WO2006004218A1 - 内燃機関の燃料供給制御装置 - Google Patents

内燃機関の燃料供給制御装置 Download PDF

Info

Publication number
WO2006004218A1
WO2006004218A1 PCT/JP2005/012723 JP2005012723W WO2006004218A1 WO 2006004218 A1 WO2006004218 A1 WO 2006004218A1 JP 2005012723 W JP2005012723 W JP 2005012723W WO 2006004218 A1 WO2006004218 A1 WO 2006004218A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
auxiliary fuel
fuel
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2005/012723
Other languages
English (en)
French (fr)
Inventor
Akio Matsunaga
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP05758021.9A priority Critical patent/EP1764497B1/en
Publication of WO2006004218A1 publication Critical patent/WO2006004218A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • F01N2430/085Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a fuel supply control device for an internal combustion engine.
  • It has an exhaust supercharger and a fuel injection valve that directly injects fuel into the cylinder, and is supplied with main fuel when the engine operating state is in a specific operating state.
  • An internal combustion engine in which auxiliary fuel is supplied from a fuel injection valve in the subsequent expansion stroke to increase exhaust energy, which is the energy of exhaust gas flowing into the exhaust supercharger (Japanese Patent Laid-Open No. 7-10). (See 3 0 1 3).
  • a specific operating state is a state in which the vehicle speed, engine speed, main fuel injection amount, and accelerator pedal depression amount are not less than the respective threshold values.
  • the auxiliary fuel When the auxiliary fuel is supplied to increase the exhaust energy, the supercharging pressure increases, and thus the engine output can be increased. However, if supplementary fuel is supplied, the combustion consumption rate or exhaust emission amount can increase. Therefore, if the auxiliary fuel is supplied just because the engine operating state is a specific operating state as in the internal combustion engine described above, the auxiliary fuel may not be used effectively for increasing the exhaust energy. is there. That is, for example, even when the amount of depression of the accelerator pedal is large, the actual engine output may almost match the required output. At this time, it is almost necessary to supply the auxiliary fuel to increase the exhaust energy. No. Or, even if the actual engine output is small, there is no need to supply auxiliary fuel if the required output is small. Disclosure of the invention
  • an object of the present invention is to provide a fuel supply control device for an internal combustion engine that can effectively use auxiliary fuel to increase exhaust energy.
  • a fuel supply control device for an internal combustion engine having an exhaust supercharger which includes a fuel injection valve that directly injects fuel into a cylinder, and a shortage of actual engine output relative to a required output.
  • the fuel supply control of the internal combustion engine comprising: an increasing means for temporarily increasing the exhaust energy, which is the energy of the exhaust gas flowing into the exhaust supercharger by supplying auxiliary fuel from the fuel injection valve during the expansion stroke of An apparatus is provided.
  • FIG. 1 is an overall view of an internal combustion engine
  • Fig. 2 is a diagram for explaining main fuel Qm and auxiliary fuel QV
  • Fig. 3 is a diagram illustrating a first embodiment according to the present invention when engine output is represented by torque.
  • FIG. 4 is a diagram for explaining the first embodiment according to the present invention when the engine output is represented by the supercharging pressure
  • FIG. 5 is a diagram showing the required torque TQT
  • FIG. 7 is a diagram showing the required supercharging pressure PMT
  • FIG. 8 is a flowchart showing the auxiliary fuel supply control routine of the first embodiment according to the present invention
  • FIG. 9 is a graph showing the engine output depending on the supercharging pressure.
  • FIG. 4 is a diagram for explaining main fuel Qm and auxiliary fuel QV
  • Fig. 3 is a diagram illustrating a first embodiment according to the present invention when engine output is represented by torque.
  • FIG. 4 is a diagram for explaining the first embodiment according to the present invention when the engine output is
  • FIG. 10 is a diagram for explaining a second embodiment according to the present invention in a representative case
  • FIG. 10 is a diagram showing a set value PMS 1
  • FIG. 11 is a second embodiment according to the present invention.
  • Fig. 12 is a flow chart showing the auxiliary fuel supply stop control routine of the second embodiment according to the present invention
  • Fig. 13 is representative of the engine output depending on the boost pressure.
  • FIG. 14 is a diagram showing a set value DPMA 1
  • FIG. 15 is an auxiliary fuel supply stop of the third embodiment according to the present invention.
  • FIG. 16 is a flowchart for explaining the fourth embodiment according to the present invention when the engine output is represented by the supercharging pressure
  • FIG. 17 is a diagram showing the set value DPMS 1.
  • FIG. 18 is a flowchart showing the auxiliary fuel supply stop control routine of the fourth embodiment according to the present invention
  • FIG. 19 is a diagram showing the set value D 0 PS 1 of another embodiment according to the present invention
  • FIG. A and 20 B are used when the exhaust energy is represented by the exhaust gas temperature.
  • FIG. 21 is a flowchart for explaining an auxiliary fuel supply stop control routine of the fifth embodiment according to the present invention
  • FIGS. 2 2 A, 2 2 B and 2 2 C Is a diagram showing the exhaust emission amount QEM
  • FIG. 23 is a flowchart showing the auxiliary fuel supply stop control routine of the sixth embodiment according to the present invention
  • FIG. 24 explains the seventh embodiment of the present invention.
  • FIG. 25 is a flowchart showing the auxiliary fuel supply stop control routine of the seventh embodiment according to the present invention
  • FIG. 26 is a diagram for explaining the eighth embodiment of the present invention
  • FIG. It is a flowchart which shows the auxiliary fuel supply stop control routine of 8th Example by invention.
  • FIG. 1 shows a case where the present invention is applied to a compression ignition type internal combustion engine.
  • the present invention can also be applied to a spark ignition internal combustion engine.
  • the engine body 1 has, for example, four cylinders la .
  • Each cylinder 1 a is connected to a common surge tank 3 via a corresponding intake branch pipe 2, and the surge tank 3 is variable via an intake duct 4
  • a nozzle-type exhaust supercharger that is, a compressor 5 of a turbocharger 5 connected to c outlet.
  • An intake pipe 6 is connected to the inlet of the compressor 5c.
  • a throttle valve 8 driven by an electric control type or negative pressure control type actuator 7 and further, the intake duct ⁇ 4 is surrounded by the intake duct 4.
  • a cooling device 9 for cooling the flowing intake air is arranged.
  • Each cylinder 1 a is connected to the inlet of the exhaust turbine 5 t of the evening charger 10 through the exhaust manifold 10 and the exhaust pipe 11, and the outlet of the exhaust evening bin 5 t is connected through the exhaust pipe 12.
  • Particulate fill evening 1 3 is linked.
  • an exhaust pipe 14 is connected to the outlet of the particulate fill 1 3.
  • This particulate filter is used to collect fine particles mainly composed of solid carbon contained in the exhaust gas.
  • a NO x absorbent can be supported on the particulate film 13.
  • a fuel injection valve 15 is arranged in the cylinder of each cylinder 1a, and these fuel injection valves 15 are electrically controlled fuel pumps 1 having variable discharge amount through a common fuel accumulating chamber, that is, a common rail 16. Linked to 7.
  • a fuel pressure sensor (not shown) for detecting the fuel pressure in the common rail 16 is attached to the common rail 16, and the fuel pressure in the common rail 16 is determined based on the output signal of the fuel pressure sensor. Burning to be The discharge rate of the charge pump 17 is controlled.
  • the exhaust manifold 10 and the surge tank 3 are connected to each other via a recirculated exhaust gas (hereinafter referred to as EGR) passage 18, and an electrically controlled EGR is provided in the EGR passage 18.
  • Control valve 19 is arranged.
  • a cooling device 20 for cooling the EGR gas flowing in the EGR passage 18 is disposed around the EGR passage 18, and an oxidation catalyst is provided in the EGR passage 18 upstream of the cooling device 20. 2 1 is placed.
  • the electronic control unit 30 consists of a digital computer and is connected to each other by a bidirectional bus 3 1 RM (read-only memory) 3 2, RAM (random access memory) 3 3, CPU (microphone processor) 3 4. Knock-up R AM (B-R AM) 3 5, input port 3 6 and output port 3 7 are provided.
  • the intake air inlet pipe 6 is provided with an air flow mechanism 40 for detecting the amount of fresh air, and the pressure in the surge tank 3, that is, the supercharging pressure is applied to, for example, the surge tank 3 downstream of the throttle valve 8.
  • a supercharging pressure sensor 41 is installed for detection.
  • an exhaust temperature sensor 4 2 is installed in the exhaust pipe 14 to detect the temperature of the exhaust gas discharged from the particulate filter 1 3, and the amount of depression of the accelerator pedal 4 3 in the accelerator pedal 4 3 Depression amount sensor 4 4 is detected for detecting
  • the temperature of the exhaust gas detected by the exhaust temperature sensor 4 2 represents the temperature of the particulate filter 13.
  • the output voltages of these sensors 40, 4 1, 4 2, and 4 4 are respectively input to the input ports 3 6 via the corresponding AD converters 3 8.
  • a crank angle sensor 45 that generates an output pulse every time the crankshaft rotates, for example, 10 ° is connected to the input port 36.
  • the CPU 34 calculates the engine speed based on this output pulse.
  • the output port 3 7 is connected to the corresponding drive circuit 3 9 through the actuator 7, the fuel injection valve 15, the fuel pump 1, and EGR control valve 19 connected respectively.
  • the amount of fine particles collected on the particulate filter 13 increases.
  • the temperature of the particulate filter 13 is maintained at, for example, 600 ° C. or higher under a lean air-fuel ratio, the particulates on the particulate filter 13 are oxidized and removed. Therefore, in the internal combustion engine shown in FIG. 1, for example, when the amount of collected fine particles on the particulate fill 1 3 exceeds a certain amount, the particulate fill 1 3 is used to remove the particulate from the particulate fill 1 3.
  • the temperature rise control is performed by raising the temperature of 3 and keeping it at 600 ° C or higher. Specifically, in order to control the temperature rise, as shown in Fig.
  • the main fuel Qm is supplied near the compression top dead center (TDC). Additional fuel Q a is supplied. This additional fuel Qa reaches the particulate fill 13 with little combustion in the cylinder, exhaust manifold 10 or exhaust pipe 11 and burns in the particulate fill 13. As a result, the temperature of the particulate filter 13 is increased.
  • evening pocketer 5 is for supercharging fresh air with exhaust energy, which is the energy of exhaust gas, and thereby increasing engine output.
  • exhaust energy to the turbocharger 5 is increased to increase the rotation speed of the compressor 5c, that is, the evening rotation speed
  • the output of the evening charge charger 5 can be increased, and thus the engine output is increased. be able to.
  • the fuel injection valve in order to increase the exhaust energy, as shown in FIG. 2, the fuel injection valve is supplied during the expansion stroke of the wheat that has been supplied with the main fuel Qm near the compression top dead center (TDC).
  • Auxiliary fuel QV is supplied from 1-5.
  • This auxiliary fuel Q v burns in the cylinder, in the exhaust manifold 10, or in the exhaust pipe 11, resulting in increased exhaust energy.
  • the in this way, the exhaust energy can be increased without changing the injection parameter of the main fuel Qm, for example, the injection time.
  • This auxiliary fuel QV hardly contributes to the engine output.
  • the auxiliary fuel Q V is supplied only by force, for example, the amount of depression of the accelerator pedal 43 is large, the auxiliary fuel Q V cannot be used effectively. That is, the auxiliary fuel Q V should be supplied only when it is necessary to truly increase the engine output.
  • a required output representative value O P T representing the required output and an actual output representative value O P A representative of the actual engine output are obtained.
  • the auxiliary fuel QV is supplied when it is larger than the permissible limit value L MT corresponding to the limit.
  • FIG. 3 shows the case where the engine output is represented by the torque TQ.
  • the required output representative value OPT is the required torque TQT
  • the actual output representative value OPA is the actual torque T QA
  • the required torque TQT is also increased stepwise.
  • the actual torque TQA is the required torque TQT
  • the actual torque TQA deficiency for the required torque TQT is increased stepwise from almost zero.
  • Fig. 4 shows the case where the engine output is represented by the boost pressure PM.
  • the required output representative value ⁇ PT is the required boost pressure PMT
  • the actual output representative value ⁇ PA is the actual boost pressure PMA
  • the required supercharging pressure P M T is also increased in a stepped manner.
  • the actual supercharging pressure PMA does not increase in the same way as the required supercharging pressure PMT.
  • the actual supercharging pressure PMA is insufficient with respect to the required supercharging pressure PMT. Increase in shape.
  • the supply of the auxiliary fuel Q V is started.
  • the supercharging pressure shortage PMS gradually decreases, and then the supercharging pressure shortage PS becomes smaller than the permissible limit value L MT PM as shown by arrow Y in FIG.
  • the supply of auxiliary fuel Q v is stopped.
  • auxiliary fuel QV is temporarily supplied when the output shortage representative value OPS is greater than the permissible limit value LMT, and the exhaust energy is temporarily increased. Stopped. That is, as shown by the arrow Z in FIG. 3 or FIG. Dal 4 3 Depression amount Even when ACC is large, the actual output may almost match the required output. In this case, auxiliary fuel QV is not supplied. Therefore, the fuel consumption rate can be reduced, and the amount of exhaust emission, that is, the amount of HC, fine particles, or smoke contained in the exhaust gas can be reduced, and the auxiliary fuel QV can be effectively used. can do. This is the basic idea of the first embodiment according to the present invention.
  • the above-mentioned required output representative value ⁇ P T and the actual output representative value ⁇ PA are obtained, for example, as follows. That is, in the example shown in FIG. 3, the required torque TQT is stored in advance in the ROM 3 2 in the form of the map shown in FIG. 5 as a function of the depression amount AC C of the accelerator pedal 4 3 and the engine speed NE. The amount of depression of the accelerator pedal 43 is calculated based on the ACC and engine speed NE.
  • the actual torque T QA is stored in advance in the ROM 3 2 in the form of a map shown in Fig. 6 as a function of the main fuel amount Qm and the engine speed NE. These main fuel amount Qm and engine speed Calculated based on number NE.
  • the required supercharging pressure PMT is stored in advance in the ROM 3 2 in the form of the map shown in FIG. 7 as a function of the required torque TQT and the engine speed NE.
  • TQT is stored in ROM 3 2 in advance in the form of the map shown in Fig. 5 as a function of accelerator pedal 4 3 depression amount ACC and engine speed NE, and these accelerator pedal 4 3 depression amounts ACC
  • the required supercharging pressure PMT is calculated based on the engine speed NE.
  • the actual boost pressure PMA is detected by the boost pressure sensor 4 1.
  • the required torque TQT or the required boost pressure PMT which is the required output representative value OPT, is ultimately calculated based on the depression amount ACC of the accelerator pedal 43. This will ensure the vehicle driver ’s will It becomes possible to grasp.
  • FIG. 8 shows a supply control routine for the auxiliary fuel Q V according to the first embodiment of the present invention. This routine is executed by interruption every predetermined set time.
  • step 100 the required output representative value OPT is calculated, and at step 1001, the cold output representative value 0 PA is calculated.
  • step 103 it is determined whether or not the output shortage representative value O PS is larger than the allowable limit value LMT.
  • O P S> L MT the routine proceeds to step 104, where auxiliary fuel Q V is supplied.
  • O P S ⁇ L M T the routine proceeds to step 105, where the supply of auxiliary fuel Q V is stopped.
  • the engine output is represented by one of torque and supercharging pressure.
  • engine output can be represented by both torque and boost pressure.
  • the auxiliary fuel Q v is supplied when the torque shortage TQS is larger than the permissible limit value L MT TQ or when the supercharging pressure is insufficient PMS is larger than the permissible limit value L MT PM.
  • the fuel QV supply may be stopped, or the auxiliary fuel when the torque shortage TQS is greater than the allowable limit value LMT TQ and the boost pressure shortage PMS is greater than the allowable limit value L MT PM QV may be supplied, and supply of auxiliary fuel QV may be stopped otherwise.
  • the shortage representative value OPS may be calculated in the form of a ratio (OPA / OPT) instead of the difference between the required output representative value OPT and the actual output representative value 0 PA (OPT- ⁇ PA). Good.
  • the output shortage representative value Auxiliary fuel QV is supplied only when OPS is larger than the permissible limit value LMT, so that auxiliary fuel Qv can be used effectively.
  • the auxiliary fuel QV is supplied, the fuel consumption rate or the amount of exhaust emissions may increase.
  • the turbo rotational speed or the actual supercharging pressure PMA may exceed the respective allowable upper limit. Therefore, in the second to ninth embodiments according to the present invention, the increase effect of the exhaust energy by the auxiliary fuel QV is suppressed.
  • the supply of the auxiliary fuel Q v is prohibited or stopped.
  • the turbo state representative value TRB representative of the state or output of the overnight charger 5 is obtained, and whether or not the supply of the auxiliary fuel QV should be stopped is determined as the turbo state. Judgment is based on representative values.
  • the evening state representative value TRB is composed of at least one of, for example, actual supercharging pressure PMA, exhaust energy, and turbo speed.
  • a second embodiment according to the present invention will be described with reference to FIGS.
  • a set value OPS 1 (> 0) determined according to the evening state representative value TRB is obtained, and the auxiliary value when the output shortage representative value OPS is smaller than this set value 0 PS 1 is assisted.
  • the fuel QV supply is stopped.
  • a second embodiment according to the present invention will be described by taking as an example a case where the engine output is represented by the supercharging pressure PM.
  • the engine output can be represented by, for example, torque TQ.
  • the first implementation according to the present invention is performed. Similar to example The supply of auxiliary fuel Q v is started. When the supply of auxiliary fuel QV is started, the supercharging pressure deficiency PMS gradually decreases. In addition, when the supply of the auxiliary fuel QV is started, the evening state representative value TRB, for example, the actual supercharging pressure PMA gradually increases. On the other hand, the set value PMS 1 corresponding to the set value OPS 1 increases as the turbo state representative value TRB increases, as shown in FIG.
  • This set value PMS 1 is stored in advance in R 0 M 3 2 in the form of a map shown in FIG. Next, as shown by arrow W in FIG. 9, when the supercharging pressure deficiency PMS becomes smaller than the set value PMS 1, the supply of the auxiliary fuel QV is stopped or prohibited.
  • a broken line I in FIG. 9 shows the case of the first embodiment according to the present invention.
  • the supply of the auxiliary fuel Q V is continued until the insufficient supercharging pressure P M S becomes smaller than the allowable limit value L MT P M.
  • the supply of the auxiliary fuel Q v is stopped before the supercharging pressure deficiency P M S becomes smaller than the allowable limit value L MTP M.
  • the auxiliary fuel Q V can be used more effectively.
  • the set value OPS 1 that increases is set, and the supply of auxiliary fuel QV is stopped when the output shortage representative value OPS is smaller than this set value OPS 1.
  • the auxiliary fuel Q V is corrected to decrease to zero.
  • FIG. 11 shows a supply control routine for the auxiliary fuel Qv according to the second embodiment of the present invention. This routine is executed by interruption every predetermined set time.
  • step 1 1 the required output representative value ⁇ P T is calculated in step 1 1 0, and the actual output representative value ⁇ PA is calculated in the following step 1 1 1.
  • step 1 1 2 the output shortage representative value 0 P S is calculated (O P S P T — O P A).
  • step 1 1 3 Figure 1
  • step 1 2 set value 0 PS 1 is calculated.
  • step 1 1 4 it is determined whether or not the flag XST P is reset, that is, whether or not the supply of the auxiliary fuel Q V is permitted.
  • X S T P 0, that is, when the supply of the auxiliary fuel Q V is permitted, the routine proceeds to step 1 15, where it is determined whether or not the output shortage O P S is larger than the allowable limit value L MT.
  • O P S> L MT the routine proceeds to step 1 1 6 where auxiliary fuel Q V is supplied.
  • the third embodiment according to the present invention obtains the change rate DOPA of the actual output representative value OPA and the set value DOPA 1 (> 0) determined according to the turbo state representative value TRB.
  • the configuration is different from the second embodiment according to the present invention in that the supply of the auxiliary fuel Q v is stopped when the set value is larger than DOPA 1. .
  • a third embodiment according to the present invention will be described taking as an example the case where the engine output is represented by the boost pressure PM.
  • the amount of depression of the accelerator pedal 4 3 When the ACC is increased stepwise and the supercharging pressure deficiency PMS exceeds the allowable limit value L MT PM, the first As in the embodiment, the supply of the auxiliary fuel QV is started. When the supply of the auxiliary fuel Q v is started, the actual supercharging pressure change rate D P M A gradually increases. On the other hand, the set value D P MA 1 corresponding to the set value D O P A 1 decreases as the turbo state representative value T R B increases, as shown in FIG. This set value D PMA 1 is stored in advance in ROM 3 2 in the form of a map shown in FIG. Next, as shown by the arrow W in FIG. 13, when the actual supercharging pressure change rate DPMA becomes larger than the set value DPMA1, the supply of the auxiliary fuel QV is stopped.
  • the supply of the auxiliary fuel Q V is stopped before the insufficient supercharging pressure P M S becomes smaller than the allowable limit value L MTP M, and therefore the auxiliary fuel Q V can be used more effectively.
  • FIG. 15 shows the auxiliary fuel QV supply stop control routine of the third embodiment according to the present invention. This routine is for example step 1 of figure 1 1 1 is executed in 3.
  • the change rate DOPS of the output shortage OPS and the set value D 0 PS 1 ( ⁇ 0) determined according to the turbo state representative value TRB are obtained, and the change rate D representative of the output shortage D O
  • the configuration is different from the second embodiment according to the present invention in that the supply of the auxiliary fuel Qv is stopped when PS is smaller than the set value DOPS 1.
  • the fourth embodiment according to the present invention will be described taking as an example the case where the engine output is represented by the boost pressure PM.
  • the supply of the auxiliary fuel QV is started.
  • the rate of change in insufficient supercharging pressure DPMS gradually increases and then decreases from zero.
  • the set value DPMS 1 corresponding to the set value D 0 PS 1 has a large turbo state representative value TRB as shown in Fig. 17. It grows as you get better.
  • This set value DPMS 1 is stored in advance in R0M 3 2 in the form of the map shown in Fig. 17.
  • an arrow W in FIG. 16 when the change rate DPMS for insufficient supercharging pressure becomes smaller than the set value DPMS 1, the supply of the auxiliary fuel QV is stopped.
  • FIG. 18 shows an auxiliary fuel Q V supply stop control routine according to the fourth embodiment of the present invention. This routine is executed, for example, in steps 1 1 3 of FIG.
  • step 1 4 the output shortage representative value change rate DOPS is calculated, and in step 1 4 1, the set value DOPS 1 is calculated.
  • FIG. 19 shows another embodiment of the set value D O P S 1.
  • the set value D O P A 1 increases as the turbo state representative value T R B increases, and increases as the output shortage representative value O P S decreases.
  • the set value DOPS 1 is set according to the turbo state representative value TRB and the output shortage representative value OPS, and the output shortage representative value change rate D ⁇ PS is the set value D ⁇ PS1. This means that the supply of the auxiliary fuel QV is stopped when the value is smaller than that.
  • the set value DOPS 1 is set only according to the turbo state representative value TRB regardless of the output shortage representative value OPS. It will be.
  • the exhaust energy EEXOO N when it is assumed that the auxiliary fuel QV is supplied is predicted, and the predicted exhaust energy EEX ON is larger than a predetermined set amount EEX 1. At this time, the supply of auxiliary fuel QV is stopped.
  • the fifth embodiment according to the present invention differs from the second to fourth embodiments according to the present invention in configuration.
  • a fifth embodiment according to the present invention will be described by taking as an example the case where the exhaust energy is represented by the temperature TEX of the exhaust gas discharged from the combustion chamber and flowing into the exhaust turbine 5t. The exhaust evening -Naturally, it is possible to represent the exhaust energy by the amount of heat of the exhaust gas flowing into the bottle 5 t.
  • T E X 0 L D represents the exhaust gas temperature T E X after the previous combustion cycle is completed.
  • the exhaust gas temperature T E X after the completion of the next combustion cycle becomes T E X O F F.
  • the exhaust gas temperature TEX after the completion of the next combustion cycle becomes TEX ON, and this TE XON is higher than TE XO FF by ⁇ ⁇ Only ⁇ ⁇ ⁇ is getting higher.
  • the exhaust gas temperature TE XO FF when it is assumed that the supply of the auxiliary fuel QV is stopped in the next combustion cycle depends on the main fuel Qm (see Fig. 2).
  • the exhaust gas temperature in the previous combustion cycle Predictions can be made based on TEX ⁇ LD and injection parameters of main fuel Qm, for example, injection quantity or injection timing.
  • the amount of increase ⁇ T E X depends on the auxiliary fuel Q V and can be predicted based on the injection parameter of the auxiliary fuel Q V, for example, the injection amount or the injection timing.
  • the exhaust gas temperature TEXOFF and the increase ⁇ TEX when the supply of the auxiliary fuel QV is assumed to be stopped in the next combustion cycle are predicted, and the increase to the exhaust gas temperature TEXOFF is predicted.
  • the exhaust gas temperature TEX ⁇ N predicted in this way is higher than a certain set temperature TEX1 corresponding to the set amount EEX1, for example, the next combustion cycle. During this period, the supply of auxiliary fuel QV is stopped.
  • the auxiliary fuel Q V is supplied in the next combustion cycle. As a result, the exhaust gas temperature T EX can be prevented from rising excessively.
  • the exhaust energy EE XO FF is predicted when it is assumed that the supply of the auxiliary fuel QV is stopped in the next combustion cycle, and the increase ⁇ EEX of the exhaust energy due to the auxiliary fuel QV is predicted.
  • Exhaust energy EEX ON when it is assumed that auxiliary fuel QV was supplied in the next combustion cycle is predicted based on these EE XO FF and ⁇ ⁇ ⁇ ⁇ , and the predicted exhaust energy EEX ON is the set amount EEX 1 If more than that, it means that the supply of auxiliary fuel QV is stopped in the next combustion cycle.
  • FIG. 21 shows a supply stop control routine for the auxiliary fuel Q V according to the fifth embodiment of the present invention. This routine is executed in steps 1 1 3 of FIG.
  • step 1 5 exhaust energy EEX 0 N is calculated when it is assumed that auxiliary fuel QV was supplied in the next combustion cycle.
  • the amount of exhaust emission that is, the amount of HC, fine particles, or smoke contained in the exhaust gas increases as compared with the case where the auxiliary fuel Q V is not supplied.
  • the exhaust emission amount QE MON when it is assumed that the auxiliary fuel QV is supplied is predicted, and the predicted exhaust emission amount QE MON is set to a predetermined set amount QEM. When more than 1, the supply of auxiliary fuel QV is stopped.
  • the sixth embodiment according to the present invention differs from the second to fifth embodiments according to the present invention in this respect.
  • the exhaust emission amount QEM depends on the injection parameters of the auxiliary fuel Qv and the in-cylinder atmosphere or condition to which the auxiliary fuel QV is supplied. That is, as shown in Fig. 2 2 A, the exhaust emission amount Q EMON when the auxiliary fuel Q v is supplied is the auxiliary fuel Q v The amount of exhaust emission when QV increases and the supply of auxiliary fuel QV is stopped Increased with respect to QE MO FF
  • the amount of smoke QS MO N when the auxiliary fuel QV is supplied increases as the injection timing 0 QV of the auxiliary fuel Q v is retarded, and the supply of the auxiliary fuel QV is reduced.
  • Smoke amount when stopped Increased with respect to QSMOFF increases.
  • the HC amount QH CON when the auxiliary fuel Q v is supplied increases as the injection timing ⁇ QV of the auxiliary fuel Q v is advanced, and the HC amount QHC 0 FF when the supply of the auxiliary fuel QV is stopped. The increase with respect to increases.
  • Fig. 2 2 B the amount of smoke QS MO N when the auxiliary fuel QV is supplied increases as the injection timing 0 QV of the auxiliary fuel Q v is retarded, and the supply of the auxiliary fuel QV is reduced.
  • Smoke amount when stopped Increased with respect to QSMOFF increases.
  • the HC amount QH CON when the auxiliary fuel Q v is supplied increases as the injection timing ⁇ QV of the auxiliary fuel Q v is advanced
  • the exhaust emission amount Q EMON when the auxiliary fuel QV is supplied increases as the actual torque TQA increases, and the exhaust emission amount when the supply of the auxiliary fuel QV is stopped.
  • the amount of increase relative to QEM ⁇ FF increases.
  • the actual torque is determined according to the main fuel Qm, and represents the in-cylinder atmosphere when the auxiliary fuel Q V is supplied.
  • the injection timing ⁇ QV of the auxiliary fuel QV and the actual torque T QA are kept constant, and in the case of Fig. 2 2 B, the auxiliary fuel amount Q v and the actual The torque T QA is kept constant.
  • the auxiliary fuel quantity QV and the injection timing ⁇ QV of the auxiliary fuel QV are kept constant.
  • the exhaust emission amount QE MO FF when it is assumed that the supply of the auxiliary fuel QV is stopped in the next combustion cycle depends on the main fuel Qm, for example, the engine speed, actual torque, E GR ratio, new Predictions can be made based on air volume, fresh air temperature, etc.
  • the increase ⁇ Q EM depends on the auxiliary fuel QV, and can be predicted based on the injection parameters of the auxiliary fuel QV, for example, the auxiliary fuel amount QV and the injection timing ⁇ QV.
  • the supply of auxiliary fuel QV is stopped in the next combustion cycle, and the predicted exhaust emission amount QE MO N If is less than the set amount QEM 1, auxiliary fuel QV is supplied in the next combustion cycle.
  • the supply of the auxiliary fuel Q V can be stopped when at least one of the amounts of HC, fine particles, or smoke described above is larger than the corresponding set amount.
  • the set amount Q E M 1 may be a constant value, but in the sixth embodiment according to the present invention, the set amount Q E M 1 is set according to the engine operating state. That is, for example, the set amount Q E M 1 is set based on the engine speed, the actual torque T QA, and the fresh air amount.
  • FIG. 23 shows a supply stop control routine for the auxiliary fuel Q V according to the sixth embodiment of the present invention. This routine is executed in step 1 1 3 of FIG.
  • step 160 the exhaust emission amount QEMO N obtained when it is assumed that auxiliary fuel QV was supplied in the next combustion cycle is calculated.
  • step 1 61 the set amount QEM 1 is calculated.
  • QEM ON represents the amount of exhaust emission per combustion cycle when it is assumed that auxiliary fuel Q v is supplied
  • QEMON is the exhaust amount when it is assumed that auxiliary fuel Q v is supplied. It can be seen that it represents the rate of increase or rate of change in emissions.
  • the supply of the auxiliary fuel QV is stopped when the change rate of the exhaust emission amount when it is assumed that the auxiliary fuel Q v is supplied is larger than the set value.
  • QD P FON assumed that the supplementary fuel Q v was supplied, and the amount of collected particulates on the particulate filter 1 3, and QDPFOFF assumed that the supply of auxiliary fuel QV was stopped.
  • the increase ⁇ QD P F also increases with time.
  • Supply of auxiliary fuel QV is stopped when the rate is high, and supply of auxiliary fuel QV is allowed when the rate of increase in the amount of collected particulate QDPFON is low.
  • the increase rate of the collected particulate amount QDPF ON is small, if the increase in the collected particulate amount QDPFON is caused solely by the auxiliary fuel QV, the supply of the auxiliary fuel QV should be stopped. .
  • the increase ⁇ Q D P F represents the effect of the auxiliary fuel Q V on the collected particulate quantity Q D P F ON. Therefore, it can be seen that the increase rate of the collected particulate quantity QD P F O N is increased due to the auxiliary fuel Q V when the increase acceleration or change rate of the increase ⁇ Q D P F is large.
  • the change rate DA of the increase A QD PF is obtained, and FIG.
  • the seventh embodiment according to the present invention is different in configuration from the sixth embodiment according to the present invention.
  • the set value D A 1 can be a constant value, but in the seventh embodiment according to the present invention, the set amount Q EM 1 is set according to the engine operating state. That is, for example, the set value D ⁇ 1 is set based on the engine speed, the actual torque TQA, and the fresh air amount.
  • FIG. 25 shows the auxiliary fuel QV supply stop control routine of the seventh embodiment according to the present invention. This routine is for example step 1 of figure 1 1 1 is executed in 3.
  • step 170 the exhaust emission amount Q EMO N obtained when it is assumed that auxiliary fuel QV was supplied in the next combustion cycle is calculated.
  • step 1 7 1 the set amount Q EM 1 is calculated.
  • step 1 74 collect particulates when the vehicle has traveled for a reference period, for example, a certain time or a certain distance, assuming that supplementary fuel QV is supplied.
  • the quantity QQDPF ON is calculated.
  • step 1 75 the amount of collected particulates QQDPFOFF when the vehicle travels for the reference period when it is assumed that the supply of the auxiliary fuel QV is stopped is calculated. If the exhaust emission amount QE MO N, QE MO FF calculated in step 1 70 is a particulate amount, the accumulated particulate amount Q QD PF is obtained by integrating these QE MON, QE MO FF over the reference period.
  • step 1 7 8 the set value D ⁇ 1 is calculated.
  • step 1 79 it is determined whether or not the increase rate of change D ⁇ is larger than the set value D ⁇ 1.
  • the temperature of the particulate filter 13 also rises. At this time, if a relatively large amount of fine particles are collected on the particulate filter 13, the large amount of fine particles may be abnormally burned and the particulate filter 13 may be damaged.
  • the supply of the auxiliary fuel Q V is stopped when the amount of collected fine particles Q D P F on the particulate filter 13 is larger than a predetermined set amount QD P F 1.
  • the eighth embodiment according to the present invention differs from the second to fifth embodiments according to the present invention in this respect.
  • FIG. 27 shows a supply stop control routine for the auxiliary fuel Q V according to the eighth embodiment of the present invention. This routine is executed in step 1 1 3 of FIG.
  • step 190 the amount of collected particulates QD PF on the patty-filled file evening 13 is calculated.
  • step 1 9 1 it is determined whether or not the collected particulate amount QD PF is larger than the set amount QD PF 1.
  • auxiliary fuel can be effectively used for increasing exhaust energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

要求トルク(TQT)と、実際の機関トルク(TQA)とをそれぞれ求め、要求トルク(TQT)から実際のトルク(TQA)を減算することによりトルク不足分(TQS)を求める(TQS=TQT−TQA)。トルク不足分(TQS)が許容限界値(LMTTQ)よりも大きいときには、主燃料が供給された後の膨張行程に燃料噴射弁から補助燃料(Qv)を供給し、ターボチャージャ内に流入する排気エネルギを増大させる。これに対し、トルク不足分(TQS)が許容限界値(LMTTQ)よりも小さいときには、アクセルペダルの踏み込み量(ACC)にかかわらず、補助燃料(Qv)の供給を停止する。

Description

内燃機関の燃料供給制御装置 技術分野
本発明は内燃機関の燃料供給制御装置に関する。 背景技術 明
排気過給機と、 燃料を筒内に直接噴射する燃料噴射弁とを具備し 、 機関運転状態が特定の運転状態にあるときに、 主燃料が供給され 書
た後の膨張行程に燃料噴射弁から補助燃料を供給して排気過給機内 に流入する排気ガスのエネルギである排気エネルギを増大させるよ うにした内燃機関が公知である (特開平 7 - 1 0 3 0 1 3号公報参 照) 。 この内燃機関では、 車速、 機関回転数、 主燃料の噴射量、 及 びアクセルペダルの踏み込み量がそれぞれのしきい値以上になって いる状態を特定の運転状態としている。
補助燃料を供給して排気エネルギを増大させると過給圧が増大し 、 かく して機関出力を増大させることができる。 ところが、 補助燃 料を供給すると、 燃焼消費率又は排気ェミッショ ン量が増大しうる 。 従って、 上述の内燃機関のように機関運転状態が特定の運転状態 であるというだけで補助燃料を供給するようにすると、 補助燃料を 排気エネルギの増大のために有効に利用することができないおそれ がある。 即ち、 例えばアクセルペダルの踏み込み量が大きいときで あっても実際の機関出力が要求出力にほぼ一致している場合もあり 、 このとき補助燃料を供給して排気エネルギを増大させる必要はほ とんどない。 あるいは、 実際の機関出力が小さいときであっても要 求出力が小さい場合には、 補助燃料を供給する必要がないのである 発明の開示
そこで本発明は、 補助燃料を排気エネルギの増大のために有効に 利用することができる内燃機関の燃料供給制御装置を提供すること を目的とする。
本発明によれば、 排気過給機を有する内燃機関の燃料供給制御装 置であって、 該装置が、 燃料を筒内に直接噴射する燃料噴射弁と、 要求出力に対する実際の機関出力の不足分である出力不足分が予め 定められた許容限界よりも大きいか否かを判断する判断手段と、 該 出力不足分が許容限界よりも大きいと判靳されたときには、 主燃料 が供給された後の膨張行程に燃料噴射弁から補助燃料を供給して排 気過給機内に流入する排気ガスのエネルギである排気エネルギを一 時的に増大させる増大手段と、 を具備した内燃機関の燃料供給制御 装置が提供される。 図面の簡単な説明
図 1は内燃機関の全体図、 図 2は主燃料 Q m及び補助燃料 Q Vを 説明するための図、 図 3は機関出力がトルクによって代表される場 合における本発明による第 1実施例を説明するための図、 図 4は機 関出力が過給圧によって代表される場合における本発明による第 1 実施例を説明するための図、 図 5は要求トルク T Q Tを示す線図、 図 6は実トルク T Q Aを示す線図、 図 7は要求過給圧 P M Tを示す 線図、 図 8は本発明による第 1実施例の補助燃料供給制御ルーチン を示すフローチャート、 図 9は機関出力が過給圧によって代表され る場合における本発明による第 2実施例を説明するための図、 図 1 0は設定値 P M S 1 を示す線図、 図 1 1は本発明による第 2実施例 の補助燃料供給制御ルーチンを示すフローチヤ一卜、 図 1 2は本発 明による第 2実施例の補助燃料供給停止制御ル一チンを示すフロー チャート、 図 1 3は機関出力が過給圧によって代表される場合にお ける本発明による第 3実施例を説明するための図、 図 1 4は設定値 D P M A 1 を示す線図、 図 1 5は本発明による第 3実施例の補助燃 料供給停止制御ルーチンを示すフローチヤ一ト、 図 1 6は機関出力 が過給圧によって代表される場合における本発明による第 4実施例 を説明するための図、 図 1 7は設定値 D P M S 1 を示す線図、 図 1 8は本発明による第 4実施例の補助燃料供給停止制御ルーチンを示 すフローチャート、 図 1 9は本発明による別の実施例の設定値 D〇 P S 1 を示す線図、 図 2 0 A及び 2 0 Bは排気エネルギが排気ガス 温度によって代表される場合における本発明による第 5実施例を説 明するための図、 図 2 1は本発明による第 5実施例の補助燃料供給 停止制御ルーチンを示すフローチャート、 図 2 2 A, 2 2 B及び 2 2 Cは排気ェミッション量 Q E Mを示す線図、 図 2 3は本発明によ る第 6実施例の補助燃料供給停止制御ルーチンを示すフローチヤ一 ト、 図 2 4は本発明による第 7実施例を説明するための図、 図 2 5 は本発明による第 7実施例の補助燃料供給停止制御ルーチンを示す フローチャート、 図 2 6は本発明による第 8実施例を説明するため の図、 図 2 7は本発明による第 8実施例の補助燃料供給停止制御ル —チンを示すフローチャートである。 発明を実施するための最良の形態
図 1は本発明を圧縮着火式内燃機関に適用した場合を示している 。 しかしながら、 本発明を火花点火式内燃機関に適用することもで きる。
図 1 を参照すると、 機関本体 1は例えば 4つの気筒 l aを有する 。 各気筒 1 aはそれぞれ対応する吸気枝管 2を介して共通のサージ タンク 3 に連結され、 サージタンク 3は吸気ダク ト 4を介して可変 ノズル式排気過給機、 即ちターボチャージャ 5のコンプレッサ 5 c の出口に連結される。 コンプレッサ 5 cの入口には吸気導入管 6が 連結される。 吸気ダク ト 4内には電気制御式又は負圧制御式のァク チユエ一夕 7により駆動されるス口ッ トル弁 8が配置され、 さらに 吸気ダク 卜 4周りには吸気ダク ト 4内を流れる吸入空気を冷却する ための冷却装置 9が配置される。
また、 各気筒 1 aは排気マニホルド 1 0及び排気管 1 1 を介して 夕一ポチャージャ 5の排気タービン 5 t の入口に連結され、 排気夕 —ビン 5 t の出口は排気管 1 2を介してパティキュレートフィル夕 1 3に連結される。 さらに、 パティキュレートフィル夕 1 3の出口 には排気管 1 4が連結される。 このパティキュレートフィル夕 1 3 は排気ガス中に含まれる主として固体炭素からなる微粒子を捕集す るためのものである。 パティキュレートフィル夕 1 3上に例えば N O x 吸収剤を担持させることもできる。 この N〇x 吸収剤は流入す る排気ガスの平均空燃比がリーンのときには排気ガス中の N O x を 蓄え、 流入する排気ガスの空燃比が低下したときに排気ガス中に還 元剤が含まれていると蓄えている N O x を還元して蓄えている N O X の量を減少させる N O x 蓄積還元作用を行い、 例えばアルミナ担 体上に担持されたバリウム B a及び白金 P tからなる。
各気筒 1 aの筒内には燃料噴射弁 1 5が配置され、 これら燃料噴 射弁 1 5は共通の燃料蓄圧室即ちコモンレール 1 6 を介して電気制 御式の吐出量可変な燃料ポンプ 1 7に連結される。 コモンレール 1 6にはコモンレール 1 6内の燃料圧を検出するための燃料圧センサ (図示しない) が取り付けられており、 燃料圧センサの出力信号に 基づいてコモンレール 1 6内の燃料圧が目標燃料圧となるように燃 料ポンプ 1 7の吐出量が制御される。
さらに図 1 を参照すると、 排気マニホルド 1 0 とサージタンク 3 とは再循環排気ガス (以下、 E G Rと称す) 通路 1 8 を介して互い に連結され、 E G R通路 1 8内には電気制御式 E G R制御弁 1 9が 配置される。 また、 E GR通路 1 8周りには E G R通路 1 8内を流 れる E GRガスを冷却するための冷却装置 2 0が配置され、 冷却装 置 2 0上流の E G R通路 1 8内には酸化触媒 2 1が配置される。
電子制御ュニッ ト 3 0はデジタルコンピュータからなり、 双方向 性バス 3 1 によって互いに接続された R〇 M (リードオンリメモリ ) 3 2、 RAM (ランダムアクセスメモリ) 3 3、 C P U (マイク 口プロセッサ) 3 4、 ノ ックアップ R AM ( B - R AM) 3 5、 入 力ポート 3 6及び出力ポート 3 7 を具備する。 吸気導入管 6には新 気量を検出するためのェアフロ一メ一夕 4 0が取り付けられ、 スロ ッ トル弁 8下流の例えばサージタンク 3 には、 サージタンク 3内の 圧力即ち過給圧を検出するための過給圧センサ 4 1が取り付けられ る。 また、 排気管 1 4にはパティキュレートフィル夕 1 3から排出 される排気ガスの温度を検出するための排気温度センサ 4 2が取り 付けられ、 アクセルペダル 4 3にはアクセルペダル 4 3の踏み込み 量を検出するための踏み込み量センサ 4 4が接続される。 排気温度 センサ 4 2により検出される排気ガスの温度はパティキュレートフ ィル夕 1 3の温度を表している。 これらセンサ 4 0, 4 1 , 4 2 , 4 4の出力電圧は対応する A D変換器 3 8 を介して入力ポート 3 6 にそれぞれ入力される。 さらに、 入力ポート 3 6にはクランクシャ フ トが例えば 1 0 ° 回転する毎に出力パルスを発生するクランク角 センサ 4 5が接続される。 C P U 3 4ではこの出力パルスに基づい て機関回転数が算出される。 一方、 出力ポート 3 7は対応する駆動 回路 3 9 を介してァクチユエ一夕 7、 燃料噴射弁 1 5、 燃料ポンプ 1 7、 及び E G R制御弁 1 9にそれぞれ接続される。
時間の経過と共にパティキュレートフィルタ 1 3上に捕集された 微粒子の量が増大する。 一方、 リーン空燃比のもとでパティキユレ —トフィルタ 1 3の温度を例えば 6 0 0 °C以上に保持するとパティ キュレートフィルタ 1 3上の微粒子が酸化除去される。 そこで図 1 に示される内燃機関では、 例えばパティキュレートフィル夕 1 3上 の捕集微粒子量が一定量を越えたときに、 パティキュレートフィル 夕 1 3から微粒子を除去するためにパティキュレートフィル夕 1 3 の温度を上昇させて 6 0 0 °C以上に保持する昇温制御を行うように している。 具体的には、 昇温制御を行うために、 図 2に示されるよ うに圧縮上死点 (T D C ) 付近で主燃料 Q mが供給された後の例え ば排気行程に燃料噴射弁 1 5から追加の燃料 Q aが供給される。 こ の追加燃料 Q aは筒内、 排気マニホルド 1 0内、 又は排気管 1 1内 でほとんど燃焼することなくパティキュレートフィル夕 1 3に到達 し、 パティキュレートフィル夕 1 3内で燃焼する。 その結果、 パテ ィキュレートフィルタ 1 3の温度が上昇される。
一方、 夕一ポチャ一ジャ 5は排気ガスのエネルギである排気エネ ルギでもって新気を過給し、 それにより機関出力を増大させるため のものである。 この場合、 ターボチャージャ 5への排気エネルギを 増大させてコンプレッサ 5 c の回転数即ち夕一ポ回転数を上昇させ れば、 夕ーポチャージャ 5の出力を増大させることができ、 従って 機関出力を増大させることができる。
本発明による各実施例では、 排気エネルギを増大させるために、 図 2に示されるように圧縮上死点 (T D C ) 付近で主燃料 Q mが供 給された f麦の膨張行程に燃料噴射弁 1 5から補助燃料 Q Vを供給す るようにしている。 この補助燃料 Q vは筒内、 排気マニホルド 1 0 内、 又は排気管 1 1内で燃焼し、 その結果排気エネルギが増大され る。 このようにすると、 主燃料 Qmの噴射パラメータ例えば噴射時 期を変更することなく、 排気エネルギを増大させることができる。 なお、 この補助燃料 Q Vは機関出力にほとんど寄与しない。
ところ力 、 例えばアクセルペダル 4 3の踏み込み量が大きいとい うだけで補助燃料 Q Vを供給するようにすると、 補助燃料 Q Vを有 効に利用できないことは冒頭で述べたとおりである。 即ち、 機関出 力を真に増大させる必要があるときにのみ、 補助燃料 Q Vを供給す べきである。
そこで本発明による各実施例では、 要求出力に対する実際の機関 出力の不足分である出力不足分が予め定められた許容限界よりも大 きいか否かを判断し、 出力不足分が許容限界よりも大きいと判断さ れたときに補助燃料 Q vを供給して排気エネルギを増大させるよう にしている。
具体的には、 まず、 要求出力を代表する要求出力代表値〇 P Tと 、 実際の機関出力を代表する実出力代表値〇 P Aとがそれぞれ求め られる。 次いで、 要求出力代表値 Q P Tから実出力代表値〇 P Aを 減算することにより出力不足分を代表する出力不足分代表値 O P S (= O P T - O P A) が求められ、 出力不足分代表値〇 P Sが許容 限界に対応する許容限界値 L MTよりも大きいときに補助燃料 Q V が供給される。
図 3は機関出力がトルク T Qによって代表される場合を示してい る。 この場合、 要求出力代表値 O P Tが要求トルク T Q Tであり、 実出力代表値 O P Aが実際のトルク T QAであり、 出力不足分代表 値 O P Sがトルク不足分 T Q S (= T Q T— T QA) である。 図 3 に矢印 Xで示されるようにアクセルペダル 4 3の踏み込み量 A C C がステップ状に増大されると、 要求トルク T Q Tもステップ状に増 大される。 しかしながら、 実際のトルク T Q Aは要求トルク T Q T と同じようには増大せず、 その結果要求トルク T Q Tに対する実際 のトルク T QAの不足分 T Q Sがほぼゼロからステップ状に増大す る。 このとき、 トルク不足分 T Q Sが例えば一定の許容限界値 L M T T Qを越えて増大すると、 補助燃料 Q Vの供給が開始される。 補 助燃料 Q Vの供給が開始されると トルク不足分 T Q Sは次第に小さ くなり、 次いで図 3に矢印 Yで示されるようにトルク不足分 T Q S が許容限界値 L MT T Qよりも小さくなると、 補助燃料 Q Vの供給 が停止される。
一方、 図 4は機関出力が過給圧 P Mによって代表される場合を示 している。 この場合、 要求出力代表値〇 P Tが要求過給圧 P M Tで あり、 実出力代表値〇 P Aが実際の過給圧 P M Aであり、 出力不足 分代表値〇 P Sが過給圧不足分 P M S (= P MT - P MA) である 。 図 4に矢印 Xで示されるようにアクセルペダル 4 3の踏み込み量 A C Cがステップ状に増大されると、 要求過給圧 P M Tもステップ 状に増大される。 しかしながら、 実際の過給圧 P M Aは要求過給圧 P M Tと同じようには増大せず、 その結果要求過給圧 P M Tに対す る実際の過給圧 P MAの不足分 P M Sがほぼゼ口からステップ状に 増大する。 このとき、 過給圧不足分 P M Sが例えば一定の許容限界 値 L MT P Mを越えて増大すると、 補助燃料 Q Vの供給が開始され る。 補助燃料 Q Vの供給が開始されると過給圧不足分 P M Sは次第 に小さくなり、 次いで図 4に矢印 Yで示されるように過給圧不足分 P Sが許容限界値 L MT P Mよりも小さくなると、 補助燃料 Q v の供給が停止される。
いずれの場合でも、 出力不足分代表値 O P Sが許容限界値 LMT より も大きいときに補助燃料 Q Vが一時的に供給されて排気エネル ギが一時的に増大され、 それ以外では補助燃料 Q Vの供給が停止さ れる。 即ち、 図 3又は図 4に矢印 Zで示されるように、 アクセルべ ダル 4 3の踏み込み量 A C Cが大きいときであっても実際の出力が 要求出力にほぼ一致している場合があり、 この場合には補助燃料 Q Vは供給されない。 従って、 燃料消費率を低減することができ、 排 気ェミッショ ン量即ち排気ガス中に含まれる H C、 微粒子、 又はス モークの量を低減することができ、 かく して補助燃料 Q Vを有効に 利用することができる。 これが本発明による第 1実施例の基本的な 考え方である。
上述した要求出力代表値〇 P Tは及び実出力代表値〇 P Aは例え ば次のようにして求められる。 即ち、 図 3に示される例では、 要求 トルク T Q Tはアクセルペダル 4 3の踏み込み量 AC C及び機関回 転数 N Eの関数として図 5に示されるマップの形で予め R OM 3 2 内に記憶されており、 これらアクセルペダル 4 3の踏み込み量 A C C及び機関回転数 N Eに基づいて算出される。 また、 実際のトルク T QAは主燃料量 Qm及び機関回転数 N Eの関数として図 6に示さ れるマップの形で予め R OM 3 2内に記憶されており、 これら主燃 料量 Qm及び機関回転数 N Eに基づいて算出される。
一方、 図 4に示される例では、 要求過給圧 P M Tは要求トルク T Q T及び機関回転数 N Eの関数として図 7 に示されるマップの形で 予め R OM 3 2内に記憶されており、 要求トルク T Q Tはアクセル ペダル 4 3の踏み込み量 A C C及び機関回転数 N Eの関数として図 5に示されるマップの形で予め R OM 3 2内に記憶されており、 こ れらアクセルペダル 4 3の踏み込み量 A C C及び機関回転数 N Eに 基づいて要求過給圧 P MTが算出される。 これに対し、 実際の過給 圧 P MAは過給圧センサ 4 1 により検出される。
要求出力代表値 O P Tである要求トルク T Q T又は要求過給圧 P MTは結局のところ、 アクセルペダル 4 3の踏み込み量 A C Cに基 づいて算出される。 このようにすると、 車両運転者の意志を確実に 把握することが可能となる。
図 8は本発明による第 1実施例の補助燃料 Q Vの供給制御ルーチ ンを示している。 このルーチンは予め定められた設定時間毎の割り 込みによつて実行される。
図 8を参照すると、 まずステップ 1 0 0では要求出力代表値 O P Tが算出され、 続くステップ 1 0 1では寒出力代表値〇 P Aが算出 される。 続くステップ 1 0 2では出力不足分代表値 O P Sが算出さ れる (〇 P S =〇 P T—〇 P A) 。 続くステップ 1 0 3では出力不 足分代表値〇 P Sが許容限界値 LMTよりも大きいか否かが判別さ れる。 O P S >L MTのときには次いでステップ 1 0 4に進んで補 助燃料 Q Vが供給される。 これに対し、 O P S≤ L M Tのときには 次いでステップ 1 0 5に進んで補助燃料 Q Vの供給が停止される。
図 3又は図 4に示される例では、 機関出力がトルクと過給圧との うち一方により代表される。 しかしながら、 機関出力を トルクと過 給圧との両方により代表させることもできる。 この場合、 トルク不 足分 T Q Sが許容限界値 L MT T Qよりも大きいか又は過給圧不足 分 P M Sが許容限界値 L MT P Mよりも大きいときに補助燃料 Q v を供給し、 それ以外では補助燃料 Q Vの供給を停止するようにして もよいし、 あるいはトルク不足分 T Q Sが許容限界値 LMT T Qよ りも大きくかつ過給圧不足分 P M Sが許容限界値 L MT P Mよりも 大きいときに補助燃料 Q Vを供給し、 それ以外では補助燃料 Q Vの 供給を停止するようにしてもよい。 さらに、 不足分代表値 O P Sを 、 要求出力代表値 O P Tと実出力代表値 0 P Aとの差 (O P T—〇 P A) の形ではなく、 割合 (O P A/O P T) の形で求めるように してもよい。
次に、 本発明による第 2から第 9実施例を説明する。
本発明による第 1実施例では上述したように、 出力不足分代表値 O P Sが許容限界値 L M Tよりも大きいときにのみ補助燃料 Q Vが 供給され、 従って補助燃料 Q vを有効に利用することができる。 し かしながら、 補助燃料 Q Vを供給する限り、 燃料消費率又は排気ェ ミッション量が増大するおそれがある。 あるいは、 ターボ回転数又 は実際の過給圧 P MAがそれぞれの許容上限を越えるおそれもある そこで本発明による第 2から第 9実施例では、 補助燃料 Q Vによ る排気エネルギの増大作用を抑制すべきか否かを判断し、 補助燃料 Q Vによる排気エネルギの増大作用を抑制すべきと判断されたとき には、 補助燃料 Q vの供給を禁止ないし停止するようにしている。 その上で、 本発明による第 2から第 4実施例では、 夕一ポチヤー ジャ 5の状態ないし出力を代表するターボ状態代表値 T R Bを求め 、 補助燃料 Q Vの供給を停止すべきか否かをターボ状態代表値に基 づいて判断するようにしている。 ここで、 夕一ポ状態代表値 T R B は例えば実際の過給圧 P MA、 排気エネルギ、 ターボ回転数のうち の少なく とも一つから構成される。
図 9から図 1 2を参照して本発明による第 2実施例を説明する。 本発明による第 2実施例では、 夕一ポ状態代表値 T R Bに応じて 定まる設定値 O P S 1 (> 0 ) を求め、 出力不足分代表値 O P Sが この設定値〇 P S 1よりも小さいときに補助燃料 Q Vの供給を停止 するようにしている。 次に、 機関出力が過給圧 P Mによって代表さ れる場合を例にとって本発明による第 2実施例を説明する。 なお、 機関出力を例えばトルク T Qによって代表させることも、 当然でき る。
図 9 に矢印 Xで示されるようにアクセルペダル 4 3の踏み込み量 A C Cがステップ状に増大されて過給圧不足分 P M Sが許容限界値 L MT P Mを越えて増大すると、 本発明による第 1実施例と同様に 、 補助燃料 Q vの供給が開始される。 補助燃料 Q Vの供給が開始さ れると、 過給圧不足分 P M Sは次第に小さくなる。 また、 補助燃料 Q Vの供給が開始されると夕ーポ状態代表値 T R B例えば実際の過 給圧 P MAが次第に大きくなる。 一方、 設定値 O P S 1 に対応する 設定値 P M S 1は図 1 0に示されるように、 ターボ状態代表値 T R Bが大きくなるにつれて大きくなる。 この設定値 P M S 1 は図 1 0 に示されるマップの形で予め R〇 M 3 2内に記憶されている。 次い で、 図 9に矢印 Wで示されるように過給圧不足分 P M Sが設定値 P M S 1よりも小さくなると、 補助燃料 Q Vの供給が停止ないし禁止 される。
図 9 に破線 Iで示されるのは本発明による第 1実施例の場合であ る。 この場合、 図 9に矢印 Yで示されるように過給圧不足分 P M S が許容限界値 L MT P Mよりも小さくなるまで補助燃料 Q Vの供給 が継続される。 そうすると、 本発明による第 2実施例では、 過給圧 不足分 P M Sが許容限界値 L M T P Mよりも小さくなる前に、 補助 燃料 Q vの供給が停止されるという ことになる。 その結果、 補助燃 料 Q Vをさらに有効に利用することができる。
このようにしているのは次の理由による。 即ち、 補助燃料 Q vの 供給を停止しても、 ターボチャージャ 5の慣性によって、 実際の過 給圧 P MAやタービン回転数は直ちには低下しない。 従って、 出力 不足分代表値〇 P Sが許容限界値 L MTよりも小さくなつた後に補 助燃料 Q Vの供給を停止するようにすると、 過過給即ち過給圧又は タービン回転数がそれぞれの許容上限を越えるおそれがある。 また 、 この場合には、 補助燃料 Q vを過剰に供給していることになり、 燃料消費率が増大しあるいは排気エミッショ ンが増大するおそれが ある。 一方、 タービン状態代表値 T R Bが小さいときには出力不足 分代表値 O P Sがかなり小さいときに過過給等が生じるおそれがあ り、 これに対し夕一ビン状態代表値 T R Bが大きいときには出力不 足分代表値〇 P Sが比較的大きくても過過給が生じるおそれがある そこで、 夕一ポ状態代表値 T R Bが大きくなるにつれて大きくな る設定値 O P S 1 を設定し、 出力不足分代表値 O P Sがこの設定値 O P S 1 よりも小さいときに補助燃料 Q Vの供給を停止するように している。
従って、 一般的にいうと、 補助燃料 Q Vによる排気エネルギの増 大作用を抑制すべきか否かを判断し、 補助燃料 Q Vによる排気エネ ルギの増大作用を抑制すべきと判断されたときには、 補助燃料 Q V の供給量を減量補正しているという ことになる。 上述した本発明に よる第 2実施例では、 補助燃料 Q Vがゼロまで減少補正されている ということになる。
なお、 図 9 に示される例では、 出力不足分代表値 O P Sが許容限 界値 LMTを越えて増大したときに (矢印 X参照) 、 出力不足分代 表値〇 P Sが設定値 O P S 1よりも大きいので補助燃料 Q Vの供給 が開始される。 しかしながら、 出力不足分代表値〇 P Sが許容限界 値 LMTを越えて増大したときに出力不足分代表値 0 P Sが設定値 O P S 1より も小さい場合もあり、 この場合には補助燃料 Q vの供 給が開始されない。
図 1 1 は本発明による第 2実施例の補助燃料 Q vの供給制御ルー チンを示している。 このルーチンは予め定められた設定時間毎の割 り込みによつて実行される。
図 1 1 を参照すると、 まずステップ 1 1 0では要求出力代表値〇 P Tが算出され、 続くステップ 1 1 1では実出力代表値〇 P Aが算 出される。 続くステップ 1 1 2では出力不足分代表値 0 P Sが算出 される (O P S P T— O P A) 。 続くステップ 1 1 3では図 1
Figure imgf000015_0001
2に示される補助燃料 Q Vの供給停止制御ルーチンが実行される。 図 1 2を参照すると、 ステップ 1 2 0では設定値〇 P S 1が算出 される。 続くステップ 1 2 1では出力不足分代表値〇 P Sが設定値 O P S 1よりも小さいか否かが判別される。 〇 P S <〇 P S 1 のと きには次いでステップ 1 2 2に進み、 フラグ X S T Pがセッ トされ る (X S T P = 1 ) 。 このフラグ X S T Pは補助燃料 Q vの供給を 停止ないし抑制すべきときにセッ トされ、 補助燃料 Q vの供給を許 容すべきときにリセッ トされるものである。 これに対し、 O P S≥ O P S 1のときには次いでステップ 1 2 3 に進み、 フラグ X S T P がリセッ トされる ( X S T P = 0 ) 。
再び図 1 1 を参照すると、 続くステップ 1 1 4ではフラグ X S T Pがリセッ トされているか否か、 即ち補助燃料 Q Vの供給が許容さ れているか否かが判別される。 X S T P = 0のとき、 即ち補助燃料 Q Vの供給が許容されているときには次いでステップ 1 1 5に進み 、 出力不足分〇 P Sが許容限界値 L MTよりも大きいか否かが判別 される。 O P S >L MTのときには次いでステップ 1 1 6に進んで 補助燃料 Q Vが供給される。 これに対し、 ステップ 1 1 4において X S T P = 1のとき即ち補助燃料 Q Vの供給を停止すべきとき、 又 はステップ 1 1 5において O P S≤ L M Tのときには、 次いでステ ップ 1 1 7に進んで補助燃料 Q Vの供給が停止される。
次に、 図 1 3から図 1 5を参照して本発明による第 3実施例を説 明する。
本発明による第 3実施例は、 実出力代表値 O P Aの変化率 D O P Aを求めると共にターボ状態代表値 T R Bに応じて定まる設定値 D O P A 1 (> 0 ) を求め、 実出力代表値変化率 D O P Aがこの設定 値 D O P A 1よりも大きいときに補助燃料 Q vの供給を停止するよ うにしている点で、 本発明による第 2実施例と構成を異にしている 。 次に、 機関出力が過給圧 P Mによって代表される場合を例にとつ て本発明による第 3実施例を説明する。
図 1 3 に矢印 Xで示されるようにアクセルペダル 4 3の踏み込み 量 A C Cがステップ状に増大されて過給圧不足分 P M Sが許容限界 値 L MT P Mを越えて増大すると、 本発明による第 1実施例と同様 に、 補助燃料 Q Vの供給が開始される。 補助燃料 Q vの供給が開始 されると実過給圧変化率 D P M Aは次第に大きくなる。 一方、 設定 値 D O P A 1 に対応する設定値 D P MA 1は図 1 4に示されるよう に、 ターボ状態代表値 T R Bが大きくなるにつれて小さくなる。 こ の設定値 D PMA 1は図 1 4に示されるマップの形で予め R OM 3 2内に記憶されている。 次いで、 図 1 3に矢印 Wで示されるように 実過給圧変化率 D P MAが設定値 D P MA 1より も大きくなると、 補助燃料 Q Vの供給が停止される。
本発明による第 3実施例でも、 過給圧不足分 P M Sが許容限界値 L M T P Mよりも小さくなる前に、 補助燃料 Q Vの供給が停止され 、 従って補助燃料 Q Vをさらに有効に利用することができる。
この場合、 タービン状態代表値 T R Bが小さいときには実出力代 表値変化率 D O P Aがかなり大きいとき、 即ち実出力代表値〇 P A の増加側の勾配が大きいときに過過給等が生ずるおそれがある。 一 方、 タービン状態代表値 T R Bが大きいときには実出力代表値変化 率 D O P Aが比較的小さくても、 即ち実出力代表値〇 P Aの勾配が ゆるやかでも過過給等が生ずるおそれがある。 そこで、 ターボ状態 代表値 T R Bが大きくなるにつれて小さくなる設定値 D 0 P A 1 を 設定し、 実出力代表値変化率 D O P Aがこの設定値 D O P A 1より も大きいときに補助燃料 Q Vの供給を停止するようにしている。 図 1 5は本発明による第 3実施例の補助燃料 Q Vの供給停止制御 ルーチンを示している。 このルーチンは例えば図 1 1 のステップ 1 1 3で実行される。
図 1 5を参照すると、 ステップ 1 3 0では実出力代表値変化率 D 〇 P Aが算出され、 続くステップ 1 3 1では設定値 D〇 P A 1が算 出される。 続くステップ 1 3 2では実出力代表値変化率 D〇 P Aが 設定値 D O P A 1よりも大きいか否かが判別される。 D O P A > D O P A 1のときには次いでステップ 1 3 3に進み、 フラグ X S T P がセッ トされる (X S T P = 1 ) 。 従って、 このとき補助燃料 Q v の供給が停止される。 これに対し、 D〇 P A≤ D O P A 1のときに は次いでステップ 1 3 4に進み、 フラグ X S T Pがリセッ トされる (X S T P = 0 ) 。 従って、 このとき補助燃料 Q Vの供給が許容さ れる。
次に、 図 1 6から図 1 8 を参照して本発明による第 4実施例を説 明する。
本発明による第 4実施例は、 出力不足分 O P Sの変化率 D O P S を求めると共にターボ状態代表値 T R Bに応じて定まる設定値 D〇 P S 1 (< 0 ) を求め、 出力不足分代表値変化率 D〇 P Sがこの設 定値 D O P S 1よりも小さいときに補助燃料 Q vの供給を停止する ようにしている点で、 本発明による第 2実施例と構成を異にしてい る。 次に、 ここでも、 機関出力が過給圧 P Mによって代表される場 合を例にとって本発明による第 4実施例を説明する。
図 1 6 に矢印 Xで示されるようにアクセルペダル 4 3の踏み込み 量 A C Cがステップ状に増大されて過給圧不足分 P M Sが許容限界 値 L MT P Mを越えて増大すると、 本発明による第 1実施例と同様 に、 補助燃料 Q Vの供給が開始される。 補助燃料 Q vの供給が開始 されると、 過給圧不足分変化率 D P M Sはいつたん増大した後に、 ゼロから小さくなる。 一方、 設定値 D〇 P S 1 に対応する設定値 D P M S 1は図 1 7に示されるように、 ターボ状態代表値 T R Bが大 きくなるにつれて大きくなる。 この設定値 D P M S 1 は図 1 7 に示 されるマップの形で予め R〇 M 3 2内に記憶されている。 次いで、 図 1 6に矢印 Wで示されるように過給圧不足分変化率 D P M Sが設 定値 D P M S 1よりも小さくなると、 補助燃料 Q Vの供給が停止さ れる。
タービン状態代表値 T R Bが小さいときには出力不足分代表値変 化率 D O P Sがかなり小さいとき、 即ち出力不足分代表値〇 P Sの 減少側の勾配が大きいときに過過給等が生ずるおそれがある。 一方 、 タービン状態代表値 T R Bが大きいときには出力不足分代表値変 化率 D O P Sが比較的大きくても、 即ち出力不足分代表値 O P Sの 勾配がゆるやかでも過過給等が生ずるおそれがある。 そこで、 ター ポ状態代表値 T R Bが大きくなるにつれて大きくなる設定値 D〇 P A 1 を設定し、 出力不足分代表値変化率 D O P Sがこの設定値 D O P S 1よりも小さいときに補助燃料 Q vの供給を停止するようにし ている。
図 1 8は本発明による第 4実施例の補助燃料 Q Vの供給停止制御 ルーチンを示している。 このル一チンは例えば図 1 1のステップ 1 1 3で実行される。
図 1 8 を参照すると、 ステップ 1 4 0では出力不足分代表値変化 率 D O P Sが算出され、 続くステップ 1 4 1では設定値 D O P S 1 が算出される。 続くステップ 1 4 2では出力不足分代表値変化率 D 0 P Sが設定値 D O P S 1よりも小さいか否かが判別される。 D O P Sく D O P S 1 のときには次いでステップ 1 4 3 に進み、 フラグ X S T Pがセッ トされる (X S T P = 1 ) 。 従って、 このとき補助 燃料 Q Vの供給が停止される。 これに対し、 D〇 P A≥D〇 P A 1 のときには次いでステップ 1 4 4に進み、 フラグ X S T Pがリセッ トされる (X S T P = 0 ) 。 従って、 このとき補助燃料 Q Vの供給 が許容される。
図 1 9は設定値 D O P S 1の別の実施例を示している。 この例で は、 設定値 D O P A 1 はターボ状態代表値 T R Bが大きくなるにつ れて大きくなり、 出力不足分代表値〇 P Sが小さくなるにつれて大 きくなる。
従って、 一般的にいうと、 ターボ状態代表値 T R B及び出力不足 分代表値 O P Sに応じて設定値 D O P S 1 を設定し、 出力不足分代 表値変化率 D〇 P Sがこの設定値 D〇 P S 1 より も小さいときに補 助燃料 Q Vの供給を停止しているという ことになる。 この点、 図 1 7 を参照して上述した本発明による第 4実施例では、 出力不足分代 表値 O P Sにかかわらずターボ状態代表値 T R Bのみに応じて設定 値 D O P S 1 を設定しているという ことになる。
次に、 図 2 0 A, 2 0 B及び図 2 1 を参照して本発明による第 5 実施例を説明する。
補助燃料 Q Vが供給されて排気エネルギが増大されると、 排気マ ニホルド 1 0や夕一ポチャージャ 5の排気夕一ビン 5 t のような排 気系部品の温度も上昇する。 このため排気エネルギが過度に増大さ れると、 これら排気系部品の耐久性又は信頼性が損なわれるおそれ がある。
そこで本発明による第 5実施例では、 補助燃料 Q Vを供給したと 仮定したときの排気エネルギ E E X〇 Nを予測し、 予測された排気 エネルギ E E X ONが予め定められた設定量 E E X 1 よりも多いと きに補助燃料 Q Vの供給を停止するようにしている。 本発明による 第 5実施例はこの点で、 本発明による第 2から第 4実施例と構成を 異にしている。 次に、 燃焼室から排出され排気タービン 5 t 内に流 入する排気ガスの温度 T E Xによって排気エネルギが代表される場 合を例にとって本発明による第 5実施例を説明する。 なお、 排気夕 —ビン 5 t 内に流入する排気ガスの例えば熱量によって排気エネル ギを代表させることも、 当然できる。
図 2 0 Aを参照すると、 T E X 0 L Dは先の燃焼サイクルが完了 した後の排気ガス温度 T E Xを表している。 -図 2 0 Aに示される例 では、 次の燃焼サイクルにおいて補助燃料 Q Vの供給が停止された と仮定すると、 次の燃焼サイクルが完了した後の排気ガス温度 T E Xは T E X O F Fとなる。 これに対し、 次の燃焼サイクルにおいて 補助燃料 Q Vが供給されると仮定すると、 次の燃焼サイクルが完了 した後の排気ガス温度 T E Xは T E X ONとなり、 この T E XON は T E XO F Fよりも上昇分 Δ Τ Ε Χだけ高くなつている。
この場合、 次の燃焼サイクルにおいて補助燃料 Q Vの供給が停止 されたと仮定したときの排気ガス温度 T E XO F Fは主燃料 Qm ( 図 2参照) に依存し、 例えば先の燃焼サイクルにおける排気ガス温 度 T E X〇 L Dと、 主燃料 Qmの噴射パラメ一夕例えば噴射量又は 噴射時期とに基づいて予測することができる。 ここで、 先の燃焼サ ィクルにおける排気ガス温度 T E X O L Dは機関運転状態、 例えば 実際の過給圧 P MA、 新気量、 主噴射量 Qm、 排気マニホルド 1 0 内の圧力、 E G R率 (= E G Rガス量/筒内ガス量) などに基づい て求めることができる。 一方、 上昇分 Δ T E Xは補助燃料 Q Vに依 存し、 補助燃料 Q Vの噴射パラメ一夕例えば噴射量又は噴射時期に 基づいて予測することができる。
そこで本発明による第 5実施例では、 次の燃焼サイクルにおいて 補助燃料 Q Vの供給が停止されたと仮定したときの排気ガス温度 T E X O F Fと、 上昇分△ T E Xとを予測し、 排気ガス温度 T E X O F Fに上昇分 Δ Τ Ε Χを加算することにより、 次の燃焼サイクルに おいて補助燃料 Q Vが供給されたと仮定したときの排気ガス温度 T E X ONを予測するようにしている (T E X〇N = T E XO F F + △ T E X) 。
このように予測された排気ガス温度 T E X〇 Nが図 2 0 Bにおい て実線で示すように、 設定量 E E X 1 に対応する例えば一定の設定 温度 T E X 1よりも高い場合には、 次の燃焼サイクルにおいて補助 燃料 Q Vの供給が停止される。 これに対し、 図 2 0 Bにおいて破線 で示すように、 予測された排気ガス温度 T E XONが設定温度 T E X 1 よりも低い場合には、 次の燃焼サイクルにおいて補助燃料 Q V が供給される。 その結果、 排気ガス温度 T E Xが過度に上昇するの を阻止することができる。
即ち、 一般的にいうと、 次の燃焼サイクルにおいて補助燃料 Q V の供給を停止したと仮定したときの排気エネルギ E E XO F Fを予 測し、 補助燃料 Q Vによる排気エネルギの上昇分 Δ E E Xを予測し 、 次の燃焼サイクルにおいて補助燃料 Q Vを供給したと仮定したと きの排気エネルギ E E X ONをこれら E E XO F F及び Δ Ε Ε Χに 基づいて予測し、 予測された排気エネルギ E E X ONが設定量 E E X 1よりも多いときには次の燃焼サイクルにおいて補助燃料 Q Vの 供給を停止しているということになる。
図 2 1は本発明による第 5実施例の補助燃料 Q Vの供給停止制御 ルーチンを示している。 このルーチンは例えば図 1 1のステップ 1 1 3で実行される。
図 2 1 を参照すると、 ステップ 1 5 0では次の燃焼サイクルにお いて補助燃料 Q Vを供給したと仮定したときの排気エネルギ E E X 〇 Nが算出される。 続くステップ 1 5 1では予測された排気エネル ギ E E X O Nが許容値 E E X 1よりも小さいか否かが判別される。 Ε Ε ΧΟΝ>Ε Ε Χ 1 のときには次いでステップ 1 5 2に進み、 フ ラグ X S T Pがセッ トされる (X S T P = 1 ) 。 従って、 このとき 補助燃料 Q Vの供給が停止される。 これに対し、 E E X〇N≤ E E X 1のときには次いでステップ 1 5 3に進み、 フラグ X S T Pがリ セッ トされる (X S T P = 0 ) 。 従って、 このとき補助燃料 Q vの 供給が許容される。
次に、 図 2 2 A, 2 2 B , 2 2 C及び図 2 3 を参照して本発明に よる第 6実施例を説明する。
上述したように、 補助燃料 Q Vを供給すると、' 補助燃料 Q Vを供 給しない場合に比べて、 排気ェミッショ ン量即ち排気ガス中に含ま れる H C、 微粒子、 又はスモークの量が増大する。
特に、 排気ガス中の微粒子の量に着目すると、 補助燃料 Q vが供 給される場合には、 補助燃料 Q Vの供給が停止される場合に比べて 、 パティキュレー卜フィル夕 1 3上の捕集微粒子量の増加速度が高 くなる。 一方、 図 1 に示される内燃機関では、 パティキュレートフ ィルタ 1 3上の捕集微粒子量が例えば一定量になる毎に追加燃料 Q a (図 2参照) が供給される。 そうすると、 補助燃料 Q vが供給さ れる場合には、 補助燃料 Q Vの供給が停止される場合に比べて、 追 加燃料 Q aの供給頻度が高くなり、 かく して燃料消費率がさらに増 大するおそれがあるということになる。
そこで本発明による第 6実施例では、 補助燃料 Q Vを'供給したと 仮定したときの排気ェミッショ ン量 Q E MO Nを予測し、 予測され た排気ェミッショ ン量 Q E MONが予め定められた設定量 Q E M 1 よりも多いときに補助燃料 Q Vの供給を停止するようにしている。 本発明による第 6実施例はこの点で本発明による第 2から第 5実施 例と構成を異にしている。
排気ェミッショ ン量 Q E Mは補助燃料 Q vの噴射パラメ一夕や、 補助燃料 Q Vが供給される筒内の雰囲気ないし状態に依存すること が実験からわかっている。 即ち、 図 2 2 Aに示されるように、 補助 燃料 Q vを供給したときの排気ェミッショ ン量 Q EMONは補助燃 料量 Q vが多くなるにつれて増大し、 補助燃料 Q Vの供給を停止し たときの排気ェミッション量 Q E MO F Fに対する増加分
が大きくなる。 また、 図 2 2 Bに示されるように、 補助燃料 Q Vを 供給したときのスモーク量 Q S MO Nは補助燃料 Q vの噴射時期 0 Q Vが遅角されるにつれて増大し、 補助燃料 Q Vの供給を停止した ときのスモーク量 Q S M O F Fに対する増加分が大きくなる。 また 、 補助燃料 Q vを供給したときの H C量 QH C O Nは補助燃料 Q v の噴射時期 Θ Q Vが進角されるにつれて増大し、 補助燃料 Q Vの供 給を停止したときの H C量 Q H C〇 F Fに対する増加分が大きくな る。 さらに、 図 2 2 Cからわかるように、 補助燃料 Q Vを供給した ときの排気ェミッショ ン量 Q EMONは実際のトルク TQAが高く なるにつれて増大し、 補助燃料 Q Vの供給を停止したときの排気ェ ミッショ ン量 Q E M〇 F Fに対する増加分が大きくなる。 ここで、 実際のトルクは主燃料 Qmに応じて定まるものであり、 補助燃料 Q Vが供給されるときの筒内雰囲気を表している。
なお、 図 2 2 Aの場合には補助燃料 Q Vの噴射時期 Θ Q V及び実 際の トルク T QAは一定に維持されており、 図 2 2 Bの場合には補 助燃料量 Q v及び実際のトルク T QAは一定に維持されており、 図 2 2 Cの場合には補助燃料量 Q V及び補助燃料 Q Vの噴射時期 Θ Q Vは一定に維持されている。
この場合、 次の燃焼サイクルにおいて補助燃料 Q Vの供給が停止 されたと仮定したときの排気ェミッショ ン量 Q E MO F Fは主燃料 Qmに依存し、 例えば機関回転数、 実際のトルク、 E GR率、 新気 量、 新気温度などに基づいて予測することができる。 一方、 増加分 △ Q EMは補助燃料 Q Vに依存し、 補助燃料 Q Vの噴射パラメ一夕 例えば補助燃料量 Q V及び噴射時期 Θ Q Vに基づいて予測すること ができる。 そこで本発明による第 6実施例では、 次の燃焼サイクルにおいて 補助燃料 Q Vの供給が停止されたと仮定したときの排気エミッショ ン量 Q E MO F Fと、 上昇分 A Q E Mとを予測し、 排気エミッショ ン量 Q E MO F Fに増加分 A Q EMを加算することにより、 次の燃 焼サイクルにおいて補助燃料 Q Vが供給されたと仮定したときの排 気ェミッション量 Q E M ONを予測するようにしている (Q E MO N = Q E O F F + A Q E ) 。
このように予測された排気ェミッショ ン量 Q E M〇 Nが設定量 Q EM 1よりも多い場合には、 次の燃焼サイクルにおいて補助燃料 Q Vの供給が停止され、 予測された排気エミッショ ン量 Q E MO Nが 設定量 Q E M 1 より も少ない場合には、 次の燃焼サイクルにおいて 補助燃料 Q Vが供給される。 この場合、 上述した H C、 微粒子、 又 はスモークの量のうち少なく とも一つが対応する設定量よりも多い 場合に補助燃料 Q Vの供給を停止するようにすることができる。 設定量 Q E M 1は一定値とすることもできるが、 本発明による第 6実施例では設定量 Q E M 1 を機関運転状態に応じて設定している 。 即ち、 例えば機関回転数、 実際のトルク T QA、 及び新気量に基 づいて設定量 Q E M 1が設定される。
図 2 3は本発明による第 6実施例の補助燃料 Q Vの供給停止制御 ルーチンを示している。 このルーチンは例えば図 1 1 のステップ 1 1 3で実行される。
図 2 3 を参照すると、 ステップ 1 6 0では次の燃焼サイクルにお いて補助燃料 Q Vを供給したと仮定したときに得られる排気エミッ シヨン量 Q E M〇 Nが算出される。 続くステップ 1 6 1では設定量 Q E M 1が算出される。 続くステップ 1 6 2では予測された排気ェ ミツション量 Q E MO Nが設定量 Q E M 1よりも多いか否かが判別 される。 Q EM〇N>Q E M 1のときには次いでステップ 1 6 3に 進み、 フラグ X S T Pがセッ トされる (X S TP = 1 ) 。 従って、 このとき補助燃料 Q Vの供給が停止される。 これに対し、 QEMO N≤QEM 1のときには次いでステップ 1 6 4に進み、 フラグ X S T Pがリセッ トされる (X S T P = 0) 。 従って、 このとき補助燃 料 Q Vの供給が許容される。
この場合、 QEM ONは補助燃料 Q vを供給したと仮定したとき の 1燃焼サイクル当たりの排気ェミッション量を表しており、 従つ て QEMONは補助燃料 Q vを供給したと仮定したときの排気エミ ッシヨ ン量の増加速度ないし変化率を表していると見ることもでき る。 そうすると、 上述した第 6実施例では、 補助燃料 Q vを供給し たと仮定したときの排気エミッショ ン量の変化率が設定値よりも大 きいときに、 補助燃料 Q Vの供給を停止しているということになる 次に、 図 24及び図 2 5を参照して本発明による第 7実施例を説 明する。
図 2 4を参照すると、 QD P FONは補助燃料 Q vを供給したと 仮定したときのパティキュレートフィル夕 1 3上の捕集微粒子量を 、 Q D P F O F Fは補助燃料 Q Vの供給を停止したと仮定したとき のパティキュレートフィル夕 1 3上の捕集微粒子量を、 AQD P F は QD P FOF Fに対する QD P F ONの増加分 (=QD P FON -QD P FO F F) をそれぞれ表している。 図 24からわかるよう に、 補助燃料 Q Vを供給したと仮定したときの捕集微粒子量 QD P F〇 Nも補助燃料 Q Vの供給を停止したと仮定したときの捕集微粒 子量 Q D P F O F Fも時間の経過と共に増大する。 また、 増加分△ QD P Fも時間の経過と共に増大する。
上述した本発明による第 6実施例では、 補助燃料 Q Vを供給した と仮定したときの捕集微粒子量 Q D P F〇 Nの増加速度ないし変化 率が大きいときに補助燃料 Q Vの供給が停止され、 捕集微粒子量 Q D P F O Nの増加速度が小さいときには補助燃料 Q Vの供給が許容 される。 ところが、 捕集微粒子量 Q D P F ONの増加速度が小さい といっても、 捕集微粒子量 Q D P F O Nの増加がもっぱら補助燃料 Q Vに起因しているのであれば、 補助燃料 Q Vの供給を停止すべき である。
一方、 増加分△ Q D P Fは捕集微粒子量 Q D P F ONに対する補 助燃料 Q Vの影響を表している。 このため、 増加分△ Q D P Fの増 加速度ないし変化率が大きいときには、 捕集微粒子量 QD P F O N の増加速度が補助燃料 Q Vに起因して大きくなつていることがわか る。
そこで本発明による第 7実施例では、 上述した第 6実施例におい て、 排気ェミッショ ン量 Q E Mが設定量 Q E M 1よりも少ないとき には増加分 A QD P Fの変化率 D Aを求め、 図 2 4に示されるよう に、 この増加分変化率 D△.が予め定められた設定値 D Δ 1よりも大 きいときには、 上述したフラグ X S T Pをセッ トして (X S T P = 1 ) 補助燃料 Q Vの供給を停止するようにしている。 これに対し、 増加分変化率 D Δが設定値 D△ 1よりも小さいときにはフラグ X S T Pがリセッ トされ (X S T P = 0 ) 、 補助燃料 Q Vの供給が許容 される。 この点で、 本発明による第 7実施例は本発明による第 6実 施例と構成を異にしている。
設定値 D A 1 は一定値とすることもできるが、 本発明による第 7 実施例では設定量 Q EM 1は機関運転状態に応じて設定している。 即ち、 例えば機関回転数、 実際のトルク TQA、 及び新気量に基づ いて設定値 D Δ 1が設定される。
図 2 5は本発明による第 7実施例の補助燃料 Q Vの供給停止制御 ルーチンを示している。 このルーチンは例えば図 1 1のステップ 1 1 3で実行される。
図 2 5を参照すると、 ステップ 1 7 0では次の燃焼サイクルにお いて補助燃料 Q Vを供給したと仮定したときに得られる排気エミッ シヨ ン量 Q EMO Nが算出される。 続くステップ 1 7 1では設定量 Q EM 1が算出される。 続くステップ 1 7 2では予測された排気ェ ミッショ ン量 Q E M〇 Nが設定量 Q E M 1よりも多いか否かが判別 される。 Q EM〇N>Q E M 1のときには次いでステップ 1 7 3 に 進み、 フラグ X S T Pがセッ トされる (X S T P = 1 ) 。 従って、 このとき補助燃料 Q Vの供給が停止される。 これに対し、 Q EMO N≤Q EM 1のときには次いでステップ 1 7 4に進み、 補助燃料 Q Vを供給したと仮定したときに車両が基準期間例えば一定時間又は 一定距離だけ走行したときの捕集微粒子量 Q Q D P F ONが算出さ れる。 続くステップ 1 7 5では、 補助燃料 Q Vの供給を停止したと 仮定したときに車両が基準期間だけ走行したときの捕集微粒子量 Q Q D P F O F Fが算出される。 なお、 ステップ 1 7 0において算出 される排気ェミッショ ン量 Q E MO N, Q E MO F Fが微粒子量の 場合には、 これら Q E MON, Q E MO F Fを基準期間にわたって 積算することによって堆積微粒子量 Q QD P F ON, Q QD P F O F Fを求めることができる。 続くステップ 1 7 6では増加分△ Q D P F (= Q QD P F ON - Q QD P F O F F) が算出され、 続くス テツプ 1 7 7では増加分変化率 が算出される。 続くステップ 1 7 8では、 設定値 D△ 1が算出される。 続くステップ 1 7 9では、 増加分変化率 D△が設定値 D Δ 1よりも大きいか否かが判別される 。 D A>D A 1のときには次いでステップ 1 7 3に進み、 フラグ X S T Pがセッ トされる (X S T P = 1 ) 。 従って、 このとき補助燃 料 Q Vの供給が停止される。 これに対し、 D A≤D A 1のときには 次いでステップ 1 8 0に進み、 フラグ X S T Pがリセッ トされる ( X S T P = 0 ) 。 従って、 このとき補助燃料 Q vの供給が許容され る。
なお、 上述した第 7実施例では、 排気ェミッション量 Q EMが設 定量 Q E M 1 よりも少ないときに、 補助燃料 Q Vの供給を停止すベ きか否かを増加分変化率 D△に基づいて判断している。 しかしなが ら、 増加分変化率 D Δに基づく、 補助燃料 Q Vの供給を停止すべき か否かの判断を排気ェミッショ ン量 Q E Mとは無関係に行うように してもよい。
次に、 図 2 6及び図 2 7 を参照して本発明による第 8実施例を説 明する。
補助燃料 Q Vが供給されて排気ガス温度が上昇すると、 パティキ ユレ一トフィルタ 1 3の温度も上昇する。 このとき、 パティキユレ ートフィル夕 1 3上に比較的多量の微粒子が捕集されていると、 こ の多量の微粒子が異常燃焼してパティキュレートフィルタ 1 3が溶 損するおそれがある。
そこで本発明による第 8実施例では、 パティキュレートフィル夕 1 3上の捕集微粒子量 Q D P Fが予め定められた設定量 QD P F 1 よりも多いときには補助燃料 Q Vの供給を停止するようにしている 。 本発明による第 8実施例はこの点で本発明による第 2から第 5実 施例と構成を異にしている。
即ち、 図 2 6 に示されるように、 捕集微粒子量 QD P Fが設定量 QD P F 1よりも大きくなると、 矢印 XXで示されるように上述し たフラグ X S T Pがセッ トされて (X S T P = 1 ) 補助燃料 Q vの 供給が停止される。 次いで、 矢印 YYで示されるように捕集微粒子 量 Q D P Fがー定量 Q D P F Mよりも大きくなると、 昇温制御が開 始され、 捕集微粒子量 QD P Fが次第に減少する。 次いで、 矢印 Z Zで示されるように捕集微粒子量 Q D P Fが設定量 Q D P F 1より も小さくなると、 上述したフラグ X S T Pがリセッ トされて ( X S T P = 0 ) 補助燃料 Q Vの供給が許容される。
図 2 7は本発明による第 8実施例の補助燃料 Q Vの供給停止制御 ルーチンを示している。 このルーチンは例えば図 1 1 のステップ 1 1 3で実行される。
図 2 7 を参照すると、 ステップ 1 9 0ではパティキユレ一トフィ ル夕 1 3上の捕集微粒子量 QD P Fが算出される。 続くステップ 1 9 1では捕集微粒子量 QD P Fが設定量 QD P F 1よりも大きいか 否かが判別される。 Q D P F > Q D P F 1のときには次いでステツ プ 1 9 2に進み、 フラグ X S T Pがセッ トされる (X S T P = 1 ) 。 従って、 このとき補助燃料 Q vの供給が停止される。 これに対し 、 QD P F≤QD P F 1のときには次いでステップ 1 9 3に進み、 フラグ X S T Pがリセッ 卜される ( X S T P = 0 ) したがって、 このとき補助燃料 Q Vの供給が許容される。
本発明によれば、 補助燃料を排気エネルギの増大のために有効に 利用することができる。

Claims

1 . 排気過給機を有する内燃機関の燃料供給制御装置であって、 該装置が、
燃料を筒内に直接噴射する燃料噴射弁と、
要求出力に対する実際の機関出力の不足分である出力不足分が予 め定められた許容限界よ請りも大きいか否かを判断する判断手段と、 該出力不足分が許容限界よりも大きいと判断されたときには、 主 燃料が供給された後の膨張行程に燃料噴射弁から補助燃料を供給し て排気過給機内に流入する排気ガスのエネルギである排気エネルギ を一時的に増大させる増大手段と、
を具備した内燃機関の燃料供給制御装置。
2 . 前記補助燃料による前記排気エネルギの増大作用を抑制すベ きか否かを判断し、 補助燃料による排気エネルギの増大作用を抑制 すべきと判断されたときに補助燃料の供給量を減量補正する抑制手 段を更に具備した請求項 1 に記載の内燃機関の燃料供給制御装置。
3 . 前記抑制手段は、 前記補助燃料による前記排気エネルギの増 大作用を抑制すべきと判断したときに、 前記出力不足分が前記許容 限界よりも大きいか否かに関わらず、 補助燃料の供給を停止する請 求項 2に記載の内燃機関の燃料供給制御装置。
4 . 前記抑制手段が、 排気過給機の状態を代表する排気過給機状 態代表値を求める手段を具備し、 前記補助燃料による前記排気エネ ルギの増大作用を抑制すべきか否かを該排気過給機状態代表値に基 づいて判断する請求項 2に記載の内燃機関の燃料供給制御装置。
5 . 前記排気過給機状態代表値が、 過給圧、 排気過給機内に流入 する排気ガスのエネルギ、 及び排気過給機の回転数のうちの少なく とも一つである請求項 4に記載の内燃機関の燃料供給制御装置。
6 . 前記抑制手段が、 前記出力不足分を代表する出力不足分代表 値を求める手段を具備し、 該出力不足分代表値が前記排気過給機状 態代表値に応じて定まる第 1 の設定値よりも小さいときに前記補助 燃料による前記排気エネルギの増大作用を抑制すべきと判断する請 求項 4に記載の内燃機関の燃料供給制御装置。
7 . 前記排気過給機状態代表値が大きくなるにつれて大きくなる ように前記第 1の設定値が設定されている請求項 6 に記載の内燃機 関の燃料供給制御装置。
8 . 前記抑制手段が、 前記実際の機関出力を代表する実出力代表 値を求めると共に該実出力代表値の変化率を求める手段を具備し、 該実出力代表値の変化率が前記排気過給機状態代表値に応じて定ま る第 2の設定値よりも大きいときに前記補助燃料による前記排気ェ ネルギの増大作用を抑制すべきと判断する請求項 4に記載の内燃機 関の燃料供給制御装置。
9 . 前記排気過給機状態代表値が大きくなるにつれて小さくなる ように前記第 2の設定値が設定されている請求項 8に記載の内燃機 関の燃料供給制御装置。
1 0 . 前記抑制手段が、 前記出力不足分を代表する出力不足分代 表値を求めると共に該出力不足分代表値の変化率を求める手段を具 備し、 該出力不足分代表値の変化率が前記排気過給機状態代表値に 応じて定まる第 3の設定値よりも小さいときに前記補助燃料による 前記排気エネルギの増大作用を抑制すべきと判断する請求項 4に記 載の内燃機関の燃料供給制御装置。
1 1 . 前記排気過給機状態代表値が大きくなるにつれて大きくな るように前記第 3の設定値が設定されている請求項 1 0 に記載の内 燃機関の燃料供給制御装置。
1 2 . 前記抑制手段が、 前記出力不足分を代表する出力不足分代 表値を求めると共に該出力不足分代表値の変化率を求める手段を具 備し、 該出力不足分代表値の変化率が前記排気過給機状態代表値と 該出力不足分代表値とに応じて定まる第 4の設定値よりも小さいと きに前記補助燃料による前記排気エネルギの増大作用を抑制すべき と判断する請求項 4に記載の内燃機関の燃料供給制御装置。
1 3 . 前記排気過給機状態代表値が大きくなるにつれて大きくな りかつ前記出力不足分代表値が小さくなるにつれて大きくなるよう に前記第 4の設定値が設定されている請求項 1 2に記載の内燃機関 の燃料供給制御装置。
1 4 . 前記抑制手段が、 前記補助燃料を供給したときと仮定した ときの前記排気エネルギを予測する排気エネルギ予測手段を具備し 、 該予測された排気エネルギが予め定められた第 5の設定値よりも 大きいときに前記補助燃料による前記排気エネルギの増大作用を抑 制すべきと判断する請求項 2に記載の内燃機関の燃料供給制御装置
1 5 . 前記排気エネルギ予測手段は、 前記補助燃料の供給を停止 したと仮定したときの排気エネルギを予測し、 補助燃料を供給した と仮定したときの補助燃料による排気エネルギの上昇分を予測し、 該予測された排気エネルギ及び上昇分に基づき、 前記補助燃料を供 給したと仮定したときの排気エネルギを予測する請求項 1 4に記載 の内燃機関の燃料供給制御装置。
1 6 . 前記排気エネルギ予測手段は、 前記補助燃料の供給を停止 したと仮定したときの排気エネルギを主燃料の噴射パラメ一夕に基 づいて予測し、 前記補助燃料を供給したと仮定したときの補助燃料 による排気エネルギの上昇分を補助燃料の噴射パラメ一夕に基づい て予測する請求項 1 5に記載の内燃機関の燃料供給制御装置。
1 7 . 前記排気エネルギが、 前記排気過給機に流入する排気ガス の温度又は熱量によって代表される請求項 1 4に記載の内燃機関の 燃料供給制御装置。
1 8 . 前記抑制手段が、 前記補助燃料を供給したと仮定したとき の排気エミッション量を予測する排気エミッション量予測手段を具 備し、 該予測された排気エミッショ ン量が予め定められた第 6の設 定値よりも大きいときに前記補助燃料による前記排気エネルギの増 大作用を抑制すべきと判断する請求項 2に記載の内燃機関の燃料供 給制御装置。
1 9 . 前記排気ェミッショ ン量予測手段は、 前記補助燃料の供給 を停止したと仮定したときの排気ェミ ッショ ン量を予測し、 補助燃 料を供給したと仮定したときの補助燃料による排気ェミッショ ン量 の増加分を予測し、 該予測された排気エミッショ ン量及び増加分に 基づき、 前記補助燃料を供給したと仮定したときの排気エミッショ ン量を予測する請求項 1 8 に記載の内燃機関の燃料供給制御装置。 .
2 0 . 前記排気ェミ ッショ ン量予測手段は、 前記補助燃料の供給 を停止したと仮定したときの排気ェミッション量を主燃料の噴射パ ラメ一夕に基づいて予測し、 前記補助燃料を供給したと仮定したと きの補助燃料による排気ェミッション量の増加分を補助燃料の噴射 パラメ一夕に基づいて予測する請求項 1 9 に記載の内燃機関の燃料 供給制御装置。
2 1 . 前記排気ェミッション量が、 排気ガス中に含まれる炭化水 素、 微粒子、 及びスモークの量のうちの少なく とも一つによって代 表される請求項 1 8に記載の内燃機関の燃料供給制御装置。
2 2 . 前記第 6の設定値が機関運転状態に応じて設定されている 請求項 1 8に記載の内燃機関の燃料供給制御装置。
2 3 . 排気ガス中に含まれる微粒子を捕集するためのパティキュ レートフィルタが内燃機関の排気通路内に配置されており、 前記抑 制手段が、 前記予測された排気エミッショ ン量が前記第 6の設定値 よりも小さいときに、 前記補助燃料の供給を停止したと仮定したと きの該パティキュレートフィル夕上の捕集微粒子量に対する補助燃 料を供給したと仮定したときの該捕集微粒子量の増加分を求めると 共に該増加分の変化率を求める手段を具備し、 該求められた増加分 変化率が予め定められた第 7の設定値よりも大きいときに前記補助 燃料による前記排気エネルギの増大作用を抑制すべきと判断する請 求項 1 8 に記載の内燃機関の燃料供給制御装置。
2 4 . 排気ガス中に含まれる微粒子を捕集するためのパティキュ レートフィル夕が内燃機関の排気通路内に配置されており、 前記抑 制手段が、 前記補助燃料の供給を停止したと仮定したときの該パテ ィキュレートフィルタ上の捕集微粒子量に対する前記補助燃料を供 給したと仮定したときの該捕集微粒子量の増加分を求めると共に該 増加分の変化率を求める手段を具備し、 該求められた増加分変化率 が予め定められた第 8 の設定値より も大きいときに前記補助燃料に よる前記排気エネルギの増大作用を抑制すべきと判断する請求項 2 に記載の内燃機関の燃料供給制御装置。
2 5 . 前記第 8の設定値が機関運転状態に応じて設定されている 請求項 2 4に記載の内燃機関の燃料供給制御装置。
2 6 . 排気ガス中に含まれる微粒子を捕集するためのパティキュ レートフィル夕が内燃機関の排気通路内に配置されており、 前記抑 制手段が、 該パティキュレートフィル夕上の捕集微粒子量を求める 手段を具備し、 該捕集微粒子量が予め定められた第 9の設定値より も大きいとき又は大きくなつたときに前記補助燃料による前記排気 エネルギの増大作用を抑制すべきと判断する請求項 2に記載の内燃 機関の燃料供給制御装置。
2 7 . 前記出力不足分が許容限界よりも小さいと判断されたとき には、 前記増大手段は前記補助燃料による前記排気エネルギの増大 作用を停止する請求項 1 に記載の内燃機関の燃料供給制御装置。
2 8 . 前記判断手段は、 前記要求出力を代表する要求出力代表値 と、 前記実際の機関出力を代表する実出力代表値とをそれぞれ求め ると共に、 該要求出力代表値から該実出力代表値を減算することに より前記出力不足分を代表する出力不足分代表値を求め、 該出力不 足分代表値が予め定められた設定値よりも大きいときに前記出力不 足分が前記許容限界よりも大きいと判断する請求項 1 に記載の内燃 機関の燃料供給制御装置。
2 9 . 前記要求出力及び前記実際の機関出力がそれぞれ、 ァクセ ルペダルの踏み込み量に基づいて求められる要求トルク及び実際の トルクと、 アクセルペダルの踏み込み量に基づいて求められる要求 過給圧及び実際の過給圧とのうち一方又は両方により代表される請 求項 1 に記載の内燃機関の燃料供給制御装置。
3 0 . 前記内燃機関が圧縮着火式機関である請求項 1 に記載の内 燃機関の燃料供給制御装置。
PCT/JP2005/012723 2004-07-05 2005-07-05 内燃機関の燃料供給制御装置 WO2006004218A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05758021.9A EP1764497B1 (en) 2004-07-05 2005-07-05 Fuel supply control device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004197972A JP4007346B2 (ja) 2004-07-05 2004-07-05 内燃機関の燃料供給制御装置
JP2004-197972 2004-07-05

Publications (1)

Publication Number Publication Date
WO2006004218A1 true WO2006004218A1 (ja) 2006-01-12

Family

ID=35783012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012723 WO2006004218A1 (ja) 2004-07-05 2005-07-05 内燃機関の燃料供給制御装置

Country Status (4)

Country Link
EP (1) EP1764497B1 (ja)
JP (1) JP4007346B2 (ja)
CN (1) CN100427744C (ja)
WO (1) WO2006004218A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182573A (zh) * 2011-03-21 2011-09-14 中国北车集团大连机车车辆有限公司 内燃机车电喷柴油机载荷控制方法
US9970424B2 (en) 2012-03-13 2018-05-15 General Electric Company System and method having control for solids pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301857B2 (ja) * 2008-03-03 2013-09-25 ヤンマー株式会社 コモンレール式電子噴射制御系エンジン
US9745914B2 (en) * 2014-10-27 2017-08-29 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103013A (ja) * 1993-10-05 1995-04-18 Nippondenso Co Ltd 蓄圧式燃料噴射装置
JP2002364413A (ja) * 2001-06-07 2002-12-18 Mazda Motor Corp ターボ過給機付き筒内噴射式エンジンの排気浄化装置
JP2003206722A (ja) * 2002-01-16 2003-07-25 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525667A1 (de) * 1995-07-14 1997-01-16 Audi Ag Vorrichtung an einer Brennkraftmaschine mit einem Abgasturbolader
JP4042399B2 (ja) * 2001-12-12 2008-02-06 三菱自動車工業株式会社 排気浄化装置
FR2840649B1 (fr) * 2002-06-06 2005-05-20 Renault Sa Procede d'augmentation de performances d'un moteur suralimente

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103013A (ja) * 1993-10-05 1995-04-18 Nippondenso Co Ltd 蓄圧式燃料噴射装置
JP2002364413A (ja) * 2001-06-07 2002-12-18 Mazda Motor Corp ターボ過給機付き筒内噴射式エンジンの排気浄化装置
JP2003206722A (ja) * 2002-01-16 2003-07-25 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1764497A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182573A (zh) * 2011-03-21 2011-09-14 中国北车集团大连机车车辆有限公司 内燃机车电喷柴油机载荷控制方法
US9970424B2 (en) 2012-03-13 2018-05-15 General Electric Company System and method having control for solids pump

Also Published As

Publication number Publication date
EP1764497A4 (en) 2014-08-27
EP1764497B1 (en) 2016-10-19
EP1764497A1 (en) 2007-03-21
JP2006017070A (ja) 2006-01-19
CN1878942A (zh) 2006-12-13
JP4007346B2 (ja) 2007-11-14
CN100427744C (zh) 2008-10-22

Similar Documents

Publication Publication Date Title
JP6264326B2 (ja) 内燃機関の制御装置
JP5152135B2 (ja) 過給式エンジンの吸気量制御装置
EP1464808A1 (en) Control apparatus and control method for internal combustion engine
CN103119268A (zh) 内燃机的控制装置
CN105026722A (zh) 用于内燃机的控制装置
JP6112397B2 (ja) 内燃機関の過給機制御装置
WO2006004218A1 (ja) 内燃機関の燃料供給制御装置
EP3759332B1 (en) System and method for avoiding compressor surge during cylinder deactivation of a diesel engine
CN111417772B (zh) 车辆用内燃机的控制方法以及控制装置
EP3786423B1 (en) Method of controlling temperature of exhaust purification device of internal combustion engine, and internal combustion engine control device
KR102237073B1 (ko) 엔진 시스템 및 그 제어 방법
KR102187464B1 (ko) 엔진 시스템 및 그 제어 방법
KR102452681B1 (ko) 엔진의 소기 제어 시의 배기 가스 저감 방법
US11319885B2 (en) Control method and control device for vehicular internal combustion engine
JP4905370B2 (ja) 内燃機関の吸気制御装置
JP2007255194A (ja) 内燃機関の制御装置
JP4140387B2 (ja) 内燃機関の排気浄化装置
JP3436168B2 (ja) 内燃機関の排気浄化装置
JP2018076838A (ja) 内燃機関の制御装置
JP2008215205A (ja) 内燃機関の吸気制御装置
JP2015190349A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001210.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

REEP Request for entry into the european phase

Ref document number: 2005758021

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005758021

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005758021

Country of ref document: EP