WO2005120835A1 - Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement - Google Patents

Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement Download PDF

Info

Publication number
WO2005120835A1
WO2005120835A1 PCT/AU2004/000706 AU2004000706W WO2005120835A1 WO 2005120835 A1 WO2005120835 A1 WO 2005120835A1 AU 2004000706 W AU2004000706 W AU 2004000706W WO 2005120835 A1 WO2005120835 A1 WO 2005120835A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzles
printhead
printhead module
row
data
Prior art date
Application number
PCT/AU2004/000706
Other languages
English (en)
French (fr)
Inventor
Simon Robert Walmsley Walmsley
Kia Silverbrook
Mark Jackson Pulver
John Robert Sheahan
Richard Thomas Plunkett
Michael John Webb
Benjanim David Morphett
Original Assignee
Silverbrook Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP10193974A priority Critical patent/EP2301753B1/de
Priority to AU2004320526A priority patent/AU2004320526B2/en
Priority to PT101939742T priority patent/PT2301753E/pt
Priority to ES10193974T priority patent/ES2393541T3/es
Priority to DE602004031888T priority patent/DE602004031888D1/de
Priority to AT04734974T priority patent/ATE501857T1/de
Priority to PCT/AU2004/000706 priority patent/WO2005120835A1/en
Priority to CA002567724A priority patent/CA2567724A1/en
Priority to EP04734974A priority patent/EP1765595B1/de
Application filed by Silverbrook Research Pty Ltd filed Critical Silverbrook Research Pty Ltd
Publication of WO2005120835A1 publication Critical patent/WO2005120835A1/en
Priority to AU2008207608A priority patent/AU2008207608B2/en
Priority to AU2009203025A priority patent/AU2009203025B2/en
Priority to AU2009203030A priority patent/AU2009203030B2/en
Priority to AU2009203028A priority patent/AU2009203028B2/en
Priority to AU2009203033A priority patent/AU2009203033B2/en
Priority to AU2009203026A priority patent/AU2009203026B2/en
Priority to AU2009203027A priority patent/AU2009203027B2/en
Priority to AU2009203012A priority patent/AU2009203012B2/en
Priority to AU2009203031A priority patent/AU2009203031B2/en
Priority to AU2009203015A priority patent/AU2009203015B2/en
Priority to AU2009203032A priority patent/AU2009203032B2/en
Priority to CY20121101116T priority patent/CY1113337T1/el

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2139Compensation for malfunctioning nozzles creating dot place or dot size errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04505Control methods or devices therefor, e.g. driver circuits, control circuits aiming at correcting alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0451Control methods or devices therefor, e.g. driver circuits, control circuits for detecting failure, e.g. clogging, malfunctioning actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04551Control methods or devices therefor, e.g. driver circuits, control circuits using several operating modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04563Control methods or devices therefor, e.g. driver circuits, control circuits detecting head temperature; Ink temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04573Timing; Delays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04586Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads of a type not covered by groups B41J2/04575 - B41J2/04585, or of an undefined type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04591Width of the driving signal being adjusted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2146Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding for line print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/20Modules

Definitions

  • the present invention relates to a method of compensating for errors in ink dot placement due to erroneous rotational displacement of a printhead or printhead module.
  • the invention has primarily been developed for use in a pagewidth inkjet printer comprising a printer controller and a printhead having one or more printhead modules, and will be described with reference to this example. However, it will be appreciated that the invention is not limited to any particular type of printing technology, and is not limited to use in, for example, pagewidth and inkjet printing.
  • the present invention provides a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • step (c) includes altering a timing of a fire signal to at least one of the nozzles on the basis of the correction factor, thereby to effect the at least partial compensation.
  • step (c) includes reallocating at least one of the ink dots from at least one original print line to at least one alternate print line, thereby to effect the at least partial compensation.
  • step (c) further includes the step of altering a timing of fire signals to at least one of the nozzles on the basis of the correction factor, thereby to effect the at least partial compensation.
  • the altered fire signals are supplied to both reallocated ink dots and non- reallocated ink dots.
  • the correction factor is stored in a memory associated with the printhead.
  • the memory is mounted with the printhead, the printhead being mounted on the print engine.
  • the rotational displacement is roll.
  • the rotational displacement is yaw.
  • the printhead module being one of a plurality of printhead modules mounted on a carrier to form a printhead and the error in ink dot placement being an error relative to ink dots output by one or more of the other printhead modules
  • the printer is a pagewidth printer.
  • the printer is a pagewidth printer.
  • the present invention provides a printer controller programmed and configured to implement the method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the method including expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the method including expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (c) in the event n is an even number, repeating step (b) until all of the nozzles in each set has been fired; and (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the method including manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the method being performed in conjunction with a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the method being performed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the method being performed in conjunction with a printer controller for supplying dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the method being performed in conjunction with a printer controller for supplying dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the method being performed in conjunction with a printer controller for controlling a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the method being performed in conjunction with a printer controller for outputting to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the method being performed in conjunction with a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the method being performed in conjunction with a printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the method being performed in conjunction with a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the method being used in conjunction with a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the method being used in conjunction with a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position x], wherein nozzle position x is at or adjacent the centre of the set of nozzles.
  • the method being performed in conjunction with a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the method being performed in conjunction with a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the method being performed in conjunction with a printer controller for receiving first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead, wherein each of the serial outputs is configured to supply dot data for at least two channels of the at least one printhead.
  • the method being performed in conjunction with a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the method being performed in conjunction with a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the method being performed in conjunction with a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position x], wherein nozzle position A: is at or adjacent the centre of the set of nozzles.
  • the method being performed in conjunction with a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the method being performed in conjunction with a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the method being performed in conjunction with a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the method being performed in conjunction with a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the method being performed in conjunction with a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the method being performed in conjunction with a printer controller for providing data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the method being performed in conjunction with a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the method being performed in conjunction with a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the ' event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position ⁇ n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the nozzle at each given position within the set is fired simultaneously with the nozzles in the other sets at respective corresponding positions.
  • the printhead module includes a plurality of the rows of nozzles, the method including sequentially repeating the for each of the rows of nozzles.
  • the rows are disposed in pairs.
  • the rows in each pair of rows are offset relative to each other.
  • each pair of rows is configured to print the same color ink.
  • each pair of rows is connected to a common ink source.
  • the sets of nozzles are adjacent each other.
  • the sets of nozzles are separated by an intermediate nozzle, the intermediate nozzle being fired either prior to the nozzle at position 1 in each set, or following the nozzle at position n.
  • the method includes the step of providing the fire sequence to the printhead module from a printer controller, the fire signals being based on the fire sequence.
  • the fire sequence is loaded into a shift register in the printhead module.
  • the method at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of: (a) determining the rotational displacement;
  • the method includes expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • the method includes manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the method being performed in conjunction with a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the method being performed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the method being performed in conjunction with a printer controller for supplying dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the method being performed in conjunction with a printer controller for supplying dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the method being performed in conjunction with a printer controller for controlling a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the method being performed in conjunction with a printer controller for outputting to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the method being performed in conjunction with a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the method being performed in conjunction with a printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the method being performed in conjunction with a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the method being used in conjunction with a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the method being used in conjunction with a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the method being performed in conjunction with a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the method being performed in conjunction with a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the method being performed in conjunction with a printer controller for receiving first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead, wherein each of the serial outputs is configured to supply dot data for at least two channels of the at least one printhead.
  • the method being performed in conjunction with a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the method being performed in conjunction with a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the method being performed in conjunction with a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the method being performed in conjunction with a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the method being performed in conjunction with a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the method being performed in conjunction with a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the method being performed in conjunction with a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the method being performed in conjunction with a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the method being performed in conjunction with a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the method being performed in conjunction with a printer controller for providing data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the method being performed in conjunction with a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the method being performed in conjunction with a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printhead module includes a plurality of the rows, the method including firing each nozzle in each row simultaneously with the nozzle or nozzles at the same position in the other rows.
  • the method includes a plurality of pairs of the rows, each pair of rows including an odd row and an even row, the odd and even rows in each pair being offset from each other in both x and y directions relative to an intended direction of print media movement relative to the printhead, the method including causing firing of at least a plurality of the odd rows prior to firing any of the even rows, or vice versa.
  • odd rows, or the even rows, or both are fired in a predetermined order.
  • the predetermined order is selectable from a plurality of predetermined available orders.
  • the predetermined order is sequential.
  • the predetermined order can commence at any of a plurality of the rows.
  • the present invention provides a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printhead module includes a plurality of the rows of nozzles, the method including sequentially repeating steps (a) to (d) for each of the rows of nozzles.
  • the rows are disposed in pairs.
  • the rows in each pair of rows are offset relative to each other.
  • each pair of rows is configured to print the same color ink.
  • each pair of rows is connected to a common ink source.
  • the sets of nozzles are adjacent each other.
  • the sets of nozzles are separated by an intermediate nozzle, the intermediate nozzle being fired either prior to the nozzle at position 1 in each set, or following the nozzle at position n.
  • the present invention provides a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the nozzle at each given position within the set is fired simultaneously with the nozzles in the other sets at respective corresponding positions.
  • the method at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the method including expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the method including manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the method being performed in conjunction with a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the method being performed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the method being performed in conjunction with a printer controller for supplying dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the method being performed in conjunction with a printer controller for supplying dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the method being performed in conjunction with a printer controller for controlling a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the method being performed in conjunction with a printer controller for outputting to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the method being performed in conjunction with a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the method being performed in conjunction with a printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the method being performed in conjunction with a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the method being used in conjunction with a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • step (c) in the event n is an even number, repeating step (b) until all of the nozzles in each set has been fired; and (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the method being used in conjunction with a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the method being performed in conjunction with a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the method being performed in conjunction with a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the method being performed in conjunction with a printer controller for receiving first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead, wherein each of the serial outputs is configured to supply dot data for at least two channels of the at least one printhead.
  • the method being performed in conjunction with a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the method being performed in conjunction with a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the method being performed in conjunction with a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the method being performed in conjunction with a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the method being performed in conjunction with a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the method being performed in conjunction with a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the method being performed in conjunction with a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the method being performed in conjunction with a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the method being performed in conjunction with a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the method being performed in conjunction with a printer controller for providing data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the method being performed in conjunction with a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the method being performed in conjunction with a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printhead module includes a plurality of the rows, the method including firing each nozzle in each row simultaneously with the nozzle or nozzles at the same position in the other rows.
  • the printhead module includes a plurality of the rows, the method including firing each nozzle in each row simultaneously with the nozzle or nozzles at the same position in the other rows.
  • the method including a plurality of pairs of the rows, each pair of rows including an odd row and an even row, the odd and even rows in each pair being offset from each other in both x and y directions relative to an intended direction of print media movement relative to the printhead, the method including causing firing of at least a plurality of the odd rows prior to firing any of the even rows, or vice versa.
  • odd rows, or the even rows, or both are fired in a predetermined order.
  • the predetermined order is selectable from a plurality of predetermined available orders.
  • the predetermined order is sequential.
  • the predetermined order can commence at any of a plurality of the rows.
  • the present invention provides method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the present invention provides a method of manufacturing a plurality of pagewidth printheads, the method comprising the steps of: manufacturing a plurality of printhead modules in accordance with claim 1; and assembling pairs of at least some of the printhead modules to form pagewidth printheads, wherein each of the printhead modules in each pagewidth printhead is shorter than the pagewidth.
  • the printhead modules of at least one of the pagewidth printheads are of relatively different lengths.
  • the printhead modules of at least one of the pagewidth printheads are of the same length.
  • the printhead modules of at least one of the pagewidth printheads are of relatively different lengths, and the printhead modules of at least another of the pagewidth printheads are of the same length.
  • At least some of the printhead modules are larger than a reticle step used in laying out those printhead modules.
  • the method includes the step of laying out a plurality of left-handed and right-handed printhead modules.
  • the method includes the step of laying out a plurality of different lengths of left-handed and right- handed printhead modules.
  • the method at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the method including expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the method including expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (b) providing a fire signal to the next inward pair of nozzles in each set; (c) in the event n is an even number, repeating step (b) until all of the nozzles in each set has been fired; and
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the method being performed in conjunction with a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the method being performed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the method being performed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the method being performed in conjunction with a printer controller for supplying dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the method being performed in conjunction with a printer controller for supplying dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the method being performed in conjunction with a printer controller for controlling a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the method being performed in conjunction with a printer controller for outputting to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the method being performed in conjunction with a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the method being performed in conjunction with a printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the method being performed in conjunction with a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the method being used in conjunction with a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • step (b) providing a fire signal to the next inward pair of nozzles in each set; (c) in the event n is an even number, repeating step (b) until all of the nozzles in each set has been fired; and
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the method being used in conjunction with a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the method being performed in conjunction with a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the method being performed in conjunction with a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the method being performed in conjunction with a printer controller for receiving first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead, wherein each of the serial outputs is configured to supply dot data for at least two channels of the at least one printhead.
  • the method being performed in conjunction with a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the method being performed in conjunction with a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the method being performed in conjunction with a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the method being performed in conjunction with a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the method being performed in conjunction with a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the method being performed in conjunction with a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the method being performed in conjunction with a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the method being performed in conjunction with a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the method being performed in conjunction with a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the method being performed in conjunction with a printer controller for providing data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the method being performed in conjunction with a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the method being performed in conjunction with a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • each of the shift registers supplies dot data to about half of the nozzles.
  • the printhead module includes at least one pair of rows of the nozzles, the rows in each pair being offset with respect to each other by half the intra-row nozzle spacing.
  • each of the at least two shift registers supplies dot data to at least some of the nozzles in at least one pair of rows.
  • the present invention provides a printhead comprising a plurality of printhead modules including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printhead is a pagewidth printhead.
  • the printhead module is configured to receive dot data to which a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier has been applied, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printhead module is configured to receive dot data to which a method of expelling ink has been applied, the method being applied to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printhead module is configured to receive dot data to which a method of expelling ink has been applied, the method being applied to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of: (a) providing a fire signal to nozzles at a first and nth position in each set of nozzles;
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printhead module having been manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printhead module installed in a printer comprising: a printhead comprising at least the first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printhead module installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printhead module installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printhead module installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printhead module is in communication with a printer controller for supplying dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printhead module is in communication with a printer controller for supplying dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printhead module is in communication with a printer controller for controlling a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printhead module is in communication with a printer controller for outputting to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printhead module is in communication with a printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printhead module is in communication with a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printhead module is used in conjunction with a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired;
  • step (d) in the event n is an odd number step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printhead module is used in conjunction with a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printhead module is in communication with a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printhead module is in communication with a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printhead module is in communication with a printer controller for receiving first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printhead module being capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • a printhead module is in communication with a printer controller for providing data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer including at least one synchronization means between the first and second printer controllers for synchronizing the supply of dot by the printer controllers.
  • the printer configured such that the first and second printer controllers sequentially provide the dot data to the common input.
  • the printer further including a second printhead module, the printer being configured such that: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printhead modules are configured such that no dot data passes between them.
  • each of the printer controllers is configurable to supply the dot data to printhead modules of a plurality of different lengths.
  • the printhead is a pagewidth printhead.
  • the present invention provides a print engine comprising: a carrier; a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer including at least one synchronization means between the first and second printer controllers for synchronizing the supply of dot by the printer controllers.
  • the printer configured such that the first and second printer controllers alternately provide the dot data to the common input.
  • the printer further including a second printhead module, the printer being configured such that: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printhead modules are configured such that no dot data passes between them.
  • each of the printer controllers is configurable to supply the dot data to printhead modules of a plurality of different lengths.
  • the printhead is a pagewidth printhead.
  • the present invention provides a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least first and second rows of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to the printhead to supply data for the first and second rows of nozzles, respectively.
  • the printer including at least one synchronization means between the first and second printer controllers for synchronizing the supply of dot by the printer controllers.
  • the printhead modules are configured such that no dot data passes between them.
  • the printhead is a pagewidth printhead.
  • the printer is for implementing a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer including a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer including at least one printhead module, configured for at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer including a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer including a printer controller for sending to a printhead: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer including a printer controller for supplying data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer including a printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer including a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer including a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired; and (d) in the event n is an odd number, step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer including a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer including a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer including a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer including a printer controller for receiving first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer including a printer controller for supplying data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer including a printer controller for supplying data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer including a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer including a printer controller for supplying data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer including a printer controller for supplying data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer including a printer controller for supplying data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer including a printer controller for supplying data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer including a printer controller for supplying data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer including a printer controller for supplying data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer including a printer controller for providing data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer including a printer controller for supplying data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer including a printer controller for supplying data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer includes at least one synchronization means between the first and second printer controllers for synchronizing the supply of dot by the printer controllers.
  • each of the printer controllers is configurable to supply the dot data to a printhead module of arbitrary length.
  • first and second printhead modules are equal in length.
  • the first and second printhead modules are unequal in length.
  • the printhead is a pagewidth printhead.
  • the present invention provides a print engine comprising: a carrier; a printhead comprising first and second elongate printhead modules, the printhead modules being mounted parallel to each other end to end on the carrier on either side of a join region; at least first and second printer controllers mounted on the carrier and being configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the print engine includes at least one synchronization means between the first and second printer controllers for synchronizing the supply of dot by the printer controllers.
  • each of the printer controllers is configurable to supply the dot data to a printhead module of arbitrary length.
  • first and second printhead modules are equal in length.
  • the first and second printhead modules are unequal in length.
  • the printhead is a pagewidth printhead.
  • the printer is for implementing a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer includes a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer comprises: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer comprises: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer comprises: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer comprises at least one printhead module, configured for at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer comprises a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer includes a printer controller for sending to a printhead: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer includes a printer controller for supplying data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer includes a printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer includes a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer includes a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • step (b) a fire signal is provided to the next inward pair of nozzles in each set; (c) in the event n is an even number, step (b) is repeated until all of the nozzles in each set has been fired; and (d) in the event n is an odd number, step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer includes a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer includes a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer includes a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer includes a printer controller for receiving first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer includes a printer controller for supplying data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer includes a printer controller for supplying data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer includes a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer includes a printer controller for supplying data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer includes a printer controller for supplying data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • a printer controller for supplying data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each
  • the printer includes a printer controller for supplying data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer includes a printer controller for supplying data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer includes a printer controller for supplying data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer includes a printer controller for supplying data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer includes a printer controller for providing data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer includes a printer controller for supplying data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer includes a printer controller for supplying data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printhead modules are configured such that no dot data passes between them.
  • the printer includes at least one synchronization means between the first and second printer controllers for synchronizing the supply of dot data by the printer controllers.
  • each of the printer controllers is configurable to supply the dot data to printhead modules of a plurality of different lengths.
  • the printhead is a pagewidth printhead.
  • the present invention provides a print engine comprising: a carrier; a printhead comprising first and second elongate printhead modules, the printhead modules being mounted parallel to each other end to end on the carrier on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers mounted on the carrier and being configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printhead modules are configured such that no dot data passes between them.
  • the print engine includes at least one synchronization means between the first and second printer controllers for synchronizing the supply of dot by the printer controllers.
  • each of the printer controllers is configurable to supply the dot data to printhead modules of a plurality of different lengths.
  • the printhead is a pagewidth printhead.
  • the printer is for implementing a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer includes a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer includes: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer includes: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer includes: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer includes at least one printhead module, configured for at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer includes a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer includes a printer controller for sending to a printhead: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer includes a printer controller for supplying data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer includes a printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer includes a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer includes a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that: (a) a fire signal is provided to nozzles at a first and nth position in each set of nozzles;
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired;
  • step (d) in the event n is an odd number step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer includes a printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer includes a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer includes a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer includes a printer controller for receiving first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer includes a printer controller for supplying data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer includes a printer controller for supplying data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer includes a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer includes a printer controller for supplying data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer includes a printer controller for supplying data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • a printer controller for supplying data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each
  • the printer includes a printer controller for supplying data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer includes a printer controller for supplying data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer includes a printer controller for supplying data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer includes a printer controller for supplying data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer includes a printer controller for providing data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer includes a printer controller for supplying data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer includes a printer controller for supplying data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printhead modules are configured such that no dot data passes between them.
  • the printer includes at least one synchronization means between the first and second printer controllers for synchronizing the supply of dot data by the printer controllers.
  • each of the printer controllers is configurable to supply the dot data to printhead modules of a plurality of different lengths.
  • the printhead is a pagewidth printhead.
  • the present invention provides a print engine comprising: a carrier; a printhead comprising first and second elongate printhead modules, the printhead modules being mounted parallel to each other end to end on the carrier on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printhead modules are configured such that no dot data passes between them.
  • the print engine includes at least one synchronization means between the first and second printer controllers for synchronizing the supply of dot by the printer controllers.
  • each of the printer controllers is configurable to supply the dot data to printhead modules of a plurality of different lengths.
  • the printhead is a pagewidth printhead.
  • the printer controller is for implementing a method of at least partially compensating for e ⁇ ors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (b) providing a fire signal to the next inward pair of nozzles in each set; (c) in the event n is an even number, repeating step (b) until all of the nozzles in each set has been fired; and
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller supplies dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired;
  • step (d) in the event n is an odd number step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n- 1), ... , nozzle position *], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective co ⁇ esponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller supplies data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides printer controller for supplying dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the nozzles are disposed in a plurality of rows, and the printer controller is configured to reallocate at least one of the ink dots from at least one original print line to at least one alternate print line, thereby to effect the at least partial compensation.
  • the printer controller is configured to retrieve the correction factor from a memory associated with the printhead.
  • the memory is mounted with the printhead, the printhead being mounted on the print engine.
  • the rotational displacement is roll.
  • the rotational displacement is yaw.
  • the printhead module being one of a plurality of printhead modules mounted on a carrier to form a printhead and the error in ink dot placement being an error relative to ink dots output by one or more of the other printhead modules
  • the printhead module is part of a printhead comprising a plurality of the modules, the printer controller being configured to determine an order in which at least some of the dot data is supplied to a plurality of the printhead modules, the order being determined at least partly on the basis of one or more of the correction factors, thereby to at least partially compensate for the rotational displacement of the plurality of the printheads.
  • the correction factor is at least partially based on a thickness of media being printed on.
  • the printer controller configured to at least improve first order continuity between ink dots printed by adjacent printhead modules.
  • a print engine including the print controller according and a plurality of the printhead modules that define a printhead, the print engine being configured to compensate for the rotational displacement of at least one of the printhead modules.
  • the print engine further including a memory for storing the correction factor in a form accessible to the printer controller.
  • the print engine is configured to alter a timing of fire signals supplied to at least one of the nozzles on the basis of the co ⁇ ection factor, thereby to further effect the at least partial compensation.
  • the print engine is configured to supply the altered fire signals are to both reallocated ink dots and non- reallocated ink dots.
  • the printhead is a pagewidth printhead.
  • a printer including a printer controller for supplying dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer further including a pagewidth printhead comprising a plurality of the printhead modules.
  • the printer controller is for implementing a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller for supplying data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer controller installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that: (a) a fire signal is provided to nozzles at a first and nth position in each set of nozzles;
  • step (b) a fire signal is provided to the next inward pair of nozzles in each set; (c) in the event n is an even number, step (b) is repeated until all of the nozzles in each set has been fired; and
  • step (d) in the event n is an odd number step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulates the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller supplies data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides printer controller for supplying dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller is configured to modify the operation of the nozzles at or adjacent the at least one thermal sensor, such that operation of nozzles not at or adjacent the at least one thermal sensor is not modified.
  • each thermal sensor is associated with a predetermined group of the nozzles, the printer controller being configured to modify operation of the nozzles in the predetermined group for which the temperature has risen above the first threshold.
  • each thermal sensor is associated with a single nozzle.
  • the modification includes the printer controller preventing operation of the nozzle.
  • the modification includes the printer controller preventing operation of the nozzle for a predetermined period.
  • the modification includes the printer controller preventing operation of the nozzle until the temperature drops below a second threshold.
  • the second threshold is lower than the first threshold.
  • the second threshold is the same as the first threshold.
  • the temperature is not determined explicitly by the at least one thermal sensor or the module.
  • each of the nozzles including a thermal ink ejection mechanism.
  • the thermal sensor comprises at least part of one of the thermal inkjet mechanisms.
  • the thermal sensor comprises a heating element.
  • the thermal sensor determines the temperature by determining a resistance of the heating element.
  • the printer controller is configured to: receive thermal information from the at least one thermal sensor; determine the modification based on the thermal information; and send control information back to the printhead module, the control information being indicative of the modification to make to the operation of the one or more nozzles.
  • a print engine including a printer controller configured to: receive thermal information from the at least one thermal sensor; determine the modification based on the thermal information; and send control information back to the printhead module, the control information being indicative of the modification to make to the operation of the one or more nozzles; and a printhead module, wherein the printhead module further includes a plurality of data latches, the data latches being configured to provide dot data to respective ones of the nozzles, at least some of the data latches being configured to receive thermal signals from respective ones of the thermal sensors during an acquisition period.
  • the data latches are configured to form a shift register, the shift register being configured to: shift the print data in during a print load phase; sample the signals from the thermal sensors during a temperature load phase; and shift the thermal signals out to the printer controller during an output phase.
  • the output phase coincides with a subsequent print load phase.
  • the print engine further includes logic circuitry configured to perform a bitwise operation on: each thermal signal as it is clocked out of the shift register; and each piece of dot data to be clocked into the shift register, such that when a thermal signal is indicative of a thermal problem with a nozzle, the logic circuitry prevents loading of data that would cause firing of that nozzle.
  • the logic circuitry includes an AND circuit that receives as inputs the dot data and the thermal signal corresponding to the nozzle for which the dot data is intended, an output of the AND circuit being in communication with an input of the shift register.
  • each thermal sensor is associated with a pair of the nozzles.
  • the printer controller is for implementing a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to e ⁇ oneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer controller supplies dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective co ⁇ esponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that: (a) a fire signal is provided to nozzles at a first and nth position in each set of nozzles;
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired;
  • step (d) in the event n is an odd number step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller supplies data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller further includes a logic circuit accepting as inputs a masking signal and the thermal signal corresponding to the nozzle for which the dot data is intended, the logic circuit outputting the thermal signal to the input of the AND circuit in reliance on a value of the masking signal.
  • the value of the masking signal enables masking of the thermal signal for at least one nozzle position, including the nozzle for which the current dot data is intended.
  • the value of the masking signal enables masking of the thermal signal for a plurality of nozzle positions corresponding to a region of the printhead associated the nozzle for which the current dot data is intended.
  • the value of the masking signal enables masking of the thermal signal for all of the nozzle positions of the printhead.
  • the present invention provides a printer controller for controlling a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the one or more control signals include a fire control sequence indicative of a first fire group to be fired.
  • the printhead being configured to shift the fire control sequence through a shift register to cause subsequent firing of the second and any other fire groups, wherein the printer controller is configured to provide the fire control sequence during an initiation phase of the printhead, such that the fire control sequence does not need to be repeatedly provided by the printer controller while printing is taking place.
  • the printhead being configured to shift the fire control sequence through a shift register to cause subsequent firing of the second and any other fire groups, wherein the printer controller is configured to provide the fire control sequence periodically during printing.
  • the printhead being configured to provide the fire control sequence on a per row or per print-line basis.
  • the printhead being configured to provide a fire enable signal in addition to the one or more fire control signals, such that the combination of the fire enable and fire control signals cause selected ones of the nozzles to fire in the predetermined sequence and in accordance with a predetermined timing.
  • the present invention provides a print engine including a printhead and a printer controller, the printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the one or more control signals include a fire control sequence indicative of a first fire group to be fired.
  • the printhead being configured to shift the fire control sequence through a shift register to cause subsequent firing of the second and any other fire groups, wherein the printer controller is configured to provide the fire control sequence during an initiation phase of the printhead, such that the fire control sequence does not need to be repeatedly provided by the printer controller while printing is taking place.
  • the printhead being configured to shift the fire control sequence through a shift register to cause subsequent firing of the second and any other fire groups, wherein the printer controller is configured to provide the fire control sequence periodically during printing.
  • the print engine being configured to provide the fire control sequence on a per row or per print-line basis.
  • the print engine being configured to provide a fire enable signal in addition to the one or more fire control signals, such that the combination of the fire enable and fire control signals cause selected ones of the nozzles to fire in the predetermined sequence and in accordance with a predetermined timing.
  • the printer controller is for implementing a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a prmthead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer controller supplies dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • a fire signal is provided to nozzles at a first and nth position in each set of nozzles;
  • a fire signal is provided to the next inward pair of nozzles in each set;
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired;
  • step (d) in the event n is an odd number step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a co ⁇ esponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller supplies data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printhead module includes a plurality of pairs of the rows, each pair of rows including an odd row and an even row, the odd and even rows in each pair being offset from each other in both x and y directions relative to an intended direction of print media movement relative to the printhead, the printer controller being configured to control the at least one printhead module to cause firing of at least a plurality of the odd rows prior to firing any of the even rows, or vice versa.
  • the printer controller configurable to control the printhead module such that the odd rows, or the even rows, or both, are fired in a predetermined order.
  • the printer controller configurable such that the predetermined order is selectable from a plurality of predetermined available orders.
  • the predetermined order is sequential.
  • the printer controller configurable such that the predetermined order can commence at any of a plurality of the rows.
  • the present invention provides a printer controller for outputting to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the communication output is configured to output the dot data and control data serially.
  • the printer controller further includes a plurality of the communication outputs.
  • the printer controller further includes a plurality of the communication outputs.
  • a print engine comprising a print controller and a plurality of printhead modules, the printhead modules being disposed end to end for printing a width exceeding that of any of the individual printhead modules, the communications input of each of the printhead modules being connected to a common dot data and control data bus, the common dot data and control data bus being in functional communication with the communication output.
  • each module is configured to respond to dot data and control data on the bus only when it is intended for that module.
  • a printer incorporating a print engine comprising a print controller and a plurality of printhead modules, the printhead modules being disposed end to end for printing a width exceeding that of any of the individual printhead modules, the communications input of each of the printhead modules being connected to a common dot data and control data bus, the common dot data and control data bus being in functional communication with the communication output.
  • a printer incorporating a print controller for outputting to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printhead modules together form a pagewidth printhead.
  • the printer further including a pagewidth printhead comprising a plurality of the printhead modules.
  • the printer controller is for implementing a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to e ⁇ oneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (c) in the event n is an even number, repeating step (b) until all of the nozzles in each set has been fired; and (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer controller supplies dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to e ⁇ oneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a co ⁇ ection factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that: (a) a fire signal is provided to nozzles at a first and nth position in each set of nozzles;
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired;
  • step (d) in the event n is an odd number step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective co ⁇ esponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller provides data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides a printer controller for supplying data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed, the printer controller being configured to control order and timing of the data supplied to the printhead such that the dropped row is compensated for during printing by the printhead module.
  • the displaced row portion is disposed adjacent one end of the printhead module.
  • the printhead module includes a plurality of the rows, wherein each of at least a plurality of the rows includes one of the displaced row portions.
  • the displaced row portions of at least some of the rows are different in length than the displaced row portions of at least some of the other rows.
  • each of the rows has a displaced row portion, and the sizes of the respective displaced row portions increase from row to row in the direction normal to that of the pagewidth to be printed.
  • the printer controller supplies the data to a printhead comprising a plurality of the printhead modules.
  • the printer controller supplies data to a printhead comprising a plurality of the printhead modules, wherein the displaced row portion of at least one of the printhead modules is disposed adjacent another of the printhead modules.
  • the printhead modules are the same shape and configuration as each other, and are arranged end to end across the intended print width.
  • the printhead being a pagewidth printhead.
  • the printhead being a pagewidth printhead.
  • the printer controller is for implementing a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of: (a) providing a fire signal to nozzles at a first and nth position in each set of nozzles; j
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer controller supplies dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • a fire signal is provided to nozzles at a first and nth position in each set of nozzles;
  • a fire signal is provided to the next inward pair of nozzles in each set;
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired;
  • step (d) in the event n is an odd number step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller supplies data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the first number is n.
  • the first number is less than n.
  • the printhead module is configurable into at least one other mode, in which the at least one printhead module is configured to receive print data for a third number of print channels other than the first and second numbers, the printer controller being selectively configurable to supply the print data for the third number of print channels.
  • n is 4 and the second number is less than 4.
  • n is 5 and the second number is less than 5.
  • n 6 and the second number is less than 6.
  • the second number is 3, 4 or 5.
  • the print engine includes the print controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes; and the at least one printhead module.
  • the mode is selected based on the contents of a memory associated with the at least one printhead module.
  • the memory is a register.
  • the register is on an integrated circuit forming part of the print engine.
  • the printer includes a printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer includes a print engine including the print controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes; and the at least one printhead module.
  • the printer includes a printer controller for supplying print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes; and including a pagewidth printhead comprising a plurality of the printhead modules capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable
  • the printer controller for implementing a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer controller for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • the printer controller manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • a printer controller installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer controller supplies dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a conection factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controllers supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • a fire signal is provided to nozzles at a first and nth position in each set of nozzles;
  • a fire signal is provided to the next inward pair of nozzles in each set;
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired;
  • step (d) in the event n is an odd number, step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller supplies data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides a printer controller for supplying data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printhead comprises a plurality of at least one of the types of module.
  • the printhead comprises a plurality of each of at least two of the types of module.
  • the printhead comprises two types of the module.
  • the two types of module alternate across a print width of the printhead.
  • each of the modules including at least one row of print nozzles, wherein each of the at least one row of print nozzles includes at least a portion that extends at an acute angle to an intended relative direction of movement between the printhead and print media.
  • the different types of modules are configured, and arranged relative to each other, such that there is substantially no growth in offset of each of the at least one row of print nozzles in a direction across an intended print width of the printhead.
  • each of the printhead modules is a monolithic integrated circuit.
  • each of the modules including at least one row of print nozzles, wherein each of the at least one rows includes at least two sub-rows, each of the sub-rows being parallel to each other and displaced relative to each other in a direction of intended movement of print media relative to the printhead.
  • At least one row in each of the printhead modules prints an ink corresponding to at least one row on an adjacent printhead module, wherein the corresponding rows of at least two of the different printhead modules are offset from each other in a direction of intended movement of print media relative to the printhead,
  • the printhead being a pagewidth printhead.
  • the printhead being a pagewidth prmthead.
  • the printhead being a pagewidth printhead.
  • the printer controller is for implementing a method of at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles due to erroneous rotational displacement of a prmthead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of: (a) determining the rotational displacement;
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of: (a) providing a fire signal to nozzles at a first and nth position in each set of nozzles;
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer controller supplies dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a co ⁇ ection factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired; and (d) in the event n is an odd number, step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective co ⁇ esponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective co ⁇ esponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller supplies data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that:
  • step (c) in the event n is an even number step (b) is repeated until all of the nozzles in each set has been fired;
  • step (d) in the event n is an odd number step (b) is repeated until all of the nozzles but a central nozzle in each set have been fired, and then the central nozzle is fired.
  • the printhead module includes a plurality of the rows of nozzles, the printer controller being configured to control the printhead module such that steps (a) to (d) are repeated for each of the rows of nozzles.
  • the rows are disposed in pairs.
  • the rows in each pair of rows are offset relative to each other.
  • each pair of rows is configured to print the same color ink.
  • each pair of rows is connected to a common ink source.
  • the sets of nozzles are adjacent each other.
  • the sets of nozzles are separated by an intermediate nozzle, the intermediate nozzle being fired either prior to the nozzle at position 1 in each set, or following the nozzle at position n.
  • the printhead module is one of a plurality of printhead modules that form a pagewidth printhead, the printer controller being configure to supply the control signals to at least a plurality of the printhead modules.
  • the printer controller is for implementing a method of at least partially compensating for e ⁇ ors in ink dot placement by at least one of a plurality of nozzles due to e ⁇ oneous rotational displacement of a printhead module relative to a carrier, the nozzles being disposed on the printhead module, the method comprising the steps of:
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of: (a) providing a fire signal to nozzles at a first and nth position in each set of nozzles;
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer confroller supplies dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer confroller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a co ⁇ esponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion mcluding a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller supplies data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printhead module includes a plurality of the rows, the printer controller being configured to cause firing of each nozzle in each row simultaneously with the nozzle or nozzles at the same position in the other rows.
  • the printer controller includes a plurality of pairs of the rows, each pair of rows including an odd row and an even row, the odd and even rows in each pair being offset from each other in both x and y directions relative to an intended direction of print media movement relative to the printhead, the printer controller being configured to control the at least one printhead module to cause firing of at least a plurality of the odd rows prior to firing any of the even rows, or vice versa.
  • the printer controller is configured to control the printhead such that the odd rows, or the even rows, or both, are fired in a predetermined order.
  • the printer controller is configurable such that the predetermined order is selectable from a plurality of predetermined available orders.
  • the predetermined order is sequential.
  • the printer confroller is configurable such that the predetermined order can commence at any of a plurality of the rows.
  • the present invention provides printer controller for supplying one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller is configured to cause the nozzle at each given position within the set to be fired simultaneously with the nozzles in the other sets at respective corresponding positions.
  • the printhead module includes a plurality of the rows of nozzles, the printer controller being configured to control the printhead module such that the steps are repeated for each of the rows of nozzles.
  • the rows are disposed in pairs.
  • the rows in each pair of rows are offset relative to each other.
  • each pair of rows is configured to print the same color ink.
  • each pair of rows is connected to a common ink source.
  • the sets of nozzles are adjacent each other.
  • the sets of nozzles are separated by an intermediate nozzle, the intermediate nozzle being fired either prior to the nozzle at position 1 in each set, or following the nozzle at position n.
  • the printhead module is one of a plurality of printhead modules that form a pagewidth printhead, the printer controller being configure to supply the control signals to at least a plurality of the printhead modules.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer controller supplies dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to e ⁇ oneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the conection factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective co ⁇ esponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective co ⁇ esponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller supplies data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a co ⁇ esponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printhead module includes a plurality of the rows, the printer controller being configured to cause firing of each nozzle in each row simultaneously with the nozzle or nozzles at the same position in the other rows.
  • the printer controller includes a plurality of pairs of the rows, each pair of rows including an odd row and an even row, the odd and even rows in each pair being offset from each other in both x and y directions relative to an intended direction of print media movement relative to the printhead, the printer controller being configured to control the at least one printhead module to cause firing of at least a plurality of the odd rows prior to firing any of the even rows, or vice versa.
  • the printer controller is configured to control the printhead such that the odd rows, or the even rows, or both, are fired in a predetermined order.
  • the printer controller is configurable such that the predetermined order is selectable from a plurality of predetermined available orders.
  • the predetermined order is sequential.
  • the printer controller is configurable such that the predetermined order can commence at any of a plurality of the rows.
  • the present invention provides a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • Optionally print engine comprising a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing; and a printhead module, wherein the printhead module is controllable such that either of the nozzles in each aligned pair of nozzles in the first and second rows can be selected to output ink for a selected dot to be printed on the print media.
  • the corresponding nozzle in the second row is selected to output ink for a dot for which the faulty nozzle would otherwise have output ink.
  • the print engine includes a plurality of sets of the first and second rows.
  • each of the sets of the first and second rows is configured to print in a single color or ink type.
  • the first and second rows in at least one of the sets are separated by one or more rows from the other set or sets.
  • each of the rows includes an odd sub-row and an even sub-row, the odd and even sub-rows being offset with respect to each other in a direction of intended print media travel relative to the printhead.
  • odd and even sub-rows are transversely offset relative to each other.
  • the print engine is configured such that the first and second rows are fired alternately.
  • the print engine comprises a plurality of the printhead modules.
  • a printer including a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • a printer including a print engine comprising a printer controller for supplying dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective co ⁇ esponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing; and a printhead module, wherein the printhead module is controllable such that either of the nozzles in each aligned pair of nozzles in the first and second rows can be selected to output ink for a selected dot to be printed on the print media.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer controller supplies dot data to at least one printhead module and at least partially compensating for errors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to e ⁇ oneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a correction factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer confroller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective co ⁇ esponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position *], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective co ⁇ esponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer controller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a co ⁇ esponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the printer controller receives first data and manipulating the first data to produce dot data to be printed, the print controller including at least two serial outputs for supplying the dot data to at least one printhead.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer confroller supplies data to a printhead capable of printing a maximum of n of channels of print data, the printhead being configurable into: a first mode, in which the printhead is configured to receive print data for a first number of the channels; and a second mode, in which the printhead is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, such that, for each set of nozzles, a fire signal is provided in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position * is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies data to a printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel the ink in response to a fire signal, the printhead being configured to output ink from nozzles at a first and nth position in each set of nozzles, and then each next inward pair of nozzles in each set, until: in the event n is an even number, all of the nozzles in each set has been fired; and in the event n is an odd number, all of the nozzles but a central nozzle in each set have been fired, and then to fire the central nozzle.
  • the printer controller supplies data to a printhead module for receiving dot data to be printed using at least two different inks and control data for controlling printing of the dot data, the printhead module including a communication input for receiving the dot data for the at least two colors and the control data.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies data to a printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row.
  • the printer controller supplies data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows.
  • the printer controller supplies data to a printhead module that includes: at least one row of print nozzles; at least first and second shift registers for shifting in dot data supplied from a data source, wherein each shift register feeds dot data to a group of nozzles, and wherein each of the groups of the nozzles is interleaved with at least one of the other groups of the nozzles.
  • the printer controller supplies data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printhead module being configured to modify operation of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller supplies data to a printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, and being configured such that, in the event a nozzle in the first row is faulty, a co ⁇ esponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • the present invention provides a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • a print engine comprising a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it; and the at least one printhead module, wherein each nozzle in the first row is paired with a nozzle in the second row, such that each pair of nozzles is aligned in an intended direction of print media travel relative to the printhead module.
  • the print engine includes a plurality of sets of the first and second rows.
  • each of the sets of the first and second rows is configured to print in a single color or ink type.
  • each of the rows includes an odd and an even sub-row, the odd and even sub-rows being offset with respect to each other in a direction of print media travel relative to the printhead in use.
  • a printer including at least one printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.
  • a printer includes at least one print engine comprising a printer controller for supplying dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it; and the at least one printhead module, wherein each nozzle in the first row is paired with a nozzle in the second row, such that each pair of nozzles is aligned in an intended direction of print media travel relative to the printhead module.
  • the printer controller is for implementing a method of expelling ink from a printhead module including at least one row that comprises a plurality of sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising the steps of:
  • step (b) providing a fire signal to the next inward pair of nozzles in each set; (c) in the event n is an even number, repeating step (b) until all of the nozzles in each set has been fired; and
  • step (d) in the event n is an odd number, repeating step (b) until all of the nozzles but a central nozzle in each set have been fired, and then firing the central nozzle.
  • the printer controller is manufactured in accordance with a method of manufacturing a plurality of printhead modules, at least some of which are capable of being combined in pairs to form bilithic pagewidth printheads, the method comprising the step of laying out each of the plurality of printhead modules on a wafer substrate, wherein at least one of the printhead modules is right-handed and at least another is left-handed.
  • the printer controller supplies data to a printhead module including: at least one row of print nozzles; at least two shift registers for shifting in dot data supplied from a data source to each of the at least one rows, wherein each print nozzle obtains dot data to be fired from an element of one of the shift registers.
  • the printer controller is installed in a printer comprising: a printhead comprising at least a first elongate printhead module, the at least one printhead module including at least one row of print nozzles for expelling ink; and at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first and second printer controllers are connected to a common input of the printhead.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein the first printer controller outputs dot data only to the first printhead module and the second printer controller outputs dot data only to the second printhead module, wherein the printhead modules are configured such that no dot data passes between them.
  • the printer confroller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data to the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second printhead module; and the second printer controller outputs dot data only to the second printhead module.
  • the printer controller is installed in a printer comprising: a printhead comprising first and second elongate printhead modules, the printhead modules being parallel to each other and being disposed end to end on either side of a join region, wherein the first printhead module is longer than the second printhead module; at least first and second printer controllers configured to receive print data and process the print data to output dot data for the printhead, wherein: the first printer controller outputs dot data to both the first printhead module and the second controller; and the second printer controller outputs dot data to the second printhead module, wherein the dot data output by the second printer controller includes dot data it generates and at least some of the dot data received from the first printer controller.
  • the printer controller supplies dot data to at least one printhead module and at least partially compensating for e ⁇ ors in ink dot placement by at least one of a plurality of nozzles on the printhead module due to erroneous rotational displacement of the printhead module relative to a carrier, the printer being configured to: access a co ⁇ ection factor associated with the at least one printhead module; determine an order in which at least some of the dot data is supplied to at least one of the at least one printhead modules, the order being determined at least partly on the basis of the correction factor, thereby to at least partially compensate for the rotational displacement; and supply the dot data to the printhead module.
  • the printer controller supplies dot data to a printhead module having a plurality of nozzles for expelling ink, the printhead module including a plurality of thermal sensors, each of the thermal sensors being configured to respond to a temperature at or adjacent at least one of the nozzles, the printer controller being configured to modify operation of at least some of the nozzles in response to the temperature rising above a first threshold.
  • the printer controller controls a printhead comprising at least one monolithic printhead module, the at least one printhead module having a plurality of rows of nozzles configured to extend, in use, across at least part of a printable pagewidth of the printhead, the nozzles in each row being grouped into at least first and second fire groups, the printhead module being configured to sequentially fire, for each row, the nozzles of each fire group, such that each nozzle in the sequence from each fire group is fired simultaneously with respective corresponding nozzles in the sequence in the other fire groups, wherein the nozzles are fired row by row such that the nozzles of each row are all fired before the nozzles of each subsequent row, wherein the printer controller is configured to provide one or more control signals that control the order of firing of the nozzles.
  • the printer controller outputs to a printhead module: dot data to be printed with at least two different inks; and control data for controlling printing of the dot data; the printer controller including at least one communication output, each or the communication output being configured to output at least some of the control data and at least some of the dot data for the at least two inks.
  • the printer controller supplies data to a printhead module including at least one row of printhead nozzles, at least one row including at least one displaced row portion, the displacement of the row portion including a component in a direction normal to that of a pagewidth to be printed.
  • the printer controller supplies print data to at least one printhead module capable of printing a maximum of n of channels of print data, the at least one printhead module being configurable into: a first mode, in which the printhead module is configured to receive data for a first number of the channels; and a second mode, in which the printhead module is configured to receive print data for a second number of the channels, wherein the first number is greater than the second number; wherein the printer controller is selectively configurable to supply dot data for the first and second modes.
  • the printer controller supplies data to a printhead comprising a plurality of printhead modules, the printhead being wider than a reticle step used in forming the modules, the printhead comprising at least two types of the modules, wherein each type is determined by its geometric shape in plan.
  • the printer controller supplies one or more control signals to a printhead module, the printhead module including at least one row that comprises a plurality of adjacent sets of n adjacent nozzles, each of the nozzles being configured to expel ink in response to a fire signal, the method comprising providing, for each set of nozzles, a fire signal in accordance with the sequence: [nozzle position 1, nozzle position n, nozzle position 2, nozzle position (n-1), ... , nozzle position*], wherein nozzle position* is at or adjacent the centre of the set of nozzles.
  • the printer controller supplies dot data to a printhead module comprising at least first and second rows configured to print ink of a similar type or color, at least some nozzles in the first row being aligned with respective corresponding nozzles in the second row in a direction of intended media travel relative to the printhead, the printhead module being configurable such that the nozzles in the first and second pairs of rows are fired such that some dots output to print media are printed to by nozzles from the first pair of rows and at least some other dots output to print media are printed to by nozzles from the second pair of rows, the printer controller being configurable to supply dot data to the printhead module for printing.
  • the printer confroller supplies dot data to at least one printhead module, the at least one printhead module comprising a plurality of rows, each of the rows comprising a plurality of nozzles for ejecting ink, wherein the printhead module includes at least first and second rows configured to print ink of a similar type or color, the printer controller being configured to supply the dot data to the at least one printhead module such that, in the event a nozzle in the first row is faulty, a corresponding nozzle in the second row prints an ink dot at a position on print media at or adjacent a position where the faulty nozzle would otherwise have printed it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Ink Jet (AREA)
  • Record Information Processing For Printing (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Printers Characterized By Their Purpose (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Controls And Circuits For Display Device (AREA)
PCT/AU2004/000706 2004-05-27 2004-05-27 Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement WO2005120835A1 (en)

Priority Applications (21)

Application Number Priority Date Filing Date Title
EP10193974A EP2301753B1 (de) 2004-05-27 2004-05-27 Druckkopfmodul mit einer abgesunkenen Reihe und Druckersteuerung zur Bereitstellung von Daten dafür
AU2004320526A AU2004320526B2 (en) 2004-05-27 2004-05-27 Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement
PT101939742T PT2301753E (pt) 2004-05-27 2004-05-27 Módulo de cabeça de impressão tendo uma fiada solta e controlador de impressora para lhe fornecer dados
ES10193974T ES2393541T3 (es) 2004-05-27 2004-05-27 Módulo de cabezal de impresión con alineación rebajada y controlador de impresora para suministrar datos a aquel
DE602004031888T DE602004031888D1 (de) 2004-05-27 2004-05-27 Verfahren zum mindestens teilweisen kompensieren von fehlern bei der tintenpunktpositionierung aufgrund von fehlerhafter drehverschiebung
AT04734974T ATE501857T1 (de) 2004-05-27 2004-05-27 Verfahren zum mindestens teilweisen kompensieren von fehlern bei der tintenpunktpositionierung aufgrund von fehlerhafter drehverschiebung
PCT/AU2004/000706 WO2005120835A1 (en) 2004-05-27 2004-05-27 Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement
CA002567724A CA2567724A1 (en) 2004-05-27 2004-05-27 Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement
EP04734974A EP1765595B1 (de) 2004-05-27 2004-05-27 Verfahren zum mindestens teilweisen kompensieren von fehlern bei der tintenpunktpositionierung aufgrund von fehlerhafter drehverschiebung
AU2008207608A AU2008207608B2 (en) 2004-05-27 2008-08-29 Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement
AU2009203032A AU2009203032B2 (en) 2004-05-27 2009-07-27 Printer controller for controlling a printhead module base on thermal sensing
AU2009203025A AU2009203025B2 (en) 2004-05-27 2009-07-27 Printer comprising two uneven printhead modules and at least two printer controllers, one of which sends print data to both of the printhead modules
AU2009203030A AU2009203030B2 (en) 2004-05-27 2009-07-27 Printhead module capable of printing a maximum of N channels of print data
AU2009203028A AU2009203028B2 (en) 2004-05-27 2009-07-27 Printhead comprising different printhead modules
AU2009203033A AU2009203033B2 (en) 2004-05-27 2009-07-27 Printer controller for supplying data to a printhead module having a dropped row
AU2009203026A AU2009203026B2 (en) 2004-05-27 2009-07-27 Method of storing bit-pattern in plural devices
AU2009203027A AU2009203027B2 (en) 2004-05-27 2009-07-27 Printhead module having a dropped row
AU2009203012A AU2009203012B2 (en) 2004-05-27 2009-07-27 Method of manufacturing left-handed and right-handed printhead modules
AU2009203031A AU2009203031B2 (en) 2004-05-27 2009-07-27 Printer comprising two uneven printhead modules and at least two printer controllers, one of which sends print data to the other
AU2009203015A AU2009203015B2 (en) 2004-05-27 2009-07-27 Printer comprising a printhead and at least two printer controllers connected to a common input of the printhead
CY20121101116T CY1113337T1 (el) 2004-05-27 2012-11-20 Δομοστοιχειο κεφαλης εκτυπωσης που φερει μια κυρτη σειρα και ενα στοιχειο ελεγχου εκτυπωτη που επιτρεπει την αποδοση δεδομενων

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2004/000706 WO2005120835A1 (en) 2004-05-27 2004-05-27 Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement

Publications (1)

Publication Number Publication Date
WO2005120835A1 true WO2005120835A1 (en) 2005-12-22

Family

ID=35502919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2004/000706 WO2005120835A1 (en) 2004-05-27 2004-05-27 Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement

Country Status (9)

Country Link
EP (2) EP2301753B1 (de)
AT (1) ATE501857T1 (de)
AU (12) AU2004320526B2 (de)
CA (1) CA2567724A1 (de)
CY (1) CY1113337T1 (de)
DE (1) DE602004031888D1 (de)
ES (1) ES2393541T3 (de)
PT (1) PT2301753E (de)
WO (1) WO2005120835A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8782025B2 (en) 2009-03-10 2014-07-15 Ims Software Services Ltd. Systems and methods for address intelligence
TWI784904B (zh) * 2021-05-27 2022-11-21 華邦電子股份有限公司 具有標誌位元的記憶體結構和其操作方法
US11548276B2 (en) 2019-02-06 2023-01-10 Hewlett-Packard Development Company, L.P. Integrated circuits including customization bits
TWI805231B (zh) * 2022-02-18 2023-06-11 慧榮科技股份有限公司 資料儲存裝置以及非揮發式記憶體控制方法
TWI811048B (zh) * 2021-12-07 2023-08-01 宏達國際電子股份有限公司 追蹤擴展現實的輸入手勢的方法和使用其的系統
US11775386B2 (en) 2022-02-18 2023-10-03 Silicon Motion, Inc. Data storage device and control method for non-volatile memory
US12008258B2 (en) 2022-02-18 2024-06-11 Silicon Motion, Inc. Data storage device and control method for non-volatile memory

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809025B2 (en) 2014-04-23 2017-11-07 Hewlett-Packard Development Company, L.P. Printing pen and printing system
CN111667402B (zh) * 2020-06-19 2023-03-14 洛阳师范学院 一种高精确激光雕刻橡胶制版中的二值变灰度方法
CN112465065B (zh) * 2020-12-11 2022-10-14 中国第一汽车股份有限公司 一种传感器数据关联方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0674993A2 (de) * 1994-03-31 1995-10-04 Hewlett-Packard Company Anordnung, Steuerschaltung und Verfahren zur elektronischen Korrektur des Schiefstandes von Schreibstiften in Farbstrahldrucker
WO2000006386A2 (en) * 1998-07-29 2000-02-10 Lexmark International, Inc. Method and system for compensating for skew in an ink jet printer
EP1029673A1 (de) * 1999-02-18 2000-08-23 Hewlett-Packard Company Korrektursystem für Tröpfchenpositionierungsfehler in der Druckrichtungsachse in Tintenstrahldruckern
US6281908B1 (en) * 1999-04-15 2001-08-28 Lexmark International, Inc. Alignment system and method of compensating for skewed printing in an ink jet printer
US6367903B1 (en) * 1997-02-06 2002-04-09 Hewlett-Packard Company Alignment of ink dots in an inkjet printer
US6554387B1 (en) * 1999-07-08 2003-04-29 Seiko Epson Corporation Misregistration correction for bidirectional printing in consideration of inclination of nozzle array
EP1375146A1 (de) 2001-02-06 2004-01-02 Olympus Optical Co., Ltd. Bilderzeugungsvorrichtung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596339A (en) * 1979-01-13 1980-07-22 Nippon Denso Co Ltd Air-fuel ratio control method
US5043740A (en) * 1989-12-14 1991-08-27 Xerox Corporation Use of sequential firing to compensate for drop misplacement due to curved platen
US5469199A (en) * 1990-08-16 1995-11-21 Hewlett-Packard Company Wide inkjet printhead
US6116710A (en) * 1991-01-18 2000-09-12 Canon Kabushiki Kaisha Ink jet recording method and apparatus using thermal energy
US5160403A (en) * 1991-08-09 1992-11-03 Xerox Corporation Precision diced aligning surfaces for devices such as ink jet printheads
US5742305A (en) * 1995-01-20 1998-04-21 Hewlett-Packard PWA inkjet printer element with resident memory
JP3308815B2 (ja) * 1996-06-28 2002-07-29 キヤノン株式会社 インクジェット記録方法及びその装置
US6672706B2 (en) * 1997-07-15 2004-01-06 Silverbrook Research Pty Ltd Wide format pagewidth inkjet printer
US6027203A (en) * 1997-12-11 2000-02-22 Lexmark International, Inc. Page wide ink-jet printer and method of making
US6089693A (en) * 1998-01-08 2000-07-18 Xerox Corporation Pagewidth ink jet printer including multiple pass defective nozzle correction
KR20020026075A (ko) * 2000-09-30 2002-04-06 윤종용 잉크젯 프린터의 어레이 헤드에 장착된 칩들간의 오정렬에의한 인쇄 오차 보정 방법
JP4790107B2 (ja) * 2000-10-13 2011-10-12 オリンパス株式会社 プリンタ
US6554398B2 (en) * 2001-03-08 2003-04-29 Agfa-Gevaert Ink-jet printer equipped for aligning the printheads
US7092930B2 (en) * 2001-03-29 2006-08-15 Pitney Bowes Inc. Architecture and method to secure database records from tampering in devices such as postage value dispensing mechanisms
CN100335275C (zh) * 2001-06-20 2007-09-05 索尼公司 液体排放装置和液体排放方法
US6953241B2 (en) * 2001-11-30 2005-10-11 Brother Kogyo Kabushiki Kaisha Ink-jet head having passage unit and actuator units attached to the passage unit, and ink-jet printer having the ink-jet head
JP2003291325A (ja) * 2002-03-29 2003-10-14 Olympus Optical Co Ltd 画像記録装置
JP2004284253A (ja) * 2003-03-24 2004-10-14 Fuji Xerox Co Ltd インクジェット記録ヘッド及びインクジェット記録装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0674993A2 (de) * 1994-03-31 1995-10-04 Hewlett-Packard Company Anordnung, Steuerschaltung und Verfahren zur elektronischen Korrektur des Schiefstandes von Schreibstiften in Farbstrahldrucker
US6367903B1 (en) * 1997-02-06 2002-04-09 Hewlett-Packard Company Alignment of ink dots in an inkjet printer
WO2000006386A2 (en) * 1998-07-29 2000-02-10 Lexmark International, Inc. Method and system for compensating for skew in an ink jet printer
EP1029673A1 (de) * 1999-02-18 2000-08-23 Hewlett-Packard Company Korrektursystem für Tröpfchenpositionierungsfehler in der Druckrichtungsachse in Tintenstrahldruckern
US6281908B1 (en) * 1999-04-15 2001-08-28 Lexmark International, Inc. Alignment system and method of compensating for skewed printing in an ink jet printer
US6554387B1 (en) * 1999-07-08 2003-04-29 Seiko Epson Corporation Misregistration correction for bidirectional printing in consideration of inclination of nozzle array
EP1375146A1 (de) 2001-02-06 2004-01-02 Olympus Optical Co., Ltd. Bilderzeugungsvorrichtung

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8782025B2 (en) 2009-03-10 2014-07-15 Ims Software Services Ltd. Systems and methods for address intelligence
US11548276B2 (en) 2019-02-06 2023-01-10 Hewlett-Packard Development Company, L.P. Integrated circuits including customization bits
US11858265B2 (en) 2019-02-06 2024-01-02 Hewlett-Packard Development Company, L.P. Integrated circuits including customization bits
TWI784904B (zh) * 2021-05-27 2022-11-21 華邦電子股份有限公司 具有標誌位元的記憶體結構和其操作方法
TWI811048B (zh) * 2021-12-07 2023-08-01 宏達國際電子股份有限公司 追蹤擴展現實的輸入手勢的方法和使用其的系統
TWI805231B (zh) * 2022-02-18 2023-06-11 慧榮科技股份有限公司 資料儲存裝置以及非揮發式記憶體控制方法
US11775386B2 (en) 2022-02-18 2023-10-03 Silicon Motion, Inc. Data storage device and control method for non-volatile memory
US11922044B2 (en) 2022-02-18 2024-03-05 Silicon Motion, Inc. Data storage device and control method for non-volatile memory
US12008258B2 (en) 2022-02-18 2024-06-11 Silicon Motion, Inc. Data storage device and control method for non-volatile memory

Also Published As

Publication number Publication date
AU2009203028B2 (en) 2010-06-10
AU2009203012A1 (en) 2009-08-13
EP2301753A1 (de) 2011-03-30
AU2009203030B2 (en) 2010-07-01
AU2009203015A1 (en) 2009-08-13
AU2008207608B2 (en) 2009-05-21
AU2009203025A1 (en) 2009-08-13
AU2009203026A1 (en) 2009-08-13
ES2393541T3 (es) 2012-12-26
AU2009203033A1 (en) 2009-08-13
AU2008207608A1 (en) 2008-09-18
EP2301753B1 (de) 2012-08-22
ATE501857T1 (de) 2011-04-15
DE602004031888D1 (de) 2011-04-28
AU2009203025B2 (en) 2010-06-03
AU2004320526A1 (en) 2005-12-22
EP1765595A1 (de) 2007-03-28
AU2009203031B2 (en) 2010-06-10
AU2009203033B2 (en) 2010-06-03
AU2009203015B2 (en) 2010-06-24
AU2009203027B2 (en) 2010-06-10
AU2009203032B2 (en) 2010-06-03
CA2567724A1 (en) 2005-12-22
AU2009203027A1 (en) 2009-08-13
AU2004320526B2 (en) 2008-08-07
CY1113337T1 (el) 2016-06-22
AU2009203031A1 (en) 2009-08-13
PT2301753E (pt) 2013-01-23
AU2009203012B2 (en) 2010-07-15
AU2009203026B2 (en) 2010-06-24
AU2009203028A1 (en) 2009-08-13
AU2009203030A1 (en) 2009-08-13
EP1765595B1 (de) 2011-03-16
EP1765595A4 (de) 2009-10-21

Similar Documents

Publication Publication Date Title
US7314261B2 (en) Printhead module for expelling ink from nozzles in groups, alternately, starting at outside nozzles of each group
US7266661B2 (en) Method of storing bit-pattern in plural devices
US7252353B2 (en) Printer controller for supplying data to a printhead module having one or more redundant nozzle rows
US7328956B2 (en) Printer comprising a printhead and at least two printer controllers connected to a common input of the printhead
US7243193B2 (en) Storage of program code in arbitrary locations in memory
US7093989B2 (en) Printer comprising two uneven printhead modules and at least two printer controllers, one which spends print data to the other
US7557941B2 (en) Use of variant and base keys with three or more entities
US7290852B2 (en) Printhead module having a dropped row
US7631190B2 (en) Use of variant and base keys with two entities
US7281777B2 (en) Printhead module having a communication input for data and control
US7267417B2 (en) Printer controller for supplying data to one or more printheads via serial links
US7484831B2 (en) Printhead module having horizontally grouped firing order
US7607757B2 (en) Printer controller for supplying dot data to at least one printhead module having faulty nozzle
US7374266B2 (en) Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement
US7275805B2 (en) Printhead comprising different printhead modules
US7377609B2 (en) Printer controller for at least partially compensating for erroneous rotational displacement
US20110096930A1 (en) Method of Storing Secret Information in Distributed Device
US7600843B2 (en) Printer controller for controlling a printhead module based on thermal sensing
US7188928B2 (en) Printer comprising two uneven printhead modules and at least two printer controllers, one of which sends print data to both of the printhead modules
US7281330B2 (en) Method of manufacturing left-handed and right-handed printhead modules
AU2008207608B2 (en) Method for at least partially compensating for errors in ink dot placement due to erroneous rotational displacement
US7832842B2 (en) Printer controller for supplying data to a printhead module having interleaved shift registers
US7549715B2 (en) Printer controller for causing expulsion of ink from nozzles in groups, starting at outside nozzles of groups
US7427117B2 (en) Method of expelling ink from nozzles in groups, alternately, starting at outside nozzles of each group
US7549718B2 (en) Printhead module having operation controllable on basis of thermal sensors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2567724

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004320526

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004734974

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004320526

Country of ref document: AU

Date of ref document: 20040527

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004734974

Country of ref document: EP