WO2005120140A1 - Circuit board, and metal paste and method for manufacturing the same - Google Patents

Circuit board, and metal paste and method for manufacturing the same Download PDF

Info

Publication number
WO2005120140A1
WO2005120140A1 PCT/JP2005/009947 JP2005009947W WO2005120140A1 WO 2005120140 A1 WO2005120140 A1 WO 2005120140A1 JP 2005009947 W JP2005009947 W JP 2005009947W WO 2005120140 A1 WO2005120140 A1 WO 2005120140A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
metal
metal paste
silver
paste
Prior art date
Application number
PCT/JP2005/009947
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Wakabayashi
Kenji Yamada
Original Assignee
Exink Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004163626A external-priority patent/JP2005347038A/en
Priority claimed from JP2004181745A external-priority patent/JP2006005253A/en
Priority claimed from JP2004181721A external-priority patent/JP2006005252A/en
Application filed by Exink Co., Ltd. filed Critical Exink Co., Ltd.
Publication of WO2005120140A1 publication Critical patent/WO2005120140A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1258Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by using a substrate provided with a shape pattern, e.g. grooves, banks, resist pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material

Definitions

  • the present invention relates to a novel circuit board, a method for manufacturing the circuit board, and a metal paste used in the method. Specifically, a circuit board in which circuit elements such as wiring are formed so as to fill a concave portion formed in the board, a method for manufacturing the same, and an aluminum nitride alloy using a thick film paste that can be fired at a low temperature.
  • the present invention relates to a method for producing a good via in a substrate, and a metal paste for forming a fine line having a line Z space of 50Z50 / Zm or less by screen printing.
  • a metallized submount is used as a small circuit board for mounting an optical device such as a light emitting diode and a laser diode (for example, Patent Document 1).
  • Figure 3 shows an example of a conventional thin film submount.
  • the submount 11 includes an insulating substrate 12, a laminated film (film 13ZPt film 14 and film 15) formed on the substrate, and an AgZSn solder layer 16 formed on the laminated film.
  • an insulating substrate 12 an insulating material having high heat conductivity and excellent heat dissipation, such as aluminum nitride, is used.
  • the thermal conductivity of these insulating materials rapidly decreases as the temperature rises, there is a problem that heat dissipation from the optical device deteriorates when the substrate temperature rises due to heat generated from the optical device.
  • the conventional circuit board described above sequentially laminates a Ti layer, a Pt layer, and an AgZSn layer by vapor deposition, a large-scale facility equipped with an exhaust system is required. Only the number of sheets can be processed at a time.
  • the substrate in order to deposit a metal thin film by sputtering, the substrate must be polished in advance so that Ra ⁇ 0.05 m, for example.
  • the thin film metal layer after the sputtering step, the thin film metal layer must be patterned using a photoresist or the like, and a number of steps are required.
  • a hole is formed in a substrate, and a metal having a high thermal conductivity even at a high temperature is buried in the hole to form a thermal via (Via). It is done.
  • the following methods are used to form thermal vias. It is known.
  • the first method is to make a hole in the A1N green sheet by punching, and fill the hole with a paste of tungsten, molybdenum, copper, etc. by a printing method or an indentation method, and at 1700 to 1900 ° C, the metal becomes Co-sintering in N or H atmosphere that does not oxidize
  • the second method is a method in which a green sheet is fired, holes are formed by laser processing or ultrasonic processing, the metal paste is filled, and the paste is fired at 600 to 1400 ° C (for example, Patent Document 2 paragraph 00 20).
  • a third method is a method in which a hole is formed in an aluminum nitride multilayer wiring substrate and cured, and copper, nickel, and the like are deposited in the hole by plating to fill the hole (Patent Document 3, No. 0019). Paragraph).
  • the first high-temperature co-sintering method has a complicated process, requires a long time, and lacks positional accuracy of the obtained via.
  • Tungsten, molybdenum, copper, and the like are oxidized unless fired in an inert atmosphere.
  • the via formed by the third plating method easily forms a pinhole, and has a problem in adhesion to a substrate.
  • these problems are not present, but the substrate force may be released in the hole formed by laser processing or ultrasonic processing after the paste sintering, which makes it difficult to hold the paste.
  • Thick film metal pastes usually need to be fired at 850 ° C or higher, but when the sintered A1N substrate is exposed to a temperature of 850 ° C or higher, A1N decomposes and the heat dissipation characteristics of the substrate Gets worse.
  • Patent Document 2 JP-A-9-36274
  • Patent Document 3 Japanese Patent Application Laid-Open No. 6-13491
  • Patent Document 4 JP-A-2002-299833
  • a first object of the present invention is to provide a method capable of manufacturing a substrate having higher heat dissipation performance in a simpler method than in the conventional method and in a larger number of substrates. is there.
  • a second object of the present invention is to provide a method of forming a via without exposing the A1N substrate to a high temperature of 850 ° C. or more, and a method of firing at a temperature lower than 850 ° C. to eliminate pinholes.
  • Another object of the present invention is to provide a metal paste that provides a via without causing the substrate force to be released.
  • the circuit fills the concave portion in a concave portion provided on one surface of the substrate with circuit elements.
  • a second aspect of the present invention provides: (1) a step of forming via holes in an aluminum nitride substrate by sandblasting;
  • a metal paste which is spherical and at least 80% of the total number of particles contains silver and palladium having a particle size of 0.1 to 1.0 m.
  • a third aspect of the present invention is a metal paste containing spherical metal particles having a particle force of 0.1 to 0.5 ⁇ m in a number of at least 80% of the total number of particles at a total weight of 70 to 95% by weight.
  • the minimum line Z space that can be formed by screen printing on a substrate with a surface Ra force of less than ⁇ .2 m as measured by a contact-type surface roughness meter is 50Z50 ⁇ m or less. It is a metal paste characterized by the following.
  • the substrate of the present invention is suitable for a sub-mount substrate having high heat radiation characteristics since the circuit element is embedded in the substrate. Further, according to the method of the present invention, a substrate can be manufactured with simple equipment and with high efficiency and efficiency as compared with the conventional process.
  • vias having no pinholes and good adhesion to a substrate can be formed by firing at a lower temperature than in the past.
  • the line Z space 50 ⁇ 50 / ⁇ or less can be formed by screen printing, and the conventional display manufacturing process can be greatly simplified.
  • FIG. 1 is a sectional view showing a circuit board of the present invention.
  • FIG. 2 is a process chart showing a method for producing a circuit board of the present invention.
  • FIG. 3 is a cross-sectional view showing a conventional submount substrate.
  • FIG. 4 is a process chart showing a via manufacturing method of the present invention.
  • FIG. 1 is a sectional view of a circuit board 1 of the present invention.
  • the circuit board 1 includes a single-layer board 2 and circuit elements 3a to 3d formed on at least one surface of the board 2.
  • the circuit elements 3a and 3d are wirings
  • the circuit element 3c is a semiconductor element mounting pad.
  • a solder layer 4 is provided on the circuit element 3c, and an optical element is mounted thereon.
  • a known substrate can be used.
  • a powder molded substrate is preferable because the positional accuracy of the circuit element is high.
  • beryllium oxide, magnesium oxide, silicon nitride, silicon carbide, aluminum nitride, or aluminum oxide with high thermal conductivity is preferably used.
  • a glass substrate is used for flat panel back use.
  • the substrate 2 may be manufactured by a known method. For example, a sheet-formed substrate or a slice substrate can be used. Further, a substrate manufactured by firing a single-layer green sheet may be used.
  • the thickness of the substrate 2 is appropriately selected depending on the application, typically a 50 ⁇ m ⁇ 1000 ⁇ m, 50 i um ⁇ 500 i um is preferably Dearu the Sabumaunto applications. Also, unlike the case of the thin film deposition method, the surface roughness of the substrate is not particularly limited and is about 11 ⁇ 2 ⁇ 2 / ⁇ . Further, a substrate which has been subjected to a glaze treatment for imparting smoothness may be used.
  • the circuit element 3 includes wiring, solder pads, pads for mounting various semiconductor elements, lands for wire bonding, and the like. In addition, the circuit element 3 may be present on both the front surface and the back surface of the substrate 2 on only one surface.
  • the circuit element 3 is substantially made of a metal, but may include an insulating material, for example, glass or a dielectric, as long as the conductivity or heat conductivity of the metal is not impaired.
  • the metal include gold, silver, copper, platinum, palladium, and alloys thereof, aluminum, nickel, and tungsten.
  • a suitable metal is appropriately selected depending on the type of a circuit element and a mounted element. Selected. For example, silver, copper, and aluminum are preferable for wiring, and silver and gold are preferable for semiconductor element mounting pads.
  • the circuit element 3 is formed in a recess provided on at least one side of the single-layer board 2 so as to contact the inner side surface and the bottom surface of the recess and fill the recess.
  • This differs from a multilayer substrate manufactured by a conventional aluminum wiring gap-fill method or a copper damascene method in that it has circuit elements in a single-layer substrate.
  • it since it is a single layer, it can be made thinner than a multilayer, and a step of filling a space between wirings with a dielectric material is unnecessary, and it can be manufactured by simple steps as described later. .
  • the shape of the concave portion in the cross-sectional direction of the substrate is not particularly limited, and may be rectangular, square, V-shaped, U-shaped, or the like. From the viewpoint of adhesion between the metal and the substrate, the shape is preferably rectangular or U-shaped.
  • the depth of the concave portion in the cross-sectional direction of the substrate is determined by the type of the circuit element, the material of the substrate, the metal constituting the circuit element, Can be appropriately adjusted according to the thermal conductivity required for the above.
  • the circuit element 3 is formed so as to fill the recess formed in the substrate 2, the high thermal conductivity of the metal constituting the circuit element enhances the thermal conductivity of the entire substrate. This effect is particularly remarkable when the temperature of the substrate is increased.
  • the thermal conductivity of an insulator constituting the substrate is significantly reduced.
  • the thermal conductivity of the metal is hardly changed, in the substrate of the present invention, since the insulator is replaced by the metal, the decrease in the thermal conductivity of the entire substrate is small. Further, the heat of the element mounted on the substrate is quickly diffused into the substrate 2 also from the side surface of the concave portion.
  • a heat dissipation board in which a metal is filled in a honeycomb-shaped space in the board is known.
  • the force S (for example, JP-A-2003-234441) is known. Is excellent in that it does not provide such a specially shaped space portion and that the circuit element also serves as a heat dissipation element.
  • the substrate 1 of the present invention does not exclude the provision of the heat dissipation via or the conductive via in addition to the circuit element 3. Particularly, the heat dissipation via will be described later in detail.
  • the circuit element 3 of the present invention may have an upper surface higher than the surface of the substrate 2, but since the circuit can be made thinner, the surface of the circuit element 3 has Substantially co-surface with the surface of the substrate 2, that is, flattened so that the surface of the circuit element 3 is within the surface of the substrate 2. Is preferred.
  • a method for manufacturing a circuit board according to the present invention will be described with reference to FIG. First, (1) a ceramic substrate 2 is prepared. Next, (2) a recess 5 for a circuit element is formed in the substrate 2. Examples of the forming method include sandblasting, laser processing, electron beam processing, and etching. Preferably, sandblasting is used. After laser processing or electron beam processing, etching may be performed to make the molten surface appropriately rough. In this step, a hole for a thermal via or a conductive via may be formed as desired.
  • a metal is filled in the obtained recess 5.
  • Filling methods include printing, plating, thermal spraying, vapor deposition, and sputtering.
  • printing include screen printing, inkjet printing, offset printing, transfer printing using a metal foil pattern, and a dispenser method.
  • Examples of the plating include an electric plating, an electroless plating, a vapor deposition plating, and an alloy plating.
  • Examples of the thermal spraying include flame thermal spraying, arc thermal spraying, plus, thermal spraying, and laser thermal spraying.
  • a metal may be applied to the substrate in the form of a photosensitive resin paste, and the circuit element may be formed in the recess by pattern jungling.
  • screen printing is preferable because a simple apparatus can be used to form a large-area fine pattern.
  • a circuit element 3 is formed from the filled metal.
  • the forming method differs depending on the metal filling method.
  • the metal is filled by plating, vapor deposition, sputtering, or thermal spraying, the circuit element 3 is formed at the same time as the metal is filled. Therefore, in FIG. 2, steps (3) and (4) are the same steps.
  • the metal is filled by printing, for example, screen printing, the filled metal paste is dried and usually fired at 300 ° C. or more to metallize.
  • ink containing nano-sized metal particles metallization is possible at less than 300 ° C.
  • metal is filled by inkjet printing, dry and bake the ink and metallize it.
  • the substrate is polished to make the circuit element 3 substantially co-surface with the substrate surface.
  • the polishing method include polished stone such as plane polishing and rotary polishing, and CMP.
  • the polishing method is appropriately selected depending on the material of the substrate and the metal, but preferably, grinding stone polishing is used.
  • the above-described method of the present invention can also be applied to the uppermost substrate of a multi-layer substrate that is not limited to a single-layer substrate.
  • a green sheet is used as the substrate, only the substrate may be fired in step (1) of FIG. 2 or may be co-fired with the circuit element in step (4).
  • the circuit obtained from the green sheet is inferior in positional accuracy to the circuit obtained from the powder molded substrate.
  • the circuit board obtained by the above method can be used for any purpose, but is particularly suitable for applications requiring high heat dissipation.
  • the circuit board for mounting an optical device can be used. It is suitable as a mount and a substrate for mounting a high-frequency element. Further, according to screen printing, a large-area substrate can be manufactured, so that it is also suitable as a large-area flat panel rear substrate.
  • the metal paste is composed of a metal powder, an inorganic binder, an organic resin medium, and a solvent.
  • the amount of each of these components can be appropriately adjusted according to the properties of the substrate, the metal powder, the line Z space width of the wiring pattern, etc.
  • a typical composition in the method of the present invention is based on the total weight of the paste.
  • the metal content is 40-95% by weight, preferably 70-94% by weight, more preferably 80-94% by weight
  • the inorganic binder is 0-20% by weight, preferably 0.5-10% by weight, More preferably 0.5 to 5% by weight
  • organic resin medium is 2 to 20% by weight, preferably 2 to 10% by weight, more preferably 2 to 6% by weight
  • solvent is 3 to 30% by weight, preferably It is about 3 to 25% by weight, more preferably about 5 to 10% by weight.
  • any of the above-mentioned metals can be used, and preferably, gold, silver, nickel, or an alloy thereof is used.
  • silver and palladium in a weight ratio of 100: 0 to 80:20.
  • Silver and palladium may use coprecipitated powder.
  • the metal particles are preferably spherical and have a particle force of at least 80% of the total number of particles.
  • It has a particle size of 1 to 0.5 ⁇ m, preferably 0.1 to 0.3 ⁇ m. That is, the number of particles having a particle size equal to or greater than the minimum particle size and less than 0.1 ⁇ m is less than 10% of the total number of particles, and exceeds 0.5 ⁇ m, preferably 0.3 m, and is less than the maximum particle size. Is less than 10% of the total number of particles.
  • a monodispersed fine powder is preferable. More preferably Monodisperse and highly crystalline fine powder is used. Highly crystalline fine powders are particles with high crystallinity, and have little surface irregularities. Low surface activity. Good wettability with organic binders.
  • the particle size is measured for about 100 particles on an electron micrograph, and the lower limit value and the upper limit value of the 10th particle size from the minimum particle size and the 10th particle size from the maximum particle size are respectively determined. And It should be understood that the particle is not a perfect sphere but a so-called polyhedron, so the particle size contains an error of about 10%.
  • the fine powder may contain a spherical powder having a particle strength of at least 80% of 0.3 to 4 / ⁇ , preferably 0.5 to 2 ⁇ m.
  • a second aspect of the present invention relates to a method for producing a via and a paste used in the method.
  • the method of the present invention will be described with reference to FIG.
  • (1) an aluminum nitride substrate 1 is prepared.
  • the aluminum nitride substrate 1 may be one obtained by firing a single-layer or two or more-layer daline sheets by a known powder molding method.
  • the thickness of the substrate is a force that can be appropriately selected according to the application, and is typically 100 to 300 ⁇ m.
  • (2) via holes are formed in the substrate 2 by sandblasting.
  • the substrate is turned upside down and another portion corresponding to the cut portion is sandblasted again from another surface to penetrate the hole.
  • the holes formed by sandblasting are tapered, so that if only one surface is sandblasted, the opening diameter may be too large, such as when the substrate is thick.
  • Sandblasting from both sides results in a substantially drum-shaped hole, but surprisingly, it has been found that printing the paste in the hole results in smoother defoaming from the paste.
  • the surface cut by sandblasting is roughened to some extent, so that the adhesion with the paste is also improved.
  • Both sides or one side of the substrate are polished to a predetermined thickness.
  • the polishing method include polished stone such as flat surface polishing and rotary polishing, and CMP.
  • polished stone is used.
  • Metals include noble metals with high thermal conductivity that can be fired in air, such as gold, platinum, silver, palladium, rhodium, and alloys thereof.
  • noble metals with high thermal conductivity that can be fired in air
  • silver, palladium and alloys thereof are used.
  • gold, platinum, or rhodium it is preferable that the total of these weights is 2% by weight or less of the total weight of the metal. More preferably, silver: palladium is used in a weight ratio of 80-100: 20.
  • spherical fine powder of each of the above metals is used.
  • silver, palladium, and gold have a particle force of at least 80% of the total particle number of 0.1 to 1.0 / ⁇ , preferably 0.1 to 0.8 / ⁇ . That is, the number of particles having a particle diameter of less than 0.1 m is less than 10% of the total number of particles, and the number of particles having a particle diameter of 1.0 m, preferably more than 0.8 m is less than 10% of the total number of particles.
  • An example of particles having such a particle size distribution is a monodispersed fine powder.
  • Platinum and rhodium have at least 80% of the total number of particles ⁇ .1 ⁇ 1.0!
  • the crystalline powder is a particle having a high degree of crystallinity, and has a high wettability with respect to an organic binder having a shape close to a sphere, which will be described later. Therefore, the solid content of the metal paste can be increased.
  • the particle size is measured for about 100 particles on an electron micrograph, and the lower limit value and the upper limit value of the 10th particle size from the minimum particle size and the 10th particle size from the maximum particle size are respectively determined. And It is well known in the industry. It should be understood that, as some particles do not have a perfect sphere, they are so-called polyhedrons, and that the particle size contains an error of about 10%.
  • Each of the above metals may be coprecipitated powder.
  • Noradium, platinum and rhodium may use their resinates.
  • the metal component is blended in an amount of 70 to 95 wt%, preferably 82 to 94 wt% of the total weight of the paste.
  • the remainder is composed of a high-molecular organic binder such as ethyl cellulose, acrylic resin, PVB, polyester resin, and rosin-modified resin, and a solvent such as turbineol, butyl canolebitone, butyl carbitol acetate, ethyl hexanol, and the like. Consisting of mineral spirits' and plasticizers (DBP, TCP, DEP).
  • inorganic additives A10, ZrO, A1N in an amount of 1 wt% or less of the total weight of the paste.
  • These inorganic additives may be mixed with the paste as a powder, or may be physically adsorbed as fine powder of 0.5 ⁇ m or less on the surface of the noble metal powder, or these inorganic substances may be used as an organic metal such as resinate. There are ways to use it.
  • the A1N substrate obtained by the method of the present invention using the paste is suitable for applications requiring high heat dissipation, for example, a submount for mounting an optical device, and a high-frequency element. It is suitable as a mounting substrate.
  • a third aspect of the present invention is a metal paste for fine wires.
  • the metal particles contained in the metal paste are spherical particles, and at least 80% of the total number of particles have a particle size of 0.1 to 0.5 ⁇ m, preferably 0.1 to 0.3 ⁇ m. That is, the number of particles having a particle diameter of not less than the minimum particle diameter and less than 0.1 ⁇ m is less than 10% of the total number of particles, and the particle diameter is more than 0.5 ⁇ m, preferably 0.3 ⁇ m and less than the maximum particle diameter. The number is less than 10% of the total number of particles.
  • An example of particles having such a particle size distribution is a monodispersed fine powder. More preferably, monodispersed and highly crystalline fine powder is used.
  • the particle size is about 100 particles on an electron micrograph. Were measured, and the 10th particle size from the minimum particle size and the 10th particle size from the maximum particle size were defined as the lower limit and the upper limit, respectively. It should be understood that, as is well known in the art, a spherical particle is not a perfect sphere but a so-called polyhedron, so that the particle size includes an error of about 10%.
  • the metal examples include gold, platinum, silver, palladium, rhodium, and alloys thereof, which are preferably noble metals that can be fired in air. More preferably, silver, palladium and their alloys are used, most preferably silver: palladium is used in a weight ratio of 80-100: 0-20. Coprecipitated powder of silver and palladium may be used.
  • the metal component accounts for 70 to 95 wt%, preferably 82 to 94 wt% of the total weight of the paste.
  • the remainder is composed of a high molecular organic binder such as ethyl cellulose, acrylic resin, PVB, polyester resin, and rosin-modified resin, and a solvent such as terbineol, butyl canolebitone, butyl carbitol acetate, ethyl hexanol, Mineral spirit. Etc. and plasticizers (DBP, TCP, DEP).
  • a high molecular organic binder such as ethyl cellulose, acrylic resin, PVB, polyester resin, and rosin-modified resin
  • a solvent such as terbineol, butyl canolebitone, butyl carbitol acetate, ethyl hexanol, Mineral spirit. Etc. and plasticizers (DBP, TCP, DEP).
  • glass As an inorganic additive, glass, BiO, PbO, ZnO, FeO, MnO or the like may be added in an amount of 10 wt% or less, preferably 5 wt% or less of the total weight of the paste.
  • a glass of soup may be added in an amount of 10 wt% or less, preferably 5 wt% or less of the total weight of the paste.
  • the physical properties those having a glass transition point of 300 ° C to 450 ° C and a softening point of 350 ° C to 550 ° C are preferable.
  • the composition of the glass is not particularly limited as long as the glass transition point and the softening point are satisfied.
  • the paste of the present invention can be prepared by a known method, for example, paste milling a solid content and a high molecular organic binder using a roll mill.
  • the line width ( ⁇ m) measured by a film thickness meter was 0.9 Xn to 1.2 Xn, and the space width (; zm) was 0.811 to 1.111. ⁇ .
  • Example 1-1 Submount certain board
  • A1N board (3 inch square x 200 m, trade name FAN-230, manufactured by Furukawa Kikai Metals Co., Ltd., 170 W / m'K), about 120 m wide x 50 m deep by sandblasting And 4000 sub-mount substrates (900 m x 1.2 mm) with recesses for forming LD mounting pads with a width of about 300 / zm, a length of about 1400 m and a depth of about 50 m. .
  • a silver palladium paste having the following composition was imprinted into the recess by screen printing.
  • a 1.0 m Ni layer was formed on the obtained pad by electroless plating according to a standard method, and a 5.0 m solder layer was formed by electrolytic plating.
  • a submount substrate was prepared in the same manner as in Example 1, except that a substrate having a thermal conductivity of 230 W / m'K was used as the A1N substrate. Comparative Example I 1. Preparation of a Thin Film Submount
  • a Ti (0.05 ⁇ m) / Pt (0.5 ⁇ m) / Ti (0.05 ⁇ m) layer is formed by sputtering on a mirror-polished A1N substrate (230 W / m.K) with a thickness of 200 ⁇ m, and the LD mounting pad
  • An Ag (1.5 ⁇ ) / Sn ⁇ / zm) solder layer was formed by vapor deposition.
  • Example II 1 and II 2 A certain plate for a millimeter-wave radar module
  • A1N substrate (2 inch square X 250 ⁇ m, trade name FAN-200, 200W / m'K, trade name FAN-230, 230 W / m'K, each (Furukawa Kikai Metal Co., Ltd.) using a sandblast to drill a hole to a depth of about 200 m, turn the board over, drill a hole at about 50 / zm until the hole penetrates, and make a thermal via hole with an outer diameter of about 200 m. Formed. Silver'palladium paste having the following composition was imprinted into the holes by screen printing.
  • the substrate was dried at 120 ° C for 10 minutes, and then baked in the air at a peak temperature of 600 ° C for about 7 to 10 minutes and with a firing profile of 100 ° C or higher for about 1 hour to metalize silver and palladium. . Both sides of the obtained substrate were puff-polished to obtain two millimeter-wave radar module substrates having a substrate thickness of 100 / zm.
  • Patent Document 2 According to the method described in Example 1 of JP-A-9-36274 (Patent Document 2), an aluminum nitride green sheet and a tungsten paste were co-fired to obtain a substrate for a millimeter wave radar module.
  • a millimeter wave radar element was mounted on the obtained substrate according to a standard method, and the output was measured.
  • the following table shows the output of each substrate, assuming that the output obtained in Comparative Example II 1 is 100%.
  • Table IM As shown in the above table, the millimeter wave radar output using the substrate of the present invention uses a conventional substrate. More than 30% higher.
  • Example II-1 In the same manner as in Example II-1, a submount substrate having a thickness of 200 m and a thickness of 300 m was prepared.
  • the output reduction rate is (output at 25 ° C, output at 75 ° C) Z (output at 25 ° C) X 100 (%).
  • the substrate having vias obtained by the method of the present invention using the paste of the present invention has excellent heat radiation characteristics.
  • a metal paste having the composition shown in the table below was prepared.
  • Table 11 1 The range of the particle size of each of the above Ag powders was determined by observing 100 particles by SEM, and the lower limit was about the 10th particle size from the minimum particle size force, and the upper limit was the 10th particle size from the maximum particle size. I asked.
  • Each of the above metal pastes was printed on a 96% alumina substrate to a width of 0.5 mm, a length of 100 mm, and a thickness of 12 m after firing, and the specific resistance value of the conductor film obtained by firing at the following peak temperatures: (unit: 10- 6 Ohm ⁇ cm), was measured using a resistivity meter HP3478A (trade name). Table ⁇ -2
  • the circuit board of the present invention is suitable as a board for mounting a semiconductor element that generates heat. is there. According to the method of the present invention, the substrate can be manufactured in a simple process and in a large number of sheets.
  • the metal paste for fine lines of the present invention is suitable for applications requiring fine line patterns, such as liquid crystal displays.

Abstract

A circuit board wherein a recessed part formed on the board is filled with circuit elements such as wiring is provided. A method for manufacturing the circuit board, and a method for manufacturing an excellent via in an aluminum nitride board by using a thick film paste which can be burned at a low temperature are also provided. The circuit board provided by the method is effectively applied to a submount for mounting an optical element. The paste is a thin line forming metal paste which can form a thin line having line/space at 50/50μm or less by screen printing. The paste is suitable for an application wherein a thin line pattern is required, such as a display.

Description

明 細 書  Specification
回路基板、それを製造するための金属ペースト及び方法  Circuit board, metal paste and method for manufacturing the same
技術分野  Technical field
[0001] 本発明は、新規な回路基板及び該回路基板を製造するための方法、さらには該方 法において使用する金属ペーストに関する。詳細には、配線等の回路要素が基板に 形成された凹部内を満たして形成されている回路基板及びそれを製造する方法、低 温で焼成可能な厚膜ペーストを用いて、窒化アル-ミゥム基板中に良好なビアを製 造する方法、及び、ライン Zスペースが 50Z50 /Z m以下の細線を、スクリーン印刷に より形成可能な細線形成用金属ペーストに関する。  The present invention relates to a novel circuit board, a method for manufacturing the circuit board, and a metal paste used in the method. Specifically, a circuit board in which circuit elements such as wiring are formed so as to fill a concave portion formed in the board, a method for manufacturing the same, and an aluminum nitride alloy using a thick film paste that can be fired at a low temperature. The present invention relates to a method for producing a good via in a substrate, and a metal paste for forming a fine line having a line Z space of 50Z50 / Zm or less by screen printing.
背景技術  Background art
[0002] 発光ダイオード及びレーザーダイオード等の光デバイスを搭載するための小型回 路基板として、メタライズ 'サブマウントが使用されている(例えば、特許文献 1)。図 3 に、従来の薄膜サブマウントの例を示す。該サブマウント 11は、絶縁性基板 12と、同 基板上に形成された積層膜 (Ή膜 13ZPt膜 14ΖΉ膜 15)と、該積層膜上に形成され た AgZSnはんだ層 16からなる。絶縁性基板 12としては、窒化アルミニウム等の熱伝 導性が高く放熱性に優れた絶縁材料が使用されている。しかし、これらの絶縁材料 は温度が上昇するにつれ、熱伝導度が急激に低下するため、光デバイスからの発熱 により基板温度が上昇すると放熱性が悪くなるという問題がある。  [0002] A metallized submount is used as a small circuit board for mounting an optical device such as a light emitting diode and a laser diode (for example, Patent Document 1). Figure 3 shows an example of a conventional thin film submount. The submount 11 includes an insulating substrate 12, a laminated film (film 13ZPt film 14 and film 15) formed on the substrate, and an AgZSn solder layer 16 formed on the laminated film. As the insulating substrate 12, an insulating material having high heat conductivity and excellent heat dissipation, such as aluminum nitride, is used. However, since the thermal conductivity of these insulating materials rapidly decreases as the temperature rises, there is a problem that heat dissipation from the optical device deteriorates when the substrate temperature rises due to heat generated from the optical device.
[0003] 上記従来の回路基板は、スパッタリングにより Ti層、 Pt層、及び蒸着により AgZSn層 を順次積層するので、排気系を備えた大掛力りな設備が必要であり、及び、限定され た基板枚数しか一度に処理できない。また、スパッタリングにより金属薄膜を付着させ るためには、予め基板を研磨して、例えば Ra≤ 0.05 mとなるようにしなければならな い。さらに、スパッタリング工程の後には、薄膜金属層をフォトレジスト等によりパター ユングしなければならず、多数の工程が必要である。  [0003] Since the conventional circuit board described above sequentially laminates a Ti layer, a Pt layer, and an AgZSn layer by vapor deposition, a large-scale facility equipped with an exhaust system is required. Only the number of sheets can be processed at a time. In addition, in order to deposit a metal thin film by sputtering, the substrate must be polished in advance so that Ra ≦ 0.05 m, for example. Furthermore, after the sputtering step, the thin film metal layer must be patterned using a photoresist or the like, and a number of steps are required.
[0004] 上述の窒化アルミニウム (A1N)の熱伝導率の低下を補う方法として、基板に孔を開け 、該孔中に高温でも高い熱伝導率を有する金属を埋め込み、サーマルビア (Via)を 形成することが行われて 、る。サーマルビアを形成するための方法としては以下のも のが知られている。第 1の方法は、 A1Nグリーンシートにパンチングにより孔を開け、該 孔の中にタングステン、モリブデン、銅等のペーストを印刷法または押し込み法により 充填し、 1700〜1900°Cで、それらの金属が酸化しない Nや H雰囲気中で共焼結して [0004] As a method of compensating for the decrease in the thermal conductivity of aluminum nitride (A1N), a hole is formed in a substrate, and a metal having a high thermal conductivity even at a high temperature is buried in the hole to form a thermal via (Via). It is done. The following methods are used to form thermal vias. It is known. The first method is to make a hole in the A1N green sheet by punching, and fill the hole with a paste of tungsten, molybdenum, copper, etc. by a printing method or an indentation method, and at 1700 to 1900 ° C, the metal becomes Co-sintering in N or H atmosphere that does not oxidize
2 2  twenty two
形成する方法である(例えば特許文献 2段落 0019)。第 2の方法はグリーンシートを焼 成した後に、レーザー加工もしくは超音波加工等で孔を開け、上記金属ペーストを充 填して、該ペーストを 600〜1400°Cで焼成する方法である(例えば特許文献 2段落 00 20)。第 3の方法は、窒化アルミニウム多層配線基板に孔を開けて、キュアし、該孔の 中に、銅、ニッケル等をメツキ法により析出させて該孔を埋める方法である(特許文献 3第 0019段落)。  It is a method of forming (for example, paragraph 0019 of Patent Document 2). The second method is a method in which a green sheet is fired, holes are formed by laser processing or ultrasonic processing, the metal paste is filled, and the paste is fired at 600 to 1400 ° C (for example, Patent Document 2 paragraph 00 20). A third method is a method in which a hole is formed in an aluminum nitride multilayer wiring substrate and cured, and copper, nickel, and the like are deposited in the hole by plating to fill the hole (Patent Document 3, No. 0019). Paragraph).
[0005] しかし、第 1の高温共焼結法は、プロセスが複雑で長時間を必要とし、得られるビア の位置精度に欠ける。また、タングステン、モリブデン、銅等は、不活性雰囲気中で 焼成しなければ酸ィ匕してしまう。第 3のメツキ工法によるビアは、ピンホールができ易く 、基板との密着性でも問題がある。第 2の方法では、これらの問題は無いが、レーザ 一加工もしくは超音波加工による孔には、ペーストが保持され難ぐペースト焼結後 に基板力も脱離してしまう場合がある。また、通常、厚膜金属ペーストは 850°C以上で の焼成が必要であるが、焼結された A1N基板を、 850°C以上の温度に曝すと A1Nの分 解が起こり、基板の放熱特性が悪くなる。  [0005] However, the first high-temperature co-sintering method has a complicated process, requires a long time, and lacks positional accuracy of the obtained via. Tungsten, molybdenum, copper, and the like are oxidized unless fired in an inert atmosphere. The via formed by the third plating method easily forms a pinhole, and has a problem in adhesion to a substrate. In the second method, these problems are not present, but the substrate force may be released in the hole formed by laser processing or ultrasonic processing after the paste sintering, which makes it difficult to hold the paste. Thick film metal pastes usually need to be fired at 850 ° C or higher, but when the sintered A1N substrate is exposed to a temperature of 850 ° C or higher, A1N decomposes and the heat dissipation characteristics of the substrate Gets worse.
[0006] ところで、プラズマディスプレイ、液晶ディスプレイの高品質ィ匕に伴 、、ガラス基板上 に形成される導体回路の細線ィ匕が求められている。該導体回路を製造するためには 、フォトレジストを UV硬化後にエッチングする方法、又は金属蒸着に依る方法が一般 に使用されている。これらの方法〖こよる場合よりも、細い線幅、例えば数/ z m程度、が 要求される場合には、ナノペーストを印刷する方法が使用される(例えば特許文献 4)  [0006] With the high quality of plasma displays and liquid crystal displays, there is a demand for thin lines of conductor circuits formed on glass substrates. In order to manufacture the conductive circuit, a method of etching a photoresist after UV curing or a method based on metal deposition is generally used. When a finer line width, for example, about several / zm is required than in these methods, a method of printing a nanopaste is used (for example, Patent Document 4).
[0007] しかし、フォトレジストを用いる方法及び金属蒸着法は、多くの工程と高価な設備が必 要であり、製造コストが高い。また、ナノペーストも高価であり、数 10 /z m程度の線幅で 十分である用途には過剰品質となる。 [0007] However, the method using a photoresist and the metal vapor deposition method require many steps and expensive equipment, and the manufacturing cost is high. Nanopaste is also expensive and is of excessive quality for applications where line widths of the order of tens of oz / m are sufficient.
[0008] これに対して、厚膜ペーストは簡易なスクリーン印刷により多数枚取りが可能であり、 経済的である。しかし、従来の厚膜ペーストでは、ガラス基板等の平滑な基板上では 、ライン Zスペース = 100/100 μ m以下、即ち、 100 μ m幅の線が 100 μ mのスペース を置いて形成されているパターン、を形成することはできない。また、従来の厚膜ぺ 一ストは、焼成温度が 850°Cであり、斯カる高温に曝すとガラス基板が変形してしまう 特許文献 1:特開平 2002-368020号公報 [0008] On the other hand, a large number of thick film pastes can be obtained by simple screen printing, which is economical. However, with conventional thick film paste, on a smooth substrate such as a glass substrate, , Line Z space = 100/100 μm or less, that is, a pattern in which a line having a width of 100 μm is formed with a space of 100 μm cannot be formed. Further, the conventional thick film paste has a firing temperature of 850 ° C., and the glass substrate is deformed when exposed to such a high temperature. Patent Document 1: Japanese Patent Application Laid-Open No. 2002-368020
特許文献 2:特開平 9-36274号公報  Patent Document 2: JP-A-9-36274
特許文献 3:特開平 6-13491号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 6-13491
特許文献 4:特開 2002-299833号公報  Patent Document 4: JP-A-2002-299833
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] そこで、本発明の第 1の目的は、放熱性能のより高い基板を、従来の方法よりも簡便 な方法で、且つ、より多数枚取りで製造することができる方法を提供することである。 また、本発明の第 2の目的は、 A1N基板を 850°C以上の高い温度に曝すこと無くビア を形成する方法、及び、 850°Cよりも低い温度で焼成可能されて、ピンホールが無ぐ 且つ、基板力も脱離することの無 、ビアを与える金属ペーストを提供することである。 さら〖こ、本発明の第 3の目的は、ガラス基板等の表面が平滑な基板上でもスクリーン 印刷によりライン Zスペース = 50Ζ50 /ζ πι以下を形成可能であり、且つ、低温焼成が 可能な厚膜ペーストを提供することである。 [0009] Therefore, a first object of the present invention is to provide a method capable of manufacturing a substrate having higher heat dissipation performance in a simpler method than in the conventional method and in a larger number of substrates. is there. A second object of the present invention is to provide a method of forming a via without exposing the A1N substrate to a high temperature of 850 ° C. or more, and a method of firing at a temperature lower than 850 ° C. to eliminate pinholes. Another object of the present invention is to provide a metal paste that provides a via without causing the substrate force to be released. Furthermore, a third object of the present invention is to form a line Z space = 50Ζ50 / ζπι or less by screen printing even on a substrate having a smooth surface, such as a glass substrate, and have a thickness that enables low-temperature firing. It is to provide a film paste.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の第 1の側面は、少なくとも片面に回路が形成された単層基板において、該 回路は、回路要素が該基板の該片面に設けられた凹部内に該凹部を満たすことによ つて、形成されていることを特徴とする単層基板、及び、 [0010] According to a first aspect of the present invention, in a single-layer substrate having a circuit formed on at least one surface thereof, the circuit fills the concave portion in a concave portion provided on one surface of the substrate with circuit elements. Thus, a single-layer substrate characterized by being formed; and
(1)基板の少なくとも片面に、回路要素を形成するための凹部を形成する工程、 (1) forming a recess for forming a circuit element on at least one surface of the substrate,
(2)該凹部内に金属を充填して回路要素を形成する工程、 (2) forming a circuit element by filling a metal in the recess,
を含むことを特徴とする回路基板の製造方法である。  And a method for manufacturing a circuit board.
[0011] 本発明の第 2の側面は、 (1)窒化アルミニウム基板に、サンドブラストによって、ビア 用の孔を形成する工程、  [0011] A second aspect of the present invention provides: (1) a step of forming via holes in an aluminum nitride substrate by sandblasting;
(2)該孔内に金属ペーストをスクリーン印刷する工程、次 ヽで、 (3)充填された金属ペーストをピーク温度 350〜750°Cで焼成する工程、 を含むことを特徴とするビアの製造方法、及び、上記方法において使用する金属べ 一ストであって、夫々、球状粒子であり且つ全粒子数の少なくとも 80%が 0.1〜 1.0 mの粒径を有する銀とパラジウムを含むことを特徴とする金属ペーストである。 (2) a step of screen-printing a metal paste in the holes, (3) firing the filled metal paste at a peak temperature of 350 to 750 ° C, and a method of manufacturing a via, and a metal base used in the above method, A metal paste, which is spherical and at least 80% of the total number of particles contains silver and palladium having a particle size of 0.1 to 1.0 m.
[0012] 本発明の第 3の側面は、全粒子数の少なくとも 80%の数の粒子力0.1〜0.5 μ mの粒 径を有する球状金属粒子を、総重量の 70〜95wt%で含む金属ペーストであって、接 触式表面粗さ計で測定された表面の Ra力^ .2 m以下である基板上に、スクリーン印 刷により形成可能な最小のライン Zスペースが 50Z50 μ m以下であることを特徴とす る金属ペーストである。 [0012] A third aspect of the present invention is a metal paste containing spherical metal particles having a particle force of 0.1 to 0.5 µm in a number of at least 80% of the total number of particles at a total weight of 70 to 95% by weight. The minimum line Z space that can be formed by screen printing on a substrate with a surface Ra force of less than ^ .2 m as measured by a contact-type surface roughness meter is 50Z50 μm or less. It is a metal paste characterized by the following.
発明の効果  The invention's effect
[0013] 上記本発明の基板は、回路要素が基板中に埋設されるので、基板の放熱特性が高 ぐサブマウント基板に好適である。また、本発明の方法によれば、従来の工程に比 ベて、簡易な設備で且つ高 、効率で基板を製造することができる。  [0013] The substrate of the present invention is suitable for a sub-mount substrate having high heat radiation characteristics since the circuit element is embedded in the substrate. Further, according to the method of the present invention, a substrate can be manufactured with simple equipment and with high efficiency and efficiency as compared with the conventional process.
上記本発明の第 2の方法に拠れば、従来より低温の焼成によって、ピンホールが無 ぐ且つ、基板との密着性が良いビアを形成できる。  According to the second method of the present invention, vias having no pinholes and good adhesion to a substrate can be formed by firing at a lower temperature than in the past.
さらに、上記本発明のペーストを使用すれば、ライン Zスペース = 50Ζ50 /ζ πι以下を スクリーン印刷によって形成でき、従来のディスプレイ製造工程を遥かに簡素化する ことができる。  Furthermore, if the paste of the present invention is used, the line Z space = 50 形成 50 / ζπι or less can be formed by screen printing, and the conventional display manufacturing process can be greatly simplified.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本発明の回路基板を示す断面図である。 FIG. 1 is a sectional view showing a circuit board of the present invention.
[図 2]本発明の回路基板の製法を示す工程図である。  FIG. 2 is a process chart showing a method for producing a circuit board of the present invention.
[図 3]従来のサブマウント基板を示す断面図である。  FIG. 3 is a cross-sectional view showing a conventional submount substrate.
[図 4]本発明のビアの製造方法を示す工程図である。  FIG. 4 is a process chart showing a via manufacturing method of the present invention.
[図 5]本発明のペーストにより形成した、ガラス基板上のライン Ζスペース = 20Ζ20 mパターンの膜厚チャートである。  FIG. 5 is a film thickness chart of a line-to-space = 20Ζ20 m pattern on a glass substrate, formed using the paste of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] I.回路某板 [0015] I. Circuit board
以下、図面に基いて本発明の回路基板の実施の形態を説明する。異なる図面にお いて同一の参照番号を付してあるものは、同一の部分を示す。 Hereinafter, embodiments of the circuit board of the present invention will be described with reference to the drawings. Different drawings Those denoted by the same reference numerals indicate the same parts.
[0016] 図 1は本発明の回路基板 1の断面図である。該回路基板 1は、単層基板 2と、該基板 2の少なくとも片面に形成された回路要素 3a〜3dとを含む。図 1に示す例では、回路 要素 3a及び 3dは配線であり、回路要素 3cは半導体素子搭載用パッドである。回路 要素 3cの上に半田層 4を備え、その上に光素子を搭載する。  FIG. 1 is a sectional view of a circuit board 1 of the present invention. The circuit board 1 includes a single-layer board 2 and circuit elements 3a to 3d formed on at least one surface of the board 2. In the example shown in FIG. 1, the circuit elements 3a and 3d are wirings, and the circuit element 3c is a semiconductor element mounting pad. A solder layer 4 is provided on the circuit element 3c, and an optical element is mounted thereon.
[0017] 基板 2としては、公知の基板を使用することができる。例えば、酸ィ匕ベリリウム、酸ィ匕ァ ルミ-ゥム、酸化マグネシウム、酸ィ匕ジルコニウム、酸化ケィ素、炭化ケィ素、窒化ケ ィ素、窒化ホウ素、窒化アルミニウム、ガラス等の粉末成形基板及びグリーンシート基 板が挙げられる。回路要素の位置精度が高い点で、粉末成形基板が好ましい。特に 、サブマウント用途には、熱伝導度が高い酸化ベリリウム、酸化マグネシウム、窒化ケ ィ素、炭化ケィ素、窒化アルミニウム、又は、酸ィ匕アルミニウムが好ましく使用される。 また、フラットパネル背面用途には、ガラス基板が使用される。  As the substrate 2, a known substrate can be used. For example, powder molded substrates of beryllium, benzium, silicon oxide, zirconium oxide, silicon oxide, silicon carbide, silicon nitride, boron nitride, aluminum nitride, glass, and the like; Green sheet substrate. A powder molded substrate is preferable because the positional accuracy of the circuit element is high. In particular, for submount applications, beryllium oxide, magnesium oxide, silicon nitride, silicon carbide, aluminum nitride, or aluminum oxide with high thermal conductivity is preferably used. Further, a glass substrate is used for flat panel back use.
[0018] 基板 2は、公知の方法により製造されたものであってよい。例えばシート成形基板又 はスライス基板を使用することができる。また、単層グリーンシートを焼成して製造され た基板であってもよい。  The substrate 2 may be manufactured by a known method. For example, a sheet-formed substrate or a slice substrate can be used. Further, a substrate manufactured by firing a single-layer green sheet may be used.
[0019] 基板 2の厚みは、用途に応じて適宜選択されるが、典型的には 50 μ m〜1000 μ mで あり、サブマゥント用途には50 iu m〜500 iu mが好適でぁる。また、薄膜蒸着法による 場合と異なり、基板の表面粗度については特に制限はなぐ 1½< 2 /ζ πι程度であれば 十分である。また、平滑性を付与する為のグレーズ処理を施した基板でも良い。 [0019] The thickness of the substrate 2 is appropriately selected depending on the application, typically a 50 μ m~1000 μ m, 50 i um~500 i um is preferably Dearu the Sabumaunto applications. Also, unlike the case of the thin film deposition method, the surface roughness of the substrate is not particularly limited and is about 1½ <2 / ζπι. Further, a substrate which has been subjected to a glaze treatment for imparting smoothness may be used.
[0020] 回路要素 3には、配線、半田パッド、各種半導体素子搭載用パッド、ワイヤーボンデ イング用ランド等が包含される。また、回路要素 3は基板 2の片面だけでなぐ表面及 び裏面の双方に在ってもょ 、。  [0020] The circuit element 3 includes wiring, solder pads, pads for mounting various semiconductor elements, lands for wire bonding, and the like. In addition, the circuit element 3 may be present on both the front surface and the back surface of the substrate 2 on only one surface.
[0021] 回路要素 3は、実質的に金属力 なるが、該金属の導電性もしくは熱伝導性を損な わない限度で絶縁物質、例えばガラスもしくは誘電体等を含んでよい。該金属として は、金、銀、銅、白金、パラジウム、及び、これらの合金、アルミニウム、ニッケル、並び に、タングステンが包含され、回路要素及び搭載する素子の種類に応じて、好適な 金属が適宜選択される。例えば、配線には銀、銅、アルミニウムが、半導体素子搭載 用パッドとしては銀、金が好ましい。 [0022] 本発明の回路基板 1は、回路要素 3が単層基板 2の少なくとも片面側に設けられた凹 部内に、該凹部の内側側面及び底面に接し且つ該凹部を満たして形成されているこ とを特徴とする。単層基板内に回路要素を有する点で、従来のアルミニウム配線ギヤ ップフィル法、又は銅ダマシン法等により製造された多層基板と相違する。このように 単層であるので、多層よりも薄くすることができるのは勿論のこと、配線間を誘電体で 埋める工程も不要であり、後述するように、簡易な工程で製造することができる。 [0021] The circuit element 3 is substantially made of a metal, but may include an insulating material, for example, glass or a dielectric, as long as the conductivity or heat conductivity of the metal is not impaired. Examples of the metal include gold, silver, copper, platinum, palladium, and alloys thereof, aluminum, nickel, and tungsten. A suitable metal is appropriately selected depending on the type of a circuit element and a mounted element. Selected. For example, silver, copper, and aluminum are preferable for wiring, and silver and gold are preferable for semiconductor element mounting pads. In the circuit board 1 of the present invention, the circuit element 3 is formed in a recess provided on at least one side of the single-layer board 2 so as to contact the inner side surface and the bottom surface of the recess and fill the recess. This is the feature. It differs from a multilayer substrate manufactured by a conventional aluminum wiring gap-fill method or a copper damascene method in that it has circuit elements in a single-layer substrate. As described above, since it is a single layer, it can be made thinner than a multilayer, and a step of filling a space between wirings with a dielectric material is unnecessary, and it can be manufactured by simple steps as described later. .
[0023] 該凹部の基板断面方向の形状は特に限定されず、矩形、正方形、 V字状、 U字状等 であってよい。金属と基板との密着性の観点から、矩形状又は U字形状であることが 好ましい。該凹部の基板断面方向の深さは、裏面回路との絶縁性、及び基板の強度 が損なわれない範囲であればよぐ回路要素の種類、基板材料、及び回路要素を構 成する金属、基板に要求される熱伝導度に応じて適宜調整することができる。  The shape of the concave portion in the cross-sectional direction of the substrate is not particularly limited, and may be rectangular, square, V-shaped, U-shaped, or the like. From the viewpoint of adhesion between the metal and the substrate, the shape is preferably rectangular or U-shaped. The depth of the concave portion in the cross-sectional direction of the substrate is determined by the type of the circuit element, the material of the substrate, the metal constituting the circuit element, Can be appropriately adjusted according to the thermal conductivity required for the above.
[0024] 回路要素 3が基板 2内に形成された凹部内を満たして形成されているので、該回路 要素を構成する金属の高い熱伝導度によって、基板全体の熱伝導度が高められる。 特に基板の温度が高くなると、この効果が顕著となる。従来の基板では、基板上に搭 載された素子、例えば半導体レーザー、からの発熱によって基板の温度が上昇され た際に、基板を構成する絶縁体の熱伝導度は大きく低下する。しかし、金属の熱伝 導度はほとんど変わらないので、本発明の基板は、該金属により絶縁体が置き換えら れている分、基板全体の熱伝導度の低下が少ない。また、基板上に搭載された素子 力もの熱が、凹部の側面からも、速やかに基板 2内に拡散される。基板の放熱性を高 めるために、基板内のハ-カム状空間部に金属を充填した放熱基板が知られている 力 S (例えば、特開平 2003-234441号公報)、本発明の基板は、そのような特種な形状 の空間部を設けることなぐ又、回路要素が放熱要素をも兼用する点で優れる。但し 、本発明の基板 1においても、回路要素 3に加えて、放熱用ビアもしくは導電ビアを 備えることを排除するものではなぐ特に該放熱用ビアについては、詳細に後述する  [0024] Since the circuit element 3 is formed so as to fill the recess formed in the substrate 2, the high thermal conductivity of the metal constituting the circuit element enhances the thermal conductivity of the entire substrate. This effect is particularly remarkable when the temperature of the substrate is increased. In a conventional substrate, when the temperature of the substrate is increased by heat generated from an element mounted on the substrate, for example, a semiconductor laser, the thermal conductivity of an insulator constituting the substrate is significantly reduced. However, since the thermal conductivity of the metal is hardly changed, in the substrate of the present invention, since the insulator is replaced by the metal, the decrease in the thermal conductivity of the entire substrate is small. Further, the heat of the element mounted on the substrate is quickly diffused into the substrate 2 also from the side surface of the concave portion. In order to enhance the heat dissipation of the board, a heat dissipation board in which a metal is filled in a honeycomb-shaped space in the board is known. The force S (for example, JP-A-2003-234441) is known. Is excellent in that it does not provide such a specially shaped space portion and that the circuit element also serves as a heat dissipation element. However, the substrate 1 of the present invention does not exclude the provision of the heat dissipation via or the conductive via in addition to the circuit element 3. Particularly, the heat dissipation via will be described later in detail.
[0025] 上述の放熱性の観点からは、本発明の回路要素 3は、その上面が基板 2の表面より も上であってもよいが、回路を薄くできるので、回路要素 3の表面が、基板 2の表面と 略共表面、即ち、回路要素 3の表面が基板 2の表面内になるように平坦ィ匕されること が好ましい。 [0025] From the viewpoint of the above-described heat dissipation, the circuit element 3 of the present invention may have an upper surface higher than the surface of the substrate 2, but since the circuit can be made thinner, the surface of the circuit element 3 has Substantially co-surface with the surface of the substrate 2, that is, flattened so that the surface of the circuit element 3 is within the surface of the substrate 2. Is preferred.
[0026] 次に、図 2を用いて本発明の回路基板の製造方法を説明する。まず、(1)セラミック 基板 2を準備する。次いで、(2)基板 2に回路要素用の凹部 5を形成する。形成する 方法としては、サンドブラスト、レーザー加工、電子ビーム加工、エッチングを挙げるこ とができる。好ましくは、サンドブラストが使用される。レーザー加工又は電子ビーム 加工後に、エッチングを行い、溶融された表面を適度に粗くしてもよい。また、本工程 において、所望によりサーマルビア又は導電ビア用の孔を形成してもよい。  Next, a method for manufacturing a circuit board according to the present invention will be described with reference to FIG. First, (1) a ceramic substrate 2 is prepared. Next, (2) a recess 5 for a circuit element is formed in the substrate 2. Examples of the forming method include sandblasting, laser processing, electron beam processing, and etching. Preferably, sandblasting is used. After laser processing or electron beam processing, etching may be performed to make the molten surface appropriately rough. In this step, a hole for a thermal via or a conductive via may be formed as desired.
[0027] 図 2の(3)において、得られた凹部 5内に金属を充填する。充填の方法としては、印 刷、メツキ、溶射、蒸着、及び、スパッタリング等がある。印刷としては、スクリーン印刷 、インクジェット印刷、オフセット印刷、金属箔パターンを用いた転写印刷、及び、ディ スペンサ一法等が挙げられる。メツキとしては、電気メツキ、無電解メツキ、蒸着メツキ、 及び、合金メッキ等が挙げられる。溶射としては、フレーム溶射、アーク溶射、プラス、 マ溶射、及び、レーザー溶射等が挙げられる。また、金属を感光性榭脂ペーストの形 態で基板に塗布して、凹部内に回路要素をパターユングにより形成してもよい。これ らの方法のなかでも、スクリーン印刷は簡易な装置で、大面積のファインパターンを 形成できる点で好ましい。  In (3) of FIG. 2, a metal is filled in the obtained recess 5. Filling methods include printing, plating, thermal spraying, vapor deposition, and sputtering. Examples of printing include screen printing, inkjet printing, offset printing, transfer printing using a metal foil pattern, and a dispenser method. Examples of the plating include an electric plating, an electroless plating, a vapor deposition plating, and an alloy plating. Examples of the thermal spraying include flame thermal spraying, arc thermal spraying, plus, thermal spraying, and laser thermal spraying. Alternatively, a metal may be applied to the substrate in the form of a photosensitive resin paste, and the circuit element may be formed in the recess by pattern jungling. Among these methods, screen printing is preferable because a simple apparatus can be used to form a large-area fine pattern.
[0028] 図 2の(4)において、充填された金属から回路要素 3を形成する。形成方法は、金属 の充填方法に応じて異なる。メツキ、蒸着、スパッタリング、又は溶射により金属を充 填した場合には、充填と同時に回路要素 3が形成されるので、図 2において(3)と (4) とが同じ工程となる。印刷、例えばスクリーン印刷、により金属を充填した場合には、 充填された金属ペーストを乾燥し、通常、 300°C以上で焼成してメタライズする。ナノ サイズの金属微粒子を含むインクを印刷した場合には、 300°C未満でメタライズが可 能である。インクジェット印刷により金属を充填した場合には、インクの乾燥及び焼き 付けをしてメタライズする。  In (4) of FIG. 2, a circuit element 3 is formed from the filled metal. The forming method differs depending on the metal filling method. When the metal is filled by plating, vapor deposition, sputtering, or thermal spraying, the circuit element 3 is formed at the same time as the metal is filled. Therefore, in FIG. 2, steps (3) and (4) are the same steps. When the metal is filled by printing, for example, screen printing, the filled metal paste is dried and usually fired at 300 ° C. or more to metallize. When printing an ink containing nano-sized metal particles, metallization is possible at less than 300 ° C. When metal is filled by inkjet printing, dry and bake the ink and metallize it.
[0029] 所望により、(5)基板を研磨して回路要素 3を基板面と略共表面とする。研磨方法と しては、平面研磨、ロータリー研磨等の砲石研磨、及び、 CMP等が挙げられる。研磨 方法は、基板及び金属の材料に応じて、適宜選択されるが、好ましくは砥石研磨が 使用される。 [0030] 上記本発明の方法は、単層基板だけでなぐ多層基板の最上層の基板にも適用でき る。また、基板としてグリーンシートを用いた場合には、図 2の工程(1)において基板 のみを焼成しても、工程 (4)において回路要素と共焼成してもよい。但し、グリーンシ ートから得られる回路は、粉末成形基板から得られる回路に比べて、位置精度に劣 る。 If desired, (5) the substrate is polished to make the circuit element 3 substantially co-surface with the substrate surface. Examples of the polishing method include polished stone such as plane polishing and rotary polishing, and CMP. The polishing method is appropriately selected depending on the material of the substrate and the metal, but preferably, grinding stone polishing is used. [0030] The above-described method of the present invention can also be applied to the uppermost substrate of a multi-layer substrate that is not limited to a single-layer substrate. When a green sheet is used as the substrate, only the substrate may be fired in step (1) of FIG. 2 or may be co-fired with the circuit element in step (4). However, the circuit obtained from the green sheet is inferior in positional accuracy to the circuit obtained from the powder molded substrate.
[0031] 以上の方法により得られた回路基板は、任意の用途に使用可能であるが、なかでも、 高い放熱性が要求される用途に好適であり、例えば、光デバイスを搭載するための サブマウント、及び、高周波素子搭載用基板として好適である。また、スクリーン印刷 によれば、大面積基板を製造することができるので、大面積フラットパネル用背面基 板としても好適である。  [0031] The circuit board obtained by the above method can be used for any purpose, but is particularly suitable for applications requiring high heat dissipation. For example, the circuit board for mounting an optical device can be used. It is suitable as a mount and a substrate for mounting a high-frequency element. Further, according to screen printing, a large-area substrate can be manufactured, so that it is also suitable as a large-area flat panel rear substrate.
[0032] 次に、上記本発明の方法において、特にスクリーン印刷法において、好ましく使用さ れる金属ペーストについて説明する。金属ペーストは、金属粉体、無機結合剤、有機 榭脂媒体、及び溶剤からなる。これら各成分の量は、基板、金属粉体の性状、配線 パターンのライン Zスペース幅等に応じて適宜調整することができる力 本発明の方 法における典型的な組成は、ペースト総重量に対して、金属分が 40〜95重量%、好 ましくは 70〜94重量%、より好ましくは 80〜94重量%、無機結合剤が 0〜20重量%、好 ましくは 0.5〜10重量%、より好ましくは 0.5〜5重量%、有機榭脂媒体が 2〜20重量%、好 ましくは 2〜10重量%、より好ましくは 2〜6重量%、及び溶剤が 3〜30重量%、好ましく は 3〜25重量%、より好ましくは 5〜10重量 %程度である。  Next, a metal paste preferably used in the method of the present invention, particularly in a screen printing method, will be described. The metal paste is composed of a metal powder, an inorganic binder, an organic resin medium, and a solvent. The amount of each of these components can be appropriately adjusted according to the properties of the substrate, the metal powder, the line Z space width of the wiring pattern, etc. A typical composition in the method of the present invention is based on the total weight of the paste. The metal content is 40-95% by weight, preferably 70-94% by weight, more preferably 80-94% by weight, the inorganic binder is 0-20% by weight, preferably 0.5-10% by weight, More preferably 0.5 to 5% by weight, organic resin medium is 2 to 20% by weight, preferably 2 to 10% by weight, more preferably 2 to 6% by weight, and solvent is 3 to 30% by weight, preferably It is about 3 to 25% by weight, more preferably about 5 to 10% by weight.
[0033] 金属としては、上述した種々のものを使用することができ、好ましくは金、銀、ノ ジ ゥム、又はこれらの合金が使用される。例えば、窒化アルミニウム基板中に、導電性 回路要素を形成するためには、銀とパラジウムを重量比で 100: 0〜80: 20の範囲で使 用することが好ましい。銀とパラジウムは、共沈紛を使用してもよい。  As the metal, any of the above-mentioned metals can be used, and preferably, gold, silver, nickel, or an alloy thereof is used. For example, in order to form a conductive circuit element in an aluminum nitride substrate, it is preferable to use silver and palladium in a weight ratio of 100: 0 to 80:20. Silver and palladium may use coprecipitated powder.
[0034] 金属粒子は球状であることが好ましぐ且つ、全粒子数の少なくとも 80%の粒子力 0.  [0034] The metal particles are preferably spherical and have a particle force of at least 80% of the total number of particles.
1〜0.5 μ m、好ましくは 0.1〜0.3 μ mの粒径を有する。即ち、粒径が最小粒径以上で あって 0.1 μ m未満である粒子個数が全粒子個数の 10%未満であり、粒径 0.5 μ m、好 ましくは 0.3 m、を超え最大粒径以下である粒子個数が全粒子数の 10%未満である 。斯カる粒径分布を有する粒子の例として、単分散微細紛が好ましい。より好ましくは 、単分散で且つ高結晶性の微細紛が使用される。高結晶性微細紛は結晶度の高い 粒子であり、表面の凹凸が少ない事力 表面活性が低ぐ有機バインダーに対する 濡れ性が良い。従って、ペースト中の金属分を高くしても、安定して印刷可能な、適 正な粘性を有する金属ペーストとなり得る。なお、本発明において粒径は、電子顕微 鏡写真上で約 100粒の粒子について測定し、最小粒径から 10番目の粒径と最大粒 径から 10番目の粒径を夫々下限値及び上限値とした。なお、粒子は完全な球形では なぐ所謂多面体であるので、粒径には約 10%程度の誤差が含まれることが了解され るべきである。上記微細紛にカ卩えて、少なくとも 80%の粒子力 0.3〜4 /ζ πι、好ましく は 0.5〜2 μ m、の粒径を有する球状紛を含んでもよい。 It has a particle size of 1 to 0.5 μm, preferably 0.1 to 0.3 μm. That is, the number of particles having a particle size equal to or greater than the minimum particle size and less than 0.1 μm is less than 10% of the total number of particles, and exceeds 0.5 μm, preferably 0.3 m, and is less than the maximum particle size. Is less than 10% of the total number of particles. As an example of particles having such a particle size distribution, a monodispersed fine powder is preferable. More preferably Monodisperse and highly crystalline fine powder is used. Highly crystalline fine powders are particles with high crystallinity, and have little surface irregularities. Low surface activity. Good wettability with organic binders. Therefore, even if the metal content in the paste is increased, a metal paste having an appropriate viscosity that can be printed stably can be obtained. In the present invention, the particle size is measured for about 100 particles on an electron micrograph, and the lower limit value and the upper limit value of the 10th particle size from the minimum particle size and the 10th particle size from the maximum particle size are respectively determined. And It should be understood that the particle is not a perfect sphere but a so-called polyhedron, so the particle size contains an error of about 10%. The fine powder may contain a spherical powder having a particle strength of at least 80% of 0.3 to 4 / ζπι, preferably 0.5 to 2 μm.
[0035] 11.ビアの觀告方法及びビアフィル用厚蹲ペースト  11. Via Inspection Method and Atsushi Paste for Via Fill
本発明の第 2の側面は、ビアの製法及び該方法で使用するペーストに関する。本 発明の方法を、図 4を参照して説明する。最初に、(1)窒化アルミニウム基板 1を準備 する。窒化アルミニウム基板 1は、公知の粉末成形法、単層もしくは 2層以上のダリー ンシートを焼成したものであってもよい。基板の厚みは用途に応じて適宜選択するこ とができる力 典型的には 100〜300 μ mである。  A second aspect of the present invention relates to a method for producing a via and a paste used in the method. The method of the present invention will be described with reference to FIG. First, (1) an aluminum nitride substrate 1 is prepared. The aluminum nitride substrate 1 may be one obtained by firing a single-layer or two or more-layer daline sheets by a known powder molding method. The thickness of the substrate is a force that can be appropriately selected according to the application, and is typically 100 to 300 μm.
[0036] 次いで、(2)サンドブラストによって基板 2にビア孔を形成する。好ましくは、(2a)—の 面カゝら所定の深さまで切削した後、(2b)基板を裏返して他の面から該切削された箇 所に相当する部分を再びサンドブラストして、孔を貫通することが好ましい。その理由 は、サンドブラストによる孔はテーパー状になるので、一の面からのみサンドブラスト すると、基板が厚い場合等、開口径が大きくなりすぎる場合があるからである。両面か らサンドブラストすると、略鼓形状の孔となるが、驚くことに、該孔にペーストを印刷す ると、ペーストからの脱泡がよりスムーズになることが見出された。さらに、サンドブラス トにより切削された表面は、ある程度粗くなつているので、ペーストとの密着性も高まる  Next, (2) via holes are formed in the substrate 2 by sandblasting. Preferably, after cutting to a predetermined depth from the surface of (2a), (2b) the substrate is turned upside down and another portion corresponding to the cut portion is sandblasted again from another surface to penetrate the hole. Is preferred. The reason is that the holes formed by sandblasting are tapered, so that if only one surface is sandblasted, the opening diameter may be too large, such as when the substrate is thick. Sandblasting from both sides results in a substantially drum-shaped hole, but surprisingly, it has been found that printing the paste in the hole results in smoother defoaming from the paste. Furthermore, the surface cut by sandblasting is roughened to some extent, so that the adhesion with the paste is also improved.
[0037] (3)得られたビア孔に金属ペーストをスクリーン印刷により充填する。スクリーン印刷 は、簡易な装置で、大面積のファインパターンを形成できるので好都合である。印刷 に使用するスクリーン、装置等は、通常、ビアの印刷に使用されているものであってよ い。次いで、焼成ピーク温度 350〜750°C、好ましくは 500〜650°Cで大気焼成して、メ タラィズしてビアを得る。該ビアは、サーマルビアに限られず、導電ビアを兼ねていて ちょい。 (3) Fill the obtained via holes with a metal paste by screen printing. Screen printing is convenient because a large area fine pattern can be formed with a simple apparatus. The screens, devices, etc. used for printing may be those normally used for printing vias. Then, it is fired in air at a firing peak temperature of 350 to 750 ° C, preferably 500 to 650 ° C, Tall it and get a via. The via is not limited to a thermal via but may also serve as a conductive via.
[0038] (4)基板の両面もしくは片面を研磨して、所定の厚みにする。研磨方法としては、平 面研磨、ロータリー研磨等の砲石研磨、及び、 CMP等が挙げられ、好ましくは砲石研 磨が使用される。  (4) Both sides or one side of the substrate are polished to a predetermined thickness. Examples of the polishing method include polished stone such as flat surface polishing and rotary polishing, and CMP. Preferably, polished stone is used.
[0039] 次に、上記本発明の方法において使用される金属ペーストについて説明する。金属 としては、空気中で焼成可能な高熱伝導性の貴金属、例えば、金、白金、銀、パラジ ゥム、ロジウム、及びこれらの合金が挙げられる。好ましくは、銀、パラジウム及びこれ らの合金が使用される。金、白金、又はロジウムが使用される場合には、これらの重 量の合計が金属総重量の 2重量%以下であることが好ましい。より好ましくは、銀:パ ラジウムが重量比 80〜100: 0〜20で使用される。  Next, the metal paste used in the method of the present invention will be described. Metals include noble metals with high thermal conductivity that can be fired in air, such as gold, platinum, silver, palladium, rhodium, and alloys thereof. Preferably, silver, palladium and alloys thereof are used. When gold, platinum, or rhodium is used, it is preferable that the total of these weights is 2% by weight or less of the total weight of the metal. More preferably, silver: palladium is used in a weight ratio of 80-100: 20.
[0040] 好ましくは、上記各金属の球状微細紛が使用される。例えば銀、パラジウム、金は、 その全粒子数の少なくとも 80%の数の粒子力 0.1〜1.0 /ζ πι、好ましくは 0.1〜0.8 /ζ πι の粒径を有する。即ち、粉の粒径が 0.1 m未満である粒子個数が全粒子個数の 10 %未満であり、粒径 1.0 m、好ましくは 0.8 mを超える粒子個数が全粒子数の 10% 未満である。斯カる粒径分布を有する粒子の例として、単分散微細紛が挙げられる。 また、白金、ロジウムは、その全粒子数の少なくとも80%の数の粒子カ^.1〜1.0 !^ 好ましくは 0.1〜0.6 /ζ πιの粒径を有する。より好ましくは、高結晶性単分散微細紛が 使用される。高結晶性紛は、結晶度の高い粒子であり、形状が球に近ぐ後述する有 機バインダーに対する濡れ性が高いので、金属ペーストの固形分を高くすることがで きる。  [0040] Preferably, spherical fine powder of each of the above metals is used. For example, silver, palladium, and gold have a particle force of at least 80% of the total particle number of 0.1 to 1.0 / ζπι, preferably 0.1 to 0.8 / ζπι. That is, the number of particles having a particle diameter of less than 0.1 m is less than 10% of the total number of particles, and the number of particles having a particle diameter of 1.0 m, preferably more than 0.8 m is less than 10% of the total number of particles. An example of particles having such a particle size distribution is a monodispersed fine powder. Platinum and rhodium have at least 80% of the total number of particles ^ .1 ~ 1.0! ^ It preferably has a particle size of 0.1 to 0.6 / ζπι. More preferably, highly crystalline monodispersed fine powder is used. The highly crystalline powder is a particle having a high degree of crystallinity, and has a high wettability with respect to an organic binder having a shape close to a sphere, which will be described later. Therefore, the solid content of the metal paste can be increased.
[0041] 上記単分散微細粉に加えて、粒径が 0.5〜4.0 /z m、好ましくは 1.0 m超 2 m以下の 、銀、金、パラジウム各球状紛、又は、銀とパラジウムの合金の球状紛を、総金属粉 重量の 0〜80%で含んでよい。斯かる球状紛を加えることで、金属ペースト焼成後の クラック、剥がれ等の構造欠陥を抑制することができる。配合量はビア径のサイズ、深 さに応じて、適宜設定することが好ましい。なお、本発明において粒径は、電子顕微 鏡写真上で約 100粒の粒子について測定し、最小粒径から 10番目の粒径と最大粒 径から 10番目の粒径を夫々下限値及び上限値とした。なお、当業界において周知で あるように、粒子は完全な球形ではなぐ所謂、多面体であるので、粒径には約 10% 程度の誤差が含まれることが了解されるべきである。 [0041] In addition to the above-mentioned monodispersed fine powder, silver, gold, palladium spherical powders, or silver-palladium alloy spherical powders having a particle size of 0.5 to 4.0 / zm, preferably more than 1.0 m and not more than 2 m From 0 to 80% of the total metal powder weight. By adding such spherical powder, structural defects such as cracks and peeling after firing of the metal paste can be suppressed. It is preferable to set the compounding amount appropriately according to the size and depth of the via diameter. In the present invention, the particle size is measured for about 100 particles on an electron micrograph, and the lower limit value and the upper limit value of the 10th particle size from the minimum particle size and the 10th particle size from the maximum particle size are respectively determined. And It is well known in the industry. It should be understood that, as some particles do not have a perfect sphere, they are so-called polyhedrons, and that the particle size contains an error of about 10%.
[0042] 上記各金属は共沈紛であってもよい。また、ノラジウム、白金、ロジウムは、それらの レジネートを使用してもよい。  [0042] Each of the above metals may be coprecipitated powder. Noradium, platinum and rhodium may use their resinates.
[0043] 上記金属成分は、ペースト総重量の 70〜95wt%、望ましくは 82〜94wt%配合される 。残部は、高分子有機バインダー、例えばェチルセルロース、アクリル榭脂、 PVB、ポ リエステル榭脂、及び、ロジン変性榭脂等と、溶剤、例えばタービネオール、プチルカ ノレビトーノレ、ブチルカルビトールアセテート、ェチルへキサノール、ミネラルスピリット' 等、及び、可塑剤 (DBP、 TCP、 DEP)から成る。  [0043] The metal component is blended in an amount of 70 to 95 wt%, preferably 82 to 94 wt% of the total weight of the paste. The remainder is composed of a high-molecular organic binder such as ethyl cellulose, acrylic resin, PVB, polyester resin, and rosin-modified resin, and a solvent such as turbineol, butyl canolebitone, butyl carbitol acetate, ethyl hexanol, and the like. Consisting of mineral spirits' and plasticizers (DBP, TCP, DEP).
[0044] さら〖こ、無機添加物として、ペースト総重量の 1 wt%以下の量の、 A1 0、 ZrO , A1N  [0044] Further, as inorganic additives, A10, ZrO, A1N in an amount of 1 wt% or less of the total weight of the paste.
2 3 2 2 3 2
、 TiO、 SiC等の無機酸化物、無機窒化物、無機炭化物、或いはガラス粉末等を添加Addition of inorganic oxides such as, TiO, SiC, inorganic nitride, inorganic carbide, or glass powder
2 2
してもよい。これらの無機添加物は、粉末としてペースト中に混合する方法以外に、 上記貴金属粉の表面上に 0.5 μ m以下の微粉として物理吸着させる方法、 或いはこ れらの無機物をレジネート等の有機金属として使用する方法がある。  May be. These inorganic additives may be mixed with the paste as a powder, or may be physically adsorbed as fine powder of 0.5 μm or less on the surface of the noble metal powder, or these inorganic substances may be used as an organic metal such as resinate. There are ways to use it.
[0045] 該ペーストを用いて、本発明の方法により得られる A1N基板は、高い放熱性が要求さ れる用途に好適であり、例えば、光デバイスを搭載するためのサブマウント、及び、高 周波素子搭載用基板として好適である。  [0045] The A1N substrate obtained by the method of the present invention using the paste is suitable for applications requiring high heat dissipation, for example, a submount for mounting an optical device, and a high-frequency element. It is suitable as a mounting substrate.
[0046] III.細線形成用余属ペースト  [0046] III. Surplus paste for forming fine wires
本発明の第 3の側面は、細線用金属ペーストである。該金属ペーストに含まれる金属 粒子は球状粒子であり、全粒子数の少なくとも 80%の数の粒子が 0.1〜0.5 μ m、好ま しくは 0.1〜0.3 μ mの粒径を有する。即ち、粒径が最小粒径以上 0.1 μ m未満である 粒子個数が全粒子数の 10%未満であり、粒径 0.5 μ m、好ましくは 0.3 μ m、を超え最 大粒径以下である粒子個数が全粒子数の 10%未満である。斯かる粒径分布を有す る粒子の例として、単分散微細紛が挙げられる。より好ましくは、単分散で且つ高結 晶性の微細紛が使用される。高結晶性微細紛は結晶度の高い粒子であり、表面の 凹凸が少ない事力 表面活性が低ぐ有機バインダーに対する濡れ性が良い。従つ て、ペースト中の金属分を高くしても、安定して印刷可能な、適正な粘性を有する金 属ペーストとなり得る。なお、本発明において粒径は、電子顕微鏡写真上で約 100粒 の粒子について測定し、最小粒径から 10番目の粒径と最大粒径から 10番目の粒径 を夫々下限値及び上限値とした。なお、当業界において周知であるように、球状粒子 は完全な球形ではなぐ所謂多面体であるので、粒径には約 10%程度の誤差が含ま れることが了解されるべきである。 A third aspect of the present invention is a metal paste for fine wires. The metal particles contained in the metal paste are spherical particles, and at least 80% of the total number of particles have a particle size of 0.1 to 0.5 μm, preferably 0.1 to 0.3 μm. That is, the number of particles having a particle diameter of not less than the minimum particle diameter and less than 0.1 μm is less than 10% of the total number of particles, and the particle diameter is more than 0.5 μm, preferably 0.3 μm and less than the maximum particle diameter. The number is less than 10% of the total number of particles. An example of particles having such a particle size distribution is a monodispersed fine powder. More preferably, monodispersed and highly crystalline fine powder is used. Highly crystalline fine powders are particles with high crystallinity, and have little surface irregularities. Low surface activity and good wettability to organic binders. Therefore, even if the metal content in the paste is increased, a metal paste having an appropriate viscosity that can be printed stably can be obtained. In the present invention, the particle size is about 100 particles on an electron micrograph. Were measured, and the 10th particle size from the minimum particle size and the 10th particle size from the maximum particle size were defined as the lower limit and the upper limit, respectively. It should be understood that, as is well known in the art, a spherical particle is not a perfect sphere but a so-called polyhedron, so that the particle size includes an error of about 10%.
[0047] 金属としては、空気中で焼成可能な貴金属が好ましぐ例えば金、白金、銀、パラジ ゥム、ロジウム、及びこれらの合金が挙げられる。より好ましくは、銀、パラジウム及びこ れらの合金が使用され、最も好ましくは、銀:パラジウムが重量比 80〜100 : 0〜20で使 用される。銀とパラジウムの共沈紛を使用してもよい。  Examples of the metal include gold, platinum, silver, palladium, rhodium, and alloys thereof, which are preferably noble metals that can be fired in air. More preferably, silver, palladium and their alloys are used, most preferably silver: palladium is used in a weight ratio of 80-100: 0-20. Coprecipitated powder of silver and palladium may be used.
[0048] 上記金属成分は、ペースト総重量の 70〜95wt%、望ましくは 82〜94wt%を占める。  [0048] The metal component accounts for 70 to 95 wt%, preferably 82 to 94 wt% of the total weight of the paste.
残部は、高分子有機バインダー、例えばェチルセルロース、アクリル榭脂、 PVB、ポリ エステル榭脂、及び、ロジン変性榭脂等と、溶剤、例えばタービネオール、プチルカ ノレビトーノレ、ブチルカルビトールアセテート、ェチルへキサノール、ミネラルスピリット. 等、及び、可塑剤 (DBP、 TCP、 DEP)から成る。  The remainder is composed of a high molecular organic binder such as ethyl cellulose, acrylic resin, PVB, polyester resin, and rosin-modified resin, and a solvent such as terbineol, butyl canolebitone, butyl carbitol acetate, ethyl hexanol, Mineral spirit. Etc. and plasticizers (DBP, TCP, DEP).
[0049] さらに、無機添加物として、ペースト総重量の 10wt%以下、好ましくは 5wt%以下の 量の、ガラス、 Bi O , PbO, ZnO、 Fe O 、 MnO等を添カ卩してもよい。添カ卩するガラス  [0049] Further, as an inorganic additive, glass, BiO, PbO, ZnO, FeO, MnO or the like may be added in an amount of 10 wt% or less, preferably 5 wt% or less of the total weight of the paste. A glass of soup
2 3 2 3 2  2 3 2 3 2
の物性としては、ガラス転移点 300°C〜450°Cで軟化点 350°C〜550°Cのものが好まし い。該ガラス転移点、軟ィ匕点を満足するものであればガラスの組成は特に限定され ない。これらの無機添加物は、粉末としてペースト中に混合する方法以外に、上記貴 金属粉の表面上に 0.5醒以下の微粉として物理吸着させる方法がある。  As the physical properties, those having a glass transition point of 300 ° C to 450 ° C and a softening point of 350 ° C to 550 ° C are preferable. The composition of the glass is not particularly limited as long as the glass transition point and the softening point are satisfied. In addition to the method of mixing these inorganic additives into the paste as a powder, there is a method of physically adsorbing on the surface of the above-mentioned noble metal powder as fine powder having a particle diameter of 0.5 or less.
[0050] 本発明のペーストは、公知の方法、例えばロールミルで固形分と高分子有機バイン ダ一とをペーストイ匕することにより調製できる。スクリーン印刷法は、公知のスクリーン 印刷装置及びスクリーンを用いて行うことができる。印刷後、本発明のペーストは、基 板上でダレて広がることがほとんど無い。又、スクリーン力も基板への塗布不良も無く 、ライン/スペース = 50/50 /z mのスクリーンを用いて、焼成後のライン Zスペース = 50Ζ50 /ζ πι以下、例えば図 1に示す 20Ζ20 /ζ πι、を形成することができる。図 1は、後 述する実施例 1のペーストを用いて、ピーク温度 550°Cで 7分焼成して得られたライン Zスペース = 20Ζ20 /ζ πιの膜厚計チャートである。本発明において、ライン Ζスぺー ス=11711 μ mが可能であるとは、ライン Zスペース =ηΖη μ mのスクリーンを用いて ペーストを印刷して焼成した後、膜厚計により測定したライン幅( μ m)が 0.9 X n〜1.2 X nであり、スペース幅(; z m)が0.8 11〜1.1 11でぁることをぃぅ。例えば、ライン Zス ペース = 50/50 μ mのパターンを用いて、焼成後ライン Zスペース =45/55 μ m〜6 0/40 μ mが得られる。 [0050] The paste of the present invention can be prepared by a known method, for example, paste milling a solid content and a high molecular organic binder using a roll mill. The screen printing method can be performed using a known screen printing device and screen. After printing, the paste of the present invention hardly drips on the substrate and spreads. Also, there is no screen force and no coating failure on the substrate, and using a screen of line / space = 50/50 / zm, the line Z space after firing = 50Ζ50 / ζπι, for example, 20Ζ20 / ζπι shown in FIG. 1, Can be formed. FIG. 1 is a film thickness meter chart of line Z space = 20Ζ20 / ζπι obtained by baking at a peak temperature of 550 ° C. for 7 minutes using the paste of Example 1 described later. In the present invention, the fact that line space = 11711 μm is possible means that a screen with line Z space = ηΖη μm is used. After printing and baking the paste, it was confirmed that the line width (μm) measured by a film thickness meter was 0.9 Xn to 1.2 Xn, and the space width (; zm) was 0.811 to 1.111.ぅ. For example, using a pattern of line Z space = 50/50 μm, after firing, line Z space = 45/55 μm to 60/40 μm can be obtained.
[0051] 実施例 Example
以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるもの ではない。  Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0052] I.回路某板 [0052] I. Circuit board
実施例 1— 1.サブマウント某板  Example 1-1. Submount certain board
A1N基板( 3インチ角 X 200 m、商品名 FAN- 230、古河機械金属(株)製、 170W/ m'K)に、サンドブランストによって、約 120 m巾 X深さ約 50 mの配線パターンと 、巾約 300 /z m X長さ約 1400 m X深さ約 50 mの LD搭載用パッドを形成するため の各凹部を有するサブマウント基板 (900 m X 1.2mm)を 4000枚取りで作成した。該 凹部に、スクリーン印刷により、下記組成の銀'パラジウムペーストを刷り込んだ。  A1N board (3 inch square x 200 m, trade name FAN-230, manufactured by Furukawa Kikai Metals Co., Ltd., 170 W / m'K), about 120 m wide x 50 m deep by sandblasting And 4000 sub-mount substrates (900 m x 1.2 mm) with recesses for forming LD mounting pads with a width of about 300 / zm, a length of about 1400 m and a depth of about 50 m. . A silver palladium paste having the following composition was imprinted into the recess by screen printing.
ペースト組成  Paste composition
銀(粒径0.1〜0.5 !^ 82重量%  Silver (particle size 0.1-0.5! ^ 82% by weight
パラジウム 8  Palladium 8
ェチノレセノレロース 1  Etino-Reseno-Relos 1
ターピネオール 9  Tarpineol 9
次いで、上記基板を 120°Cで 10分乾燥した後、ピーク温度 550°C〜720°Cで約 7〜10 分、 100°C以上のインアウト約 1時間の焼成プロフィールで大気焼成して銀 ·パラジゥ ムをメタライズした。得られた基板表面をパフ研磨し、メタライズ面を平坦化して基板 面と略共表面とした。  Next, after drying the above substrate at 120 ° C for 10 minutes, silver is fired in the air at a peak temperature of 550 ° C to 720 ° C for about 7 to 10 minutes and in-out at 100 ° C or more for about 1 hour. · Palladium has been metallized. The surface of the obtained substrate was puff-polished, and the metallized surface was flattened to be substantially co-surface with the substrate surface.
得られたパッド上に、定法に従い、無電解メツキにより 1.0 mの Ni層を形成した上に、 電解メツキにより 5.0 mの半田層を形成した。  A 1.0 m Ni layer was formed on the obtained pad by electroless plating according to a standard method, and a 5.0 m solder layer was formed by electrolytic plating.
[0053] 実施例 I 2.サブマウント某板 Example I 2. Submount Certain Plate
A1N基板として、熱伝導率 230W/m'Kのものを用いたことを除き、実施例 1と同様に して、サブマウント基板を作成した。 [0054] 比較例 I 1. 薄膜サブマウント某板の作成 A submount substrate was prepared in the same manner as in Example 1, except that a substrate having a thermal conductivity of 230 W / m'K was used as the A1N substrate. Comparative Example I 1. Preparation of a Thin Film Submount
厚さ 200 μ mの鏡面研磨済 A1N基板(230W/m . K)にスパッタリングにより Ti (0.05 μ m ) /Pt (0.5 μ m) /Ti (0.05 μ m)層を形成し、 LD搭載 Pad部には蒸着により Ag (1.5 μ τη) / Sn ^ /z m)半田層を形成した。  A Ti (0.05 μm) / Pt (0.5 μm) / Ti (0.05 μm) layer is formed by sputtering on a mirror-polished A1N substrate (230 W / m.K) with a thickness of 200 μm, and the LD mounting pad An Ag (1.5 μτη) / Sn ^ / zm) solder layer was formed by vapor deposition.
[0055] 光出力の温度栾化の沏 I定 [0055] Determination of temperature variation of light output
得られた各サブマウント基板を 10枚ずつ用意し、各パッド上に LD (409 nm、 658nm) を夫々搭載し、光ピックアップモジュールを各 10個ずつ作成した。各モジュールを恒 温室に入れ、温度を 25°C、 50°C、 75°Cに保ち、各温度における発光強度を測定して 、平均値 (n= 10)を取った。結果を下表 1—1及び 1— 2に示す。 表 I- 1 .発光強度(658nm LD、 mW)  Ten obtained submount substrates were prepared, LDs (409 nm, 658 nm) were mounted on each pad, and ten optical pickup modules were prepared. Each module was placed in a constant temperature room, the temperature was kept at 25 ° C, 50 ° C, and 75 ° C, and the luminescence intensity at each temperature was measured, and the average value (n = 10) was obtained. The results are shown in Tables 1-1 and 1-2 below. Table I-1. Emission intensity (658nm LD, mW)
Figure imgf000015_0001
Figure imgf000015_0001
表卜 2発光強度(409nm LD、 mW) Table 2 Emission intensity (409nm LD, mW)
Figure imgf000015_0002
Figure imgf000015_0002
[0056] 表 1-1及び 2に示すように、本発明の基板を用いた場合には、温度による発光強度 の低下、(25°Cでの発光強度 75°Cでの発光強度) Z(25°Cでの発光強度)、が 10% 以下であるが、従来の薄膜サブマウント基板を用いた場合には、約 15%である。この ことから、本発明の基板の放熱特性が優れていることが分かる。 [0057] II.ビアの製造方法及びビアフィル用厚膜ペースト [0056] As shown in Tables 1-1 and 2, when the substrate of the present invention was used, the emission intensity decreased with temperature, the emission intensity at 25 ° C (the emission intensity at 75 ° C) Z ( The emission intensity at 25 ° C) is less than 10%, but it is about 15% when a conventional thin film submount substrate is used. This indicates that the heat radiation characteristics of the substrate of the present invention are excellent. II. Via Manufacturing Method and Thick Film Paste for Via Fill
実施例 II 1及び II 2: ミリ波レーダーモジユーノレ用某板  Example II 1 and II 2: A certain plate for a millimeter-wave radar module
ミリ波レーダーモジュール用回路が形成されて!、る A1N基板(2インチ角 X 250 μ m、商品名 FAN-200、 200W/m'K、商品名 FAN-230、 230 W/m'K、各古河機械金 属 (株)製)に、サンドブランストにより約 200 m深さまで穿孔し、基板を裏返して、孔 が貫通するまで約 50 /z m穿孔し、外径約 200 mのサーマルビァ孔を 2個形成した 。該孔に、スクリーン印刷により、下記組成の銀'パラジウムペーストを刷り込んだ。  A1N substrate (2 inch square X 250 μm, trade name FAN-200, 200W / m'K, trade name FAN-230, 230 W / m'K, each (Furukawa Kikai Metal Co., Ltd.) using a sandblast to drill a hole to a depth of about 200 m, turn the board over, drill a hole at about 50 / zm until the hole penetrates, and make a thermal via hole with an outer diameter of about 200 m. Formed. Silver'palladium paste having the following composition was imprinted into the holes by screen printing.
ペースト組成  Paste composition
銀 82重量%  82% by weight of silver
パラジウム 8  Palladium 8
ェチノレセノレロース 1  Etino-Reseno-Relos 1
ターピネオール 9  Tarpineol 9
次いで、基板を 120°Cで 10分乾燥した後、ピーク温度 600°Cで約 7〜10分、 100°C以 上のインァゥト約 1時間の焼成プロフィールで大気焼成して銀 ·パラジウムをメタライズ した。得られた基板の両面をパフ研磨して、基板厚み 100 /z mのミリ波レーダーモジュ ール用基板を 2枚得た。  Next, the substrate was dried at 120 ° C for 10 minutes, and then baked in the air at a peak temperature of 600 ° C for about 7 to 10 minutes and with a firing profile of 100 ° C or higher for about 1 hour to metalize silver and palladium. . Both sides of the obtained substrate were puff-polished to obtain two millimeter-wave radar module substrates having a substrate thickness of 100 / zm.
[0058] 比較例 II 1 Comparative Example II 1
特開平 9-36274号公報 (特許文献 2)、実施例 1記載の方法に従い、窒化アルミニゥ ムグリーンシートとタングステンペーストとを共焼成して、ミリ波レーダーモジュール用 基板を得た。  According to the method described in Example 1 of JP-A-9-36274 (Patent Document 2), an aluminum nitride green sheet and a tungsten paste were co-fired to obtain a substrate for a millimeter wave radar module.
[0059] 得られた基板上に、定法に従いミリ波レーダー素子を搭載して、出力を測定した。比 較例 II 1で得られた出力を 100%としたときの、各基板の出力を下記表に示す。 表 IM
Figure imgf000016_0001
上表に示すように、本発明の基板を用いたミリ波レーダ出力は、従来の基板を用 たものより、 30%以上高い。
[0059] A millimeter wave radar element was mounted on the obtained substrate according to a standard method, and the output was measured. The following table shows the output of each substrate, assuming that the output obtained in Comparative Example II 1 is 100%. Table IM
Figure imgf000016_0001
As shown in the above table, the millimeter wave radar output using the substrate of the present invention uses a conventional substrate. More than 30% higher.
[0060] 実施例 II 3及び II 4 :半導体レーザー用サブマウント Examples II 3 and II 4: Submount for Semiconductor Laser
実施例 II— 1と同様にして、厚み 200 mと、 300 mのサブマウント基板を作成した。  In the same manner as in Example II-1, a submount substrate having a thickness of 200 m and a thickness of 300 m was prepared.
[0061] 比較例 II 2 [0061] Comparative Example II 2
比較例 II- 1と同様にして、共焼成によりサブマウント基板を 4枚作成した。  In the same manner as in Comparative Example II-1, four submount substrates were prepared by co-firing.
[0062] 光出力の温度栾化の沏 I定 [0062] Determination of temperature variation of optical output
得られた各サブマウント基板上に LD (409 nm、 658nm)を夫々搭載し、光ピックアツ プモジュールを作成した。各モジュールを恒温室に入れ、温度を 25°C、 50°C、 75°C に保ち、各温度における発光強度を測定して、平均値 (n= 10)を取った。結果を下 表 Π-2及び 3に示す。 表 U- 2  An LD (409 nm, 658 nm) was mounted on each of the obtained submount substrates, and an optical pickup module was created. Each module was placed in a constant temperature room, and the temperature was kept at 25 ° C, 50 ° C, and 75 ° C, and the luminescence intensity at each temperature was measured, and the average value (n = 10) was obtained. The results are shown in Tables IV-2 and III below. Table U-2
Figure imgf000017_0001
Figure imgf000017_0001
[0063] 表 Π-2及び Π-3において、出力低下率は、(25°Cでの出力 75°Cでの出力) Z(25°C での出力) X 100 (%)である。これらの表より明らかなように、本発明のペーストを用い て、本発明の方法により得られるビアを有する基板は、放熱特性が優れている。 In Tables I-2 and I-3, the output reduction rate is (output at 25 ° C, output at 75 ° C) Z (output at 25 ° C) X 100 (%). As is clear from these tables, the substrate having vias obtained by the method of the present invention using the paste of the present invention has excellent heat radiation characteristics.
[0064] III.細線形成用余属ペースト  III. Surplus paste for forming fine wires
1)下表に示す組成の金属ペーストを調製した。 表 11ト 1
Figure imgf000018_0001
上記各 Ag粉粒径の範囲は、 SEMにより 100粒を観察し、最小粒径力ゝら約 10番目の粒 径が下限値であり、最大粒径から約 10番目の粒径を上限値として求めた。
1) A metal paste having the composition shown in the table below was prepared. Table 11 1
Figure imgf000018_0001
The range of the particle size of each of the above Ag powders was determined by observing 100 particles by SEM, and the lower limit was about the 10th particle size from the minimum particle size force, and the upper limit was the 10th particle size from the maximum particle size. I asked.
[0065] 2)金属ペーストの印刷件の評  [0065] 2) Evaluation of printed matter of metal paste
ライン Zスペース =30 30 mのスクリーン(三谷製作所製 325ステンレスメッシュ) を用いて、印刷を行いピーク温度 550°Cで焼成後、得られたパターンのライン Zスぺ 一スを膜厚計(東京精密 (株) SURFCOM480A )で測定した。比較例ペーストの印 刷及び焼成も同様に行った。 実施例 1のペーストでは、ライン/スペース = 30Z30 を達成した力 比較例- 1及び 2のペーストでは、ペーストがダレ広がって、ライン 間が接着した。  Line Z space = 30 Printed using a 30 m screen (325 stainless steel mesh, manufactured by Mitani Seisakusho), fired at a peak temperature of 550 ° C, and measured the line Z space of the resulting pattern with a film thickness meter (Tokyo, Japan). The precision was measured by SURFCOM480A. Printing and baking of the comparative paste were performed in the same manner. In the paste of Example 1, the force that achieved line / space = 30Z30 In the pastes of Comparative Examples-1 and 2, the paste spread and the lines adhered.
[0066] 3)余属ペーストの雷気特件  [0066] 3) Special case of thunderous paste
上記各金属ペーストを 96%アルミナ基板上に幅 0.5mm、長さ 100mm、焼成後厚さ 12 mになる様に印刷し、下記の各ピーク温度で焼成して得られた導体膜の比抵抗値 (単位 10— 6 Ohm · cm)を、比抵抗計 HP3478A (商品名)を用いて測定した。 表 ΙΠ - 2
Figure imgf000018_0002
Each of the above metal pastes was printed on a 96% alumina substrate to a width of 0.5 mm, a length of 100 mm, and a thickness of 12 m after firing, and the specific resistance value of the conductor film obtained by firing at the following peak temperatures: (unit: 10- 6 Ohm · cm), was measured using a resistivity meter HP3478A (trade name). Table ΙΠ-2
Figure imgf000018_0002
上表の比抵抗値から、本発明のペーストは 400°C焼成によっても緻密な焼成膜が形 成されて!/、ることが分力つた。 From the specific resistance values in the above table, it was concluded that the paste of the present invention formed a dense fired film even when fired at 400 ° C.
産業上の利用可能性  Industrial applicability
本発明の回路基板は、発熱する半導体素子を搭載するための基板として好適で ある。該基板は、本発明の方法により、簡易な工程で且つ多数枚取りで製造すること ができる。 The circuit board of the present invention is suitable as a board for mounting a semiconductor element that generates heat. is there. According to the method of the present invention, the substrate can be manufactured in a simple process and in a large number of sheets.
本発明の細線用金属ペーストは、液晶ディスプレイ等、細線パターンが要求される 用途に好適である。  The metal paste for fine lines of the present invention is suitable for applications requiring fine line patterns, such as liquid crystal displays.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも片面に回路が形成された単層基板において、該回路は、回路要素が該基 板の該片面に設けられた凹部内に該凹部を満たすことによって、形成されていること を特徴とする単層基板。  [1] In a single-layer substrate having a circuit formed on at least one surface, the circuit is formed by filling a concave portion in a concave portion provided on one surface of the substrate with a circuit element. A single-layer substrate.
[2] 前記回路要素の表面が前記基板の前記片面と略共表面であることを特徴とする請 求項 1記載の単層基板。  [2] The single-layer substrate according to claim 1, wherein the surface of the circuit element is substantially co-surface with the one surface of the substrate.
[3] 前記回路要素が、金、銀、銅、白金、ノラジウム、アルミニウム、ニッケル、タンダステ ン及びこれらの合金力 なる群より選ばれる少なくとも 1種の金属を含むことを特徴と する請求項 1または 2記載の単層基板。 [3] The circuit according to claim 1 or 2, wherein the circuit element includes at least one metal selected from the group consisting of gold, silver, copper, platinum, noradium, aluminum, nickel, tandasten, and an alloy thereof. 2. The single-layer substrate according to 2.
[4] 前記回路要素が、配線、パッド、又は、これらの組合わせであることを特徴とする請求 項 1〜3のいずれか 1項記載の基板。 [4] The substrate according to any one of claims 1 to 3, wherein the circuit element is a wiring, a pad, or a combination thereof.
[5] 前記単層基板が、窒化アルミニウム、酸化アルミニウム、窒化ケィ素、炭化ケィ素、酸 化ベリリウム、酸化マグネシウム、又はガラス力もなることを特徴とする請求項 1〜4の5. The method according to claim 1, wherein the single-layer substrate is made of aluminum nitride, aluminum oxide, silicon nitride, silicon carbide, beryllium oxide, magnesium oxide, or glass.
V、ずれか 1項記載の単層基板。 V, misalignment The single-layer substrate according to item 1.
[6] 請求項 1〜5のいずれか 1項記載の基板を含む光素子搭載用サブマウント、高周波 素子搭載用基板、又はフラットパネル用背面基板。 [6] A submount for mounting an optical element, a substrate for mounting a high-frequency element, or a rear substrate for a flat panel, comprising the substrate according to any one of claims 1 to 5.
[7] (1)基板の少なくとも片面に、回路要素を形成するための凹部を形成する工程、 [7] (1) a step of forming a concave portion for forming a circuit element on at least one surface of the substrate,
(2)該凹部内に金属を充填して回路要素を形成する工程、  (2) forming a circuit element by filling a metal in the recess,
を含むことを特徴とする回路基板の製造方法。  A method for manufacturing a circuit board, comprising:
[8] (3)形成された回路要素の表面を基板表面と略共表面にする工程、 [8] (3) A step of making the surface of the formed circuit element substantially co-surface with the substrate surface,
をさらに含む、請求項 7記載の方法。  8. The method of claim 7, further comprising:
[9] 前記工程 (2)が、 [9] The step (2) includes:
(2—1)該凹部内に金属ペーストを印刷して、該金属ペーストを該凹部内に充填する 工程、及び  (2-1) printing a metal paste in the recess and filling the recess with the metal paste; and
(2— 2)充填された金属ペーストをメタライズする工程、  (2-2) a step of metallizing the filled metal paste,
を含むことを特徴とする請求項 7または 8記載の方法。  9. The method according to claim 7, wherein the method comprises:
[10] 前記工程(1)がサンドブラスト、レーザー加工又は電子ビームカ卩ェにより行われること を特徴とする請求項 7〜9のいずれか 1項記載の方法。 [10] The method according to any one of claims 7 to 9, wherein the step (1) is performed by sandblasting, laser processing, or electron beam curing.
[11] 前記金属ペーストが、全粒子数の少なくとも 80%の粒子力0.1〜0.5 μ mの粒径を有 する球状金属粒子を、ペースト総重量の 40〜95重量 %で含むことを特徴とする請求項 9記載の方法。 [11] The metal paste contains spherical metal particles having a particle force of 0.1 to 0.5 μm of a particle force of at least 80% of the total number of particles in an amount of 40 to 95% by weight of the total weight of the paste. The method according to claim 9.
[12] 前記金属ペーストが、全粒子数の少なくとも 80%の粒子が 0.5〜4.0 μ mの球状金属 粒子をさらに含むことを特徴とする請求項 11記載の方法。  12. The method according to claim 11, wherein the metal paste further comprises spherical metal particles in which at least 80% of the total number of particles is 0.5 to 4.0 μm.
[13] 前記金属ペーストのメタライズ工程(2— 2)力 300°C〜750°Cの温度で行われること を特徴とする請求項 9〜 12のいずれ力 1項記載の方法。 [13] The method according to any one of claims 9 to 12, wherein the metallizing step (2-2) of the metal paste is performed at a temperature of 300 ° C to 750 ° C.
[14] 前記工程(3)力 研磨カ卩ェにより行われることを特徴とする請求項 8〜 13のいずれか14. The method according to claim 8, wherein the step (3) is performed by force polishing.
1項記載の方法。 The method of paragraph 1.
[15] (1)窒化アルミニウム基板に、サンドブラストによって、ビア用の孔を形成する工程、  [15] (1) A step of forming via holes in an aluminum nitride substrate by sandblasting,
(2)該孔内に金属ペーストをスクリーン印刷する工程、次 ヽで、  (2) a step of screen printing a metal paste in the holes,
(3)充填された金属ペーストをピーク温度 350〜750°Cで焼成する工程、  (3) firing the filled metal paste at a peak temperature of 350 to 750 ° C,
を含むことを特徴とするビアの製造方法。  A method for manufacturing a via, comprising:
[16] 工程(3)の後に、  [16] After step (3),
(4)前記窒化アルミニウム基板を所定の厚みまで研磨する工程、  (4) polishing the aluminum nitride substrate to a predetermined thickness,
をさらに含む請求項 15記載の方法。  16. The method of claim 15, further comprising:
[17] 前記工程(1)が、  [17] The step (1) includes:
(la)基板の一の面力も所定の深さまでサンドブラストによって切削する工程、次いで (la) a step of cutting one surface force of the substrate by sandblasting to a predetermined depth, then
(lb)前記切削された位置を、前記一の面と反対側の面力 サンドブラストにより切削 して、略鼓形状のビア用孔を形成する工程、 (lb) cutting the cut position by sandblasting the surface force opposite to the one surface to form a substantially drum-shaped via hole;
を含むことを特徴とする請求項 15又は 16記載の方法。  17. The method according to claim 15, wherein the method comprises:
[18] 前記工程 (4)力 パフ研磨により行われることを特徴とする請求項 16または 17項記 載の方法。 18. The method according to claim 16, wherein the step (4) is performed by force puff polishing.
[19] 前記金属ペーストが、金、白金、銀、パラジウム、ロジウム、及びこれらの合金から選 ばれる少なくとも 1種の貴金属を含むことを特徴とする請求項 15〜18のいずれか 1項 記載の方法。  [19] The method according to any one of claims 15 to 18, wherein the metal paste contains at least one noble metal selected from gold, platinum, silver, palladium, rhodium, and alloys thereof. .
[20] 前記金属ペーストが、前記ペースト総重量の 70〜95wt%の、銀とパラジウムを含むこ とを特徴とする請求項 19記載の方法。 [20] The method according to claim 19, wherein the metal paste contains silver and palladium in an amount of 70 to 95 wt% of the total weight of the paste.
[21] 銀とパラジウム力 重量比 80〜100 : 0〜20で含まれることを特徴とする請求項 20記載 の方法。 [21] The method according to claim 20, wherein silver and palladium are contained in a weight ratio of 80 to 100: 0 to 20.
[22] 銀とパラジウム力 夫々、球状粒子であり且つ全粒子数の少なくとも 80%が 0.1〜1.0 mの粒径を有することを特徴とする請求項 20または 21記載の方法。  22. The method according to claim 20, wherein silver and palladium are each spherical particles and at least 80% of the total number of particles has a particle size of 0.1 to 1.0 m.
[23] 前記金属ペーストが、全粒子数の少なくとも 80%が 0.5〜4.0 μ mの粒径を有する銀、 ノ ラジウム、銀及びパラジウムの混合物、又は、銀とパラジウムの合金の球状粒子を、 ペースト中の金属重量の合計の 0〜80%で更に含むことを特徴とする請求項 22記 載の方法。  [23] The metal paste may be a mixture of silver, noradium, silver and palladium, or a silver-palladium alloy spherical particle in which at least 80% of the total number of particles has a particle size of 0.5 to 4.0 μm. 23. The method of claim 22, further comprising 0-80% of the total weight of metals therein.
[24] 請求項 15〜23のいずれか 1項記載の方法により得られるビアを有する窒化アルミ- ゥム基板を含む光素子搭載用サブマウント、高周波素子搭載用基板、又はミリ波レー ダーモシユーノレ。  [24] A submount for mounting an optical element, a substrate for mounting a high-frequency element, or a millimeter-wave radar module including an aluminum nitride substrate having vias obtained by the method according to any one of claims 15 to 23.
[25] 全粒子数の少なくとも 80%の数の粒子が 0.1〜0.5 μ mの粒径を有する球状金属粒子 を、総重量の 70〜95wt%で含む金属ペーストであって、接触式表面粗さ計で測定さ れた表面の Raが 0.2 m以下である基板上に、スクリーン印刷により形成可能な最小 のライン Zスペースが 50Z50 μ m以下であることを特徴とする金属ペースト。  [25] A metal paste comprising spherical metal particles in which at least 80% of the total number of particles have a particle size of 0.1 to 0.5 μm at 70 to 95 wt% of the total weight, and a contact surface roughness A metal paste characterized in that the minimum line Z space that can be formed by screen printing on a substrate whose surface Ra measured by a meter is 0.2 m or less is 50Z50 μm or less.
[26] 形成可能な最小のライン Zスペースが 20Z20 μ m以下であることを特徴とする請求 項 25記載の金属ペースト。  26. The metal paste according to claim 25, wherein the minimum line Z space that can be formed is 20Z20 μm or less.
[27] 基板が、ガラス基板であることを特徴とする請求項 25または 26記載の金属ペースト。  27. The metal paste according to claim 25, wherein the substrate is a glass substrate.
[28] 金属が、金、白金、銀、パラジウム、ロジウム、及びこれらの合金力 選ばれる少なくと も 1種であることを特徴とする請求項 25〜27のいずれか 1項記載の金属ペースト。  [28] The metal paste according to any one of claims 25 to 27, wherein the metal is at least one selected from gold, platinum, silver, palladium, rhodium, and an alloy thereof.
[29] 金属が、銀又は銀とパラジウムの混合物であることを特徴とする請求項 28記載の金 属ペースト。  29. The metal paste according to claim 28, wherein the metal is silver or a mixture of silver and palladium.
[30] 銀:パラジウム力 重量比80〜100 : 20〜0で含まれることを特徴とする請求項29記載 の金属ペースト。  30. The metal paste according to claim 29, which is contained in a silver: palladium power weight ratio of 80 to 100: 20 to 0.
[31] 銀の粒子の少なくとも 80%が 0.1〜0.3 μ mの粒径を有することを特徴とする、請求項 2 [31] The method according to claim 2, wherein at least 80% of the silver particles have a particle size of 0.1 to 0.3 μm.
8〜30の!、ずれか 1項記載の金属ペースト。 8 to 30!
[32] 総重量の 5wt%以下の量のガラスをさらに含むことを特徴とする請求項 25〜31のい ずれか 1項記載の金属ペースト。 [32] The metal paste according to any one of claims 25 to 31, further comprising glass in an amount of 5 wt% or less of the total weight.
PCT/JP2005/009947 2004-06-01 2005-05-31 Circuit board, and metal paste and method for manufacturing the same WO2005120140A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-163626 2004-06-01
JP2004163626A JP2005347038A (en) 2004-06-01 2004-06-01 Metal paste for thin wire formation
JP2004-181721 2004-06-18
JP2004181745A JP2006005253A (en) 2004-06-18 2004-06-18 Via hole manufacturing method and via hole filling thick film paste
JP2004-181745 2004-06-18
JP2004181721A JP2006005252A (en) 2004-06-18 2004-06-18 Circuit board, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2005120140A1 true WO2005120140A1 (en) 2005-12-15

Family

ID=35463228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009947 WO2005120140A1 (en) 2004-06-01 2005-05-31 Circuit board, and metal paste and method for manufacturing the same

Country Status (1)

Country Link
WO (1) WO2005120140A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461293A (en) * 1990-06-29 1992-02-27 Toshiba Corp Circuit board and manufacture thereof
JPH05183268A (en) * 1991-12-27 1993-07-23 Ibiden Co Ltd Manufacture of ceramic substrate provided with through hole
JPH05314811A (en) * 1992-05-13 1993-11-26 Nippon Cement Co Ltd Ag-pd conductor paste
JPH06223618A (en) * 1993-01-27 1994-08-12 Sumitomo Metal Mining Co Ltd Thick film conductor paste
JP2000223810A (en) * 1999-02-01 2000-08-11 Kyocera Corp Ceramic board and its manufacture
JP2000311581A (en) * 1999-02-25 2000-11-07 Canon Inc Electron source substrate and image forming device
JP2003209359A (en) * 2002-01-11 2003-07-25 Dainippon Printing Co Ltd Core board and its manufacturing method
JP2004022410A (en) * 2002-06-18 2004-01-22 Nippon Electric Glass Co Ltd Dielectric glass for plasma display panel, dielectric layer forming method for plasma display panel, and plasma display panel
JP2004095762A (en) * 2002-08-30 2004-03-25 Hitachi Metals Ltd Multilayer substrate and method for manufacturing the same
JP2004152934A (en) * 2002-10-30 2004-05-27 Mitsui Chemicals Inc Circuit board and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461293A (en) * 1990-06-29 1992-02-27 Toshiba Corp Circuit board and manufacture thereof
JPH05183268A (en) * 1991-12-27 1993-07-23 Ibiden Co Ltd Manufacture of ceramic substrate provided with through hole
JPH05314811A (en) * 1992-05-13 1993-11-26 Nippon Cement Co Ltd Ag-pd conductor paste
JPH06223618A (en) * 1993-01-27 1994-08-12 Sumitomo Metal Mining Co Ltd Thick film conductor paste
JP2000223810A (en) * 1999-02-01 2000-08-11 Kyocera Corp Ceramic board and its manufacture
JP2000311581A (en) * 1999-02-25 2000-11-07 Canon Inc Electron source substrate and image forming device
JP2003209359A (en) * 2002-01-11 2003-07-25 Dainippon Printing Co Ltd Core board and its manufacturing method
JP2004022410A (en) * 2002-06-18 2004-01-22 Nippon Electric Glass Co Ltd Dielectric glass for plasma display panel, dielectric layer forming method for plasma display panel, and plasma display panel
JP2004095762A (en) * 2002-08-30 2004-03-25 Hitachi Metals Ltd Multilayer substrate and method for manufacturing the same
JP2004152934A (en) * 2002-10-30 2004-05-27 Mitsui Chemicals Inc Circuit board and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5140275B2 (en) Ceramic substrate for mounting light emitting element and method for manufacturing the same
JP2007201346A (en) Ceramics circuit board and its manufacturing method
KR101011685B1 (en) Method for manufacturing element-mounting substrate
EP1109423A1 (en) Ceramic heater and method for producing the same, and conductive paste for heating element
JP3528037B2 (en) Manufacturing method of glass ceramic substrate
JP2002198660A (en) Circuit board and method of manufacturing the same
JP2001307547A (en) Conductive composition and printed circuit board using the same
KR20020062308A (en) Joint body of glass-ceramic and aluminum nitride sintered compact and method for producing the same
JP2007273914A (en) Wiring board and method of manufacturing same
JP2001015869A (en) Wiring board
JP4038602B2 (en) Conductive paste and ceramic multilayer substrate
JP3538549B2 (en) Wiring board and method of manufacturing the same
WO2005120140A1 (en) Circuit board, and metal paste and method for manufacturing the same
JP4422453B2 (en) Wiring board
JP2006005252A (en) Circuit board, and method for manufacturing the same
JP2004228410A (en) Wiring board
JP2001127224A (en) Insulating alumina board and alumina copper-pasted circuit board
JP5201974B2 (en) Method for manufacturing metallized substrate
JP3186750B2 (en) Ceramic plate for semiconductor manufacturing and inspection equipment
JP5313526B2 (en) Conductive paste for low-temperature fired multilayer substrates
JP4334659B2 (en) Ceramic wiring board and manufacturing method thereof
JPS60253295A (en) Method of producing multilayer ceramic board
JPH1153940A (en) Copper metalized composition and glass ceramic wiring board using it
JP5743916B2 (en) Circuit board and electronic device having the same
WO2023058497A1 (en) Electronic component

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase