WO2005121229A1 - ポリスチレン粉末積層造形3次元模型の表面平滑化方法及びその模型を用いた精密鋳造方法 - Google Patents

ポリスチレン粉末積層造形3次元模型の表面平滑化方法及びその模型を用いた精密鋳造方法 Download PDF

Info

Publication number
WO2005121229A1
WO2005121229A1 PCT/JP2004/007968 JP2004007968W WO2005121229A1 WO 2005121229 A1 WO2005121229 A1 WO 2005121229A1 JP 2004007968 W JP2004007968 W JP 2004007968W WO 2005121229 A1 WO2005121229 A1 WO 2005121229A1
Authority
WO
WIPO (PCT)
Prior art keywords
polystyrene
model
organic solvent
additive manufacturing
powder additive
Prior art date
Application number
PCT/JP2004/007968
Other languages
English (en)
French (fr)
Inventor
Hidekazu Suzuki
Akio Saito
Takaharu Oi
Akira Takase
Original Assignee
Shonan Design Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shonan Design Co., Ltd. filed Critical Shonan Design Co., Ltd.
Priority to JP2006514368A priority Critical patent/JPWO2005121229A1/ja
Priority to PCT/JP2004/007968 priority patent/WO2005121229A1/ja
Publication of WO2005121229A1 publication Critical patent/WO2005121229A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers

Definitions

  • the present invention relates to a method of smoothing a model surface in a three-dimensional model of polystyrene powder additive manufacturing and a precision manufacturing method using a burnt-out model manufactured by the method.
  • a laser beam controlled by a computer is irradiated onto the polystyrene fine particle layer, a new polystyrene fine particle is overlaid in a thin layer on the surface fused layer of polystyrene fine particles, and the laser beam controlled again by the computer is irradiated again.
  • Polystyrene fine particles of the eye Form a surface fusion layer. By repeating this operation, the fused layer of polystyrene fine particles is stacked.
  • the fused polystyrene fine particle laminate becomes a three-dimensional three-dimensional object. It is also easy to make a complex three-dimensional object with a hollow part.
  • Resin powders include polyamide resin powders and polystyrene resin powders.
  • the former is used in the field of models that require high strength and high toughness, and the latter is relatively brittle. Has a softening point that makes it easy to melt, so it has come to be used as a burnt model for construction.
  • the powder additive manufacturing three-dimensional model has been widely spread with many advantages, but also has disadvantages. That is, because of the laminating method, a laminating step remains on the model surface. Further, since the powder particles are fused, irregularities in which the heads of the powder particles are continuous remain on the model surface. In other words, the powder additive manufacturing 3D model has a microscopically rough surface.
  • Method of cutting the model surface with NC 'method of shaving the surface protrusion with a cutter ⁇ There is a method of cutting the surface protrusion with paper. If the surface lacks a large amount of unevenness, putty on the model surface and fill in the recesses on the model surface with paper and remove the protrusions. A smooth surface can be obtained by finishing the paper in order, and in some cases, sharpening the paper.
  • a method of surface smoothing in a powder additive manufacturing 3D model a method of impregnating a molten wax with a wax component to finish the surface is used.
  • a metal powder additive manufacturing 3D model after sintering, a low melting point alloy is used. And surface finishing.
  • Patent Document 1 a plastic material is immersed in a vapor of an organic solvent, and a plastic material is immersed therein. There has been disclosed a method for smoothing the surface of a solid wood.
  • precision manufacturing includes a lost wax method and a plaster mold method.
  • the mouth and wax model are used as the burnout model due to the construction method.
  • a multi-layered refractory coating is provided on the surface of the wax model to remove the wax at 130-250 ° C and the pouring force, and completely burn out the residual wax at 300-500 ° C. Bake and fire at 600-1000 ° C to produce hollow high-strength ceramic mold.
  • a high melting point alloy Ti, Ni, Co alloy, etc.
  • a melting point around 1000 ° C is incorporated into this hollow mold, and after cooling, the mold is collapsed to obtain a high melting point alloy.
  • plaster mold method plaster for construction is poured into a wax'wax model and buried, and the gypsum is naturally hardened and dried. Then, free water is dried at about 100 ° C, and then about 130 ° C. — While removing the wax at 200 ° C with the pouring power, gradually remove the gypsum water of crystallization and completely burn off the residual wax at 300-500 ° C to produce a hollow plaster mold. You.
  • a low melting point alloy (Mg-Zn-A1 alloy or the like) having a melting point of 300 to 700 ° C is incorporated into the hollow gypsum mold, and after cooling, the gypsum mold is collapsed to obtain a low melting point alloy.
  • the precision structure Compared to a sand-filled structure using a sand mold, the precision structure has a feature that a hollow complex-shaped structure can be manufactured with relatively high accuracy. However, as long as a wax-wax model, which is brittle and has poor physical properties, is used, there is a limit in producing a hollow thin-walled complex shape model.
  • polystyrene powder additive manufacturing model is one of the rabbit prototyping technologies, and has the advantage of being able to rapidly produce several hollow thin-walled complicated models. It can be dewaxed at 150-230 ° C.
  • Patent documents 2-4 and the like have been filed for the above-mentioned photo-solidification modeling method.
  • Patent document 1 JP-A-6-128398
  • Patent Document 2 Japanese Patent Publication No. 5-33900
  • Patent Document 3 Japanese Patent Publication No. 7-94149
  • Patent Document 4 JP-A-9-141747 Disclosure of the invention
  • the polystyrene powder additive manufacturing 3D model is far from a model having a smooth surface due to the lamination step and particle shape irregularities remaining on its surface, but the hollow complex model has a certain degree of dimensional accuracy. It is used as a shape confirmation model because it can be manufactured quickly. It is natural that a model with a smooth surface free of stacking steps and particle shape irregularities is desired.
  • Polystyrene powder additive manufacturing A method of papering the surface of a three-dimensional model is a very common technique. Polystyrene powder lamination modeling The three-dimensional model is a porous structure because polystyrene fine particles are fused and laminated in the first place, so even if the convex part is scraped off with paper, the porous part of the concave part will be a fine void. It remains on the surface of the model and is smoother than the original, but cannot be regarded as a smooth surface.
  • the polystyrene powder additive manufacturing three-dimensional model is used in precision burnout models for precision manufacturing as a substitute for a lost-powder model by virtue of its property of being melted out by heating.
  • irregularities remain on the skin of the product because the stacking steps and particle shape unevenness remaining on the surface of the 3D model of the polystyrene powder are transferred to the product. .
  • a method for impregnating the surface of a beaded polystyrene powder three-dimensional model with a wax component to solve this problem has been devised.
  • the melting point of wax wax is about 100-130 ° C, and when impregnated with molten wax wax, the model itself will be about 100-130 ° C.
  • the temperature approaches the melting temperature of polystyrene a slight warp or deformation of the model occurs, and the problem remains that it becomes difficult to maintain the shape of the polystyrene powder additive manufacturing three-dimensional model in a complicated shape.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-128398 also discloses a method of immersing a plastic material in the vapor of an organic solvent to smooth the surface.
  • a 3D model of polystyrene powder additive manufacturing there is a problem that the organic solvent condensed on the model surface flows down on the model surface, leaving sagging streaks on the model surface.
  • the immersion time is extremely short so as not to be immersed so as to leave a streak on the surface of the model, there is a problem that the organic solvent is insufficiently condensed on the surface of the model, and a part that is not smoothed remains.
  • a heating device In addition, a heating device, a steam box, and a steam box aggregating organic solvent recovery device are required to boil the organic solvent and convert it into vapor of the organic solvent.
  • a heating device In the case of flammable organic solvents, it is necessary to implement the measures.
  • flammable organic solvents In the case of flammable organic solvents, it is imperative that reliable measures to prevent vapor leakage be taken against vapor leakage.
  • the present inventors have conducted intensive studies in order to solve such a number of problems as described above, and without giving a model a large change in deformation or warpage and dimensional accuracy, and at room temperature, to form a hollow complex shape.
  • the present inventors have found a method of rapidly smoothing the surface of a three-dimensional model of polystyrene powder additive manufacturing having complicated curved surfaces on both the inner surface and the outer surface of the hollow portion of the mold, and have reached the present invention.
  • the surface smoothing method for a polystyrene powder additive manufacturing three-dimensional model according to the present invention is a method for dissolving polystyrene in a polystyrene powder additive additive three-dimensional model (a) manufactured by polystyrene powder additive manufacturing.
  • removal step (B) of removing excess organic solvent immediately after being lifted from polystyrene-dissolved organic solvent (b) and film formation by drying at room temperature.
  • drying (C) drying
  • the organic solvent (b) in which the polystyrene is dissolved has a polystyrene concentration of 0.01 to 5 wt%.
  • the organic solvent (b) in which polystyrene is dissolved is preferably a mixed organic solvent of a halogenated hydrocarbon solvent and an organic solvent (c) having a boiling point of 40 ° C. to 150 ° C.
  • the organic solvent (b) in which polystyrene is dissolved may be a mixed organic solvent of a styrene derivative-based solvent and another organic solvent (c) having a boiling point of 40 ° C to 150 ° C.
  • the immersion time in the immersion step (A) is desirably 1 second and 15 minutes.
  • the removal step (B) it is desirable to remove the excessively adhered solvent by air blowing, but it may be performed by a shake-off method.
  • the immersion step (A), the removal step (B) and the dry film formation step (C) are performed a plurality of times, for example.
  • the polystyrene powder additive manufacturing three-dimensional model (a) is preferably a hollow model having a complicated shape.
  • the 3D data of the model shape is sent to the powder additive manufacturing machine, and the carbon dioxide laser beam is irradiated on the polystyrene powder coat layer under computer control according to the 3D data.
  • the surface of the polystyrene fine particles in the polystyrene layer irradiated with the carbon dioxide laser beam is heated and melted to form a fused surface between the polystyrene fine particles.
  • the next layer of polystyrene fine particles is coated thereon, and the layer is irradiated with a carbon dioxide laser beam to create a fused surface between the second layers of polystyrene fine particles.
  • the fused surface fused between the first-layer polystyrene fine particles and the fused surface fused between the second-layer polystyrene fine particles are fused and laminated and joined.
  • the area of the fusion surface between the polystyrene fine particles in the first layer and the fusion surface between the polystyrene fine particles in the second layer change little by little under computer control and are stacked.
  • the stacked 3D state is completed as the desired 3D model.
  • the overall shape of the model is the same as the stacked state of the record plates according to the three-dimensional data, but microscopically, since it is a laminated body, the laminated steps appear on the curved surface.
  • the flat surface is a surface where the fine particles are fused at the contact point, but there is a height difference between the head of the fine particle and the molten contact point of the fine particle. Therefore, the polystyrene powder additive manufacturing 3D model (a) is a porous object with a fusion of fine particle contacts. In other words, it exhibits a surface state in which surface irregularities can be clearly confirmed by visual inspection and touch.
  • the organic solvent (b) in which polystyrene is dissolved is a halogen hydrocarbon-based organic solvent'styrene-derived organic solvent, and is a true solvent that dissolves polystyrene well.
  • organic hydrocarbon solvents methylene dichloride, trichloromethane, tetrachloromethane, chloroethane, and the like are provided.
  • Halogen hydrocarbon-based organic solvents are good solvents for polystyrene. Although they have anesthetic properties, they have good solubility and drying properties. Of the halogenated hydrocarbon solvents, methylene dichloride is preferred. These halogenated hydrocarbon-based organic solvents may be mixed and used as a true solvent.
  • styrene derivative organic solvent examples include a styrene monomer and a low-molecular alkyl styrene.
  • Styrene monomer is preferred as an organic solvent which is flammable but has good solubility and drying properties.
  • These styrene derivative organic solvents may be mixed and used as a true solvent.
  • organic solvents (c) include aromatic organic solvents, ketone organic solvents, ester organic solvents, ether organic solvents, aliphatic organic solvents, alcohol organic solvents, and aliphatic organic solvents.
  • 'It is an alcoholic organic solvent and has a poor ability to dissolve polystyrene satisfactorily!
  • / ⁇ is an organic solvent that can dilute the true solvent in which polystyrene is dissolved.
  • benzene “toluene” xylene is typical, and ethyl benzene and the like can be mentioned.
  • ketone-based organic solvent examples include acetone'methylethylketone ⁇ ⁇ -hexanone'methylisobutylketone, such as methyl ⁇ butylbutylketone.
  • ester-based organic solvent examples include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, pill, ⁇ -butyl acetate, and isobutyl acetate.
  • Representative ether-based organic solvents are dimethyl ether 'methylethyl ether' getyl ether, and methyl butyl ether, ethyl butyl ether, dibutyl ether, ethyl vinyl ether, butyl vinyl ether, dioxane, furan, n -methylfuran ⁇ Tetrahydrofuran and the like.
  • Typical examples of the aliphatic organic solvent include n-hexane'heptane.
  • Typical examples of the alcohol-based organic solvent include methanol “ethanol” “propyl alcohol” “isopropyl alcohol and the like, such as butanol.
  • the other organic solvent (c) may be the above-mentioned single organic solvent! Or a mixed organic solvent obtained by mixing the above-mentioned organic solvents.
  • the concentration of polystyrene dissolved in the organic solvent (b) in which polystyrene is dissolved is 0.01 to 5 wt%. Preferably, it is 0.1-3 wt%.
  • the amount of polystyrene to be dissolved is 5 wt% or more, the surface of the polystyrene is apt to be skinned, and the immersion step (A) is inhibited.
  • Polystyrene skinning on the liquid surface occurs because the solvent is scattered too much on the liquid surface, especially when a single solvent is used. Therefore, by using a mixed solvent and a diluting solvent which is an organic solvent (c), the skinning of the liquid surface can be alleviated.
  • the amount of polystyrene to be dissolved is 5 wt% or more, the model is pulled up, the organic solvent (b) in which the polystyrene is dissolved is dried, and the dissolved polystyrene is liable to partially drip on the model surface. appear.
  • the amount of polystyrene to be dissolved is less than 0.01 wt%, the smoothing ability is reduced.
  • the organic solvent (b) in which polystyrene is dissolved By pouring a predetermined amount of polystyrene fine powder into the organic solvent (b) and stirring it, the organic solvent (b) in which polystyrene is dissolved can be easily dissolved and polystyrene can be prepared. If a predetermined amount of the other organic solvent (c) is added and mixed with the mixture, a uniform mixed solution can be prepared, and the other organic solvent (c) may be mixed. In addition, by mixing the organic solvent (c), the effect of preventing skinning of the liquid surface, lowering the viscosity of the solution, and preventing rapid drying film formation described below is imparted. The mixing ratio varies greatly depending on the type of the mixed organic solvent, and is not particularly limited.
  • the mixed solution thus prepared is stored and prepared in a closed container with a capacity sufficient to immerse the model.
  • the immersion step (A) of immersing the polystyrene powder additive manufacturing three-dimensional model (a) in the organic solvent (b) in which the polystyrene thus prepared is dissolved will be described.
  • the polystyrene powder additive manufacturing three-dimensional model (a) is immersed at room temperature without heating the organic solvent (b) in which polystyrene is dissolved.
  • the time to immerse the polystyrene powder additive manufacturing 3D model (a) in the organic solvent (b) in which polystyrene is dissolved is 1 second and 5 minutes. It is so soluble that the surface of the model begins to dissolve immediately at room temperature. Therefore, when immersed for more than 5 minutes for a long time, the shape of the model surface is dissolved until it is largely collapsed, and particularly the thin-walled portion is easily deformed.
  • the other organic solvent (c) as a diluting solvent to make the dissolution time too long so that the dissolution time is easily adjusted. If the immersion time is less than 1 second, it is difficult to adjust the immersion time, and it is not possible to control the work process.
  • the immersion step (A) in order to ensure that the thin portion of the model surface is excessively melted and does not warp or bend! /
  • the organic solvent removal step (B) and the dry film formation step (C) are completed, and the second immersion step (A) • The removal step (B) • The dry film formation step (C) is added again.
  • This process is repeated 2-10 times, while checking the surface smoothness. Preferably, it is repeated 2-3 times.
  • the removal step (B) is provided as an essential item in order to remove the organic solvent that excessively adheres to the model surface immediately after the removal from the polystyrene-dissolved organic solvent (b). If the removal step (B) is not performed, the organic solvent (c) excessively adhering to the model surface will hang down, and after evaporation and drying, the polystyrene dissolved in the organic solvent (c) will remain in the partial area in a dripping state. Although the surface smoothness is maintained, there is a disadvantage that the surface is overlaid.
  • the removal step (B) is carried out on the model surface immediately after being lifted from the polystyrene-dissolved organic solvent (b).
  • the operation of shaking off the model is performed several times. This work may be performed manually by an operator, or a model swing-out device may be installed on an automatic line. As a result, most of the excess organic solvent on the model surface is removed, and the dripping state is eliminated.
  • the polystyrene powder additive manufacturing three-dimensional model (a) is pulled up from the polystyrene-dissolved organic solvent (b), it is subjected to a removal step (B) and then dried at room temperature in a fume hood to dissolve the polystyrene in an organic solvent.
  • Most of (b) scatters from the surface of the polystyrene powder additive manufacturing 3D model (a), and the dissolved polystyrene appears on the surface of the polystyrene powder additive manufacturing 3D model (a).
  • the drying of the concave part which is the contact site where the polystyrene fine particles fuse on the surface of the three-dimensional model (a), is slightly delayed.
  • the polystyrene dissolved in the polystyrene-dissolved organic solvent (b) is accumulated and remains in the concave portion on the surface of the polystyrene powder additive manufacturing three-dimensional model (a) serving as a contact portion where the polystyrene fine particles fuse.
  • This phenomenon is interpreted as the same reasoning as the mountain erosion 'sedimentation phenomenon in the plain.
  • the unevenness on the surface of the 3D model of polystyrene powder additive manufacturing (a) has a smaller difference in elevation, and the immersion process (A), the removal process (B), and the dry film formation process (C)
  • the immersion step (A), the removal step (B), the 'dry film formation step (C)', and the second force are successively smoothed, and the effects aimed at by the present invention are exhibited.
  • the polystyrene-dissolved organic solvent (b) evaporates and disperses rapidly, the polystyrene dissolved in the polystyrene-dissolved organic solvent (b) adheres to the curved surface of the base model and cannot form a film, and withstands rapid shrinkage. Cracks occur in the turtle shell state. This decrease is the same as the decrease in dry cracking of paint. Therefore, it is necessary to perform the dry film formation step (C) at room temperature without heating. Further, by using the polystyrene-dissolved organic solvent (b) as a mixed solvent, the low-boiling solvent in the mixed solvent is sequentially evaporated and scattered to promote normal film formation.
  • the polystyrene powder additive manufacturing 3D model (a) Dissolves and disappears in (b).
  • the concave position on the model surface is The decomposed polystyrene is buried by accumulation film formation.
  • the molding conditions were as follows: the particle size of the polystyrene fine powder was about 90 microns, the 50W carbon dioxide laser was used, and the lamination pitch was 0.1-0.2 mm.
  • the surface of the model of the two-cylinder engine suction port was clearly visible and visibly touchable. Also, traces of stacking steps clearly appeared on the curved surface.
  • Polystyrene was poured into a polystyrene solvent and stirred to obtain an organic solvent (b) in which the polystyrene was dissolved immediately and uniformly.
  • An organic solvent (b) in which polystyrene was dissolved was prepared by mixing and diluting another organic solvent (c) as a diluting solvent.
  • Polystyrene Polystyrene beads for powder additive manufacturing
  • Table 2 summarizes the evaluations of the examples and comparative examples of the immersion step (A), the removal step (B), and the dry film formation step (c) by using a model and by using an artificial product.
  • Comparative Example 3 is the polystyrene powder additive manufacturing model itself, and no smoothing treatment was performed!
  • Gypsum-type curing Leave at room temperature for 3 days.
  • Gypsum mold collapse smash with a hammer below 100 ° C
  • the present invention is a method of embedding the same material instead of embedding a foreign material in the surface of the model, all the smoothed surfaces are viewed as the same material, and the surface hardness is the same.
  • the heat-resistant behavior, the impact-resistant behavior, the weather-resistant behavior, and the chemical resistance behavior do not change. Therefore, the surface is smoothed as a shape confirmation model, and the commercial value is improved. It can also be used as a master model for duplication with a smooth surface.
  • one application as the master model for inversion is to invert to a silicone rubber mold, and to replicate a plurality of models having the same shape as the master model by vacuum injection of urethane resin or epoxy resin.
  • the master model for inversion is to invert to a silicone rubber mold, and to replicate a plurality of models having the same shape as the master model by vacuum injection of urethane resin or epoxy resin.
  • the polystyrene powder additive manufacturing 3D model is used as a precision model burnout model by pushing the wax model down, but has the disadvantage that the surface of the precision model product is not smoothed.
  • the polystyrene powder additive manufacturing 3D model whose surface has been smoothed by the method of the present invention can be used entirely as a wax / wax alternative manufacturing model.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】 模型に変形や反り・寸法精度の大幅な変化を与えることなく、且つ、室温にて中空複雑形状模型の中空部内面・外面全ての複雑な曲面を有するポリスチレン粉末積層造形3次元模型表面を迅速に平滑化する。 【解決手段】 この発明に係るポリスチレン粉末積層造形3次元模型の表面平滑化方法は、ポリスチレン粉末積層造形において製造されたポリスチレン粉末積層造形3次元模型(a)を、ポリスチレンを溶解した有機溶剤(b)に浸漬する浸漬工程(A)と、ポリスチレン溶解有機溶剤(b)から引き上げた直後に過剰付着有機溶剤を除去する除去工程(B)と、常温乾燥にて造膜を促す乾燥造膜工程(C)とから成る。また、ポリスチレンを溶解した有機溶剤(b)のポリスチレン濃度が0.01−5wt%である。

Description

明 細 書
ポリスチレン粉末積層造形 3次元模型の表面平滑ィ匕方法及びその模型を 用いた精密铸造方法
技術分野
[0001] 本発明は、ポリスチレン粉末積層造形 3次元模型に於ける模型表面の平滑化方法 及びそれによつて製作された焼失模型を用いた精密铸造方法に関するものである。 背景技術
[0002] まず、ポリスチレン粉末積層造形 3次元模型について説明する。ポリスチレン微粉 末にレーザー光線を照射すると、照射されたポリスチレン微粒子の表面はレーザー 光線の熱にて溶融し、ポリスチレン粒子とポリスチレン粒子が融合する。この時、レー ザ一光線のエネルギー強度と照射時間を調整すればポリスチレン微粒子表面のみ 溶融し、ポリスチレン微粒子全体が溶融することのな 、領域に納めることができる。
[0003] コンピュータで制御されたレーザー光線をポリスチレン微粒子層に照射し、ポリスチ レン微粒子表面融着層上に新規なポリスチレン微粒子を薄層状にてオーバーレイし 、再度コンピュータ制御されたレーザー光線を照射し、 2層目のポリスチレン微粒子 表面融着層を形成せしめる。この操作を繰り返し行うことにより、ポリスチレン微粒子 融着層が積み重ねられることになる。
[0004] コンピュータ制御されたレーザー光線の照射領域を、照射ごとに僅かずつ変更さ せ、積層すると、ポリスチレン微粒子融着積層体は 3次元立体形状物となる。また中 空部位を有する複雑形状 3次元立体形状物とすることも簡単である。
このような造形機は粉末積層造形機として普及し始めており、粉末として、合成樹脂 微粉末 ·表面榭脂コ一ティング金属微粉末 ·表面榭脂コ一ティング砂微粉末が使用 され、榭脂粉末積層造形 3次元模型 ·金属粉末積層造形 3次元模型 ·砂粉末積層造 詣 3次元模型が製作されて ヽる。
[0005] これらの 3次元模型は、コンピュータ制御されたレーザー光線によるポリスチレン微 粒子融着にて、中空複雑形状模型を製作できる点に大きな特徴があり、その寸法精 度は相当に高度なものであり、形状確認モデルとして使用されている。この粉末積層 造形法は NC切削加工にて製作されるモデルよりも早く製作され、中空体が一体成 形されるため、ラビッドプロトタイピングの 1手法として型 ·モデル業界で多用されようと している。
[0006] 榭脂粉末としては、ポリアミド榭脂粉末とポリスチレン榭脂粉末があり、前者は高強 度 ·高靭性を生力して、強度を必要とする模型分野に使用され、後者は比較的脆い が溶融しやすい軟化点を有することから、铸造用焼失模型としての用途に供される 様になって来た。
[0007] 粉末積層造形 3次元模型は幾多の利点を備え大きく普及されつつあるが、欠点も ある。つまり、積層工法であるがゆえに、模型表面に積層段差が残留する。また、粉 末粒子を融着するがゆえに、模型表面に粉末粒子の頭が連続した凹凸が残留する 。つまり、粉末積層造形 3次元模型はその表面が微視的に粗面となっている。
[0008] 次に、模型表面の平滑化方法についての従来技術を説明する。模型表面を NCに て切削する方法'カッターにて表面凸部を削り取る方法 ·ペーパーにて表面凸部を削 り取る方法がある。表面の凹凸が多ぐ表面緻密性に欠ける場合には、模型表面に パテ埋め ·ペーパーがけにて模型表面の凹部を埋め、凸部を削り取る方法がある。 ペーパーを順次細力べして仕上げ、場合によっては研ぎ出しを行うことにより、平滑面 を得ることができる。
[0009] また、模型表面へ複数回塗装し、模型表面の平滑化を行う方法もある。模型表面 の凹部には厚い塗膜 '凸部には薄い塗膜が被覆され、凹凸が平均化されることにより 、模型表面の平滑化を得る方法である。
[0010] 粉末積層造形 3次元模型における表面平滑ィ匕方法としては、溶融ロウ'ワックス成 分を含浸せしめ表面仕上げする方法、金属粉末積層造形 3次元模型に対しては焼 結後、低融点合金を含浸させ表面仕上げする方法などがある。
[0011] また、粉末積層造形 3次元模型の表面に光硬化性榭脂をスプレーし、紫外線を照 射することにて光硬化性榭脂を硬化せしめ、表面の凹凸部位を滑らかにする平滑方 法も提案されている。これは、塗装工程を導入することにて、表面の凹凸部位を平滑 化することと同じ効果を狙ったものである。
[0012] さらに、特許文献 1には、プラスチック材を有機溶剤の蒸気中に浸漬し、プラスチッ ク材の表面を平滑ィ匕する方法が開示されて 、る。
次に、精密铸造に使用されている模型技術について説明する。従来、精密铸造に はロストワックス法とプラスターモールド法がある。両者とも工法上、焼失模型として口 ゥ ·ワックス模型が使用されて 、る。
[0013] ロストワックス法はロウ'ワックス模型の表面に耐火被覆層を多層設け、 130— 250 °Cでロウ'ワックスを湯口力も流出除去し、 300— 500°Cで残留ロウ'ワックスを完全燃 焼せしめ、更に 600— 1000°Cにて焼成し、中空高強度のセラミック铸型を製作する 。この中空铸型に融点 1000°C近辺の高融点合金 (Ti · Ni · Co合金など)を铸込み、 冷却後铸型を崩壊せしめて、高融点合金の铸物を得る方法である。
[0014] 一方、プラスターモールド法はロウ'ワックス模型に铸造用石膏を流し埋没させ、石 膏を自然硬化 ·乾燥させた後、約 100°C近辺にて遊離水を乾燥せしめ、次いで約 13 0— 200°Cにてロウ'ワックスを湯口力も流出除去しながら、石膏の結晶水を徐々に除 去し、 300— 500°Cにて残留ロウ'ワックスを完全燃焼せしめ、中空石膏型を製作す る。この中空石膏型に融点 300— 700°Cの低融点合金 (Mg-Zn- A1合金など)を铸 込み、冷却後石膏型を崩壊せしめて、低融点合金の铸物を得る方法である。
[0015] 砂型を用いる砂込铸造と比較して、上記精密铸造は中空複雑形状铸物が比較的 精度良く製造できる特徴を有する。し力しながら、脆く強度物性に劣るロウ'ワックス模 型を使用する限り、中空薄肉複雑形状模型を制作するには限界がある。
[0016] 近年、中空薄肉複雑形状特殊合金铸物 '短納期への要望が強ぐロウ'ワックス模 型では対応できず、ポリスチレン粉末積層造形模型が使用されようとしている。ポリス チレン粉末積層造形模型はラビッドプロトタイピング技術の中の 1つであり、数個の中 空薄肉複雑模型を迅速に製作できる優位性があり、従来のロウ'ワックス模型と同様 に加熱溶融流出性能があり、 150— 230°Cで脱ロウできるものである。
[0017] 上述した光固化造形法については、特許文献 2— 4等が出願されている。
特許文献 1:特開平 6— 128398号公報
特許文献 2:特公平 5 - 33900号公報
特許文献 3:特公平 7 - 94149号公報
特許文献 4:特開平 9— 141747号公報 発明の開示
発明が解決しょうとする課題
[0018] ポリスチレン粉末積層造形 3次元模型はその表面に積層段差と粒子形状の凹凸が 残留するため、平滑な表面を有する模型としてはほど遠いものであるが、中空複雑形 状模型がある程度の寸法精度にて迅速に製作できるため、形状確認模型として使用 されている。し力しながら、積層段差と粒子形状の凹凸の無い表面の平滑な模型が 望まれて 、るのは当然である。
[0019] ポリスチレン粉末積層造形 3次元模型の表面をペーパーがけする方法はごく一般 的な手法である。ポリスチレン粉末積層造形 3次元模型はそもそもポリスチレン微粒 子が融着積層されたものであるがためポーラスな構造体であり、ペーパーがけにて凸 部を削り落としても、凹部のポーラス部位は微細空隙として模型表面に残存し、元より は平滑ィ匕されてはいるものの、平滑面としてみなすことができない状態にある。
[0020] 塗装下地処理の基本に従って、パテ付け'ペーパー仕上げにて目的とする平滑面 を得ることは可能である。しカゝしながら、複雑形状曲面を有する模型の場合、全面隅 々までパテ付け'ペーパー仕上げを行うことは大変な労力と時間が必要であり、実現 性に乏しいものである。
[0021] ポリスチレン粉末積層造形 3次元模型が加熱溶融流出する性質を生力してロストヮ ックス代替模型として精密铸造用焼失模型に使用されている。しかしながら、ポリスチ レン粉末積層造形 3次元模型の表面に残存する積層段差と粒子形状の凹凸がその まま铸物製品に転写されるため、铸物製品の铸肌に凹凸が残留すると言った課題が ある。
[0022] この問題点を解消すベぐポリスチレン粉末積層造形 3次元模型の表面へロウ'ヮッ タス成分を含浸する方式が考案されて ヽる。ロウ'ワックスの融点は約 100— 130°C であり、溶融ロウ'ワックスを含浸させる時、模型自体も約 100— 130°Cとなる。つまり 、ポリスチレンの溶融温度に接近するため、模型の微妙な反りや変形が発生し、複雑 形状においてはポリスチレン粉末積層造形 3次元模型の形状保持が困難になると言 つた課題が残る。
[0023] 加温せずに、ポリスチレン粉末積層造形 3次元模型の表面へ 2液反応硬化性ウレタ ン榭脂液を含浸させ、直ちに硬化せしめる方法も提案されている。模型表面は相当 に平滑化されるが、含浸作業後に残った 2液反応硬化性ウレタン榭脂液は可使時間 になれば硬化するものであり、再使用ができないため、経済性が伴い難いと言った課 題が残る。
[0024] また、特許文献 1 (特開平 6— 128398号公報)に、有機溶剤の蒸気中へプラスチッ ク材を浸漬し、表面を平滑ィ匕する方法も開示されている。ポリスチレン粉末積層造形 3次元模型に適応すると、模型表面に凝縮された有機溶剤が模型表面に流れ落ち、 模型表面に垂れ筋を残すと言った問題がある。また、模型表面に垂れ筋を残すほど 浸潰しないごくごく短時間の浸漬時間とすると、有機溶剤が模型表面に凝縮不足と なり、平滑化されない部位が残存する問題がある。また、有機溶剤を沸騰させ有機溶 剤の蒸気とするには加熱装置 ·蒸気ボックス ·蒸気ボックス凝集有機溶剤回収装置が 必要であり、また作業者に対し、加熱有機溶剤蒸気吸引防止手段を確実に履行する ことが必要であり、また可燃性有機溶剤の場合には、引火し易いために蒸気漏洩に 対し確実な漏洩防止対策をこうずることが絶対条件となり、非常に厄介な作業となる。
[0025] いずれの方法に於いても、中空複雑形状のポリスチレン粉末積層造形 3次元模型 の表面を簡単に平滑化することには、幾多の課題が残存している。
[0026] ラビッドプロトタイピングにて中空複雑形状のポリスチレン粉末積層造形 3次元模型 が迅速に製作され、ロウ'ワックス模型に替わる精密铸造用模型として使用され始め て来た。精密铸造は模型の形状が精密铸造品に精度良く転写されるがゆえに、模型 表面の凹凸 ·段差も精度良く精密铸造品に転写されることになる。精密铸造品表面 の凹凸'段差を後加工にて取り除き、綺麗に仕上げすることもまた大変厄介なことで ある。後加工として、サンドブラスト'研磨カ卩ェ ·ケミカルミーリングなどがある力 中空 部位内面までの加工は困難極まりなぐ多大な時間と費用が発生するものである。や はり、模型段階にて凹凸'段差のない表面状態に仕上げることが基本となる。
[0027] 本発明者達はこう言った幾多の課題を解決するために鋭意検討を重ね、模型に変 形や反り'寸法精度の大幅な変化を与えることなぐ且つ、室温にて中空複雑形状模 型の中空部内面 ·外面全ての複雑な曲面を有するポリスチレン粉末積層造形 3次元 模型表面を迅速に平滑ィ匕する方法を見出し、本発明に至った。 課題を解決するための手段
[0028] この発明に係るポリスチレン粉末積層造形 3次元模型の表面平滑ィ匕方法は、ポリス チレン粉末積層造形にお!、て製造されたポリスチレン粉末積層造形 3次元模型 (a) を、ポリスチレンを溶解した有機溶剤 (b)に浸漬する浸漬工程 (A)と、ポリスチレン溶 解有機溶剤 (b)から引き上げた直後に過剰付着有機溶剤を除去する除去工程 (B) と、常温乾燥にて造膜を促す乾燥造膜工程 (C)とから成る。
[0029] また、ポリスチレンを溶解した有機溶剤 (b)のポリスチレン濃度が 0. 01— 5wt%で あることが望ましい。
[0030] さらに、ポリスチレンを溶解した有機溶剤 (b)は、ハロゲン炭化水素系溶剤と沸点 4 0°C— 150°Cの有機溶剤(c)との混合有機溶剤であることが望ましい。また、ポリスチ レンを溶解した有機溶剤 (b)は、スチレン誘導体系溶剤と沸点 40°C— 150°Cの他の 有機溶剤 (c)との混合有機溶剤であるものであっても良い。
[0031] さらに、前記浸漬工程 (A)の浸漬時間は、 1秒一 5分であることが望ましい。
[0032] さらにまた、前記除去工程 (B)は、エアーブローによって過剰付着溶剤を除去する ことが望ま 、が、振り切り方式で行っても良 、ものである。
[0033] 前記乾燥造膜工程 (C)は、常温にて行われることが望ま 、。
[0034] 前記浸漬工程 (A)、前記除去工程 (B)及び乾燥造膜工程 (C)は、複数回、例えば
2-10回繰り返すことが望ま U、。
[0035] ポリスチレン粉末積層造形 3次元模型 (a)は、複雑形状中空模型であることが望ま しい。
[0036] さらに、上記の方法にて表面平滑化されたポリスチレン粉末積層造形 3次元模型 (b )をロストワックス法及びまたはプラスターモールド法による精密铸造に焼失模型とし て使用することが望ましい。
発明の効果
[0037] 以下、本発明のポリスチレン粉末積層造形 3次元模型の表面平滑化方法による効 果について説明する。ポリスチレン粉末積層造形 3次元模型の表面の凸部位を切削 し平滑化するペーパー仕上げ加工や NC切削加工方法'他の材料を凹部位に埋め る従来の平滑化方法と比較して、本発明の平滑化作業は簡単で遥かに迅速に平滑 化ができる。これにて、納期短縮に圧倒的な優位性が生まれる。その平滑化レベル は非常に高ぐ指で表面をなぞっても、凹凸の存在を感知することが難しいレベルで ある。さらに、中空複雑形状ポリスチレン粉末積層造形 3次元模型の中空部位内壁ま でも一挙に平滑化が完成する。すなわち、切削仕上げ加工では到達不能な領域ま で平滑ィ匕が可能となる。
発明を実施するための最良の形態
[0038] 以下、本発明の実施の形態について説明する。
[0039] まず、ポリスチレン粉末積層造形 3次元模型 (a)の作成について説明する。
模型形状の 3次元データを粉末積層造形機に送り、ポリスチレン粉末コート層に炭 酸ガスレーザー光線が 3次元データに沿ってコンピューター制御されて照射される。 炭酸ガスレーザー光線が照射されたポリスチレン層のポリスチレン微粒子の表面は 加熱溶融し、ポリスチレン微粒子間で溶合した融合面が作成される。その上に、次の ポリスチレン微粒子層がコートされ、炭酸ガスレーザー光線が照射され、 2層目のポリ スチレン微粒子間で溶合した融合面が作成される。当然ながら、 1層目のポリスチレ ン微粒子間で溶合した融合面と 2層目のポリスチレン微粒子間で溶合した融合面は 、融合し積層接合されることになる。
[0040] また、第 1層のポリスチレン微粒子間の融合面と第 2層のポリスチレン微粒子間の融 合面はコンピューター制御にて少しずつ面積が変化し積み上げられていく。その結 果、積層された 3次元状態が目的とする 3次元模型として完成するものである。模型 全体の形状は、 3次元データに沿ったレコード板の積み上げ状態に等しいが、微視 的には、積層体であるが故、積層段差が曲面に出現する。また、フラット面は微粒子 が接点で融合した面ではあるが、微粒子の頭と微粒子の溶融接点には高低差が発 生する。よって、ポリスチレン粉末積層造形 3次元模型 (a)は微粒子の接点が融合し た物体でありポーラスなものである。つまり、目視'指触にて明確に表面の凹凸が確 認できる表面状態を呈するものである。
[0041] 次に、ポリスチレンを溶解した有機溶剤 (b)について説明する。
[0042] ポリスチレンを溶解した有機溶剤 (b)はハロゲン炭化水素系有機溶剤'スチレン誘 導体系有機溶剤であり、ポリスチレンを良好に溶解する眞溶剤である。 ノ、ロゲン炭化水素系有機溶剤としては、メチレンジクロライド.トリクロロメタン .テトラ クロロメタン.クロロェタンなどが代表的であり、 1, 1—ジクロロェタン · 1, 2—ジクロロェ タン · 1, 1, 1—トリクロロェタン · 1, 1, 2—トリクロ口エタン、 1, 1, 1, 2—テトラクロ口エタ ン · 1, 1, 2, 2—テトラクロロェタン · 1, 1ージクロ口エチレン · 1, 2—ジクロ口エチレン'ト リクロロエチレン.テトラクロロエチレン.塩化プロピル.塩化イソプロピル. 1, 2—ジクロ 口プロパン.塩化ァリル ·塩化ブチル ·塩化 sec -ブチル ·塩化イソブチル ·塩化 tert - ブチル · 1 クロ口ペタン'クロ口ベンゼン ·臭化メチル ·ブロモホルム ·臭化工チル · 1 , 2 ジブロモェタン · 1, 1, 2, 2—テトラブロモェタン'臭化プロピル'臭化イソプロピル' ブロモベンゼン等が挙げられる。ハロゲン炭化水素系有機溶剤はポリスチレンの良 溶剤であり、麻酔性はあるものの、溶解性と乾燥性が良い。ハロゲン炭化水素系有機 溶剤の中では、メチレンジクロライドが好ましい。またこれらのハロゲン炭化水素系有 機溶剤を混合し眞溶剤として使用しても良 、。
[0043] スチレン誘導体系有機溶剤としては、スチレンモノマーや低分子アルキルスチレン がある。可燃性ではあるものの、溶解性と乾燥性の良い有機溶剤としてはスチレンモ ノマーが好ましい。またこれらのスチレン誘導体系有機溶剤を混合し、眞溶剤として 使用しても良い。
[0044] 次にその他有機溶剤(c)について説明する。
[0045] その他の有機溶剤 (c)としては、芳香族系有機溶剤 ·ケトン系有機溶剤 ·エステル 系有機溶剤 ·エーテル系有機溶剤 ·脂肪族系有機溶剤 ·アルコール系有機溶剤脂 肪族系有機溶剤'アルコール系有機溶剤であり、ポリスチレンを良好に溶解する能力 には乏し!/ヽが、ポリスチレンを溶解した眞溶剤を希釈することができる有機溶剤であ る。
[0046] 芳香族系有機溶剤としては、ベンゼン 'トルエン'キシレンが代表的であり、ェチル ベンゼン等が挙げられる。
[0047] ケトン系有機溶剤としては、アセトン'メチルェチルケトン ·η—へキサノン'メチルイソ ブチルケトンが代表的であり、メチル ηブチルケトン等が挙げられる。
[0048] エステル系有機溶剤としては、酢酸メチル ·酢酸ェチル ·酢酸プロピル ·酢酸イソプ 口ピル ·酢酸 ηブチル ·酢酸イソブチル等が挙げられる。 [0049] エーテル系有機溶剤としては、ジメチルエーテル'メチルェチルエーテル'ジェチル エーテルが代表てきであり、メチルブチルエーテル ·ェチルブチルエーテル ·ジブチ ルエーテル .ェチルビニルエーテル .ブチルビニルエーテル .ジォキサン ·フラン · n— メチルフラン ·テトラヒドロフランなどが挙げられる。
[0050] 脂肪族系有機溶剤としては、 n-へキサン'ヘプタンが代表的である。
[0051] アルコール系有機溶剤としては、メタノール 'エタノール 'プロピルアルコール 'イソ プロピルアルコールなどが代表的であり、ブタノール等が挙げられる。
[0052] その他有機溶剤 (c)は上記の単一有機溶剤でもよ!/、し、上記有機溶剤を混合した 混合有機溶剤でも良い。
[0053] ポリスチレンを溶解した有機溶剤 (b)に溶解するポリスチレンの濃度は 0. 01— 5wt %である。好ましくは 0. 1— 3wt%である。溶解するポリスチレンが 5wt%以上となると 、液面にポリスチレンの皮張りを起こし易くなり浸漬工程 (A)を阻害する。液面にポリ スチレンの皮張りを起こすのは液面での溶剤の飛散があまりにも大きいためであり、 特に単一眞溶剤の場合に起こり易い。そこで、混合眞溶剤とすること、その他有機溶 剤(c)である希釈溶剤を混合しておくことにより、液面の皮張りは緩和'防止できる。ま た、溶解するポリスチレンが 5wt%以上となると、模型を引き上げ、ポリスチレンを溶 解した有機溶剤 (b)が乾燥し、溶解ポリスチレンが模型表面によだれ状態に部分残 留し易くなると言った不都合が発生する。溶解するポリスチレンが 0. 01wt%以下に なると平滑ィ匕能力が低下する。
[0054] ポリスチレンを溶解した有機溶剤 (b)の調合作成方法につ!ヽて説明する。
[0055] 有機溶剤 (b)に所定量のポリスチレン微粉末を投入し攪拌することにて、簡単に溶 解し、ポリスチレンを溶解した有機溶剤 (b)を作成することができる。これに、その他 有機溶剤 (c)の所定量を投入混合すれば、均一な混合溶液が作成でき、その他有 機溶剤 (c)が混合されても良い。その他有機溶剤 (c)を混合することにより、前記液 面の皮張り防止と溶液粘度の低下及び後述する急激乾燥性造膜の防止効果が付与 されるものである。その混合比率は混合された有機溶剤の種類により多様性が大きく 、特に制限するものではない。こうして作成した混合溶液は模型が十分浸漬できる容 量の密閉容器に保管 ·準備される。 [0056] こうして調合されたポリスチレンを溶解した有機溶剤 (b)へポリスチレン粉末積層造 形 3次元模型 (a)を浸漬する浸漬工程 (A)につ 、て説明する。
[0057] ポリスチレンを溶解した有機溶剤 (b)を加熱することなく室温にてポリスチレン粉末 積層造形 3次元模型 (a)を浸漬する。ポリスチレンを溶解した有機溶剤 (b)へポリスチ レン粉末積層造形 3次元模型 (a)を浸漬する時間は 1秒 5分である。室温で直ちに 模型表面が溶解し始めるほどの高溶解性である。よって、 5分以上長時間浸漬すると 模型表面の形状が大きく崩れるまで溶解し、特に薄肉部位の変形を起こし易い。よつ て希釈溶剤となるその他有機溶剤 (c)を混合し溶解し過ぎにならな!/ヽ様に浸漬時間 の調整をやり易くすることが望ましい。 1秒以下の浸漬時間となると浸漬時間の調整 が難しぐ作業工程の管理ができない。
[0058] また、浸漬工程 (A)にて模型表面薄肉部位が過剰溶解して反り ·曲げが起こらな!/、 ようにするために、安全性を加味し予定浸漬時間の 1Z3にて 1回目の浸漬を経て、 有機溶剤の除去工程 (B) ·乾燥造膜工程 (C)を完了し、再度 2回目の浸漬工程 (A) •除去工程 (B) ·乾燥造膜工程 (C)を加えて、 2-10回繰り返し、表面平滑性を確認 しながら実施するものである。好ましくは 2— 3回繰り返すことである。
[0059] ポリスチレンを溶解した有機溶剤 (b)へポリスチレン粉末積層造形 3次元模型 (a)を 浸漬 '引き上げる操作は小さな模型の場合は、瞬時に浸漬*瞬時に引き上げされるた めさほどの問題はないが、大型模型の場合には浸漬に約 10秒程度'引き上げに約 1 0秒程度を見込む必要がある。よって、均一な浸漬時間管理のためには、模型下部 から模型上部の順位に浸漬を開始し、模型下部から模型上部の順位に引き上げを 行う配慮が必要である。
[0060] 次に、除去工程 (B)につ 、て説明する。
[0061] ポリスチレン溶解有機溶剤 (b)から引き上げた直後に模型表面に過剰付着する有 機溶剤を除去するために除去工程 (B)を必須項目として設けるものである。除去ェ 程 (B)を実施しないと、模型表面に過剰付着する有機溶剤 (c)が垂れ下がり、蒸発 乾燥後に有機溶剤 (c)に溶解したポリスチレンが部分部位によだれ状態にて残留す ることになり、表面平滑性は保持されるものの、肉盛り状態となる不都合が発生する。
[0062] 除去工程 (B)はポリスチレン溶解有機溶剤 (b)から引き上げた直後に模型表面に 過剰付着する有機溶剤を除去するために、模型を振り切る操作を数回行うものであ る。この作業は、作業者がハンドで行ってもよいし、自動ラインに模型振り切り装置を 設置しても良い。これにて、模型表面の過剰付着有機溶剤の大部分が除去され、よ だれ状態にて残留することが解消される。
[0063] 次に、乾燥造膜工程 (C)について説明する。
[0064] ポリスチレン粉末積層造形 3次元模型 (a)がポリスチレン溶解有機溶剤 (b)より引き 上げられた後、除去工程 (B)を経てドラフト内で常温乾燥することにてポリスチレンを 溶解した有機溶剤 (b)のほとんどはポリスチレン粉末積層造形 3次元模型 (a)の表面 より飛散し、溶解ポリスチレンがポリスチレン粉末積層造形 3次元模型 (a)の表面に顔 を出すポリスチレン微粒子の凸部の乾燥は速ぐポリスチレン粉末積層造形 3次元模 型 (a)の表面のポリスチレン微粒子が融合する接点部位となる凹部の乾燥はやや遅 れること〖こなる。ポリスチレン溶解有機溶剤 (b)に溶解したポリスチレンは、ポリスチレ ン粉末積層造形 3次元模型 (a)の表面のポリスチレン微粒子が融合する接点部位と なる凹部に集中して蓄積残存することになる。この現象は山河の浸食'平野での堆積 現象と同じ理屈であると解釈される。こうして、ポリスチレン粉末積層造形 3次元模型( a)表面の凹凸は高低差が少なくなり、浸漬工程 (A) ·除去工程 (B) ·乾燥造膜工程( C) 1回目は模型表面がウェーブ状を呈し、浸漬工程 (A) ·除去工程 (B) '乾燥造膜 工程 (C) 2回目力 は順次平滑化される方向になり、本発明の目指す効果が発現さ れて来る。
[0065] ポリスチレン溶解有機溶剤 (b)が急激に蒸発飛散すると、ポリスチレン溶解有機溶 剤 (b)に溶解しているポリスチレンが下地模型の曲面に密着して造膜できず、急激な 収縮に耐えられず亀の甲羅状態に割れを発生する。この減少は塗料の乾燥クラック 発生減少と同じである。よって、乾燥造膜工程 (C)は加温せず常温で行うことが必要 である。また、ポリスチレン溶解有機溶剤 (b)を混合溶剤とすることにより、混合溶剤 中の低沸点溶剤から順次蒸発飛散させ、正常な造膜を促すことになる。
[0066] 本発明の浸漬工程 (A) ·除去工程 (B) ·乾燥造膜工程 (C)を繰り返すことにより、ポ リスチレン粉末積層造形 3次元模型 (a)表面の凸部はポリスチレン溶解有機溶剤 (b) で溶解され消失する。模型表面の凹部位は、前もって溶解したポリスチレンと凸部溶 解ポリスチレンが蓄積造膜されることにより埋められる。この 2つの効果が重なり繰り返 されることにより、ポリスチレン粉末積層造形 3次元模型 (a)表面の凹凸部は平滑化さ れる。しかも、同一ポリスチレンで埋められるため、剥離'脱落することは無く一体化し 、铸造用焼失模型として加熱溶融流失機能を保持することになる。
実施例 1
[0067] a.ポリスチレン粉末積層造形 3次元模型 (a)の製作
[0068] 粉末積層造形機は、 EOSINT P360で 2気筒エンジン吸引口の模型を造形した。
その造形条件はポリスチレン微粉末の粒子径約 90ミクロン · 50W炭酸ガスレーザー · 積層ピッチ 0. 1-0. 2mmである。 2気筒エンジン吸引口の模型の表面は、目視'指 触にて明らかに凹凸が確認できるものであった。また、曲面には積層段差跡が明確 に出現していた。
[0069] b.ポリスチレン溶解有機溶剤 (b)の調整
[0070] ポリスチレン眞溶剤にポリスチレンを投入攪拌することにて、直ちに溶解し均一なポ リスチレンを溶解した有機溶剤 (b)を得た。希釈溶剤としてその他有機溶剤 (c)を混 合し希釈することにて、ポリスチレンを溶解した有機溶剤 (b)を調整した。
[0071] ポリスチレンを溶解した有機溶剤 (b)の実施例と比較例を下記する表 1にまとめた
[0072] [表 1]
ポリスチレン溶解有機溶剤 (b) の実施例と比較例 表— 1
Figure imgf000014_0001
ポリスチレン :粉末積層造形用ポリスチレンビーズ
眞溶剤 : メチレンジクロライ ド bp= 40°C
ジクロロェタン bp= 83 °C
希釈溶剤 : イソプロピルアルコール bp= 108°C
メチリェチルケトン bp= 80°C
[0073] さらに、浸漬工程 (A) ·除去工程 (B) ·乾燥造膜工程 (c)の実施例と比較例につい て模型での評価と铸造品での評価を表 2にまとめた。
[0074] [表 2]
浸漬工程 (A ) ·除去工程 (B ) ·乾燥造膜工程の実施例と比較例 表— 2
Figure imgf000015_0001
[0075] 表 2において、比較例 3はポリスチレン粉末積層造形模型そのものであり、平滑ィ匕 処理は何も行って!/ヽな ヽ。
[0076] 表 2における条件は、以下の通りである。
铸造条件 : 精密铸造プラスターモールド法
精密铸造用石膏 : キャスター 8 (サンエス石膏)
模型 : ポリスチレン粉末積層造形模型 模型の平滑化処理: 処理なし 及び 実施例'比較例
石膏型の硬化 : 常温 3日放置'硬化
脱ロウ : 焼成炉 130 - 230°C 3時間
燃焼 : 焼成炉 300 - 500°C 3時間
焼成 : 燃焼炉 600 - 750°C 3時間
铸込み金属 : Mg合金
铸込み雰囲気 : アルゴンガス
铸造方式 : 重力铸造
铸込み温度 : 600 - 700°C
石膏型崩壊 : 100°C以下にて金鎚でたたき割る
産業上の利用可能性
[0077] 本発明は、模型の表面に異質材料を埋め込む方法ではなぐ同一材料を埋め込む 方法であるがゆえに、平滑ィ匕された表面はすべて同一材料でみたされており、表面 硬度は同じであり、耐熱的挙動 ·耐衝撃的挙動 ·耐候性的挙動 ·耐薬品性挙動は変 化無ぐ表面平滑ィ匕部位が剥離することはない。よって、形状確認模型として、表面 が平滑化されたものとなり、商品価値が向上する。また、表面平滑化された複製用マ スターモデルとしての用途が開ける。
[0078] さらに、反転用マスターモデルとしての 1つの用途はシリコンゴム型に反転し、ウレタ ン榭脂やエポキシ榭脂を真空注型にてマスターモデルと同一形状模型を複数複製 することができる。 20— 100個程度の複製模型を製作する場合、ポリスチレン粉末積 層造形 3次元模型を 20— 100個造形するよりは、複数複製した方が、試作模型の短 納期に対応でき、経済性も有利になる。
[0079] さらにまた、ロウ'ワックス模型の代替模型として、精密铸造用焼失模型分野に大き な用途が開ける。ポリスチレン粉末積層造形 3次元模型はロウ'ワックス模型を押しの けて精密铸造焼失模型として使用されているが、精密铸造品の铸肌が平滑化されな い欠点がある。本発明の方法にて表面平滑化されたポリスチレン粉末積層造形 3次 元模型はロウ'ワックス代替铸造用模型として全面的に使用できる。
[0080] このように、試作榭脂模型の用途分野に高性能 ·最速小ロット試作榭脂模型を提供 することが可能と成る。

Claims

請求の範囲
[1] ポリスチレン粉末積層造形にお!、て製造されたポリスチレン粉末積層造形 3次元 模型 (a)を、ポリスチレンを溶解した有機溶剤 (b)に浸漬する浸漬工程 (A)と、 ポリスチレン溶解有機溶剤 (b)から引き上げた直後に過剰付着有機溶剤を除去す る除去工程 (B)と、
常温乾燥にて造膜を促す乾燥造膜工程 (C)とから成ることを特徴とするポリスチレ ン粉末積層造形 3次元模型の表面平滑化方法。
[2] ポリスチレンを溶解した有機溶剤 (b)のポリスチレン濃度は、 0. 01— 5wt%である ことを特徴とする請求の範囲第 1項に記載のポリスチレン粉末積層造形 3次元模型の 表面平滑化方法。
[3] ポリスチレンを溶解した有機溶剤 (b)は、ハロゲン炭化水素系溶剤とその他の有機 溶剤 (c)との混合有機溶剤であることを特徴とする請求の範囲第 1項又は第 2項に記 載のポリスチレン粉末積層造形 3次元模型の表面平滑化方法。
[4] ポリスチレンを溶解した有機溶剤 (b)は、スチレン誘導体系溶剤とその他の有機溶 剤(c)との混合有機溶剤であることを特徴とする請求項 1, 2又は 3に記載のポリスチ レン粉末積層造形 3次元模型の表面平滑化方法。
[5] 前記浸漬工程 (A)の浸漬時間は、 1秒一 5分であることを特徴とする請求項 1一 4の いずれか一つに記載のポリスチレン粉末積層造形 3次元模型の表面平滑化方法。
[6] 前記除去工程 (B)は、エアーブローによって過剰付着溶剤を除去することを特徴と する請求項 1一 5のいずれか一つに記載のポリスチレン粉末積層造形 3次元模型の 表面平滑化方法。
[7] 乾燥造膜工程 (C)が常温にて行われることを特徴とする請求項 1一 6のいずれか一 つに記載のポリスチレン粉末積層造形 3次元模型の表面平滑化方法。
[8] 浸漬工程 (A)と除去工程 (B)と乾燥造膜工程 (C)を複数回繰り返すことを特徴とす る請求項 1一 7のいずれか一つに記載のポリスチレン粉末積層造形 3次元模型の表 面平滑化方法。
[9] ポリスチレン粉末積層造形 3次元模型 (a)が複雑形状中空模型であることを特徴と する請求項 1一 8のいずれか一つに記載のポリスチレン粉末積層造形 3次元模型の 表面平滑化方法。
請求項 1一 9のいずれか一つに記載の方法によって表面平滑ィ匕されたポリスチレン 粉末積層造形 3次元模型 (b)を、焼失模型として使用することを特徴とする精密铸造 方法。
PCT/JP2004/007968 2004-06-08 2004-06-08 ポリスチレン粉末積層造形3次元模型の表面平滑化方法及びその模型を用いた精密鋳造方法 WO2005121229A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006514368A JPWO2005121229A1 (ja) 2004-06-08 2004-06-08 ポリスチレン粉末積層造形3次元模型の表面平滑化方法及びその模型を用いた精密鋳造方法
PCT/JP2004/007968 WO2005121229A1 (ja) 2004-06-08 2004-06-08 ポリスチレン粉末積層造形3次元模型の表面平滑化方法及びその模型を用いた精密鋳造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/007968 WO2005121229A1 (ja) 2004-06-08 2004-06-08 ポリスチレン粉末積層造形3次元模型の表面平滑化方法及びその模型を用いた精密鋳造方法

Publications (1)

Publication Number Publication Date
WO2005121229A1 true WO2005121229A1 (ja) 2005-12-22

Family

ID=35503030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007968 WO2005121229A1 (ja) 2004-06-08 2004-06-08 ポリスチレン粉末積層造形3次元模型の表面平滑化方法及びその模型を用いた精密鋳造方法

Country Status (2)

Country Link
JP (1) JPWO2005121229A1 (ja)
WO (1) WO2005121229A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524770A (zh) * 2013-08-28 2014-01-22 中国科学院福建物质结构研究所 一种3d打印产品表面抛光方法及其装置
WO2014203254A1 (en) * 2013-06-18 2014-12-24 Polymertal Ltd. Treatment of polymeric surfaces of objects
US10226918B2 (en) 2014-08-08 2019-03-12 Ricoh Company, Ltd. Three-dimensional object formation powder material, three-dimensional object formation material set, and three-dimensional object production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913270B2 (ja) * 2013-12-04 2016-04-27 株式会社ブリヂストン タイヤ加硫金型の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4610957B1 (ja) * 1966-06-18 1971-03-19
JP2002265619A (ja) * 2001-03-07 2002-09-18 Ebara Corp 選択レーザー焼結によって製作される3次元形状物に用いるポリスチレン粉末

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4610957B1 (ja) * 1966-06-18 1971-03-19
JP2002265619A (ja) * 2001-03-07 2002-09-18 Ebara Corp 選択レーザー焼結によって製作される3次元形状物に用いるポリスチレン粉末

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203254A1 (en) * 2013-06-18 2014-12-24 Polymertal Ltd. Treatment of polymeric surfaces of objects
CN103524770A (zh) * 2013-08-28 2014-01-22 中国科学院福建物质结构研究所 一种3d打印产品表面抛光方法及其装置
US10226918B2 (en) 2014-08-08 2019-03-12 Ricoh Company, Ltd. Three-dimensional object formation powder material, three-dimensional object formation material set, and three-dimensional object production method

Also Published As

Publication number Publication date
JPWO2005121229A1 (ja) 2008-04-10

Similar Documents

Publication Publication Date Title
US20210107227A1 (en) 3d reverse printing method and device
US7487819B2 (en) Disposable thin wall core die, methods of manufacture thereof and articles manufactured therefrom
US8122939B2 (en) Method for the layered construction of models
AU2003220651B2 (en) Smoothing method for layered deposition modeling
US20140339745A1 (en) Molds for ceramic casting
JP2016112870A (ja) 立体造形用粉末材料、及び立体造形用セット、並びに、立体造形物の製造方法及び製造装置
JP2003527243A (ja) 強化セラミックシェルモールドおよび製造方法
JP2008006502A (ja) 鋳型の形成方法
JP7443397B2 (ja) 三次元物体の付加製造用の、易焼結性材料を含む配合物
JP2014522331A (ja) 成形体の製造方法、および装置
WO2005044544A1 (en) Solid free-form fabrication of three-dimensional objects
EP3481568A1 (en) Metal objects and methods for making metal objects using disposable molds
JP2016128547A (ja) 立体造形用硬化液及び立体造形用材料セット、並びに、立体造形物の製造方法及び製造装置
CN107790624A (zh) 一种利用3dp打印技术制备消失模的方法
WO2005121229A1 (ja) ポリスチレン粉末積層造形3次元模型の表面平滑化方法及びその模型を用いた精密鋳造方法
JP2005153021A (ja) 強化されたシェルモールド及び該シェルモールドの製造方法
JP4122008B2 (ja) 光硬化樹脂消失モデル用鋳型材料およびそれにより作成した鋳型並びにその鋳型を用いた鋳造方法
KR20140087281A (ko) 정밀주조용 주형 및 그 제조 방법
JP4574954B2 (ja) 強化シェルモールドおよび方法
JP3629640B2 (ja) 鋳造用崩壊性砂中子の製造方法及びその砂中子
Adler et al. The revolution of CAD/CAM in the casting of fine jewelry
US12005499B2 (en) Three-dimensional printing with melting point suppression agents
Singh et al. Recent Advancements in Customized Investment Castings Through Additive Manufacturing: Implication of Additive Manufacturing in Investment Casting
RU2753188C2 (ru) Способ изготовления оболочковой формы
JP2005349413A (ja) 鋳型の形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514368

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase