WO2006019019A1 - Composite transparent conductive substrate for touch panel and touch panel - Google Patents

Composite transparent conductive substrate for touch panel and touch panel Download PDF

Info

Publication number
WO2006019019A1
WO2006019019A1 PCT/JP2005/014632 JP2005014632W WO2006019019A1 WO 2006019019 A1 WO2006019019 A1 WO 2006019019A1 JP 2005014632 W JP2005014632 W JP 2005014632W WO 2006019019 A1 WO2006019019 A1 WO 2006019019A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
polymer
touch panel
conductive substrate
composite transparent
Prior art date
Application number
PCT/JP2005/014632
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Hatada
Masahiro Suda
Satoru Tani
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2006531676A priority Critical patent/JP4940949B2/en
Priority to CN2005800214531A priority patent/CN1977343B/en
Publication of WO2006019019A1 publication Critical patent/WO2006019019A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/62Insulating-layers or insulating-films on metal bodies

Definitions

  • the present invention relates to a composite transparent conductive substrate for a touch panel.
  • the touch panel is said to be excellent as a man-machine interface because it can be used by anyone simply by touching the display part of the display.
  • Resistive touch panels are used in personal portable information devices where demand is expanding.
  • a conventional resistance film type touch panel is a so-called dot-point method in which a pressing operation is performed with a finger or a pen.
  • the main characteristics required for the transparent electrode film (transparent conductive substrate) of this type of touch panel are (a) the specified resistance value and uniform resistance value, and (b) high temperature and high humidity. The stability of the resistance value below, and (c) The change in resistance value due to the hitting point is small!
  • the thickness of the transparent conductive layer provided on the transparent conductive substrate is as thin as 10 to 40 nm, so it is easy to cause deformation, wear, cracking, etc. in the transparent conductive layer depending on the striking point!
  • Patent Literature a transparent conductive laminate in which a transparent conductive layer is provided on at least one surface of a transparent substrate film via an anchor layer containing a siloxane bond having a thickness of 0.02 to 10 m has been proposed. 1). Although this method has stable resistance under high temperature and high humidity, the durability is not sufficient. Further, a transparent conductive substrate having a conductive surface containing a conductive polymer has been proposed (Patent Document 2). Although this method is excellent in durability, there is a problem that the resistance value increases under high temperature and high humidity.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-367436 Claim 2
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-109998 Claim 1
  • the specified resistance value is uniform, the resistance value is uniform, (b) the change in resistance value under high temperature and high humidity is small, and (c) the resistance value change due to drawing is small.
  • a transparent conductive substrate is provided.
  • a base material (A) comprising a polymer film or a polymer sheet, a transparent conductive layer (B), and a dielectric layer (C) are laminated in this order, and the dielectric layer (C) has a temperature of 20
  • the composite transparent conductive substrate of the present invention is excellent in stability of resistance value under high temperature and high humidity, and changes in resistance value due to drawing are small. Therefore, transparent conductive material for drawing type touch panels is used. Excellent as a substrate.
  • FIG. 1 is a schematic view showing an example of a cross section of a composite transparent substrate for a touch panel of the present invention.
  • FIG. 2 is a schematic diagram showing a method for evaluating a change in resistance value due to drawing in an example.
  • FIG. 3 is a diagram showing the relationship between voltage and linearity measured by the evaluation of FIG.
  • Base material comprising polymer film or sheet (A)
  • the composite transparent conductive substrate of the present invention comprises a substrate (A), a transparent conductive layer (B), and a dielectric layer (also referred to as a film Z sheet) that are polymer films or polymer sheets (hereinafter referred to as film Z sheets). C) are stacked in this order.
  • a film means a thickness of 1 ⁇ m or more and 500 ⁇ m or less
  • a sheet means a thickness of more than 500 ⁇ m and 2 mm or less.
  • the composite transparent conductive substrate of the present invention is a component used as a transparent electrode of a touch panel.
  • the upper electrode and the lower electrode are arranged with a certain gap.
  • a dot spacer may be provided between the upper and lower electrodes.
  • the transparent conductive layer (B) By laminating the dielectric layer (C) made of an organic polymer layer on the transparent conductive layer (B), the transparent conductive layer (B) is less likely to crack, and the resistance value due to drawing is reduced. The change in is significantly improved. However, if the transparent conductive layer (B) is covered with an organic polymer, the surface resistance value is usually extremely high, making it unsuitable as a transparent electrode. As described above, when a conductive polymer is used, this problem is solved, but there is a problem that the resistance value increases under high temperature and high humidity. For touch panels used in devices used outdoors such as portable information devices, it is important to have excellent resistance value stability under high temperature and high humidity. Therefore, resistance value stability and drawing durability under high temperature and high humidity conditions are important. A balance of sex is required.
  • the dielectric layer (C) made of an organic polymer having a relative dielectric constant of 15 or more at a temperature of 20 ° C. and a frequency of 1 kHz and having a thickness of 40 nm to 2000 nm is a transparent conductive layer.
  • B It is expected that a laminated transparent conductive substrate can be obtained by laminating on top of which resistance value stability under high temperature and high humidity is excellent and resistance value changes little by drawing!
  • the organic polymer having a relative dielectric constant of 15 or more at a temperature of 20 ° C and a frequency of 1 kHz is preferably a cyanoethylated organic polymer.
  • cyano-ethylated polymers such as cyanoethylcellulose and cyanoethylhydroxyethylcellulose
  • cyanoethylated polymers such as cyanoethyl starch, cyanoethylhydroxypropyl starch, cyanoethyl pullulan, cyanoethyldaricidol pullulan, etc.
  • the starch-based polymers are more preferably cyanoethylated polymers, cyanoethyl polyvinyl alcohol, cyanoethyl sucrose, and cyanoethyl sorbitol.
  • One or more organic polymers are more preferred.
  • cyanoethyl pullulan force is particularly preferred since it is flexible, has high drawing durability, and has high stability of resistance under high temperature and high humidity, and a composite transparent conductive substrate can be obtained.
  • acetylethyl pullulan can also be preferably used as the organic polymer. Whether acetylated pullulan is used alone or mixed with cyanoethylated organic polymer, it has flexibility, high drawing durability and stability of resistance under high temperature and high humidity. This is preferable because a high composite transparent conductive substrate can be obtained.
  • the thickness of the dielectric layer (C) is preferably 40 nm or more and 2000 nm or less! If it is less than 40 nm, the effect of improving the resistance stability under high temperature and high humidity is low and the effect of improving the drawing durability is not high. If it exceeds 2000 nm, the surface resistance value increases. A more preferable range is from 80 nm to 800 nm.
  • the surface resistance value of the composite transparent conductive substrate is preferably 100 ⁇ / port to 1000 ⁇ / port. If the surface resistance is less than 100 ⁇ , the power consumption of the touch panel increases. If the surface resistance exceeds 1000 ⁇ , it becomes more susceptible to radio disturbance.
  • the surface resistance value of the composite transparent conductive substrate is more preferably 200 ⁇ Z port or more and 500 ⁇ Z port or less. Increasing the thickness of the transparent conductive layer decreases the surface resistance value, but also increases the light transmittance. This has the negative effect of lowering the transparency of the touch panel.
  • the total light transmittance of the composite transparent conductive substrate is preferably 80% or more, more preferably 85% or more.
  • the surface resistance value referred to here is a surface resistance value measured on the dielectric layer (C).
  • the film Z sheet used as the substrate (A) includes polycarbonate resin, acrylic resin, acetate resin typified by triacetate, cyclic polyolefin, polyethylene terephthalate, polyethylene naphthalate, and other polyester resin
  • a film Z sheet formed from a highly transparent resin such as is preferred.
  • a film / sheet made of polyethylene terephthalate having high transparency, high heat resistance, and flexibility is more preferable.
  • the film Z sheet is coated with an adhesive resin, or a surface such as a discharge treatment. It is preferable to perform processing. Further, since the film Z sheet may shrink due to heat, it is preferable to perform a heat treatment in advance to remove the strain causing the shrinkage.
  • the transparent conductive film layer (B) of the composite substrate for the touch panel of the present invention comprises an ultrathin metal thin film such as gold, silver, copper, or indium oxide (acid-tin and Z or acid-zinc. It may be contained), and is preferably a metal-based transparent conductive thin film such as a conductive metal oxide such as tin oxide or zinc oxide.
  • a metal-based transparent conductive thin film such as a conductive metal oxide such as tin oxide or zinc oxide.
  • conductive metal oxides are more preferable because of high transparency and low resistance.
  • one kind or two or more kinds of compounds selected from indium oxide, tin oxide and zinc oxide are preferable because they have low surface resistance, high transparency, and little chemical change due to humidity.
  • the transparent conductive layer (B) may be formed by laminating metal transparent conductive thin films in multiple layers.
  • These transparent conductive thin films can be formed on the substrate (A) by a vacuum deposition method called PVD such as electron beam deposition, sputtering, or ion plating.
  • the metal-based transparent conductive thin film is preferably formed by selecting a metal-based transparent conductive material having characteristics suitable for the intended use and using an appropriate thin film manufacturing method.
  • Metal-based transparent conductive thin films are heat treated. Since characteristics such as surface resistance, light transmittance and light reflectance can be changed by heat treatment, heat treatment or the like may be performed as necessary.
  • the general physical properties and manufacturing methods of metal-based transparent conductive thin films are described in Chapter 3, Chapter 4 and Chapter 5 of “Transparent Conductive Film Technology” (Transparent Oxide Optical / Electronic Materials, Japan Society for the Promotion of Science). Details are described in the committee edition, published by Ohm Co., Ltd.).
  • the transparent conductive layer (B) When the transparent conductive layer (B) is made of a metal-based transparent conductive material, its thickness should be determined as appropriate according to the required surface resistance value and light transmittance according to the application, but is preferred.
  • the length is 5 nm and 0.5 m.
  • the thickness of the transparent conductive layer (B) is more preferably lOnm force as well. If the thickness is less than 5 nm, the surface resistance increases. If the thickness exceeds 0.5 m, the light transmittance of the transparent conductive layer (B) decreases due to light absorption, whereas the surface resistance value does not decrease much. is there.
  • the material of the transparent conductive layer (B) may be a conductive polymer!
  • the conductive polymer is preferably a conductive polymer having a light transmittance of 50% or more at a thickness of 2 m and a conductivity of 1.0 ⁇ 10 ⁇ 8 SZcm.
  • More preferable conductive polymers used for the transparent conductive layer (B) are polypyrrole, polythiophene, polyfuran, polyselenophene, polyarrin, polyparaphenylene, polyfluorene because of transparency, conductivity and flexibility. Copolymer power of these derivatives and monomers constituting them, any one kind or a mixture of two or more kinds of selected conductive polymers. In particular, by introducing side chains, polythiophene, polyalkylfluorene, polyfluorene, polyparaffin having solubility or dispersibility in water or other solvents.
  • At least one type of conductive polymer selected from phenylene, polyparaphenylene lenylene derivatives, and copolymers of monomers constituting them is excellent in transparency and conductivity, and is a film z sheet.
  • the conductive polymer film having an appropriate thickness can be uniformly formed, which is superior.
  • conductive polymers containing polydioxythiophene, especially those composed of a mixture of polyethylenedioxythiophene (PEDT) and polystyrene sulfonic acid (PSS) have water! / Since it can be dissolved or dispersed in a solvent, it can be easily coated on a film Z sheet, and it is most preferred because it can form a film with particularly high transparency and conductivity.
  • the lubricity is improved, so when cutting the film Z sheet to the display screen size, the cutting is performed.
  • the film Z sheet is preferable because stacking of the Z sheets becomes easy.
  • it is preferable to add other resin to the conductive polymer because the strength of the transparent conductive layer (B) increases and the stability of quality such as rubbing and pulling durability improves. .
  • the method of laminating the conductive polymer on the substrate (A) is an electrolytic polymerization method, a vapor deposition method, or a coating method.
  • Coating method and the like, and can be appropriately selected depending on the application and the type of the conductive polymer.
  • a conductive polymer that is soluble in water or other solvents is laminated by the coating method is film z because it can be uniformly layered on a long substrate such as a sheet with a specified thickness.
  • the coating method is not particularly limited, and an appropriate method can be selected depending on the application. The various methods of coating are described in detail in documents such as “Coating Method”, Chapter 1, Power, Chapter 18 (published by Yuji Harasaki, published by Tsuji Shoten).
  • the thickness of the transparent conductive layer (B) varies depending on the type of the conductive polymer, and should be appropriately determined according to the surface resistance value and the light transmittance. In particular, the range from 400 nm is preferable. A more preferable thickness is from 500 nm to 2 ⁇ m in terms of surface resistance and light transmittance. If the thickness is less than 400 nm, the surface resistance is high. On the other hand, when the thickness exceeds 5 / zm, the light transmittance decreases due to light absorption of the conductive polymer.
  • the touch panel is rubbed with a pen, the surface is easily damaged. Therefore, it is preferable to provide the surface hardness layer (D) on at least one surface of the composite conductive substrate.
  • the outer surface rubbed with the pen is the surface opposite to the surface of the base material (A) where the transparent conductive layer (B) Z dielectric layer (C) is provided, so that a surface hardness layer (D) is provided on the surface,
  • the surface hardened layer (D) Z substrate (A) Z transparent conductive layer (B) Z dielectric layer (C) are preferably laminated in this order.
  • Surface hardened layer (D) Z base (A) Z surface hardened layer (DZ transparent conductive layer (B) Z dielectric layer (C ) Configuration can also be selected.
  • the surface hardened layer (D) preferably has a pencil hardness of 1H or more.
  • the material of the surface hardened layer (D) may be an inorganic compound or an organic compound, but an organic compound is more preferable because of its flexibility.
  • Examples of the composition of the surface hardened layer include a thermosetting resin, and an ionizing radiation-curing resin that is cured by irradiation with high energy rays such as electron beams and ultraviolet rays.
  • (meth) acrylate resin, alkoxysilane compound, titanate compound and the like such as melamine resin, epoxy resin, pentaerythritol tritalylate alcohol modified polyfunctional compound are preferable.
  • (meth) attalylate resin that is cured by irradiation with ionizing radiation is a more preferable composition as the surface-hardened layer (D) because of its high hardness and flexibility.
  • cured resin compositions include the resin compositions described in JP-A-12-141556, JP-A-13-179902, JP-A-13-287308, and the like.
  • the touch panel uses a transparent conductive film force as an upper electrode and conductive glass as a lower electrode.
  • a transparent conductive film force as an upper electrode
  • conductive glass as a lower electrode.
  • the composite transparent conductive substrate of the present invention is used as a transparent conductive film as an upper electrode
  • a touch panel excellent in drawing resistance and high temperature and high humidity resistance can be produced.
  • Recently, the development of a thin touch panel for portable devices and the like has been studied.
  • the composite transparent substrate of the present invention is used as both upper and lower electrodes, it is thin and light! be able to
  • the organic polymer to be measured is dissolved in a solvent containing dimethylformamide as the main solvent, and the solution is applied on a glass plate to a dry thickness of 0.5 mm.
  • a plate-like sample was prepared by drying and solidifying for a minute.
  • the obtained plate sample was cut into a 40 mm square, flat electrode measurement electrode DPT-008 was attached to Keycom's dielectric constant measurement device DT-002, and the sample was sandwiched between the electrodes, at a temperature of 20 ° C, at a frequency lkHz, voltage 1.0V
  • the measurement was performed by a four-probe method using a low resistivity meter Loresta MCP-T360 manufactured by Diainstrument.
  • Four needle-shaped electrodes are placed in a straight line on the dielectric layer of the composite transparent substrate to be measured, a constant current is passed between the two outer probes, and the potential difference generated between the two inner probes is measured. The resistance was obtained by calculation.
  • an electrode was placed on the transparent electrode.
  • the composite transparent substrate was cut into a 40 mm square and measured according to JIS K7105-1981, using a Nippon Denshoku Haze Mater NDH-2000 with a D65 light source.
  • a composite transparent base material was cut into a 40 mm square, and measured according to JIS K7105-1981, using a SM color computer Model SM-6 manufactured by Suga Test Instruments Co., Ltd. with a D65 light source.
  • the composite transparent substrate was placed in a constant temperature and high humidity bath at 60 ° C and 90% RH for 240 hours.
  • the surface resistance value R before being put in the constant temperature and high humidity bath and the surface resistance value R after being put in are respectively described in 2.
  • the touch panel sample was installed in a resistance film type touch panel inspection device (manufactured by Tachi Panel Laboratory Co., Ltd.), and a constant current I was passed through the two parallel sides of the upper electrode as X electrodes as shown in FIG.
  • a pen load of 300 g was applied, and a 20 mm long straight line was applied at a speed of 210 mmZmin. Then, I wrote back and forth (drawing).
  • the linearity of the resistance value was measured every 1000 times, with one reciprocation as one drawing. The linearity of the resistance value is called linearity and is calculated by the following equation.
  • E is the voltage EX when the measurement terminal P is on the force 1 and the voltage EX when the measurement terminal P is on the force 2 when both ends of the straight line drawn by the measurement terminal P are XI and X2, respectively.
  • ⁇ ⁇ is the calculated E at point X and the actual measured EX, as shown in Figure 3.
  • the amount of change in linearity is the difference between the linearity measured at the first drawing and the linearity measured every 1000 drawing.
  • the maximum number of renderings is the number of renderings where the linearity change is 1.5%. The larger the maximum number of times of drawing, the less the resistance value changes due to drawing.
  • a 125 ⁇ m-thick polyethylene terephthalate film (trade name “Lumirror®” “QT59” manufactured by Toray Industries, Inc.) is used as a base material (A), and dipentaerythritol hexaatrate 70 on the base material (A).
  • the touch panel using the composite conductive base material of Example 1 was excellent in drawing durability because the maximum number of times of drawing satisfied 100,000 times or more, which is a standard of drawing durability.
  • the sputtered film is yellowish, and there has been a strong demand for improvement in light transmittance and color tone.
  • the composite conductive substrate of Example 1 was compared with the composite conductive substrate having no cyanoethyl pullulan layer of Comparative Example 1 by laminating a layer of cyanoethyl pullulan on the sputtered film.
  • the light transmittance increased and the b * value also decreased.
  • the composite conductive substrate for a touch panel of the present invention can be said to be a more preferable conductive substrate excellent in optical properties.
  • Example 1 Except that the dielectric layer (C) was not applied, the same procedure as in Example 1 was followed, in the order of the hardened surface layer (D), the substrate with the Z high molecular film force (A), and the transparent conductive layer (B) with the ZITO force. Laminated A composite transparent conductive substrate was prepared. The obtained transparent conductive substrate was evaluated according to the evaluation method. Table 1 shows the evaluation results.
  • a conductive polymer composed of polyethylene dioxythiophene (PEDOT) and polystyrene sulphonic acid (PSS) force is formed on the surface opposite to the surface cured layer (D) of the surface cured film prepared in Example 1.
  • PEDOT polyethylene dioxythiophene
  • PSS polystyrene sulphonic acid
  • Layer (B) was provided.
  • cyanoethyl pullulan was applied by the same method as in Example 1 so that the film thickness after drying was 0.12 ⁇ m, and a dielectric layer (C) was provided.
  • the touch panel using the composite conductive substrate of Example 2 is a measure of resistance value stability under high temperature and high humidity. RZR ⁇ 1.1
  • Substrate made of surface hardened layer (D) / polymer film cover (A) Transparent conductive material made of Z conductive polymer, except that the dielectric layer (C) was not applied. (B) A composite transparent conductive substrate that can be used for strength was prepared. The obtained transparent conductive substrate was evaluated according to the evaluation method. Table 1 shows the evaluation results.
  • a composite transparent conductive substrate was prepared in the same manner as in Example 1 except that when the dielectric layer (C) was provided, acetylene pullulan (manufactured by Hayashibara Shoji) was used instead of cyano pullulan.
  • the relative permittivity of acetylene pullulan used was 16. The results of evaluation according to the evaluation method are shown in Table 1.
  • acetylene blue instead of cyanoethyl pullulan
  • a composite transparent conductive substrate was prepared in the same manner as in Example 1 except that orchid (produced by Hayashibara Shoji) and cyanoethyl pullulan (produced by Shin-Etsu Chemical Co., Ltd.) were mixed at a weight ratio of 50% Z50%.
  • the relative dielectric constant was 17 when acetylene pullulan and cyanoethyl pullulan were mixed at a weight ratio of 50% Z50%.
  • Table 1 The results of evaluation according to the evaluation method are shown in Table 1.
  • It can be used as a composite transparent conductive substrate that is an important component of the touch panel used as an interface necessary for humans to operate information devices.

Abstract

A composite transparent conductive substrate for touch panels satisfying the characteristics of drawing type touch panels comprising a substrate (A) composed of a polymer film or a polymer sheet, a transparent conductive layer (B) and a dielectric layer (C) laid in this order wherein the dielectric layer (C) is composed of an organic polymer having a dielectric constant of not less than 15 at a temperature of 20°C and a frequency of 1 kHz, and has a thickness of 40-2000 nm.

Description

明 細 書  Specification
タツチパネル用複合透明導電性基材およびタツチパネル  Composite transparent conductive substrate for touch panel and touch panel
技術分野  Technical field
[0001] 本発明はタツチパネル用の複合透明導電性基材に関するものである。  [0001] The present invention relates to a composite transparent conductive substrate for a touch panel.
背景技術  Background art
[0002] タツチパネルは、ディスプレイの表示部にふれるだけで、誰もが使うことができるため 、マンマシーン 'インターフェイスとして優れているといわれている。需要が拡大してい るパーソナル携帯情報機器には、抵抗膜方式のタツチパネルが採用されている。  [0002] The touch panel is said to be excellent as a man-machine interface because it can be used by anyone simply by touching the display part of the display. Resistive touch panels are used in personal portable information devices where demand is expanding.
[0003] 従来の抵抗膜式タツチパネルは、指やペンなどで押圧操作する方式、いわゆる打 点方式である。この方式のタツチパネルの透明電極フィルム (透明導電性基材)に要 求される主要な特性は、(a)規定の抵抗値で、かつ抵抗値が均一であること、(b)高 温高湿下での抵抗値の安定性、および (c)打点による抵抗値の変化が少な 、と!、う 打点耐久性である。通常、透明導電性基材に設けられた透明導電性層の厚みは 10 〜40nmと薄いために、打点によって透明導電性層に変形、磨耗、亀裂の生成など を起こしやす!、。よって上記主要な特性の中で最も解決困難な特性は打点耐久性で あり、この課題を解決するために、色々な技術提案がなされている。例えば、透明基 材フィルムの少なくとも一面に、厚さが 0. 02〜 10 mであるシロキサン結合を含む アンカー層を介して、透明導電層を設けた透明導電積層体が提案されている (特許 文献 1)。この方法は、高温高湿下での抵抗値の安定性はあるが、耐久性が十分で はなかった。また、導電性の重合体を含む導電性表面を有する透明導電性基材が 提案されている(特許文献 2)。この方法は、耐久性に優れているものの、高温高湿下 で抵抗値が上昇する問題があった。  [0003] A conventional resistance film type touch panel is a so-called dot-point method in which a pressing operation is performed with a finger or a pen. The main characteristics required for the transparent electrode film (transparent conductive substrate) of this type of touch panel are (a) the specified resistance value and uniform resistance value, and (b) high temperature and high humidity. The stability of the resistance value below, and (c) The change in resistance value due to the hitting point is small! Usually, the thickness of the transparent conductive layer provided on the transparent conductive substrate is as thin as 10 to 40 nm, so it is easy to cause deformation, wear, cracking, etc. in the transparent conductive layer depending on the striking point! Therefore, the most difficult characteristic among the above main characteristics is the hit point durability, and various technical proposals have been made to solve this problem. For example, a transparent conductive laminate in which a transparent conductive layer is provided on at least one surface of a transparent substrate film via an anchor layer containing a siloxane bond having a thickness of 0.02 to 10 m has been proposed (Patent Literature). 1). Although this method has stable resistance under high temperature and high humidity, the durability is not sufficient. Further, a transparent conductive substrate having a conductive surface containing a conductive polymer has been proposed (Patent Document 2). Although this method is excellent in durability, there is a problem that the resistance value increases under high temperature and high humidity.
特許文献 1:特開 2002— 367436号公報 請求項 2  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-367436 Claim 2
特許文献 2 :特開 2002— 109998号公報 請求項 1  Patent Document 2: Japanese Patent Laid-Open No. 2002-109998 Claim 1
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 従来の打点方式に加えて、近年、描画できるタツチパネルの開発が進められている 。描画タイプのタツチパネルの透明導電性基材に要求される主要な特性は、(a)規 定の抵抗値で、かつ抵抗値が均一であること、(b)高温高湿下での抵抗値の安定性 、および (c)描画による抵抗値の変化が少ないという描画耐久性である。描画は、ぺ ンがタツチパネルを摺動するために、打点にくらべ極めて大きく透明導電性基材の塑 性変形および磨耗を伴う。従来の透明導電性基材では、これら全ての特性を満足す ることはできな力 た。 [0004] In addition to the conventional dot method, in recent years, touch panels that can be drawn have been developed. . The main characteristics required for the transparent conductive substrate of the drawing type touch panel are (a) the specified resistance value and uniform resistance value, and (b) the resistance value at high temperature and high humidity. Stability, and (c) drawing durability with little change in resistance due to drawing. Drawing is extremely large compared with the point of hitting because the pen slides on the touch panel, and is accompanied by plastic deformation and wear of the transparent conductive substrate. Conventional transparent conductive substrates cannot satisfy all these characteristics.
[0005] 本発明は、(a)規定の抵抗値で、かつ抵抗値が均一で、(b)高温高湿下での抵抗 値の変化が小さぐかつ (c)描画による抵抗値変化の少ない透明導電性基材を提供 するものである。  [0005] In the present invention, (a) the specified resistance value is uniform, the resistance value is uniform, (b) the change in resistance value under high temperature and high humidity is small, and (c) the resistance value change due to drawing is small. A transparent conductive substrate is provided.
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、高分子フィルムまたは高分子シートからなる基材 (A)、透明導電層 (B) および誘電体層 (C)がこの順に積層され、誘電体層 (C)が温度 20°C、周波数 1kHz における比誘電率が 15以上ある有機高分子力 なり、かつ誘電体層(C)の厚さが 4 Onm以上 2000nm以下であるタツチパネル用複合透明導電性基材、および、それを 用いたタツチパネルである。 [0006] In the present invention, a base material (A) comprising a polymer film or a polymer sheet, a transparent conductive layer (B), and a dielectric layer (C) are laminated in this order, and the dielectric layer (C) has a temperature of 20 A composite transparent conductive substrate for a touch panel having an organic polymer power having a relative dielectric constant of 15 or more at a temperature of 1 kHz and a dielectric layer (C) of 4 Onm or more and 2000 nm or less, and It is the touch panel used.
発明の効果  The invention's effect
[0007] 本発明の複合透明導電性基材は、高温高湿下での抵抗値の安定性にすぐれ、か つ描画による抵抗値の変化が少な 、ため、描画タイプのタツチパネル用の透明導電 性基材として優れている。  [0007] The composite transparent conductive substrate of the present invention is excellent in stability of resistance value under high temperature and high humidity, and changes in resistance value due to drawing are small. Therefore, transparent conductive material for drawing type touch panels is used. Excellent as a substrate.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明のタツチパネル用複合透明性基材の断面の一例を示す概略図である。  FIG. 1 is a schematic view showing an example of a cross section of a composite transparent substrate for a touch panel of the present invention.
[図 2]実施例における描画による抵抗値の変化の評価方法を示す模式図である。  FIG. 2 is a schematic diagram showing a method for evaluating a change in resistance value due to drawing in an example.
[図 3]図 2の評価によって測定された電圧とリニアリティの関係を示す図である。  3 is a diagram showing the relationship between voltage and linearity measured by the evaluation of FIG.
符号の説明  Explanation of symbols
[0009] 1.高分子フィルムまたはシートからなる基材 (A)  [0009] 1. Base material comprising polymer film or sheet (A)
2.透明導電層 (B)  2.Transparent conductive layer (B)
3.誘電体層(C) 4.表面硬化層(D) 3.Dielectric layer (C) 4. Hardened surface layer (D)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の複合透明導電性基材は、高分子フィルムまたは高分子シート (以下、フィ ルム Zシートと称す)力もなる基材 (A)、透明導電層 (B)および誘電体層 (C)がこの 順に積層されている。 [0010] The composite transparent conductive substrate of the present invention comprises a substrate (A), a transparent conductive layer (B), and a dielectric layer (also referred to as a film Z sheet) that are polymer films or polymer sheets (hereinafter referred to as film Z sheets). C) are stacked in this order.
[0011] なお、ここではフィルムとは厚みが 1 μ m以上 500 μ m以下、シートとは厚みが 500 μ mを超え、 2mm以下のものをさす。  [0011] Here, a film means a thickness of 1 μm or more and 500 μm or less, and a sheet means a thickness of more than 500 μm and 2 mm or less.
[0012] 本発明の複合透明導電性基材は、タツチパネルの透明電極として用いられる部品 である。抵抗膜方式のタツチパネルは、上部電極と下部電極が一定のギャップをお いて配置されている。電極同士の誤接触を防止するために、上下の電極の間にドット スぺーサーを設けることもある。タツチパネルのある一点が押下されると、その部分の 上下の電極が接触し、通電可能となる。上下の電極のいずれかに電圧を印加するこ とにより電位勾配が発生し、他方の電極で電位を検出することにより、接触点の電位 が検出される。検出された電位と電位勾配の関係から、接触点の座標が計算される。 このようなメカニズム上、透明導電性基材は繰り返し変形および応力を受けることとな り、透明導電性層にクラックを生じやすい。 [0012] The composite transparent conductive substrate of the present invention is a component used as a transparent electrode of a touch panel. In the resistive touch panel, the upper electrode and the lower electrode are arranged with a certain gap. In order to prevent erroneous contact between electrodes, a dot spacer may be provided between the upper and lower electrodes. When a certain point on the touch panel is pressed, the upper and lower electrodes of that part come into contact and can be energized. A potential gradient is generated by applying a voltage to one of the upper and lower electrodes, and the potential at the contact point is detected by detecting the potential with the other electrode. The coordinates of the contact point are calculated from the relationship between the detected potential and the potential gradient. Due to such a mechanism, the transparent conductive substrate is repeatedly deformed and stressed, and cracks are likely to occur in the transparent conductive layer.
[0013] 透明導電層 (B)の上に有機高分子カゝらなる誘電体層 (C)を積層すること〖こよって、 透明導電層 (B)にクラックが入りにくくなり、描画による抵抗値の変化が著しく改善さ れる。しかし、透明導電層(B)の上を、有機高分子で覆ってしまうと、通常、表面抵抗 値は著しく高くなり、透明電極として適さなくなる。前述のように、導電性の重合体を 用いると、この問題は解消されるものの、高温高湿下で抵抗値が上昇する問題があ つた。携帯情報機器などの屋外で使用する機器に用いられるタツチパネルにおいて は、高温高湿下における抵抗値の安定性に優れることは重要であるので、高温高湿 下での抵抗値の安定性と描画耐久性の両立が求められる。  [0013] By laminating the dielectric layer (C) made of an organic polymer layer on the transparent conductive layer (B), the transparent conductive layer (B) is less likely to crack, and the resistance value due to drawing is reduced. The change in is significantly improved. However, if the transparent conductive layer (B) is covered with an organic polymer, the surface resistance value is usually extremely high, making it unsuitable as a transparent electrode. As described above, when a conductive polymer is used, this problem is solved, but there is a problem that the resistance value increases under high temperature and high humidity. For touch panels used in devices used outdoors such as portable information devices, it is important to have excellent resistance value stability under high temperature and high humidity. Therefore, resistance value stability and drawing durability under high temperature and high humidity conditions are important. A balance of sex is required.
[0014] 本発明においては、温度 20°C、周波数 1kHzにおける比誘電率が 15以上ある有 機高分子からなり、かつ厚さが 40nm以上 2000nm以下である誘電体層(C)を透明 導電層(B)上に積層することにより、高温高湿下での抵抗値の安定性に優れ、かつ 描画による抵抗値の変化が少な!/ヽ複合透明導電性基材が得られることを見 ヽだした [0015] 比誘電率が 15以上ある有機高分子は、体積固有抵抗値が高いにもかかわらず、 適切な膜厚の薄膜を透明導電層上に形成した場合、有機高分子層の表面抵抗値が 、透明導電層の表面抵抗値から大きく変化せず、タツチパネルに適した範囲内の抵 抗値が得られることを見出した。 In the present invention, the dielectric layer (C) made of an organic polymer having a relative dielectric constant of 15 or more at a temperature of 20 ° C. and a frequency of 1 kHz and having a thickness of 40 nm to 2000 nm is a transparent conductive layer. (B) It is expected that a laminated transparent conductive substrate can be obtained by laminating on top of which resistance value stability under high temperature and high humidity is excellent and resistance value changes little by drawing! did [0015] An organic polymer with a relative dielectric constant of 15 or more has a high volume resistivity, but when a thin film with an appropriate thickness is formed on the transparent conductive layer, the surface resistance of the organic polymer layer However, it has been found that a resistance value within a range suitable for a touch panel can be obtained without largely changing from the surface resistance value of the transparent conductive layer.
[0016] 温度 20°C、周波数 1kHzにおける比誘電率が 15以上の有機高分子としては、シァ ノエチル化した有機高分子が好ましい。なかでもシァノエチルセルロース、シァノエチ ルヒドロキシェチルセルロースなどのセルロース系高分子のシァノエチル化高分子、 シァノエチルスターチ、シァノエチルヒドロキシプロピルスターチ、シァノエチルプルラ ン、シァノエチルダリシドールプルランなどのデンプン系高分子のシァノエチル化高 分子、シァノエチルポリビニールアルコール、シァノエチルシュクロース、およびシァ ノエチルソルビトールカ 選ばれた一種、または二種以上の有機高分子がより好まし い。なかでもシァノエチルプルラン力 可撓性が有り、描画耐久性が高ぐかつ高温 高湿下での抵抗値の安定性も高!、複合透明導電性基材が得られるので、特に好ま しい。  [0016] The organic polymer having a relative dielectric constant of 15 or more at a temperature of 20 ° C and a frequency of 1 kHz is preferably a cyanoethylated organic polymer. Among these, cyano-ethylated polymers such as cyanoethylcellulose and cyanoethylhydroxyethylcellulose, cyanoethylated polymers such as cyanoethyl starch, cyanoethylhydroxypropyl starch, cyanoethyl pullulan, cyanoethyldaricidol pullulan, etc. Of these, the starch-based polymers are more preferably cyanoethylated polymers, cyanoethyl polyvinyl alcohol, cyanoethyl sucrose, and cyanoethyl sorbitol. One or more organic polymers are more preferred. In particular, cyanoethyl pullulan force is particularly preferred since it is flexible, has high drawing durability, and has high stability of resistance under high temperature and high humidity, and a composite transparent conductive substrate can be obtained.
[0017] また、有機高分子としてァセチルイ匕プルランも好ましく用いることができる。ァセチル 化プルランは、単独で用いても、シァノエチルイ匕した有機高分子と混合して用いても 、可撓性が有り、描画耐久性が高ぐかつ高温高湿下での抵抗値の安定性も高い複 合透明導電性基材が得られるので、好ましい。  In addition, acetylethyl pullulan can also be preferably used as the organic polymer. Whether acetylated pullulan is used alone or mixed with cyanoethylated organic polymer, it has flexibility, high drawing durability and stability of resistance under high temperature and high humidity. This is preferable because a high composite transparent conductive substrate can be obtained.
[0018] また、誘電体層(C)の厚さは 40nm以上 2000nm以下が好まし!/、。 40nm未満で は高温高湿下での抵抗値の安定性の改善効果が低ぐかつ描画耐久性の改善効果 も高くない。 2000nmを超えると表面抵抗値が大きくなる。より好ましい範囲は 80nm 以上 800nm以下である。  [0018] The thickness of the dielectric layer (C) is preferably 40 nm or more and 2000 nm or less! If it is less than 40 nm, the effect of improving the resistance stability under high temperature and high humidity is low and the effect of improving the drawing durability is not high. If it exceeds 2000 nm, the surface resistance value increases. A more preferable range is from 80 nm to 800 nm.
[0019] 複合透明導電性基材の表面抵抗値は、 100 Ω /口以上 1000 Ω /口以下であるこ とが好ましい。表面抵抗値が 100 ΩΖ口未満では、タツチパネルの電力使用量が多 くなる。表面抵抗値が 1000 ΩΖ口を超えると、電波外乱の影響を受けやすくなる。 複合透明導電性基材の表面抵抗値は 200 Ω Z口以上 500 Ω Z口以下であることが より好ましい。透明導電層の厚みを厚くすると表面抵抗値は下がるが、光線透過率も 下がり、タツチパネルの透明性が悪くなる弊害がある。複合透明導電性基材の全光 線透過率は、 80%以上が好ましぐ 85%以上であることがより好ましい。 The surface resistance value of the composite transparent conductive substrate is preferably 100 Ω / port to 1000 Ω / port. If the surface resistance is less than 100 Ω, the power consumption of the touch panel increases. If the surface resistance exceeds 1000 Ω, it becomes more susceptible to radio disturbance. The surface resistance value of the composite transparent conductive substrate is more preferably 200 ΩZ port or more and 500 ΩZ port or less. Increasing the thickness of the transparent conductive layer decreases the surface resistance value, but also increases the light transmittance. This has the negative effect of lowering the transparency of the touch panel. The total light transmittance of the composite transparent conductive substrate is preferably 80% or more, more preferably 85% or more.
[0020] なお、ここで言う表面抵抗値とは誘電体層 (C)上で測定した表面抵抗値をさす。 [0020] The surface resistance value referred to here is a surface resistance value measured on the dielectric layer (C).
[0021] 基材 (A)となるフィルム Zシートとしては、ポリカーボネイト樹脂、アクリル榭脂、トリ アセテートに代表されるアセテート榭脂、環状ポリオレフイン、ポリエチレンテレフタレ ートゃポリエチレンナフタレート等のポリエステル榭脂などの透明性の高い榭脂から 成形されたフィルム Zシートが好ましい。中でも透明性が高ぐ耐熱性が高ぐかつ、 可とう性のあるポリエチレンテレフタレートからなるフィルム/シートがより好ましい。 [0021] The film Z sheet used as the substrate (A) includes polycarbonate resin, acrylic resin, acetate resin typified by triacetate, cyclic polyolefin, polyethylene terephthalate, polyethylene naphthalate, and other polyester resin A film Z sheet formed from a highly transparent resin such as is preferred. Among them, a film / sheet made of polyethylene terephthalate having high transparency, high heat resistance, and flexibility is more preferable.
[0022] また、透明導電層 (B)との接着性を上げるために、透明導電層 (B)と積層する前に 、フィルム Zシートに、接着榭脂をコーティングしたり、放電処理などの表面処理をし たりすることが好ましい。さらにフィルム Zシートは熱によって収縮することがあるので 、前もって熱処理を施し、収縮の原因となる歪を取り除いておくことも好ましい。  [0022] Further, in order to improve the adhesiveness with the transparent conductive layer (B), before laminating with the transparent conductive layer (B), the film Z sheet is coated with an adhesive resin, or a surface such as a discharge treatment. It is preferable to perform processing. Further, since the film Z sheet may shrink due to heat, it is preferable to perform a heat treatment in advance to remove the strain causing the shrinkage.
[0023] 本発明のタツチパネル用複合基材の透明導電膜層 (B)は、金、銀、銅などの極薄 の金属薄膜、あるいは酸化インジユーム (酸ィ匕錫および Zまたは酸ィ匕亜鉛を含有して もよい)、酸化錫、酸ィ匕亜鉛などの導電性金属酸ィ匕物などの金属系透明導電性薄膜 であることが好ま ヽ。なかでも透明性が高 ヽ範囲で抵抗値が低!ヽ導電性金属酸ィ匕 物がより好ましい。特に酸化インジユーム、酸化錫および酸化亜鉛から選ばれた一種 、または二種以上の化合物は、表面抵抗値が低ぐ透明性が高ぐかつ湿度による化 学的変化が少なぐ好ましい。なお、透明導電層 (B)は、金属系透明導電性薄膜を 多層に積層してもよい。  [0023] The transparent conductive film layer (B) of the composite substrate for the touch panel of the present invention comprises an ultrathin metal thin film such as gold, silver, copper, or indium oxide (acid-tin and Z or acid-zinc. It may be contained), and is preferably a metal-based transparent conductive thin film such as a conductive metal oxide such as tin oxide or zinc oxide. Among these, conductive metal oxides are more preferable because of high transparency and low resistance. In particular, one kind or two or more kinds of compounds selected from indium oxide, tin oxide and zinc oxide are preferable because they have low surface resistance, high transparency, and little chemical change due to humidity. The transparent conductive layer (B) may be formed by laminating metal transparent conductive thin films in multiple layers.
[0024] 透明導電層 (B)に金属系透明導電性薄膜を用いた場合、高温高湿下における抵 抗値の変化は少ないが、透明導電層(B)のみでは描画による抵抗値の変化が大き V、。しかし、透明導電層 (B)に誘電体層 (C)を積層した場合、描画による抵抗値の変 ィ匕も/ J、さくできる。  [0024] When a metal-based transparent conductive thin film is used for the transparent conductive layer (B), there is little change in the resistance value under high temperature and high humidity, but in the transparent conductive layer (B) alone, the resistance value changes due to drawing. Big V ,. However, when the dielectric layer (C) is laminated on the transparent conductive layer (B), the change in resistance due to drawing can also be reduced.
[0025] これらの透明導電性薄膜は電子ビーム蒸着、スパッタリング、イオンプレーティング などの PVDと称される真空蒸着法によって基材 (A)上に形成できる。金属系透明導 電性薄膜は、目的用途に適した特性の金属系透明導電性物質を選定し、適切な薄 膜製造方法によって形成することが好ましい。また、金属系透明導電性薄膜は熱処 理によって表面抵抗値、光線透過率、光線反射率などの特性を変えることができるの で、必要に応じて熱処理等を施しても良い。なお、金属系透明導電薄膜の一般的な 物性および製造方法は「透明導電膜の技術」第 3章、第 4章、および第 5章(日本学 術振興会 透明酸化物光 ·電子材料第 166委員会編、(株)オーム社発行)などに詳 細に記述されている。 [0025] These transparent conductive thin films can be formed on the substrate (A) by a vacuum deposition method called PVD such as electron beam deposition, sputtering, or ion plating. The metal-based transparent conductive thin film is preferably formed by selecting a metal-based transparent conductive material having characteristics suitable for the intended use and using an appropriate thin film manufacturing method. Metal-based transparent conductive thin films are heat treated. Since characteristics such as surface resistance, light transmittance and light reflectance can be changed by heat treatment, heat treatment or the like may be performed as necessary. The general physical properties and manufacturing methods of metal-based transparent conductive thin films are described in Chapter 3, Chapter 4 and Chapter 5 of “Transparent Conductive Film Technology” (Transparent Oxide Optical / Electronic Materials, Japan Society for the Promotion of Science). Details are described in the committee edition, published by Ohm Co., Ltd.).
[0026] 透明導電層 (B)が金属系透明導電性物質からなる場合、その厚みは、用途に応じ て要求される表面抵抗値および光線透過率によって、適宜決定すべきであるが、好 ましくは 5nmカゝら 0. 5 mである。表面抵抗値、光線透過率、および可撓性の点から 、透明導電層(B)の厚みは lOnm力も 0. がより好ましい。厚みが 5nm未満では 表面抵抗が高くなり、厚みが 0. 5 mを超えると、透明導電層(B)の光吸収により光 線透過率が低下するのに対し表面抵抗値はあまり低下しないためである。  [0026] When the transparent conductive layer (B) is made of a metal-based transparent conductive material, its thickness should be determined as appropriate according to the required surface resistance value and light transmittance according to the application, but is preferred. The length is 5 nm and 0.5 m. From the viewpoint of surface resistance value, light transmittance, and flexibility, the thickness of the transparent conductive layer (B) is more preferably lOnm force as well. If the thickness is less than 5 nm, the surface resistance increases. If the thickness exceeds 0.5 m, the light transmittance of the transparent conductive layer (B) decreases due to light absorption, whereas the surface resistance value does not decrease much. is there.
[0027] また、透明導電層 (B)の素材は、導電性高分子であってもよ!/、。導電性高分子とし ては、 2 mの厚さで 50%以上の光線透過率を有し、かつ 1.0 X 10_8SZcmの導電 率を有する物が好ましい。 [0027] The material of the transparent conductive layer (B) may be a conductive polymer! The conductive polymer is preferably a conductive polymer having a light transmittance of 50% or more at a thickness of 2 m and a conductivity of 1.0 × 10 −8 SZcm.
[0028] 導電性高分子につ!、ては「導電性高分子のはなし」第 5章 (吉野勝美著、日刊工業 新聞社発行)「導電性高分子」(緒方直哉編、講談社サイェンティフイク発行)、あるい は「¾cience and Application of Conducting PolymersJ (W.R.¾alaneck他編、 Adam Hii ger発行)などに詳細に記述されて 、る。  [0028] About conductive polymers! Chapter 5 (The story of conductive polymers) Chapter 5 (authored by Katsumi Yoshino, published by Nikkan Kogyo Shimbun) "Conductive polymers" (Naoya Ogata, edited by Kodansha Scientific) Or published in detail in ¾ cience and Application of Conducting PolymersJ (WR¾alaneck et al., Adam Hiiger).
[0029] 透明導電層 (B)に透明導電性高分子を用いた場合、描画による抵抗値の変化は 少な!/、が、透明導電層 (B)のみでは高温高湿下にお 、て抵抗値の変化が大き!/、。 透明導電層 (B)に誘電体層 (C)を積層することによって、高温高湿下での抵抗値変 化を小さくできる。  [0029] When a transparent conductive polymer is used for the transparent conductive layer (B), there is little change in resistance due to drawing! /, But the transparent conductive layer (B) alone is resistant to high temperatures and high humidity. The change in value is great! By laminating the dielectric layer (C) on the transparent conductive layer (B), the resistance change under high temperature and high humidity can be reduced.
[0030] 透明導電層 (B)に用いられるより好ましい導電性高分子は、透明性、導電性および 可撓性からポリピロール、ポリチォフェン、ポリフラン、ポリセレノフェン、ポリア-リン、 ポリパラフエ-レン、ポリフルオレン、これらの誘導体、およびこれらを構成する単量体 の共重合物力 選ばれた導電性高分子のいずれか一種または二種以上の混合物な どである。中でも側鎖を導入することにより、水あるいはその他の溶媒に可溶性また は分散性を有するポリチオフ ン、ポリアルキルフルオレン、ポリフルオレン、ポリパラ フエ-レン、ポリパラフエ-レンビ-レンの誘導体、およびこれらを構成する単量体の 共重合物から選ばれた少なくとも一種の導電性高分子は、透明性および導電性に優 れ、かつフィルム zシートにコーティングすることができ、適切な厚みの導電性高分 子膜を均一に形成できることからより優れている。特にポリジォキシチォフェンを含有 する導電性高分子、中でもポリエチレンジォキシチォフェン (PEDT)とポリスチレンス ルホン酸 (PSS)の混合物からなる導電性高分子は、水ある!/、はその他の溶媒に溶 解あるいは分散できることから、容易にフィルム Zシートにコーティングでき、さらに透 明性と導電性が特に高 、膜を形成できることから最も好まし 、。ポリエチレンジォキシ チォフェンとポリスチレンスルホン酸力 なる導電性高分子を水あるいはその他の溶 媒に溶解または分散した榭脂液の作成方法は、特開平 7— 90060号公報、あるいは 国際公開第 02Z067273号パンフレットに提案されている。 [0030] More preferable conductive polymers used for the transparent conductive layer (B) are polypyrrole, polythiophene, polyfuran, polyselenophene, polyarrin, polyparaphenylene, polyfluorene because of transparency, conductivity and flexibility. Copolymer power of these derivatives and monomers constituting them, any one kind or a mixture of two or more kinds of selected conductive polymers. In particular, by introducing side chains, polythiophene, polyalkylfluorene, polyfluorene, polyparaffin having solubility or dispersibility in water or other solvents. At least one type of conductive polymer selected from phenylene, polyparaphenylene lenylene derivatives, and copolymers of monomers constituting them is excellent in transparency and conductivity, and is a film z sheet. The conductive polymer film having an appropriate thickness can be uniformly formed, which is superior. In particular, conductive polymers containing polydioxythiophene, especially those composed of a mixture of polyethylenedioxythiophene (PEDT) and polystyrene sulfonic acid (PSS), have water! / Since it can be dissolved or dispersed in a solvent, it can be easily coated on a film Z sheet, and it is most preferred because it can form a film with particularly high transparency and conductivity. A method for preparing a resin solution in which polyethylenedioxythiophene and polystyrenesulfonic acid conductive polymer are dissolved or dispersed in water or other solvent is disclosed in JP-A-7-90060 or International Publication No. 02Z067273 pamphlet. Has been proposed.
[0031] さらに、導電性高分子にポリスチレン粒子、アクリル榭脂粒子などの粒子を添加す ること〖こよって、滑性が高まることから、ディスプレイ画面サイズにフィルム Zシートを 断裁する際に、断裁したフィルム Zシートの積み上げが容易になるので好ましい。ま た、導電性高分子に、他の榭脂を添加することによって、透明導電層(B)の強度が 強くなり、擦れや引つ力き耐久性などの品質の安定性が向上するので好ましい。  [0031] Further, by adding particles such as polystyrene particles and acrylic resin particles to the conductive polymer, the lubricity is improved, so when cutting the film Z sheet to the display screen size, the cutting is performed. The film Z sheet is preferable because stacking of the Z sheets becomes easy. In addition, it is preferable to add other resin to the conductive polymer because the strength of the transparent conductive layer (B) increases and the stability of quality such as rubbing and pulling durability improves. .
[0032] 導電性高分子を基材 (A)に積層する方法は電解重合法、蒸着法、コーティング法  [0032] The method of laminating the conductive polymer on the substrate (A) is an electrolytic polymerization method, a vapor deposition method, or a coating method.
(塗工法)などがあり、用途や導電性高分子の種類によって適宜選択できる。しかし、 水あるいはその他の溶媒に溶ける導電性高分子をコーティング法により積層すること is フィルム zシートのように幅が広ぐ長さが長い基材に均一に、規定の厚みで積 層できることからより好ましい。コーティングの方法は特に限定されるものではなぐ用 途に応じて適切な方法が選択できる。コーティングの種々の方法は、「コーティング方 式」第 1章力 第 18章 (原崎勇次著、稹書店発行)などの文献に詳細に記述されてい る。  (Coating method) and the like, and can be appropriately selected depending on the application and the type of the conductive polymer. However, a conductive polymer that is soluble in water or other solvents is laminated by the coating method is film z because it can be uniformly layered on a long substrate such as a sheet with a specified thickness. preferable. The coating method is not particularly limited, and an appropriate method can be selected depending on the application. The various methods of coating are described in detail in documents such as “Coating Method”, Chapter 1, Power, Chapter 18 (published by Yuji Harasaki, published by Tsuji Shoten).
[0033] 導電性高分子を用いた場合の透明導電層 (B)の厚みは、導電性高分子の種類に よって異なり、表面抵抗値および光線透過率によって適宜決定すべきであるが、一 般に 400nmから 程度が好ましい。より好ましい厚みは、表面抵抗値と光線透 過率の点で 500nmから 2 μ mである。厚みが 400nm未満では表面抵抗値が高くな り、厚みが 5 /z mを超えると、導電性高分子の光吸収により光線透過率が低下する。 [0033] When the conductive polymer is used, the thickness of the transparent conductive layer (B) varies depending on the type of the conductive polymer, and should be appropriately determined according to the surface resistance value and the light transmittance. In particular, the range from 400 nm is preferable. A more preferable thickness is from 500 nm to 2 μm in terms of surface resistance and light transmittance. If the thickness is less than 400 nm, the surface resistance is high. On the other hand, when the thickness exceeds 5 / zm, the light transmittance decreases due to light absorption of the conductive polymer.
[0034] タツチパネルは、表面をペンで擦られるために、表面が傷つきやす 、。よって複合 導電性基材の少なくとも片面に表面硬度層(D)を設けることが好ましい。ペンで擦ら れる外表面は、基材 (A)の透明導電層 (B) Z誘電体層 (C)を設けた面の反対面で あるので、その面に表面硬度層(D)を設け、表面硬化層(D)Z基材 (A)Z透明導電 層(B)Z誘電体層(C)の順に積層するのが好ましい。また、基材 (A)の両面に表面 硬度層 (D)を設けた、表面硬化層 (D) Z基材 (A) Z表面硬化層 (D Z透明導電 層 (B) Z誘電体層 (C)の構成も選択できる。 [0034] Since the touch panel is rubbed with a pen, the surface is easily damaged. Therefore, it is preferable to provide the surface hardness layer (D) on at least one surface of the composite conductive substrate. The outer surface rubbed with the pen is the surface opposite to the surface of the base material (A) where the transparent conductive layer (B) Z dielectric layer (C) is provided, so that a surface hardness layer (D) is provided on the surface, The surface hardened layer (D) Z substrate (A) Z transparent conductive layer (B) Z dielectric layer (C) are preferably laminated in this order. Surface hardened layer (D) Z base (A) Z surface hardened layer (DZ transparent conductive layer (B) Z dielectric layer (C ) Configuration can also be selected.
[0035] 該表面硬化層(D)は、鉛筆硬度 1H以上の硬度を持つものが好ま 、。表面硬化 層(D)の素材は、無機化合物でも有機化合物でも良いが、可撓性がある点カゝら有機 化合物がより好ましい。表面硬化層の組成としては、熱硬化榭脂、あるいは電子線、 紫外線などの高エネルギー線照射により硬化する電離放射線硬化榭脂などが挙げ られる。例えばメラミン榭脂、エポキシ榭脂、ペンタエリスリトールトリアタリレートゃァク リレート系アルコール変性多官能化合物などの (メタ)アタリレート榭脂、アルコキシシラ ン化合物、チタネートイ匕合物などが好ましく挙げられる。特に電離放射線照射により 硬化する (メタ)アタリレート榭脂は、硬度が高ぐかつ可撓性を持つことから表面硬化 層(D)としてより好ましい組成物である。例えばこのような硬化樹脂の組成物としては 、特開平 12— 141556号公報、特開平 13— 179902号公報、特開平 13— 287308 号公報などに記載された榭脂組成物が挙げられる。 [0035] The surface hardened layer (D) preferably has a pencil hardness of 1H or more. The material of the surface hardened layer (D) may be an inorganic compound or an organic compound, but an organic compound is more preferable because of its flexibility. Examples of the composition of the surface hardened layer include a thermosetting resin, and an ionizing radiation-curing resin that is cured by irradiation with high energy rays such as electron beams and ultraviolet rays. For example, (meth) acrylate resin, alkoxysilane compound, titanate compound and the like such as melamine resin, epoxy resin, pentaerythritol tritalylate alcohol modified polyfunctional compound are preferable. In particular, (meth) attalylate resin that is cured by irradiation with ionizing radiation is a more preferable composition as the surface-hardened layer (D) because of its high hardness and flexibility. Examples of such cured resin compositions include the resin compositions described in JP-A-12-141556, JP-A-13-179902, JP-A-13-287308, and the like.
[0036] タツチパネルには一般的に、上部電極として透明導電フィルム力 下部電極として 導電性ガラスが用いられている。本発明の複合透明導電性基材は、上部電極である 透明導電フィルムとして用いた場合、耐描画性および耐高温高湿性に優れたタツチ パネルを製作できる。さらに最近携帯機器用などのタツチパネルとして薄型のタツチ パネルの開発が検討されているが、本発明の複合透明性基材を上下の両電極として 用いた場合、薄くて軽!、優れたタツチパネルを作ることができる [0036] Generally, the touch panel uses a transparent conductive film force as an upper electrode and conductive glass as a lower electrode. When the composite transparent conductive substrate of the present invention is used as a transparent conductive film as an upper electrode, a touch panel excellent in drawing resistance and high temperature and high humidity resistance can be produced. Recently, the development of a thin touch panel for portable devices and the like has been studied. However, when the composite transparent substrate of the present invention is used as both upper and lower electrodes, it is thin and light! be able to
実施例  Example
[0037] 〔評価方法〕 [0037] [Evaluation Method]
1.誘電率 測定する有機高分子をジメチルフオルムアミドを主溶媒とする溶媒に溶力して、そ の溶液をガラス板の上に乾燥厚みが 0. 5mmになるように塗布し、 150°Cのオーブン で 3分間乾燥固化し、板状試料を作成した。得られた板状試料を 40mm角に切り出 し、キーコム製誘電率測定装置 DT— 002に平板計測用電極 DPT— 008を電極とし て取り付け、電極に試料を挟み、温度 20°Cで、周波数 lkHz、電圧 1. 0V の電圧 1.dielectric constant The organic polymer to be measured is dissolved in a solvent containing dimethylformamide as the main solvent, and the solution is applied on a glass plate to a dry thickness of 0.5 mm. A plate-like sample was prepared by drying and solidifying for a minute. The obtained plate sample was cut into a 40 mm square, flat electrode measurement electrode DPT-008 was attached to Keycom's dielectric constant measurement device DT-002, and the sample was sandwiched between the electrodes, at a temperature of 20 ° C, at a frequency lkHz, voltage 1.0V
DC  DC
を印加し、 JIS C6481 - 1986に準じて測定した。 Was measured according to JIS C6481-1986.
2.表面抵抗値  2.Surface resistance value
JIS K7194— 1994に準じ、ダイヤインスツルメンッ製低抵抗率計ロレスタ MCP— T360を用いて、 4探針法にて測定した。測定する複合透明性基材の誘電体層上に 4本の針状の電極を直線上に置き、外側の二探針間に一定電流を流し、内側の二探 針間に生じる電位差を測定し、計算にて抵抗を求めた。なお、誘電体層を設けない サンプルを測定する場合は、透明電極上に電極を置 、た。  In accordance with JIS K7194-1994, the measurement was performed by a four-probe method using a low resistivity meter Loresta MCP-T360 manufactured by Diainstrument. Four needle-shaped electrodes are placed in a straight line on the dielectric layer of the composite transparent substrate to be measured, a constant current is passed between the two outer probes, and the potential difference generated between the two inner probes is measured. The resistance was obtained by calculation. When measuring a sample without a dielectric layer, an electrode was placed on the transparent electrode.
3.全光線透過率  3.Total light transmittance
複合透明性基材を 40mm角に切り出し、 JIS K7105— 1981〖こ準じ、日本電色製 Haze Mater NDH— 2000を用いて、 D65光源にて測定した。  The composite transparent substrate was cut into a 40 mm square and measured according to JIS K7105-1981, using a Nippon Denshoku Haze Mater NDH-2000 with a D65 light source.
4. b値  4.b value
複合透明性基材を 40mm角に切り出し、 JIS K7105— 1981に準じ、スガ試験機 製 SMカラーコンピュータ Model SM— 6を用いて、 D65光源にて透過法で測定 した。  A composite transparent base material was cut into a 40 mm square, and measured according to JIS K7105-1981, using a SM color computer Model SM-6 manufactured by Suga Test Instruments Co., Ltd. with a D65 light source.
5.高温高湿下での抵抗値の安定性の評価  5.Evaluation of resistance stability under high temperature and high humidity
複合透明性基材を 60°C、 90%RHの恒温高湿槽に 240時間入れた。恒温高湿槽 に入れる前の表面抵抗値 Rおよび入れた後の表面抵抗値 Rを、それぞれ上述 2.の  The composite transparent substrate was placed in a constant temperature and high humidity bath at 60 ° C and 90% RH for 240 hours. The surface resistance value R before being put in the constant temperature and high humidity bath and the surface resistance value R after being put in are respectively described in 2.
0  0
評価方法を用いて測定した。両者の比 RZR It measured using the evaluation method. Ratio of both RZR
0により、高温高湿下での抵抗値の安定 性を評価した。 R/Rの値が、 1に近いほど、高温高湿下での抵抗値の安定性に優  Based on 0, the stability of the resistance value under high temperature and high humidity was evaluated. The closer the R / R value is to 1, the better the resistance stability under high temperature and high humidity.
0  0
れている。 It is.
6.描画による抵抗値の変化の評価  6.Evaluation of resistance change by drawing
スぺーサ一粒子付ネサ硝子( (株)タツチパネル研究所製)の導電性側表面の端部 に粘着テープ付きの銅箔テープをはり、 Y電極と該電極の取り出し端子を設け、下部 電極 (固定電極)とした。本発明の透明導電性基材の導電層(B) ,誘電体層(C)側 表面の端部に粘着テープ付きの銅箔テープをはり、 X電極と該電極の取り出し端子 を設け、上部電極 (可動電極)とした。さらに上部電極と下部電極を、導電性側表面 同士が向かい合うように対向させ、端部に貼った両面テープを介して、 80 /z mのギヤ ップを設けて、貼り合わせ、タツチパネルサンプルを製作した。該タツチパネルサンプ ルを抵抗膜式タツチパネル検査装置((株)タツチパネル研究所製)に設置し、図 2〖こ 示すように上部電極の平行する 2辺を X電極として一定電流 Iを流した。端部から 2m mの位置にて、透明導電性基材の表面硬化層(D)上を、ペン荷重 300gをかけた、 ペン先 0. 8Rのポリアセタールペンで長さ 20mmの直線を 210mmZminの速度で、 往復筆記 (描画)した。 1往復を描画 1回として、 1000回ごとに抵抗値の直線性を測定 した。抵抗値の直線性とはリニアリティと称され、次式で計算される。 Apply copper foil tape with adhesive tape to the end of the conductive side surface of Nesa Glass with spacer particles (manufactured by Tachi Panel Laboratory Co., Ltd.), and provide a Y electrode and an extraction terminal for the electrode. An electrode (fixed electrode) was used. The conductive layer (B) and dielectric layer (C) side surface of the transparent conductive substrate of the present invention is coated with a copper foil tape with an adhesive tape on the surface, provided with an X electrode and an extraction terminal for the electrode, (Movable electrode). In addition, the upper and lower electrodes face each other with the conductive side surfaces facing each other, and a 80 / zm gap is provided via a double-sided tape affixed to the end to produce a touch panel sample. did. The touch panel sample was installed in a resistance film type touch panel inspection device (manufactured by Tachi Panel Laboratory Co., Ltd.), and a constant current I was passed through the two parallel sides of the upper electrode as X electrodes as shown in FIG. At a position of 2 mm from the edge, on the surface hardened layer (D) of the transparent conductive base material, a pen load of 300 g was applied, and a 20 mm long straight line was applied at a speed of 210 mmZmin. Then, I wrote back and forth (drawing). The linearity of the resistance value was measured every 1000 times, with one reciprocation as one drawing. The linearity of the resistance value is called linearity and is calculated by the following equation.
[0038] リニアリティ = ( Δ Ε/Ε) X 100% [0038] Linearity = (Δ Ε / Ε) X 100%
ここで、 Eは、測定端子 Pが描画する直線の両端をそれぞれ XIおよび X2としたとき 、測定端子 P力 1上にある時の電圧 EXと測定端子 P力 2上にある時の電圧 EXを  Where E is the voltage EX when the measurement terminal P is on the force 1 and the voltage EX when the measurement terminal P is on the force 2 when both ends of the straight line drawn by the measurement terminal P are XI and X2, respectively.
1 2 結んだ直線により計算される、 XIと X2の間の任意の点 Xにおける計算上の電圧で  1 2 Calculated voltage at any point X between XI and X2, calculated by the connected straight line
X  X
ある。 Δ Εは、図 3に示すように、点 Xにおける計算上の Eと実際に測定された EX  is there. Δ Ε is the calculated E at point X and the actual measured EX, as shown in Figure 3.
X X X X  X X X X
の差である。 XIと X2を結ぶ直線上での最大の Δ Εを用いて、上記の計算式によりリ  Is the difference. Using the maximum Δ 上 on the straight line connecting XI and X2,
X  X
-ァリティの値を求める。  -Find the value of the parity.
[0039] 直線性変化量とは描画 1回目で測定されたリニアリティと描画 1000回ごとに測定し たリニアリティの差である。直線性変化量が 1. 5%になる描画回数を最大描画回数と する。最大描画回数が大きいほど、描画による抵抗値の変化が少ない。  [0039] The amount of change in linearity is the difference between the linearity measured at the first drawing and the linearity measured every 1000 drawing. The maximum number of renderings is the number of renderings where the linearity change is 1.5%. The larger the maximum number of times of drawing, the less the resistance value changes due to drawing.
〔実施例 1〕  Example 1
厚み 125 μ mのポリエチレンテレフタレートフィルム (東レ (株)製 商品名 "ルミラー (登録商標) "QT59)を基材 (A)とし、該基材 (A)上に、ジペンタエリスリトールへキサ アタリレート 70重量部、マクロモノマー AN— 6S (固形分 50重量0 /0) 16重量部、スチ レン アクリル共重合体(固形分 60%、重量平均分子量 17790) 20重量部、イミドア タリレート (TO— 1429) 10重量部力もなる表面硬化榭脂をトルエンとメチルェチルケ トンを主溶媒とする溶媒に溶力した塗剤を、 3本リバースコータを用いて乾燥後の膜 厚が になるように lOmZminの塗工速度で塗工した。オーブンで乾燥後、 100 wZcmのエネルギー強度の高圧水銀灯で照射して、該表面硬化榭脂を架橋硬化さ せて、表面硬化フィルムを作成した。該表面硬化フィルムの表面硬化層(D)とは反 対側の表面上に、巻き取り式 DCパルシング法マグネトロンスパッター装置を用いて、 表面抵抗値力 00 Ω Z口になるように ITO薄膜 (透明導電層 (B) )を形成した。なお 、スパッターの条件は、 ITOターゲット(酸化インジユーム(90wt%)と酸化錫(10wt %)の焼結ターゲット (焼結密度 99%以上))を用い、真空度 4 X 10_3Paまでスパッタ 一装置内を排気後、酸素 3. 5mol%の ArZO混合ガスを導入し、真空度 4 X 10_2 A 125 μm-thick polyethylene terephthalate film (trade name “Lumirror®” “QT59” manufactured by Toray Industries, Inc.) is used as a base material (A), and dipentaerythritol hexaatrate 70 on the base material (A). parts, macromonomer AN- 6S (solid content 50 wt 0/0) 16 parts by weight, styrene Ren acrylic copolymer (60% solids, weight average molecular weight 17790) 20 parts by weight, Imidoa Tarireto (TO- 1429) 10 The film after drying using a three-layer reverse coater with a coating solution in which the surface-cured resin, which has a heavy weight, is dissolved in a solvent mainly composed of toluene and methylethylketone. Coating was performed at a coating speed of lOmZmin so that the thickness became. After drying in an oven, irradiation with a high-pressure mercury lamp having an energy intensity of 100 wZcm was performed to crosslink and cure the surface-cured resin, thereby preparing a surface-cured film. On the surface opposite to the surface hardened layer (D) of the surface hardened film, using a roll-up DC pulsing magnetron sputtering device, an ITO thin film (transparent) so that the surface resistance value force becomes 00 Ω Z mouth. A conductive layer (B)) was formed. The sputtering conditions were as follows: ITO target (sintering target of indium oxide (90wt%) and tin oxide (10wt%) (sintering density 99% or more)) with a vacuum of 4 X 10 _3 Pa. After evacuating the interior, introduce an ArZO mixed gas of 3.5 mol% oxygen, and the degree of vacuum is 4 X 10_ 2
2  2
Paにした後に、基材速度 3mZminでスパッターした。  After setting to Pa, sputtering was performed at a substrate speed of 3 mZmin.
[0040] 次!、で透明導電層 (B)上に、ダイレクトグラビアヘッドコーターを用いて、ジメチルフ オルムアミドを主溶媒とする溶媒に溶力したシァノエチルプルラン (信越ィ匕学工業製) を乾燥後の膜厚が 0. 15 mになるように塗工速度 30mZminで塗布することによつ て誘電体層 (C)を設けた。用いたシァノエチルプルラン (信越化学工業製)の比誘電 率は 19であった。以上の方法で表面硬化層(D) Z高分子フィルム力もなる基材 (A) ZITO力 なる透明導電性層 (Β) Ζシァノエチルプルラン力 なる誘電体層 (C)の 順に積層された本発明のタツチパネル用複合透明導電性基材を作成した。前記評 価方法に従って評価した結果を表 1に示す。  [0040] Next, on the transparent conductive layer (B), using a direct gravure head coater, Cyanethyl pullulan (manufactured by Shin-Etsu Chemical Co., Ltd.) dissolved in a solvent containing dimethylformamide as the main solvent was dried. The dielectric layer (C) was provided by coating at a coating speed of 30 mZmin so that the subsequent film thickness was 0.15 m. The relative permittivity of the used cyano pullulan (manufactured by Shin-Etsu Chemical Co., Ltd.) was 19. Surface hardened layer (D) Base material with Z polymer film force (A) Transparent conductive layer with ZITO force (Β) 誘 電 Dielectric layer with Cyanoethyl pullulan force (C) A composite transparent conductive substrate for a touch panel of the invention was prepared. Table 1 shows the results of evaluation according to the evaluation method.
[0041] 実施例 1の複合導電性基材を用いたタツチパネルは、最大描画回数が、描画耐久 性の目安である 10万回以上を満たしており、描画耐久性に優れていた。  [0041] The touch panel using the composite conductive base material of Example 1 was excellent in drawing durability because the maximum number of times of drawing satisfied 100,000 times or more, which is a standard of drawing durability.
[0042] また、 ΙΤΟスパッター膜は黄味を帯びており、従来から光線透過率の向上および色 調の改善の要求が強い。実施例 1の複合導電性基材は、 ΙΤΟスパッター膜上にシァ ノエチルプルランの層を積層することにより、比較例 1のシァノエチルプルランの層を 有しない複合導電性基材と比較して、光線透過率が高くなり、かつ b *値も低くなつ た。以上のように本発明のタツチパネル用複合導電性基材は光学特性につ!、ても優 れた、より好ましい導電性基材といえる。  [0042] In addition, the sputtered film is yellowish, and there has been a strong demand for improvement in light transmittance and color tone. The composite conductive substrate of Example 1 was compared with the composite conductive substrate having no cyanoethyl pullulan layer of Comparative Example 1 by laminating a layer of cyanoethyl pullulan on the sputtered film. The light transmittance increased and the b * value also decreased. As described above, the composite conductive substrate for a touch panel of the present invention can be said to be a more preferable conductive substrate excellent in optical properties.
〔比較例 1〕  (Comparative Example 1)
誘電体層 (C)を設けな力つた以外は実施例 1と同様にして、表面硬化層(D) Z高 分子フィルム力もなる基材 (A) ZITO力もなる透明導電性層 (B)の順に積層された 複合透明導電性基材を作成した。得られた透明導電性基材について、前記評価方 法に従って評価した。評価結果を表 1に示す。 Except that the dielectric layer (C) was not applied, the same procedure as in Example 1 was followed, in the order of the hardened surface layer (D), the substrate with the Z high molecular film force (A), and the transparent conductive layer (B) with the ZITO force. Laminated A composite transparent conductive substrate was prepared. The obtained transparent conductive substrate was evaluated according to the evaluation method. Table 1 shows the evaluation results.
〔実施例 2〕 Example 2
実施例 1で作成した表面硬化フィルムの表面硬化層(D)とは反対側の表面上に、 ポリエチレンジォキシチォフェン(PEDOT)およびポリスチレンスノレホン酸 (PSS)力 らなる導電性高分子の水溶液(固形分濃度 0. 7%) (Agfa-Gevaert N. V製 商 品名: Orgacon (登録商標) N300 NEW)を乾燥後の膜厚が 1. 2 mになるよう に塗工し、透明導電層 (B)を設けた。透明導電層 (B)上に実施例 1と同じ方法でシァ ノエチルプルランを乾燥後の膜厚が 0. 12 μ mになるように塗布し、誘電体層 (C)を 設けた。以上の方法で表面硬化層(D) Z高分子フィルムからなる基材 (A) Z導電性 高分子力 なる透明導電性層 (B) Zシァノエチルプルラン力 なる誘電体層 (C)の 順に積層された本発明の複合透明導電性基材を作成した。前記評価方法に従って 評価した結果を表 1に示す。  A conductive polymer composed of polyethylene dioxythiophene (PEDOT) and polystyrene sulphonic acid (PSS) force is formed on the surface opposite to the surface cured layer (D) of the surface cured film prepared in Example 1. Apply an aqueous solution (solid content: 0.7%) (Agfa-Gevaert N. V product name: Orgacon (registered trademark) N300 NEW) to a thickness of 1.2 m after drying. Layer (B) was provided. On the transparent conductive layer (B), cyanoethyl pullulan was applied by the same method as in Example 1 so that the film thickness after drying was 0.12 μm, and a dielectric layer (C) was provided. Surface cured layer (D) Z polymer film substrate (A) Z conductive polymer force transparent conductive layer (B) Z cyanoethyl pullulan dielectric layer (C) A laminated composite transparent conductive substrate of the present invention was prepared. The results of evaluation according to the evaluation method are shown in Table 1.
実施例 2の複合導電性基材を用いたタツチパネルは、高温高湿下での抵抗値安定 性の目安である RZR≤1. 1  The touch panel using the composite conductive substrate of Example 2 is a measure of resistance value stability under high temperature and high humidity. RZR≤1.1
0 を満たしており、高温高湿下での抵抗値の安定性に優 れていた。また、描画耐久性にも優れていた  0 was satisfied, and the resistance value was stable at high temperature and high humidity. Also, the drawing durability was excellent
〔比較例 2〕  (Comparative Example 2)
誘電体層 (C)を設けな力つた以外は実施例 1と同様にして、表面硬度化層(D) / 高分子フィルムカゝらなる基材 (A) Z導電性高分子からなる透明導電性層 (B)力ゝらな る複合透明導電性基材を作成した。得られた透明導電性基材について、前記評価 方法に従って評価した。評価結果を表 1に示す。  Substrate made of surface hardened layer (D) / polymer film cover (A) Transparent conductive material made of Z conductive polymer, except that the dielectric layer (C) was not applied. (B) A composite transparent conductive substrate that can be used for strength was prepared. The obtained transparent conductive substrate was evaluated according to the evaluation method. Table 1 shows the evaluation results.
〔実施例 3〕 Example 3
誘電体層(C)を設けるに際して、シァノエチルプルランの代わりにァセチルイ匕プル ラン (林原商事製)を用いた以外は実施例 1と同様にして複合透明導電性基材を作 成した。用いたァセチルイ匕プルランの比誘電率は 16であった。前記評価方法に従つ て評価した結果を表 1に示す。  A composite transparent conductive substrate was prepared in the same manner as in Example 1 except that when the dielectric layer (C) was provided, acetylene pullulan (manufactured by Hayashibara Shoji) was used instead of cyano pullulan. The relative permittivity of acetylene pullulan used was 16. The results of evaluation according to the evaluation method are shown in Table 1.
〔実施例 4〕 Example 4
誘電体層(C)を設けるに際して、シァノエチルプルランの代わりにァセチルイ匕プル ラン (林原商事製)とシァノエチルプルラン (信越化学工業製)を重量比 50%Z50% で混合して用レヽた以外は実施例 1と同様にして複合透明導電性基材を作成した。ァ セチルイ匕プルランとシァノエチルプルランを重量比 50%Z50%で混合した場合の 比誘電率は 17であった。前記評価方法に従って評価した結果を表 1に示す。 When providing the dielectric layer (C), acetylene blue instead of cyanoethyl pullulan A composite transparent conductive substrate was prepared in the same manner as in Example 1 except that orchid (produced by Hayashibara Shoji) and cyanoethyl pullulan (produced by Shin-Etsu Chemical Co., Ltd.) were mixed at a weight ratio of 50% Z50%. The relative dielectric constant was 17 when acetylene pullulan and cyanoethyl pullulan were mixed at a weight ratio of 50% Z50%. The results of evaluation according to the evaluation method are shown in Table 1.
[表 1] [table 1]
1  1
Figure imgf000015_0001
Figure imgf000015_0001
産業上の利用可能性 Industrial applicability
人間が情報機器を操作する際に必要なインターフェイスとして用いられるタツチパ ネルの重要な構成部材である複合透明導電性基材として利用できる。  It can be used as a composite transparent conductive substrate that is an important component of the touch panel used as an interface necessary for humans to operate information devices.

Claims

請求の範囲 The scope of the claims
[1] 高分子フィルムまたは高分子シートからなる基材 (A)、透明導電層 (B)および誘電 体層 (C)がこの順に積層され、誘電体層 (C)が温度 20°C、周波数 1kHzにおける比 誘電率が 15以上ある有機高分子力 なり、かつ誘電体層(C)の厚さが 40nm以上 2 OOOnm以下であるタツチパネル用複合透明導電性基材。  [1] A substrate (A) made of a polymer film or polymer sheet, a transparent conductive layer (B), and a dielectric layer (C) are laminated in this order, and the dielectric layer (C) has a temperature of 20 ° C and a frequency. A composite transparent conductive substrate for a touch panel having an organic polymer strength with a relative dielectric constant of 15 or more at 1 kHz and a dielectric layer (C) thickness of 40 nm or more and 2 OOOnm or less.
[2] 誘電体層 (C)がシァノエチルイ匕高分子およびァセチルイ匕プルランカゝら選ばれた有機 高分子力もなる請求項 1記載のタツチパネル用複合透明導電性基材。  2. The composite transparent conductive substrate for a touch panel according to claim 1, wherein the dielectric layer (C) also has an organic polymer strength selected from cyanoethyl polymer and acetylenic puller.
[3] シァノエチル化高分子がセルロース系高分子のシァノエチル化高分子、デンプン系 高分子のシァノエチル化高分子、シァノエチルポリビニールアルコール、シァノエチ ルシュクロース、およびシァノエチルソルビトールカ 選ばれた一種、または二種以 上の有機高分子力 なる請求項 2に記載のタツチパル用複合透明導電性基材。  [3] Cyanoethylated polymer is a cellulosic polymer, Cyanoethylated polymer, starch polymer Cyanoethylated polymer, Cyanoethyl polyvinyl alcohol, Cyanoethyl sucrose, and Cyanoethyl sorbitol 3. The composite transparent conductive substrate for touch pals according to claim 2, wherein two or more organic polymer forces are used.
[4] 誘電体層 (C)がシァノエチルプルラン力 なる請求項 2に記載のタツチパネル用複合 透明導電性基材。  [4] The composite transparent conductive substrate for a touch panel according to claim 2, wherein the dielectric layer (C) has a cyanoethyl pullulan force.
[5] 複合透明導電性基材の表面抵抗値が 100 ΩΖ口以上 1000 ΩΖ口以下、かつ、複 合透明導電性基材の全光線透過率が 80%以上である請求項 1〜4のいずれか〖こ記 載のタツチパネル用複合透明導電性基材。  [5] The surface resistance value of the composite transparent conductive substrate is from 100Ω to 1,000Ω and the total light transmittance of the composite transparent conductive substrate is 80% or more. A composite transparent conductive substrate for touch panels as described in KAKOKO.
[6] 高分子フィルムまたは高分子シートからなる基材 (A)がポリカーボネイト樹脂、アタリ ル榭脂、アセテート榭脂、環状ォレフィン榭脂およびポリエステル榭脂から選ばれた 榭脂からなる請求項 1〜5のいずれかに記載のタツチパネル用複合透明導電性基材  [6] The base material (A) comprising a polymer film or a polymer sheet comprises a resin selected from polycarbonate resin, acrylate resin, acetate resin, cyclic olefin resin, and polyester resin. 5. The composite transparent conductive substrate for a touch panel according to any one of 5
[7] 透明導電層 (B)が、金属系透明導電性薄膜または導電性高分子力 なる請求項 1 〜6のいずれか〖こ記載のタツチパネル用複合透明導電性基材。 7. The composite transparent conductive substrate for a touch panel according to any one of claims 1 to 6, wherein the transparent conductive layer (B) is a metal-based transparent conductive thin film or a conductive polymer force.
[8] 基材 (A)の少なくとも片面に表面硬化層(D)を有する請求項 1〜7のいずれかに記 載のタツチパネル用複合透明導電性基材。  [8] The composite transparent conductive substrate for a touch panel according to any one of [1] to [7], which has a hardened surface layer (D) on at least one surface of the substrate (A).
[9] 請求項 1〜8の 、ずれか〖こ記載のタツチパネル用複合透明導電性基材を上下の電 極の少なくとも一方の電極として用いたタツチパネル。  [9] A touch panel using the composite transparent conductive substrate for a touch panel according to any one of claims 1 to 8 as at least one of upper and lower electrodes.
PCT/JP2005/014632 2004-08-17 2005-08-10 Composite transparent conductive substrate for touch panel and touch panel WO2006019019A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006531676A JP4940949B2 (en) 2004-08-17 2005-08-10 Composite transparent conductive substrate for touch panel and touch panel
CN2005800214531A CN1977343B (en) 2004-08-17 2005-08-10 Composite transparent conductive substrate for touch panel and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004237205 2004-08-17
JP2004-237205 2004-08-17

Publications (1)

Publication Number Publication Date
WO2006019019A1 true WO2006019019A1 (en) 2006-02-23

Family

ID=35907407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014632 WO2006019019A1 (en) 2004-08-17 2005-08-10 Composite transparent conductive substrate for touch panel and touch panel

Country Status (5)

Country Link
JP (1) JP4940949B2 (en)
KR (1) KR20070042506A (en)
CN (1) CN1977343B (en)
TW (1) TWI376700B (en)
WO (1) WO2006019019A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276322A (en) * 2006-04-10 2007-10-25 Toray Advanced Film Co Ltd Transparent and electrically conductive film for touch panel
JP2011046098A (en) * 2009-08-27 2011-03-10 Sumitomo Chemical Co Ltd Transparent laminated resin sheet
WO2017159448A1 (en) * 2016-03-17 2017-09-21 東レ株式会社 Laminate member and touch panel

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101452362B (en) * 2007-12-07 2012-04-25 台达电子工业股份有限公司 Touching control panel and its manufacture method
JP2009170194A (en) * 2008-01-15 2009-07-30 Panasonic Corp Touch panel, movable contact point body and switch using the same
TWI408576B (en) * 2008-03-18 2013-09-11 Cando Corp Insulating layer of low capacitive property and touch sensor having the same
JP5366502B2 (en) * 2008-10-31 2013-12-11 富士フイルム株式会社 Conductive film for touch panel and manufacturing method thereof
JP5620644B2 (en) * 2009-02-09 2014-11-05 住友化学株式会社 Multi-layer extrusion resin plate for touch panel and surface coating plate for touch panel
TWI449006B (en) * 2011-10-05 2014-08-11 Ind Tech Res Inst Hybrid display device
CN104871258B (en) * 2012-12-19 2017-05-17 株式会社钟化 Substrate with transparent electrode and method for producing same
KR101879220B1 (en) * 2013-03-29 2018-07-17 동우 화인켐 주식회사 Transparent electrode pattern structure and touch screen panel having the same
CN105468184B (en) * 2014-09-12 2020-06-26 东友精细化工有限公司 Transparent electrode laminate and touch screen panel including the same
CN107329635A (en) * 2016-04-28 2017-11-07 宸美(厦门)光电有限公司 Conductive structure and contact panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213006A (en) * 1989-02-10 1990-08-24 Nitto Denko Corp Transparent conductive laminated body
JPH02227992A (en) * 1989-03-01 1990-09-11 Nitto Denko Corp Transparent conductive laminate and manufacture of electroluminescence display using the same laminate
JPH05325645A (en) * 1992-04-07 1993-12-10 Oji Kako Kk Transparent conducting film
JPH1044289A (en) * 1996-08-02 1998-02-17 Oji Paper Co Ltd Transparent conductive film for electroluminescent element
JPH10244615A (en) * 1997-03-06 1998-09-14 Toray Ind Inc Transparent conductive laminated body and el element
JP2001014952A (en) * 1999-06-28 2001-01-19 Toyobo Co Ltd Transparent conductive film and electroluminescence panel
JP2003109432A (en) * 2001-10-01 2003-04-11 Bridgestone Corp Transparent conductive film and touch panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081633A2 (en) * 1999-08-31 2001-03-07 Daicel Chemical Industries, Ltd. Touch panel and display device using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213006A (en) * 1989-02-10 1990-08-24 Nitto Denko Corp Transparent conductive laminated body
JPH02227992A (en) * 1989-03-01 1990-09-11 Nitto Denko Corp Transparent conductive laminate and manufacture of electroluminescence display using the same laminate
JPH05325645A (en) * 1992-04-07 1993-12-10 Oji Kako Kk Transparent conducting film
JPH1044289A (en) * 1996-08-02 1998-02-17 Oji Paper Co Ltd Transparent conductive film for electroluminescent element
JPH10244615A (en) * 1997-03-06 1998-09-14 Toray Ind Inc Transparent conductive laminated body and el element
JP2001014952A (en) * 1999-06-28 2001-01-19 Toyobo Co Ltd Transparent conductive film and electroluminescence panel
JP2003109432A (en) * 2001-10-01 2003-04-11 Bridgestone Corp Transparent conductive film and touch panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276322A (en) * 2006-04-10 2007-10-25 Toray Advanced Film Co Ltd Transparent and electrically conductive film for touch panel
JP2011046098A (en) * 2009-08-27 2011-03-10 Sumitomo Chemical Co Ltd Transparent laminated resin sheet
WO2017159448A1 (en) * 2016-03-17 2017-09-21 東レ株式会社 Laminate member and touch panel
JP6226105B1 (en) * 2016-03-17 2017-11-08 東レ株式会社 Laminated member and touch panel
TWI697994B (en) * 2016-03-17 2020-07-01 日商東麗股份有限公司 Laminated component and touch panel

Also Published As

Publication number Publication date
KR20070042506A (en) 2007-04-23
JPWO2006019019A1 (en) 2008-05-08
TWI376700B (en) 2012-11-11
CN1977343A (en) 2007-06-06
TW200617997A (en) 2006-06-01
JP4940949B2 (en) 2012-05-30
CN1977343B (en) 2010-12-22

Similar Documents

Publication Publication Date Title
WO2006019019A1 (en) Composite transparent conductive substrate for touch panel and touch panel
KR101176805B1 (en) Transparent conductive laminate and touch panel equipped with it
TWI474928B (en) Transparent conductive laminate and touch panel
JP4721359B2 (en) Transparent conductive laminate and touch panel provided with the same
JP4479608B2 (en) Transparent conductor and panel switch
JP2005019056A (en) Composite transparent conductive base material and display using the same
KR20090110914A (en) Transparent conductive multilayer body and touch panel made of the same
JP5341790B2 (en) Touch panel film and touch panel using the same
KR20100088127A (en) Transparent conductive laminate and touch panel
JP2006139750A (en) Transparent conductive laminate and touch panel
TW201539276A (en) Transparent conductor and touch panel
JP4974071B2 (en) Transparent conductive film for touch panel
JPH02129808A (en) Transparent conductive laminated material
JP6048529B2 (en) Transparent conductive film and touch panel
JP2016134320A (en) Transparent conductive body and touch panel
JP3349194B2 (en) Transparent conductive laminate
JP4214063B2 (en) Transparent conductive laminate and touch panel
JP5460090B2 (en) Transparent conductive film, touch panel, and flexible display
JP5320930B2 (en) Transparent conductive laminated film
JP3627864B2 (en) Transparent conductive film, transparent conductive sheet and touch panel
JP5541402B2 (en) Transparent conductive laminated film
JPH0294322A (en) Transparent electrically conductive layered film
KR100830385B1 (en) Transparent conductive multilayer body and touch panel
JP5110097B2 (en) Transparent conductor and panel switch
JP2011201093A (en) Transparent multilayer synthetic resin sheet and transparent conductive film sheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531676

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067025483

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580021453.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase