.
[図 14]本発明の直接メタノール形燃料電池の要部断面図の一態様である。  FIG. 14 is an embodiment of a cross-sectional view of the main part of the direct methanol fuel cell of the present invention.
[図 15]本発明の実施例 23の、直接メタノール形燃料電池の発電特性評価結果。  FIG. 15 shows the results of evaluation of power generation characteristics of a direct methanol fuel cell in Example 23 of the present invention.
[図 16]本発明の実施例 25の、直接メタノール形燃料電池の発電特性評価結果。  FIG. 16 is a result of evaluation of power generation characteristics of a direct methanol fuel cell in Example 25 of the present invention.
[図 17]本発明の実施例 28の、直接メタノール形燃料電池の発電特性評価結果。 符号の説明  FIG. 17 shows the evaluation results of power generation characteristics of a direct methanol fuel cell in Example 28 of the present invention. Explanation of symbols
[0342] 1 高分子電解質膜 [0342] 1 Polymer electrolyte membrane
2 触媒層  2 Catalyst layer
3 拡散層  3 Diffusion layer
4 セノ レ1 ~~タ' ~~ 4 Senore 1 ~~ Ta '~~
5 流路  5 flow path
6 膜 電極接合体 (MEA) 7 燃料タンク 6 Membrane electrode assembly (MEA) 7 Fuel tank
8 燃料充填部  8 Fuel filling part
9 支持体  9 Support
10 酸化剤流路  10 Oxidant flow path
21 プロトン伝導性高分子膜  21 Proton conducting polymer membrane
22 触媒担持ガス拡散電極  22 Catalyst supported gas diffusion electrode
23 流路  23 Flow path
24 セパレーター  24 Separator
25 プロトン伝導性高分子膜  25 Proton conducting polymer membrane
26 触媒担持ガス拡散電極  26 Catalyst-supported gas diffusion electrode
27 燃料タンク  27 Fuel tank
28 燃料充填部  28 Fuel filling part
29 支持体  29 Support
30 酸化剤流路  30 Oxidant flow path
産業上の利用可能性  Industrial applicability
[0343] 本発明によれば、脂肪族系高分子化合物と、プロトン伝導性基を含有する芳香族 系高分子化合物との、少なくとも 2種の化合物力 なる高分子電解質膜によって高い プロトン伝導性と高いメタノール遮断性を発現することが可能となった。これらは、優 れたプロトン伝導性、高いメタノール遮断性を有し、固体高分子形燃料電池、直接液 体形燃料電池、直接メタノール形燃料電池の高分子電解質膜として有用である。ま た、本発明の高分子フィルムを材料とすることで、上記の高分子電解質膜を実現する ことが可能となった。  [0343] According to the present invention, high proton conductivity is achieved by a polymer electrolyte membrane having at least two kinds of compound power, that is, an aliphatic polymer compound and an aromatic polymer compound containing a proton conductive group. It became possible to express a high methanol barrier property. These have excellent proton conductivity and high methanol barrier properties, and are useful as polymer electrolyte membranes for polymer electrolyte fuel cells, direct liquid fuel cells, and direct methanol fuel cells. Further, the polymer electrolyte membrane can be realized by using the polymer film of the present invention as a material.
[0344] 本発明によれば、芳香族単位を有する高分子化合物と、熱可塑性エラストマ一と、 芳香族単位がない高分子化合物、との少なくとも 3種の高分子化合物を必須成分と して含む、高分子フィルム中の芳香族単位にプロトン伝導性基が導入されている高 分子電解質膜は、優れたプロトン伝導性かつ高いメタノール遮断性を有し、固体高 分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池の高分子電解 質膜として有用である。また、本発明の高分子フィルムを材料とすることで、上記の高 分子電解質膜を実現することが可能となった。 [0344] According to the present invention, at least three kinds of polymer compounds including a polymer compound having an aromatic unit, a thermoplastic elastomer, and a polymer compound having no aromatic unit are included as essential components. High molecular electrolyte membranes, in which proton conductive groups are introduced into aromatic units in polymer films, have excellent proton conductivity and high methanol barrier properties, such as solid polymer fuel cells and direct liquid fuels. It is useful as a polymer electrolyte membrane for batteries and direct methanol fuel cells. Further, by using the polymer film of the present invention as a material, It became possible to realize a molecular electrolyte membrane.
本発明によれば、芳香族単位を有する高分子化合物と、芳香族単位がな!ヽ高分子 化合物、との少なくとも 2種の高分子化合物を含み、  According to the present invention, at least two kinds of polymer compounds, that is, a polymer compound having an aromatic unit and a polymer compound having no aromatic unit are included,
前記芳香族単位のな!ヽ高分子化合物中に芳香族単位を有する高分子化合物が分 散されていることを特徴とする構造を有する高分子フィルム中の芳香族単位にプロト ン伝導性基が導入されて!、る高分子電解質膜は、優れたプロトン伝導性かつ高!、メ タノール遮断性を有し、固体高分子形燃料電池、直接液体形燃料電池、直接メタノ ール形燃料電池の高分子電解質膜として有用である。また、本発明の高分子フィル ムを材料とすることで、上記の高分子電解質膜を実現することが可能となった。 Of the aromatic unit!プ ロ Proton conductive groups are introduced into the aromatic unit in the polymer film having a structure characterized in that the polymer compound having an aromatic unit is dispersed in the polymer compound! Molecular electrolyte membranes have excellent proton conductivity, high! And methanol blocking properties, and are useful as polymer electrolyte membranes for solid polymer fuel cells, direct liquid fuel cells, and direct methanol fuel cells. is there. In addition, by using the polymer film of the present invention as a material, the above-described polymer electrolyte membrane can be realized.

Claims

請求の範囲 The scope of the claims
[1] 固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の材料であって、  [1] A material for a polymer electrolyte membrane used in a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell,
(A)芳香族単位を有する高分子化合物、  (A) a polymer compound having an aromatic unit,
(B)芳香族単位がな!、高分子化合物、  (B) No aromatic unit !, polymer compound,
を必須成分として含む、高分子フィルム。  A polymer film containing as an essential component.
[2] さらに、(C)熱可塑性エラストマ一を必須成分として含む請求項 1記載の高分子フィ ノレム。  [2] The polymer phenol according to claim 1, further comprising (C) a thermoplastic elastomer as an essential component.
[3] 前記(A)がポリスチレン、シンジオタクチックポリスチレン、ポリフエ-レンエーテル、 変性ポリフエ-レンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエーテルエー テルケトンおよびポリフエ-レンサルファイド、並びに、それらの誘導体からなる群から 選択される少なくとも 1種であることを特徴とする、請求項 1または 2のいずれかに記 載の高分子フィルム。  [3] The group (A) is composed of polystyrene, syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyether sulfone, polyether ether ketone and polyphenylene sulfide, and derivatives thereof. 3. The polymer film according to claim 1, wherein the polymer film is at least one selected from the group consisting of:
[4] 前記 (A)がポリスチレン、シンジオタクチックポリスチレンおよびポリフエ-レンサル ファイドからなる群力も選択される少なくとも 1種であることを特徴とする、請求項 1〜3 の!、ずれかに記載の高分子フィルム。  [4] The method according to any one of claims 1 to 3, wherein (A) is at least one selected from the group force consisting of polystyrene, syndiotactic polystyrene, and polyphenylene sulfide. The polymer film according to any one of the above.
[5] 前記 (B)が下記一般式(1)  [5] (B) is represented by the following general formula (1)
[化 1]  [Chemical 1]
一 (CX Xz— CXgXj— ( 1 ) One (CX Xz— CXgXj— (1)
(式中、 X〜は、 H、 CH、 Cl、 F、 OCOCH、 CN、 COOHゝ COOCH、 OC H、 (Where X is H, CH, Cl, F, OCOCH, CN, COOH ゝ COOCH, OC H,
1 4 3 3 3 4 9 からなる群から選択されるいずれかであって、 X〜は互いに独立で同一であっても  Any one selected from the group consisting of 1 4 3 3 3 4 9,
1 4  14
異なって!/、てもよ 、)力もなる高分子化合物から選択される少なくとも 1種であることを 特徴とする、請求項 1〜4のいずれかに記載の高分子フィルム。  No! 5. The polymer film according to any one of claims 1 to 4, wherein the polymer film is at least one selected from polymer compounds capable of exerting force.
前記 )がポリエチレン、ポリプロピレンおよびポリメチルペンテン、並びに、それら の誘導体力もなる群力も選択される少なくとも 1種であることを特徴とする、請求項 1〜 5のいずれかに記載の咼分子フィルム。 The above-mentioned) is at least one selected from polyethylene, polypropylene and polymethylpentene, and the group force that is also a derivative force thereof. 6. A molecular film according to any one of 5.
前記 (C)がポリスチレンまたはポリスチレン誘導体と  (C) is polystyrene or a polystyrene derivative
下記一般式 (2)および Zまたは一般式 (3)との  The following general formula (2) and Z or general formula (3)
共重合体であることを特徴とする、請求項 2〜6の 、ずれか〖こ記載の高分子フィルム  The polymer film according to claim 2, wherein the polymer film is a copolymer.
[化 2] [Chemical 2]
Figure imgf000082_0001
Figure imgf000082_0001
Figure imgf000082_0002
Figure imgf000082_0002
(式中、 R〜 は C H であって、 R〜 は互いに独立で同一であっても異なってい (In the formula, R˜ is C H, and R˜ is independent of each other and is the same or different.
1 12 2x+l 1 12  1 12 2x + l 1 12
てもよい。また、 1、 m、 n、 xは 0以上の整数である。 )  May be. 1, m, n, and x are integers of 0 or more. )
[8] 前記(C)がポリスチレン—ポリイソブチレン—ポリスチレントリブロック共重合体、ポリ スチレン ポリ(エチレン Zプロピレン)ブロック共重合体、ポリスチレン ポリ(ェチレ ン Zプロピレン)一ポリスチレントリブロック共重合体、ポリスチレン一ポリ(エチレン Z ブチレン)—ポリスチレントリブロック共重合体およびポリスチレン—ポリ(エチレン—ェ チレン Zプロピレン) ポリスチレントリブロック共重合体、並びに、それらの誘導体か らなる群力 選択される少なくとも 1種であることを特徴とする、請求項 2〜7のいずれ かに記載の高分子フィルム。 [8] (C) is a polystyrene-polyisobutylene-polystyrene triblock copolymer, polystyrene poly (ethylene Z propylene) block copolymer, polystyrene poly (ethylene Z propylene) monopolystyrene triblock copolymer, polystyrene Poly (ethylene Z butylene) -polystyrene triblock copolymer and polystyrene-poly (ethylene-ethylene Z propylene) polystyrene triblock copolymer and their derivatives The polymer film according to claim 2, wherein the polymer film is at least one selected from the group force.
前記 (B)が 10重量%以上 95重量%以下含まれることを特徴とする請求項 1〜8の Vヽずれかに記載の高分子フィルム。  The polymer film according to claim 1, wherein (B) is contained in an amount of 10% by weight to 95% by weight.
前記 )中に前記 (A)が分散されていることを特徴とする、請求項 1〜9のいずれ かに記載の高分子フィルム。  10. The polymer film according to claim 1, wherein (A) is dispersed in (1).
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜であって、請求項 1〜: LOのいずれかに記載の高分子フィルム 中に存在する芳香族単位にプロトン伝導性基が導入されていることを特徴とする、高 分子電解質膜。  A polymer electrolyte membrane for use in a polymer electrolyte fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, and is present in the polymer film according to any one of claims 1 to A polymer electrolyte membrane, wherein a proton conductive group is introduced into an aromatic unit.
前記プロトン伝導性基がスルホン酸基であることを特徴とする、請求項 11記載の高 分子電解質膜。  12. The polymer electrolyte membrane according to claim 11, wherein the proton conductive group is a sulfonic acid group.
前記高分子電解質膜のイオン交換容量が、 0. 5〜3. 0ミリ当量 Zgであることを特 徴とする、請求項 11または 12のいずれかに記載の高分子電解質膜。  13. The polymer electrolyte membrane according to claim 11, wherein an ion exchange capacity of the polymer electrolyte membrane is 0.5 to 3.0 milliequivalent Zg.
前記高分子電解質膜の 23°Cにおけるプロトン伝導度力 1. 0 X 10— 3SZcm以上 であることを特徴とする、請求項 11〜13のいずれかに記載の高分子電解質膜。 前記高分子電解質膜の 25°Cにおける 64重量%メタノール水溶液に対するメタノー ル透過係数が、 2, 000 molZ (cm'日)以下であることを特徴とする、請求項 11〜 14の 、ずれかに記載の高分子電解質膜。 The polymer is characterized by proton conductivity force at 23 ° C of the electrolyte membrane 1. It 0 X 10- 3 SZcm above, the polymer electrolyte membrane according to any one of claims 11 to 13. The methanol permeation coefficient of the polymer electrolyte membrane with respect to a 64 wt% aqueous methanol solution at 25 ° C is 2,000 molZ (cm'day) or less. The polymer electrolyte membrane as described.
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の材料の製造方法であって、前記請求項 1〜10のいずれか に記載の高分子フィルムを溶融押出成形で製造することを特徴とする、高分子フィル ムの製造方法。  11. A method for producing a material for a polymer electrolyte membrane used in a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, wherein the polymer according to claim 1 is used. A method for producing a polymer film, comprising producing a film by melt extrusion.
固体高分子形燃料電池、直接液体形燃料電池、直接メタノール形燃料電池、に用 いる、高分子電解質膜の製造方法であって、前記請求項 1〜10のいずれかに記載 の高分子フィルムを有機溶媒存在下でスルホン化剤と接触させることを特徴とする、 高分子電解質膜の製造方法。  A method for producing a polymer electrolyte membrane for use in a solid polymer fuel cell, a direct liquid fuel cell, and a direct methanol fuel cell, wherein the polymer film according to any one of claims 1 to 10 is used. A method for producing a polymer electrolyte membrane, comprising contacting with a sulfonating agent in the presence of an organic solvent.
前記スルホン化剤がクロロスルホン酸であることを特徴とする、請求項 17記載の高 分子電解質膜の製造方法。 The high sulfonating agent according to claim 17, characterized in that the sulfonating agent is chlorosulfonic acid. A method for producing a molecular electrolyte membrane.
[19] 前記有機溶媒がハロゲンィ匕炭化水素であることを特徴とする、請求項 17または 18 の!、ずれかに記載の高分子電解質膜の製造方法。  [19] The method for producing a polymer electrolyte membrane according to any one of [17] and [18], wherein the organic solvent is a halogenated hydrocarbon.
[20] 前記ハロゲン化炭化水素力 ジクロロメタン、 1, 2—ジクロ口エタンおよび 1 クロ口 ブタン力もなる群力も選択される少なくとも 1種であることを特徴とする、請求項 17〜 1[20] The halogenated hydrocarbon power is at least one kind selected from the group power that is also dichloromethane, 1,2-dichloromethane, and 1-chlorobutane power.
9の 、ずれかに記載の高分子電解質膜の製造方法。 9. The method for producing a polymer electrolyte membrane according to any one of 9 above.
[21] 請求項 11〜15のいずれかに記載の高分子電解質膜、あるいは、請求項 17〜20 の ヽずれかに記載の高分子電解質膜の製造方法で得られる高分子電解質膜、を使 用していることを特徴とする、固体高分子形燃料電池。 [21] The polymer electrolyte membrane according to any one of claims 11 to 15 or the polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to any one of claims 17 to 20 is used. A polymer electrolyte fuel cell, characterized by being used.
[22] 請求項 11〜15のいずれかに記載の高分子電解質膜、あるいは、請求項 17〜20 の ヽずれかに記載の高分子電解質膜の製造方法で得られる高分子電解質膜、を使 用していることを特徴とする、直接液体形燃料電池。 [22] The polymer electrolyte membrane according to any one of claims 11 to 15 or the polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to any one of claims 17 to 20 is used. A direct liquid fuel cell, characterized by being used.
[23] 請求項 11〜15のいずれかに記載の高分子電解質膜、あるいは、請求項 17〜20 の ヽずれかに記載の高分子電解質膜の製造方法で得られる高分子電解質膜、を使 用して 、ることを特徴とする、直接メタノール形燃料電池。 [23] The polymer electrolyte membrane according to any one of claims 11 to 15 or the polymer electrolyte membrane obtained by the method for producing a polymer electrolyte membrane according to any one of claims 17 to 20 is used. A direct methanol fuel cell, characterized in that
PCT/JP2005/014730 2004-08-20 2005-08-11 Polymer electrolyte membrane, polymer film as material for same, method for producing electrolyte membrane, and solid polymer fuel cell using such electrolyte membrane WO2006019029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531721A JP4995568B2 (en) 2004-08-20 2005-08-11 POLYMER ELECTROLYTE MEMBRANE, POLYMER FILM AS ITS MATERIAL, METHOD FOR PRODUCING ELECTROLYTE MEMBRANE, AND SOLID POLYMER FUEL CELL USING ELECTROLYTE MEMBRANE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-240802 2004-08-20
JP2004240802 2004-08-20
JP2005-086577 2005-03-24
JP2005-086579 2005-03-24
JP2005086579 2005-03-24
JP2005086577 2005-03-24

Publications (1)

Publication Number Publication Date
WO2006019029A1 true WO2006019029A1 (en) 2006-02-23

Family

ID=35907417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014730 WO2006019029A1 (en) 2004-08-20 2005-08-11 Polymer electrolyte membrane, polymer film as material for same, method for producing electrolyte membrane, and solid polymer fuel cell using such electrolyte membrane

Country Status (2)

Country Link
JP (1) JP4995568B2 (en)
WO (1) WO2006019029A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269279A (en) * 2005-03-24 2006-10-05 Kaneka Corp Polymer film, polyelectrolyte membrane, and manufacturing method of them, as well as solid polymer fuel cell using them
JP2008021627A (en) * 2006-06-15 2008-01-31 Kaneka Corp Manufacturing method of polymer electrolyte membrane, polymer electrolyte membrane manufactured by this manufacturing method, and its use
JP2008112648A (en) * 2006-10-31 2008-05-15 Kaneka Corp Membrane electrode assembly, manufacturing method therefor, and fuel battery
EP2264087A4 (en) * 2008-03-26 2012-08-29 Teijin Ltd Film for reinforcing electrolyte membrane of solid polymer fuel cell
CN113943451A (en) * 2020-07-15 2022-01-18 大韩油化株式会社 Polymer electrolyte membrane and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017090A (en) * 2001-07-03 2003-01-17 Sumitomo Chem Co Ltd Polymer electrolyte membrane and fuel cell using it
JP2003535940A (en) * 2000-06-02 2003-12-02 エスアールアイ インターナショナル Polymer composition
JP2004235051A (en) * 2003-01-31 2004-08-19 Toray Ind Inc High polymer solid electrolyte and polymer electrolyte fuel cell using the same
JP2004363013A (en) * 2003-06-06 2004-12-24 Toray Ind Inc Polymer solid electrolyte and solid polymer fuel cell using it
JP2005054170A (en) * 2003-07-23 2005-03-03 Sumitomo Chemical Co Ltd Copolymer and its application
JP2005183053A (en) * 2003-12-17 2005-07-07 Kaneka Corp Proton conductive polymer electrolyte, proton conductive polymer electrolyte membrane, membrane-electrode junction, and solid polymer type fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824820B2 (en) * 2002-03-07 2010-11-02 Nitto Denko Corporation Electrolyte film and solid polymer fuel cell using the same
JP2003323904A (en) * 2002-05-07 2003-11-14 Hitachi Ltd Fuel cell power generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535940A (en) * 2000-06-02 2003-12-02 エスアールアイ インターナショナル Polymer composition
JP2003017090A (en) * 2001-07-03 2003-01-17 Sumitomo Chem Co Ltd Polymer electrolyte membrane and fuel cell using it
JP2004235051A (en) * 2003-01-31 2004-08-19 Toray Ind Inc High polymer solid electrolyte and polymer electrolyte fuel cell using the same
JP2004363013A (en) * 2003-06-06 2004-12-24 Toray Ind Inc Polymer solid electrolyte and solid polymer fuel cell using it
JP2005054170A (en) * 2003-07-23 2005-03-03 Sumitomo Chemical Co Ltd Copolymer and its application
JP2005183053A (en) * 2003-12-17 2005-07-07 Kaneka Corp Proton conductive polymer electrolyte, proton conductive polymer electrolyte membrane, membrane-electrode junction, and solid polymer type fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269279A (en) * 2005-03-24 2006-10-05 Kaneka Corp Polymer film, polyelectrolyte membrane, and manufacturing method of them, as well as solid polymer fuel cell using them
JP2008021627A (en) * 2006-06-15 2008-01-31 Kaneka Corp Manufacturing method of polymer electrolyte membrane, polymer electrolyte membrane manufactured by this manufacturing method, and its use
JP2008112648A (en) * 2006-10-31 2008-05-15 Kaneka Corp Membrane electrode assembly, manufacturing method therefor, and fuel battery
EP2264087A4 (en) * 2008-03-26 2012-08-29 Teijin Ltd Film for reinforcing electrolyte membrane of solid polymer fuel cell
US9238327B2 (en) 2008-03-26 2016-01-19 Teijin Limited Film for reinforcing electrolyte membrane of polymer electrolyte fuel cell
CN113943451A (en) * 2020-07-15 2022-01-18 大韩油化株式会社 Polymer electrolyte membrane and method for producing same
EP3940832A1 (en) * 2020-07-15 2022-01-19 Korea Petrochemical Ind. Co., Ltd. Polymer electrolyte membrane and method for manufacturing the same
US20220016579A1 (en) * 2020-07-15 2022-01-20 Korea Petrochemical Ind. Co., Ltd. Polymer electrolyte membrane and method for manufacturing the same

Also Published As

Publication number Publication date
JP4995568B2 (en) 2012-08-08
JPWO2006019029A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
US20100015496A1 (en) Polymer electrolyte composition, polymer electrolyte membrane, membrane electrode assembly and solid polymer electrolyte-based fuel cell
WO2012046777A1 (en) Fluorine-containing polymer electrolyte membrane
JP7359139B2 (en) Laminated electrolyte membrane, membrane electrode assembly, water electrolysis type hydrogen generator, and method for manufacturing the laminated electrolyte membrane
JP5905857B2 (en) Polymer electrolyte, polymer electrolyte membrane, fuel cell catalyst layer binder, and use thereof
JP2005353581A (en) Electrolyte membrane, membrane-electrode composite, and polymer electrolyte fuel cell
JP5189394B2 (en) Polymer electrolyte membrane
JP4995568B2 (en) POLYMER ELECTROLYTE MEMBRANE, POLYMER FILM AS ITS MATERIAL, METHOD FOR PRODUCING ELECTROLYTE MEMBRANE, AND SOLID POLYMER FUEL CELL USING ELECTROLYTE MEMBRANE
Ng et al. Self-sustainable, self-healable sulfonated graphene oxide incorporated nafion/poly (vinyl alcohol) proton exchange membrane for direct methanol fuel cell applications
JP2006190627A (en) Solid polyelectrolyte membrane having reinforcement material
US9631105B2 (en) PPS electrode reinforcing material/crack mitigant
JP2007335265A (en) Manufacturing method of polymer electrolyte membrane, as well as polymer electrolyte membrane manufactured by the manufacturing method, and its utilization
JP2015153573A (en) Polymer electrolyte membrane, membrane electrode assembly, and solid polymer fuel cell
JP5044892B2 (en) POLYMER FILM, POLYMER ELECTROLYTE MEMBRANE, PROCESS FOR PRODUCING THEM, AND SOLID POLYMER FUEL CELL USING THEM
JP5315877B2 (en) Polymer electrolyte material and polymer electrolyte fuel cell using the same
JP2008311146A (en) Membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
JP2010021126A (en) Ion-conductive composite polymeric membrane, and process for producing the same
JP4437663B2 (en) Proton conducting polymer electrolyte, proton conducting polymer electrolyte membrane and membrane-electrode assembly, and solid polymer fuel cell
JP2006260901A (en) Complex membrane of fluorine-containing sulfonic acid polymer
JP5114047B2 (en) Method for producing polymer electrolyte membrane
JP5204971B2 (en) Method for producing polymer electrolyte membrane, polymer electrolyte membrane produced by the production method, and use thereof
JP7106002B2 (en) Polymer electrolyte membrane, membrane electrode assembly, solid polymer electrolyte fuel cell, and method for producing polymer electrolyte membrane
JP2007335264A (en) Polymer electrolyte membrane, its manufacturing method, and its utilization
JP2006269278A (en) Polymer film, polyelectrolyte membrane, and manufacturing method of them, as well as solid polymer fuel cell using them
JP4543704B2 (en) Polymer solid electrolyte membrane and method for producing the same
JP2007134164A (en) High polymer film, polymer electrolyte membrane including same for fuel cell, and method of manufacturing them

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531721

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase