WO2006006227A1 - 無線ベアラ制御方法及び無線基地局 - Google Patents

無線ベアラ制御方法及び無線基地局 Download PDF

Info

Publication number
WO2006006227A1
WO2006006227A1 PCT/JP2004/009914 JP2004009914W WO2006006227A1 WO 2006006227 A1 WO2006006227 A1 WO 2006006227A1 JP 2004009914 W JP2004009914 W JP 2004009914W WO 2006006227 A1 WO2006006227 A1 WO 2006006227A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
radio base
signal
mobile terminal
radio
Prior art date
Application number
PCT/JP2004/009914
Other languages
English (en)
French (fr)
Inventor
Yutaka Kobayashi
Makoto Uchishima
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2004/009914 priority Critical patent/WO2006006227A1/ja
Priority to JP2006527661A priority patent/JP4423292B2/ja
Priority to EP04770807A priority patent/EP1768278A4/en
Publication of WO2006006227A1 publication Critical patent/WO2006006227A1/ja
Priority to US11/648,538 priority patent/US20070153756A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • H04L1/002Algorithms with memory of the previous states, e.g. Markovian models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel

Definitions

  • the present invention generally relates to the technical field of mobile communication, and more particularly to a radio bearer control method and a radio base station.
  • FIG. 1 shows a schematic diagram of a wireless communication system.
  • a typical wireless communication system is, for example, a W-CDMA (Wideband-CDMA) system.
  • the radio communication system consists of a core network (CN), multiple radio network controllers (RNC), multiple radio base stations (Node B), and user equipment (UE). Including.
  • Each radio base station forms a cell that is part of the service area.
  • Node B radio base stations
  • RNC radio network controller
  • the radio network controller (RNC) and the radio base station (Node B) form a radio access network (RNA).
  • RNA radio access network
  • the core network performs mobility management, call control, switching function, and other service control.
  • the radio network controller controls multiple radio base stations, manages radio resources, controls radio access, and so on.
  • a radio base station Node B
  • a mobile terminal In communication with a mobile terminal, information of various contents such as voice and data packets are transmitted and received under various communication conditions including a transmission rate. Such control of communication conditions is also called radio bearer control, and the communication conditions are appropriately changed according to the communication environment. For example, the mobile terminal performs communication in a state where a dedicated physical channel is allocated (CELL-DCH), a standby state (for example, CELL-PCH), or the like. Further, even in the CELL-DCH state, radio bearer control is performed so that the states of the mobile terminal and the radio base station are appropriately changed depending on the amount of traffic to be communicated. Example For example, when a lot of user data is transmitted, a dedicated channel (DC H) is used for uplink and downlink.
  • DC H dedicated channel
  • RACH radio network controller
  • FIG. 2 is a flowchart showing an example of radio bearer control between a mobile terminal and a radio base station.
  • the radio base station transmits a state transition request signal to the mobile terminal.
  • the state transition request signal indicates that the communication condition currently set in the mobile terminal should be changed to another specified communication condition. Specifically, for example, when a voice signal is currently transmitted at 384 kbps, the set parameters are changed so that communication is performed at a transmission rate of 32 kbps after a predetermined change period (for example, 100 ms). It should be shown.
  • a positive acknowledgment (ACK) signal is transmitted from the mobile terminal that has successfully received the state transition request signal to the wireless terminal.
  • the radio base station changes the communication conditions as predicted.
  • subsequent communication is performed at a transmission rate of 32 kbps.
  • step 208 the mobile terminal changes the communication condition as instructed.
  • subsequent communications are performed at a transmission rate of 32 kbps.
  • step 210 a state transition completion signal indicating that state transition has been properly performed is displayed.
  • step 212 when the completion signal is successfully received by the radio base station, an acknowledgment signal (ACK) is transmitted to the mobile terminal.
  • ACK acknowledgment signal
  • FIG. 3 shows another flowchart when changing the communication conditions of the mobile terminal and the radio base station.
  • the radio base station A transition request signal is transmitted.
  • a positive acknowledgment response (ACK: acknowledge back) signal is transmitted from the mobile terminal that has successfully received the request signal to the wireless terminal.
  • ACK acknowledge back
  • the acknowledgment signal is not properly transmitted to the radio base station. Such a situation may occur due to, for example, fading in a radio link or insufficient transmission power.
  • step 203 the state transition request signal transmitted in step 202 is transmitted again in response to a positive acknowledgment signal not being received by the radio base station within a predetermined retransmission period.
  • a positive acknowledgment response (ACK) signal is transmitted again to the wireless terminal from the mobile terminal that has successfully received the request signal.
  • the confirmation response signal is not properly transmitted to the radio base station.
  • the radio base station receives a positive acknowledgment (ACK) signal.
  • the number of times the state transition request signal is retransmitted after the retransmission period has elapsed is set as appropriate based on the change period and other system parameters.
  • the radio base station changes the communication conditions as predicted.
  • subsequent communication is performed at a transmission rate of 32 kbps.
  • step 208 the mobile terminal changes the communication condition as instructed.
  • subsequent communication is performed at a transmission rate of 32 kbps.
  • step 210 a state transition completion signal indicating that the state transition has been properly performed is displayed.
  • step 212 if the completion signal is successfully received by the radio base station, an acknowledgment signal (ACK) is transmitted to the mobile terminal.
  • ACK acknowledgment signal
  • the radio base station performs state transition after a predetermined change period even if the mobile terminal power does not receive an acknowledgment (ACK) signal.
  • the radio base station performs a state transition regardless of whether an acknowledgment (ACK) is obtained. If no acknowledgment (ACK) was received In this case, it is assumed that the radio base station does not perform state transition.
  • the state transition is performed well in the case of the example shown in FIG. However, as shown in Fig. 3, the state transition request is transmitted well, but inconvenient if the acknowledgment (ACK) is not transmitted well. That is, while the mobile terminal performs state transition, the radio base station does not perform state transition, which causes a state mismatch and disconnects communication.
  • the normal state as shown in FIG. 2 can be used, and even in the quasi-normal state as shown in FIG. Both radio base stations can make appropriate state transitions and use resources efficiently.
  • step 202 and step 203 the state transition request is transmitted to the mobile terminal after a predetermined retransmission period has elapsed, but neither is received well by the mobile terminal. For this reason, the radio base station does not perform a state transition as shown in step 207 in step S207.
  • the mobile terminal is trying to transmit signals at 384kbps as before.
  • the radio base station tries to transmit signals at 32kbps after the change. Accordingly, the mobile terminal and the radio base station cannot properly receive the signal, the mobile terminal stops transmission at step 213, and the radio link is disconnected at step 215.
  • the power to wait for the state transition completion signal in step 209 is not obtained, and no meaningful signal is received.
  • step 211 the radio link is disconnected.
  • the present invention has been made in view of the above-mentioned problems, and the problem is that the radio link is disconnected due to the mismatch of the status of the radio bearer between the mobile terminal and the radio base station.
  • the present invention is to provide a radio bearer control method and a radio base station that suppress the above.
  • the wireless base station transmits a change request signal to the mobile terminal so that the communication conditions set in the mobile terminal are changed.
  • each step is performed when a dedicated physical channel is allocated to the mobile terminal.
  • the control method is used.
  • a radio base station that performs radio communication with the mobile terminal is used, and the radio base station requests the mobile terminal to change so that the communication conditions of the mobile terminal are changed.
  • Means for transmitting a signal setting means for setting communication conditions of the radio base station, and means for measuring the signal quality of the signal received by the mobile terminal. After the communication condition is changed to another communication condition using the setting means, if the signal quality deteriorated from the predetermined value continues longer than the predetermined period, the changed communication condition is the communication before the change. Return to condition.
  • the radio base station according to (3) is used, wherein the signal quality is evaluated by a power ratio between a desired wave signal and an undesired wave signal.
  • the radio base station described in (3) is used, wherein the signal quality is evaluated by an error rate of a pilot signal included in the received signal.
  • the predetermined period is set in accordance with a period in which the radio base station waits for a response signal to the change request signal in the present invention. Is used.
  • the radio base station described in (3) is used, wherein the communication condition includes at least a transmission rate of communication.
  • FIG. 1 is a schematic diagram of a wireless communication system.
  • FIG. 2 shows a flowchart when changing states of a mobile terminal and a radio base station.
  • FIG. 3 shows another flowchart for changing the states of the mobile terminal and the radio base station.
  • FIG. 4 A further flowchart for changing the state of the mobile terminal and the radio base station is shown.
  • FIG. 5 shows a partial functional block diagram of a radio base station according to an embodiment of the present invention.
  • FIG. 6 is a flowchart showing a method according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing a relationship between a state change of a radio base station and a signal-to-noise power ratio SIR in a normal state or a semi-normal state.
  • FIG. 8 is a diagram showing a relationship between a state change of a radio base station and a signal-to-noise power ratio SIR when a radio link is disconnected due to a state mismatch.
  • FIG. 9 is a diagram showing a relationship between a state change of a radio base station and a signal-to-noise power ratio SIR when a state transition is performed again according to an embodiment of the present invention.
  • CN core network RNC radio network controller, NodeB radio base station, R AN radio access network, UE mobile terminal,
  • FIG. 5 is a functional block diagram of a portion of the functional elements of the radio base station according to an embodiment of the present invention that is particularly relevant to the present invention.
  • the radio base station includes a signal processing control unit 502, a radio interface unit 504, a wired interface unit 506, a signal quality measurement unit 508, and a communication condition setting unit 510.
  • the signal processing control unit 502 controls various functional elements in the radio base station, and performs signal processing such as baseband signal processing.
  • Radio interface section 504 is an interface for communicating with a mobile terminal (UE) via a radio link, and also performs modulation / demodulation of signals to be transmitted and received.
  • the wired interface unit 506 is an interface for performing wired communication with a radio network controller (RNC).
  • RNC radio network controller
  • Signal quality measuring section 508 measures the signal quality of the signal received from the mobile terminal.
  • signal Quality is expressed as a signal-to-noise power ratio (SIR) in this embodiment.
  • the signal quality may be expressed as an error rate for the pilot signal included in the received signal.
  • the pilot signal is a known signal known by both the mobile terminal and the radio base station, and is sometimes called a reference signal or a training signal.
  • Communication condition setting section 510 sets a transmission rate and other communication conditions for communication with a mobile terminal in accordance with instructions from signal processing control section 502. How to set communication conditions is determined by the radio network controller (RNC).
  • RNC radio network controller
  • FIG. 6 is a flowchart illustrating a method according to an embodiment of the present invention.
  • the radio base station transmits a state transition request signal to the mobile terminal.
  • the state transition request signal indicates that the communication condition currently set for the mobile terminal should be changed to another specified communication condition. Specifically, for example, when a voice signal is currently transmitted at 384 kbps, the set parameters should be changed so that communication is performed at a transmission rate of 32 kbps after a predetermined change period (for example, 100 ms). Is shown. In the illustrated example, as in the example shown in FIG. 4, the state transition request signal is not received well at the mobile terminal.
  • step 603 the radio base station receives a positive acknowledgment from the mobile terminal within a predetermined period.
  • step 604 the radio base station changes the communication condition after the change period elapses as predicted. Thereby, for example, subsequent communication is performed at a transmission rate of 32 kbps. However, the mobile terminal does not change the communication condition and no state transition is performed (step 606).
  • the radio base station measures the signal-to-interference power ratio SIR of the signal received from the mobile terminal.
  • the signal-to-noise power ratio SIR at this point is significantly degraded due to the difference in the transmission rates of signals transmitted and received between the mobile terminal and the radio base station. This is because if the transmission rate is different, the received signal content becomes noise.
  • the value of the signal-to-noise power ratio SIR is notified to the radio network controller (RNC).
  • the radio network controller (RNC) transmits a state transition request signal to the radio base station in step 619 in response to the deteriorated signal withstand power interference ratio SIR continuing for a predetermined period.
  • This state transition request signal is The station indicates that the communication condition of the radio base station should be returned to the communication condition before the change. Power that can be set to various values for a predetermined period of time It is necessary to set it short enough to transmit a state transition request signal before the radio link is disconnected. For example, the predetermined period is set in accordance with the standby period set to wait for a state transition completion response signal (steps 210, 622, etc.) indicating that the mobile terminal has completed the state transition appropriately. Good.
  • step 610 the radio base station returns the communication condition changed in step 604 to the communication condition before the change.
  • the radio base station returns the transmission rate changed to 32 kbps to 384 kbps before the change.
  • the signal-to-noise power ratio SIR measured in step 612 is expected to return to a good value before degradation.
  • This signal-to-noise power ratio SIR is also notified to the radio network controller (RNC) in step 613.
  • the radio network controller (RNC) does not transmit a state transition request signal to the radio base station.
  • step 614 the state transition request is transmitted again.
  • this status request signal is successfully received by the mobile terminal, and a positive acknowledgment (ACK) signal is transmitted to the radio base station in step 616.
  • ACK positive acknowledgment
  • step 618 the radio base station changes the communication conditions after a predetermined period. As a result, subsequent communication is performed at a transmission rate of 32 kbps.
  • step 620 the mobile terminal changes the communication condition as instructed. As a result, subsequent communication is performed at a transmission rate of 32 kbps.
  • step 622 a state transition completion signal indicating that state transition has been appropriately performed is transmitted from the mobile terminal to the radio base station.
  • step 624 if the completion signal is successfully received by the radio base station, an acknowledgment signal (ACK) is transmitted to the mobile terminal. In this way, the communication conditions of the mobile terminal and the radio base station are changed appropriately.
  • ACK acknowledgment signal
  • step 614 If the state request signal in step 614 is not properly received by the mobile terminal, it is retransmitted in the same manner as in step 603. And the status request signal is properly If not received, the same processing as in step 604 and after is performed.
  • the radio base station measures the signal-to-noise power ratio SIR, the measurement result is notified to the radio network controller (RNC), and the radio network controller (RNC) performs state transition. It was judged whether or not. However, this determination may be performed by the radio base station. That is, the radio base station monitors whether or not the deteriorated signal-to-interference power ratio SIR has continued beyond a predetermined period, and responds to the fact that the radio base station has exceeded the predetermined period in response to the radio network controller. You can notify (RNC) to that effect. However, since the radio network controller (RNC) has functions for managing radio resources, radio access control, etc., how to set the state transition contents (communication conditions) depends on the radio network controller. (RNC) should be determined. Also, in FIG. 6, the signal-to-noise power ratio SIR may be measured at other times in addition to the forces depicted as being performed at steps 608 and 612.
  • FIGS. 7 to 9 are diagrams schematically showing the relationship between the state change of the radio base station and the signal-to-noise power ratio SIR.
  • Fig. 7 shows the relationship between the state change of the radio base station and the signal-to-noise power ratio SIR in the normal state or quasi-normal state as shown in Figs.
  • the signal-to-noise power ratio SIR value slightly fluctuates, indicating that the signal quality slightly varies due to the communication environment, power control, etc., even when communication is performed normally.
  • the signal-to-noise power ratio SIR is Good value is maintained.
  • FIG. 8 shows a state where the radio link is disconnected due to the state mismatch between the mobile terminal and the radio base station, as shown in FIG. It can be seen that the signal-to-noise power ratio SIR is significantly degraded after the state transition due to the different transmission rates.
  • FIG. 9 shows a state where the state transition is performed again and the radio link is maintained as shown in FIG. Due to the state transition of step 604, the signal-to-noise power ratio SIR is significantly degraded. The process so far is the same as in FIG. However, due to the state transition again in step 610, the communication conditions of the mobile terminal and the radio base station are met, and the signal-to-noise power ratio SIR has returned to a good value before the state transition. . Then step 6 Since the state transitions at 18 and 620 are favorably performed at the radio base station and the mobile terminal, the signal-to-noise power ratio SIR can maintain a good value before and after the state transition.
  • the radio base station by monitoring the signal quality received from the mobile terminal, it is possible to easily determine whether or not the state transition is appropriate in the radio base station. If this is not appropriate, the radio base station quickly returns to the state before the state transition, so it is possible to avoid disconnection of the radio link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本願課題は、移動端末及び無線基地局間の無線ベアラの状態不一致により、無線リンクが切断されてしまうことを抑制する無線ベアラ制御方法及び無線基地局を提供することである。本発明による無線ベアラ制御方法は、移動端末に設定されている通信条件が変更されるように、無線基地局が前記移動端末に変更要求信号を送信するステップ602と、前記無線基地局に設定されている通信条件を、前記無線基地局が変更するステップ604と、前記無線基地局が、前記移動端末から受信した信号の信号品質を測定するステップ608と、所定値より劣化した信号品質が所定期間より長く続いた場合に、前記無線基地局が、変更した通信条件を変更前の通信条件に戻すステップ610とを有する。

Description

明 細 書
無線べァラ制御方法及び無線基地局
技術分野
[0001] 本発明は、一般に移動通信の技術分野に関し、特に無線べァラ制御方法及び無 線基地局に関する。
背景技術
[0002] 図 1は、無線通信システムの概略図を示す。代表的な無線通信システムとしては、 例えば、 W-CDMA (Wideband-CDMA)方式のシステムが挙げられる。無線通信 システムは、コアネットワーク(CN: Core Network)と、複数の無線ネットワーク制御 装置(RNC : Radio Network Controller)と、複数の無線基地局(ノード B)と、移 動端末 (UE : user equipment)とを含む。各無線基地局は、サービスエリアの一部 であるセルをそれぞれ形成する。簡単のため、少数の無線基地局(ノード B : NodeB )や無線ネットワーク制御装置 (RNC)が図示されているが、それらの数は任意に設 定できる。無線ネットワーク制御装置 (RNC)及び無線基地局(ノード B)は、無線ァク セスネットワーク(RNA: Radio Network Access)を形成する。
[0003] コアネットワーク(CN)は、移動管理、呼制御、交換機能その他のサービス制御を 行なう。無線ネットワーク制御装置 (RNC)は、複数の無線基地局の制御、無線リソー スの管理、無線アクセス制御等を行なう。無線基地局(ノード B)は、セル内の移動端 末と無線リンクを通じて通信を行レ、、有線ネットワークを通じて無線ネットワーク制御 装置 (RNC)と通信を行う。
[0004] 移動端末との間の通信では、音声やデータパケット等の様々な内容の情報が、伝 送レートを含む様々な通信条件の下に送信及び受信される。そのような通信条件の 制御は、無線べァラ (radio bearer)制御とも呼ばれ、通信環境に応じて通信条件 は適宜変更される。例えば、移動端末は、個別物理チャネルの割り当てられた状態( CELL— DCH)や、待ち受け状態(例えば、 CELL— PCH)等で通信を行う。更に、 CELL— DCH状態の中でも、通信されるトラフィックの多少等に依存して、移動端末 及び無線基地局の状態が適宜変更されるように、無線べァラ制御が行なわれる。例 えば、多くのユーザデータが伝送される場合には上り及び下りで専用チャネル (DC H)が使用される。一方、ユーザデータが比較的少ない場合に、下りでは FACHが使 用され、上りでは RACHが複数の移動端末の間で競合して使用される。このようにチ ャネルを適宜変更することに加えて、伝送レート等の通信条件を適切に変更すること で、リソースを効率的に使用することができる。一般に、移動端末及び無線基地局の 通信条件をどのように設定するかは、無線ネットワーク制御部 (RNC)で決定される。
[0005] この種の無線通信システムについては、例えば、立川敬二、 W— CDMA移動通信 方式、丸善株式会社、 2002年 3月 15日発行、 pp91-187 に開示されている。
[0006] 図 2は、移動端末及び無線基地局間の無線べァラ制御の一例を示すフローチヤ一 トである。先ず、ステップ 202にて、無線基地局は、移動端末に状態遷移要求信号を 送信する。状態遷移要求信号は、移動端末に現在設定されている通信条件を、指定 される別の通信条件に変更すべきことを示す。具体的には、例えば、 384kbpsで音 声信号が現在伝送されているところ、所定の変更期間(例えば、 100ms)以降は 32k bpsの伝送レートで通信を行なうように、設定済みのパラメータを変更すべきことが示 される。
[0007] ステップ 204では、その状態遷移要求信号を良好に受信した移動端末から、肯定 的な確認応答 (ACK: acknowledge back)信号が無線端末に伝送される。
[0008] ステップ 206では、無線基地局は、予告どおり通信条件を変更する。これにより、例 えば、以後の通信は 32kbpsの伝送レートで行なわれる。
[0009] ステップ 208でも同様に、移動端末は、指示されたとおりに通信条件を変更する。こ れにより、例えば、以後の通信は 32kbpsの伝送レートで行なわれる。
[0010] ステップ 210では、適切に状態遷移が行なわれたことを示す状態遷移完了信号が
、移動端末から無線基地局に伝送される。
[0011] ステップ 212では、その完了信号が無線基地局で良好に受信された場合に、確認 応答信号 (ACK)が移動端末に伝送される。このようにして、移動端末及び無線基地 局の通信条件が適切に変更される。
[0012] 図 3は、移動端末及び無線基地局の通信条件を変更する際の別のフローチャート を示す。上記の場合と同様に、ステップ 202にて、無線基地局は、移動端末に状態 遷移要求信号を送信する。
[0013] ステップ 204にて、その要求信号を良好に受信した移動端末から肯定的な確認応 答 (ACK : acknowledge back)信号が無線端末に伝送される。しかしながら、図示 の例では、確認応答信号が無線基地局に適切に伝送されていなレ、。このような状況 は、例えば、無線リンクにおけるフェージングゃ、送信電力不足等により生じる虞があ る。
[0014] ステップ 203では、肯定的な確認応答信号が所定の再送期間内に無線基地局で 受信されなかったことに応答して、ステップ 202で送信した状態遷移要求信号が再度 送信される。
[0015] ステップ 205では、その要求信号を良好に受信した移動端末から肯定的な確認応 答 (ACK)信号が無線端末に再度伝送される。し力 ながら、図示の例では、確認応 答信号が無線基地局に適切に伝送されていない。その結果、無線基地局は肯定的 な確認応答 (ACK)信号を受信してレ、なレ、。再送期間経過後に状態遷移要求信号 を再送する回数は、変更期間その他のシステムパラメータに基づいて適宜設定され る。
[0016] ステップ 206では、無線基地局は、予告どおり通信条件を変更する。これにより、例 えば、以後の通信は、 32kbpsの伝送レートで行なわれる。
[0017] ステップ 208でも同様に、移動端末は、指示されたとおりに通信条件を変更する。こ れにより、例えば、以後の通信は、 32kbpsの伝送レートで行なわれる。
[0018] ステップ 210では、適切に状態遷移が行なわれたことを示す状態遷移完了信号が
、移動端末から無線基地局に伝送される。
[0019] ステップ 212では、その完了信号が無線基地局で良好に受信された場合に、確認 応答信号 (ACK)が移動端末に伝送される。
発明の開示
発明が解決しょうとする課題
[0020] このように、無線基地局は、移動端末力も確認応答 (ACK)信号を受信しなくても、 所定の変更期間経過後に状態遷移を行なう。確認応答 (ACK)が得られても得られ なくても無線基地局は状態遷移を行なう。仮に、確認応答 (ACK)が得られなかった 場合には、無線基地局は状態遷移を行なわないものとする。この場合、図 2に示され る例の場合には状態遷移が良好に行なわれる。し力 ながら、図 3に示されるような、 状態遷移要求は良好に伝送されるがその確認応答 (ACK)が良好に伝送されない 場合には不都合が生じる。即ち、移動端末は状態遷移を行なう一方、無線基地局は 状態遷移を行なわないことになり、状態の不一致が生じ、通信が切断されてしまうか らである。所定期間経過後に強制的に状態遷移を行なうようにすることで (ステップ 2 06)、図 2に示されるような正常状態にカ卩えて、図 3に示されるような準正常状態でも 移動端末及び無線基地局双方が適切に状態遷移を行ない、リソースを効率的に利 用することが可能になる。
[0021] し力 ながら、上記のような動作を行なったとしても、以下に示されるように、依然と して不都合が生じる虞がある。図 4に示される例では、ステップ 202及びステップ 203 で状態遷移要求が所定の再送期間経過後に移動端末に向けて送信されるが、何れ も移動端末で良好に受信されなレ、。このため、無線基地局ではステップ 206にて状 態遷移が行なわれる力 S、移動端末ではステップ 207に示されるように状態遷移は行 なわれない。その結果、例えば移動端末は従前どおり 384kbpsで信号を伝送しょう とする力 無線基地局は変更後の 32kbpsで信号を伝送しょうとする。従って、移動 端末及び無線基地局は、信号を適切に受信することができなくなり、移動端末はステ ップ 213にて送信を停止し、ステップ 215にて無線リンクは切断される。一方、無線基 地局の側でも、ステップ 209で状態遷移完了信号を待ち受ける力 それが得られず、 有意義な信号も受信されず、ステップ 211にて無線リンクが切断されてしまう。
[0022] 本発明は、上記の問題点に鑑みてなされたものであり、その課題は、移動端末及 び無線基地局間の無線べァラの状態不一致により、無線リンクが切断されてしまうこ とを抑制する無線べァラ制御方法及び無線基地局を提供することである。
課題を解決するための手段
[0023] (1)本発明では、無線べァラ制御方法において、移動端末に設定されている通信条 件が変更されるように、無線基地局が前記移動端末に変更要求信号を送信するステ ップと、前記無線基地局に設定されている通信条件を、前記無線基地局が変更する ステップと、前記無線基地局が、前記移動端末から受信した信号の信号品質を測定 するステップと、所定値より劣化した信号品質が所定期間より長く続いた場合に、前 記無線基地局が、変更した通信条件を変更前の通信条件に戻すステップとを有する 無線べァラ制御方法を用いる。
(2)また、本発明では、(1)において、前記各ステップが、前記移動端末に個別物理 チャネルが割り当てられてレ、る場合に行なわれることを特徴とする(1)記載の無線べ ァラ制御方法を用いる。
(3)本発明においては、移動端末との間で無線通信を行う無線基地局が用いられ、 当該無線基地局は、前記移動端末の通信条件が変更されるように、前記移動端末 に変更要求信号を送信する手段と、当該無線基地局の通信条件を設定する設定手 段と、前記移動端末力 受信した信号の信号品質を測定する手段とを備える。前記 設定手段を用いて、ある通信条件力 別の通信条件に通信条件が変更された後に、 所定値より劣化した信号品質が所定期間より長く続いたならば、変更した通信条件 は変更前の通信条件に戻される。
(4)また、本発明においては、前記信号品質が、希望波信号と非希望波信号との電 力比により評価されることを特徴とする(3)記載の無線基地局が用いられる。
(5)また、本発明においては、前記信号品質が、受信した信号に含まれるパイロット 信号のエラーレートで評価されることを特徴とする(3)記載の無線基地局を用いる。
(6)また、本発明においては、前記変更要求信号に対する応答信号を当該無線基 地局が待ち受ける期間に合わせて、前記所定期間が設定されることを特徴とする(3) 記載の無線基地局を用いる。
(7)また、本発明においては、前記通信条件に、少なくとも通信の伝送レートが含ま れることを特徴とする(3)記載の無線基地局を用いる。
発明の効果
[0024] 本発明によれば、移動端末及び無線基地局間の無線べァラの状態不一致により、 無線リンクが切断されてしまうことが効果的に抑制される。
図面の簡単な説明
[0025] [図 1]無線通信システムの概略図である。
[図 2]移動端末及び無線基地局の状態を変更する際のフローチャートを示す。 [図 3]移動端末及び無線基地局の状態を変更する際の別のフローチャートを示す。
[図 4]移動端末及び無線基地局の状態を変更する際の更に別のフローチャートを示 す。
[図 5]本発明の一実施例による無線基地局の部分的な機能ブロック図を示す。
[図 6]本発明の一実施例による方法を示すフローチャートである。
[図 7]正常状態又は準正常状態における無線基地局の状態変化と信号対雑音電力 比 SIRの関係を示す図である。
[図 8]状態不一致に起因して無線リンクが切断される場合における、無線基地局の状 態変化と信号対雑音電力比 SIRの関係を示す図である。
[図 9]本発明の一実施例により状態遷移が再度行なわれる場合における、無線基地 局の状態変化と信号対雑音電力比 SIRの関係を示す図である。
符号の説明
[0026] CN コアネットワーク, RNC 無線ネットワーク制御装置, NodeB 無線基地局, R AN 無線アクセスネトワーク, UE 移動端末,
502 信号処理制御部, 504 無線インターフェース部, 506 有線インターフエ一 ス部, 508 信号品質測定部, 510 通信条件設定部
発明を実施するための最良の形態
[0027] 図 5は、本発明の一実施例による無線基地局の機能要素の内、本発明に特に関連 する部分の機能ブロック図を示す。無線基地局は、信号処理制御部 502と、無線ィ ンターフェース部 504と、有線インターフェース部 506と、信号品質測定部 508と、通 信条件設定部 510とを有する。
[0028] 信号処理制御部 502は、無線基地局内の各種の機能要素を制御し、ベースバンド 信号処理等の信号処理を行なう。
[0029] 無線インターフェース部 504は、移動端末 (UE)との間で無線リンクを介して通信を 行うためのインターフェースであり、送受信する信号の変復調等も行なう。
[0030] 有線インターフェース部 506は、無線ネットワーク制御装置 (RNC)との間で有線通 信を行うためのインターフェースである。
[0031] 信号品質測定部 508は、移動端末から受信した信号の信号品質を測定する。信号 品質は、本実施例では、信号対雑音電力比(SIR)として表現される。他の実施例で は、信号品質は、受信信号に含まれるパイロット信号に対する誤り率として表現され てもよレ、。パイロット信号は、移動端末及び無線基地局の双方で既知の既知信号で あり、参照信号やトレーニング信号と呼ばれることもある。
[0032] 通信条件設定部 510は、移動端末との間で行なう通信の伝送レートその他の通信 条件を、信号処理制御部 502からの指示に従って設定する。通信条件をどのように 設定するかは、無線ネットワーク制御装置 (RNC)で決定される。
[0033] 図 6は、本発明の一実施例による方法を示すフローチャートである。先ず、ステップ 602にて、無線基地局は、移動端末に状態遷移要求信号を送信する。状態遷移要 求信号は、移動端末に現在設定されている通信条件を、指定される別の通信条件に 変更すべきことを示す。具体的には、例えば、 384kbpsで音声信号が現在伝送され ているところ、所定の変更期間(例えば、 100ms)以降は 32kbpsの伝送レートで通 信を行なうように、設定済みのパラメータを変更すべきことが示される。図示の例では 、図 4に示される例と同様に、状態遷移要求信号は、移動端末にて良好に受信され ない。
[0034] ステップ 603にて、無線基地局は、移動端末から所定期間内に肯定的な確認応答
(ACK)を受信しな力 たことに応じて、状態遷移要求信号を再度送信する。
[0035] ステップ 604では、無線基地局は、予告どおり変更期間経過後に通信条件を変更 する。これにより、例えば、以後の通信は、 32kbpsの伝送レートで行なわれる。しかし 、移動端末は、通信条件を変更せず、状態遷移は行なわれない (ステップ 606)。
[0036] ステップ 608にて、無線基地局は、移動端末から受信した信号の信号対干渉電力 比 SIRを測定する。移動端末及び無線基地局で送受信される信号の伝送レートが異 なることに起因して、この時点での信号対雑音電力比 SIRは顕著に劣化したものとな る。伝送レートが違えば、受信される信号内容は雑音となってしまうからである。
[0037] ステップ 609に示されるように、この信号対雑音電力比 SIRの値は、無線ネットヮー ク制御装置 (RNC)に通知される。無線ネットワーク制御装置 (RNC)は、劣化した信 号耐電力干渉比 SIRが所定期間を超えて続いたことに応答して、ステップ 619にて、 無線基地局に状態遷移要求信号を送信する。この状態遷移要求信号は、無線基地 局が、無線基地局の通信条件を変更前の通信条件に戻すべきことを示す。所定期 間は、様々な値に設定されることが可能である力 無線リンクが切断されてしまう前に 状態遷移要求信号が送信される程度に短く設定される必要がある。例えば、所定期 間は、移動端末が状態遷移を適切に完了したことを示す状態遷移完了応答信号 (ス テツプ 210, 622等)を待ち受けるために設定された待受期間に合わせて設定されて あよい。
[0038] ステップ 610にて、無線基地局は、ステップ 604で変更した通信条件を変更前の通 信条件に戻す。即ち、無線基地局は、 32kbpsに変更した伝送レートを変更前の 384 kbpsに戻す。以後、移動端末及び無線基地局は、 384kbpsで信号を送受信するの で、ステップ 612で測定される信号対雑音電力比 SIRは、劣化する前の良好な値に 戻ること力 S予想される。この信号対雑音電力比 SIRも、ステップ 613にて、無線ネット ワーク制御装置 (RNC)に通知される。しかし、信号対雑音電力比 SIRの値は良好で あるので、ステップ 619の場合とは異なり、無線ネットワーク制御装置 (RNC)は無線 基地局に状態遷移要求信号を送信しない。
[0039] ステップ 614では、再度状態遷移要求が送信される。図示の例では、この状態要求 信号は、移動端末にて良好に受信され、肯定的な確認応答 (ACK)信号が、ステツ プ 616にて無線基地局に伝送されるものとする。
[0040] ステップ 618では、無線基地局は、所定期間経過後に通信条件を変更する。これ により、以後の通信は、 32kbpsの伝送レートで行なわれる。
[0041] ステップ 620でも同様に、移動端末は、指示されたとおりに通信条件を変更する。こ れにより、以後の通信は、 32kbpsの伝送レートで行なわれる。
[0042] ステップ 622では、適切に状態遷移が行なわれたことを示す状態遷移完了信号が 、移動端末から無線基地局に伝送される。
[0043] ステップ 624では、その完了信号が無線基地局で良好に受信された場合に、確認 応答信号 (ACK)が移動端末に伝送される。このようにして、移動端末及び無線基地 局の通信条件が適切に変更される。
[0044] ステップ 614における状態要求信号が、移動端末に適切に受信されなかった場合 は、ステップ 603と同様に再送される。そして、移動端末にて状態要求信号が適切に 受信されなかった場合は、ステップ 604以降と同様な処理が行なわれる。
[0045] 本実施例では、無線基地局が信号対雑音電力比 SIRを測定し、測定結果は無線 ネットワーク制御装置 (RNC)に通知され、無線ネットワーク制御装置 (RNC)にて状 態遷移を行なうか否かが判断されていた。しかし、この判断は、無線基地局で行なわ れてもよい。即ち、無線基地局が、劣化した信号対干渉電力比 SIRが所定期間を超 えて続いたか否力、を監視し、それが所定期間を超えて続いたことに応答して、無線ネ ットワーク制御装置 (RNC)にその旨を通知してもよレ、。但し、無線ネットワーク制御装 置 (RNC)は、無線リソースの管理や無線アクセス制御等を行なう機能を有するので 、状態遷移の内容(通信条件)をどのように設定すべきかは、無線ネットワーク制御装 置 (RNC)で決定されるべきである。また、図 6では、信号対雑音電力比 SIRの測定 は、ステップ 608, 612の時点で行なわれるように描かれている力 これらに加えて他 の時点で測定されてもよい。
[0046] 図 7乃至 9は、無線基地局の状態変化と信号対雑音電力比 SIRの関係を模式的に 示す図である。図 7は、図 2, 3に示されるような正常状態又は準正常状態における、 無線基地局の状態変化と信号対雑音電力比 SIRの関係を示す。信号対雑音電力比 SIRの値が多少上下しているのは、通信が正常に行われる場合であっても、通信環 境や電力制御等に起因して信号品質が若干変動する様子を表す。図 2, 3に示され るような正常状態又は準正常状態では、無線基地局の状態遷移に合わせて移動端 末も状態遷移を行なうので、信号対雑音電力比 SIRは、状態遷移の前後で良好な値 を維持している。
[0047] 図 8は、図 4に示されるように、移動端末及び無線基地局の状態不一致に起因して 、無線リンクが切断される場合の様子を示す。伝送レートが異なることに起因して、状 態遷移後に信号対雑音電力比 SIRが顕著に劣化していることが分かる。
[0048] 図 9は、図 6に示されるように、状態遷移が再度行なわれ、無線リンクが維持される 場合の様子を示す。ステップ 604の状態遷移に起因して、信号対雑音電力比 SIRが 顕著に劣化している。ここまでは、図 8の場合と同じである。し力、しながら、ステップ 61 0の再度の状態遷移に起因して、移動端末及び無線基地局の通信条件が合致し、 信号対雑音電力比 SIRは状態遷移前の良好な値に戻っている。その後のステップ 6 18, 620における状態遷移は、無線基地局及び移動端末で良好に行なわれるので 、状態遷移の前後で信号対雑音電力比 SIRは良好な値を維持できる。図 7乃至 9で は、信号品質は、信号対雑音電力比 SIRで評価されていたが、信号品質を評価する 他の基準についても、状態遷移の前後で同様な傾向が観測されるであろう。信号品 質を評価する他の基準としては、例えば、受信したパイロット信号中の同期パターン の誤り率を採用することができる。
[0049] このように、移動端末から受信する信号品質を監視することで、無線基地局におけ る状態遷移の適否を簡易に判別することができる。それが不適切な場合には、無線 基地局は状態遷移前の状態に速やかに復帰するので、無線リンクの切断を回避する こと力 Sできる。
[0050] 以上本発明が特定の実施例に関して説明されてきたが、本発明の範囲内で様々な 修正や変形が可能であることは当業者にとって明白であろう。

Claims

請求の範囲
[1] 移動端末に設定されている通信条件が変更されるように、無線基地局が前記移動 端末に変更要求信号を送信するとともに、前記無線基地局に設定されている通信条 件を、前記無線基地局が変更するステップと、
前記無線基地局が、前記移動端末から受信した信号の信号品質を測定するステツ プと、
所定値より劣化した信号品質が所定期間より長く続いた場合に、前記無線基地局 力、変更した通信条件を変更前の通信条件に戻すステップと
を有することを特徴とする無線べァラ制御方法。
[2] 前記各ステップが、前記移動端末に個別物理チャネルが割り当てられている場合 に行なわれる
ことを特徴とする請求項 1記載の無線べァラ制御方法。
[3] 移動端末との間で無線通信を行う無線基地局であって、
前記移動端末の通信条件が変更されるように、前記移動端末に変更要求信号を送 信する手段と、
当該無線基地局の通信条件を設定する設定手段と、
前記移動端末から受信した信号の信号品質を測定する手段と
を備え、前記設定手段を用いて、ある通信条件から別の通信条件に通信条件が変 更された後に、所定値より劣化した信号品質が所定期間より長く続いたならば、変更 した通信条件を変更前の通信条件に戻す
ことを特徴とする無線基地局。
[4] 前記信号品質が、希望波信号と非希望波信号との電力比により評価される
ことを特徴とする請求項 3記載の無線基地局。
[5] 前記信号品質が、受信した信号に含まれるパイロット信号のヱラーレートで評価さ れる
ことを特徴とする請求項 3記載の無線基地局。
[6] 前記変更要求信号に対する応答信号を当該無線基地局が待ち受ける期間に合わ せて、前記所定期間が設定される ことを特徴とする請求項 3記載の無線基地局。
前記通信条件に、少なくとも通信の伝送レートが含まれる ことを特徴とする請求項 3記載の無線基地局。
PCT/JP2004/009914 2004-07-12 2004-07-12 無線ベアラ制御方法及び無線基地局 WO2006006227A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2004/009914 WO2006006227A1 (ja) 2004-07-12 2004-07-12 無線ベアラ制御方法及び無線基地局
JP2006527661A JP4423292B2 (ja) 2004-07-12 2004-07-12 無線ベアラ制御方法及び無線基地局
EP04770807A EP1768278A4 (en) 2004-07-12 2004-07-12 RADIO CARRIER CONTROL SYSTEM AND RADIO BASE STATION
US11/648,538 US20070153756A1 (en) 2004-07-12 2007-01-03 Radio bearer control method and radio base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009914 WO2006006227A1 (ja) 2004-07-12 2004-07-12 無線ベアラ制御方法及び無線基地局

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/648,538 Continuation US20070153756A1 (en) 2004-07-12 2007-01-03 Radio bearer control method and radio base station

Publications (1)

Publication Number Publication Date
WO2006006227A1 true WO2006006227A1 (ja) 2006-01-19

Family

ID=35783593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009914 WO2006006227A1 (ja) 2004-07-12 2004-07-12 無線ベアラ制御方法及び無線基地局

Country Status (4)

Country Link
US (1) US20070153756A1 (ja)
EP (1) EP1768278A4 (ja)
JP (1) JP4423292B2 (ja)
WO (1) WO2006006227A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004868A1 (ja) * 2009-07-08 2011-01-13 京セラ株式会社 無線基地局及び通信制御方法
JP2011199498A (ja) * 2010-03-18 2011-10-06 Fujitsu Ltd 基地局装置および通信方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037432B1 (ko) 2009-03-05 2011-05-30 전자부품연구원 자기장 통신 네트워크를 위한 무선 통신 방법 및 코디네이터의 복조 장치
US8320967B2 (en) * 2010-12-14 2012-11-27 Telefonaktiebolaget Lm Ericsson (Publ) User location based switching between diversity and multiplexing
US9276813B2 (en) * 2011-12-02 2016-03-01 Silver Spring Networks, Inc. Technique for changing the operating state of a node within a network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049663A (ja) * 1998-04-17 2000-02-18 Matsushita Electric Ind Co Ltd 無線通信装置及び伝送レ―ト制御方法
WO2000027162A2 (de) 1998-11-04 2000-05-11 Siemens Aktiengesellschaft Verfahren zum übertragen von informationssignalen im teilnehmeranschlussbereich
JP2002101043A (ja) * 2000-06-26 2002-04-05 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置及び通信方法
JP2004128967A (ja) * 2002-10-03 2004-04-22 Ntt Docomo Inc リソース割当方法、及びこのリソース割当方法が適用される基地局、移動局、無線パケット通信システム
JP2004153617A (ja) * 2002-10-31 2004-05-27 Kyocera Corp 通信システム、無線通信端末、データ配信装置及び通信方法
JP2004158931A (ja) * 2002-11-01 2004-06-03 Matsushita Electric Ind Co Ltd 伝送レート制御装置および伝送レート制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3171999A (en) * 1998-04-17 1999-11-08 Matsushita Electric Industrial Co., Ltd. Radio communication device and method of controlling transmission rate
RU2198468C2 (ru) * 1998-06-13 2003-02-10 Самсунг Электроникс Ко., Лтд. Способ и устройство синхронизации состояний базовой и мобильной станции в системе множественного доступа с кодовым разделением каналов
US6330278B1 (en) * 1999-07-28 2001-12-11 Integrity Broadband Networks, Inc. Dynamic adaptive modulation negotiation for point-to-point terrestrial links
DE10035389B4 (de) * 2000-07-20 2005-11-10 Siemens Ag Verfahren zur Datenübertragung im Access Bereich
JP3426200B2 (ja) * 2000-08-02 2003-07-14 松下電器産業株式会社 通信端末装置および無線通信方法
CN1297173C (zh) * 2000-08-10 2007-01-24 株式会社Ntt都科摩 移动通信***,资源切换方法,网络控制装置和方法
JP3821636B2 (ja) * 2000-08-21 2006-09-13 松下電器産業株式会社 通信端末装置、基地局装置および無線通信方法
JP2002185398A (ja) * 2000-12-18 2002-06-28 Sony Corp 送信電力制御方法およびシステム
JP4372549B2 (ja) * 2001-11-16 2009-11-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信システム
GB2385754B (en) * 2002-02-25 2005-01-12 Toshiba Res Europ Ltd Adaptive modulation for wireless networks
KR100638610B1 (ko) * 2004-08-10 2006-10-26 삼성전기주식회사 무선 영상 전송 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049663A (ja) * 1998-04-17 2000-02-18 Matsushita Electric Ind Co Ltd 無線通信装置及び伝送レ―ト制御方法
WO2000027162A2 (de) 1998-11-04 2000-05-11 Siemens Aktiengesellschaft Verfahren zum übertragen von informationssignalen im teilnehmeranschlussbereich
JP2002101043A (ja) * 2000-06-26 2002-04-05 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置及び通信方法
JP2004128967A (ja) * 2002-10-03 2004-04-22 Ntt Docomo Inc リソース割当方法、及びこのリソース割当方法が適用される基地局、移動局、無線パケット通信システム
JP2004153617A (ja) * 2002-10-31 2004-05-27 Kyocera Corp 通信システム、無線通信端末、データ配信装置及び通信方法
JP2004158931A (ja) * 2002-11-01 2004-06-03 Matsushita Electric Ind Co Ltd 伝送レート制御装置および伝送レート制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1768278A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004868A1 (ja) * 2009-07-08 2011-01-13 京セラ株式会社 無線基地局及び通信制御方法
JPWO2011004868A1 (ja) * 2009-07-08 2012-12-20 京セラ株式会社 無線基地局及び通信制御方法
JP2011199498A (ja) * 2010-03-18 2011-10-06 Fujitsu Ltd 基地局装置および通信方法

Also Published As

Publication number Publication date
US20070153756A1 (en) 2007-07-05
EP1768278A4 (en) 2011-01-26
JP4423292B2 (ja) 2010-03-03
JPWO2006006227A1 (ja) 2008-04-24
EP1768278A1 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US10069614B2 (en) Method and apparatus for sending and receiving channel quality indicators (CQIs)
US8804628B2 (en) Method of enhancing continuous packet connectivity in a wireless communications system and related apparatus
CN103298019B (zh) 高速下行链路分组接入(hsdpa)链路自适应方法
US8570924B2 (en) Method and arrangement for activity detection in a telecommunication system
RU2292647C2 (ru) Передачи в системе связи
JP4975863B2 (ja) 移動通信システムにおける無線リソース管理方法及びユーザー端末装置
EP1796331B1 (en) Apparatus and method for call admission control
JP2009504054A (ja) 不連続制御チャネル送信のためのプリアンブル長
JP2009526460A (ja) グループ識別及び非個別チャネル状態における高速送信をサポートするユーザ装置
JP2008199222A (ja) 移動通信システムで使用される基地局装置及び方法
JP2006217151A (ja) 無線通信装置
US20070153756A1 (en) Radio bearer control method and radio base station
WO2006083152A1 (en) A method of scheduling uplink channel of a mobile station that is in soft handover in a mobile wireless communication system
JP5163582B2 (ja) 移動通信システムおよびその通信方法ならびにプログラム
JP6031039B2 (ja) 基地局及び通信制御方法
KR20090003754A (ko) 이동통신 시스템 및 그의 무선 자원 제어 연결 설정방법
AU2008200143A1 (en) Transmissions in a communication system
WO2007073683A1 (fr) Procede et systeme de configuration de liaison montante e-dch et terminal utilisateur
JP4793500B2 (ja) 無線通信システム
JP4793503B2 (ja) 無線通信方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527661

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004770807

Country of ref document: EP

Ref document number: 11648538

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004770807

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11648538

Country of ref document: US