WO2005111321A1 - 旋回制御装置、旋回制御方法、および建設機械 - Google Patents

旋回制御装置、旋回制御方法、および建設機械 Download PDF

Info

Publication number
WO2005111321A1
WO2005111321A1 PCT/JP2005/008755 JP2005008755W WO2005111321A1 WO 2005111321 A1 WO2005111321 A1 WO 2005111321A1 JP 2005008755 W JP2005008755 W JP 2005008755W WO 2005111321 A1 WO2005111321 A1 WO 2005111321A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
turning
reference position
control system
unit
Prior art date
Application number
PCT/JP2005/008755
Other languages
English (en)
French (fr)
Inventor
Jun Morinaga
Tadashi Kawaguchi
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to GB0622618A priority Critical patent/GB2431018B/en
Priority to DE112005001054.6T priority patent/DE112005001054B4/de
Priority to US11/596,208 priority patent/US7362071B2/en
Priority to JP2006513560A priority patent/JP4890243B2/ja
Publication of WO2005111321A1 publication Critical patent/WO2005111321A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2095Control of electric, electro-mechanical or mechanical equipment not otherwise provided for, e.g. ventilators, electro-driven fans
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/02Details

Definitions

  • the present invention relates to a swing control device, a swing control method for controlling a swing body that swings with an electric motor, and a construction machine in which the swing body swings with an electric motor.
  • Patent Document 1 JP 2001-11897 A
  • the packet in a construction machine such as an electric turning shovel or the like, in the case of excavation work for widening the groove width, the packet is often pressed against the side wall of the groove.
  • the operation of pressing the packet against the side wall is performed by inclining the swivel lever in a predetermined direction and driving the swivel body to swivel.
  • the packet is pressed against the side wall using the torque output during turning.
  • the revolving structure turns in the opposite direction.
  • An object of the present invention is to provide a turning control device, a turning control method, and a construction capable of preventing a turning body from turning in the opposite direction even when an external force acts on the turning body in a direction opposite to the turning operation direction. To provide a machine.
  • a turning control device of the present invention is a turning control device that controls a turning operation of a turning body driven by an electric motor based on a command from an operating body, and outputs turning position information of the turning body.
  • Turning position output means reference position storage means for storing an output value of the turning position output means as a reference position, control command generating means for generating and outputting control commands for the electric motor, and turning position output means
  • Control system change determining means for determining whether to change the control system of the turning control device based on the output value of the control position, the reference position stored in the reference position storage means, and the operation direction of the operating tool;
  • Control system changing means for changing a control system of the turning control device in accordance with a result of the judgment by the control system change judging means, wherein the control system changing means changes the control system by changing the control system.
  • the control command is set to be larger than the value before the change of the control system.
  • the control system changing means makes the control command of the electric motor larger than the value before the change of the control system by changing the control system of the turning control device.
  • the control system changing means is configured to update a reference position stored in the reference position storage means in accordance with a determination result of the control system change determining means.
  • a position update unit, a change command generation unit that generates a change command for the electric motor based on an output value of the turning position output unit and a reference position stored in the reference position storage unit, and the control command A larger value of the control command by the generation means and the change command by the change command generator is selected, and is set as the control command of the electric motor.
  • the control system further includes a control command output unit for outputting the reference position, and the change of the control system is to maintain the reference position.
  • control command output unit of the control system changing unit selects the larger value of the control command by the control command generation unit and the change command by the change command generation unit, and selects the control command of the electric motor. Therefore, the object of the present invention can be achieved by smooth control in which the control command of the electric motor does not suddenly change greatly due to a change in the control system.
  • the control system changing means is configured to update a reference position stored in the reference position storage means in accordance with a determination result of the control system change determining means.
  • a control law switching unit that switches between the control command generation unit and the switching control command generation unit, and the change of the control system is performed by the control law switching unit from the control command generation unit to the switching control command generation unit. It is desirable that the control rule be switched.
  • control law switching unit of the control system changing means switches the control law to the control command generation means force switching control command generation unit, and does not mean that the speed gain is increased! /, So there is no need to worry about excessive torque output during normal turning operation.
  • the control system changing means is configured to update a reference position stored in the reference position storage means in accordance with a determination result of the control system change determining means.
  • a position update unit, a plurality of control gains of the revolving body are stored, and a control gain selected from the control gain storage unit is changed according to a determination result of the control gain storage unit and the control system change determination unit.
  • the control system further includes a control gain changing unit that changes the control gain by the control gain changing unit.
  • the control gain can be changed by the control gain changing unit of the control system changing means based on the determination result of the control system change determining means. This can prevent the revolving structure from turning in the opposite direction.
  • the control system changing unit is configured to update a reference position stored in the reference position storage unit in accordance with a determination result of the control system change determining unit.
  • control target value of the revolving unit can be changed by the target value changing unit of the control system changing unit, and the revolving unit turns in the reverse direction by changing the control target value. Can be prevented.
  • a turning control method is a turning control method for controlling a turning operation of a turning body driven by an electric motor based on a command from an operating body, wherein the turning position information of the turning body is provided. Outputting, outputting the output value of the turning position information as a reference position, generating and outputting a control command of the electric motor, outputting the turning position information, A step of determining whether to change the control system of the turning control device based on the reference position and the operating direction of the operating body; and, as a result of this determination, the control system of the turning control device. Setting a control command for the electric motor to a value larger than the value before the change of the control system when it is determined that the change is to be performed.
  • the electric motor Since the control command is set to be larger than the value before the change of the control system, the external force acting on the control system can be satisfactorily counteracted, and there is no possibility that the revolving superstructure continuously turns in the opposite direction.
  • a construction machine includes a revolving unit that is revolved and driven by an electric motor, and the revolving control device according to the present invention for controlling the revolving unit.
  • the revolving structure includes the revolving structure driven by the electric motor and the revolving control device of the present invention for controlling the revolving structure, the turning control device of the present invention is provided.
  • a construction machine having the same effect as the installation is obtained.
  • FIG. 1 is a plan view schematically showing a construction machine according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an entire configuration of a construction machine according to the first embodiment.
  • FIG. 3 is a block diagram showing a control structure of a turning control device according to the first embodiment.
  • FIG. 4 is a flowchart for updating a reference position in the first embodiment.
  • FIG. 5 is a flowchart of a control command output in the first embodiment.
  • FIG. 6 is a diagram showing the control in the first embodiment in more detail.
  • FIG. 7 is a diagram illustrating control according to a second embodiment of the present invention.
  • FIG. 8 is a block diagram showing one control law in the second embodiment.
  • FIG. 9 is a block diagram showing another control rule in the second embodiment.
  • FIG. 10 is a flowchart for switching control rules in the second embodiment.
  • FIG. 11 is a block diagram showing a control structure according to a third embodiment of the present invention.
  • FIG. 12 is a flow chart for changing a control gain in the third embodiment.
  • FIG. 13 is a block diagram showing a control structure according to a fourth embodiment of the present invention.
  • FIG. 14 is a perspective view showing a first modification of the present invention.
  • FIG. 15 is an exploded perspective view showing the regulating device according to the first modification.
  • FIG. 16 is a hydraulic circuit diagram showing a regulating device according to a second modification of the present invention.
  • FIG. 1 is a plan view schematically showing an electric turning shovel (construction machine) 1 according to the present embodiment
  • FIG. 2 is a view showing an entire configuration of the electric turning shovel 1.
  • FIG. 3 is a block diagram showing a control structure of the turning control device 100.
  • the electric swing shovel 1 includes a swing structure 4 installed on a track frame constituting a lower traveling structure 2 via a swing circle 3, and the swing structure 4 is combined with the swing cycle 3. Is driven by the electric motor 5 to rotate.
  • the revolving superstructure 4 includes a boom 6 operated by a boom cylinder 21 (see FIG. 2), an arm 7 driven by an arm cylinder 22 (see FIG. 2), and a bucket cylinder 23 (see FIG. 2).
  • a driven bucket 8 is provided.
  • the working machine 9 is configured by these components.
  • each of the above-described cylinders 21 to 23 is a hydraulic cylinder, and the hydraulic source thereof is a hydraulic pump 19 driven by the engine 14 described later. Therefore, the electric swing shovel 1 is a hybrid construction machine including the hydraulically driven work machine 9 and the electrically driven swing body 4.
  • the boom 6 of the present embodiment may, of course, be constituted by a single boom that is a so-called offset boom constituted by the first boom 6A and the second boom 6B.
  • the electric turning shovel 1 has a turning lever (operating body) 10, a fuel dial 11, a mode switching switch 12, a target speed setting device 13, an engine, in addition to the above-described configuration. 14, a generator motor 15, an inverter 16, a capacitor 17, an electric motor 5, a rotational speed sensor 18, a hydraulic control valve 20, a right traveling motor 24, a left traveling motor 25, and a turning control device 100.
  • the fuel dial 11 is a dial for controlling the amount of fuel supply (injection) to the engine
  • the mode switching switch 12 is a switch for switching between various operation modes. Operator.
  • the target speed setting device 13 is operated based on the setting state of the fuel dial 11, the setting state of the mode switching switch 12, and the tilt angle of the swing lever 10 (usually serving also as a work implement lever for operating the arm 7).
  • the engine 14 drives a hydraulic pump 19 serving as a hydraulic pressure source for each of the hydraulic cylinders 21 to 23, and a power generation motor 15.
  • the boom cylinder 21 uses the boom 6 (see FIG. 1)
  • the arm cylinder 22 uses the arm 7 (see FIG. 1)
  • the packet cylinder 23 uses the packet 8 (see FIG. 1).
  • the right traveling motor 24 and the left traveling motor 25 are hydraulic motors
  • the hydraulic pump 19 is also used as a hydraulic source.
  • the combination of the generator motor 15, the inverter 16, and the capacitor 17 serves as a power source of the electric motor 5.
  • the generator motor 15 also functions as a generator also serving as an electric motor.
  • the electric motor 5 drives the swing body 4 to swing through the swing circle 3.
  • the electric motor 5 is provided with a rotation speed sensor 18.
  • the rotation speed sensor 18 detects the rotation speed of the electric motor 5, and the rotation speed is fed back to the turning control device 100.
  • the turning control device 100 is a control gain based on the target speed of the revolving unit 4 set by the target speed setting device 13 and the rotation speed of the electric motor 5 detected by the rotation speed sensor 18. Speed control is performed by P control (proportional control) using the speed gain K, and a torque command value that is a control command for the electric motor 5 is generated.
  • the turning control device 100 is an inverter, and converts a torque command value into a current value and a voltage value, outputs the current value and the voltage value to the electric motor 5, and controls the torque output of the electric motor 5.
  • the turning control device 100 may be other than an inverter as long as it can issue an instruction to drive the electric motor by, for example, switching.
  • FIG. 1 shows a state in which a trench is excavated by using such an electric turning shovel 1. Specifically, excavation is performed while expanding the groove width by pressing the packet 8 against the side wall of the groove and pulling the arm 7 toward the user.
  • the turning lever 10 is tilted to the right, and the packet 8 is pressed while the revolving unit 4 is turning right.
  • the turning body 4 is turned at a low speed.
  • packet 8 When packet 8 is pressed against the side wall, it receives the earth pressure (excavation reaction force: external force) from the side wall, and the actual speed S becomes “0 (zero)”. That is, the revolving lever 4 is in a state in which the revolving body 4 does not rotate.
  • the torque command value is increased so that the torque output increases according to the deviation. Is generated and comes to resist the earth pressure.
  • a limit is set for the magnitude of the torque output, and an increase in the torque output below the torque limit a (Fig. 6) is allowed.
  • a control system change determining means 140 for determining whether or not the turning direction of the revolving unit 4 is the direction intended by the operator, and the control system of the turning control device 100 is changed in accordance with the determination result.
  • a control system changing means 150 for making a control command to the electric motor 5 larger than a value before the control system is changed.
  • the turning control device 100 includes a turning position output unit 110, a reference position storage unit 120, a control finger. Command generation means 130, control system change determination means 140, and control system change means 150.
  • the turning position output means 110 integrates the rotation speed of the electric motor 5 output from the rotation speed sensor 18 and outputs it as turning position information of the revolving unit 4.
  • the reference position storage means 120 uses a RAM (Random Access Memory), and stores the output value of the turning position output means 110 as a reference position.
  • the reference position stored in the reference position storage means 120 is updated by the turning position of the revolving superstructure 4 at each time according to the determination result of the control system change determining means 140. It should be noted that the reference position storage means 120 has a force to be accessed by a plurality of means in order to read the reference position. The connection relationship between this and other means is omitted. The same applies to the second, third, and fourth embodiments described later.
  • the control command generation means 130 sends the electric motor 5 to the electric motor 5 based on the target speed of the revolving unit 4 set by the target speed setting device 13 and the rotation speed of the electric motor 5 detected by the rotation speed sensor 18.
  • the control command is generated and output.
  • the control command generation means 130 compares the target speed set by the target speed setting device 13 with the rotation speed of the electric motor 5 fed back to the turning control device 100, and calculates the deviation and the speed gain K By multiplying by the above, a torque command value of the electric motor 5 is generated.
  • the speed gain K is set in consideration of the maneuverability of the electric turning shovel 1 and the like, and if it is too large, the torque is generated rapidly and the movement of the revolving unit 4 becomes jerky.
  • the control command generating means 130 controls the torque command value to be increased so as to approach the target speed.
  • control is speed control by general P control.
  • the control system change determination means 140 determines whether or not the revolving unit 4 is positioned in a direction opposite to the direction requested by the operator with the revolving lever 10. More specifically, the control system change determination means 140 determines the actual turning position of the revolving unit 4 output from the turning position output means 110, the reference position before updating stored in the reference position storage means 120, and the turning position. Operation of lever 10 Based on the working direction (same as the turning operation direction and the tilting direction), it is determined whether or not the force for updating the reference position stored in the reference position storage means 120 is determined.
  • the control system changing means 150 changes the control system of the rotation control device 100 according to the determination result of the control system change determining means 140, so that the control command of the electric motor 5 is controlled by the control system. It has a function to make it larger than the value before change, and consists of a reference position update unit 150A, a change command generation unit 150B, and a comparator (control command output unit) 150C.
  • the reference position updating unit 150A updates the reference position stored in the reference position storage means 120 based on the determination result of the control system change determination means 140.
  • the reference position updating unit 150A updates the reference position during normal turning, but the control system change determining means 140 determines that the revolving unit 4 is positioned in the opposite direction to the direction requested by the turning lever 10. Sometimes, the reference position is maintained without being updated.
  • the change command generator 150B generates a change command for the electric motor 5 based on the output value of the turning position output means 110 and the reference position stored in the reference position storage means 120. . As shown in FIG. 6, the change command generating unit 150B performs position control by P control that multiplies the turning position of the revolving unit 4 by the position gain Kpl, and the reference position updating unit 150A maintains the reference position without updating the reference position. In this case, a larger change command value is generated than before the change of the control system.
  • the comparator 150C controls the electric motor 5 by controlling the larger of the change command value by the change command generator 150B and the control command value by the control command generator 130. Output as a command. Therefore, if the reference position is not updated and the torque output (torque limit a or less) calculated by the normal speed control loses the earth pressure and the revolving superstructure 4 may be largely returned, the comparator 150C The swing of the swing body 4 is regulated by selecting a large torque change command generated by the change command generator and outputting it as a control command for the electric motor 5. [0041] [1-3] Control action by turning control device 100
  • Step 11 On the drawing and below. (Steps are simply abbreviated as "S.")
  • the control system change determining means 140 further determines whether or not the force indicated by the tilt direction of the revolving lever 10 is right (S12). If the result of the determination is that the direction indicated by the turning lever 10 is right, it is determined that the actual turning direction and the pointing direction are the same, so that the reference position updating unit 150A of the control system changing means 150 moves to the right.
  • the reference position stored in the reference position storage means 120 is updated one by one with the current turning position of the revolving superstructure 4 changing moment by moment as a new reference position (S13).
  • the control system change determining means 140 further sets the lever pointing direction to the left. It is determined whether or not there is (S15). If the result of the determination indicates that the pointing direction is left, it is determined that the actual turning direction is the same as the pointing direction, so the reference position updating unit 150A determines that the current As the new reference position, The reference position stored in the reference position storage means 120 is updated one by one (S13).
  • control system change determination means 140 determines that the lever pointing direction is right, it is possible that the operator has tilted the turning lever 10 to the right turning side. In fact, the revolving superstructure 4 is actually turning left. Accordingly, the control system change determination means 140 determines that the user wants to make a right turn and is pushed back to the left, so that the reference position is maintained before the determination. That is, reference position updating section 150A does not update the reference position.
  • the change command generation unit 150B of the control system change unit 150 It is determined whether the actual motor torque of the motor 5 exceeds the torque limit ⁇ (S16). In response to this determination result, the change command generation unit 150B switches the calculation of the control deviation for generating the change command. When it is determined that the actual motor torque of the electric motor 5 is smaller than the torque limit minus the change command generation unit 150B, the change command generation unit 150B compares the output value of the turning position output unit 110 with the reference position stored in the reference position storage unit 120. The difference is defined as a control deviation (S17).
  • the change command generation unit 150B determines the position obtained by adding the amount of change to the reference position stored in the reference position storage unit 120, and the turning position.
  • the difference between the output value of the output means 110 and the output value is defined as a control deviation (S18).
  • the change command generation unit 150B generates a change command for the electric motor 5 based on the control deviation already obtained (S19). Generation of the change command is performed by proportional control in which the control deviation is multiplied by the position gain Kp1.
  • the comparator 150C of the control system changing unit 150 determines whether the control command generated by the control command generating unit 130 is larger than the change command generated by the change command generating unit 150B. (S20). If the control command generated by the control command generating means 130 is larger, the comparator 150C selects this control command as a control command for the electric motor 5 and outputs the control command to the electric motor 5 (S21). When the change command generated by the change command generator 150B is larger, the comparator 150C outputs the change command. It is selected as a control command for the electric motor 5 and output to the electric motor 5 (S22).
  • the reference position updating unit 150A of the control system changing unit 150 determines the control system change judgment.
  • the reference position is constantly updated based on the determination result of the means 140.
  • the update of the reference position by the reference position update unit 150A is represented by switching of the switch 30 provided in a pseudo manner. Therefore, in this case, the reference position updating unit 150A can switch the switch 30 to the “Y” side.
  • the motor torque of the electric motor 5 is output within the torque limit 1a.
  • the switching of the calculation value performed by the change command generation unit 150B of the control system changing unit 150 is also represented by the switching of the switch 31 provided in a pseudo manner. Therefore, in this case, the change command generation unit 150B also switches the switch 31 to the “Y” side.
  • both the position command ( ⁇ 1) and the position command ( ⁇ 2) passing through each of the switches 30 and 31 have the same value at the current turning position of the revolving unit 4, and eventually cancel. It becomes “0 (Zoku)”. Therefore, the torque output value generated by the change command generator 150B is also “0”, and the change command generator 150B outputs the torque command value to the comparator 150C as “0”. For this reason, the comparator 150C determines that the torque command value based on the target speed is large, and outputs this torque command value to the electric motor 5 as a control command. That is, in the electric motor 5, a torque output according to the turning operation of the turning lever 10 generated by the control command generating means 130 (torque output by general speed control according to a deviation between the speed target and the actual speed) is obtained. It is.
  • the reference position is not updated.
  • the position will be different. Therefore, the difference between the position command ( ⁇ 1) that is the current turning position of the revolving unit 4 and the position command ( ⁇ 0) that is the reference position is not “0”.
  • the change command generation unit 150B generates a torque output corresponding to the difference that is not “0” and outputs it to the comparator 150C as a torque command value. In this case, when the torque command value becomes larger than the torque command value based on the target speed due to the setting of the position gain Kpl, the comparator 150C outputs the torque command value from the change command generator 150B side. Priority.
  • FIG. 1 an equivalent model for suppressing the revolving body 4 from turning in the reverse direction is shown using a spring 30.
  • the torque output of the electric motor 5 obtained by the torque command value of the change command generator 150B corresponds to the spring force of the spring 30.
  • the change amount ⁇ ⁇ ⁇ is added to the position command ( ⁇ 0), which is the reference position, to generate a position command ( ⁇ 3), and the position command ( ⁇ 3) and the position command ( ⁇
  • the difference from 1) is the control deviation in the change instruction generation unit 150B.
  • the switch 31 switches to the “ ⁇ ” side, and the reference position is a position command ( ⁇ ⁇ ⁇ ) that is a position obtained by adding the variation ⁇ to the reference position before updating. Updated to 3).
  • the reference position during which the torque command value exceeds the torque limit ⁇ is the integrated position of the change ⁇ ⁇ , that is, the torque, at the reference position when the revolving unit 4 starts to return in the direction opposite to the operation direction. This is the position where the amount of displacement after the command value exceeds the torque limit ⁇ is calculated.
  • the difference between the above-mentioned position command ( ⁇ 3) and the position command ( ⁇ 1) is based on the fact that the revolving unit 4 starts to return from the current revolving position of the revolving unit 4 in the direction opposite to the operation direction.
  • To the reference position when This is the result of subtracting the position where the force and displacement were applied beyond the limit ⁇ , so that the difference between the position where the revolving unit 4 began to return in the direction opposite to the operation direction and the position beyond the torque limit-a become.
  • This value is equal to the deviation when the torque limit ⁇ is exceeded. For this reason, the torque command value is maintained at a value when the torque limit ⁇ is exceeded, and the state of being balanced by this torque is maintained.
  • the revolving superstructure 4 is not pushed back any more. If such control is not performed and the reference position is not updated, the revolving unit 4 will still be pushed back with a large torque, so if external force suddenly comes off, the revolving unit 4 will be pushed back vigorously and the state will be changed. It becomes unstable.
  • control system changing means 150 includes reference position updating section 151 ⁇ , switching control command generating section 151 ⁇ , and control law switching section. 151C, and as a change of the control system of the turning control device 100,
  • the first embodiment is that the control command value of the electric motor 5 is made larger than the value before the control system is changed by switching the control law from the control command generation means 130 to the switching control command generation unit 15 IB. And different. Therefore, in the present embodiment, only portions different from the first embodiment will be described.
  • the speed control shown in FIG. 8 is the speed control itself by the control command generating means 130 in the first embodiment.
  • the reference position updating unit 151A updates the reference position stored in the reference position storage unit 120 according to the determination result of the control system change determination unit 140, as in the first embodiment.
  • the switching control command generator 151B generates and outputs a control command for the electric motor 5 according to a control rule different from that of the control command generator 130. Specifically, the switching control command generation unit 151B performs a position control using the feedback value of the current position output from the turning position output means 110 to push back the revolving structure 4 in the reverse direction. Perform control. In such position control, the position gain Kp2 is set so as to generate the target speed required to return to the target revolving structure position (the reference position, which is the same as the position of the revolving structure 4 immediately before returning). Until the position of the swing body 4 returns to the reference position, the swing body 4 is pushed back in the swing operation direction with a larger torque output based on the speed target obtained by multiplying the position gain ⁇ ⁇ ⁇ 2.
  • control law switching unit 151C switches between the control command generation unit 130 and the switching control command generation unit 151B according to the determination result of the control system change determination unit 140. Such switching of the control law prevents the revolving unit 4 from turning in the opposite direction to the turning operation direction without changing the speed gain ⁇ .
  • the switching of the control law from the speed control by the control command generation means 130 to the position control by the switching control command generation section 151B of the control system changing means 150 is performed by returning the revolving superstructure 4 and determining the force to be applied. Based on the determination, the control law switching unit 151C of the control system changing unit 150 performs the determination.
  • the switching determination flow at this time is, as shown in FIG. 10, the reference position in the first embodiment. This is exactly the same as the update flow. That is, the control law switching unit 151C selects the speed control by the control command generation means 130 in S26 as a result of the same flow as when the reference position is updated, and the control flow is changed in S27 as a result of the same flow as when the control position is not updated.
  • the control is switched to the position control by the switching control command generation unit 151B of the means 150.
  • the reference position updating unit 151A of the control system changing unit 150 also updates (S23) or maintains (S24) the reference position as a result of the same flow as the reference position updating flow. Steps S21, S22, and S25 are the same as those in the first embodiment, and a description thereof will not be repeated.
  • a switching control command generation unit 151B After the control law is switched by the control law switching unit 151C, a switching control command generation unit 151B generates a control command for the power motor 5 by position control. In this position control, the turning position of the turning body 4 output by the turning position output means 110 is fed back based on the rotation speed of the electric motor 5 output from the rotation speed sensor 18. As a result, the switching control command generation unit 151B performs control such that the revolving unit 4 pushes back the portion pushed back in the opposite direction.
  • the position gain Kp2 is set so as to generate a target speed required to return to the target revolving structure position (same as the previous origin before returning). Until the position of the revolving unit 4 returns to the origin, the switching control command generation unit 151B generates a larger torque command value based on the target speed obtained by multiplying this position gain ⁇ 2. As a result, the turning control device 100 performs control to push back the amount of the revolving structure 4 pushed back in the reverse direction in the operation direction.
  • the current position of the revolving unit 4 is fed back only when the revolving unit 4 starts to turn in the reverse direction, and the target speed according to the deviation from the target turning position is obtained. Since the output is controlled by multiplying the input ⁇ 2, the same effect as in the first embodiment can be obtained. That is, it is possible to prevent the revolving superstructure 4 from continuing to turn in the opposite direction as it is while maintaining good riding comfort during a normal turning operation.
  • control system changing means 150 is provided as shown in FIG.
  • the control system includes a reference position update unit 152A, a control gain storage unit 152B, and a control gain change unit 152C.
  • the control gain change unit 152C As a change in the control system of the turning control device 100, the control gain change unit 152C
  • the control gain change unit 152C The difference from the first embodiment is that the control command value of the electric motor 5 is made larger than the value before the change of the control system. Therefore, in the present embodiment, only portions different from the first embodiment will be described.
  • the reference position update unit 152A is stored in the reference position storage unit 120 according to the determination result of the control system change determination unit 140, as in the first and second embodiments. Update the reference position.
  • the control gain storage unit 152B stores a plurality of speed gains, which are control gains of the swing body 4.
  • the control gain changing unit 152C changes the control gain to be selected according to the determination result of the control system change determining unit 140. Specifically, the control gain changing unit 152C changes the speed gain selected from the control gain storage unit 152B to a larger value when the revolving unit 4 is pushed back in the direction opposite to the turning operation direction. To increase the torque command value as the control command. Thereby, the torque output of the electric motor 5 is increased, so that the revolving superstructure 4 is controlled so as to push back the portion pushed back in the opposite direction.
  • control gain change performed by the control system change determining means 140 and the control system change means 150 will be described with reference to FIG.
  • the change of the control gain in the present embodiment is performed by the control gain changing unit 152C of the control system changing unit 150 based on the determination as to whether or not the revolving superstructure 4 is turned.
  • the flow of determination for changing the speed gain K which is the control gain, from the normal value to a large value is exactly the same as the reference position update float in the first embodiment, as shown in FIG.
  • the control gain changing unit 152C sets the control gain to a normal value in S33, and as a result of the same flow as when the control gain is not updated, a value larger than the normal value in S34.
  • the reference position update unit 152A of the control system changing means 150 also updates (S33) or maintains the reference position (S3 Perform 4).
  • S31, S32, and S35 are the same as in the first embodiment, and a description thereof will not be repeated.
  • the speed control performed by the control command generation means 130 is the speed control itself in the above-described first embodiment, except for the change of the control gain by the control gain changing unit 152C. Omitted.
  • the speed gain K is a normal value. Only when the revolving unit 4 is returned, the speed gain K is increased and the speed gain K is increased in the opposite direction. Since it is prevented from being continuously pushed back, the object of the present invention can be achieved while maintaining a good ride comfort similarly to the first and second embodiments.
  • the control system changing unit 150 includes a reference position updating unit 153A and a target value changing unit 153B as shown in FIG. 13, and changes the control system of the turning control device 100.
  • the first embodiment is different from the first embodiment in that the target value changing unit 153B changes the target value of the revolving unit 4 so that the control command value of the electric motor 5 becomes larger than the value before the change of the control system. different. Therefore, in the present embodiment, only the portions different from the first embodiment will be described.
  • the reference position update unit 153A is stored in the reference position storage unit 120 according to the determination result of the control system change determination unit 140, as in the first to third embodiments. Update the reference position.
  • the target value changing unit 153B outputs the target speed, which is the control target value of the revolving unit 4 set based on the operation input of the revolving lever (operating unit) 10, to the output value of the revolving position output unit 110. And the reference position is changed based on the reference position stored in the reference position storage means 120. Specifically, the target value changing unit 153B stores the output value of the turning position output unit 110 and the reference position storage unit 120 when the revolving unit 4 is pushed back in the direction opposite to the turning operation direction. Based on the deviation of the reference position, the target speed itself set by the target speed setting device 13 is changed to a larger value.
  • the aforementioned deviation changes to have “0” or a value in accordance with updating or maintaining the reference position.
  • the target speed itself set by the target speed setting device 13 is changed to By doing so, the torque output of the electric motor 5 is increased with the swivel lever 10 further tilted virtually, and control is performed so as to push back the swivel body 4 that has been pushed back in the opposite direction.
  • control of the present embodiment is position control, as in the second embodiment. Then, in a normal turning state in which the revolving superstructure 4 is not returned, the speed control is the same as in FIG. 9 in the second embodiment.
  • the target revolving body position which is the position of the revolving superstructure 4 immediately before returning to the reference position, and the actual current
  • the target speed set by the target speed setting device 13 based on the operation input of the swing lever 10 based on the deviation is obtained. It differs from the second embodiment in that the speed itself is switched.
  • the determination of whether to update or maintain the reference position is exactly the same as the float of the reference position update in the first embodiment, and therefore, illustration and description thereof are omitted here.
  • the turning control device 100 of the present invention includes the target value changing unit 153B that changes the target speed based on the deviation of the position.
  • the object of the present invention can be achieved.
  • the present invention is not limited to the above-described embodiment, but includes other configurations and the like that can achieve the object of the present invention, and the following modifications and the like are also included in the present invention.
  • first and second modifications are examples of a restriction device that may optionally include a restriction device for mechanically preventing the revolving structure from turning in the reverse direction.
  • FIGS. 14 and 15 schematically show a main part of the first modification.
  • the electric motor 5 coupled to the swing circle 3 via the gear 5 is, as shown in FIG. 15, a motor body 40 and a ratchet mechanism for transmitting the rotational force of the motor body 40 in only one direction.
  • the control device 41 includes a regulating device 41 and a speed reducer 42. The rotation restricting direction of the restricting device 41 is switched by a switching signal output in accordance with the operation direction of the turning lever!
  • the restriction device 41 operates so as to control the rotation, and conversely, when the left turn is instructed, the restriction device 41 operates to restrict the right rotation. Therefore, even if the revolving superstructure receives an external force in the direction opposite to the revolving operation direction, the revolving superstructure is mechanically restricted from turning in the reverse direction by the restricting device 41. It is possible to reliably prevent the body from continuing to turn in the direction opposite to the turning operation direction.
  • the regulating device 51 of the second modification shown in FIG. 16 is constituted by a closed hydraulic circuit 54 including a hydraulic pump 52 and a check valve 53 connected to an electric motor (not shown). (A) and (B) are switched by the switching signal output according to the operating direction of the swing lever.
  • the check valve 53 restricts the revolving direction of the revolving structure and does not return to the reverse direction. As a result, it is possible to reliably counter external forces.
  • the restricting device is not limited to the restricting devices 41 and 51 of the first and second modified examples, and a brake mechanism that stops the rotating shaft of the electric motor by a frictional force or the like may be used.
  • the brake mechanism may be actuated by depressing a foot pedal or the like to prevent the revolving superstructure from returning in the opposite direction.
  • the present invention is applicable to any construction machine in which a swing body is swing-driven by an electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

 電動旋回ショベル(建設機械)1においては、旋回体4に対してレバー指示方向とは逆向きの土圧が作用すると、旋回制御装置100の制御系変更手段150が旋回体4を駆動する電動モータ5のトルク出力を大きく変更する。このため、作用する土圧に良好に対抗でき、旋回体が逆方向への旋回し続けるのを確実に防止できる。従って、土圧が大きくなっても、作業に影響を及ぼす心配がないうえ、勾配面上で旋回体を旋回させても、ブームやアームの重量によって旋回体が大きく戻されるのを防止できる。

Description

明 細 書
旋回制御装置、旋回制御方法、および建設機械
技術分野
[0001] 本発明は、電動モータで旋回する旋回体を制御するための旋回制御装置、旋回制 御方法、および旋回体が電動モータによって旋回する建設機械に関する。
背景技術
[0002] 近年、旋回体を電動モータで駆動し、他の作業機や走行体を油圧ァクチユエータ で駆動するハイブリットタイプの電動旋回ショベルが開発されている(例えば、特許文 献 1参照)。
このような電動旋回ショベルでは、旋回体の旋回動作が電動モータで行われるため 、油圧駆動されるブームやアームの上昇動作と同時に旋回体を旋回させても、旋回 体の動作がブームやアームの上昇動作に影響されることがない。このため、旋回体を も油圧駆動する場合に比し、制御ノ レブ等でのロスを少なくでき、エネルギ効率が良 好である。
[0003] 特許文献 1 :特開 2001— 11897号公報
発明の開示
発明が解決しょうとする課題
[0004] ところで、電動旋回ショベル等の建設機械において、溝幅を広げるような掘削作業 の場合には、パケットを溝の側壁に押し当てながら行うことが多い。パケットを側壁に 押し当てる操作は、旋回レバーを所定方向に傾倒させ、旋回体を旋回駆動させるこ とで行われる。つまり、旋回時のトルク出力を利用してパケットを側壁に押し当てるの である。
[0005] し力しながら、掘削部分の地盤の硬さや形状など、地盤の状況によっては、掘削中 にパケットが土圧 (掘削反力)によって押し戻され、旋回レバーを所定方向へ操作し ているにもかかわらず、旋回体が旋回操作方向とは反対側に旋回して戻されるという 現象が生じる。この現象は、オペレータの意図した通りの作業を行いに《するもので あり、作業効率を低下させる可能性がある。 [0006] また、このような現象は、掘削作業時に限らず、傾斜地にあって旋回体を旋回させ た場合にも生じるおそれがある。例えば、旋回体の旋回により、傾斜方向の上方側に 向かってパケットを移動させようとすると、ブームやアームをも重力に抗して移動させ ることになるため、ブームやアームの重量に負けて旋回体がー且逆方向に旋回して しまう。
[0007] 本発明の目的は、旋回体に対して旋回操作方向とは反対方向に外力が作用した 場合でも、旋回体の反対方向への旋回を防止できる旋回制御装置、旋回制御方法 、および建設機械を提供することにある。
課題を解決するための手段
[0008] 本発明の旋回制御装置は、操作体の指令に基づいて電動モータで駆動される旋 回体の旋回動作を制御する旋回制御装置であって、前記旋回体の旋回位置情報を 出力する旋回位置出力手段と、前記旋回位置出力手段の出力値を基準位置として 記憶する基準位置記憶手段と、前記電動モータの制御指令の生成および出力を行 う制御指令生成手段と、前記旋回位置出力手段の出力値、前記基準位置記憶手段 に記憶されている基準位置、および前記操作体の操作方向に基づいて、前記旋回 制御装置の制御系の変更を行うかを判定する制御系変更判定手段と、前記制御系 変更判定手段の判定結果に応じて、前記旋回制御装置の制御系の変更を行う制御 系変更手段とを備え、前記制御系変更手段は、前記制御系の変更により、前記電動 モータの制御指令を前記制御系の変更前の値より大きくすることを特徴とする。
[0009] このような本発明によれば、制御系変更手段が、旋回制御装置の制御系の変更に より電動モータの制御指令を制御系の変更前の値より大きくするので、作用する外力 に良好に対抗するようになり、旋回体が逆方向へ旋回し続けるおそれがない。
[0010] 本発明の旋回制御装置において、前記制御系変更手段は、前記制御系変更判定 手段の判定結果に応じて、前記基準位置記憶手段に記憶されて!、る基準位置を更 新する基準位置更新部と、前記旋回位置出力手段の出力値および前記基準位置記 憶手段に記憶されている基準位置に基づいて、前記電動モータの変更指令の生成 を行う変更指令生成部と、前記制御指令生成手段による制御指令と前記変更指令 生成部による変更指令との大きい方の値を選択し、前記電動モータの制御指令とし て出力する制御指令出力部とを備え、前記制御系の変更とは、前記基準位置の維 持であることが望ましい。
このような本発明によれば、制御系変更手段の制御指令出力部が、制御指令生成 手段による制御指令と変更指令生成部による変更指令との大きい方の値を選択し電 動モータの制御指令として出力するので、制御系の変更によって電動モータの制御 指令が突然大きく変化することがなぐスムーズな制御によって本発明の目的を達成 できる。
[0011] 本発明の旋回制御装置において、前記制御系変更手段は、前記制御系変更判定 手段の判定結果に応じて、前記基準位置記憶手段に記憶されて!、る基準位置を更 新する基準位置更新部と、前記制御指令生成手段とは異なる制御則により前記電動 モータの制御指令の生成および出力を行う切換制御指令生成部と、前記制御系変 更判定手段の判定結果に応じて、前記制御指令生成手段と前記切換制御指令生成 部とを切り換える制御則切換部とを備え、前記制御系の変更とは、前記制御則切換 部による、前記制御指令生成手段から前記切換制御指令生成部への制御則の切り 換えであることが望ましい。
このような本発明によれば、制御系変更手段の制御則切換部が、制御指令生成手 段力 切換制御指令生成部へ制御則を切り換えており、速度ゲインを大きくしている 訳ではな!/、ので、通常の旋回動作にぉ 、て過大なトルク出力が発生する心配がな ヽ
[0012] 本発明の旋回制御装置において、前記制御系変更手段は、前記制御系変更判定 手段の判定結果に応じて、前記基準位置記憶手段に記憶されて!、る基準位置を更 新する基準位置更新部と、前記旋回体の制御ゲインが複数記憶されて 、る制御ゲイ ン記憶部と、前記制御系変更判定手段の判定結果に応じて、前記制御ゲイン記憶 部から選択する制御ゲインを変更する制御ゲイン変更部とを備え、前記制御系の変 更とは、前記制御ゲイン変更部による、前記制御ゲインの変更であることが望ましい。 このような本発明によれば、制御系変更手段の制御ゲイン変更部により、制御系変 更判定手段の判定結果に基づ 、て制御ゲインの変更を行うことができ、この制御ゲ インの変更によって旋回体が逆方向に旋回するのを防止できる。 [0013] 本発明の旋回制御装置において、前記制御系変更手段は、前記制御系変更判定 手段の判定結果に応じて、前記基準位置記憶手段に記憶されて!、る基準位置を更 新する基準位置更新部と、前記操作体の操作入力に基づ ヽて設定された前記旋回 体の制御目標値を、前記旋回位置出力手段の出力値および前記基準位置記憶手 段に記憶されている基準位置に基づいて変更する目標値変更部とを備え、前記制 御系の変更とは、前記目標値変更部による、前記目標値の変更であることが望まし い。
このような本発明によれば、制御系変更手段の目標値変更部により、旋回体の制 御目標値の変更を行うことができ、この制御目標値の変更によって旋回体が逆方向 に旋回するのを防止できる。
[0014] 本発明の旋回制御方法は、操作体の指令に基づいて電動モータで駆動される旋 回体の旋回動作を制御するための旋回制御方法であって、前記旋回体の旋回位置 情報を出力するステップと、出力された旋回位置情報の出力値を基準位置として記 憶するステップと、前記電動モータの制御指令の生成および出力を行うステップと、 前記旋回位置情報の出力値、前記記憶されている基準位置、および前記操作体の 操作方向に基づ 、て、前記旋回制御装置の制御系の変更を行うかを判定するステツ プと、この判定の結果、前記旋回制御装置の制御系の変更を行うと判定された場合 に、前記電動モータの制御指令を前記制御系の変更前の値より大きくするステップと を備えることを特徴とする。
[0015] このような本発明によれば、旋回制御装置の制御系の変更を行うかを判定するステ ップによって旋回制御装置の制御系の変更を行うと判定された場合に、電動モータ の制御指令を前記制御系の変更前の値より大きくするので、作用する外力に良好に 対抗するようになり、旋回体が逆方向へ旋回し続けるおそれがない。
[0016] 本発明の建設機械は、電動モータで旋回駆動される旋回体と、この旋回体を制御 するための本発明の旋回制御装置とを備えていることを特徴とする。
[0017] このような本発明によれば、電動モータで旋回駆動される旋回体と、この旋回体を 制御するための本発明の旋回制御装置とを備えているので、本発明の旋回制御装 置と同様の効果を有する建設機械が得られる。 図面の簡単な説明
[0018] [図 1]本発明の第 1実施形態に係る建設機械を模式的に示す平面図。
[図 2]前記第 1実施形態に係る建設機械の全体構成を示す図。
[図 3]前記第 1実施形態に係る旋回制御装置の制御構造を示すブロック図。
[図 4]前記第 1実施形態での基準位置更新についてのフローチャート。
[図 5]前記第 1実施形態での制御指令の出力についてのフローチャート。
[図 6]前記第 1実施形態での制御をより詳細に表す図。
[図 7]本発明の第 2実施形態での制御を表す図。
[図 8]前記第 2実施形態での一方の制御則を示すブロック図。
[図 9]前記第 2実施形態での他方の制御則を示すブロック図。
[図 10]前記第 2実施形態での制御則の切り換えについてのフローチャート。
[図 11]本発明の第 3実施形態での制御構造を示すブロック図。
[図 12]前記第 3実施形態での制御ゲインの変更についてのフローチャート。
[図 13]本発明の第 4実施形態での制御構造を示すブロック図。
[図 14]本発明の第 1変形例を示す斜視図。
[図 15]前記第 1変形例での規制装置を示す分解斜視図。
[図 16]本発明の第 2変形例での規制装置を示す油圧回路図。
符号の説明
[0019] 1…電動旋回ショベル (建設機械)、 4…旋回体、 5…電動モータ、 10· ··旋回レバー
(操作体)、 21· ··出力変更手段、 22· ··制御則切換手段、 26· ··ゲイン変更手段、 27 …速度目標変更手段、 41· ··規制装置、 100…旋回制御装置、 110…旋回位置出力 手段、 120…基準位置記憶手段、 130…制御指令生成手段、 140· ··制御系変更判 定手段、 150…制御系変更手段、 150A、 151A、 152A、 153A…基準位置更新部 、 150B…変更指令生成部、 150C…コンパレータ(制御指令出力部)、 151Β· ··切 換制御指令生成部、 151C…制御則切換部、 152B…制御ゲイン記憶部、 152C- " 制御ゲイン変更部、 153Β· ··目標値変更部、 51· ··規制装置。
発明を実施するための最良の形態
[0020] 〔第 1実施形態〕 〔1— 1〕全体構成
以下、本発明の第 1実施形態を図面に基づいて説明する。
図 1は、本実施形態に係る電動旋回ショベル (建設機械) 1を模式的に示す平面図 、図 2は、電動旋回ショベル 1の全体構成を示す図である。また、図 3は、旋回制御装 置 100の制御構造を示すブロック図である。
[0021] 図 1において、電動旋回ショベル 1は、下部走行体 2を構成するトラックフレーム上 にスイングサークル 3を介して設置された旋回体 4を備え、この旋回体 4がスイングサ 一クル 3と嚙合する電動モータ 5によって旋回駆動される。旋回体 4には、ブームシリ ンダ 21 (図 2参照)によって動作されるブーム 6、アームシリンダ 22 (図 2参照)によつ て駆動されるアーム 7、およびバケツトシリンダ 23 (図 2参照)によって駆動されるバケ ット 8が設けられている。そして、これらによって作業機 9が構成されている。
[0022] 図 2において、前述の各シリンダ 21〜23は油圧シリンダであり、その油圧源は、後 述するエンジン 14で駆動される油圧ポンプ 19である。従って、電動旋回ショベル 1は 、油圧駆動の作業機 9と電気駆動の旋回体 4とを備えたハイブリット建設機械である。 なお、本実施形態のブーム 6は、第 1ブーム 6Aおよび第 2ブーム 6Bで構成された、 いわゆるオフセットブームとなっている力 一つのブームで構成されたものであっても 勿論よい。
[0023] また、図 2に示すように、電動旋回ショベル 1は、前述した構成の他、旋回レバー( 操作体) 10、燃料ダイヤル 11、モード切換スィッチ 12、 目標速度設定装置 13、ェン ジン 14、発電モータ 15、インバータ 16、キャパシタ 17、電動モータ 5、回転速度セン サ 18、油圧制御バルブ 20、右走行モータ 24、左走行モータ 25、および旋回制御装 置 100を備えている。
[0024] 燃料ダイヤル 11はエンジンへの燃料供給 (噴射)量を制御するためのダイヤル、モ ード切換スィッチ 12は各種作業モードを切り換えるためのスィッチであり、電動旋回 ショベル 1の運転状況に応じて、オペレータが操作する。
目標速度設定装置 13は、燃料ダイヤル 11の設定状態、モード切換スィッチ 12の 設定状態、および旋回レバー 10 (通常はアーム 7操作用の作業機レバーを兼用)の 傾倒角度に基づいて、旋回体 4の目標速度を設定し、旋回制御装置 100に出力する [0025] エンジン 14は、各油圧シリンダ 21〜23の油圧源となる油圧ポンプ 19、および発電 モータ 15を駆動する。この油圧ポンプ 19で発生した油圧を用いて、ブームシリンダ 2 1はブーム 6 (図 1参照)を、アームシリンダ 22はアーム 7 (図 1参照)を、そしてパケット シリンダ 23はパケット 8 (図 1参照)をそれぞれ駆動する。また、右走行モータ 24およ び左走行モータ 25は油圧モータであり、油圧ポンプ 19はこの油圧源としても使用さ れている。
[0026] 発電モータ 15、インバータ 16、キャパシタ 17は、その組合せにより、電動モータ 5 の電力源となる。なお、発電モータ 15は、電動モータを兼ねた発電機としても機能す る。
電動モータ 5は、スイングサークル 3を介して旋回体 4を旋回駆動する。また、電動 モータ 5には、回転速度センサ 18が設置されている。回転速度センサ 18は、電動モ ータ 5の回転速度を検出し、その回転速度は旋回制御装置 100へフィードバックされ る。
[0027] 旋回制御装置 100は、目標速度設定装置 13により設定された旋回体 4の目標速 度と、回転速度センサ 18により検出される電動モータ 5の回転速度に基づいて、制 御ゲインである速度ゲイン Kを用いた P制御(比例制御)で速度制御を行 、、電動モ ータ 5に対する制御指令であるトルク指令値を生成する。本実施形態の場合、旋回 制御装置 100はインバータであり、トルク指令値を電流値および電圧値に変換して電 動モータ 5に出力し、電動モータ 5のトルク出力を制御する。
なお、旋回制御装置 100は、例えばスイッチング等により電動モータを駆動する指 令を行えるものであれば、インバータ以外のものであってもよ 、。
[0028] ところで、図 1には、このような電動旋回ショベル 1を使用して、溝の掘削作業を行つ ている様子が示されている。具体的には、溝の側壁にパケット 8を押し当てて、アーム 7を手前に引くことにより、溝幅を拡張しながら掘削を行っている。パケット 8を側壁に 押し当てる操作は、図 1の例でいえば、旋回レバー 10を右側に倒し込み、旋回体 4を 右旋回させている状態にしてパケット 8を押し付けるのである。
[0029] この際、本実施形態の電動旋回ショベル 1では、旋回体 4を低速で旋回させながら パケット 8を側壁に押し当てると、側壁による土圧 (掘削反力:外力)を受けて実速度 力 S「0 (ゼロ)」になる。つまり、旋回レバー 10は傾倒している力 旋回体 4は旋回しな い状態である。この状態では、実速度が「0」になることで目標速度との偏差が大きく なるため、前述の一般的な速度制御によれば、その偏差に応じてトルク出力が大きく なるようにトルク指令値が生成され、土圧に抗するようになる。ただし、トルク出力の大 きさには限界が設定されており、トルクリミット a (図 6)以下でのトルク出力の増加が 許されるようになつている。
[0030] 一方、一般的な速度制御に基づいて、その時々の最大トルク出力を発生させても、 土圧に対抗しきれない場合が生じる。図 1の例でいえば、パケット 8を側壁に押し当て ながらの切削中に、パケット 8が岩盤等にぶつ力つて掘削しに《なるような場合であ る。このような場合には、旋回体 4が土圧に負け、旋回レバー 10を右旋回側に倒し込 んでいるのにもかかわらず、左旋回側に押し戻されるという現象が生じる。この押し戻 しによる変化量が大き 、と、作業に支障をきたす可能性がある。
[0031] そこで、本実施形態の旋回制御装置 100では、このような場合を想定し、図 3に示 すように旋回制御装置 100の制御系の変更を行うか否かを判定する手段、具体的に は旋回体 4の旋回方向がオペレータの意図する方向である力否かを判定する制御系 変更判定手段 140と、この判定結果に応じて旋回制御装置 100の前記制御系の変 更を行い、電動モータ 5への制御指令を制御系の変更前の値より大きくする制御系 変更手段 150とを設けている。この制御系変更手段 150が行う旋回制御装置 100の 制御系の変更によって、電動モータ 5に十分に大きいトルク出力を発生させ、旋回体 4が押し戻された分を押し返すようにしている。なお、このような大きなトルク出力を従 来の一般的な速度制御で得ようとすると、前記速度ゲイン Kをはるかに大きくする必 要があり、通常の旋回時の動作がぎくしゃくして使用に適さない。また、各手段 140, 150については後段で詳説する。
[0032] [1 - 2]旋回制御装置 100による制御構造
次に、図 3を参照して、旋回制御装置 100による旋回体 4の制御構造について説明 する。
旋回制御装置 100は、旋回位置出力手段 110、基準位置記憶手段 120、制御指 令生成手段 130、制御系変更判定手段 140、制御系変更手段 150により構成される
[0033] 旋回位置出力手段 110は、回転速度センサ 18から出力される電動モータ 5の回転 速度を積分し、旋回体 4の旋回位置情報として出力する。
基準位置記憶手段 120は、 RAM (Random Access Memory)が用いられ、前記旋 回位置出力手段 110の出力値を基準位置として記憶する。基準位置記憶手段 120 に記憶されている基準位置は、制御系変更判定手段 140の判定結果に応じて、その 時々の旋回体 4の旋回位置により更新される。なお、基準位置記憶手段 120には、 基準位置を読み取るために複数の手段がアクセスする力 これを図示すると煩雑に なり、力えって分力りずらくなるため、図 3では基準位置記憶手段 120と他の手段との 接続関係を省略している。後述する第 2、第 3、および第 4実施形態でも同様である。
[0034] 制御指令生成手段 130は、目標速度設定装置 13で設定される旋回体 4の目標速 度および回転速度センサ 18により検出される電動モータ 5の回転速度に基づき、前 記電動モータ 5への制御指令の生成および出力を行う。具体的に制御指令生成手 段 130は、目標速度設定装置 13で設定される目標速度と、旋回制御装置 100にフィ ードバックされた電動モータ 5の回転速度とを比較し、その偏差と速度ゲイン Kとの掛 算により、電動モータ 5のトルク指令値を生成する。ここで、速度ゲイン Kは、電動旋 回ショベル 1の操縦性等を勘案して設定されるものであり、大きすぎるとトルクの出方 が急となり、旋回体 4の動きがぎくしゃくする。
[0035] このように、電動モータ 5のトルク指令値は、フィードバックされた電動モータ 5の回転 速度と目標速度との偏差に応じて生成されるため、旋回レバー 10を大きく傾けても実 速度が上がらない場合には、制御指令生成手段 130がトルク指令値を大きくして目 標速度に近づけるように制御する。ただし、このような制御は、一般的な P制御による 速度制御である。
[0036] 制御系変更判定手段 140は、オペレータが旋回レバー 10で要求する方向とは反 対に旋回体 4が位置している力否かを判定する。具体的に、制御系変更判定手段 1 40は、旋回位置出力手段 110が出力する旋回体 4の実際の旋回位置、前記基準位 置記憶手段 120に記憶されている更新以前の基準位置、および旋回レバー 10の操 作方向(旋回操作方向および傾倒方向に同じ)に基づいて、基準位置記憶手段 120 に記憶されている基準位置を更新する力否かを判定する。つまり、旋回体 4の旋回位 置力 前記基準位置に対しオペレータが旋回レバー 10で要求する方向とは反対に 位置する場合、旋回レバー 10は傾倒しているが旋回体 4は旋回しない状態であると 判定する。
[0037] 制御系変更手段 150は、前記制御系変更判定手段 140の判定結果に応じて、旋 回制御装置 100の制御系の変更を行うことで、前記電動モータ 5の制御指令を制御 系の変更前の値より大きくする機能を有しており、基準位置更新部 150A、変更指令 生成部 150B、およびコンパレータ (制御指令出力部) 150Cで構成される。
以下に、制御系変更手段 150の各構成部について説明する。
[0038] 基準位置更新部 150Aは、前記制御系変更判定手段 140の判定結果に基づいて 、前記基準位置記憶手段 120に記憶されている基準位置を更新する。基準位置更 新部 150Aは、通常の旋回時には基準位置の更新を行うが、旋回レバー 10で要求 する方向とは反対に旋回体 4が位置していると前記制御系変更判定手段 140が判定 した時には、基準位置を更新せずに維持する。
[0039] 変更指令生成部 150Bは、前記旋回位置出力手段 110の出力値および前記基準 位置記憶手段 120に記憶されている基準位置に基づいて、前記電動モータ 5への変 更指令の生成を行う。変更指令生成部 150Bは、図 6に示すように、旋回体 4の旋回 位置に位置ゲイン Kplを掛算する P制御で位置制御を行 ヽ、基準位置更新部 150A が基準位置を更新せずに維持した場合には、この制御系の変更前よりも大きな変更 指令値を生成する。
[0040] 図 3に戻り、コンパレータ 150Cは、前記変更指令生成部 150Bによる前記変更指 令値と前記制御指令生成手段 130による制御指令値との大きい方の値を、前記電動 モータ 5への制御指令として出力する。従って、基準位置が更新されず、通常の速度 制御によって演算されたトルク出力(トルクリミット a以下)では土圧に負けてしまい 、旋回体 4が大きく戻される可能性がある場合、コンパレータ 150Cは、変更指令生 成部が生成した大きなトルク変更指令を選択し電動モータ 5の制御指令として出力す ることで、旋回体 4の旋回を規制する。 [0041] [1 - 3]旋回制御装置 100による制御作用
次に、図 4、図 5、および図 6に基づいて、旋回制御装置 100、特に制御系変更判 定手段 140および制御系変更手段 150の作用について説明する。
まず、図 4に基づいて、制御系変更判定手段 140および制御系変更手段 150にて 行われる基準位置の更新にっ 、て説明する。
旋回位置出力手段 110が、回転速度センサ 18から出力される電動モータ 5の回転 速度を積分し、旋回体 4の旋回位置情報として出力するステップを経た後、制御系変 更判定手段 140は、旋回位置出力手段 110が出力する旋回体 4の旋回位置が、基 準位置記憶手段 120に記憶されている基準位置よりも右にある力否かを判定する (ス テツプ 11:図面上および以下にお ヽてはステップを単に「S」と略す)。
[0042] 旋回体 4が、基準位置よりも右にある場合は、さらに、制御系変更判定手段 140が、 旋回レバー 10の傾倒による指示方向が右である力否かを判定する(S12)。判定の 結果、旋回レバー 10による指示方向が右である場合には、実際の旋回方向と指示 方向とが同一と判定されるため、制御系変更手段 150の基準位置更新部 150Aは、 右側に向力つて時々刻々と変化する旋回体 4の現在の旋回位置を新たな基準位置 として、基準位置記憶手段 120に記憶されている基準位置を逐一更新していく (S13
) o
[0043] S12において、制御系変更判定手段 140が、レバー指示方向は左であると判定し た場合には、オペレータが旋回レバー 10を左旋回側に傾倒しているにもかかわらず 、実際には旋回体 4が右旋回していることになる。従って、制御系変更判定手段 140 は、オペレータが旋回体 4を左旋回させた 、のに対して右側に押し戻されて 、ると判 定するため、基準位置はこの判定以前のものが維持される。すなわち、基準位置更 新部 150Aは、基準位置を更新しない(S 14)。
[0044] S11に戻って、旋回位置が基準位置よりも右にない場合、つまり、旋回体 4が実際 に左旋回している場合に、制御系変更判定手段 140は、さらにレバー指示方向が左 であるか否かを判定する(S 15)。判定の結果、指示方向が左である場合は、実際の 旋回方向と指示方向とが同一と判定されるため、基準位置更新部 150Aは、左側に 向かって時々刻々と変化する旋回体 4の現在の旋回位置を新たな基準位置として、 基準位置記憶手段 120に記憶されている基準位置を逐一更新していく(S13)。
[0045] S15での判定において、制御系変更判定手段 140が、レバー指示方向は右である と判定した場合は、オペレータが旋回レバー 10を右旋回側に傾倒しているにもかか わらず、実際には旋回体 4が左旋回していることになる。従って、制御系変更判定手 段 140は、右旋回させたいのに対して左側に押し戻されていると判定するため、基準 位置はこの判定以前のものが維持される。すなわち、基準位置更新部 150Aは、基 準位置を更新しない。
[0046] 次に、図 5に基づいて、電動モータ 5の制御指令の生成について説明する。
図 4での制御系変更判定手段 140による判定、および制御系変更手段 150の基準 位置更新部 150Aによる基準位置の更新又は維持の後、制御系変更手段 150の変 更指令生成部 150Bは、電動モータ 5の実際のモータトルクがトルクリミット αを越 えている力否かを判定する(S16)。この判定結果に応じて、変更指令生成部 150B は、変更指令を生成するための制御偏差の演算を切り換える。電動モータ 5の実際 のモータトルクがトルクリミット—ひより小さいと判定した場合、変更指令生成部 150B は、旋回位置出力手段 110の出力値と、基準位置記憶手段 120に記憶されている 基準位置との差を制御偏差とする(S17)。電動モータ 5の実際のモータトルクがトル クリミット α以上であると判定した場合、変更指令生成部 150Bは、基準位置記憶 手段 120に記憶されている基準位置に変化量を加えた位置と、旋回位置出力手段 1 10の出力値との差を制御偏差とする(S18)。
[0047] そして、変更指令生成部 150Bは、すでに求められている制御偏差に基づき、電動 モータ 5の変更指令を生成する(S19)。変更指令の生成は、前記制御偏差に位置 ゲイン Kp 1を掛ける比例制御により行う。
[0048] この後、制御系変更手段 150のコンパレータ 150Cは、制御指令生成手段 130によ り生成された制御指令が、変更指令生成部 150Bにより生成された変更指令より大き いか否かを判定する(S20)。コンパレータ 150Cは、制御指令生成手段 130により生 成された制御指令の方が大き 、場合には、この制御指令を電動モータ 5の制御指令 として選択し、電動モータ 5に出力する(S21)。また、コンパレータ 150Cは、変更指 令生成部 150Bにより生成された変更指令の方が大きい場合には、この変更指令を 電動モータ 5の制御指令として選択し、電動モータ 5に出力する(S22)。
[0049] 次に、図 6に基づいて、制御系変更判定手段 140と制御系変更手段 150とによる 通常の制御、および旋回体 4が押し戻されな 、ようにするための制御にっ 、て説明 する。
旋回体 4の実際の旋回方向と旋回レバー 10の指示方向とが同じ場合、旋回体 4は 通常の旋回状態であるから、制御系変更手段 150の基準位置更新部 150Aは、制 御系変更判定手段 140の判定結果に基づき、基準位置を常に更新する。図 6では、 この際の流れを解りやすくするために、基準位置更新部 150Aによる基準位置の更 新を、擬似的に設けたスィッチ 30の切り換えで表している。従ってこの場合、基準位 置更新部 150Aは、スィッチ 30を「Y」側に切りえる。また、通常の旋回状態にあって は、電動モータ 5のモータトルクは、トルクリミット一 a内で出力されている。この際の 制御偏差の演算で、制御系変更手段 150の変更指令生成部 150Bが行う演算値の 切り換えも、同様に擬似的に設けたスィッチ 31の切り換えで表している。従ってこの 場合、変更指令生成部 150Bは、スィッチ 31も「Y」側に切り換える。
[0050] この状態では、位置指令( θ 1)と各スィッチ 30, 31を通過した位置指令( Θ 2)とは 共に旋回体 4の現在の旋回位置で同じ値であり、最終的にはキャンセルされて「0 (ゼ 口)」となる。従って、変更指令生成部 150Bが生成するトルク出力値も「0」であり、変 更指令生成部 150Bは、コンパレータ 150Cにトルク指令値を「0」で出力する。このた め、コンパレータ 150Cは、目標速度に基づくトルク指令値が大きいと判定し、このト ルク指令値を制御指令として電動モータ 5に出力する。すなわち、電動モータ 5では 、制御指令生成手段 130が生成する旋回レバー 10の旋回操作に応じたトルク出力( 速度目標と実速度との偏差に応じた一般的な速度制御によるトルク出力)が得られる のである。
[0051] 以上に対して、旋回レバー 10を右旋回側に傾倒しているにもかかわらず、土圧等 の外力によって旋回体 4が左側に押し戻されている場合には、前述したように、基準 位置更新部 150Aは、基準位置を更新しないから、基準位置更新部 150Aは、スイツ チ 30を「Ν」側に切り換える。
[0052] この状態では、基準位置が更新されな 、ため、旋回体 4の現在の旋回位置と基準 位置とは異なったものとなる。従って、旋回体 4の現在の旋回位置である位置指令( Θ 1)と、基準位置である位置指令( Θ 0)との差分が「0」ではない。変更指令生成部 150Bは、その「0」ではない差分に対応したトルク出力を生成し、コンパレータ 150C にトルク指令値として出力する。この場合のトルク指令値は、位置ゲイン Kplの設定 により、前記目標速度に基づくトルク指令値よりも大きい値となった場合には、コンパ レータ 150Cが、変更指令生成部 150B側からのトルク指令値を優先する。
[0053] このように、変更指令生成部 150Bからのトルク指令値を電動モータ 5へ出力する制 御指令として優先させることにより、旋回体 4が旋回操作方向とは逆方向の外力を受 けた場合でも、トルク指令値をより上昇させ、旋回体 4が押し戻される量を最小限に抑 えて、前回基準位置まで押し返してつり合わせることが可能である。
なお、図 1には、旋回体 4の逆方向への旋回を抑制するための等価モデルがばね 3 0を用いて表されている。変更指令生成部 150Bのトルク指令値によって得られる電 動モータ 5のトルク出力は、ばね 30のばね力に相当する。
[0054] ところで、図 6に戻り、旋回体 4が操作方向とは逆方向に押し戻された場合であって 、変更指令生成部 150Bが生成するトルク指令値により、旋回体 4を基準位置に押し 返そうとする際、電動モータ 5での実際のモータトルクがトルクリミット αのトルク出 力を越えてしまう可能性がある。こうなつた場合、変更指令生成部 150Bは、スィッチ 31を「Ν」側に切り換える。
[0055] この状態になると、基準位置である位置指令( Θ 0)に変化量 Δ Θが加算されて位 置指令( Θ 3)が生成され、この位置指令( Θ 3)と位置指令( θ 1)との差分が変更指 令生成部 150Bでの制御偏差となる。ここで、トルク指令値がトルクリミット αを越え た場合、スィッチ 31が「Ν」側に切り換わり、基準位置は、更新前の基準位置に変化 量 Δ Θを加算した位置である位置指令( Θ 3)に更新される。従って、トルク指令値が トルクリミット αを越えている間の基準位置は、旋回体 4が操作方向とは逆方向に 戻され始めた時の基準位置に、変化量 Δ Θの積算値、即ちトルク指令値がトルクリミ ット αを越えてからの変位量をカ卩えた位置となる。
[0056] これより、前述の位置指令( Θ 3)と位置指令( θ 1)との差分は、旋回体 4の現在の 旋回位置から、旋回体 4が操作方向とは逆方向に戻され始めた時の基準位置にトル クリミット αを越えて力もの変位量を加えた位置を差し引いた結果であるから、旋回 体 4が操作方向とは逆方向に戻され始めた位置とトルクリミット— aを越えた位置との 差となる。そして、この値は、トルクリミット αを越えた時の偏差に等しい。このため、 トルク指令値は、トルクリミット αを越えた時の値で維持されるようになり、このトルク でつり合った状態が維持される。つまり、これ以上は旋回体 4を押し返すことはしない 。このような制御が行われず、基準位置が更新されないと、依然として大きなトルクで 旋回体 4を押し返そうとするため、外力が不意に抜けたときには、勢いよく旋回体 4が 押し返されて状態が不安定となる。
[0057] 〔1 4〕本実施形態による効果
このような本実施形態によれば、以下の効果がある。
(1)電動旋回ショベル 1においては、旋回体 4に対して旋回レバー 10の指示方向と は逆向きの土圧が作用すると、コンパレータ 150Cが旋回体 4を駆動する電動モータ 5のトルク出力を大きく変更するので、作用する土圧に良好に対抗でき、旋回体 4が 逆方向への旋回し続けるのを確実に防止できる。従って、土圧が大きくなつても、作 業に影響を及ぼす心配がないうえ、勾配面上で旋回体 4を旋回させても、ブーム 6や アーム 7の重量によって旋回体 4が大きく戻されるのを防止できる。
[0058] (2)旋回体 4のトルク出力を変更するために、旋回体 4を駆動用する電動モータ 5のト ルク指令値を変更しているので、電気的な制御によって電動モータ 5のトルク出力を 変更でき、大掛力りな装置を不要にできて、コストが大幅にアップするのを避けること ができる。
[0059] (3)電動モータ 5で大きなトルク出力を生じさせるために、速度ゲイン Κを大きくしてい る訳ではないから、通常の旋回動作において過大なトルク出力が発生することはなく 、電動旋回ショベル 1のぎくしやくした動きを防止でき、乗り心地や操縦性を良好にで きる。
[0060] 〔第 2実施形態〕
図 7、図 8、および図 9に示す第 2実施形態では、制御系変更手段 150は、図 7に示 すように、基準位置更新部 151Α、切換制御指令生成部 151Β、および制御則切換 部 151Cで構成され、旋回制御装置 100の制御系の変更として、前記制御則切換部 151Cが、制御指令生成手段 130から前記切換制御指令生成部 15 IBへ制御則を 切り換えることで、電動モータ 5の制御指令値を前記制御系の変更前の値より大きく する点が第 1実施形態とは異なる。従って、本実施形態では、第 1実施形態と異なる 部分のみを説明する。なお、図 8に示した速度制御は、第 1実施形態での制御指令 生成手段 130による速度制御そのものである。
[0061] 以下に、制御系変更手段 150の各構成部について説明する。
基準位置更新部 151Aは、第 1実施形態の場合と同様に、前記制御系変更判定手 段 140の判定結果に応じて、前記基準位置記憶手段 120に記憶されている基準位 置を更新する。
[0062] 切換制御指令生成部 151Bは、図 9に示すように、前記制御指令生成手段 130と は異なる制御則により電動モータ 5の制御指令の生成および出力を行う。具体的に、 切換制御指令生成部 151Bは、旋回位置出力手段 110が出力する現在位置のフィ ードバック値を用いた位置制御により、旋回体 4が逆方向へ押し戻された分を押し返 すような制御を行う。そして、このような位置制御では、目標旋回***置 (基準位置で あり、戻される直前の旋回体 4の位置に同じ)に戻すのに必要な目標速度を生じさせ るように位置ゲイン Kp2が設定されており、旋回体 4の位置が基準位置に戻るまでは 、この位置ゲイン Κρ2を掛算して得られる速度目標に基づいたより大きなトルク出力 で旋回体 4を旋回操作方向に押し返す。
[0063] 図 7に戻り、制御則切換部 151Cは、前記制御系変更判定手段 140の判定結果に 応じて、前記制御指令生成手段 130と前記切換制御指令生成部 151Bとを切り換え る。このような制御則の切り換えにより、速度ゲイン Κを変更することなぐ旋回体 4の 旋回操作方向とは逆方向への旋回を防止する。
[0064] 次に、図 10に基づいて、制御系変更判定手段 140および制御系変更手段 150に て行われる制御則の切り換えにつ 、て説明する。
本実施形態での、制御指令生成手段 130による速度制御から制御系変更手段 15 0の切換制御指令生成部 151Bによる位置制御への制御則の切換は、旋回体 4が戻 されて 、る力否かの判定に基づ 、て制御系変更手段 150の制御則切換部 151Cが 行う。この際の切換判断のフローは、図 10に示す通り、第 1実施形態での基準位置 更新のフローと全く同じである。つまり、制御則切換部 151Cは、基準位置が更新さ れるのと同じフローの結果、 S26で制御指令生成手段 130による速度制御を選択し 、更新されない場合と同じフローの結果、 S27で制御系変更手段 150の切換制御指 令生成部 151Bによる位置制御に切り換える。その際、前記基準位置更新のフローと 同じフローの結果、制御系変更手段 150の基準位置更新部 151Aも、基準位置の更 新 (S23)又は維持 (S24)を行う。 S21, S22, S25は、第 1実施形態と同じであり、こ こでの説明を省略する。
[0065] 次に、図 9に基づいて、制御則を切り換えた後の制御指令の生成について説明す る。
制御則切換部 151Cによる制御則の切換後は、切換制御指令生成部 151B力 電 動モータ 5の制御指令を位置制御により生成する。この位置制御においては、回転 速度センサ 18から出力される電動モータ 5の回転速度に基づいて、旋回位置出力 手段 110が出力する旋回体 4の旋回位置をフィードバックしている。これにより、切換 制御指令生成部 151Bは、旋回体 4が逆方向へ押し戻された分を押し返すような制 御を行う。
[0066] そして、このような位置制御では、目標旋回***置 (戻される以前の前回の原点に 同じ)に戻すのに必要な目標速度を生じさせるように位置ゲイン Kp2が設定されてお り、旋回体 4の位置が原点に戻るまで、切換制御指令生成部 151Bは、この位置ゲイ ン Κρ2を掛算して得られる目標速度に基づ!/、たより大きなトルク指令値を生成する。 これにより、旋回制御装置 100は、旋回体 4が逆方向へ押し戻された分を操作方向 に押し返す制御を行う。
[0067] このような本実施形態では、旋回体 4が逆方向に旋回し始めた場合にのみ、旋回体 4の現在位置をフィードバックし、目標旋回位置との偏差に応じた目標速度を位置ゲ イン Κρ2の掛算により出力させる制御を行うため、第 1実施形態と同様の効果が得ら れる。即ち、通常の旋回操作時の乗り心地等を良好に維持しつつ、旋回体 4がその まま逆方向へ旋回し続けるのを防止できる。
[0068] 〔第 3実施形態〕
図 11、図 12に示す第 3実施形態では、制御系変更手段 150は、図 11に示すよう に、基準位置更新部 152A、制御ゲイン記憶部 152B、および制御ゲイン変更部 15 2Cで構成され、旋回制御装置 100の制御系の変更として、制御ゲイン変更部 152C 力 制御ゲインの変更をすることで、電動モータ 5の制御指令値を前記制御系の変更 前の値より大きくする点が第 1実施形態とは異なる。従って、本実施形態では、第 1実 施形態と異なる部分のみを説明する。
[0069] 以下に、制御系変更手段 150の各構成部について説明する。
基準位置更新部 152Aは、第 1実施形態および第 2実施形態の場合と同様に、前 記制御系変更判定手段 140の判定結果に応じて、前記基準位置記憶手段 120に記 憶されて 、る基準位置を更新する。
制御ゲイン記憶部 152Bには、前記旋回体 4の制御ゲインである速度ゲインが複数 記憶されている。
[0070] 制御ゲイン変更部 152Cは、前記制御系変更判定手段 140の判定結果に応じて、 前記制御ゲイン記憶部 152B力 選択する制御ゲインを変更する。具体的に、制御 ゲイン変更部 152Cは、旋回体 4が旋回操作方向とは逆方向に押し戻された場合に 、前記制御ゲイン記憶部 152Bから選択する速度ゲインをより大き 、値に変更するこ とで制御指令であるトルク指令値をより大きくする。これによつて、電動モータ 5のトル ク出力を増大させ、よって旋回体 4が逆方向へ押し戻された分を押し返すように制御 している。
[0071] 次に、図 12に基づいて、制御系変更判定手段 140および制御系変更手段 150に て行われる制御ゲインの変更にっ 、て説明する。
本実施形態での制御ゲインの変更は、旋回体 4が戻されて 、る力否かの判定に基 づいて制御系変更手段 150の制御ゲイン変更部 152Cが行う。この際、制御ゲイン である速度ゲイン Kを通常の値から大きな値変更するための判断のフローは、図 12 に示す通り、第 1実施形態での基準位置更新のフロートと全く同じである。つまり、基 準位置が更新されるのと同じフローの結果、制御ゲイン変更部 152Cは、 S33で制御 ゲインを通常通りの値とし、更新されない場合と同じフローの結果、 S34で通常値より 大きな値に変更する。その際、前記基準位置更新のフローと同じフローの結果、制御 系変更手段 150の基準位置更新部 152Aも、基準位置の更新 (S33)又は維持 (S3 4)を行う。 S31, S32, S35は、第 1実施形態と同じであり、ここでの説明を省略する。
[0072] また、制御指令生成手段 130が行う速度制御も、制御ゲイン変更部 152Cによる制 御ゲインの変更を除き、前述の第 1実施形態での速度制御そのものであるため、ここ での説明を省略する。
[0073] このような本実施形態でも、通常の速度制御のときには、速度ゲイン Kは通常の値 であり、旋回体 4が戻された場合にのみ、速度ゲイン Kを大きくしてそのまま逆方向へ 押し戻され続けるのを防止するから、第 1、第 2実施形態と同様に、乗り心地を良好に 維持しつつ、本発明の目的を達成できる。
[0074] 〔第 4実施形態〕
図 13に示す第 4実施形態では、制御系変更手段 150は、図 13に示すように、基準 位置更新部 153A、および目標値変更部 153Bで構成され、旋回制御装置 100の制 御系の変更として、目標値変更部 153Bが、旋回体 4の目標値を変更することで、電 動モータ 5の制御指令値を前記制御系の変更前の値より大きくする点が第 1実施形 態とは異なる。従って、本実施形態では、第 1実施形態と異なる部分のみを説明する
[0075] 以下に、制御系変更手段 150の各構成部について説明する。
基準位置更新部 153Aは、第 1実施形態〜第 3実施形態の場合と同様に、前記制 御系変更判定手段 140の判定結果に応じて、前記基準位置記憶手段 120に記憶さ れて 、る基準位置を更新する。
[0076] 目標値変更部 153Bは、旋回レバー (操作体) 10の操作入力に基づいて設定され た前記旋回体 4の制御目標値である目標速度を、前記旋回位置出力手段 110の出 力値および前記基準位置記憶手段 120に記憶されている基準位置に基づいて変更 する。具体的に、目標値変更部 153Bは、旋回体 4が旋回操作方向とは逆方向に押 し戻された場合に、旋回位置出力手段 110の出力値および前記基準位置記憶手段 120に記憶されている基準位置の偏差に基づいて、目標速度設定装置 13で設定さ れる目標速度自身をより大きい値に変化させる。この際、第 1実施例際と同様に、基 準位置の更新又は維持に応じて、前述の偏差は「0」又は値を持つように変化する。 このように、目標速度設定装置 13で設定される目標速度自身をより大き!/、値に変化 させることで、旋回レバー 10を仮想的にさらに倒し込んだ状態にして電動モータ 5の トルク出力を増大させ、よって旋回体 4が逆方向へ押し戻された分を押し返すように 制御している。
[0077] なお、本実施形態の制御は、第 2実施形態と同様、位置制御である。そして、旋回 体 4が戻されていない通常の旋回状態では、第 2実施形態での図 9と同じぐ速度制 御となる。
ただし、第 2実施形態の位置制御では、目標速度設定装置 13で設定された目標速 度とは別に、基準位置で戻される直前の旋回体 4の位置である目標旋回***置と実 際の現在位置との偏差に位置ゲイン Kp2を掛け算して大きな目標速度を生じさせて いたが、本実施形態では、その偏差に基づき、旋回レバー 10の操作入力に基づき 目標速度設定装置 13で設定された目標速度自身を切り換える点で、第 2実施形態と は異なる。基準位置を更新するか又は維持するかの判断は、第 1実施形態での基準 位置更新のフロートと全く同じであるため、ここでの図示および説明を省略する。
[0078] このような本実施形態では、位置の偏差に基づ 、て目標速度を変更する目標値変 更部 153Bを含んで本発明の旋回制御装置 100が構成されており、このような場合 でも、本発明の目的を達成できる。
[0079] なお、本発明は、前記実施形態に限定されるものではなぐ本発明の目的を達成で きる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
例えば、旋回体の逆方向への旋回を機械的に防止する規制装置を適宜追加して もよぐ規制装置としては、以下の第 1、第 2変形例に示すものがある。
[0080] 〔第 1変形例〕
図 14、図 15には、第 1変形例の要部が模式的に示されている。
図 14において、スイングサークル 3にギア 5Αを介して嚙合する電動モータ 5は、図 15に示すように、モータ本体 40と、モータ本体 40の一方向のみの回転力を伝達す るラチ ット機構が内蔵された規制装置 41と、減速装置 42とを備えている。規制装置 41での回転規制方向は、旋回レバーの操作方向に応じて出力される切換信号によ り切り換わるようになって!/、る。
[0081] このような構成によれば、旋回レバーによって右旋回が指示されると、左回転を規 制するように規制装置 41が動作し、反対に、左旋回が指示されると、右回転を規制 するように動作する。従って、旋回体が旋回操作方向とは逆方向の外力を受けても、 この規制装置 41によって旋回体の逆方向への旋回が機械的に規制されるので、外 力に確実に対抗でき、旋回体が旋回操作方向とは逆方向に旋回し続けるのを確実 に防止できる。
[0082] 〔第 2変形例〕
図 16に示す第 2変形例の規制装置 51は、図示しない電動モータに接続された油 圧ポンプ 52と逆止弁 53とを含むクローズした油圧回路 54によって構成されており、 逆止弁 53での圧油の送油方向が旋回レバーの操作方向に応じて出力される切換信 号により、(A)、(B)のように切り換わる。
従って、このような規制装置 51でも、旋回体が旋回操作方向とは逆向きの外力を受 けても、逆止弁 53が旋回体の旋回方向を規制して逆方向には戻らな 、ように作動す るため、やはり外力に確実に対抗できる。
[0083] また、規制装置としては、前記第 1、第 2変形例の規制装置 41, 51に限定されず、 電動モータの回転軸を摩擦力等によって停止させるブレーキ機構を用いてもよぐフ ットペダル等を踏み込むことでこのブレーキ機構を作動させ、旋回体が逆方向へ戻る のを防止してもよい。
[0084] その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示さ れているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に 特定の実施形態に関して特に図示され、かつ、説明されているが、本発明の技術的 思想および目的の範囲力 逸脱することなぐ以上述べた実施形態に対し、形状、数 量、その他の詳細な構成において、当業者が様々な変形を加えることができるもので ある。
従って、上記に開示した形状、数量などを限定した記載は、本発明の理解を容易 にするために例示的に記載したものであり、本発明を限定するものではないから、そ れらの形状、数量などの限定の一部もしくは全部の限定を外した部材の名称での記 載は、本発明に含まれるものである。
産業上の利用可能性 本発明は、旋回体が電動モータで旋回駆動されるあらゆる建設機械に適用可能で ある。

Claims

請求の範囲
[1] 操作体の指令に基づいて電動モータで駆動される旋回体の旋回動作を制御する 旋回制御装置であって、
前記旋回体の旋回位置情報を出力する旋回位置出力手段と、
前記旋回位置出力手段の出力値を基準位置として記憶する基準位置記憶手段と 前記電動モータの制御指令の生成および出力を行う制御指令生成手段と、 前記旋回位置出力手段の出力値、前記基準位置記憶手段に記憶されている基準 位置、および前記操作体の操作方向に基づいて、前記旋回制御装置の制御系の変 更を行うかを判定する制御系変更判定手段と、
前記制御系変更判定手段の判定結果に応じて、前記旋回制御装置の制御系の変 更を行う制御系変更手段とを備え、
前記制御系変更手段は、前記制御系の変更により、前記電動モータの制御指令を 前記制御系の変更前の値より大きくする
ことを特徴とする旋回制御装置。
[2] 請求項 1に記載の旋回制御装置において、
前記制御系変更手段は、
前記制御系変更判定手段の判定結果に応じて、前記基準位置記憶手段に記憶さ れて 、る基準位置を更新する基準位置更新部と、
前記旋回位置出力手段の出力値および前記基準位置記憶手段に記憶されている 基準位置に基づいて、前記電動モータの変更指令の生成を行う変更指令生成部と、 前記制御指令生成手段による制御指令と前記変更指令生成部による変更指令と の大きい方の値を選択し、前記電動モータの制御指令として出力する制御指令出力 部とを備え、
前記制御系の変更とは、前記基準位置の維持である
ことを特徴とする旋回制御装置。
[3] 請求項 1に記載の旋回制御装置において、
前記制御系変更手段は、 前記制御系変更判定手段の判定結果に応じて、前記基準位置記憶手段に記憶さ れて 、る基準位置を更新する基準位置更新部と、
前記制御指令生成手段とは異なる制御則により前記電動モータの制御指令の生 成および出力を行う切換制御指令生成部と、
前記制御系変更判定手段の判定結果に応じて、前記制御指令生成手段と前記切 換制御指令生成部とを切り換える制御則切換部とを備え、
前記制御系の変更とは、前記制御則切換部による、前記制御指令生成手段から前 記切換制御指令生成部への制御則の切り換えである
ことを特徴とする旋回制御装置。
[4] 請求項 1に記載の旋回制御装置において、
前記制御系変更手段は、
前記制御系変更判定手段の判定結果に応じて、前記基準位置記憶手段に記憶さ れて 、る基準位置を更新する基準位置更新部と、
前記旋回体の制御ゲインが複数記憶されている制御ゲイン記憶部と、 前記制御系変更判定手段の判定結果に応じて、前記制御ゲイン記憶部から選択 する制御ゲインを変更する制御ゲイン変更部とを備え、
前記制御系の変更とは、前記制御ゲイン変更部による、前記制御ゲインの変更で ある
ことを特徴とする旋回制御装置。
[5] 請求項 1に記載の旋回制御装置において、
前記制御系変更手段は、
前記制御系変更判定手段の判定結果に応じて、前記基準位置記憶手段に記憶さ れて 、る基準位置を更新する基準位置更新部と、
前記操作体の操作入力に基づいて設定された前記旋回体の制御目標値を、前記 旋回位置出力手段の出力値および前記基準位置記憶手段に記憶されている基準 位置に基づいて変更する目標値変更部とを備え、
前記制御系の変更とは、前記目標値変更部による、前記目標値の変更である ことを特徴とする旋回制御装置。
[6] 操作体の指令に基づ 、て電動モータで駆動される旋回体の旋回動作を制御する ための旋回制御方法であって、
前記旋回体の旋回位置情報を出力するステップと、
出力された旋回位置情報の出力値を基準位置として記憶するステップと、 前記電動モータの制御指令の生成および出力を行うステップと、
前記旋回位置情報の出力値、前記記憶されている基準位置、および前記操作体 の操作方向に基づ 、て、前記旋回制御装置の制御系の変更を行うかを判定するス テツプと、
この判定の結果、前記旋回制御装置の制御系の変更を行うと判定された場合に、 前記電動モータの制御指令を前記制御系の変更前の値より大きくするステップとを 備える
ことを特徴とする旋回制御方法。
[7] 建設機械において、
電動モータで旋回駆動される旋回体と、
この旋回体を制御するための請求項 1〜請求項 5のいずれかに記載の旋回制御装 置とを備えている
ことを特徴とする建設機械。
PCT/JP2005/008755 2004-05-13 2005-05-13 旋回制御装置、旋回制御方法、および建設機械 WO2005111321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB0622618A GB2431018B (en) 2004-05-13 2005-05-13 Rotation control device, rotation control method, and construction machine
DE112005001054.6T DE112005001054B4 (de) 2004-05-13 2005-05-13 Drehsteuervorrichtung, Drehsteuerverfahren und Baumaschine
US11/596,208 US7362071B2 (en) 2004-05-13 2005-05-13 Rotation control device, rotation control method and construction machine
JP2006513560A JP4890243B2 (ja) 2004-05-13 2005-05-13 旋回制御装置、旋回制御方法、および建設機械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-143533 2004-05-13
JP2004143533 2004-05-13

Publications (1)

Publication Number Publication Date
WO2005111321A1 true WO2005111321A1 (ja) 2005-11-24

Family

ID=35394195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008755 WO2005111321A1 (ja) 2004-05-13 2005-05-13 旋回制御装置、旋回制御方法、および建設機械

Country Status (7)

Country Link
US (1) US7362071B2 (ja)
JP (1) JP4890243B2 (ja)
KR (1) KR100834799B1 (ja)
CN (1) CN100577930C (ja)
DE (1) DE112005001054B4 (ja)
GB (1) GB2431018B (ja)
WO (1) WO2005111321A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961869A1 (en) 2007-02-21 2008-08-27 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
WO2009051247A1 (ja) * 2007-10-18 2009-04-23 Sumitomo Heavy Industries, Ltd. 旋回駆動制御装置及びこれを含む建設機械
JP2009221664A (ja) * 2008-03-13 2009-10-01 Daikin Ind Ltd 旋回体制御装置
CN101250888B (zh) * 2007-02-21 2012-08-15 神钢建设机械株式会社 旋转控制装置及设有该装置的作业机械

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102046889B (zh) * 2008-05-29 2012-09-19 住友建机株式会社 回转驱动控制装置及包括该回转驱动控制装置的施工机械
WO2010095585A1 (ja) * 2009-02-23 2010-08-26 ナブテスコ株式会社 作業機械の旋回制御装置、制御プログラム及び作業機械
KR101582689B1 (ko) 2009-06-02 2016-01-05 두산인프라코어 주식회사 건설기계의 선회제어장치 및 선회제어방법
CN103261530B (zh) * 2010-12-15 2015-08-12 沃尔沃建造设备有限公司 用于混合动力施工机械的转动控制***
JP5395818B2 (ja) * 2011-01-21 2014-01-22 日立建機株式会社 作業機械の旋回制御装置
KR101746533B1 (ko) 2011-03-23 2017-06-13 볼보 컨스트럭션 이큅먼트 에이비 하이브리드 굴삭기 전기식 선회 시스템에서의 안티-리바운딩 제어 장치 및 그 방법
US9574324B2 (en) * 2011-05-18 2017-02-21 Hitachi Construction Machinery Co., Ltd. Work machine
KR101671876B1 (ko) * 2011-12-28 2016-11-03 스미토모 겐키 가부시키가이샤 선회제어장치 및 방법
JP6125272B2 (ja) 2013-02-26 2017-05-10 住友建機株式会社 電動旋回式作業機械
CN107002715B (zh) * 2015-01-06 2019-08-13 住友重机械工业株式会社 挖土机
CN108398955B (zh) * 2018-01-18 2020-04-07 中国矿业大学(北京) 一种掘进机姿态控制***及方法
US12030749B2 (en) * 2018-07-25 2024-07-09 Tadano Ltd. Informing device, work vehicle, and informing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269937A (ja) * 1998-03-26 1999-10-05 Kobe Steel Ltd 作業機械の振動抑制装置
JP2003328398A (ja) * 2002-05-09 2003-11-19 Kobe Steel Ltd 作業機械の旋回制御装置
JP2004036303A (ja) * 2002-07-05 2004-02-05 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056254B2 (ja) * 1994-04-28 2000-06-26 日立建機株式会社 建設機械の領域制限掘削制御装置
JP3877909B2 (ja) 1999-06-30 2007-02-07 株式会社神戸製鋼所 建設機械の旋回駆動装置
KR100674516B1 (ko) * 2002-05-09 2007-01-26 코벨코 겐키 가부시키가이샤 작업 기계의 선회 제어 장치
JP4223893B2 (ja) * 2002-10-23 2009-02-12 株式会社小松製作所 作業車両の作業機用油圧ポンプの制御方法と制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269937A (ja) * 1998-03-26 1999-10-05 Kobe Steel Ltd 作業機械の振動抑制装置
JP2003328398A (ja) * 2002-05-09 2003-11-19 Kobe Steel Ltd 作業機械の旋回制御装置
JP2004036303A (ja) * 2002-07-05 2004-02-05 Kobelco Contstruction Machinery Ltd 作業機械の旋回制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961869A1 (en) 2007-02-21 2008-08-27 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
EP2275606A3 (en) * 2007-02-21 2011-04-06 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
US8190334B2 (en) 2007-02-21 2012-05-29 Kobelco Construction Machinery Co., Ltd. Rotation control device and working machine therewith
CN101250888B (zh) * 2007-02-21 2012-08-15 神钢建设机械株式会社 旋转控制装置及设有该装置的作业机械
WO2009051247A1 (ja) * 2007-10-18 2009-04-23 Sumitomo Heavy Industries, Ltd. 旋回駆動制御装置及びこれを含む建設機械
US8473165B2 (en) 2007-10-18 2013-06-25 Sumitomo Heavy Industries, Ltd. Turning drive control apparatus and construction machine including the same
JP5653041B2 (ja) * 2007-10-18 2015-01-14 住友重機械工業株式会社 旋回駆動制御装置及びこれを含む建設機械
JP2009221664A (ja) * 2008-03-13 2009-10-01 Daikin Ind Ltd 旋回体制御装置

Also Published As

Publication number Publication date
CN100577930C (zh) 2010-01-06
DE112005001054T5 (de) 2007-04-26
KR100834799B1 (ko) 2008-06-05
US7362071B2 (en) 2008-04-22
GB0622618D0 (en) 2006-12-20
DE112005001054B4 (de) 2018-08-16
US20070216331A1 (en) 2007-09-20
CN1950575A (zh) 2007-04-18
JPWO2005111321A1 (ja) 2008-03-27
KR20060133098A (ko) 2006-12-22
JP4890243B2 (ja) 2012-03-07
GB2431018B (en) 2008-06-04
GB2431018A (en) 2007-04-11

Similar Documents

Publication Publication Date Title
WO2005111321A1 (ja) 旋回制御装置、旋回制御方法、および建設機械
JP5181065B2 (ja) 旋回制御装置、旋回制御方法、および建設機械
JP4793352B2 (ja) 旋回制御装置及びこれを備えた作業機械
JP6899818B2 (ja) ショベル
JP4729494B2 (ja) 旋回制御装置、旋回制御方法、および建設機械
JPH11107321A (ja) 油圧建設機械の原動機のオートアクセル装置及び原動機と油圧ポンプの制御装置
WO2012050028A1 (ja) 旋回体を有する建設機械
JP2004011502A (ja) ハイブリッド式建設機械
JP4494318B2 (ja) 作業機
JPH11108003A (ja) 油圧建設機械の原動機と油圧ポンプの制御装置
JP5970625B1 (ja) 建設機械、ハイブリッド油圧ショベル、および電動発電機の出力トルク制御方法
JP6552996B2 (ja) 作業機械
WO2019116451A1 (ja) ショベル
WO2003001067A1 (fr) Unite hydraulique d'entrainement d'un engin et procede associe
WO2000034591A1 (fr) Engin de terrassement
WO2000071899A1 (fr) Dispositif et procede de commande d'engin de travaux publiques
JP5555515B2 (ja) 作業機械
JP4298674B2 (ja) 建設機械の油圧駆動装置
JP3539720B2 (ja) 建設機械の制御装置
WO2016129196A1 (ja) 作業車両のエンジン制御装置
WO2022209920A1 (ja) 作業機械
WO2024043052A1 (ja) 油圧駆動装置
JP6830725B2 (ja) ショベル
JP2004183277A (ja) 建設機械のポンプ制御装置
JP2003184806A (ja) 電動油圧回路及びそれを備えた建設機械

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513560

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067023375

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120050010546

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 200580015013.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11596208

Country of ref document: US

Ref document number: 0622618.7

Country of ref document: GB

Ref document number: 2007216331

Country of ref document: US

Ref document number: 0622618

Country of ref document: GB

WWP Wipo information: published in national office

Ref document number: 1020067023375

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112005001054

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112005001054

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11596208

Country of ref document: US