WO2005121822A1 - Burn-in apparatus - Google Patents

Burn-in apparatus Download PDF

Info

Publication number
WO2005121822A1
WO2005121822A1 PCT/JP2005/010427 JP2005010427W WO2005121822A1 WO 2005121822 A1 WO2005121822 A1 WO 2005121822A1 JP 2005010427 W JP2005010427 W JP 2005010427W WO 2005121822 A1 WO2005121822 A1 WO 2005121822A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
power
power consumption
burn
voltage
Prior art date
Application number
PCT/JP2005/010427
Other languages
French (fr)
Japanese (ja)
Inventor
Kazumi Kita
Tadahiro Kurasawa
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Publication of WO2005121822A1 publication Critical patent/WO2005121822A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • G01R31/2877Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature related to cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers

Definitions

  • the present invention relates to a device for performing a burn-in test, in which a heater is brought into contact with each device under test, power consumption of the heater is controlled to adjust the temperature of the device under test, and the burn-in test is performed. More particularly, the present invention relates to a burn-in device capable of saving power and reducing size and weight.
  • DUT device under test
  • LSI chip local heat generation due to high resistance at an incomplete metal junction in an LSI chip is detected. Judgment of the reliability of the D UT, etc.
  • Patent Document 1 JP-A-2000-206176
  • the temperature adjustment supplies the maximum power of the heater independently of the power consumption of each DUT, so when the power consumption of the DUT is small, wasteful power consumption occurs and the burn-in device There is a problem that it is heavy and large.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a burn-in device capable of saving power and reducing size and weight.
  • a burn-in apparatus makes a heater contact each of various devices to be measured for performing a burn-in test, and reduces power consumption of the heater.
  • a burn-in apparatus for performing the burn-in test while controlling the temperature of the device to be measured while controlling the temperature of the device to be measured various types of devices are controlled so that the total power of the power consumption of the device to be measured and the power consumption of the heater is constant.
  • a heater power limit control unit for controlling the power consumption of the heater in accordance with the power consumption of the measuring device is provided.
  • the heater power limitation control means may determine the power consumption of the device to be measured having the minimum power consumption among various devices to be measured.
  • the power consumption of the heater is limited by using the total power with the maximum power of the heater as the total power.
  • the heater power limitation control means sets a relationship between power consumption of various devices to be measured and power consumption of each heater in advance.
  • the power consumption of each heater is controlled for each device under measurement based on the settings.
  • the burn-in apparatus in the above invention, further comprises a power measuring means for measuring a power consumption of the device under test before the burn-in test, and the heater power limit control means comprises: The power consumption measured by the power measuring means is used as the power consumption of the various devices under test.
  • a burn-in device is characterized in that, in the above-described invention, the heater is incorporated in a temperature control block in contact with a constant-temperature fluid.
  • the burn-in device according to the present invention is characterized in that, in the above invention, the constant temperature fluid is a cooling fluid.
  • the heater power limit control means corresponds to various devices under test so that the total power of the power consumption of the device under test and the power consumption of the heater is constant. Since the control for limiting the power consumption of the heater is performed, there is an effect that the power consumption of the entire burn-in device and the size and weight of the burn-in device can be reduced.
  • FIG. 1 is a block diagram showing an overall schematic configuration of a burn-in device according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a detailed configuration of a heater circuit shown in FIG. 1.
  • FIG. 3 is a time chart illustrating generation of a time-dispersion voltage instruction signal by a heater control circuit and heater control by the time-dispersion voltage instruction signal.
  • FIG. 4 is a diagram showing a temperature rise characteristic of a DUT depending on a magnitude of DUT power consumption.
  • FIG. 5 is a diagram comparing the total power in the case where the heater power limiting control is performed by the heater power limiting unit and in the case where the conventional heater power control is performed.
  • FIG. 1 is a block diagram showing an overall schematic configuration of a burn-in device according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a configuration of a DA converter.
  • the burn-in device 1 is mainly composed of a test control unit 10 for controlling the entire burn-in test, and a device connected to the test control unit 10 for outputting a power supply voltage to the DUT 32, measuring the power supply voltage, and the like. Connected to the power supply unit 20 and test control unit 10 to adjust the temperature during the burn-in test.
  • the temperature control unit 40, the measuring unit 30 connected to the device power supply unit 20 where the DUT 32 is arranged, the power supply 50 connected to the temperature control unit 40, and the temperature control under the control of the temperature control unit 40 It has a temperature controller 60.
  • the measurement section 30 has a measurement board 31 and a DUT 32, and the DUT 32 is arranged on the measurement board 31.
  • the DUT 32 is connected to the device power supply unit 20 via the wiring on the measurement board 31 and the connector 33.
  • the device power supply unit 20 includes a device power supply 21 and an on / off control unit 22. Under the control of the test control unit 10, the on / off control unit 22 controls the power supply voltage Vdd, Vss from the device power supply 21 to the DUT 32. Is applied.
  • the device power supply unit 20 further includes a current measuring unit 23, a voltage setting unit 24, a voltage measuring unit 25, and an overvoltage / overcurrent detection value setting unit 26.
  • the test control unit 10 can know the state of the DUT 32 during the acceleration test based on the values measured by the current measurement unit 23 and the voltage measurement unit 25.
  • the values of the power supply voltages Vdd, Vss, and the like can be variably set by the test control unit 10, and the values are held in the voltage setting unit 24.
  • the overvoltage / overcurrent detection value setting unit 26 holds a threshold for determining whether an overvoltage state or an overcurrent state is present based on the measurement results of the current measurement unit 23 and the voltage measurement unit 25. When the threshold value is exceeded, the on / off control unit 22 determines that an overvoltage state or an overcurrent state is present, and lowers or cuts off the output of the power supply voltage by the device power supply 21. This threshold is variably set by the test control unit 10.
  • a temperature control block 61 is provided with a heater 62, a PT (platinum resistance) sensor 63, and a cooling section 64.
  • the PT sensor 63 outputs its output value to the temperature adjustment unit 40 side, and the heater 62 is controlled by the temperature adjustment unit 40 to be energized when the temperature rises.
  • the cooling part 62 allows a cooling liquid for cooling the periphery of the DUT 32 to pass therethrough.
  • the heater 62 and the PT sensor 63 are physically separated from the DUT 32 and are in contact with only the temperature control block 61. Thereby, the PT sensor 63 can detect the temperature of the heater 62 or the coolant.
  • the temperature adjustment unit 40 includes a temperature measurement unit 41 that measures the temperature around the PT sensor 63 based on an output value from the PT sensor 63, and a heater circuit 4 that outputs power from the power supply 50 to the heater 62. 2, and a heater power limiting unit 44 for individually controlling the heater power according to the power consumption of the DUT 32.
  • a power supply voltage is applied from the device power supply unit 20 to the DUT 32 under the overall control of the test control unit 10, and the heater 62 is controlled by the temperature adjustment unit 40. Is supplied, and the heater 62 contacts the DUT 32 to perform temperature adjustment during the burn-in test of the DUT 32.
  • the test control unit 10 acquires the result of the burn-in test via the device power supply unit 21 and adjusts the temperature via the temperature adjustment unit 40.
  • FIG. 2 is a circuit diagram showing a detailed configuration of a heater circuit to which a power supply 50 and a heater 62 are added.
  • a FET 72 which is a p-channel power FET, is connected to a DC 48V power supply 50, and when the FET 72 is switched, a pulse voltage of DC 48V is applied to the heater 62 side.
  • a transistor 71 is connected between the gate of the FET 72 and the ground via the resistor R2, and the transistor 71 is switched according to a time dispersion voltage instruction signal such as a PWM signal output from the heater control circuit 43. As a result, the FET 72 is switched.
  • a zener diode D1 for maintaining a constant voltage is provided.
  • the anode side of the zener diode D1 is connected between the collector of the transistor 71 and the resistor R2, and the force source side is connected to the transistor 71 via the resistor R1. It is connected between the emitter and the gate of FET72, and is also directly connected to the drain side of FET72.
  • the transistor 71 is off, 48 VDC of the power supply 50 is applied to the gate, and the FET 72 is turned off.
  • the transistor is on, the voltage applied to the gate decreases by the voltage drop of the Zener diode D1, and the FET 72 is turned off. It turns on.
  • a voltage smoothing circuit 73 is provided between the switching circuit including the FET 72 and the heater 62.
  • the voltage smoothing circuit 73 has a diode D2 and a capacitor C connected in parallel and an inductor L connected in series.
  • a pulse voltage of 48 V DC is applied from the switching circuit side, and the voltage smoothing circuit 73 converts the pulse voltage into an analog voltage in which the pulse voltage is smoothed.
  • the heater 62 generates electric power according to the amplitude value of the analog voltage.
  • Comparator 74 determines the value of the analog voltage applied to heater 62 and the value of heater control circuit 43. The value is compared with the value of the voltage instruction signal indicated by the instruction, and the comparison result is output to the heater control circuit 43. Since the voltage instruction signal is digital data, it is converted to an analog signal by the DA converter 75 and then input to the comparator 74. The heater control circuit 43 controls the comparison value to be zero based on the comparison result.
  • the voltage instruction signal is a signal indicating a target voltage value
  • the time-dispersion voltage instruction signal is a time-dispersed voltage in which the amount of change until reaching the target voltage value is suppressed within a predetermined voltage value. This is an instruction signal that is given directly to the switching circuit.
  • the power that converted the voltage instruction signal to an analog signal by the DA converter 75 is not limited to this. Instead of the DA converter 75, an AD converter that converts an analog voltage signal to digital data is provided, and the comparator 74 performs digital processing. And compare them.
  • noise is generated as a voltage signal by a pulse voltage generated by the switching circuit.
  • a voltage smoothing circuit is provided between the switching circuit and the heater 62.
  • 73 is provided to convert the pulse voltage to a smoothed analog voltage, so that noise transmission to the heater 62 is suppressed.
  • the heater comes into contact with the DUT 32 with a force S, and if noise is applied to the DUT 32, the DUT 32 cannot be tested with high accuracy. In this embodiment, there is almost no noise from the heater 62. A highly accurate burn-in test can be performed.
  • the heater control circuit 43 generates a time-dispersion voltage instruction signal to switch the FET 72, suppresses the occurrence of overcurrent due to a sudden voltage change, and reduces the current generated by the Zener diode D1. The power loss of the FET 72 due to incomplete switching of the FET 72 at the time of restriction is reduced.
  • the test control unit 10 uses the target voltage value shown in FIG. 3 (a) based on the temperature notified from the temperature measurement unit 41.
  • a certain voltage instruction value is output to the heater control circuit 43.
  • the heater control circuit 43 generates a time dispersion voltage indication value shown in FIG. 3B based on the voltage indication value, and generates a time dispersion voltage signal shown in FIG. 3C corresponding to the voltage indication value. Then, the voltage is applied to the transistor 71, and as a result, the FET 72 is switched.
  • the voltage instruction value when “0V ⁇ 24V” as shown in FIG. It generates a time-dispersion voltage indication value that causes the voltage increase / decrease value to be within 5 V, and uses this to generate a time-dispersion indication signal that is a pulse signal.
  • the arrangement of the time dispersion voltage indication values corresponding to the voltage indication values is stored in advance in the table 43a, and the time dispersion voltage indication values corresponding to the voltage indication values are taken out to generate the time dispersion voltage indication signal. You may do so.
  • the time-dispersion voltage instruction signal should be set to a low voltage value if the voltage increase / decrease value per predetermined time is within the predetermined value. The voltage value may be increased.
  • the voltage increase / decrease value in the middle is arbitrary, may be changed functionally, or may be changed programmatically. You may make it make it.
  • this time-dispersion voltage signal When this time-dispersion voltage signal is applied to the FET 72, it is converted into a smoothed analog voltage signal as shown in FIG. 3D by the voltage smoothing circuit 73, and the power corresponding to this analog voltage signal is Generated from heater 62.
  • comparator 74 compares the value of the analog voltage signal with the specified voltage value, and outputs the result to heater control circuit 43. As shown in FIG. 3 (e), the heater control circuit 43 outputs a time-dispersion voltage instruction signal for increasing the voltage value as it is when the comparator output is at a high level. Control to maintain the current voltage value.
  • the time dispersion voltage instruction signal described above is a signal for increasing or decreasing the number of pulses having a constant pulse width every predetermined time.
  • the present invention is not limited to this, and a PWM that changes the pulse width every predetermined time is used. It may be a signal.
  • it is preferable in view of the force S for increasing or decreasing the number of pulses having a constant pulse width every predetermined time, and from the viewpoint of time dispersion.
  • the voltage value does not suddenly increase by being applied to the above-described time-dispersion voltage indicating signal force SFET 72, and as a result, no rapid current is accumulated in the capacitor C.
  • the current limiting function for the FET 72 works to prevent the FET 72 from being incompletely switched, thereby eliminating power loss at the time of incompletely switched.
  • unnecessary power consumption other than power consumption of the heater 62 can be minimized, and a burn-in device with reduced power consumption can be realized.
  • the accelerated test using the burn-in device 1 controls the temperature applied to the DUT 32, and there are devices that consume a large amount of power due to the power supply voltage applied to the DUT 32 itself and devices that consume a small amount of power.
  • the power consumption of the heater 62 is controlled so that the total power of the power consumption of the DUT 32 and the power consumption of the heater 62 is constant.
  • the control of the power consumption is performed by the heater power limiting unit 44.
  • FIG. 5 is a diagram comparing heater power control according to this embodiment with conventional heater power control.
  • the heater power limiting unit 44 controls the DUT, which is the device having the lowest power consumption, so that the heater 62 has the maximum power consumption, and the DUT having the lowest power consumption.
  • the power consumption of the heater 62 for the DUT that exceeds the power consumption of the heater should be the maximum power consumption not exceeding the total power P2 of the power consumption of the DUT with the lowest power consumption and the maximum power consumption of the heater 62. Control.
  • the heater power limiting unit 44 obtains in advance the relationship between the power consumption of the DUT 32 and the maximum power consumption of the heater 62 at that time, and determines the maximum power consumption of the heater 62 corresponding to each DUT. Control to limit. If the power consumption of the DUT 32 is unknown, the power is measured via the device power supply unit 20, and based on the result of the power measurement, the power of the heater 62 corresponding to the power consumption of each DUT is determined based on the power of the heater power limiting unit 44. The power consumption limit may be determined.
  • the power consumption capacity of the heater of the conventional burn-in apparatus had to include the total power P1 of the power consumption of the DUT having the maximum power consumption and the maximum power consumption of the heater. In the embodiment, it is possible to promote small-sized and light-weight driving with the power capacity of the total power P2 of the burn-in device 1 and to save power.
  • the total power is controlled to be the total power P2 regardless of the power consumption of each DUT.
  • the present invention is not limited to this.
  • the power may be limited to the total power P3 of the power consumption of the DUT having the above and the 100% power consumption of the heater 62. Even in this case, it is possible to reduce the size and weight and to save power as compared with the conventional burn-in device.
  • a heater is provided for each DUT individually, and the temperature is directly controlled.
  • the heater 62 and the PT sensor 63 of the temperature control unit 60 are connected to the DUT 32 during the burn-in test. Heater 62 and PT sensor 63 are in non-contact with DUT 32 when not in burn-in test.
  • the temperature control block 61, the heater 62, the PT sensor 63, and the coolant are in contact with each other, and the temperature of the coolant is measured by the PT sensor 63 to verify the failure and accuracy of the PT sensor 63. It can be performed. This is because the temperature of the coolant is constant and the temperature is the same as the temperature of the temperature control block 61.
  • the temperature difference between when the power to the heater 62 is turned off and when a certain amount of power is supplied is measured by the PT sensor 63, and based on the temperature difference, the disconnection of the heater 62 and the temperature of the heater 62 are measured.
  • a failure of the heater circuit 42 can be detected. For example, if the PT sensor 63 measures a higher temperature than the coolant while the power to the heater 62 is turned off, it can be detected that the power supply 50 is not turned off. In this case, the heater circuit 42 can take measures to cut off the power supply from the power supply 50.
  • the heater and the PT sensor 63 and the DUT are in contact with each other, a constant power is supplied to the heater 62 and the temperature change per unit time at this time is detected by the PT sensor 63.
  • the thermal contact resistance between the temperature control block 61 and the DUT 32 can be obtained.
  • the thermal contact resistance is large, the temperature change per unit time detected by the PT sensor 63 is small.
  • the test control unit 10 performs control to turn off the device power supply 21. As a result, it is possible to prevent heat generation and burning due to poor contact of a connector or the like during a burn-in test in which a large current flows through the DUT.
  • the burn-in apparatus according to the present invention is useful for a burn-in test performed on various devices to be measured, and in particular, is capable of achieving power saving and small and light weight. Suitable as.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

A heater power control part, which is a heater power limit control means, controls to limit power consumption of a heater corresponding to various types of devices to be measured, so as to fix the total power of the power consumption of the device to be measured and the power consumption of the heater. In such case, the heater power control part preferably limits the power consumption of each heater by having the total power of the power consumption of the device, which is to be measured and has the minimum power consumption among various types of devices to be measured, and the maximum power of the heater as the total power.

Description

明 細 書  Specification
バーンイン装置  Burn-in device
技術分野  Technical field
[0001] この発明は、バーンイン試験を行う各種の被測定デバイスに対してそれぞれヒータ を接触させ、該ヒータの消費電力を制御して前記被測定デバイスの温度調整を行レ、 つつ前記バーンイン試験を行うバーンイン装置に関するものであり、特に省電力化お よび小型軽量化を図ることができるバーンイン装置に関するものである。 背景技術  [0001] The present invention relates to a device for performing a burn-in test, in which a heater is brought into contact with each device under test, power consumption of the heater is controlled to adjust the temperature of the device under test, and the burn-in test is performed. More particularly, the present invention relates to a burn-in device capable of saving power and reducing size and weight. Background art
[0002] 近年、半導体デバイスは、高速化、大容量化、多ビット化が進んでいるとともに多種 多様化が一層進んでいる。この半導体デバイスに対しては、温度による加速試験で あるバーンイン (bum-in)試験が行われる。バーンイン試験の特徴は、半導体デバイ スなどの被測定デバイス(DUT: device under test)に通電して高温にし、たとえば LSIチップ内の不完全な金属接合部における高抵抗による局所的発熱を検出し、 D UTの信頼 などを判定してレ、る。  [0002] In recent years, semiconductor devices have become faster, larger in capacity and more bits, and more and more diversified. The semiconductor device is subjected to a burn-in test, which is an accelerated test based on temperature. The feature of the burn-in test is that a device under test (DUT) such as a semiconductor device is energized and heated to a high temperature. For example, local heat generation due to high resistance at an incomplete metal junction in an LSI chip is detected. Judgment of the reliability of the D UT, etc.
[0003] 特許文献 1 :特開 2000— 206176号公報  [0003] Patent Document 1: JP-A-2000-206176
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力 ながら、ヒータを用いた従来のバーンイン装置は、ヒータを用いて DUT周辺 の雰囲気温度を調整していたため、消費電力が大幅に異なる複数の DUTを同時に 試験することができないとレ、う問題点があった。 [0004] However, conventional burn-in devices that use heaters use heaters to adjust the ambient temperature around the DUT, so that multiple DUTs with significantly different power consumption cannot be tested simultaneously. There was a problem.
[0005] そこで、各 DUTにヒータを接触させて各 DUTの温度調整を行うことが考えられるが[0005] Therefore, it is considered that a heater is brought into contact with each DUT to adjust the temperature of each DUT.
、この場合の温度調整は、各 DUTの消費電力とは無関係にヒータの最大電力を供 給していたため、 DUTの消費電力が小さい場合に無駄な電力消費を行ってしまうと ともに、バーンイン装置が重くかつ大型化してしまうという問題点があった。 In this case, the temperature adjustment supplies the maximum power of the heater independently of the power consumption of each DUT, so when the power consumption of the DUT is small, wasteful power consumption occurs and the burn-in device There is a problem that it is heavy and large.
[0006] この発明は、上記に鑑みてなされたものであって、省電力化および小型軽量化を 図ることができるバーンイン装置を提供することを目的とする。 [0006] The present invention has been made in view of the above, and an object of the present invention is to provide a burn-in device capable of saving power and reducing size and weight.
課題を解決するための手段 [0007] 上述した課題を解決し、 目的を達成するために、本発明に力かるバーンイン装置は 、バーンイン試験を行う各種の被測定デバイスに対してそれぞれヒータを接触させ、 該ヒータの消費電力を制御して前記被測定デバイスの温度調整を行いつつ前記バ ーンイン試験を行うバーンイン装置において、前記被測定デバイスの消費電力と前 記ヒータの消費電力との総電力が一定になるように各種の被測定デバイスの消費電 力に対応して前記ヒータの消費電力の制御を行うヒータ電力制限制御手段を備えた ことを特徴とする。 Means for solving the problem [0007] In order to solve the above-described problems and achieve the object, a burn-in apparatus according to the present invention makes a heater contact each of various devices to be measured for performing a burn-in test, and reduces power consumption of the heater. In a burn-in apparatus for performing the burn-in test while controlling the temperature of the device to be measured while controlling the temperature of the device to be measured, various types of devices are controlled so that the total power of the power consumption of the device to be measured and the power consumption of the heater is constant. A heater power limit control unit for controlling the power consumption of the heater in accordance with the power consumption of the measuring device is provided.
[0008] また、本発明に力、かるバーンイン装置は、上記の発明において、前記ヒータ電力制 限制御手段は、各種の被測定デバイスのうち最小の消費電力をもつ被測定デバイス の消費電力と前記ヒータの最大電力との合計電力を前記総電力として前記ヒータの 消費電力を制限することを特徴とする。  [0008] Further, in the burn-in apparatus according to the present invention, in the above-described invention, the heater power limitation control means may determine the power consumption of the device to be measured having the minimum power consumption among various devices to be measured. The power consumption of the heater is limited by using the total power with the maximum power of the heater as the total power.
[0009] また、本発明に力、かるバーンイン装置は、上記の発明において、前記ヒータ電力制 限制御手段は、各種の被測定デバイスの消費電力と各ヒータの消費電力との関係を 予め設定しておき、この設定内容をもとに、前記被測定デバイス毎に各ヒータの消費 電力の制御を行うことを特徴とする。  [0009] In the burn-in apparatus according to the present invention, in the above-described invention, the heater power limitation control means sets a relationship between power consumption of various devices to be measured and power consumption of each heater in advance. In addition, the power consumption of each heater is controlled for each device under measurement based on the settings.
[0010] また、本発明に力かるバーンイン装置は、上記の発明において、前記バーンイン試 験前に被測定デバイスの消費電力を測定する電力測定手段を備え、前記ヒータ電 力制限制御手段は、前記電力測定手段が測定した消費電力を前記各種の被測定 デバイスの消費電力として用いることを特徴とする。  [0010] Further, the burn-in apparatus according to the present invention, in the above invention, further comprises a power measuring means for measuring a power consumption of the device under test before the burn-in test, and the heater power limit control means comprises: The power consumption measured by the power measuring means is used as the power consumption of the various devices under test.
[0011] また、本発明に力かるバーンイン装置は、上記の発明において、前記ヒータは、一 定温度流体が接触する温度制御ブロックに組み込まれることを特徴とする。  [0011] Further, a burn-in device according to the present invention is characterized in that, in the above-described invention, the heater is incorporated in a temperature control block in contact with a constant-temperature fluid.
[0012] また、本発明に力、かるバーンイン装置は、上記の発明において、前記一定温度流 体は、冷却流体であることを特徴とする。  [0012] The burn-in device according to the present invention is characterized in that, in the above invention, the constant temperature fluid is a cooling fluid.
発明の効果  The invention's effect
[0013] この発明にかかるバーンイン装置では、ヒータ電力制限制御手段が、被測定デバィ スの消費電力とヒータの消費電力との総電力が一定になるように各種の被測定デバ イスに対応して前記ヒータの消費電力を制限する制御を行うようにしているので、バ ーンイン装置全体の省電力化と小型軽量ィヒを図ることができるという効果を奏する。 図面の簡単な説明 [0013] In the burn-in device according to the present invention, the heater power limit control means corresponds to various devices under test so that the total power of the power consumption of the device under test and the power consumption of the heater is constant. Since the control for limiting the power consumption of the heater is performed, there is an effect that the power consumption of the entire burn-in device and the size and weight of the burn-in device can be reduced. Brief Description of Drawings
[0014] [図 1]図 1は、この発明の実施の形態に力、かるバーンイン装置の全体概要構成を示す ブロック図である。  FIG. 1 is a block diagram showing an overall schematic configuration of a burn-in device according to an embodiment of the present invention.
[図 2]図 2は、図 1に示したヒータ回路の詳細構成を示す回路図である。  FIG. 2 is a circuit diagram showing a detailed configuration of a heater circuit shown in FIG. 1.
[図 3]図 3は、ヒータ制御回路による時間分散電圧指示信号の生成とこの時間分散電 圧指示信号によるヒータ制御を説明するタイムチャートである。  FIG. 3 is a time chart illustrating generation of a time-dispersion voltage instruction signal by a heater control circuit and heater control by the time-dispersion voltage instruction signal.
[図 4]図 4は、 DUT消費電力の大小による DUTの温度立ち上がり特性を示す図であ る。  [FIG. 4] FIG. 4 is a diagram showing a temperature rise characteristic of a DUT depending on a magnitude of DUT power consumption.
[図 5]図 5は、ヒータ電力制限部によるヒータ電力制限制御を行った場合と従来のヒー タ電力制御を行った場合とのトータル電力を比較する図である。  FIG. 5 is a diagram comparing the total power in the case where the heater power limiting control is performed by the heater power limiting unit and in the case where the conventional heater power control is performed.
符号の説明  Explanation of symbols
[0015] 1 バーンイン装置 [0015] 1 Burn-in device
10 試験制御部  10 Test control section
20 デバイス電源ユニット  20 Device power supply unit
21 デバイス電源  21 Device power
22 オン zオフ制御部  22 on z off control unit
23 電流測定部  23 Current measurement section
24 電圧設定部  24 Voltage setting section
25 電圧測定部  25 Voltage measurement section
26 過電圧/過電流検出値設定部  26 Overvoltage / overcurrent detection value setting section
30 測定部  30 Measuring section
31 測定ボード  31 Measurement board
32 DUT  32 DUT
33 コネクタ  33 Connector
40 温度調整ユニット  40 Temperature control unit
41 温度測定部  41 Temperature measurement section
42 ヒータ回路  42 Heater circuit
43 ヒータ制御回路 43a テーブル 43 Heater control circuit 43a table
44 ヒータ電力制限部  44 Heater power limiter
50 電源  50 power supply
60 温度制御部  60 Temperature control section
61 温度制御ブロック  61 Temperature control block
62 ヒータ  62 heater
63 PTセンサ  63 PT sensor
64 冷却部  64 Cooling unit
71 トランジスタ  71 transistor
72 FET  72 FET
73 電圧平滑回路  73 Voltage smoothing circuit
74 コンノ、°レータ  74 Conno, ° lator
75 DAコンノ ータ  75 DA connector
Dl ツエナーダイォー  Dl Zener Dior
D2 ダイオード  D2 diode
Rl, R2 抵抗  Rl, R2 resistance
L インダクタ  L inductor
C コンデンサ  C capacitor
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、この発明を実施するための最良の形態であるヒータ電力制御回路およびこ れを用いたバーンイン装置について説明する。なお、この実施の形態によってこの発 明が限定されるものではない。  Hereinafter, a heater power control circuit and a burn-in device using the same, which are the best modes for carrying out the present invention, will be described. The present invention is not limited to the embodiment.
[0017] (実施の形態)  (Embodiment)
図 1は、この発明の実施の形態に力、かるバーンイン装置の全体概要構成を示すブ ロック図である。 DA変換器の構成を示すブロック図である。図 1において、このバー ンイン装置 1は、大きくは、バーンイン試験の全体を制御する試験制御部 10、この試 験制御部 10に接続され DUT32に対して電源電圧の出力および測定などを行うデ バイス電源ユニット 20、試験制御部 10に接続されバーンイン試験時の温度調整を行 う温度調整ユニット 40、デバイス電源ユニット 20に接続され DUT32が配置される測 定部 30、温度調整ユニット 40に接続される電源 50、および温度調整ユニット 40の制 御のもとに温度制御を行う温度制御部 60を有する。 FIG. 1 is a block diagram showing an overall schematic configuration of a burn-in device according to an embodiment of the present invention. FIG. 3 is a block diagram illustrating a configuration of a DA converter. In FIG. 1, the burn-in device 1 is mainly composed of a test control unit 10 for controlling the entire burn-in test, and a device connected to the test control unit 10 for outputting a power supply voltage to the DUT 32, measuring the power supply voltage, and the like. Connected to the power supply unit 20 and test control unit 10 to adjust the temperature during the burn-in test. The temperature control unit 40, the measuring unit 30 connected to the device power supply unit 20 where the DUT 32 is arranged, the power supply 50 connected to the temperature control unit 40, and the temperature control under the control of the temperature control unit 40 It has a temperature controller 60.
[0018] 測定部 30は、測定ボード 31および DUT32を有し、 DUT32は、測定ボード 31上 に配置される。 DUT32は、測定ボード 31上の配線およびコネクタ 33を介してデバイ ス電源ユニット 20に接続される。デバイス電源ユニット 20は、デバイス電源 21および オン/オフ制御部 22を有し、試験制御部 10の制御のもとに、オン/オフ制御部 22 が、デバイス電源 21から DUT32に対する電源電圧 Vdd, Vssの印加を行う。デバイ ス電源ユニット 20は、さらに電流測定部 23,電圧設定部 24、電圧測定部 25、および 過電圧/過電流検出値設定部 26を有する。電流測定部 23および電圧測定部 25が 測定した値をもとに試験制御部 10は、加速試験時の DUT32の状態を知ることがで きる。電源電圧 Vdd, Vssなどの値は、試験制御部 10によって可変設定でき、その値 は、電圧設定部 24に保持される。過電圧/過電流検出値設定部 26は、電流測定部 23および電圧測定部 25の測定結果をもとに過電圧状態あるいは過電流状態である かを判断する閾値を保持する。オン/オフ制御部 22は、この閾値を越えた場合、過 電圧状態あるいは過電流状態であるとして、デバイス電源 21による電源電圧の出力 低下あるいは遮断を行う。この閾値は、試験制御部 10によって可変設定される。  The measurement section 30 has a measurement board 31 and a DUT 32, and the DUT 32 is arranged on the measurement board 31. The DUT 32 is connected to the device power supply unit 20 via the wiring on the measurement board 31 and the connector 33. The device power supply unit 20 includes a device power supply 21 and an on / off control unit 22. Under the control of the test control unit 10, the on / off control unit 22 controls the power supply voltage Vdd, Vss from the device power supply 21 to the DUT 32. Is applied. The device power supply unit 20 further includes a current measuring unit 23, a voltage setting unit 24, a voltage measuring unit 25, and an overvoltage / overcurrent detection value setting unit 26. The test control unit 10 can know the state of the DUT 32 during the acceleration test based on the values measured by the current measurement unit 23 and the voltage measurement unit 25. The values of the power supply voltages Vdd, Vss, and the like can be variably set by the test control unit 10, and the values are held in the voltage setting unit 24. The overvoltage / overcurrent detection value setting unit 26 holds a threshold for determining whether an overvoltage state or an overcurrent state is present based on the measurement results of the current measurement unit 23 and the voltage measurement unit 25. When the threshold value is exceeded, the on / off control unit 22 determines that an overvoltage state or an overcurrent state is present, and lowers or cuts off the output of the power supply voltage by the device power supply 21. This threshold is variably set by the test control unit 10.
[0019] 温度制御部 60は、温度制御ブロック 61にヒータ 62、 PT (白金抵抗)センサ 63、お よび冷却部 64が設けられている。 PTセンサ 63は、その出力値を温度調整ユニット 4 0側に出力し、ヒータ 62は、温度調整ユニット 40によって温度上昇時に通電される制 御がなされる。冷却部 62は、 DUT32の周囲を冷却する冷却液が通る。 DUT32の 温度調整を行う場合、ヒータ 62と PTセンサ 63とは、 DUT32に接触し、 DUT32は直 接、温度調整されることになる。 DUT32の温度調整を行わない場合、ヒータ 62と PT センサ 63とは、 DUT32から物理的に離隔し、温度制御ブロック 61のみに接触した 状態となる。これによつて、 PTセンサ 63は、ヒータ 62あるいは冷却液の温度を検出 すること力 Sできる。  In the temperature control section 60, a temperature control block 61 is provided with a heater 62, a PT (platinum resistance) sensor 63, and a cooling section 64. The PT sensor 63 outputs its output value to the temperature adjustment unit 40 side, and the heater 62 is controlled by the temperature adjustment unit 40 to be energized when the temperature rises. The cooling part 62 allows a cooling liquid for cooling the periphery of the DUT 32 to pass therethrough. When adjusting the temperature of the DUT 32, the heater 62 and the PT sensor 63 contact the DUT 32, and the temperature of the DUT 32 is directly adjusted. When the temperature of the DUT 32 is not adjusted, the heater 62 and the PT sensor 63 are physically separated from the DUT 32 and are in contact with only the temperature control block 61. Thereby, the PT sensor 63 can detect the temperature of the heater 62 or the coolant.
[0020] 温度調整ユニット 40は、 PTセンサ 63からの出力値をもとに PTセンサ 63周囲の温 度を測定する温度測定部 41、電源 50からの電力をヒータ 62に出力するヒータ回路 4 2、および DUT32の消費電力に応じたヒータ電力を個別制御するヒータ電力制限部 44を有する。 [0020] The temperature adjustment unit 40 includes a temperature measurement unit 41 that measures the temperature around the PT sensor 63 based on an output value from the PT sensor 63, and a heater circuit 4 that outputs power from the power supply 50 to the heater 62. 2, and a heater power limiting unit 44 for individually controlling the heater power according to the power consumption of the DUT 32.
[0021] このバーンイン装置 1では、試験制御部 10の全体制御のもとに、デバイス電源ュニ ット 20から DUT32に対して電源電圧が印加されるとともに、温度調整ユニット 40によ つてヒータ 62を発熱させる電力が供給され、 DUT32に対してヒータ 62が接触して D UT32のバーンイン試験時の温度調整が行われる。このとき試験制御部 10は、デバ イス電源ユニット 21を介してバーンイン試験結果を取得するとともに、温度調整ュニ ット 40を介した温度調整を行う。  In the burn-in apparatus 1, a power supply voltage is applied from the device power supply unit 20 to the DUT 32 under the overall control of the test control unit 10, and the heater 62 is controlled by the temperature adjustment unit 40. Is supplied, and the heater 62 contacts the DUT 32 to perform temperature adjustment during the burn-in test of the DUT 32. At this time, the test control unit 10 acquires the result of the burn-in test via the device power supply unit 21 and adjusts the temperature via the temperature adjustment unit 40.
[0022] ここで、ヒータ回路 42について詳細に説明する。図 2は、電源 50およびヒータ 62を 加えたヒータ回路の詳細構成を示す回路図である。図 2において、 pチャンネルのパ ヮー FETである FET72は、 DC48Vの電源 50に接続され、この FET72がスィッチン グされることによって、 DC48Vのパルス電圧がヒータ 62側に印加される。 FET72の ゲートと、抵抗 R2を介したアースとの間に、トランジスタ 71が接続され、このトランジス タ 71がヒータ制御回路 43から出力される PWM信号などの時間分散電圧指示信号 にしたがってスイッチングされ、結果として FET72がスイッチングされる。定電圧を維 持するツエナーダイオード D1を備え、このツエナーダイオード D1のアノード側は、トラ ンジスタ 71のコレクタと抵抗 R2との間に接続され、力ソード側は、抵抗 R1を介してト ランジスタ 71のェミッタと FET72のゲートとの間に接続されるとともに、 FET72のドレ イン側に直接接続される。トランジスタ 71がオフのときは、電源 50の DC48Vがゲート に印加され、 FET72はオフ状態となり、トランジスタがオンのときは、ツエナーダイォ ード D1の電圧降下分、ゲートにかかる電圧が減少し、 FET72がオン状態となる。  Here, the heater circuit 42 will be described in detail. FIG. 2 is a circuit diagram showing a detailed configuration of a heater circuit to which a power supply 50 and a heater 62 are added. In FIG. 2, a FET 72, which is a p-channel power FET, is connected to a DC 48V power supply 50, and when the FET 72 is switched, a pulse voltage of DC 48V is applied to the heater 62 side. A transistor 71 is connected between the gate of the FET 72 and the ground via the resistor R2, and the transistor 71 is switched according to a time dispersion voltage instruction signal such as a PWM signal output from the heater control circuit 43. As a result, the FET 72 is switched. A zener diode D1 for maintaining a constant voltage is provided.The anode side of the zener diode D1 is connected between the collector of the transistor 71 and the resistor R2, and the force source side is connected to the transistor 71 via the resistor R1. It is connected between the emitter and the gate of FET72, and is also directly connected to the drain side of FET72. When the transistor 71 is off, 48 VDC of the power supply 50 is applied to the gate, and the FET 72 is turned off.When the transistor is on, the voltage applied to the gate decreases by the voltage drop of the Zener diode D1, and the FET 72 is turned off. It turns on.
[0023] 上述した FET72を含むスイッチング回路とヒータ 62との間には、電圧平滑回路 73 が設けられる。電圧平滑回路 73は、並列接続されたダイオード D2,コンデンサ Cと直 列接続されたインダクタ Lとを有する。スイッチング回路側からは DC48Vのパルス電 圧が印加されるが、電圧平滑回路 73によってパルス電圧が平滑されたアナログ電圧 に変換される。ヒータ 62は、このアナログ電圧の振幅値にしたがった電力を発するこ とになる。  A voltage smoothing circuit 73 is provided between the switching circuit including the FET 72 and the heater 62. The voltage smoothing circuit 73 has a diode D2 and a capacitor C connected in parallel and an inductor L connected in series. A pulse voltage of 48 V DC is applied from the switching circuit side, and the voltage smoothing circuit 73 converts the pulse voltage into an analog voltage in which the pulse voltage is smoothed. The heater 62 generates electric power according to the amplitude value of the analog voltage.
[0024] コンパレータ 74は、ヒータ 62に加えられるアナログ電圧の値とヒータ制御回路 43か ら指示される電圧指示信号の値とを比較し、この比較結果をヒータ制御回路 43に出 力する。電圧指示信号は、デジタルデータであるため、 DAコンバータ 75によってァ ナログ信号に変換された後、コンパレータ 74に入力される。ヒータ制御回路 43は、こ の比較結果をもとに、比較値が零となるように制御する。ここで、電圧指示信号は、 目 標の電圧値を示す信号であり、時間分散電圧指示信号は、 目標の電圧値に到達す るまでの変化量を所定電圧値以内に抑えて時間分散した電圧指示信号であり、直接 スイッチング回路に与えられる。なお、 DAコンバータ 75によって電圧指示信号をァ ナログ信号に変換していた力 これに限らず、 DAコンバータ 75の代わりにアナログ 電圧信号をデジタルデータに変換する ADコンバータを設け、コンパレータ 74がデジ タル処理して比較するようにしてもょレ、。 [0024] Comparator 74 determines the value of the analog voltage applied to heater 62 and the value of heater control circuit 43. The value is compared with the value of the voltage instruction signal indicated by the instruction, and the comparison result is output to the heater control circuit 43. Since the voltage instruction signal is digital data, it is converted to an analog signal by the DA converter 75 and then input to the comparator 74. The heater control circuit 43 controls the comparison value to be zero based on the comparison result. Here, the voltage instruction signal is a signal indicating a target voltage value, and the time-dispersion voltage instruction signal is a time-dispersed voltage in which the amount of change until reaching the target voltage value is suppressed within a predetermined voltage value. This is an instruction signal that is given directly to the switching circuit. The power that converted the voltage instruction signal to an analog signal by the DA converter 75 is not limited to this. Instead of the DA converter 75, an AD converter that converts an analog voltage signal to digital data is provided, and the comparator 74 performs digital processing. And compare them.
[0025] ここで、上述したヒータ回路 42は、スイッチング回路が生成するパルス電圧によって ノイズが電圧信号して生成されるが、この実施の形態では、スイッチング回路とヒータ 62との間に電圧平滑回路 73を設け、パルス電圧を、平滑されたアナログ電圧に変換 しているのでヒータ 62側へのノイズ伝達が抑制される。特に、バーンイン試験時には 、ヒータと DUT32と力 S接触し、 DUT32にノイズが電圧すると DUT32に対する精度 の高い試験を行えなくなる力 この実施の形態では、ヒータ 62からのノイズ発生がほ とんどないため、精度の高いバーンイン試験を行うことができる。  Here, in the heater circuit 42 described above, noise is generated as a voltage signal by a pulse voltage generated by the switching circuit. In this embodiment, a voltage smoothing circuit is provided between the switching circuit and the heater 62. 73 is provided to convert the pulse voltage to a smoothed analog voltage, so that noise transmission to the heater 62 is suppressed. In particular, at the time of burn-in test, the heater comes into contact with the DUT 32 with a force S, and if noise is applied to the DUT 32, the DUT 32 cannot be tested with high accuracy. In this embodiment, there is almost no noise from the heater 62. A highly accurate burn-in test can be performed.
[0026] さらに、ヒータ制御回路 43は、図 3に示すように、時間分散電圧指示信号を生成し て FET72のスイッチングを行い、急激な電圧変化による過電流発生を抑え、ツエナ 一ダイオード D1による電流制限時における FET72の不完全スイッチングによる FET 72の電力ロスを低減している。  Further, as shown in FIG. 3, the heater control circuit 43 generates a time-dispersion voltage instruction signal to switch the FET 72, suppresses the occurrence of overcurrent due to a sudden voltage change, and reduces the current generated by the Zener diode D1. The power loss of the FET 72 due to incomplete switching of the FET 72 at the time of restriction is reduced.
[0027] 図 3に示すように、まず試験制御部 10は、試験開始時あるいは試験中に、温度測 定部 41から通知された温度をもとに図 3 (a)に示す目標電圧値である電圧指示値を ヒータ制御回路 43に出力する。ヒータ制御回路 43は、この電圧指示値をもとに図 3 ( b)に示す時間分散電圧指示値を生成し、この電圧指示値に対応する図 3 (c)に示す 時間分散電圧信号を生成し、トランジスタ 71に印加し、結果として FET72をスィッチ ングする。  As shown in FIG. 3, first, at the start of the test or during the test, the test control unit 10 uses the target voltage value shown in FIG. 3 (a) based on the temperature notified from the temperature measurement unit 41. A certain voltage instruction value is output to the heater control circuit 43. The heater control circuit 43 generates a time dispersion voltage indication value shown in FIG. 3B based on the voltage indication value, and generates a time dispersion voltage signal shown in FIG. 3C corresponding to the voltage indication value. Then, the voltage is applied to the transistor 71, and as a result, the FET 72 is switched.
[0028] ここで、電圧指示値が図 3 (a)に示すように「0V→24V」である場合、所定時間当た りの電圧増減値が 5V以内になる時間分散電圧指示値を生成し、これをもとにパルス 信号である時間分散指示信号を生成している。このような場合、電圧指示値に対応 する時間分散電圧指示値の並びをあらかじめテーブル 43aに格納しておき、電圧指 示値に対応した時間分散電圧指示値を取り出して時間分散電圧指示信号を生成す るようにしてもよい。なお、時間分散電圧指示信号は、所定時間当たりの電圧増減値 が所定値以内であればよぐたとえば時間分散電圧指示信号の始めの部分は低い 電圧値に設定し、その後徐々に所定値内で電圧値を増大させるようにしてもよい。す なわち現在電圧値から目標電圧値までの電圧増減値は、所定値以内であれば、そ の途中の電圧増減値は任意であり、関数的に変化させてもよいし、プログラム的に変 化させるようにしてもよい。 Here, when the voltage instruction value is “0V → 24V” as shown in FIG. It generates a time-dispersion voltage indication value that causes the voltage increase / decrease value to be within 5 V, and uses this to generate a time-dispersion indication signal that is a pulse signal. In such a case, the arrangement of the time dispersion voltage indication values corresponding to the voltage indication values is stored in advance in the table 43a, and the time dispersion voltage indication values corresponding to the voltage indication values are taken out to generate the time dispersion voltage indication signal. You may do so. It should be noted that the time-dispersion voltage instruction signal should be set to a low voltage value if the voltage increase / decrease value per predetermined time is within the predetermined value. The voltage value may be increased. That is, if the voltage increase / decrease value from the current voltage value to the target voltage value is within a predetermined value, the voltage increase / decrease value in the middle is arbitrary, may be changed functionally, or may be changed programmatically. You may make it make it.
[0029] この時間分散電圧信号が FET72に印加されると、電圧平滑回路 73によって図 3 (d )に示すような平滑されたアナログ電圧信号に変換され、このアナログ電圧信号に対 応した電力がヒータ 62から生成される。  When this time-dispersion voltage signal is applied to the FET 72, it is converted into a smoothed analog voltage signal as shown in FIG. 3D by the voltage smoothing circuit 73, and the power corresponding to this analog voltage signal is Generated from heater 62.
[0030] 一方、コンパレータ 74は、アナログ電圧信号の値と電圧指示値とを比較し、その結 果をヒータ制御回路 43に出力する。ヒータ制御回路 43は、図 3 (e)に示すように、コ ンパレータ出力がハイレベルのときにそのまま電圧値を増大させる時間分散電圧指 示信号を出力するようにし、ローレベルになったとき、現電圧値を維持させる制御を 行う。  On the other hand, comparator 74 compares the value of the analog voltage signal with the specified voltage value, and outputs the result to heater control circuit 43. As shown in FIG. 3 (e), the heater control circuit 43 outputs a time-dispersion voltage instruction signal for increasing the voltage value as it is when the comparator output is at a high level. Control to maintain the current voltage value.
[0031] なお、上述した時間分散電圧指示信号は、所定時間毎にパルス幅が一定のパルス の数を増減するものであつたが、これに限らず、所定時間毎のパルス幅を変化させる PWM信号であってもよい。なお、電圧値の急上昇をさけるためには、所定時間毎に パルス幅が一定のパルスの数を増減するようにするの力 S、時間分散上、好ましい。  [0031] The time dispersion voltage instruction signal described above is a signal for increasing or decreasing the number of pulses having a constant pulse width every predetermined time. However, the present invention is not limited to this, and a PWM that changes the pulse width every predetermined time is used. It may be a signal. In order to avoid a sharp rise in the voltage value, it is preferable in view of the force S for increasing or decreasing the number of pulses having a constant pulse width every predetermined time, and from the viewpoint of time dispersion.
[0032] この実施の形態では、上述した時間分散電圧指示信号力 SFET72に印加されること によって急激に電圧値が大きくならず、その結果としてコンデンサ Cに急激な電流が 蓄積することがないため、 FET72に対する電流制限機能が働いて FET72が不完全 スイッチングとならず、不完全スイッチング時の電力ロス発生をなくすことができる。こ の結果、ヒータ 62に対する電力消費以外の不要な電力消費を極力なくすことができ 、省電力化されたバーンイン装置を実現できる。 [0033] ところで、バーンイン装置 1による加速試験は、 DUT32にかかる温度を制御するも のであり、 DUT32自体に印加される電源電圧による消費電力の大きなデバイスと消 費電力の小さなデバイスとがある。この結果、図 4に示すように、試験開始時に、ヒー タ 62の電力を DUT32の消費電力とは無関係に 100 %の電力供給を行うと、 DUT3 2であるデバイスの消費電力の大小に左右されて、 DUT32の温度の時間変化が異 なり、デバイスの消費電力が大きい場合には、速やかに目標温度に達し、デバイスの 消費電力が小さい場合には緩やかに目標温度に達することになる。 In this embodiment, the voltage value does not suddenly increase by being applied to the above-described time-dispersion voltage indicating signal force SFET 72, and as a result, no rapid current is accumulated in the capacitor C. The current limiting function for the FET 72 works to prevent the FET 72 from being incompletely switched, thereby eliminating power loss at the time of incompletely switched. As a result, unnecessary power consumption other than power consumption of the heater 62 can be minimized, and a burn-in device with reduced power consumption can be realized. Incidentally, the accelerated test using the burn-in device 1 controls the temperature applied to the DUT 32, and there are devices that consume a large amount of power due to the power supply voltage applied to the DUT 32 itself and devices that consume a small amount of power. As a result, as shown in Fig. 4, when the power of the heater 62 is supplied at 100% at the start of the test regardless of the power consumption of the DUT32, the power consumption of the device that is the DUT32 depends on the magnitude of the power consumption. Therefore, when the temperature change of the DUT 32 changes over time and the power consumption of the device is large, the temperature reaches the target temperature quickly, and when the power consumption of the device is small, the temperature gradually reaches the target temperature.
[0034] しかし、多種多様の DUT32に対する試験を同時に行う場合、緩やかに目標温度 に達するものを基準に試験が終了することになるとともに、バーンイン装置 1全体とし ての消費電力を考慮する必要がある。  [0034] However, when performing tests on a variety of DUTs 32 at the same time, the tests will be terminated based on those that gradually reach the target temperature, and it is necessary to consider the power consumption of the entire burn-in device 1. .
[0035] そこで、この実施の形態では、 DUT32の消費電力とヒータ 62の消費電力とのトー タル電力が一定になるようにヒータ 62の消費電力を制御するようにしている。この消 費電力の制御は、ヒータ電力制限部 44が行う。  Therefore, in this embodiment, the power consumption of the heater 62 is controlled so that the total power of the power consumption of the DUT 32 and the power consumption of the heater 62 is constant. The control of the power consumption is performed by the heater power limiting unit 44.
[0036] 図 5は、この実施の形態によるヒータ電力制御と従来のヒータ電力制御とを比較した 図である。図 5において、ヒータ電力制限部 44は、たとえば最小の消費電力をもつデ バイスである DUTに対しては、ヒータ 62がもつ最大の消費電力となるように制御し、 最小の消費電力をもつ DUTの消費電力を超える DUTに対するヒータ 62の消費電 力は、最小の消費電力をもつ DUTの消費電力とヒータ 62がもつ最大の消費電力と のトータル電力 P2を超えない最大の消費電力となるように制御する。  FIG. 5 is a diagram comparing heater power control according to this embodiment with conventional heater power control. In FIG. 5, the heater power limiting unit 44 controls the DUT, which is the device having the lowest power consumption, so that the heater 62 has the maximum power consumption, and the DUT having the lowest power consumption. The power consumption of the heater 62 for the DUT that exceeds the power consumption of the heater should be the maximum power consumption not exceeding the total power P2 of the power consumption of the DUT with the lowest power consumption and the maximum power consumption of the heater 62. Control.
[0037] このため、ヒータ電力制限部 44は、 DUT32の消費電力とそのときのヒータ 62の最 大消費電力との関係を予め求めておき、各 DUTに対応したヒータ 62の最大消費電 力を制限する制御を行う。なお、 DUT32の消費電力が未知の場合、デバイス電源 ユニット 20を介して電力測定を行い、この電力測定の結果をもとに、ヒータ電力制限 部 44力 各 DUTの消費電力に対応したヒータ 62の消費電力の制限を決定するよう にしてもよい。  [0037] For this reason, the heater power limiting unit 44 obtains in advance the relationship between the power consumption of the DUT 32 and the maximum power consumption of the heater 62 at that time, and determines the maximum power consumption of the heater 62 corresponding to each DUT. Control to limit. If the power consumption of the DUT 32 is unknown, the power is measured via the device power supply unit 20, and based on the result of the power measurement, the power of the heater 62 corresponding to the power consumption of each DUT is determined based on the power of the heater power limiting unit 44. The power consumption limit may be determined.
[0038] この結果、 DUTの消費電力の大小にかかわらず、 DUTの消費電力とヒータ 62の 消費電力とのトータル電力が、トータル電力 P2—定となり、 DUTの温度の立ち上がり は、最小の消費電力をもつ DUTとほぼ同じになる。 [0039] ここで、従来のバーンイン装置のヒータの消費電力容量は、最大の消費電力をもつ DUTの消費電力とヒータの最大の消費電力とのトータル電力 P1を備えなければなら なかったが、この実施の形態では、バーンイン装置 1のトータル電力 P2の電力容量を もてばよぐ小型軽量ィ匕を促進することができるとともに、省電力化を図ることができる [0038] As a result, regardless of the magnitude of the power consumption of the DUT, the total power of the power consumption of the DUT and the power consumption of the heater 62 becomes the total power P2—constant, and the rise of the temperature of the DUT is the minimum power consumption. It is almost the same as DUT with. [0039] Here, the power consumption capacity of the heater of the conventional burn-in apparatus had to include the total power P1 of the power consumption of the DUT having the maximum power consumption and the maximum power consumption of the heater. In the embodiment, it is possible to promote small-sized and light-weight driving with the power capacity of the total power P2 of the burn-in device 1 and to save power.
[0040] なお、上述した実施の形態では、各 DUTの消費電力の大小にかかわらず、トータ ル電力がトータル電力 P2となるように制御していたが、これに限らず、たとえば中間 の消費電力をもつ DUTの消費電力とヒータ 62の 100%消費電力とのトータル電力 P 3となる電力制限を行うようにしてもよい。この場合でも、従来のバーンイン装置に比し て小型軽量化と省電力化を図ることができる。 [0040] In the above-described embodiment, the total power is controlled to be the total power P2 regardless of the power consumption of each DUT. However, the present invention is not limited to this. The power may be limited to the total power P3 of the power consumption of the DUT having the above and the 100% power consumption of the heater 62. Even in this case, it is possible to reduce the size and weight and to save power as compared with the conventional burn-in device.
[0041] ところで、上述したバーンイン装置は、各 DUTに対して個別にヒータを設け、直接 温度調節を行うものである力 温度制御部 60のヒータ 62および PTセンサ 63は、バ ーンイン試験時、 DUT32に接触している力 バーンイン試験時でないとき、ヒータ 62 および PTセンサ 63は DUT32に非接触である。  Incidentally, in the burn-in device described above, a heater is provided for each DUT individually, and the temperature is directly controlled. The heater 62 and the PT sensor 63 of the temperature control unit 60 are connected to the DUT 32 during the burn-in test. Heater 62 and PT sensor 63 are in non-contact with DUT 32 when not in burn-in test.
[0042] したがって、ヒータ 62および PTセンサ 63と DUTとが非接触状態の時、つぎのよう な検査を行うことができる。まず、この状態では、温度制御ブロック 61とヒータ 62と PT センサ 63と冷却液とが接触しており、 PTセンサ 63によって冷却液の温度を測定する ことによって、 PTセンサ 63の故障や精度の検証を行うことができる。これは冷却液の 温度が一定であり、その温度が温度制御ブロック 61の温度と同じになっているからで ある。  Therefore, when the heater 62 and the PT sensor 63 are not in contact with the DUT, the following inspection can be performed. First, in this state, the temperature control block 61, the heater 62, the PT sensor 63, and the coolant are in contact with each other, and the temperature of the coolant is measured by the PT sensor 63 to verify the failure and accuracy of the PT sensor 63. It can be performed. This is because the temperature of the coolant is constant and the temperature is the same as the temperature of the temperature control block 61.
[0043] また、 PTセンサ 63によって、ヒータ 62への通電をオフしたときと、一定の消費電力 を供給したときとの温度差を測定し、この温度差をもとに、ヒータ 62の断線やヒータ回 路 42の故障などを検出することができる。たとえば、ヒータ 62への通電をオフしてい るときに、 PTセンサ 63が冷却液の温度よりも高い温度を測定した場合、電源 50に対 するオフ制御が行われていないことを検知でき、この場合、ヒータ回路 42によって電 源 50からの電力供給を遮断する対処を行うことができる。  Further, the temperature difference between when the power to the heater 62 is turned off and when a certain amount of power is supplied is measured by the PT sensor 63, and based on the temperature difference, the disconnection of the heater 62 and the temperature of the heater 62 are measured. A failure of the heater circuit 42 can be detected. For example, if the PT sensor 63 measures a higher temperature than the coolant while the power to the heater 62 is turned off, it can be detected that the power supply 50 is not turned off. In this case, the heater circuit 42 can take measures to cut off the power supply from the power supply 50.
[0044] 一方、ヒータ 62および PTセンサ 63と DUTとが接触状態の時には、ヒータ 62に対し て一定電力を供給し、このときの単位時間あたりの温度変化を PTセンサ 63によって 測定し、これによつて温度制御ブロック 61側と DUT32との間の熱接触抵抗を求める こと力 Sできる。なお、熱接触抵抗が大きい場合、 PTセンサ 63が検出する単位時間あ たりの温度変化は小さくなる。 On the other hand, when the heater and the PT sensor 63 and the DUT are in contact with each other, a constant power is supplied to the heater 62 and the temperature change per unit time at this time is detected by the PT sensor 63. By measuring the temperature, the thermal contact resistance between the temperature control block 61 and the DUT 32 can be obtained. When the thermal contact resistance is large, the temperature change per unit time detected by the PT sensor 63 is small.
[0045] さらに、この実施の形態では、デバイス電源 21と DUT32との間のコネクタ 33や接 続線などの不良を検出することができる。たとえば、デバイス電源 21側の各フォース 電圧 F + , F—と各センス電圧 S + , S—との間の電圧差、さらには電流測定部 23が 測定する電流値を測定し、次式、すなわち Further, in this embodiment, it is possible to detect a defect in the connector 33 or the connection line between the device power supply 21 and the DUT 32. For example, the voltage difference between each force voltage F +, F— on the device power supply 21 side and each sense voltage S +, S—, and the current value measured by the current measuring unit 23 are measured, and
(フォース電圧一センス電圧)/電流値 >所定の抵抗値  (Force voltage-sense voltage) / current value> predetermined resistance value
を満足する場合には、コネクタ 33が接触不良であると検出する。また、電流が流れて いるのに、フォース電圧とセンス電圧とに差がない場合には、 DUT32とデバイス電 源 21との間のセンス線が未接続状態であることを検出する。これらの異常を検出した 場合、試験制御部 10は、デバイス電源 21をオフする制御を行う。これによつて、 DU Tに大電流を流すバーンイン試験時にコネクタなどの接触不良による発熱や焼損を 防止することができる。  Is satisfied, it is detected that the connector 33 has poor contact. If there is no difference between the force voltage and the sense voltage while the current is flowing, it is detected that the sense line between the DUT 32 and the device power supply 21 is not connected. When detecting these abnormalities, the test control unit 10 performs control to turn off the device power supply 21. As a result, it is possible to prevent heat generation and burning due to poor contact of a connector or the like during a burn-in test in which a large current flows through the DUT.
産業上の利用可能性  Industrial applicability
[0046] 以上のように、本発明に力かるバーンイン装置は、各種の被測定デバイスに対して 行うバーンイン試験に有用であり、特に、省電力化および小型軽量ィ匕を図ることがで きるものとして適している。 As described above, the burn-in apparatus according to the present invention is useful for a burn-in test performed on various devices to be measured, and in particular, is capable of achieving power saving and small and light weight. Suitable as.

Claims

請求の範囲 The scope of the claims
[1] バーンイン試験を行う各種の被測定デバイスに対してそれぞれヒータを接触させ、 該ヒータの消費電力を制御して前記被測定デバイスの温度調整を行いつつ前記バ ーンイン試験を行うバーンイン装置において、  [1] In a burn-in apparatus for performing a burn-in test while controlling a power consumption of the heater and controlling a temperature of the device under test by bringing a heater into contact with each of various devices to be tested for a burn-in test,
前記被測定デバイスの消費電力と前記ヒータの消費電力との総電力が一定になる ように各種の被測定デバイスの消費電力に対応して前記ヒータの消費電力の制御を 行うヒータ電力制限制御手段を備えたことを特徴とするバーンイン装置。  Heater power limiting control means for controlling the power consumption of the heater in accordance with the power consumption of various devices under test so that the total power of the power consumption of the device under test and the power consumption of the heater is constant. A burn-in device comprising:
[2] 前記ヒータ電力制限制御手段は、各種の被測定デバイスのうち最小の消費電力を もつ被測定デバイスの消費電力と前記ヒータの最大電力との合計電力を前記総電力 として前記ヒータの消費電力を制限することを特徴とする請求項 1に記載のバーンィ ン装置。  [2] The heater power limit control means uses the total power of the power consumption of the device under test having the minimum power consumption of the various devices under test and the maximum power of the heater as the total power as the power consumption of the heater. 2. The burn-in device according to claim 1, wherein the burn-in device is restricted.
[3] 前記ヒータ電力制限制御手段は、各種の被測定デバイスの消費電力と各ヒータの 消費電力との関係を予め設定しておき、この設定内容をもとに、前記被測定デバイス 毎に各ヒータの消費電力の制御を行うことを特徴とする請求項 1または 2に記載のバ ーンイン装置。  [3] The heater power limit control means sets in advance the relationship between the power consumption of various devices to be measured and the power consumption of each heater, and based on the settings, for each of the devices to be measured, 3. The burn-in device according to claim 1, wherein power consumption of the heater is controlled.
[4] 前記バーンイン試験前に被測定デバイスの消費電力を測定する電力測定手段を 備え、  [4] power measurement means for measuring power consumption of the device under test before the burn-in test;
前記ヒータ電力制限制御手段は、前記電力測定手段が測定した消費電力を前記 各種の被測定デバイスの消費電力として用レ、ることを特徴とする請求項 1または 2に 記載のバーンイン装置。  The burn-in apparatus according to claim 1, wherein the heater power limit control unit uses the power consumption measured by the power measurement unit as power consumption of the various devices under test. 4.
[5] 前記ヒータは、一定温度流体が接触する温度制御ブロックに組み込まれることを特 徴とする請求項 1または 2に記載のバーンイン装置。 5. The burn-in device according to claim 1, wherein the heater is incorporated in a temperature control block that contacts a constant temperature fluid.
[6] 前記一定温度流体は、冷却流体であることを特徴とする請求項 5に記載のバーンィ ン装置。 6. The burn-in device according to claim 5, wherein the constant temperature fluid is a cooling fluid.
PCT/JP2005/010427 2004-06-07 2005-06-07 Burn-in apparatus WO2005121822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-168816 2004-06-07
JP2004168816A JP2006023081A (en) 2004-06-07 2004-06-07 Burn-in device

Publications (1)

Publication Number Publication Date
WO2005121822A1 true WO2005121822A1 (en) 2005-12-22

Family

ID=35503206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010427 WO2005121822A1 (en) 2004-06-07 2005-06-07 Burn-in apparatus

Country Status (3)

Country Link
JP (1) JP2006023081A (en)
TW (1) TW200540436A (en)
WO (1) WO2005121822A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727641B2 (en) * 2007-10-01 2011-07-20 日本エンジニアリング株式会社 Tester equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829080A (en) * 1994-07-11 1996-02-02 Tabai Espec Corp Contact type heat transfer device
JP2000304804A (en) * 1999-04-26 2000-11-02 Denken Eng Kk Burn-in device and burn-in method
JP2001091571A (en) * 1999-09-21 2001-04-06 Canon Inc Apparatus and method for testing reliability
JP2001343420A (en) * 2000-06-02 2001-12-14 Nec Corp Burn-in testing equipment and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829080A (en) * 1994-07-11 1996-02-02 Tabai Espec Corp Contact type heat transfer device
JP2000304804A (en) * 1999-04-26 2000-11-02 Denken Eng Kk Burn-in device and burn-in method
JP2001091571A (en) * 1999-09-21 2001-04-06 Canon Inc Apparatus and method for testing reliability
JP2001343420A (en) * 2000-06-02 2001-12-14 Nec Corp Burn-in testing equipment and method thereof

Also Published As

Publication number Publication date
JP2006023081A (en) 2006-01-26
TW200540436A (en) 2005-12-16

Similar Documents

Publication Publication Date Title
US7839158B2 (en) Method of detecting abnormality in burn-in apparatus
WO2005122641A1 (en) Heater power control circuit and burn-in apparatus using the same
US9190681B2 (en) Method of controlling a fuel cell system using impedance determination
EP3109649B1 (en) Aging determination of power semiconductor device in electric drive system
WO2010125733A1 (en) Current control apparatus and protection apparatus
US20050099163A1 (en) Temperature manager
KR20100075403A (en) Temperature detection circuit
JP2005277246A (en) Semiconductor integrated circuit with current sensing function, and power supply using it
CN215344364U (en) Power device drive circuit and electronic equipment
US20220069815A1 (en) Semiconductor device
WO2005121822A1 (en) Burn-in apparatus
JP2012182886A (en) Voltage detector and method of reducing variation in dark current
US7116110B1 (en) Sensorless protection for electronic device
KR100770388B1 (en) Heater power control circuit and burn-in apparatus using the same
JP2003185716A (en) Method of controlling electric power source for device in semiconductor-testing device, and electric power source unit for device therein
JP6699394B2 (en) Control device
JP2007006615A (en) Fault detection circuit
JP2008205685A (en) Optical mosfet relay driving circuit and semiconductor testing device
JP2009115506A (en) Direct-current testing device and semiconductor testing device
JP2000162266A (en) Semiconductor testing apparatus
CN118244075A (en) On-line accurate acquisition method and system for junction temperature of power module of converter
KR20100082522A (en) Error detector for sensor module and method of the same of
KR20130035822A (en) Power device for changing polarity of output voltage for application to chiller equipment and the method of controlling the power device
JP2002317928A (en) Device for detecting ignition/misfire
JP2002107280A (en) Thermal impact testing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP