WO2005103195A1 - Phosphorescence emitting solid, organic electroluminescence element and organic electroluminescence device - Google Patents

Phosphorescence emitting solid, organic electroluminescence element and organic electroluminescence device Download PDF

Info

Publication number
WO2005103195A1
WO2005103195A1 PCT/JP2004/004485 JP2004004485W WO2005103195A1 WO 2005103195 A1 WO2005103195 A1 WO 2005103195A1 JP 2004004485 W JP2004004485 W JP 2004004485W WO 2005103195 A1 WO2005103195 A1 WO 2005103195A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorescent
solid according
organometallic complex
phosphorescent solid
organic
Prior art date
Application number
PCT/JP2004/004485
Other languages
French (fr)
Japanese (ja)
Inventor
Tasuku Satoh
Wataru Sotoyama
Norio Sawatari
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Priority to TW093108735A priority Critical patent/TWI245586B/en
Priority to PCT/JP2004/004485 priority patent/WO2005103195A1/en
Publication of WO2005103195A1 publication Critical patent/WO2005103195A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/7492Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/89Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing mercury
    • C09K11/892Chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a phosphorescent solid containing a phosphorescent organometallic complex having a specific ligand, a light-emitting device using the same, and in particular, an organic electroluminescence device (hereinafter referred to as “electroluminescence”).
  • EL organic electroluminescence
  • EL organic electroluminescence
  • an organic EL device using the same such as an organic EL display and an organic EL lighting device.
  • Organic EL devices are reported as stacked devices in which organic thin films with hole-transporting and electron-transporting properties are stacked (for example, CW Tangand SA V an S 1 yke), Applied Physics Letters, No. 51 Vol., P. 913, 1987), is expected to be applied to flat panel displays as display elements with features such as self-luminous light and high-speed response. It has attracted interest as an area light emitting device.
  • the stacked organic EL element basically has a configuration of a positive electrode / a hole transport layer / a light emitting layer / a Z electron transport layer / a negative electrode.
  • the light-emitting layer may have a configuration in which a hole transport layer or an electron transport layer also has the function as in the case of the two-layer element of Ta1gandVanS1yke described above.
  • the luminescent layer In order to obtain an organic EL device with high luminous efficiency, the luminescent layer needs to have high luminous efficiency.
  • a dye-doped film in which a small amount of highly fluorescent dye molecules are doped as a guest in a host material as a main component has been devised. (Eg, CW Tang, SA Van S 1 yke, and CH Chain), Journalof Applied Physics, Vol. 65, p. 3610, 1989).
  • a metal complex having a tridentate ligand described in JP-A-2002-363552 can be cited as an example.
  • it consists of two cognate bonds between platinum and nitrogen and one coordination bond between platinum and carbon, and these two nitrogen and carbon are bonded in the order of N, N and C.
  • a technique using an organometallic complex having a coordination ligand (N—N′C) as a light emitting material of an organic EL device is disclosed.
  • N—N′C coordination ligand
  • the phosphorescence of this complex is not sufficient at room temperature, and the organic EL device of the above-mentioned known example has a low level and a low luminous efficiency.
  • organometallic complexes having the structure of N "C” N-type tridentate ligands are better than N-N "C-type in solution. It has been reported by JAG Wi 11 i ams et al. (I norg. Chem., Vol. 42, p. 8609-8611, 2003).
  • Emission from organic matter is broadly classified into fluorescence and phosphorescence depending on the nature of the excited state that causes light emission.
  • fluorescent light has been used in organic EL devices because common organic substances do not emit phosphorescence.
  • the phosphorescent state will be generated four times more likely than the fluorescent state.
  • it has attracted attention as a means of increasing efficiency.
  • there are very few materials that emit strong phosphorescence at room temperature and the narrowest selection of materials is the biggest problem at present. Disclosure of the invention
  • the present invention examines a phosphorescent light-emitting material suitable for an organic EL device to improve the luminous efficiency. It is an object of the present invention to provide a phosphorescent solid having high phosphorescence, an organic EL element and an organic EL device using the phosphorescent solid. Still other objects and advantages of the present invention will become apparent from the following description.
  • a metal complex having a specific tridentate ligand and a halogen atom as ligands emits particularly strong phosphorescence in the solid state, and this is used as a light emitting material.
  • the organic EL device that was used was found to emit light with high efficiency.
  • two nitrogen atoms and a carbon atom between them, which are bonded through force and bond, to a central metal atom are coordinated to the two metal atoms.
  • a phosphorescent solid containing an organometallic complex formed by coordinating at least one of a binding tridentate ligand and at least one halogen atom is formed.
  • the phosphorescent solid contains an organometallic complex having a structure represented by the following formula (1):
  • M represents a metal atom
  • X represents a halogen atom
  • Ar 1, Ax Ar 3 each independently also represent an annular structure T have a substituent
  • Ar 1 one The bond of Ar 2 and Ar 2 — Ar 3 may be a single bond or a double bond.
  • M and Ar 1 and M and Ar 3 have a M—N coordination bond, and M and Ar 2 with direct coupling of M- C and.
  • substituents Ar 1, Ar 2, a r 3 respectively, Ar 1, Ar 2, a r 3 above and between each other a r 1 and a r 2 and a r 2 and Ar 3 may be bonded to each other to form a cyclic structure.
  • a phosphorescent solid comprises two or more nitrogen atoms and one carbon atom coordinated with at least one of a tridentate ligand and a halogen atom, each of which coordinates and binds to a central metal atom.
  • the complex has a structural portion represented by the following formula (2);
  • M and X are the same as those in the formula (1).
  • Y is each independently a carbon atom or a nitrogen atom.
  • the N—Y bond part is A r in the formula (1).
  • the benzene nucleus may have a substituent, which constitutes the — part of 1 or Ar 3.
  • the bond other than the bond between the ligand and the central metal atom may be a single bond or a double bond. It may be a combination.
  • the organometallic complex has a structural part represented by the following formula (3);
  • M and X are the same as in the formula (1).
  • the benzene nuclei may have a substituent independently of each other, and the substituents may be in the same or adjacent ring. May be bonded to each other.
  • a ⁇ and mosquitoes independently, comprise an aromatic monocyclic or polycyclic, it and A r 1 and A r 3 are the same, an organic metal complex, and one tridentate ligand, a C 9.It consists of a chromium atom and one central metal atom, that the organometallic complex is electrically neutral in a solid state, and that the organometallic complex can form a film by vacuum deposition.
  • the organometallic complex of purity that the central metal atom is platinum, organic materials having an organometallic complex, the first excited triplet excitation energy higher than that of the organic metal complex
  • phosphorescent solid of the present invention very strong phosphorescence can be realized in a solid state.
  • organic material comprising the above-mentioned phosphorescent solid.
  • electroluminescent device is provided. '
  • a phosphorescent solid in the light-emitting layer a phosphorescent solid that functions as a host or a guest; the light-emitting layer contains a phosphorescent solid and a low-molecular host material; It is preferable to contain a phosphorescent solid and a polymer host material, and to contain the phosphorescent solid in the color conversion layer.
  • an organic EL device having significantly improved luminous efficiency can be realized.
  • an organic electroluminescent device using the above-described organic electroluminescent element more specifically, an organic electroluminescent display or an organic electroluminescent lighting device Is provided.
  • a very strong phosphorescent light can be realized in a solid state, and by using the phosphorescent light in an organic EL device, the luminous efficiency can be greatly improved. Power.
  • FIG. 1 is a diagram exemplifying a structural part represented by Expression (4).
  • FIG. 2 is a diagram showing an example of Ar 1 and Ar 3 .
  • Figure 3 is a diagram showing an example of A r 2.
  • FIG. 4 is a diagram illustrating a low-molecular host material.
  • FIG. 5 is a diagram illustrating a canolebazole compound.
  • FIG. 6 is a diagram illustrating an example of Ar in FIG.
  • FIG. 7 is a diagram illustrating the linking group R in FIG.
  • FIG. 8 is a diagram showing the structure of CBP.
  • FIG. 9 is a diagram illustrating a polymer host material.
  • FIG. 10 is a diagram showing the structure of starburst amine.
  • FIG. 11 is a diagram showing the structure of TPD.
  • FIG. 12 is a diagram showing the structure of A 1 q.
  • FIG. 13 is a diagram exemplifying a material having a shorter light absorption edge than the phosphorescent solid according to the present invention.
  • FIG. 14 is a diagram showing the structure of DCJTB.
  • FIG. 15 is a schematic side sectional view of an organic EL device.
  • FIG. 16 is another schematic side sectional view of the organic EL device.
  • FIG. 17 is a diagram showing a synthesis route of dpt.
  • FIG. 18 is a diagram showing a synthesis route of Pt (dpt) CI.
  • FIG. 19 is a diagram showing a method for measuring a phosphorescence quantum yield.
  • FIG. 20 is a diagram showing the molecular structure of the organometallic complex used in the comparative example.
  • FIG. 21 is a diagram showing an EL spectrum of an organic EL device.
  • Figure 22 is a graph plotting the relationship between the current density and the external quantum efficiency of an organic EL device.
  • FIG. 23 is a schematic perspective view showing a case where the organic EL device according to the present invention is used for a passive matrix display.
  • FIG. 24 is a schematic perspective view showing a case where the organic EL device according to the present invention is used for an active matrix display.
  • organometallic complexes including platinum-based organometallic complexes, and evaluating their physical properties, it was found that organometallic complexes having N "C" N-type tridentate ligands were not dissolved in solution but in phosphorus.
  • the phosphorescent light-emitting solid When used as a light-emitting solid, it can emit a very strong phosphorescent light; this phosphorescent light-emitting solid can exhibit good vacuum deposition properties; Neat film consisting only of an organometallic complex having a nucleus ⁇ ⁇ ⁇ A doped film containing an organometallic complex having an NC-N-type tridentate ligand can be produced, and the produced film is uniformly flat and has good emission characteristics
  • the phosphorescent light-emitting solid according to the present invention has two nitrogen atoms and a space between the two nitrogen atoms. And a coordination bond to a central metal atom with one carbon atom that bonds to the two nitrogen atoms through a force, a bond, and one or more halogen atoms.
  • this organometallic complex Containing an organometallic complex.
  • this organometallic complex the two nitrogen atoms and carbon atoms that coordinate with the metal bond in the order of N, C, and N. That is, this organometallic complex has an N "C” N-type tridentate ligand. “—” Is a symbol indicating that a bond exists between N and C or between C and N.
  • Many of the tridentate ligands according to the present invention form substantially the same plane with the central metal M, but it goes without saying that other spatial arrangements can also be included in the scope of the present invention.
  • the phosphorescent solid according to the present invention may be composed solely of this organometallic complex.1 It may contain other components. And those in the form of a film. In the case of a film such as a light-emitting layer of an organic EL device, a neat film and a film in which an organometallic complex is contained as a guest or a host of the light-emitting layer are also included.
  • the phosphorescent solid according to the present invention is preferably a phosphorescent solid containing an organometallic complex having a structure represented by the following formula (1).
  • M represents a metal atom
  • X represents a halogen atom
  • Ar 1 , Ar 2 , and Ar 3 each independently represent a cyclic structure which may have a substituent
  • Ar 1 one a r 2 and a r 2 - binding of a r 3 is also a single bond, good also with a double bond Rere.
  • a double bond may be conjugated to another double bond.
  • M and Ar 1 and M and Ar 3 have an M—N coordination bond
  • M and Ar 2 have an M—C direct bond.
  • Substituents of Ar 1, Ar 2, A r 3 are each, Ar 1, Ar 2, A r 3 above and between each other A r 1 and A of each other and r 2 A r 2 and A r 3, They may be bonded to each other to form a ring structure.
  • M is a central metal atom of the organometallic complex according to the present invention.
  • Fe, Co, Ni, Ru, Rh, Pd, ⁇ s, Ir, Pt and the like can be mentioned. Among these, Pt is particularly preferred.
  • X represents a halogen atom, and examples thereof include F, C 1, Br, and I. It is preferable that the tridentate ligand and X are selected so that the stable coordination number of the central metal atom is satisfied and the complex as a whole is electrically neutral.
  • the cyclic structure preferably contains an aromatic ring. It may contain a condensed ring or a heterocyclic ring. Preferably, Ar 1 , Ar 2 and Ar 3 all contain an aromatic ring.
  • N "C" N the bond between N and C or the bond between C and N usually includes the case where another atom is interposed.
  • the bond of Ar 1 —Ar 2 and Ar 2 —Ar 3 in the above formula (1) corresponds to the case where another atom is interposed. Any other atom can be used as long as it is not contrary to the gist of the present invention, but carbon is preferred.
  • the bond between N and C and Z or C and N in the bond of N "C” N is preferably a bond through two carbon atoms.
  • the phosphorus according to the present invention is used as exemplified in Formula (4).
  • Light-emitting solid force Two nitrogen atoms and one carbon atom coordinate one or more of a tridentate ligand coordinated to the central metal atom and a halogen atom, and these two nitrogen atoms And an organometallic complex having a structural portion in which one carbon atom and a central metal atom are fused with two 5-membered rings sharing the bond between the carbon atom and the central metal atom. This structure makes it easier to obtain very strong phosphorescence.
  • the bond other than the bond between the ligand and the central metal atom may be a single bond or a double bond.
  • a double bond may be conjugated to another double bond.
  • the bonds other than the bond between the ligand and the central metal atom include the bond portion omitted in the formula (4). Specifically, the structure shown in FIG. 1 can be exemplified.
  • a r 1 to A r 3 are more preferably the combinations described below, and the molecular structure of the ligand More preferably, the symmetry of the structure is large.
  • the term “symmetry of the molecular structure of the ligand” means that A r 2 has a symmetric structure with respect to the bond axis of ⁇ —C, excluding or including the substituent, The relationship between 1 and Ar 3 is symmetrical about the bond axis of M—C, excluding or including the substituent, or satisfies both. If the symmetry of the molecular structure is large, it is considered that the phosphorescent light emission intensity of the complex is increased.
  • the structural portion having the shape in which the two 5-membered rings are condensed is a structural portion represented by the following formula (2), because the symmetry of the molecular structure is increased.
  • Equation (2) M and X are the same as in equation (1).
  • Y is, independently of one another, a carbon or nitrogen atom.
  • N-Y binding moiety form part of A r 1 or A r 3 in the formula (1), the benzene nucleus which constitutes a part of A r 2 may have a substituent .
  • the bond other than the bond between the ligand and the central metal atom may be a single bond or a double bond.
  • a double bond may be conjugated to another double bond. It goes without saying that bonds other than the bond between the ligand and the central metal atom include the bond portion omitted in the formula (2).
  • a r 1 and A r 3 independently of one another, it is also preferred to include a monocyclic or polycyclic aromatic ring. Also, it is preferable that A r 1 and A r 3 are the same. In this case, it is more preferable that the structural part having the shape in which the two five-membered rings are fused is a structural part represented by the following formula (3), since the symmetry of the molecular structure is further increased.
  • M and X are the same as those in the formula (1).
  • the benzene nuclei may have a substituent independently of each other, and the substituents may be in the same or adjacent ring. May be bonded to each other.
  • Ar 1 , Ar 2 and Ar 3 described above may be substituted at any position of the cyclic structure.
  • Ar 1 and Ar 3 the structure of FIG. 2 or its mirror image structure can be mentioned, and for Ar 2 , the structure of FIG. 3 can be mentioned.
  • Each symbol has the same meaning as the symbol in formula (1).
  • the structures of Ar 1 , Ar 2 , and Ar 3 are the parts enclosed in the middle of Figs.
  • ring hydrogen may be substituted with a substituent.
  • substituents of Ar 1, Ar 2, Ar 3 are each, Ar A r 2, A r 3 on a Rapi therebetween of A r 1 and A r 2 Contact and Ar 2 and Ar 3 between each other of And may be combined with each other to form a cyclic structure.
  • the organometallic complex according to the present invention may include a tridentate ligand, a central metal M and a plurality of halogen atoms X, as exemplified by a dimer or the like. And one having one halogen atom and one central metal atom. Advantages such as easy formation of a deposited film can be obtained.
  • the organometallic complex is electrically neutral or nearly neutral in a solid state. More preferably, it is neutral. This neutrality can be determined from the fact that the organometallic complex does not substantially have ionicity, does not have polarizability, or has low polarizability.
  • the phosphorescent solid according to the present invention preferably uses an organometallic complex having a purity of 99.5% by weight or more. This is because it becomes easier to obtain a phosphorescent solid that emits strong phosphorescence. More preferably, an organometallic complex having a purity of 99.8% by weight or more is used.
  • the purity of the organometallic complex means the concentration of the organic metal complex in the phosphorescent solid when the phosphorescent solid according to the present invention includes a plurality of components. Rather than the purity of the organometallic complex used to construct the phosphorescent solid.
  • One of the means to apply OLEDs to full-color displays is to prepare OLEDs for each color of red, green, and blue, and use a combination of these three as one element. I have. Since the phosphorescent light-emitting solid according to the present invention can adjust the emission color by changing the molecular structure of the tridentate ligand of the organometallic complex to be contained, such a plurality of emission colors is required. It can be suitably used as a light-emitting material or the like in an application for use. In particular, it can be suitably used for an organic EL device.
  • the phosphorescent solid according to the present invention is the solid of the organometallic complex according to the present invention and is in a state of barta before forming a film or the like is mainly described.
  • the phosphorescent solid according to the present invention includes a component other than the organometallic complex according to the present invention in a bulk state, and according to the present invention in a state after being formed in a film or the like.
  • the organic metal complex may be composed of the solid itself, or may contain components other than the organometallic complex according to the present invention after being formed into a film or the like, and thus belong to the scope of the present invention. ,.
  • the phosphorescent solid according to the present invention is preferably contained as a light-emitting material in an organic EL device, and may be contained in a light-emitting layer, or a light-emitting layer / electron transport layer, a light-emitting layer / hole transport layer, or the like. May be contained.
  • the light-emitting layer may be formed by forming a film with a phosphorescent light-emitting solid, or may be formed by including other materials.
  • the phosphorescent light-emitting solid used in the organic EL device of the present invention emits strong phosphorescence at room temperature, it should be used as a luminescent material contained in the color conversion layer in the case of a color conversion type organic EL device. Is also possible.
  • the phosphorescent solid according to the present invention can function as both a guest and a host. Also, it may be made to coexist with other host materials and guest materials. Other host materials that can coexist are low molecular weight materials and high molecular weight materials. A low molecular weight compound having a number average molecular weight of not more than 1,000 is preferable, and a high molecular weight compound having a number average molecular weight of not less than 200,000 is preferable. It is more preferable to use a material in which the first triplet excitation energy of the host material is higher than the first triplet excitation energy of the contained organometallic complex.
  • R 1 and R 2 each represent a substituent provided at an arbitrary position in the cyclic structure, and each independently represents a hydrogen atom, a halogen atom, an alkoxy group, an amino group, an alkyl group, a cycloalkyl group, or a nitrogen atom.
  • R 1 and R 2 each represent a substituent provided at an arbitrary position in the cyclic structure, and each independently represents a hydrogen atom, a halogen atom, an alkoxy group, an amino group, an alkyl group, a cycloalkyl group, or a nitrogen atom.
  • R 1 and R 2 may be bonded to each other, and may form an aromatic ring which may contain a nitrogen atom, a sulfur atom, and an oxygen atom, and these may be further substituted.
  • Ar represents a divalent or trivalent aromatic group or a heterocyclic aromatic group. Examples include groups as shown in FIG. A hydrogen atom in the ring structure may be substituted.
  • examples of the linking group R are shown in FIG.
  • the above canolebazole compound When the above canolebazole compound is mixed with the organometallic complex of the present invention, it has a small interaction with the complex and therefore has little effect on the intrinsic light emission characteristics of the complex, and is particularly effective as a host material.
  • the compound having the formula represented by this formula 4,4'-bis (9-model rubazolyl) -biphenyl (CBP) shown in FIG. 8 can be mentioned.
  • polyparaphenylene vinylene (PPV), polythiophene (PAT), polyparaphenylene (PPP), polyvinyl carbazole (PVC), and polyfluorene (PF) And polyacetylene (PA) derivatives are preferred.
  • a hydrogen atom in the ring structure may be substituted.
  • the organic EL device has a configuration in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. are sandwiched between a positive electrode and a negative electrode. Of these, the hole injection layer, hole transport layer, electron transport layer, and electron injection layer may not exist. Including other layers Good. One layer can handle multiple functions.
  • FIG. 15 is a schematic side cross-sectional view of an organic EL device, showing a configuration without a color conversion layer, and FIG. 16 showing a configuration with a color conversion layer.
  • Fig. 15 shows the substrate 1, the positive electrode 2, the hole transport layer 3, the light emitting layer 4, the electron transport layer 5, and the negative electrode 6, and Fig. 16 shows the color conversion layer 16 1 in addition to these. Have been.
  • Positive electrode Z hole injection layer / hole transport layer and light emitting layer / electron transport layer / electron injection layer Z negative electrode Positive electrode Z hole injection layer Z hole transport layer / light emitting layer, electron transport layer,
  • each layer the thickness of each layer, and the manufacturing method are exemplified as follows.
  • the material of the positive electrode is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Materials with a function of 4 eV or more are preferred.
  • the material for the positive electrode include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, and indium tin oxide ( ⁇ ); gold, silver, chromium, nickel, and the like.
  • conductive metal oxides such as tin oxide, zinc oxide, indium oxide, and indium tin oxide ( ⁇ ); gold, silver, chromium, nickel, and the like.
  • conductive metal oxides are preferred, and ITO is particularly preferred from the viewpoints of productivity, high conductivity, transparency, and the like.
  • the thickness of the positive electrode is not particularly limited and can be appropriately selected depending on the material and the like, but is preferably 1 to 5000 nm, more preferably 20 to 200 nm.
  • the positive electrode is usually formed on a substrate such as glass such as soda lime glass and alkali-free glass, and transparent resin.
  • a substrate such as soda lime glass and alkali-free glass, and transparent resin.
  • alkali-free glass, silica, and soda-lime glass coated with a barrier coat are preferred from the viewpoint of reducing elution from the glass!
  • the thickness of the substrate is not particularly limited as long as the thickness is sufficient to maintain the mechanical strength.However, when glass is used as the base material, the thickness is usually 0.2 mm or more, and 0.7 mm or more. preferable.
  • the positive electrode for example, vapor deposition, wet film formation, electron beam, sputtering, reactive sputtering, MBE (molecular epitaxy), cluster ion beam, ion plating, and plasma polymerization (High frequency excitation ion plating method), molecular lamination method, printing method, transfer method, chemical reaction method (sol-gel method and the like), and a method of applying a dispersion such as ITO can be suitably formed.
  • the positive electrode can be washed or otherwise treated to lower the driving voltage of the organic EL element or increase the luminous efficiency.
  • a UV-ozone treatment, a plasma treatment and the like are preferably mentioned.
  • the material for the hole injection layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the starburst amine (4, 4 ', 4 "tris [3—methylpheny 1 (; henyl) am ino] tripheny l amine, m—MTDATA), copper phthalocyanine, polya Phosphorus and the like are preferred.
  • the thickness of the hole injection layer is not particularly limited and can be appropriately selected depending on the purpose.
  • the thickness is preferably about 1 to 100 nm, and more preferably 5 to 500 nm.
  • the hole injection layer is formed by, for example, vapor deposition, wet film formation, electron beam, sputtering, reactive sputtering, MBE, cluster ion beam, ion plating, plasma polymerization (high frequency excitation). It can be suitably formed by an ion plating method, a molecular lamination method, an LB method, a printing method, a transfer method, or the like.
  • the material of the hole transport layer is not particularly limited and can be appropriately selected depending on the purpose.
  • aromatic amine compounds canolebazole, imidazole, triazole, oxazole, oxazole, polyarylalkane, pyrazoline, Pyrazolone, phenylenediamine, arylamine, amino-protected norecon, stylinoleanthracene, fuenoresenone, hydrazone, stinoleben, silazane, styrylamine, aromatic dimethylene Vden compound, porphyrin-based compound, polysilane-based compound, poly (N- -Vinylcarbazole), aniline-based copolymers, thiophene oligomers and polymers, conductive polymer oligomers and polymers such as polythiophene, and carbon films.
  • a hole transport layer and a light emitting layer can be formed.
  • aromatic amine compounds are preferred. Specifically, N, N'-diphenyl-N, N'-bis (3-methylpheninole) -1 [1,1'-bipheninole] -14,4'diamine (TPD) and Aromatic amines such as NPD are more preferred.
  • the thickness of the hole transport layer is not particularly limited and may be appropriately selected depending on the purpose.
  • the thickness is usually 1 to 500 nm, and preferably 5 to 100 nm.
  • the same method as in the case of the hole injection layer can be used by appropriately changing the raw materials and conditions.
  • the material of the electron transport layer is not particularly limited, and may be appropriately selected according to the purpose.
  • a hydroxyquinoline metal complex such as tris (8-quinolinolato) alminium (A1q), an anolemminium hydroxyquinoline-biphenylinoleoxy complex (BA 1q) and other hydroxyquinoline aryl / reoxy complexes, oxadiazole compounds, triazole compounds, phenanthone phosphorus compounds, perylene compounds, pyridine compounds, pyrimidine compounds, quinoxaline compounds, diphenylinolequinone compounds, di-substituted fluorene compounds, etc.
  • A1q 8-quinolinolato alminium
  • BA 1q anolemminium hydroxyquinoline-biphenylinoleoxy complex
  • other hydroxyquinoline aryl / reoxy complexes oxadiazole compounds
  • triazole compounds phenanthone phosphorus compounds
  • a light emitting layer and an electron transport layer can be formed.
  • the hole transport layer is also mixed to form a film, the hole is formed.
  • a transport layer, a light emitting layer, and an electron transport layer can be formed.
  • the thickness of the electron transporting layer is not particularly limited and can be appropriately selected depending on the purpose.
  • the thickness is usually about 1 to 500 nm, and preferably 10 to 50 nm.
  • the electron transport layer may be composed of two or more layers.
  • the light emitting region in the device can be limited to the light emitting layer. It is preferable because unnecessary light emission from the electron transport layer can be prevented.
  • Such a material having a light absorption edge having a shorter wavelength than the phosphorescent solid according to the present invention such as a hydroxyquinoline-aryloxy complex, a phenanthroline compound, an oxadiazole compound, a triazole compound, and 8-quinolinol.
  • An organometallic complex having the compound as a ligand can be given.
  • the compounds represented by B A1q and FIG. 13 are preferable.
  • three branches having no chemical group at the tip means a t-tert-butyl group.
  • the same method as in the case of the hole injecting layer can be used by appropriately changing the raw materials and conditions.
  • the material for the electron injection layer is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include alkali metal fluorides such as lithium fluoride, and alkaline earth metal fluorides such as sodium fluoride fluoride. And the like can be suitably used. Electron injection layer
  • the thickness is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness is usually about 0.1 to 10 nm, and preferably 0.5 to 211 m.
  • the electron injection layer can be suitably formed by, for example, an evaporation method, an electron beam method, a sputtering method, or the like.
  • the material of the negative electrode is not particularly limited, and can be appropriately selected according to the adhesion between the layer and molecules adjacent to the negative electrode such as the electron transport layer and the light emitting layer, ionization potential, stability, and the like. Examples thereof include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof.
  • the negative electrode material include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, and aluminum.
  • a material having a work function of 4 eV or less is preferable, and aluminum, a lithium-aluminum alloy or a mixed metal thereof, a magnesium-silver alloy or a mixed metal thereof are more preferable.
  • the thickness of the negative electrode is not particularly limited and may be appropriately selected depending on the material of the negative electrode, but is preferably 1 to: L0000nm, more preferably 20 to 200im. Better.
  • the negative electrode for example, evaporation method, wet film forming method, electron beam method, sputtering method, reactive sputtering method, MBE method, cluster ion beam method, ion plating method, plasma polymerization method (high frequency excitation ion plating method) It can be suitably formed by a printing method, a transfer method, or the like.
  • two or more materials When two or more materials are used in combination as a negative electrode material, two or more materials may be simultaneously evaporated to form an alloy electrode or the like, or an alloy electrode or the like may be formed by evaporating a previously prepared alloy. Is also good.
  • the organic EL device of the present invention may have other layers appropriately selected according to the purpose.
  • a hole blocking layer and a protective layer are preferably exemplified.
  • the hole blocking layer is disposed between the light emitting layer and the electron transport layer. If the organic EL device has a hole blocking layer, holes transported from the positive electrode are blocked by the hole blocking layer, and electrons transported from the negative electrode pass through the hole blocking layer. As a result, the electrons and holes recombine efficiently in the light emitting layer. For this reason, recombination of holes and electrons in the organic thin film layer other than the light emitting layer can be prevented, and light emission of the target luminescent dye can be efficiently obtained, which is advantageous in terms of color purity and the like.
  • the material of the hole blocking layer is not particularly limited, and can be appropriately selected from the same materials as those of the electron transporting layer according to the purpose.
  • the thickness of the hole blocking layer is not particularly limited and may be appropriately selected depending on the purpose.
  • the thickness is usually about 1 to 50 nm, preferably 5 to 50 nm.
  • the hole blocking layer may have a single-layer structure or a multilayer structure.
  • the hole blocking layer is formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, a ⁇ method, a cluster ion beam method, an ion plating method, a plasma polymerization method (a high-frequency excitation ion plating method).
  • Printing method a molecular lamination method, an LB method, a printing method, a transfer method, and the like.
  • the protective layer is a layer that protects the organic EL element from the influence of the outside world, and is formed so as to wrap around the above-described laminated structure.
  • the material of the protective layer is not particularly limited, and can be appropriately selected according to the purpose.For example, molecules or substances such as moisture and oxygen that accelerate the deterioration of the organic EL element enter the organic EL element. Things that can be deterred are preferred! /.
  • the protective layer is formed, for example, by a vapor deposition method, a wet film forming method, a sputtering method, a reactive sputtering method, a MBE method, a cluster ion beam method, an ion plating method, a plasma polymerization method (high frequency excitation ion plating method), and printing. It can be more suitably formed by a method or a transfer method.
  • the organic EL device of the present invention may have a color conversion layer appropriately selected according to the purpose, and the color conversion layer may contain the phosphorescent solid of the present invention.
  • the color conversion layer is a layer that absorbs light emitted from an organic EL device and emits light by changing the wavelength, for example, as described in Japanese Patent Application Laid-Open No. 3-152927. It is produced between the substrate on the light extraction side of the EL element and the IT ⁇ electrode and converts blue into green or red and emits it, enabling multicolor display devices.
  • the color conversion layer may be of any thickness, material, and manufacturing method as long as it can sufficiently absorb the light to be converted and can convert the light into a desired wavelength. It preferably has a thickness of 100 to 100 jum, more preferably 1 to 50 ⁇ , and is manufactured by photolithography or the like.
  • a force that can be formed according to a known method for example, a vapor deposition method such as vacuum deposition, a wet film forming method, an MBE method, a cluster ion beam method, a molecular lamination method, It can be suitably formed by an LB method, a printing method, a transfer method, or the like.
  • the vapor deposition method is preferable because it can be easily and efficiently manufactured at low cost without the problem of waste liquid treatment without using an organic solvent.
  • the light emitting layer is designed to have a single layer structure, For example, when the light emitting layer is formed as a hole transporting layer, a light emitting layer and an electron transporting layer, a wet film forming method is also preferable.
  • the vapor deposition method is not particularly limited and may be appropriately selected from known methods according to the purpose. Examples thereof include a vacuum deposition method, a resistance heating deposition method, a chemical vapor deposition method, and a physical vapor deposition method. Examples of the chemical vapor deposition method include a plasma CVD method, a laser CVD method, a thermal CVD method, and a gas source CVD method.
  • a binder composed of a host and / or a polymer and a phosphorescent solid according to the present invention are mixed in a solvent, and then spin coating, ink jetting, dip coating, blade coating are performed. It is also possible to apply by a wet film forming method such as a coating method.
  • the light emitting layer has By having the function of an electron transport layer, it is also possible to configure a single layer as a hole transport layer / light emitting layer or a light emitting layer / electron transport layer / a hole transport layer / light emitting layer / electron transport layer.
  • examples of binders that can be used include polyvinyl carbazolone, polycarbonate, polyvinyl chloride, polystyrene, polymethyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, and ketone resin.
  • examples include phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, and silicone resin.
  • a panel using the three-color light-emitting method requires an organic EL element portion that emits three colors of red, green, and blue, respectively.
  • the following light-emitting element portions can be exemplified as the respective color light-emitting element portions.
  • the organic EL display using the organic EL element according to the present invention is expected to have high luminous efficiency, long drive life, and stable driving.
  • This organic EL device can be used as a passive matrix panel or an active matrix panel (for example, Nikkei Electronics, March 13, 2000, No. 765, pp. 55-62).
  • An organic EL device according to the present invention is described in US Pat.
  • Fig. 23 shows the case when used for a passive matrix display.
  • FIG. 23 shows a configuration example of the positive electrode / hole transport layer / light emitting layer / electron transport layer Z negative electrode. In FIG.
  • a positive electrode 2 made of IT, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and a negative electrode 6 made of metal are laminated on a glass substrate 1.
  • the positive electrode 2 made of ITO is the row electrode
  • the negative electrode 6 made of metal is the column electrode.
  • red light emission 7, green light emission 8, and blue light emission 9 are realized by changing the light emitting layer forming material used for the light emitting layer 4.
  • FIG. 24 shows a case where the organic EL device according to the present invention is used for an active matrix display.
  • FIG. 24 also shows a configuration example of the positive electrode Z, the hole transport layer Z, the light emitting layer / the electron transport layer Z, and the negative electrode.
  • the organic EL element is composed of a driving circuit 21, a TFT (Thin Film Transistor) circuit 22, a positive electrode 2 composed of ITO, a hole transport layer 3, a light emitting layer 4, An electron transport layer 5 and a negative electrode 6 made of metal are laminated. Also in this figure, by changing the light emitting layer forming material used for the light emitting layer 4, red light emission 7, green light emission 8, and blue light emission 9 are realized.
  • the tridentate ligands used in the examples of the present invention were synthesized by the Sti 11 e coupling method in the literature Organome tallics (D. J. Cardenas and AM E chavarren, Vol. 18, p. 3337 (1999). Year)). These ligands are based on the Suzuki force pulling method (references: MD S in dkh e dk ar, HR Mu 11 a, MA Wurth and A. C ammers—Go dw in, T e 1 & 116 (011, Vol. 57, Vol.
  • the tridentate ligand (3,5-di (2-pyridyl) pyridine (3,5-di (2-pyridyl) pyridin, hereinafter abbreviated as dppr) is 3,5-dibromotoluene and 3,5-dibromotoluene.
  • the synthesis was performed in the same manner as in Synthesis Example 1 except that pyridine was replaced with the same procedure as in Synthesis Example 1 except that the ligand was changed from dpt to dppr.
  • An organic metal complex, Pt (dppr) CI was synthesized, and the yield was 14%.
  • a thin film doped with 2% by weight of Pt (dpt) ⁇ 1 synthesized in Synthesis Example 1 to ⁇ 8? was produced by co-evaporation.
  • the thickness was 50 nm.
  • a single film of A1q with a known fluorescence quantum yield was prepared by evaporation and used as a reference.
  • the phosphorescence quantum yield of the phosphorescent solid (thin film) of the present invention was determined by setting the fluorescence quantum yield of the reference A1q thin film to 22%. The measurement was performed as follows. That is, in the apparatus shown in FIG. 19, a 365-nm steady light 1911 is used as the excitation light, and the amount of transmission and reflection of the excitation light in the sample 196 is determined by the photodiode 1 via the mirrors 194 and 195.
  • the emission spectrum of the sample thin film was measured with a spectral radiance meter 1933 (CS-1000 manufactured by Minolta) while monitoring with 92 (a photosensor C2719 manufactured by Hamamatsu Photonitas).
  • the phosphorescence quantum yield was calculated by comparing the emission intensity per unit absorption of the excitation light with the value of a thin film of a known compound (Alq). Table 1 shows the results. [Example 2]
  • the phosphorescent quantum yield was measured under the same conditions as in Example 1 except that the light emitting material was changed to Pt (dqt) C1. The results are shown in Table 1.
  • the phosphorescence quantum yield was measured under the same conditions as in Example 1 except that the luminescent material was changed to Pt (dppr) CI. The results are shown in Table 1.
  • the phosphorescent thin film of the present invention has a very high phosphorescence quantum yield.
  • the Pt (dpt) C 1 complex reported by JAG Wi 11 iams et al. In Iii org. Chem. (Vol. 42, p. 8609—8611, 2003)
  • the phosphorescence quantum yield was 68% in the solution state, but surprisingly, the solid state could significantly improve the phosphorescence quantum yield to 98%.
  • Comparative Examples 1 to 3 are three N “N” C types described in Japanese Patent Application Laid-Open No. 2002-3653552.
  • This figure shows the phosphorescence quantum yield of an organometallic complex having a ligand in a dichloromethane solution state.
  • the molecular structure of the organometallic complex having these three N—N ′′ C-type ligands is shown in FIG. 20. From this comparison, the organometallic complex having the N—C ′′ N-type ligand of the present invention is also shown. It can be understood that the phosphorescent light-emitting solid (thin film) using GaN has a very high phosphorescence quantum yield.
  • a stacked organic EL device was manufactured using the Pt (dpt) C1 complex for the light emitting layer as follows.
  • the layer doped with 2% by weight is 30 nm
  • the BCP is 20 nm as the hole blocking layer
  • the A1q is 20 nm as the electron transport layer
  • the LiF is 0 nm as the electron injection layer.
  • Each layer was deposited to a thickness of 511 m, and aluminum was deposited to a thickness of 100 nm and sealed in a nitrogen atmosphere.
  • IT ⁇ positive electrode
  • the aluminum electrode as the negative electrode
  • a voltage of 4 Green emission was observed above V.
  • Table 2 shows the emission peak wavelength, current efficiency, power efficiency, and external quantum efficiency when applying 5 V to the devices in Examples 4 to 9 and Comparative Example.
  • the external quantum efficiency is the ratio of the phosphorescent output to the input energy It represents the rate. Current efficiency, power efficiency, external quantum efficiency, the input current indicates a value of 0. ImAZcm 2.
  • An organic EL device was manufactured under the same conditions as in Example 4 except that the light emitting material was changed to Pt (dqt) CI.
  • the light emitting material was changed to Pt (dqt) CI.
  • An organic EL device was produced under the same conditions as in Example 4 except that the light emitting material was changed to Pt (dppr) CI.
  • Pt (dppr) CI When a voltage was applied with the ITO as the positive electrode and the aluminum electrode as the negative electrode, blue-green light emission was observed at a voltage of 4 V or more.
  • a polymer organic EL device was manufactured using the Pt (dpt) C1 complex for the light emitting layer as follows.
  • the glass substrate with the ITO electrode was washed with water, acetone, and isopropyl alcohol.
  • PEDOT PSS (poly (ethylenedioxythiophene): poly (styrenesulfonate)) thin film (50 nm thick) was prepared as a hole injection layer by spin coating, and was heated and dried at 200 ° C for 2 hours. did.
  • An organic EL device was manufactured under the same conditions as in Example 7 except that the light emitting material was changed to Pt (dqt) CI.
  • the light emitting material was changed to Pt (dqt) CI.
  • An organic EL device was manufactured under the same conditions as in Example 7 except that the light emitting material was changed to Pt (dppr) CI.
  • the light emitting material was changed to Pt (dppr) CI.
  • an organic EL device having high luminous efficiency and a high-performance organic EL device can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A phosphorescence emitting solid comprising an organometallic complex which has a tridentate ligand coordinating to a central metal through two nitrogen atoms and one carbon atom positioning between said two nitrogen atoms and binding with said two nitrogen atoms via bonds and has a halogen atom as a ligand; a luminescent element using the solid; and an organic EL device using the element. The phosphorescence emitting solid can emit a phosphorescence having very high intensity in a solid state, and thus, the use of the solid in an organic EL element allows the significant improvement of the luminous efficiency, which results in the reduction of electric power consumption in an organic EL device.

Description

明細書  Specification
リン光発光固体、 有機エレクトロルミネセンス素子おょぴ  Phosphorescent solid-state, organic electroluminescent device
有機エレクトロルミネセンス装置 発明の背景  BACKGROUND OF THE INVENTION
技術分野 Technical field
本発明は、 特定の配位子を有するリン光発光性有機金属錯体を含有するリン光 発光固体、 これを用いた発光素子、 特に有機エレク トロルミネセンス素子 (以下、 「エレク トロルミネセンス」 を ELと略称する) 、 およびこれを用いた有機 EL ディスプレイ、 有機 EL照明装置等の有機 EL装置に関する。 背景技術  The present invention relates to a phosphorescent solid containing a phosphorescent organometallic complex having a specific ligand, a light-emitting device using the same, and in particular, an organic electroluminescence device (hereinafter referred to as “electroluminescence”). EL), and an organic EL device using the same, such as an organic EL display and an organic EL lighting device. Background art
有機 E L素子は、 正孔輸送性と電子輸送性のそれぞれの有機薄膜を積層した積 層型素子の報告 (たとえば、 C. W. T a n g a n d S. A. V a n S 1 y k e) , Ap p l i e d Phy s i c s L e t t e r s, 第 51卷, p. 9 13, 1987年) 以来、 自発光、 高速応答などの特徴を持つ表示素子として、 フラットパネノレディスプレイへの適用が期待されており、 特に、 10V以下の低 電圧で発光する大面積発光素子として関心を集めている。  Organic EL devices are reported as stacked devices in which organic thin films with hole-transporting and electron-transporting properties are stacked (for example, CW Tangand SA V an S 1 yke), Applied Physics Letters, No. 51 Vol., P. 913, 1987), is expected to be applied to flat panel displays as display elements with features such as self-luminous light and high-speed response. It has attracted interest as an area light emitting device.
積層型有機 EL素子は基本的に正極/正孔輸送層/発光層 Z電子輸送層/負極 の構成を有する。 このうち発光層は、 上述の T a 1 g a n d V a n S 1 y k eの 2層型素子の場合のように、 正孔輸送層または電子輸送層がその機能を兼ね る構成も可能である。  The stacked organic EL element basically has a configuration of a positive electrode / a hole transport layer / a light emitting layer / a Z electron transport layer / a negative electrode. Among them, the light-emitting layer may have a configuration in which a hole transport layer or an electron transport layer also has the function as in the case of the two-layer element of Ta1gandVanS1yke described above.
高発光効率の有機 E L素子を得るためには、 発光層が高い発光効率を有する必 要がある。 発光層の構成としては、 1種類の材料で形成される単独膜に加えて、 主成分であるホスト材料中に蛍光発光性の高い色素分子をゲストとして少量ドー プする色素ドープ膜が考案されている (たとえば、 C. W. Ta ng, S. A. V a n S 1 y k e , a n d C. H. Ch e n) , J o u r n a l o f A p p l i e d Phy s i c s, 第 65巻, p. 3610, 1989年) 。  In order to obtain an organic EL device with high luminous efficiency, the luminescent layer needs to have high luminous efficiency. As the structure of the light-emitting layer, in addition to a single film made of one type of material, a dye-doped film in which a small amount of highly fluorescent dye molecules are doped as a guest in a host material as a main component has been devised. (Eg, CW Tang, SA Van S 1 yke, and CH Chain), Journalof Applied Physics, Vol. 65, p. 3610, 1989).
また、 近年、 上記の蛍光材料に代えて、 分子の励起三重項状態からの発光を利 用するリン光材料を有機 E L素子の発光材料とすることにより、 有機 E L素子の 発光効率を高めることが可能であることが示され、 注目を集めている。 (M. A. Ba l d o等, Na t u r e, 第 395卷, p. 151, 1998年; M. A. B a l d o , Ap p l i e d Phy s i c s Le t t e r s, 第 75卷, p. 4, 1999年) 。 In recent years, instead of the above fluorescent material, light emission from the excited triplet state of molecules has been used. It has been shown that it is possible to increase the luminous efficiency of an organic EL device by using the phosphorescent material to be used as the light emitting material of the organic EL device, and has been receiving attention. (MA Baldo et al., Nature, Vol. 395, p. 151, 1998; MA Baldo, Applied Physics Letters, Vol. 75, p. 4, 1999).
室温でリン光を発する有機金属錯体を用いた有機 E L素子の公知例としては特 開 2002— 363552号公報に記載の三座配位子を有する金属錯体を一つの 例としてあげることができる。 この公知例では、 白金と窒素による二つの酉己位結 合および白金と炭素との間の一つの配位結合よりなり、 これら二つの窒素と炭素 とが N, N, Cの順に結合した三座配位子 (N— N ' C) を有する有機金属錯体 を有機 EL素子の発光材料として用いる技術が開示されている。 しかし、 この錯 体のリン光発光は室温では十分ではなく、 そのため、 前記公知例の有機 E L素子 は低レ、発光効率となってしまっていた。  As a known example of an organic EL device using an organometallic complex that emits phosphorescence at room temperature, a metal complex having a tridentate ligand described in JP-A-2002-363552 can be cited as an example. In this known example, it consists of two cognate bonds between platinum and nitrogen and one coordination bond between platinum and carbon, and these two nitrogen and carbon are bonded in the order of N, N and C. A technique using an organometallic complex having a coordination ligand (N—N′C) as a light emitting material of an organic EL device is disclosed. However, the phosphorescence of this complex is not sufficient at room temperature, and the organic EL device of the above-mentioned known example has a low level and a low luminous efficiency.
—方、 室温でリン光を発する有機金属錯体に関する一般的な研究としては、 N " C " N型の三座配位子の構造を有する有機金属錯体が溶液中で N - N " C型よ りも強いリン光を発すること力 J. A. G. Wi 1 1 i am s等によって報告 されている (I n o r g. C h em. , 第 42卷, p. 8609— 8611, 2003年) 。  On the other hand, general studies on organometallic complexes that emit phosphorescence at room temperature include the fact that organometallic complexes having the structure of N "C" N-type tridentate ligands are better than N-N "C-type in solution. It has been reported by JAG Wi 11 i ams et al. (I norg. Chem., Vol. 42, p. 8609-8611, 2003).
有機物からの発光は、 発光を起こす励起状態の性質によって、 大きく蛍光とリ ン光とに分類される。 これまで、 一般的な有機物はリン光を発しないという理由 で、 有機 EL素子では蛍光発光が利用されてきた。 しかし、 EL発光メカニズム からは、 リン光発光状態は蛍光発光状態の 4倍の確率で生成することが予想され るため、 室温でリン光発光を起こす重金属錯体の発光材料への適用が EL素子の 高効率化手段として、 近年注目されている。 しかしながら、 室温で強いリン光を 発する材料が非常に少なく、 材料の選択幅が狭いのが現状の最大の問題点となつ ている。 発明の開示  Emission from organic matter is broadly classified into fluorescence and phosphorescence depending on the nature of the excited state that causes light emission. Until now, fluorescent light has been used in organic EL devices because common organic substances do not emit phosphorescence. However, from the EL emission mechanism, it is expected that the phosphorescent state will be generated four times more likely than the fluorescent state. In recent years, it has attracted attention as a means of increasing efficiency. However, there are very few materials that emit strong phosphorescence at room temperature, and the narrowest selection of materials is the biggest problem at present. Disclosure of the invention
本発明は、 有機 EL素子に好適なリン光発光材料を検 f ることで、 発光効率 が高いリン光発光固体、 このリン光発光固体を用いた有機 E L素子および有機 E L装置を提供することを目的とするものである。 本発明のさらに他の目的および 利点は、 以下の説明から明らかになるであろう。 The present invention examines a phosphorescent light-emitting material suitable for an organic EL device to improve the luminous efficiency. It is an object of the present invention to provide a phosphorescent solid having high phosphorescence, an organic EL element and an organic EL device using the phosphorescent solid. Still other objects and advantages of the present invention will become apparent from the following description.
課題を解決するための種々の検討の結果、 特定の三座配位子とハロゲン原子と を配位子として有する金属錯体は、 固体状態で特に強いリン光を発し、 これを発 光材料として用いた有機 E L素子は、 高効率で発光することを見いだした。 本発明の一態様によれば、 二個の窒素原子と、 その間にあり、 力つ、 結合を介 して、 これら二個の窒素原子と結合する一個の炭素原子とで中心金属原子に配位 結合する三座配位子とハロゲン原子とをそれぞれ一以上配位してなる有機金属錯 体を含有するリン光発光固体が樹共される。  As a result of various studies to solve the problems, a metal complex having a specific tridentate ligand and a halogen atom as ligands emits particularly strong phosphorescence in the solid state, and this is used as a light emitting material. The organic EL device that was used was found to emit light with high efficiency. According to one aspect of the present invention, two nitrogen atoms and a carbon atom between them, which are bonded through force and bond, to a central metal atom are coordinated to the two metal atoms. A phosphorescent solid containing an organometallic complex formed by coordinating at least one of a binding tridentate ligand and at least one halogen atom is formed.
リン光発光固体が、 下記式 (1) で表される構造を有する有機金属錯体を含有 すること、  The phosphorescent solid contains an organometallic complex having a structure represented by the following formula (1):
Figure imgf000004_0001
Figure imgf000004_0001
(式 (1) 中、 Mは金属原子を表し、 Xはハロゲン原子を表し、 Ar 1, Ax Ar 3は、 それぞれ独立に、 置換基を有してい Tもよい環状構造を表し、 Ar 1 一 Ar 2および Ar 2— Ar 3の結合は、 単結合でも、 二重結合でもよい。 Mと A r 1および Mと Ar 3とは M—Nの配位結合を有し、 Mと A r 2とは M— Cの直接 結合を有する。 Ar 1, Ar 2, A r 3の置換基は、 それぞれ、 Ar 1, Ar 2, A r 3上ならびに A r 1と A r 2の相互間および A r 2と A r 3の相互間で、 互いに結 合して環状構造をなしていてもよレ、。 ) (In the formula (1), M represents a metal atom, X represents a halogen atom, Ar 1, Ax Ar 3 each independently also represent an annular structure T have a substituent, Ar 1 one The bond of Ar 2 and Ar 2 — Ar 3 may be a single bond or a double bond.M and Ar 1 and M and Ar 3 have a M—N coordination bond, and M and Ar 2 with direct coupling of M- C and. substituents Ar 1, Ar 2, a r 3 , respectively, Ar 1, Ar 2, a r 3 above and between each other a r 1 and a r 2 and a r 2 and Ar 3 may be bonded to each other to form a cyclic structure.)
リン光発光固体が、 二個の窒素原子と一個の炭素原子とで中心金属原子に配位結 合する三座配位子とハロゲン原子とをそれぞれ一以上配位してなり、 二個の窒素 原子と一個の炭素原子と中心金属原子とが、 炭素原子と中心金属原子との結合を 共有する二つの 5員環が縮合した形状の構造部分を有する有機金属錯体を含有す ること、 有機金属錯体が、 下記式 (2) で表される構造部分を有すること、
Figure imgf000005_0001
A phosphorescent solid comprises two or more nitrogen atoms and one carbon atom coordinated with at least one of a tridentate ligand and a halogen atom, each of which coordinates and binds to a central metal atom. Containing an organometallic complex having a structure in which an atom, one carbon atom, and a central metal atom are fused with two 5-membered rings that share the bond between the carbon atom and the central metal atom; The complex has a structural portion represented by the following formula (2);
Figure imgf000005_0001
(式 (2 ) 中、 Mと Xは式 (1 ) と同様である。 Yは、 互いに独立に、 炭素原子 または窒素原子である。 N— Y結合部分は、 式 (1 ) 中の A r 1または A r 3の —部を構成し、 ベンゼン核は、 置換基を有していてもよレ、。 配位子と中心金属原 子との結合以外の結合は、 単結合でも、 二重結合でもよい。 ) (In the formula (2), M and X are the same as those in the formula (1). Y is each independently a carbon atom or a nitrogen atom. The N—Y bond part is A r in the formula (1). The benzene nucleus may have a substituent, which constitutes the — part of 1 or Ar 3. The bond other than the bond between the ligand and the central metal atom may be a single bond or a double bond. It may be a combination.)
有機金属錯体が、 下記式 (3 ) で表される構造部分を有すること、 The organometallic complex has a structural part represented by the following formula (3);
Figure imgf000005_0002
Figure imgf000005_0002
(式 (3 ) 中、 Mと Xは式 ( 1 ) と同様である。 ベンゼン核は、 互いに独立に、 置換基を有していてもよく、 置換基同士が、 同一環上または隣接する環の間で、 互いに結合していてもよい。 )  (In the formula (3), M and X are the same as in the formula (1). The benzene nuclei may have a substituent independently of each other, and the substituents may be in the same or adjacent ring. May be bonded to each other.)
!^と !^とカ 互いに独立に、 単環または多環の芳香環を含むこと、 A r 1 と A r 3とが同一であること、 有機金属錯体が、 一つの三座配位子と、 一つのハ 口ゲン原子と一つの中心金属原子とよりなること、 有機金属錯体が、 固体状態で 電気的に中性であること、 有機金属錯体が、 真空蒸着による膜形成が可能である こと、 9 9 . 5重量 °/0以上の純度の有機金属錯体を使用してなること、 中心金属 原子が白金であること、 有機金属錯体と、 有機金属錯体よりも高い第一励起三重 項励起エネルギーを有する有機材料とを少なくとも一つづつ含むこと、 有 HI才料 力 置換基を有していてもよい力ルバゾールまたはその誘導体を含むことが好ま しい。 ! ^ And! A ^ and mosquitoes independently, comprise an aromatic monocyclic or polycyclic, it and A r 1 and A r 3 are the same, an organic metal complex, and one tridentate ligand, a C 9.It consists of a chromium atom and one central metal atom, that the organometallic complex is electrically neutral in a solid state, and that the organometallic complex can form a film by vacuum deposition. 5 wt ° / 0 or more by comprising using the organometallic complex of purity, that the central metal atom is platinum, organic materials having an organometallic complex, the first excited triplet excitation energy higher than that of the organic metal complex It is preferable to include at least one of each of the following: HI genomic power rubazole or a derivative thereof which may have a substituent.
本発明のリン光発光固体によれば、 固体状態で非常に強いリン光が実現できる。 本発明に係る他の一態様によれば、 上記のリン光発光固体を用いてなる有機ェ レクトロルミネセンス素子が提供される。 ' According to the phosphorescent solid of the present invention, very strong phosphorescence can be realized in a solid state. According to another aspect of the present invention, there is provided an organic material comprising the above-mentioned phosphorescent solid. An electroluminescent device is provided. '
リン光発光固体を発光層内に含有すること、 リン光発光固体がホストまたはゲ ストとして機能すること、 発光層に、 リン光発光固体と低分子ホスト材料とを含 有すること、 発光層に、 リン光発光固体と高分子ホスト材料とを含有すること、 リン光発光固体を色変換層内に含有することが好ましい。  A phosphorescent solid in the light-emitting layer; a phosphorescent solid that functions as a host or a guest; the light-emitting layer contains a phosphorescent solid and a low-molecular host material; It is preferable to contain a phosphorescent solid and a polymer host material, and to contain the phosphorescent solid in the color conversion layer.
本発明によれば、 発光効率を大幅に改善された有機 E L素子を実現できる。 本発明に係るさらに他の一態様によれば、 上記の有機エレクトロルミネセンス 素子を用いてなる有機エレク トロルミネセンス装置、 更に具体的には、 有機エレ クトロルミネセンスディスプレイや有機エレクトロルミネセンス照明装置が提供 される。  According to the present invention, an organic EL device having significantly improved luminous efficiency can be realized. According to still another aspect of the present invention, an organic electroluminescent device using the above-described organic electroluminescent element, more specifically, an organic electroluminescent display or an organic electroluminescent lighting device Is provided.
本発明によれば、 固体状態で非常に強いリン光が実現でき、 これを有機 E L素 子に用いることで、 発光効率を大幅に改善することができ、 これを用いた有機 E L装置は低消費電力となる。 図面の簡単な説明  According to the present invention, a very strong phosphorescent light can be realized in a solid state, and by using the phosphorescent light in an organic EL device, the luminous efficiency can be greatly improved. Power. Brief Description of Drawings
図 1は、 式 (4 ) で表される構造部分を例示する図である。  FIG. 1 is a diagram exemplifying a structural part represented by Expression (4).
図 2は、 A r 1および A r 3の例を示す図である。 FIG. 2 is a diagram showing an example of Ar 1 and Ar 3 .
図 3は、 A r 2の例を示す図である。 Figure 3 is a diagram showing an example of A r 2.
図 4は、 低分子系ホスト材料を例示する図である。  FIG. 4 is a diagram illustrating a low-molecular host material.
図 5は、 カノレバゾール化合物を例示する図である。  FIG. 5 is a diagram illustrating a canolebazole compound.
図 6は、 図 5中の A rを例示する図である。  FIG. 6 is a diagram illustrating an example of Ar in FIG.
図 7は、 図 6中の連結基 Rを例示する図である。  FIG. 7 is a diagram illustrating the linking group R in FIG.
図 8は、 C B Pの構造を示す図である。  FIG. 8 is a diagram showing the structure of CBP.
図 9は、 高分子系ホスト材料を例示する図である。  FIG. 9 is a diagram illustrating a polymer host material.
図 1 0はスターバーストアミンの構造を示す図である。  FIG. 10 is a diagram showing the structure of starburst amine.
図 1 1は T P Dの構造を示す図である。  FIG. 11 is a diagram showing the structure of TPD.
図 1 2は A 1 qの構造を示す図である。  FIG. 12 is a diagram showing the structure of A 1 q.
図 1 3は、 本発明に係るリン光発光固体よりも光吸収端が短波長である材料を 例示する図である。 図 1 4は D C J T Bの構造を示す図である。 FIG. 13 is a diagram exemplifying a material having a shorter light absorption edge than the phosphorescent solid according to the present invention. FIG. 14 is a diagram showing the structure of DCJTB.
図 1 5は、 有機 E L素子の模式的側断面図である。  FIG. 15 is a schematic side sectional view of an organic EL device.
図 1 6は、 有機 E L素子の他の模式的側断面図である。  FIG. 16 is another schematic side sectional view of the organic EL device.
図 1 7は、 d p tの合成経路を示す図である。  FIG. 17 is a diagram showing a synthesis route of dpt.
図 1 8は、 P t ( d p t ) C Iの合成経路を示す図である。  FIG. 18 is a diagram showing a synthesis route of Pt (dpt) CI.
図 1 9は、 リン光量子収率の測定法を示す図である。  FIG. 19 is a diagram showing a method for measuring a phosphorescence quantum yield.
図 2 0は、 比較例に使用した有機金属錯体の分子構造を示す図である。  FIG. 20 is a diagram showing the molecular structure of the organometallic complex used in the comparative example.
図 2 1は、 有機 E L素子の E Lスぺクトルを表す図である。  FIG. 21 is a diagram showing an EL spectrum of an organic EL device.
図 2 2は、 有機 E L素子の電流密度と外部量子効率の関係をプロットしたダラ フである。  Figure 22 is a graph plotting the relationship between the current density and the external quantum efficiency of an organic EL device.
図 2 3は、 本発明に係る有機 E L素子をパッシブマトリクスディスプレイに使 用した場合を示す模式的斜視図である。  FIG. 23 is a schematic perspective view showing a case where the organic EL device according to the present invention is used for a passive matrix display.
図 2 4は、 本発明に係る有機 E L素子をアクティブマトリタスディスプレイに 使用した場合を示す模式的斜視図である。 発明を実施するための最良の形態  FIG. 24 is a schematic perspective view showing a case where the organic EL device according to the present invention is used for an active matrix display. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施の形態を図、 表、 式、 実施例等を使用して説明する。 な お、 これらの図、 表、 式、 実施例等および説明は本発明を例示するものであり、 本発明の範囲を制限するものではない。 本発明の趣旨に合致する限り他の実施の 形態も本発明の範疇に属し得ることは言うまでもない。 なお、 図中、 同一の要素 については同一の符号を付した。  Hereinafter, embodiments of the present invention will be described with reference to the drawings, tables, formulas, examples, and the like. Note that these drawings, tables, formulas, examples, and the like, and the descriptions are only illustrative of the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments can also be included in the scope of the present invention as long as they conform to the gist of the present invention. In the drawings, the same elements are denoted by the same reference numerals.
白金系有機金属錯体をはじめとする多種類の有機金属錯体を合成し、 その物性 評価を行った結果、 N " C " N型三座配位子を有する有機金属錯体が、 溶液では なく、 リン光発光固体として使用すると、 非常に強いリン光を発し得ること、 こ のリン光発光固体は良好な真空蒸着性を示し得ること、 力つ真空蒸着により N― C " N型三座配位子を有する有機金属錯体のみからなるニート膜ゃ N C— N型 三座配位子を有する有機金属錯体を含有するドープ膜を作製可能であり、 作製し た膜が一様に平坦で良好な発光特性を示すことを見出し、 本発明に想到した。 本発明に係るリン光発光固体は、 二個の窒素原子と、 この二個の窒素原子の間 にあり、 力、つ、 結合を介してこの二個の窒素原子と結合する一個の炭素原子とで 中心金属原子に配位結合する三座配位子と、 ハロゲン原子とをそれぞれ一以上配 位してなる有機金属錯体を含有する。 この有機金属錯体では、 金属と配位結合す る上記二つの窒素原子と炭素原子とは N, C, Nの順序で結合する。 すなわち、 この有機金属錯体は N " C " N型三座配位子を有する。 「―」 は、 Nと Cまたは Cと Nの間に結合が存在することを意味する記号である。 本発明に係る三座配位 子は、 中心金属 Mと共に実質的に同一平面を形成するものが多いが、 それ以外の 空間配置のものも本発明の範疇に属し得ることは言うまでもない。 As a result of synthesizing various kinds of organometallic complexes, including platinum-based organometallic complexes, and evaluating their physical properties, it was found that organometallic complexes having N "C" N-type tridentate ligands were not dissolved in solution but in phosphorus. When used as a light-emitting solid, it can emit a very strong phosphorescent light; this phosphorescent light-emitting solid can exhibit good vacuum deposition properties; Neat film consisting only of an organometallic complex having a nucleus ド ー プ A doped film containing an organometallic complex having an NC-N-type tridentate ligand can be produced, and the produced film is uniformly flat and has good emission characteristics The phosphorescent light-emitting solid according to the present invention has two nitrogen atoms and a space between the two nitrogen atoms. And a coordination bond to a central metal atom with one carbon atom that bonds to the two nitrogen atoms through a force, a bond, and one or more halogen atoms. Containing an organometallic complex. In this organometallic complex, the two nitrogen atoms and carbon atoms that coordinate with the metal bond in the order of N, C, and N. That is, this organometallic complex has an N "C" N-type tridentate ligand. “—” Is a symbol indicating that a bond exists between N and C or between C and N. Many of the tridentate ligands according to the present invention form substantially the same plane with the central metal M, but it goes without saying that other spatial arrangements can also be included in the scope of the present invention.
本発明に係るリン光発光固体は、 この有機金属錯体のみからなっていてもよい 1 他の成分を含んでいてもよく、 ノルクのままの固体状態のものも、 有機 EL 素子の発光層のように膜状になったものも含まれる。 有機 EL素子の発光層のよ うに膜の場合には、 ニート膜の場合も、 有機金属錯体が発光層のゲストやホスト として含有される場合の膜も含まれる。  The phosphorescent solid according to the present invention may be composed solely of this organometallic complex.1 It may contain other components. And those in the form of a film. In the case of a film such as a light-emitting layer of an organic EL device, a neat film and a film in which an organometallic complex is contained as a guest or a host of the light-emitting layer are also included.
本発明に係るリン光発光固体は、 より具体的には、 下記式 (1) で表される構 造を有する有機金属錯体を含有するリン光発光固体であることが好ましい。  More specifically, the phosphorescent solid according to the present invention is preferably a phosphorescent solid containing an organometallic complex having a structure represented by the following formula (1).
Figure imgf000008_0001
式 (1) 中、 Mは金属原子を表し、 Xはハロゲン原子を表し、 Ar 1, Ar 2, Ar 3は、 それぞれ独立に、 置換基を有していてもよい環状構造を表し、 Ar 1 一 A r 2および A r 2— A r 3の結合は、 単結合でも、 二重結合でもよレヽ。 二重結 合は他の二重結合と共役していてもよレヽ。 Mと Ar 1および Mと Ar 3とは M— Nの配位結合を有し、 Mと A r 2とは M— Cの直接結合を有する。 Ar 1, Ar 2, A r 3の置換基は、 それぞれ、 Ar 1, Ar 2, A r 3上ならびに A r 1と A r 2の 相互間および A r 2と A r 3の相互間で、 互いに結合して環状構造をなしていて もよい。
Figure imgf000008_0001
In the formula (1), M represents a metal atom, X represents a halogen atom, Ar 1 , Ar 2 , and Ar 3 each independently represent a cyclic structure which may have a substituent, Ar 1 one a r 2 and a r 2 - binding of a r 3 is also a single bond, good also with a double bond Rere. A double bond may be conjugated to another double bond. M and Ar 1 and M and Ar 3 have an M—N coordination bond, and M and Ar 2 have an M—C direct bond. Substituents of Ar 1, Ar 2, A r 3 are each, Ar 1, Ar 2, A r 3 above and between each other A r 1 and A of each other and r 2 A r 2 and A r 3, They may be bonded to each other to form a ring structure.
Mは、 本発明に係る有機金属錯体の中心金属原子であり、 使用できる金属とし ては特に制限はないが、 F e, Co, N i , Ru, Rh, P d, 〇s, I r, P tなどが挙げられる。 これらの中でも P tが特に好ましい。 M is a central metal atom of the organometallic complex according to the present invention. Although there is no particular limitation, Fe, Co, Ni, Ru, Rh, Pd, 〇s, Ir, Pt and the like can be mentioned. Among these, Pt is particularly preferred.
Xはハロゲン原子を表し、 F, C 1 , B r, Iなどが挙げられる。 三座配位子 と Xとで中心金属原子の安定配位数を満たし、 錯体全体として電気的に中性とな るように選ばれるのが好ましレ、。  X represents a halogen atom, and examples thereof include F, C 1, Br, and I. It is preferable that the tridentate ligand and X are selected so that the stable coordination number of the central metal atom is satisfied and the complex as a whole is electrically neutral.
上記環状構造としては、 芳香環を含むことが好ましい。 縮合環や複素環を含ん でいてもよい。 Ar 1, Ar 2, A r 3がすべて芳香環を含むことが好ましい。 上記 N " C " Nの結合について、 Nと Cまたは Cと Nの間の結合は、 通常他の 原子が介在する場合を含む。 上記式 (1) 中の Ar 1— Ar 2および Ar 2— Ar 3の結合は、 他の原子が介在する場合に相当する。 他の原子としては、 本発明の 趣旨に反しない限りどのような原子を使用することもできるが、 炭素が好ましい。 N " C " Nの結合における、 Nと Cおよび Zまたは Cと Nの間の結合は、 炭素二 個を介する結合が好ましい。 The cyclic structure preferably contains an aromatic ring. It may contain a condensed ring or a heterocyclic ring. Preferably, Ar 1 , Ar 2 and Ar 3 all contain an aromatic ring. Regarding the above bond of N "C" N, the bond between N and C or the bond between C and N usually includes the case where another atom is interposed. The bond of Ar 1 —Ar 2 and Ar 2 —Ar 3 in the above formula (1) corresponds to the case where another atom is interposed. Any other atom can be used as long as it is not contrary to the gist of the present invention, but carbon is preferred. The bond between N and C and Z or C and N in the bond of N "C" N is preferably a bond through two carbon atoms.
N " C " Nの結合において、 Nと Cおよび Cと Nの間の結合が原子二個を介す る結合である場合は、 式 (4) に例示するように、 本宪明に係るリン光発光固体 力 二個の窒素原子と一個の炭素原子とで中心金属原子に配位結合する三座配位 子と、 ハロゲン原子とをそれぞれ一以上配位してなり、 これら二個の窒素原子と 一個の炭素原子と中心金属原子とが、 炭素原子と中心金属原子との結合を共有す る二つの 5員環が縮合した形状の構造部分を有する有機金属錯体を含有すること になる。 この構造部分により、 非常に強いリン光が得られやすくなる。 なお、 式 (4) において、 配位子と中心金属原子との結合以外の結合は、 単結合でも、 二 重結合でもよレ、。 二重結合は他の二重結合と共役していてもよい。 配位子と中心 金属原子との結合以外の結合には、 式 (4) で省略されている結合部分も含まれ ることは言うまでもない。 具体的には図 1の構造部分を例示することができる。  In the bond of N "C" N, when the bond between N and C and the bond between C and N are a bond via two atoms, the phosphorus according to the present invention is used as exemplified in Formula (4). Light-emitting solid force Two nitrogen atoms and one carbon atom coordinate one or more of a tridentate ligand coordinated to the central metal atom and a halogen atom, and these two nitrogen atoms And an organometallic complex having a structural portion in which one carbon atom and a central metal atom are fused with two 5-membered rings sharing the bond between the carbon atom and the central metal atom. This structure makes it easier to obtain very strong phosphorescence. In the formula (4), the bond other than the bond between the ligand and the central metal atom may be a single bond or a double bond. A double bond may be conjugated to another double bond. It goes without saying that the bonds other than the bond between the ligand and the central metal atom include the bond portion omitted in the formula (4). Specifically, the structure shown in FIG. 1 can be exemplified.
Figure imgf000009_0001
Figure imgf000009_0001
A r 1〜A r 3としては後述する組み合わせがより好ましく、 配位子の分子構 造の対称性が大きいことがさらに好ましい。 なお、 本発明において配位子の分子 構造の対称性が大きいとは、 A r 2が、 その置換基を除いてまたは含んで、 Μ— Cの結合軸線について対称構造を有する場合や、 A r 1と A r 3の関係が、 その 置換基を除いてまたは含んで、 M— Cの結合軸線について対称である場合や、 そ の両方を充足する場合を意味する。 上記分子構造の対称性が大きいと、 錯体のリ ン光発光強度が強くなることが考えられる。 A r 1 to A r 3 are more preferably the combinations described below, and the molecular structure of the ligand More preferably, the symmetry of the structure is large. In the present invention, the term “symmetry of the molecular structure of the ligand” means that A r 2 has a symmetric structure with respect to the bond axis of Μ—C, excluding or including the substituent, The relationship between 1 and Ar 3 is symmetrical about the bond axis of M—C, excluding or including the substituent, or satisfies both. If the symmetry of the molecular structure is large, it is considered that the phosphorescent light emission intensity of the complex is increased.
この観点からは、 上記二つの 5員環が縮合した形状の構造部分が、 下記式 (2 ) で表される構造部分であると、 分子構造の対称性が大きくなり、 より好ましい。  From this viewpoint, it is more preferable that the structural portion having the shape in which the two 5-membered rings are condensed is a structural portion represented by the following formula (2), because the symmetry of the molecular structure is increased.
Figure imgf000010_0001
式 (2 ) 中、 Mと Xは式 (1 ) と同様である。 Yは、 互いに独立に、 炭素原子 または窒素原子である。 N— Y結合部分は、 前記式 ( 1 ) 中の A r 1または A r 3の一部を構成し、 A r 2の一部を構成するベンゼン核は、 置換基を有していて もよい。 配位子と中心金属原子との結合以外の結合は、 単結合でも、 二重結合で もよい。 二重結合は他の二重結合と共役していてもよい。 配位子と中心金属原子 との結合以外の結合には、 式 (2 ) で省略されている結合部分も含まれることは 言うまでもなレ、。
Figure imgf000010_0001
In equation (2), M and X are the same as in equation (1). Y is, independently of one another, a carbon or nitrogen atom. N-Y binding moiety form part of A r 1 or A r 3 in the formula (1), the benzene nucleus which constitutes a part of A r 2 may have a substituent . The bond other than the bond between the ligand and the central metal atom may be a single bond or a double bond. A double bond may be conjugated to another double bond. It goes without saying that bonds other than the bond between the ligand and the central metal atom include the bond portion omitted in the formula (2).
A r 1と A r 3とについては、 互いに独立に、 単環または多環の芳香環を含む ことも好ましい。 また、 A r 1と A r 3とが同一であることが好ましレ、。 この場 合、 上記二つの 5員環が縮合した形状の構造部分が、 下記式 ( 3 ) で表される構 造部分であると、 分子構造の対称性がより大きくなり、 さらに好ましい。 For the A r 1 and A r 3, independently of one another, it is also preferred to include a monocyclic or polycyclic aromatic ring. Also, it is preferable that A r 1 and A r 3 are the same. In this case, it is more preferable that the structural part having the shape in which the two five-membered rings are fused is a structural part represented by the following formula (3), since the symmetry of the molecular structure is further increased.
Figure imgf000010_0002
(式 (3) 中、 Mと Xは式 (1) と同様である。 ベンゼン核は、 互いに独立に、 置換基を有していてもよく、 置換基同士が、 同一環上または隣接する環の間で、 互いに結合していてもよい。 )
Figure imgf000010_0002
(In the formula (3), M and X are the same as those in the formula (1). The benzene nuclei may have a substituent independently of each other, and the substituents may be in the same or adjacent ring. May be bonded to each other.)
上記の A r 1, Ar 2および A r 3については、 環状構造の任意の位置が置換さ れていてもよい。 A r 1と A r 3については図 2の構造またはその鏡像の構造を、 A r 2については図 3の構造を挙げることができる。 各記号は、 式 ( 1 ) の記号 と同様の意味を有する。 なお、 Ar 1, Ar 2, A r 3の構造は、 図 2, 3中〇で 囲まれた部分である。 Ar 1 , Ar 2 and Ar 3 described above may be substituted at any position of the cyclic structure. For Ar 1 and Ar 3 , the structure of FIG. 2 or its mirror image structure can be mentioned, and for Ar 2 , the structure of FIG. 3 can be mentioned. Each symbol has the same meaning as the symbol in formula (1). The structures of Ar 1 , Ar 2 , and Ar 3 are the parts enclosed in the middle of Figs.
図 2, 3中、 環の水素は置換基で置換されていてもよレ、。 置換基としてはたと えば、 ハロゲン原子、 シァノ基、 アルコキシ基、 アミノ基、 アルキル基、 アルキ ルアセテート基、 シクロアルキル基、 ァリール基、 ァリールォキシ基などが挙げ られ、 これらはさらに置換されていてもよレ、。 さらに、 Ar 1, Ar 2, Ar 3の 置換基は、 それぞれ、 Ar A r 2, A r 3上ならぴに A r 1と A r 2の相互間お よび Ar 2と Ar 3の相互間で、 互いに結合して環状構造をなしていてもよい。 本発明に係る有機金属錯体には、 ダイマー等に例示されるように、 三座配位子 や中心金属 Mやハロゲン原子 Xが複数含まれるものも含めることができるが、 一 つの三座配位子と、 一つのハロゲン原子と一つの中心金属原子とよりなるものが 好ましい。 蒸着膜を造りやすい等の利点が得られる。 In FIGS. 2 and 3, ring hydrogen may be substituted with a substituent. Examples of the substituent include a halogen atom, a cyano group, an alkoxy group, an amino group, an alkyl group, an alkyl acetate group, a cycloalkyl group, an aryl group, and an aryloxy group, which may be further substituted. Les ,. Moreover, substituents of Ar 1, Ar 2, Ar 3 are each, Ar A r 2, A r 3 on a Rapi therebetween of A r 1 and A r 2 Contact and Ar 2 and Ar 3 between each other of And may be combined with each other to form a cyclic structure. The organometallic complex according to the present invention may include a tridentate ligand, a central metal M and a plurality of halogen atoms X, as exemplified by a dimer or the like. And one having one halogen atom and one central metal atom. Advantages such as easy formation of a deposited film can be obtained.
蒸着膜を造りやすいことの利点に関しては、 有機金属錯体が、 固体状態で電気 的に中性であることまたは中性に近いことが好ましい。 中性であることがより好 ましい。 この中性であることは、 有機金属錯体が実質的にイオン性を有していな いこと、 分極性を有していないか、 有していても小さいことから判断できる。 本発明に係るリン光発光固体は、 99. 5重量%以上の純度の有機金属錯体を 使用してなることが好ましい。 強いリン光を発するリン光発光固体が得られやす くなるからである。 99. 8重量%以上の純度の有機金属錯体を使用してなるこ とがより好ましい。 なお、 このような場合にいう有機金属錯体の純度とは、 本発 明に係るリン光発光固体が複数の成分からなる場合には、 リン光発光固体中の有 機金属錯体の濃度を意味するのではなく、 リン光発光固体を構成するために使用 した有機金属錯体の純度を意味する。 有機 E L素子をフルカラーディスプレイに適用するための手段の一つとして、 赤、 緑、 青の各色の有機 E L素子を用意し、 それら三つの組み合わせを 1 ΡΪ素と して用いる方法が広く行われている。 本発明に係るリン光発光固体は、 含有させ る有機金属錯体の三座配位子の分子構造を変化させることにより発光色を調節可 能であるため、 このような複数の発光色を必要とする用途における発光材料等と して好適に使用することができる。 特に有機 E L素子に好適に使用することがで きる。 With respect to the advantage of easy formation of a vapor-deposited film, it is preferable that the organometallic complex is electrically neutral or nearly neutral in a solid state. More preferably, it is neutral. This neutrality can be determined from the fact that the organometallic complex does not substantially have ionicity, does not have polarizability, or has low polarizability. The phosphorescent solid according to the present invention preferably uses an organometallic complex having a purity of 99.5% by weight or more. This is because it becomes easier to obtain a phosphorescent solid that emits strong phosphorescence. More preferably, an organometallic complex having a purity of 99.8% by weight or more is used. In this case, the purity of the organometallic complex means the concentration of the organic metal complex in the phosphorescent solid when the phosphorescent solid according to the present invention includes a plurality of components. Rather than the purity of the organometallic complex used to construct the phosphorescent solid. One of the means to apply OLEDs to full-color displays is to prepare OLEDs for each color of red, green, and blue, and use a combination of these three as one element. I have. Since the phosphorescent light-emitting solid according to the present invention can adjust the emission color by changing the molecular structure of the tridentate ligand of the organometallic complex to be contained, such a plurality of emission colors is required. It can be suitably used as a light-emitting material or the like in an application for use. In particular, it can be suitably used for an organic EL device.
なお、 以下においては、 特に断らない限り、 本発明に係るリン光発光固体が本 発明に係る有機金属錯体の固体そのものであり、 膜等を形成する前のバルタの状 態にある場合について主に説明する力 上述のごとく、 本発明に係るリン光発光 固体は、 バルクの状態で本発明に係る有機金属錯体以外の成分を含む場合も、 膜 等に形成された後の状態で本発明に係る有機金属錯体の固体そのものからなる場 合も、 膜等に形成された後の状態で本発明に係る有機金属錯体以外の成分を含む 場合も、 本発明の範疇に属することはいうまでもなレ、。  In the following, unless otherwise specified, mainly the case where the phosphorescent solid according to the present invention is the solid of the organometallic complex according to the present invention and is in a state of barta before forming a film or the like is mainly described. As described above, as described above, the phosphorescent solid according to the present invention includes a component other than the organometallic complex according to the present invention in a bulk state, and according to the present invention in a state after being formed in a film or the like. It goes without saying that the organic metal complex may be composed of the solid itself, or may contain components other than the organometallic complex according to the present invention after being formed into a film or the like, and thus belong to the scope of the present invention. ,.
本発明に係るリン光 光固体は、 有機 E L素子において発光材料として含有さ れるのが好ましく、 発光層に含有されていてもよいし、 発光層兼電子輸送層、 発 光層兼正孔輸送層等に含有されていてもよい。 リン光亮光固体が発光層に含有さ れる場合、 発光層はリン光発光固体聘虫で成膜して形成してもよいし、 ほかの材 料を含んで形成してもよい。 また、 本発明の有機 E L素子に用いられるリン光努 光固体は室温で強いリン光を発するため、 色変換方式の有機 E L素子の場合には、 色変換層に含有される発光材料として用いることも可能である。  The phosphorescent solid according to the present invention is preferably contained as a light-emitting material in an organic EL device, and may be contained in a light-emitting layer, or a light-emitting layer / electron transport layer, a light-emitting layer / hole transport layer, or the like. May be contained. When a phosphorescent solid is contained in the light-emitting layer, the light-emitting layer may be formed by forming a film with a phosphorescent light-emitting solid, or may be formed by including other materials. In addition, since the phosphorescent light-emitting solid used in the organic EL device of the present invention emits strong phosphorescence at room temperature, it should be used as a luminescent material contained in the color conversion layer in the case of a color conversion type organic EL device. Is also possible.
本発明に係るリン光発光固体は、 ゲストとしてもホストとしても機能すること ができる。 また、 他のホスト材料やゲスト材料と共存させていてもよレ、。 共存さ せる他のホスト材料としては、 低分子のものと高分子のものが考えられる。 低分 子のものとしては数平均分子量が 1, 0 0 0以下のものが、 高分子のものとして は数平均分子量が 2 0 , 0 0 0以上のものが好ましい。 ホスト材料の第一励起三 重項励起エネルギーが、 含有される有機金属錯体の第一励起三重項励起エネルギ 一よりも高い材料とするのがより好ましい。  The phosphorescent solid according to the present invention can function as both a guest and a host. Also, it may be made to coexist with other host materials and guest materials. Other host materials that can coexist are low molecular weight materials and high molecular weight materials. A low molecular weight compound having a number average molecular weight of not more than 1,000 is preferable, and a high molecular weight compound having a number average molecular weight of not less than 200,000 is preferable. It is more preferable to use a material in which the first triplet excitation energy of the host material is higher than the first triplet excitation energy of the contained organometallic complex.
低分子系ホスト材料としては、 図 4に示すように、 4 , 4 '一ビス (2, 2 ' ージフエ二ルビ二/レ) 一 1, 1 ' ービフエニル (DPVB i ) 、 p—セキシフエ ニル (p— S P) 、 1, 3, 6, 8—テトラフエ二ルビレン (t p p y) 、 N, N' —ジナフチルー N, N, ージフエ二ルー [1, 1' ービフエ-ル] 一 4, 4 ' —ジァミン (NPD) 、 置換基を有していてもよいカノレバゾールまたはその誘 導体やこれらの混合物などが挙げられる。 As a low-molecular host material, as shown in Fig. 4, 4, 4'-bis (2, 2 ' 1,1, '-biphenyl (DPVB i), p-sexiphenyl (p-SP), 1,3,6,8-tetraphenylvinylene (tppy), N, N'-dinaphthyl-N , N, diphenyl [1,1'-biphenyl] 1-4, 4'-diamine (NPD), optionally substituted canolebazole, derivatives thereof, and mixtures thereof.
置換基を有していてもよい力ルバゾールまたはその誘導体、 すなわち力ノレバゾ 一ノレ化合物、 としては、 図 5に示されるィ匕合物が挙げられる。 図 5中、 R1, R 2は、 環状構造の任意の位置に付与された置換基を表し、 それぞれ独立に水素原 子、 ハロゲン原子、 アルコキシ基、 アミノ基、 アルキル基、 シクロアルキル基、 窒素原子や硫黄原子を含んでいてもよいァリール基、 ァリールォキシ基を表し、 これらはさらに置換されていてもよい。 また、 R1, R 2は互いに結合していて もよく、 窒素原子、 硫黄原子、 酸素原子を含んでいてもよい芳香環を形成しても よく、 これらがさらに置換されていてもよい。 R1, R2は、 それぞれの環状構 造について 1〜 3個存在する。 図 5中、 Arは 2, 3価の芳香族基または複素環 式芳香族基を示す。 例として図 6に示すような基が挙げられる。 環構造中の水素 原子は置換されていてもよい。 また、 このうち連結基 Rとしては図 7の例が挙げ ら る。 As an optionally substituted olevazole or a derivative thereof, that is, an oleoresinated compound, there may be mentioned the compound shown in FIG. In FIG. 5, R 1 and R 2 each represent a substituent provided at an arbitrary position in the cyclic structure, and each independently represents a hydrogen atom, a halogen atom, an alkoxy group, an amino group, an alkyl group, a cycloalkyl group, or a nitrogen atom. Represents an aryl group or an aryloxy group which may contain an atom or a sulfur atom, and these may be further substituted. Further, R 1 and R 2 may be bonded to each other, and may form an aromatic ring which may contain a nitrogen atom, a sulfur atom, and an oxygen atom, and these may be further substituted. There are 1 to 3 R 1 and R 2 for each ring structure. In FIG. 5, Ar represents a divalent or trivalent aromatic group or a heterocyclic aromatic group. Examples include groups as shown in FIG. A hydrogen atom in the ring structure may be substituted. In addition, examples of the linking group R are shown in FIG.
上記のカノレバゾール化合物は、 本発明の有機金属錯体と混合した場合、 錯体と の相互作用が小さいため錯体本来の発光特性に対する影響が小さく、 ホスト材料 として特に有効である。 この式で表される力ルバゾール化合物の一例として、 図 8に示す、 4, 4 '一ビス ( 9—力ルバゾリル) ービフエニル ( C B P ) が挙げ られる。  When the above canolebazole compound is mixed with the organometallic complex of the present invention, it has a small interaction with the complex and therefore has little effect on the intrinsic light emission characteristics of the complex, and is particularly effective as a host material. As an example of the compound having the formula represented by this formula, 4,4'-bis (9-model rubazolyl) -biphenyl (CBP) shown in FIG. 8 can be mentioned.
また、 高分子系ホスト材料としては、 図 9に示すような、 ポリパラフエエレン ビニレン (PPV) , ポリチォフェン (PAT) , ポリパラフエ二レン (PP P ) , ポリビニルカルバゾール (PVC) , ポリフルオレン (PF) , ポリアセチ レン (PA) 誘導体が好適である。 環構造中の水素原子は置換されていてもよい。 有機 EL素子は正極と負極との間に正孔注入層, 正孔輸送層, 発光層, 電子輸 送層, 電子注入層等を挟んだ構成を有する。 これらのうち、 正孔注入層, 正孔輸 送層, 電子輸送層, 電子注入層は存在しない場合もある。 他の層を含んでいても よい。 一つの層で複数の機能を受け持ってもよレ、。 通常、 ガラス等からなる透明 基板の上に上記積層体を構成する。 本発明に係る有機 E L素子にはこの透明基板 を含めることもできる。 色変換層を採用する場合には、 負極の上 (基板の反対側 ) に色変換層を設けることが多い。 図 1 5は色変換層を有しない場合、 図 1 6は 色変換層を有する場合の構成を示す、 有機 E L素子の模式的側断面図である。 図 1 5には、 基板 1, 正極 2 , 正孔輸送層 3 , 発光層 4, 電子輸送層 5 , 負極 6が、 図 1 6には、 これらに加えて、 色変換層 1 6 1が示されている。 As the polymer host material, as shown in FIG. 9, polyparaphenylene vinylene (PPV), polythiophene (PAT), polyparaphenylene (PPP), polyvinyl carbazole (PVC), and polyfluorene (PF) And polyacetylene (PA) derivatives are preferred. A hydrogen atom in the ring structure may be substituted. The organic EL device has a configuration in which a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. are sandwiched between a positive electrode and a negative electrode. Of these, the hole injection layer, hole transport layer, electron transport layer, and electron injection layer may not exist. Including other layers Good. One layer can handle multiple functions. Usually, the above-mentioned laminate is formed on a transparent substrate made of glass or the like. The transparent substrate can be included in the organic EL device according to the present invention. When a color conversion layer is employed, the color conversion layer is often provided on the negative electrode (opposite the substrate). FIG. 15 is a schematic side cross-sectional view of an organic EL device, showing a configuration without a color conversion layer, and FIG. 16 showing a configuration with a color conversion layer. Fig. 15 shows the substrate 1, the positive electrode 2, the hole transport layer 3, the light emitting layer 4, the electron transport layer 5, and the negative electrode 6, and Fig. 16 shows the color conversion layer 16 1 in addition to these. Have been.
層の構成例を示すと次のようなものを挙げることができる。  The following can be mentioned as an example of the layer configuration.
-正極 正孔注入層 Z正孔輸送層/発光層 Z電子輸送層/電子注入層  -Positive electrode Hole injection layer Z hole transport layer / emission layer Z electron transport layer / electron injection layer
•正極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層,  • Positive electrode Z hole injection layer Z hole transport layer Z light emitting layer Z electron transport layer
,正極 Z正孔輸送層 Z発光層/電子輸送層,電子注入層  , Positive electrode Z hole transport layer Z light emitting layer / electron transport layer, electron injection layer
•正極 Z正孔輸送層 Z発光層/電子輸送層 Z負極  • Positive electrode Z Hole transport layer Z Light emitting layer / Electron transport layer Z Negative electrode
-正極 Z正孔注入層 Z正孔輸送層 Z発光層兼電子輸送層/電子注入層 Z負極 -Positive electrode Z Hole injection layer Z Hole transport layer Z Emitting layer and electron transport layer / Electron injection layer Z Negative electrode
-正極/正孔注入層/正孔輸送層/発光層兼電子輸送層, -Positive electrode / hole injection layer / hole transport layer / emission layer and electron transport layer,
■正極 Z正孔輸送層 Z発光層兼電子輸送層 Z電子注入層,  ■ Positive electrode Z hole transport layer Z light emitting layer and electron transport layer Z electron injection layer,
-正極 Z正孔輸送層 Z発光層兼電子輸送層/負極  -Positive electrode Z hole transport layer Z light emitting layer and electron transport layer / negative electrode
•正極 Z正孔注入層/正孔輸送層兼発光層/電子輸送層/電子注入層 Z負極 .正極 Z正孔注入層 Z正孔輸送層兼発光層,電子輸送層,  • Positive electrode Z hole injection layer / hole transport layer and light emitting layer / electron transport layer / electron injection layer Z negative electrode. Positive electrode Z hole injection layer Z hole transport layer / light emitting layer, electron transport layer,
-正極 Z正孔輸送層兼発光層/電子輸送層/電子注入層,  -Positive electrode Z hole transport layer and light emitting layer / electron transport layer / electron injection layer,
-正極 Z正孔輸送層兼発光層/電子輸送層 Z負極  -Positive electrode Z hole transport layer and light emitting layer / electron transport layer Z negative electrode
-正極 Z正孔輸送層兼電子輸送層兼発光層,負極  -Positive electrode Z hole transport layer / electron transport layer / light emitting layer, negative electrode
また、 各層に使用する材料と各層の膜厚と作製方法とを例示すると次のように なる。  Further, the materials used for each layer, the thickness of each layer, and the manufacturing method are exemplified as follows.
■正極  ■ Positive electrode
正極の材料としては特に制限はなく、 目的に応じて適宜選択することができる が、 たとえば、 金属、 合金、 金属酸化物、 電気伝導性化合物、 これらの混合物な どが挙げられ、 これらの中でも仕事関数が 4 e V以上の材料が好ましい。  The material of the positive electrode is not particularly limited and may be appropriately selected depending on the intended purpose.Examples include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Materials with a function of 4 eV or more are preferred.
正極の材料の具体例としては、 酸化スズ、 酸化亜鉛、 酸化インジウム、 インジ ゥム錫酸化物 (ι τ〇) 等の導電性金属酸化物、 金、 銀、 クロム、 ニッケル等の 金属、 これらの金属と導電性金属酸化物との混合物または積層物、 ヨウ化銅、 硫 ィ匕銅等の無機導電性物質、 ポリア二リン、 ポリチォフェン、 ポリピロール等の有 機導電性材料、 これらと I TOとの積層物などが挙げられる。 これらは単独で使 用してもよいし、 2種以上を併用してもよい。 これらの中でも、 導電性金属酸ィ匕 物が好ましく、 生産性、 高伝導性、 透明性などの観点からは I T Oが特に好まし い。 Specific examples of the material for the positive electrode include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, and indium tin oxide (ιτ〇); gold, silver, chromium, nickel, and the like. Metals, mixtures or laminates of these metals and conductive metal oxides, inorganic conductive substances such as copper iodide, copper sulfate, and organic conductive materials such as polyaniline, polythiophene, and polypyrrole; Examples include a laminate with ITO. These may be used alone or in combination of two or more. Among these, conductive metal oxides are preferred, and ITO is particularly preferred from the viewpoints of productivity, high conductivity, transparency, and the like.
正極の厚みとしては特に制限はなく、 材料等により適宜選択可能であるが、 1 〜5000 n mが好ましく、 20〜 200 nmがより好ましレヽ。  The thickness of the positive electrode is not particularly limited and can be appropriately selected depending on the material and the like, but is preferably 1 to 5000 nm, more preferably 20 to 200 nm.
正極は、 通常、 ソーダライムガラス、 無アルカリガラス等のガラス、 透明樹脂 等の基板上に形成される。 基板としてガラスを用いる場合、 ガラスからの溶出ィ オンを少なくする観点からは、 無アルカリガラス、 シリカ、 バリアコートを施し たソーダライムガラスが好まし!/、。  The positive electrode is usually formed on a substrate such as glass such as soda lime glass and alkali-free glass, and transparent resin. When glass is used as the substrate, alkali-free glass, silica, and soda-lime glass coated with a barrier coat are preferred from the viewpoint of reducing elution from the glass!
基板の厚みとしては、 機械的強度を保つのに充分な厚みであれば特に制限はな いが、 基材としてガラスを用いる場合には、 通常 0. 2mm以上であり、 0. 7 mm以上が好ましい。  The thickness of the substrate is not particularly limited as long as the thickness is sufficient to maintain the mechanical strength.However, when glass is used as the base material, the thickness is usually 0.2 mm or more, and 0.7 mm or more. preferable.
正極は、 たとえば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパッタリング法、 反応性スパッタリング法、 MB E (分子 ϋェピタキシ一) 法、 クラスタ一^ オン ビーム法、 イオンプレーティング法、 プラズマ重合法 (高周波励起イオンプレー ティング法) 、 分子積層法、 印刷法、 転写法、 化学反応法 (ゾルーゲル法など) により I TO等の分散物を塗布する方法などにより好適に形成することができる。 正極は、 洗浄、 その他の処理を行うことにより、 有機 EL素子の駆動電圧を低 下させたり、 発光効率を高めることも可能である。 その他の処理としては、 たと えば、 前記正極の素材が I TOである場合には、 UV—オゾン処理、 プラズマ処 理などが好適に挙げられる。  For the positive electrode, for example, vapor deposition, wet film formation, electron beam, sputtering, reactive sputtering, MBE (molecular epitaxy), cluster ion beam, ion plating, and plasma polymerization (High frequency excitation ion plating method), molecular lamination method, printing method, transfer method, chemical reaction method (sol-gel method and the like), and a method of applying a dispersion such as ITO can be suitably formed. The positive electrode can be washed or otherwise treated to lower the driving voltage of the organic EL element or increase the luminous efficiency. As other treatments, for example, when the material of the positive electrode is ITO, a UV-ozone treatment, a plasma treatment and the like are preferably mentioned.
·正孔注入層  · Hole injection layer
正孔注入層の材料としては特に制限はなく、 目的に応じて適宜選択することが できるが、 たとえば、 図 10に示されるスターバーストアミン (4, 4 ' , 4" 一 t r i s [3— me t h y l p h e n y 1 (; h e n y l) am i n o] t r i p h e ny l am i n e, m— MTDATA) 、 銅フタロシアニン、 ポリア- リンなどが好適に挙げられる。 The material for the hole injection layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the starburst amine (4, 4 ', 4 "tris [3—methylpheny 1 (; henyl) am ino] tripheny l amine, m—MTDATA), copper phthalocyanine, polya Phosphorus and the like are preferred.
正孔注入層の厚みとしては、 特に制限はなく、 目的に応じて適宜選択すること ができるが、 たとえば 1 ~ 1 0 0 0 n m程度が好ましく、 5〜 5 0 0 n mがより 好ましい。  The thickness of the hole injection layer is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness is preferably about 1 to 100 nm, and more preferably 5 to 500 nm.
正孔注入層は、 たとえば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパッタリン グ法、 反応性スパッタリング法、 MB E法、 クラスターイオンビーム法、 イオン プレーティング法、 プラズマ重合法 (高周波励起イオンプレーティング法) 、 分 子積層法、 L B法、 印刷法、 転写法などにより好適に形成することができる。  The hole injection layer is formed by, for example, vapor deposition, wet film formation, electron beam, sputtering, reactive sputtering, MBE, cluster ion beam, ion plating, plasma polymerization (high frequency excitation). It can be suitably formed by an ion plating method, a molecular lamination method, an LB method, a printing method, a transfer method, or the like.
■正孔輸送層  ■ Hole transport layer
正孔輸送層の材料としては、 特に制限はなく、 目的に応じて適宜選択すること ができる力 たとえば、 芳香族ァミン化合物、 カノレバゾール、 イミダゾール、 ト リアゾール、 ォキサゾール、 ォキサジァゾール、 ポリアリ一ルアルカン、 ピラゾ リン、 ピラゾロン、 フエ二レンジァミン、 ァリールァミン、 アミノ置换力ノレコン、 スチリノレアントラセン、 フノレ才レノン、 ヒドラゾン、 スチノレベン、 シラザン、 ス チリルァミン、 芳香族ジメチ Vデン化合物、 ボルフィリン系化合物、 ポリシラン 系化合物、 ポリ (N - -ビニルカルバゾ一ル) 、 ァニリン系共重合体、 チォフェン オリゴマーおよびポリマー、 ポリチォフェン等の導電性高分子オリゴマーおよび ポリマー、 カーボン膜などが挙げられる。 なお、 これらの正孔輸送層の材料を発 光層の材料と混合して製膜すると正孔輸送層兼発光層を形成することができる。 これらは単独で使用してもよいし、 2種以上を併用してもよく、 これらの中で も、 芳香族ァミン化合物が好ましい。 具体的には、 図 1 1に示す N, N' —ジフ ェエルー N, N' —ビス (3—メチルフエ二ノレ) 一 [ 1, 1 ' ービフエ二ノレ] 一 4, 4 ' ージァミン (T P D) や N P D等の芳香族ァミンがより好ましい。  The material of the hole transport layer is not particularly limited and can be appropriately selected depending on the purpose.For example, aromatic amine compounds, canolebazole, imidazole, triazole, oxazole, oxazole, polyarylalkane, pyrazoline, Pyrazolone, phenylenediamine, arylamine, amino-protected norecon, stylinoleanthracene, fuenoresenone, hydrazone, stinoleben, silazane, styrylamine, aromatic dimethylene Vden compound, porphyrin-based compound, polysilane-based compound, poly (N- -Vinylcarbazole), aniline-based copolymers, thiophene oligomers and polymers, conductive polymer oligomers and polymers such as polythiophene, and carbon films. When a material for the hole transport layer is mixed with a material for the light emitting layer to form a film, a hole transport layer and a light emitting layer can be formed. These may be used alone or in combination of two or more. Among them, aromatic amine compounds are preferred. Specifically, N, N'-diphenyl-N, N'-bis (3-methylpheninole) -1 [1,1'-bipheninole] -14,4'diamine (TPD) and Aromatic amines such as NPD are more preferred.
正孔輸送層の厚みとしては、 特に制限はなく、 目的に応じて適宜選択すること ができるが、 通常 1〜5 0 0 n mであり、 5〜 1 0 0 ii mが好ましい。  The thickness of the hole transport layer is not particularly limited and may be appropriately selected depending on the purpose. The thickness is usually 1 to 500 nm, and preferably 5 to 100 nm.
正孔輸送層の形成には、 正孔注入層の場合と同様の方法を、 適宜、 原料や条件 を変更して利用することができる。  For the formation of the hole transport layer, the same method as in the case of the hole injection layer can be used by appropriately changing the raw materials and conditions.
•電子輸送層  • Electron transport layer
電子輸送層の材料としては、 特に制限はなく、 目的に応じて適宜選択すること ができ、 たとえば、 図 1 2に示されるような、 トリス (8—キノリノラト) アル ミニゥム (A 1 q ) などのヒドロキシキノリン金属錯体、 ァノレミニゥムヒドロキ シキノリンービフエニノレオキシ錯体 (B A 1 q ) などのヒドロキシキノリン一ァ リー/レオキシ錯体、 ォキサジァゾール化合物、 トリァゾール化合物、 フエナント 口リン化合物、 ペリレン化合物、 ピリジン化合物、 ピリミジン化合物、 キノキサ リン化合物、 ジフエ二ノレキノン化合物、 二ト口置換フルオレン化合物などが挙げ られる。 なお、 これらの電子輸送層の材料を発光層の材料と混合して製膜すると 発光層兼電子輸送層を形成することができ、 更に正孔輸送層の材料も混合させて 製膜すると正孔輸送層兼発光層兼電子輸送層を形成することができる。 The material of the electron transport layer is not particularly limited, and may be appropriately selected according to the purpose. For example, as shown in Fig. 12, a hydroxyquinoline metal complex such as tris (8-quinolinolato) alminium (A1q), an anolemminium hydroxyquinoline-biphenylinoleoxy complex (BA 1q) and other hydroxyquinoline aryl / reoxy complexes, oxadiazole compounds, triazole compounds, phenanthone phosphorus compounds, perylene compounds, pyridine compounds, pyrimidine compounds, quinoxaline compounds, diphenylinolequinone compounds, di-substituted fluorene compounds, etc. Are mentioned. When the material for the electron transport layer is mixed with the material for the light emitting layer to form a film, a light emitting layer and an electron transport layer can be formed. When the material for the hole transport layer is also mixed to form a film, the hole is formed. A transport layer, a light emitting layer, and an electron transport layer can be formed.
電子輸送層の厚みとしては、 特に制限はなく、 目的に応じて適宜選択すること ができ、 たとえば、 通常 1〜 5 0 0 n m程度であり、 1 0〜 5 0 n mが好まし レ、。  The thickness of the electron transporting layer is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness is usually about 1 to 500 nm, and preferably 10 to 50 nm.
電子輸送層は 2層以上の構成でもよレ、。 この場合、 発光層に隣接する電子輸送 層材料としては、 本発明に係るリン光発光固体よりも光吸収端が短波長である材 料を用いると、 素子中の発光領域を発光層に限定でき、 電子輸送層からの余計な 発光を防げるため好ましい。  The electron transport layer may be composed of two or more layers. In this case, when a material having a shorter light absorption end than the phosphorescent solid according to the present invention is used as the electron transport layer material adjacent to the light emitting layer, the light emitting region in the device can be limited to the light emitting layer. It is preferable because unnecessary light emission from the electron transport layer can be prevented.
このような、 本発明に係るリン光発光固体よりも光吸収端が短波長である材料 として、 ヒドロキシキノリンーァリールォキシ錯体、 フエナントロリン化合物、 ォキサジァゾール化合物、 トリァゾール化合物、 8—キノリノールなしいその化 合物を配位子とする有機金属錯体などを挙げることができる。 特に B A 1 qおよ び図 1 3で表される化合物が好ましい。  Such a material having a light absorption edge having a shorter wavelength than the phosphorescent solid according to the present invention, such as a hydroxyquinoline-aryloxy complex, a phenanthroline compound, an oxadiazole compound, a triazole compound, and 8-quinolinol. An organometallic complex having the compound as a ligand can be given. Particularly, the compounds represented by B A1q and FIG. 13 are preferable.
なお、 図 1 3中、 先端に化学基の記載されていない 3本の枝分力れは、 t e r t一プチル基を意味する。  In addition, in FIG. 13, three branches having no chemical group at the tip means a t-tert-butyl group.
電子輸送層の形成には、 正孔注入層の場合と同様の方法を、 適宜、 原料や条件 を変更して利用することができる。  For forming the electron transporting layer, the same method as in the case of the hole injecting layer can be used by appropriately changing the raw materials and conditions.
.電子注入層  .Electron injection layer
電子注入層の材料としては、 特に制限はなく、 目的に応じて適宜選択すること ができ、 たとえば、 フッ化リチウムなどのアルカリ金属フッ化物、 フッ化スト口 ンチウムなどのアル力リ土類金属フッ化物等を好適に使用できる。 電子注入層の 厚みとしては、 特に制限はなく、 目的に応じて適宜選択することができ、 たとえ ば、 通常 0 . 1〜 1 0 n m程度であり、 0 . 5〜 2 11 mが好ましい。 The material for the electron injection layer is not particularly limited and can be appropriately selected depending on the intended purpose. Examples thereof include alkali metal fluorides such as lithium fluoride, and alkaline earth metal fluorides such as sodium fluoride fluoride. And the like can be suitably used. Electron injection layer The thickness is not particularly limited and can be appropriately selected depending on the purpose. For example, the thickness is usually about 0.1 to 10 nm, and preferably 0.5 to 211 m.
電子注入層は、 たとえば、 蒸着法、 電子ビーム法、 スパッタリング法などによ り好適に形成することができる。  The electron injection layer can be suitably formed by, for example, an evaporation method, an electron beam method, a sputtering method, or the like.
■負極  ■ Negative electrode
負極の材料としては、 特に制限はなく、 前記電子輸送層、 前記発光層などの負 極と隣接する層や分子との密着性、 イオン化ポテンシャル、 安定性等に応じて適 宜選択することができ、 たとえば、 金属、 合金、 金属酸化物、 電気伝導性化合物、 これらの混合物などが挙げられる。  The material of the negative electrode is not particularly limited, and can be appropriately selected according to the adhesion between the layer and molecules adjacent to the negative electrode such as the electron transport layer and the light emitting layer, ionization potential, stability, and the like. Examples thereof include metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof.
負極の材料の具体例としては、 アルカリ金属 (たとえば、 L i , N a , K, C sなど) 、 アルカリ土類金属 (たとえば M g , C aなど) 、 金、 銀、 鉛、 アルミ 二ゥム、 ナトリウム一カリウム合金またはそれらの混合金属、 リチウム一アルミ 二ゥム合金またはそれらの混合金属、 マグネシゥム一銀合金またはそれらの混合 金属、 インジウム、 イッテルビウム等の希土類金属、 これらの合金などが挙げら れる。 これらは単独で使用してもよいし、 2種以上を併用してもよい。 これらの 中でも、 仕事関数が 4 e V以下の材料が好ましく、 アルミニウム、 リチウム一ァ ノレミニゥム合金またはそれらの混合金属、 マグネシゥム一銀合金またはそれらの 混合金属などがより好ましレ、。  Specific examples of the negative electrode material include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, and aluminum. Sodium-potassium alloy or mixed metal thereof, lithium-aluminum alloy or mixed metal thereof, magnesium-silver alloy or mixed metal thereof, rare earth metal such as indium, ytterbium, and alloys thereof. It is. These may be used alone or in combination of two or more. Among these, a material having a work function of 4 eV or less is preferable, and aluminum, a lithium-aluminum alloy or a mixed metal thereof, a magnesium-silver alloy or a mixed metal thereof are more preferable.
負極の厚みとしては、 特に制限はなく、 負極の材料等に応じて適宜選択するこ とができるが、 1〜: L 0 0 0 0 n mが好ましく、 2 0〜 2 0 0 ii mがより好まし い。  The thickness of the negative electrode is not particularly limited and may be appropriately selected depending on the material of the negative electrode, but is preferably 1 to: L0000nm, more preferably 20 to 200im. Better.
負極は、 たとえば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパッタリング法、 反応性スパッタリング法、 MB E法、 クラスターイオンビーム法、 イオンプレー ティング法、 プラズマ重合法 (高周波励起イオンプレーティング法) 、 印刷法、 転写法などにより好適に形成することができる。  For the negative electrode, for example, evaporation method, wet film forming method, electron beam method, sputtering method, reactive sputtering method, MBE method, cluster ion beam method, ion plating method, plasma polymerization method (high frequency excitation ion plating method) It can be suitably formed by a printing method, a transfer method, or the like.
負極の材料として 2種以上を併用する場合には、 2種以上の材料を同時に蒸着 し、 合金電極等を形成してもよいし、 予め調製した合金を蒸着させて合金電極等 を形成してもよい。  When two or more materials are used in combination as a negative electrode material, two or more materials may be simultaneously evaporated to form an alloy electrode or the like, or an alloy electrode or the like may be formed by evaporating a previously prepared alloy. Is also good.
■その他の層 本発明の有機 E L素子は、 目的に応じて適宜選択したその他の層を有していて もよい。 その他の層としては、 たとえば、 正孔ブロッキング層や保護層などが好 適に挙げられる。 ■ Other layers The organic EL device of the present invention may have other layers appropriately selected according to the purpose. As the other layers, for example, a hole blocking layer and a protective layer are preferably exemplified.
正孔ブロッキング層は、 発光層と電子輸送層との間に配置される。 有機 EL素 子が正孔ブロッキング層を有していると、 正極側から輸送されてきた正孔が正孔 プロッキング層でブロックされ、 負極から輸送されてきた電子は正孔ブロッキン グ層を通過して発光層に到達することにより、 発光層で効率よく電子と正孔との 再結合が生じる。 このため、 発光層以外の有機薄膜層での正孔と電子との再結合 を防ぐことができ、 目的とする発光色素の発光が効率的に得られ、 色純度等の点 で有利である。 正孔ブロッキング層の材料としては、 特に制限はなく、 目的に応 じて、 電子輸送層の材料と同じ材料から適宜選択することができる。  The hole blocking layer is disposed between the light emitting layer and the electron transport layer. If the organic EL device has a hole blocking layer, holes transported from the positive electrode are blocked by the hole blocking layer, and electrons transported from the negative electrode pass through the hole blocking layer. As a result, the electrons and holes recombine efficiently in the light emitting layer. For this reason, recombination of holes and electrons in the organic thin film layer other than the light emitting layer can be prevented, and light emission of the target luminescent dye can be efficiently obtained, which is advantageous in terms of color purity and the like. The material of the hole blocking layer is not particularly limited, and can be appropriately selected from the same materials as those of the electron transporting layer according to the purpose.
正孔ブロッキング層の厚みとしては、 特に制限はなく、 目的に応じて適宜選択 することができ、 たとえば、 通常 1~50◦ nm程度であり、 5〜50nmが好 ましい。 前記正孔ブロッキング層は、 単層構造であってもよいし、 積層構造であ つてもよレヽ。  The thickness of the hole blocking layer is not particularly limited and may be appropriately selected depending on the purpose. For example, the thickness is usually about 1 to 50 nm, preferably 5 to 50 nm. The hole blocking layer may have a single-layer structure or a multilayer structure.
正孔ブロッキング層は、 たとえば、 蒸着法、 湿式製膜法、 電子ビーム法、 スパ ッタリング法、 反応 ¾Ξスパッタリング法、 ΜΒΕ法、 クラスターイオンビーム法、 イオンプレーティング法、 プラズマ重合法 (高周波励起イオンプレーティング法 ) 、 分子積層法、 LB法、 印刷法、 転写法などにより好適に形成することができ る。  The hole blocking layer is formed, for example, by a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, a ΜΒΕ method, a cluster ion beam method, an ion plating method, a plasma polymerization method (a high-frequency excitation ion plating method). Printing method), a molecular lamination method, an LB method, a printing method, a transfer method, and the like.
保護層は、 外界からの影響から有機 EL素子を保護する層であり、 上記の各層 力 らなる積層物を包み込むようにして形成される。 保護層の材料については、 特 に制限はなく、 目的に応じて適宜選択することができる力 たとえば、 水分や酸 素等の有機 E L素子の劣化を促進させる分子や物質が有機 E L素子内に侵入する ことを抑止可能であるものが好まし!/、。  The protective layer is a layer that protects the organic EL element from the influence of the outside world, and is formed so as to wrap around the above-described laminated structure. The material of the protective layer is not particularly limited, and can be appropriately selected according to the purpose.For example, molecules or substances such as moisture and oxygen that accelerate the deterioration of the organic EL element enter the organic EL element. Things that can be deterred are preferred! /.
保護層の材料としては、 たとえば、 I n, S n, Cu, A 1, T i , Ν i等の 金属、 Mg〇, S i〇, S i 02, A 1203, G e O, N i O, C a〇, B a O, Fe23, Y203, T i〇2等の金属酸化物、 S i N, S i NxOy等の窒化物、 Mg F2, L i F, A 1 F3, C a F 2等の金属フッ化物、 ポリエチレン、 ポリプ ロピレン、 ポリメチルメタクリレート、 ポリイミド、 ポリウレア、 ポリテトラフ ノレォロエチレン、 ポリクロロトリフノレオ口エチレン、 ボリジクロロジフゾレオロェ チレン、 クロ口トリフルォロエチレンとジクロロジフルォロェチレンとの共重合 体、 テトラフノレォロエチレンと少なくとも 1種のコモノマーとを含むモノマー混 合物を共重合させて得られる共重合体、 共重合主鎖に環状構造を有する合フッ素 共重合体、 吸水率 1重量%以上の吸水性物質、 吸水率 0 . 1重量%以下の防湿性 物質などが挙げられる。 Examples of the material of the protective layer, I n, S n, Cu , A 1, T i, such as New i metal, Mg_〇, S I_〇, S i 0 2, A 1 2 0 3, G e O , N i O, C A_〇, B a O, Fe 2 3, Y 2 0 3, T I_〇 metal oxides such as 2, S i N, nitrides such as S i N x O y, Mg F 2, L i F, a 1 F 3, C a F 2 metal fluorides such as, polyethylene, polyps Propylene, polymethyl methacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotriphenylene ethylene, polydichlorodifusololeethylene, copolymer of trifluoroethylene with dichlorodifluoroethylene, tetrachloroethylene Copolymer obtained by copolymerizing a monomer mixture containing ethylene and at least one comonomer; fluorinated copolymer having a cyclic structure in the copolymer main chain; water absorption of 1% by weight or more Substance, moisture-absorbing substance having a water absorption of 0.1% by weight or less.
保護層は、 たとえば、 蒸着法、 湿式製膜法、 スパッタリング法、 反応性スパッ タリング法、 MB E法、 クラスターイオンビーム法、 イオンプレーティング法、 プラズマ重合法 (高周波励起イオンプレーティング法) 、 印刷法、 転写法などに より好適に形成することができる。  The protective layer is formed, for example, by a vapor deposition method, a wet film forming method, a sputtering method, a reactive sputtering method, a MBE method, a cluster ion beam method, an ion plating method, a plasma polymerization method (high frequency excitation ion plating method), and printing. It can be more suitably formed by a method or a transfer method.
-色変換層  -Color conversion layer
本発明の有機 E L素子は、 目的に応じて適宜選択した色変換層を有していても よく、 該色変換層に本発明のリン光発光固体が含有されていても良い。 色変換層 は特開平第 3—1 5 2 8 9 7号公報に記載されるように、 有機 E L素子からの発 光を吸収して波長を変えて放出する層であり、 例えば青色単色の有機 E L素子の、 光取り出し側の基板と I T〇電極との間に作製され、 青色を緑色や赤色に変換し て放出し、 表示装置の多色化を可能とする。 色変換層は被変換光を十分に吸収し、 所望の波長に変換可能であればどのような厚さ、 材質、 製法であっても良いが、 典型的には 0 . 0 1 i ii!〜 1 0 0 ju m、 より好適には 1〜5 0 μ πιの厚さを持ち、 フォトリソグラフィ一等により作製されるのが好ましい。  The organic EL device of the present invention may have a color conversion layer appropriately selected according to the purpose, and the color conversion layer may contain the phosphorescent solid of the present invention. The color conversion layer is a layer that absorbs light emitted from an organic EL device and emits light by changing the wavelength, for example, as described in Japanese Patent Application Laid-Open No. 3-152927. It is produced between the substrate on the light extraction side of the EL element and the IT〇 electrode and converts blue into green or red and emits it, enabling multicolor display devices. The color conversion layer may be of any thickness, material, and manufacturing method as long as it can sufficiently absorb the light to be converted and can convert the light into a desired wavelength. It preferably has a thickness of 100 to 100 jum, more preferably 1 to 50 μπι, and is manufactured by photolithography or the like.
ここで、 発光層の作製方法について説明すると、 公知の方法に従って形成する ことができる力 たとえば、 真空蒸着等の蒸着法、 湿式製膜法、 MB E法、 クラ スターイオンビーム法、 分子積層法、 L B法、 印刷法、 転写法などにより好適に 形成することができる。 これらの中でも、 有機溶媒を用いず廃液処理の問題がな く、 低コストで簡便力つ効率的に製造することができる点で蒸着法が好ましいが、 発光層を単層構造に設計する場合、 たとえば発光層を正孔輸送層兼発光層兼電子 輸送層等として形成する場合には湿式製膜法も好ましい。  Here, a method for forming the light emitting layer will be described. A force that can be formed according to a known method, for example, a vapor deposition method such as vacuum deposition, a wet film forming method, an MBE method, a cluster ion beam method, a molecular lamination method, It can be suitably formed by an LB method, a printing method, a transfer method, or the like. Among them, the vapor deposition method is preferable because it can be easily and efficiently manufactured at low cost without the problem of waste liquid treatment without using an organic solvent.However, when the light emitting layer is designed to have a single layer structure, For example, when the light emitting layer is formed as a hole transporting layer, a light emitting layer and an electron transporting layer, a wet film forming method is also preferable.
蒸着法としては、 特に制限はなく、 目的に応じて公知のものの中から適宜選択 することができるが、 たとえば、 真空蒸着法、 抵抗加熱蒸着法、 化学蒸着法、 物 理蒸着法などが挙げられる。 化学蒸着法としては、 たとえば、 プラズマ CVD法、 レーザー CVD法、 熱 CVD法、 ガスソース CVD法などが挙げられる。 The vapor deposition method is not particularly limited and may be appropriately selected from known methods according to the purpose. Examples thereof include a vacuum deposition method, a resistance heating deposition method, a chemical vapor deposition method, and a physical vapor deposition method. Examples of the chemical vapor deposition method include a plasma CVD method, a laser CVD method, a thermal CVD method, and a gas source CVD method.
湿式製膜法としては、 溶媒中で、 ホストおよび/またはポリマー等よりなるバ インダ一と本発明に係るリン光発光固体とを混合して、 スピンコート法、 インク ジェット法、 ディップコート法、 ブレードコート法などの湿式製膜手法により塗 布することも可能である。 このとき、 発光層の電荷輸送性を高めるために、 正孔 輸送層材料および電子輸送層材料として挙げた上記材料を同時に溶液中に混合し て製膜すれば、 発光層に正孔輸送層や電子輸送層の機能を持たせ、 1層で正孔輸 送層兼発光層や発光層兼電子輸送層ゃ正孔輸送層兼発光層兼電子輸送層を構成す ることも可能である。  As a wet film forming method, a binder composed of a host and / or a polymer and a phosphorescent solid according to the present invention are mixed in a solvent, and then spin coating, ink jetting, dip coating, blade coating are performed. It is also possible to apply by a wet film forming method such as a coating method. At this time, in order to enhance the charge transporting property of the light emitting layer, if the above-mentioned materials mentioned as the hole transporting layer material and the electron transporting layer material are simultaneously mixed in a solution to form a film, the light emitting layer has By having the function of an electron transport layer, it is also possible to configure a single layer as a hole transport layer / light emitting layer or a light emitting layer / electron transport layer / a hole transport layer / light emitting layer / electron transport layer.
このとき、 使用可能なバインダーの例としては、 ポリビニルカルバゾーノレ、 ポ リカーボネート、 ポリ塩化ビュル、 ポリスチレン、 ポリメチルメタタリレート、 ポリエステル、 ポリスルホン、 ポリフエ二レンォキシド、 ポリブタジエン、 炭化 水素樹脂、 ケトン樹脂、 フエノキシ樹脂、 ポリアミド、 ェチルセルロース、 酢酸 ビニル、 AB S樹脂、 ポリウレタン、 メラミン樹脂、 不飽和ポリエステル樹脂、 アルキド樹脂、 エポキシ樹脂、 シリコーン樹脂などが挙げられる。  At this time, examples of binders that can be used include polyvinyl carbazolone, polycarbonate, polyvinyl chloride, polystyrene, polymethyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, and ketone resin. Examples include phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, and silicone resin.
3色発光法によるパネルには、 赤、 緑、 青の 3色をそれぞれ発光する有機 EL 素子部分が必要になるが、 その場合の各色発光素子部分としては次の糸且み合わせ を例示できる。  A panel using the three-color light-emitting method requires an organic EL element portion that emits three colors of red, green, and blue, respectively. In this case, the following light-emitting element portions can be exemplified as the respective color light-emitting element portions.
•緑色発光素子部分  • Green light emitting element
本発明に係るリン光楽光固体を、 虫にまたはゲストとして使用した構成 (実 施例 4参照) 。  A configuration using the phosphorescent light-emitting solid according to the present invention as an insect or as a guest (see Example 4).
•赤色発光素子部分  • Red light emitting element
I TO (正極) ZNPD (正孔輸送層) Z図 14に示される、 4一 d i c y a n o m e t h y 1 e n e— 6— c p— j u 1 o ι 1 ι d ι n o s t y r y 1— 2 - t e r t-b u t y l -4H-p y r a n (DC J TB) を 1重量0 /o含有する A 1 q (電子輸送層兼宪光層) ZA 1 qZA 1— L i (負極) I TO (Positive electrode) ZNPD (Hole transport layer) Z As shown in Fig. 14, 4 dicyanomethy 1 ene— 6— cp— ju 1 o ι 1 ι d ι no styry 1— 2-ter tb utyl -4H-pyran ( A 1 q (electron transport layer and optical layer) containing 1 weight / 0 / o of DC J TB) ZA 1 qZA 1—Li (negative electrode)
-青色発光素子部分 •青色発光素子 -Blue light emitting element • Blue light emitting element
I TO (正極) /NPD/A 1 -L i (負極)  I TO (Positive electrode) / NPD / A 1 -L i (Negative electrode)
本発明に係る有機 E L素子を用いた有機 E Lディスプレイは、 発光効率が高く、 駆動寿命が長く、 安定的に駆動できることが期待される。 この有機 EL素子は、 パッシブマトリクスパネノレまたはアクティブマトリタスパネルとして使用するこ とができる (たとえば、 日経エレク トロニクス, 2000年 3月 13日号, 第 7 65号, p. 55〜62) 。 本発明に係る有機 EL素子を、 ノヽ。ッシブマトリクス ディスプレイに使用した場合を図 23に示す。 図 23は、 正極/正孔輸送層/発 光層ノ電子輸送層 Z負極の構成例である。 図 23において、 有機 EL素子はガラ ス製の基板 1上に I T〇よりなる正極 2、 正孔輸送層 3、 発光層 4、 電子輸送層 5、 金属よりなる負極 6が積層されている。 I TOよりなる正極 2がロー電極、 金属よりなる負極 6がカラム電極である。 この図では、 発光層 4に使用する発光 層形成材料を変えることにより、 赤の発光 7、 緑の発光 8、 青の発光 9が実現さ れる。  The organic EL display using the organic EL element according to the present invention is expected to have high luminous efficiency, long drive life, and stable driving. This organic EL device can be used as a passive matrix panel or an active matrix panel (for example, Nikkei Electronics, March 13, 2000, No. 765, pp. 55-62). An organic EL device according to the present invention is described in US Pat. Fig. 23 shows the case when used for a passive matrix display. FIG. 23 shows a configuration example of the positive electrode / hole transport layer / light emitting layer / electron transport layer Z negative electrode. In FIG. 23, in the organic EL device, a positive electrode 2 made of IT, a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and a negative electrode 6 made of metal are laminated on a glass substrate 1. The positive electrode 2 made of ITO is the row electrode, and the negative electrode 6 made of metal is the column electrode. In this figure, red light emission 7, green light emission 8, and blue light emission 9 are realized by changing the light emitting layer forming material used for the light emitting layer 4.
本発明に係る有機 EL素子を、 アクティブマトリクスディスプレイに使用した 場合を図 24に示す。 図 24も、 正極 Z正孔輸送層 Z発光層/電子輸送層 Z負極 の構成例である。 図 24において、 有機 EL素子はガラス製の基板 1上に、 駆動 回路 21, TFT (Th i n F i lm Tr a n s i s t o r) 回路 22, I TOよりなる正極 2、 正孔輸送層 3、 発光層 4、 電子輸送層 5、 金属よりなる負 極 6が積層されている。 この図でも、 発光層 4に使用する発光層形成材料を変え ることにより、 赤の発光 7、 緑の発光 8、 青の発光 9が実現される。  FIG. 24 shows a case where the organic EL device according to the present invention is used for an active matrix display. FIG. 24 also shows a configuration example of the positive electrode Z, the hole transport layer Z, the light emitting layer / the electron transport layer Z, and the negative electrode. In FIG. 24, the organic EL element is composed of a driving circuit 21, a TFT (Thin Film Transistor) circuit 22, a positive electrode 2 composed of ITO, a hole transport layer 3, a light emitting layer 4, An electron transport layer 5 and a negative electrode 6 made of metal are laminated. Also in this figure, by changing the light emitting layer forming material used for the light emitting layer 4, red light emission 7, green light emission 8, and blue light emission 9 are realized.
以下に、 本発明の例について説明する。 本発明の実施例で用いられた三座配位 子は S t i 1 1 eカツプリング法により、 文献 O r g a n ome t a l l i c s (D. J . C a r d e n a sおよび A. M. E c h a v a r r e n, 第 18卷, p. 3337 (1999年) ) の方法に従って合成された。 これらの配位子は鈴 木力ップリング法 (参考文献: M. D. S i n dkh e dk a r, H. R. Mu 1 1 a, M. A. Wu r t hおよぴ A. C a mm e r s— Go o dw i n, T e 1 & 116 (1で 0 11, 第57卷, (2001年) ) によっても合成可能である。 また、 三座配位子を用いた金属錯体の合成は、 文献 Or g a n o m e t a 1 1 i c s (D. J . Ca r d e n a sおよび A. M. Ec h a v a r r e n, 18巻, p. 3337 (1999年) の方法に従って行われた。 Hereinafter, examples of the present invention will be described. The tridentate ligands used in the examples of the present invention were synthesized by the Sti 11 e coupling method in the literature Organome tallics (D. J. Cardenas and AM E chavarren, Vol. 18, p. 3337 (1999). Year)). These ligands are based on the Suzuki force pulling method (references: MD S in dkh e dk ar, HR Mu 11 a, MA Wurth and A. C ammers—Go dw in, T e 1 & 116 (011, Vol. 57, Vol. 57, (2001)) The synthesis of metal complexes using tridentate ligands is described in the literature Or ganometa 11 i. cs (D. J. Cardenas and AM Ec havarren, 18, p. 3337 (1999)).
[合成例 1] (P t (3, 5—ジ (2—ピリジル) トルエン) C I (P t ( 3, 5— d i (2— p y r i d y l) t o l u e n e) C l) 、 以後、 P t (d p t) C 1と略称する) の合成)  [Synthesis Example 1] (Pt (3,5-di (2-pyridyl) toluene) CI) (Pt (3,5-di (2-pyridyl) toluene) Cl), hereinafter Pt (dpt) C 1)
(1) 三座配位子 3, 5〜ジ (2—ピリジル) トルエン (3, 5— d i (2— y r i dy l) t o l u e n e, 以下、 d p tと略称する) の合成 (図 17参 BS)  (1) Synthesis of tridentate ligand 3,5-di (2-pyridyl) toluene (3,5-di (2-yridyl) toluene, hereinafter abbreviated as dpt) (See Fig. 17 BS)
3, 5—ジプロモトノレェン (6. 9 g, 2 Ommo L) と 2— トリー n—ブチ ノレスタニノレピリジン (26. 9 g, 73mmo L) とビス (トリフエニノレーホス フィン) パラジウムジクロリ ド (1. 55 g, 2. 2mmo L) と塩ィ匕リチウム (1 1. 7 g, 276mmo L) を 13 OmLのトルエンに入れて、 2日間還流 した。  3,5-dipromotonolenene (6.9 g, 2 Ommo L), 2-tree n-butynolestaninolepyridine (26.9 g, 73 mmo L) and bis (triphenylenolephosphine) palladium dik Chloride (1.55 g, 2.2 mmoL) and lithium salt (11.7 g, 276 mmoL) were placed in 13 OmL of toluene and refluxed for 2 days.
放冷後、 K Fの飽和水溶液 5 OmLを加え、 ろ過により析出した固体を取り出 し、 少量の冷却したトルエン (2 OmL X 3) で洗浄し、 真空乾燥した。 得られ た固体をジクロロメタンと NaHC〇3の混合溶液に入れてよく洗つた。 有機層 を分液し、 Mg S04粉末で乾燥させた後、 エバポレータで溶媒を蒸発除去した。 その後、 ジクロロメタンで再結晶して、 灰色固体の d p t 2. 2 gを得た。 収率 は 45%であった。 After cooling, 5 OmL of a saturated aqueous solution of KF was added, and the precipitated solid was collected by filtration, washed with a small amount of cooled toluene (2 OmL X 3), and dried in vacuo. The resulting solid may put in a mixed solution of dichloromethane NaHC_〇 3 AraiTsuta. The organic layer was separated, dried over Mg S0 4 powder, the solvent was evaporated off in an evaporator. Then, the residue was recrystallized from dichloromethane to obtain 2.2 g of dpt as a gray solid. The yield was 45%.
(2) P t (d p t) C 1の合成 (図 18参照)  (2) Synthesis of P t (d p t) C 1 (see Figure 18)
d ρ t (30 Omg, 1. 2mmo L) と K2 [P t C 1 ] 4 (55 Omg, 1. 3mmo L) とを脱気した酢酸 ( 30 mL) 中に入れ、 130°Cで 2日間還 ,流した。 放冷すると淡レ、黄色結晶が析出したので濾取した。 濾取した固体をメタ ノール、 水、 ジェチノレエーテルでよく洗浄し、 真空乾燥した。 得られた粗粉末を ジクロロメタンにより再結晶し、 黄色粉末の P t (d p t) C 1 , 436mgを 得た。 収率は 77 %であった。 Put d ρ t (30 Omg, 1.2 mmo L) and K 2 [P t C 1] 4 (55 Omg, 1.3 mmo L) in degassed acetic acid (30 mL) and store at 130 ° C. Returned for days, shed. The mixture was allowed to cool, and pale pale yellow crystals precipitated. The solid collected by filtration was thoroughly washed with methanol, water, and ethyl ether, and dried in vacuo. The obtained crude powder was recrystallized from dichloromethane to obtain 436 mg of Pt (dpt) C 1 as a yellow powder. The yield was 77%.
[合成例 2] (P t (3, 5—ジ (2—キノリル) トルエン) C I (P t ( 3, 5— d i (2-q u i n o l y l) t o l u e n e) C I (以下、 P t (d q t) C 1と略称する) の合成) 三座配位子 3, 5—ジ (2—キノリノレ) トルエン (3, 5-d i (2- q u i n o 1 y 1) t o l u e n e) (以下、 d q tと略称する) は、 2—トリー ιι一 ブチノレスタニノレビリジンを 2— トリ ー n—プチノレスタニノレキノリンに代えた以外 は合成例 1と同様にして合成した。 収率は 54%であった。 また、 P t (d q t ) C 1は、 配位子を d p tから d q tに代えた以外は合成例 1と同様にして合成 した。 収率は 42%であった。 [Synthesis Example 2] (Pt (3,5-di (2-quinolyl) toluene) CI) (Pt (3,5-di (2-quinolyl) toluene) CI (hereinafter referred to as Pt (dqt) C1) Abbreviated)) The tridentate ligand 3,5-di (2-quinolinole) toluene (3,5-di (2-quino 1 y 1) toluene) (hereinafter abbreviated as dqt) is 2-tree ιι-one butinoles The synthesis was carried out in the same manner as in Synthesis Example 1 except that taninoreviridine was changed to 2-tri-n-ptinorestaninolequinoline. The yield was 54%. Pt (dqt) C1 was synthesized in the same manner as in Synthesis Example 1 except that the ligand was changed from dpt to dqt. The yield was 42%.
[合成例 3] (P t (3, 5—ジ (2—ピリジル) ピリジン) C I (P t ( 3, 5— d i (2— p y r i d y l ) y r i d i n e) C l、 以下、 P t (d p p r) C Iと略称する) の合成)  [Synthesis Example 3] (Pt (3,5-di (2-pyridyl) pyridine)) CI (Pt (3,5-di (2-pyridyl) yridine) Cl, hereafter Pt (dppr) CI Abbreviated))
三座配位子 (3, 5—ジ (2—ピリジル) ピリジン (3, 5- d i (2-p y r i d y l) p y r i d i n、 以下、 d p p r略称する) は、 3, 5一ジブロモ トルエンを 3, 5—ジブロモピリジンに代えた以外は、 合成例 1と同様にして合 成した。 収率は 36%であった。 また、 配位子を d p tから d p p rに代えた以 外は、 合成例 1と同様にして、 有機金属錯体、 P t (d p p r) C Iの合成を行 つた。 収率は 14%であった。  The tridentate ligand (3,5-di (2-pyridyl) pyridine (3,5-di (2-pyridyl) pyridin, hereinafter abbreviated as dppr) is 3,5-dibromotoluene and 3,5-dibromotoluene. The synthesis was performed in the same manner as in Synthesis Example 1 except that pyridine was replaced with the same procedure as in Synthesis Example 1 except that the ligand was changed from dpt to dppr. An organic metal complex, Pt (dppr) CI, was synthesized, and the yield was 14%.
[実施例 1 ]  [Example 1]
石英ガラス基板上に合成例 1で合成した P t (d p t) 〇 1を〇8 ?に2重量 %ドープした薄膜を共蒸着により作製した。 厚さは 50 nmであった。 また、 蛍 光量子収率が既知の A 1 qの単独膜を蒸着により作製し、 リファレンスとして用 レヽた  On a quartz glass substrate, a thin film doped with 2% by weight of Pt (dpt) 〇1 synthesized in Synthesis Example 1 to 〇8? Was produced by co-evaporation. The thickness was 50 nm. In addition, a single film of A1q with a known fluorescence quantum yield was prepared by evaporation and used as a reference.
なお、 本発明のリン光発光固体 (薄膜) のリン光量子収率は、 リファレンスで ある A 1 q薄膜の蛍光量子収率を 22 %として求めた。 測定は以下のように行つ た。 すなわち、 図 1 9の装置において、 励起光として 365 nmの定常光 1 9 1 を用い、 ミラー 1 94, 1 95を介して、 サンプル 1 96における励起光の透過 量と反射量とをフォトダイオード 1 92 (浜松ホトニタス製一 p h o t o s e n s o r C271 9) でモニターしながら、 分光放射輝度計 1 9 3 (ミノルタ社 製 CS— 1 000) によりサンプル薄膜の発光スぺク トルを測定した。 励起光 の単位吸収量あたりの発光強度を既知化合物 (A l q) の薄膜の値と比較するこ とでリン光量子収率を算出した。 結果を表 1に示す。 [実施例 2] Note that the phosphorescence quantum yield of the phosphorescent solid (thin film) of the present invention was determined by setting the fluorescence quantum yield of the reference A1q thin film to 22%. The measurement was performed as follows. That is, in the apparatus shown in FIG. 19, a 365-nm steady light 1911 is used as the excitation light, and the amount of transmission and reflection of the excitation light in the sample 196 is determined by the photodiode 1 via the mirrors 194 and 195. The emission spectrum of the sample thin film was measured with a spectral radiance meter 1933 (CS-1000 manufactured by Minolta) while monitoring with 92 (a photosensor C2719 manufactured by Hamamatsu Photonitas). The phosphorescence quantum yield was calculated by comparing the emission intensity per unit absorption of the excitation light with the value of a thin film of a known compound (Alq). Table 1 shows the results. [Example 2]
発光材料を P t (d q t) C 1に代えた以外は、 全て実施例 1と同様の条件で リン光発光の量子収率を測定した。 結果を表 1に示す。  The phosphorescent quantum yield was measured under the same conditions as in Example 1 except that the light emitting material was changed to Pt (dqt) C1. The results are shown in Table 1.
[実施例 3 ]  [Example 3]
発光材料を P t (d p p r) C Iに代えた以外は、 全て実施例 1と同様の条件 でリン光発光の量子収率を測定した。 結果を表 1に示す。  The phosphorescence quantum yield was measured under the same conditions as in Example 1 except that the luminescent material was changed to Pt (dppr) CI. The results are shown in Table 1.
表 1 table 1
Figure imgf000025_0001
Figure imgf000025_0001
表 1から明らかなように、 本発明のリン光発光薄膜は非常に高いリン光発光の 量子収率を持つ。 J. A. G. Wi 1 1 i a m s等によって I ii o r g . Ch e m. (第 4 2巻, p. 86 0 9— 8 6 1 1, 200 3年) で報告されている P t (d p t) C 1錯体は、 溶液状態では 6 8%のリン光量子収率であるが、 意外に も、 固体状態とすることで、 リン光量子収率を 9 8 %に、 大幅に改善できること が判明した。  As is clear from Table 1, the phosphorescent thin film of the present invention has a very high phosphorescence quantum yield. The Pt (dpt) C 1 complex reported by JAG Wi 11 iams et al. In Iii org. Chem. (Vol. 42, p. 8609—8611, 2003) However, it was found that the phosphorescence quantum yield was 68% in the solution state, but surprisingly, the solid state could significantly improve the phosphorescence quantum yield to 98%.
表 1に示す比較例 1〜 3 (r e f . 1, r e f . 2, r e f . 3 ) は、 特開 2 00 2- 3 6 3 5 5 2号公報に記載された三つの N " N " C型配位子を持つ有機 金属錯体のジクロロメタン溶液状態でのリン光量子収率を示すものである。 これ ら三つの N― N " C型配位子を持つ有機金属錯体の分子構造を図 20に示す。 こ の比較からも、 本発明の N ― C " N型配位子を持つ有機金属錯体を用いたリン光 発光固体 (薄膜) が非常に高いリン光量子収率を示していることが理解される。  Comparative Examples 1 to 3 (ref. 1, ref. 2, ref. 3) shown in Table 1 are three N "N" C types described in Japanese Patent Application Laid-Open No. 2002-3653552. This figure shows the phosphorescence quantum yield of an organometallic complex having a ligand in a dichloromethane solution state. The molecular structure of the organometallic complex having these three N—N ″ C-type ligands is shown in FIG. 20. From this comparison, the organometallic complex having the N—C ″ N-type ligand of the present invention is also shown. It can be understood that the phosphorescent light-emitting solid (thin film) using GaN has a very high phosphorescence quantum yield.
[実施例 4]  [Example 4]
以下のように P t (d p t) C 1錯体を発光層に用いて積層型有機 EL素子を 作製した。 I TO電極付きガラス基板を水、 アセトン、 イソプロピルアルコール により洗浄し、 真空蒸着装置 (1 X 1 0— 4 P a) , 基板温度は室温) を用いて、 この I Τ〇電極付きガラス基板上に正孔注入層として 2— ΤΝΑΤΑ (4, 4' 4" ー ト リス ( 2 _ナフチノレフェニノレアミノ) トリフエニノレアミン) を 40nm、 正孔輸送層として a—NPDを 10 nm、 その上に発光層として P t (d p t) C 1を CBPに 2重量%ドープした層を 30 nm、 その上にホールブロッキング 層として BCPを 20 nm、 その上に電子輸送層として A 1 qを 20 nm、 さら にその上に電子注入層として L i Fを 0. 511 mの各層厚さで蒸着して、 最後に アルミニウムを 100 nm蒸着し、 窒素雰囲気化で封止した。 この素子に、 I T 〇を正極、 アルミ電極を負極として電圧を印加すると、 電圧 4 V以上で緑色発光 が観測された。 表 2に、 実施例 4〜 9および比較例における、 素子の 5 V印加時 の、 発光のピーク波長、 電流効率、 電力効率、 外部量子効率を示す。 なお、 外部 量子効率とは、 入力したエネルギーに対するリン光出力の比率を表す。 電流効率、 電力効率、 外部量子効率は、 入力電流が 0. ImAZcm2における値を示して いる。 A stacked organic EL device was manufactured using the Pt (dpt) C1 complex for the light emitting layer as follows. I TO electrode glass substrate with water, acetone, washed with isopropyl alcohol, a vacuum vapor deposition apparatus (1 X 1 0- 4 P a ), the substrate temperature using a room temperature), to the I Tau_〇 electrode-attached glass substrate 2— ΤΝΑΤΑ (4, 4 ' 4 "-tris (2-naphthinolepheninoleamino) triphenylenoleamine) at 40 nm, a-NPD as a hole transport layer at 10 nm, and Pt (dpt) C1 as a light-emitting layer on CBP The layer doped with 2% by weight is 30 nm, the BCP is 20 nm as the hole blocking layer, the A1q is 20 nm as the electron transport layer, and the LiF is 0 nm as the electron injection layer. Each layer was deposited to a thickness of 511 m, and aluminum was deposited to a thickness of 100 nm and sealed in a nitrogen atmosphere.When a voltage was applied to this device using IT〇 as the positive electrode and the aluminum electrode as the negative electrode, a voltage of 4 Green emission was observed above V. Table 2 shows the emission peak wavelength, current efficiency, power efficiency, and external quantum efficiency when applying 5 V to the devices in Examples 4 to 9 and Comparative Example. The external quantum efficiency is the ratio of the phosphorescent output to the input energy It represents the rate. Current efficiency, power efficiency, external quantum efficiency, the input current indicates a value of 0. ImAZcm 2.
[実施例 5]  [Example 5]
発光材料を P t (d q t) C Iに代えた以外は、 全て実施例 4と同様の条件で 有機 EL素子を作製した。 I TOを正極、 アルミ電極を負極として電圧を印加す ると、 電圧 4 V以上で橙色発光が観測された。  An organic EL device was manufactured under the same conditions as in Example 4 except that the light emitting material was changed to Pt (dqt) CI. When a voltage was applied with the ITO as the positive electrode and the aluminum electrode as the negative electrode, orange light emission was observed at a voltage of 4 V or more.
[実施例 6]  [Example 6]
発光材料を P t (d p p r) C Iに代えた以外は、 全て実施例 4と同様の条件 で有機 EL素子を作製した。 I TOを正極、 アルミ電極を負極として電圧を印加 すると、 電圧 4 V以上で青緑色発光が観測された。  An organic EL device was produced under the same conditions as in Example 4 except that the light emitting material was changed to Pt (dppr) CI. When a voltage was applied with the ITO as the positive electrode and the aluminum electrode as the negative electrode, blue-green light emission was observed at a voltage of 4 V or more.
[実施例 7]  [Example 7]
以下のように P t (d p t) C 1錯体を発光層に用いて高分子有機 EL素子を 作製した。 I TO電極付きガラス基板を水、 アセトン、 イソプロピルアルコール により洗浄した。 スピンコート法により、 正孔注入層として PEDOT: P S S (ポリ (エチレンジォキシチォフェン) : ポリ (スチレンスルフォネート) ) 薄膜 (50n m厚) を作製し、 200 °Cで 2時間加熱乾燥した。 この上に P V K A polymer organic EL device was manufactured using the Pt (dpt) C1 complex for the light emitting layer as follows. The glass substrate with the ITO electrode was washed with water, acetone, and isopropyl alcohol. PEDOT: PSS (poly (ethylenedioxythiophene): poly (styrenesulfonate)) thin film (50 nm thick) was prepared as a hole injection layer by spin coating, and was heated and dried at 200 ° C for 2 hours. did. P V K on this
(ポリ (9-ビニルカルバゾール) ) 中に 3重量。 /。の P t (d t) C I錯体を 分散した発光層 (35 n m厚) をスピンコートにより作製し、 120 °Cで 2時間 ベータした。 基板を真空蒸着装置 (l X 10_4P a) , 基板温度は室温) に移 し、 発光層の上にホールブロッキング層として B CPを 20 nm、 その上に電子 輸送層として A 1 qを 20 nm, さらにその上に電子注入層として L i Fを 0. 5 nm蒸着し、 最後にアルミニウムを 100 nm蒸着して、 窒素雰囲気化で封止 した。 この素子に、 I TOを正極、 アルミ電極を負極として電圧を印加すると、 電圧 4 V以上で緑色発光が観測された。 3 weight in (poly (9-vinylcarbazole)). /. The Pt (dt) CI complex was dispersed by spin coating to prepare a light-emitting layer (35 nm thick), which was then betad at 120 ° C for 2 hours. Transfer the substrate to a vacuum deposition system (l X 10_ 4 Pa), substrate temperature is room temperature. Then, 20 nm of BCP was formed as a hole blocking layer on the light emitting layer, 20 nm of A1q was formed thereon as an electron transport layer, and 0.5 nm of LiF was formed thereon as an electron injection layer. Finally, aluminum was evaporated to a thickness of 100 nm and sealed in a nitrogen atmosphere. When a voltage was applied to this device with the ITO as the positive electrode and the aluminum electrode as the negative electrode, green light emission was observed at a voltage of 4 V or more.
[実施例 8]  [Example 8]
発光材料を P t (d q t) C Iに代えた以外は、 全て実施例 7と同様の条件で 有機 EL素子を作製した。 I TOを正極、 アルミ電極を負極として電圧を印加す ると、 電圧 4 V以上で橙色発光が観測された。  An organic EL device was manufactured under the same conditions as in Example 7 except that the light emitting material was changed to Pt (dqt) CI. When a voltage was applied with the ITO as the positive electrode and the aluminum electrode as the negative electrode, orange light emission was observed at a voltage of 4 V or more.
[実施例 9]  [Example 9]
発光材料を P t (d p p r) C Iに代えた以外は、 全て実施例 7と同様の条件 で有機 EL素子を作製した。 I T〇を正極、 アルミ電極を負極として電圧を印加 すると、 電圧 4 V以上で青緑色発光が観測された。  An organic EL device was manufactured under the same conditions as in Example 7 except that the light emitting material was changed to Pt (dppr) CI. When a voltage was applied with IT〇 as the positive electrode and the aluminum electrode as the negative electrode, blue-green emission was observed at a voltage of 4 V or more.
表 2  Table 2
Figure imgf000027_0001
Figure imgf000027_0001
表 2から、 本発明の有機 EL素子 (実施例 4〜9) が全て非常に高い EL効率 を示していることが理解される。 特に、 実施例 4の P t (d p t) C Iを用いた 素子では外部量子効率が 13. 1% (最大値は、 5. 6Vで 13. 4%、 ) と非 常に高い。 表 2の比較例 4〜 6には、 表 1の場合と同じ特開 2002— 3635 52号公報に記載の有機 EL素子の電流効率を示してある。 ただし比較例の発光 波長はジクロロメタン溶液状態で測定された値、 電流効率は 25〜 30 m A/ c m2における効率を示している。 これらとの比較からも、 本発明に係るリン光発 光固体を用いた有機 E L素子が非常に高い発光効率を示すことが分かる。 最も発 光効率が高かった、 p t (dp t) C 1を用いた素子の ELスペクトルと、 電流 密度と外部量子効率の関係をプロットした結果を図 21, 22に示す。 産業上の利用可能性 From Table 2, it is understood that all of the organic EL devices of the present invention (Examples 4 to 9) exhibit extremely high EL efficiencies. In particular, the device using Pt (dpt) CI of Example 4 has an extremely high external quantum efficiency of 13.1% (the maximum value is 13.4% at 5.6V). Comparative Examples 4 to 6 in Table 2 show the same current efficiency of the organic EL device described in JP-A-2002-363552 as in Table 1. However, the emission wavelength of the comparative example is a value measured in a dichloromethane solution state, and the current efficiency indicates the efficiency at 25 to 30 mA / cm 2 . Comparison with these shows that the organic EL device using the phosphorescent solid according to the present invention exhibits extremely high luminous efficiency. Most departure Light efficiency was high, showing the EL spectrum of the device using a p t (dp t) C 1 , the results of plotting the relationship between the current density and the external quantum efficiency in FIG. 21, 22. Industrial applicability
本発明により、 発光効率が高い有機 E L素子や高性能の有機 E L装置を提供す ることができる。  According to the present invention, an organic EL device having high luminous efficiency and a high-performance organic EL device can be provided.

Claims

請求の範囲 The scope of the claims
1. 二個の窒素原子と、 当該二個の窒素原子の間にあり、 つ、 結合を介して 当該二個の窒素原子と結合する一個の炭素原子とで中心金属原子に配位結合する 三座配位子と、 1. a coordination bond to a central metal atom with two nitrogen atoms and one carbon atom between the two nitrogen atoms and bonded to the two nitrogen atoms through a bond A coordinating ligand,
ノ、ロゲン原子と  No, with a logen atom
をそれぞれ一以上配位してなる有機金属錯体を含有するリン光発光固体。 A phosphorescent light-emitting solid containing an organometallic complex formed by coordinating at least one of the above.
2. 下記式 (1) で表される構造を有する有機金属錯体を含有する、 請求の範 囲第 1項に記載のリン光発光固体。 2. The phosphorescent solid according to claim 1, comprising an organometallic complex having a structure represented by the following formula (1).
Figure imgf000029_0001
Figure imgf000029_0001
(式 (1) 中、 Mは金属原子を表し、 Xはハロゲン原子を表し、 Ar 1, Ar 2 Ar3は、 それぞれ独立に、 置換基を有していてもよい環状構造を表し、 Ar 1 — Ar 2および Ar 2_Ar 3の結合は、 単結合でも、 二重結合でもよい。 Mと A r 1およひ Mと Ar 3とは M— Nの配位結合を有し、 Mと A r 2とは M— Cの直接 結合を有する。 Ar 1, Ar 2, A r 3の置換基は、 それぞれ、 Ar 1, A r 2, A r 3上ならびに A r 1と A r 2の相互間および A r 2と A r 3の相互間で、 互いに結 合して環状構造をなしていてもよい。 )(In the formula (1), M represents a metal atom, X represents a halogen atom, Ar 1 and Ar 2 Ar 3 each independently represent a cyclic structure which may have a substituent, Ar 1 — The bond between Ar 2 and Ar 2 _Ar 3 may be a single bond or a double bond, M and Ar 1 and M and Ar 3 have a M—N coordinate bond, and M and A the r 2 with direct coupling of M- C. Ar 1, Ar 2 , substituents a r 3, respectively, mutual Ar 1, a r 2, a r 3 above and a r 1 and a r 2 And between Ar 2 and Ar 3 , they may be bonded to each other to form a cyclic structure.)
3. 二個の窒素原子と一個の炭素原子とで中心金属原子に配位結合する三座配 位子とハロゲン原子とをそれぞれ一以上配位してなり、 当該二個の窒素原子と一 個の炭素原子と中心金属原子とが、 当該炭素原子と中心金属原子との結合を共有 する二つの 5員環が縮合した形状の構造部分を有する有機金属錯体を含有する、 請求の範囲第 1項に記載のリン光発光固体。 3. Two or more nitrogen atoms and one carbon atom coordinate at least one of a tridentate ligand and a halogen atom that are coordinated to the central metal atom, and the two nitrogen atoms and one carbon atom 2. The method according to claim 1, wherein the carbon atom and the central metal atom include an organometallic complex having a structural portion in which two 5-membered rings that share the bond between the carbon atom and the central metal atom are fused. The phosphorescent solid described.
4. 前記有機金属錯体が、 下記式 (2) で表される構造部分を有する、 請求の 範囲第 1項に記載のリン光発光固体。 4. The phosphorescent solid according to claim 1, wherein the organometallic complex has a structural part represented by the following formula (2).
Figure imgf000030_0001
Figure imgf000030_0001
(式 (2) 中、 Mと Xは式 (1) と同様である。 Yは、 互いに独立に、 炭素原子 または窒素原子である。 N— Y結合部分は、 前記式 (1) 中の A r 1または A r 3の一部を構成し、 ベンゼン核は、 置換基を有していてもよい。 配位子と中心金 属原子との結合以外の結合は、 単結合でも、 二重結合でもよい。 ) (In the formula (2), M and X are the same as those in the formula (1). Y is each independently a carbon atom or a nitrogen atom. The N—Y bond part is A in the above formula (1). form part of r 1 or a r 3, the benzene nucleus may have a substituent. bond other than binding of the ligand and the central metals atoms may have a single bond, double bond May be.)
5. 前記有機金属錯体が、 下記式 (3) で表される構造部分を有する、 請求の 範囲第 1項に記載のリン光発光固体。 5. The phosphorescent solid according to claim 1, wherein the organometallic complex has a structural portion represented by the following formula (3).
Figure imgf000030_0002
Figure imgf000030_0002
(式 (3) 中、 Mと Xは式 (1) と同様である。 ベンゼン核は、 互いに独立に、 置換基を有していてもよく、 置換基同士が、 同一環上または隣接する環の間で、 互いに結合していてもよレ、。 )  (In the formula (3), M and X are the same as in the formula (1). The benzene nuclei may have a substituent independently of each other, and the substituents may be in the same or adjacent ring. Between, may be connected to each other.)
6. 前記有機金属錯体が、 下記式 (3) で表される構造部分を有する、 請求の 範囲第 2項に記載のリン光発光固体。 6. The phosphorescent solid according to claim 2, wherein the organometallic complex has a structural portion represented by the following formula (3).
Figure imgf000031_0001
Figure imgf000031_0001
(式 (3) 中、 Mと Xは式 (1) と同様である。 ベンゼン核は、 互いに独立に、 置換基を有していてもよく、 置換基同士が、 同一環上または隣接する環の間で、 互いに結合していてもよい。 )  (In the formula (3), M and X are the same as in the formula (1). The benzene nuclei may have a substituent independently of each other, and the substituents may be in the same or adjacent ring. May be bonded to each other.)
7. 前記 Ar 1と Ar 3とが、 互いに独立に、 単環または多環の芳香環を含む、 請求の範囲第 1項に記載のリン光発光固体。 7. The phosphorescent solid according to claim 1 , wherein Ar 1 and Ar 3 independently include a monocyclic or polycyclic aromatic ring.
8. 前記 Ar 1と Ar 3とが同一である、 請求の範囲第 1項に記載のリン光発 光固体。 8. The phosphorescent solid according to claim 1 , wherein Ar 1 and Ar 3 are the same.
9. 前記有機金属錯体が、 一つの三座配位子と、 一つのハロゲン原子と一つの 中心金属原子とよりなる、 請求の範囲第 1項に記載のリン光発光固体。 9. The phosphorescent solid according to claim 1, wherein the organometallic complex comprises one tridentate ligand, one halogen atom and one central metal atom.
10. 前記有機金属錯体が、 一つの三座配位子と、 一つのハロゲン原子と一つ の中心金属原子とよりなる、 請求の範囲第 2項に記載のリン光発光固体。 10. The phosphorescent solid according to claim 2, wherein the organometallic complex is composed of one tridentate ligand, one halogen atom and one central metal atom.
11. 前記有機金属錯体が、 一つの三座配位子と、 一つのハロゲン原子と一つ の中心金属原子とよりなる、 請求の範囲第 5項に記載のリン光発光固体。 11. The phosphorescent solid according to claim 5, wherein the organometallic complex is composed of one tridentate ligand, one halogen atom and one central metal atom.
12. 前記有機金属錯体が、 一つの三座配位子と、 一つのハロゲン原子と一つ の中心金属原子とよりなる、 請求の範囲第 6項に記載のリン光発光固体。 12. The phosphorescent solid according to claim 6, wherein the organometallic complex is composed of one tridentate ligand, one halogen atom and one central metal atom.
13. 前記有機金属錯体が、 固体状態で電気的に中性である、 請求の範囲第 1 項に記載のリン光発光固体, 13. The first aspect, wherein the organometallic complex is electrically neutral in a solid state. The phosphorescent luminescent solid according to the item,
14. 前記有機金属錯体が、 真空蒸着による膜形成が可能である、 請求の範囲 第 1項に記載のリン光発光固体。 14. The phosphorescent solid according to claim 1, wherein the organometallic complex is capable of forming a film by vacuum deposition.
15. 前記有機金属錯体が、 真空蒸着による膜形成が可能である、 請求の範囲 第 2項に記載のリン光発光固体。 15. The phosphorescent solid according to claim 2, wherein the organometallic complex is capable of forming a film by vacuum deposition.
16. 前記有機金属錯体が、 真空蒸着による膜形成が可能である、 請求の範囲 第 5項に記載のリン光発光固体。 16. The phosphorescent solid according to claim 5, wherein the organometallic complex can form a film by vacuum deposition.
17. 前記有機金属錯体が、 真空蒸着による膜形成が可能である、 請求の範囲 第 6項に記載のリン光発光固体。 17. The phosphorescent solid according to claim 6, wherein the organometallic complex can form a film by vacuum evaporation.
18. 前記有機金属錯体が、 真空蒸着による膜形成が可能である、 請求の範囲 第 9項に記載のリン光発光固体。 18. The phosphorescent solid according to claim 9, wherein the organometallic complex is capable of forming a film by vacuum deposition.
19. 前記有機金属錯体が、 真空蒸着による膜形成が可能である、 請求の範囲 第 10項に記載のリン光発光固体。 19. The phosphorescent solid according to claim 10, wherein the organometallic complex is capable of forming a film by vacuum deposition.
20. 前記有機金属錯体が、 真空蒸着による膜形成が可能である、 請求の範囲 第 1 1項に記載のリン光発光固体。 20. The phosphorescent solid according to claim 11, wherein the organometallic complex is capable of forming a film by vacuum evaporation.
21. 前記有機金属錯体が、 真空蒸着による膜形成が可能である、 請求の範囲 第 12項に記載のリン光発光固体。 21. The phosphorescent solid according to claim 12, wherein the organometallic complex can form a film by vacuum evaporation.
22. 99. 5重量%以上の純度の前記有機金属錯体を使用してなる、 請求の 範囲第 1項に記載のリン光発光固体。 22. The phosphorescent solid according to claim 1, wherein the organometallic complex has a purity of 59.5% by weight or more.
23. 前記中心金属原子が白金である、 請求の範囲第 1項に記載のリン光発光 固体。 23. The phosphorescent solid according to claim 1, wherein the central metal atom is platinum.
24. 前記中心金属原子が白金である、 請求の範囲第 2項に記載のリン光発光 固体。 24. The phosphorescent solid according to claim 2, wherein the central metal atom is platinum.
25. 前記中心金属原子が白金である、 請求の範囲第 5項に記載のリン光発光 固体。 25. The phosphorescent solid according to claim 5, wherein the central metal atom is platinum.
26. 前記中心金属原子が白金である、 請求の範囲第 6項に記載のリン光発光 固体。 26. The phosphorescent solid according to claim 6, wherein the central metal atom is platinum.
27. 前記中心金属原子が白金である、 請求の範囲第 9項に記載のリン光発光 固体。 27. The phosphorescent solid according to claim 9, wherein said central metal atom is platinum.
28. 前記中心金属原子が白金である、 請求の範囲第 10項に記載のリン光発 光固体。 28. The phosphorescent solid according to claim 10, wherein the central metal atom is platinum.
29. 前記中心金属原子が白金である、 請求の範囲第 11項に記載のリン光発 光固体。 29. The phosphorescent solid according to claim 11, wherein the central metal atom is platinum.
30. 前記中心金属原子が白金である、 請求の範囲第 12項に記載のリン光発 光固体。 30. The phosphorescent solid according to claim 12, wherein the central metal atom is platinum.
31. 前記中心金属原子が白金である、 請求の範囲第 15項に記載のリン光発 光固体。 31. The phosphorescent solid according to claim 15, wherein the central metal atom is platinum.
32. 前記有機金属錯体と、 前記有機金属錯体よりも高い第一励起三重項励起 エネルギーを有する有 料とを少なくとも一つづつ含む、 請求の範囲第 1項に 記載のリン光発光固体, 32. The method according to claim 1, wherein the organic metal complex includes at least one material having a first excited triplet excitation energy higher than that of the organic metal complex. Described phosphorescent solid,
3 3 . 前記有機材料が、 置換基を有していてもよいカノレバゾールまたはその誘 導体を含む、 請求の範囲第 1項に記載のリン光発光固体。 33. The phosphorescent solid according to claim 1, wherein the organic material contains canolebazole which may have a substituent or a derivative thereof.
3 4 . 前記有機材料が、 置換基を有していてもよいカノレバゾールまたはその誘 導体を含む、 請求の範囲第 2項に記載のリン光発光固体。 34. The phosphorescent solid according to claim 2, wherein the organic material includes canolebazole which may have a substituent or a derivative thereof.
3 5 . 前記有機材料力 置換基を有していてもよい力ルバゾールまたはその誘 導体を含む、 請求の範囲第 5項に記載のリン光発光固体。 35. The phosphorescent solid according to claim 5, comprising a rubazole or an derivative thereof which may have a substituent.
3 6 . 前記有機材料が、 置換基を有していてもよい力ルバゾールまたはその誘 導体を含む、 請求の範囲第 6項に記載のリン光発光固体。 36. The phosphorescent solid according to claim 6, wherein the organic material includes carbazole or an derivative thereof which may have a substituent.
3 7 . 前記有機材料が、 置換基を有していてもよい力ルバゾールまたはその誘 導体を含む、 請求の範囲第 9項に記載のリン光宪光固体。 37. The phosphorescent solid according to claim 9, wherein the organic material includes rubazole or an derivative thereof which may have a substituent.
3 8 . 前記有機材料が、 置換基を有していてもよいカノレバゾールまたはその誘 導体を含む、 請求の範囲第 1 5項に記載のリン光発光固体。 38. The phosphorescent solid according to claim 15, wherein the organic material includes canolebazole which may have a substituent or a derivative thereof.
3 9 . 請求の範囲第 1〜 3 8項のいずれかに記載のリン光発光固体を用いてな る有機エレクトロノレミネセンス素子。 39. An organic electroluminescence element using the phosphorescent solid according to any one of claims 1 to 38.
4 0 . 前記リン光発光固体を発光層内に含有する、 請求の範囲第 3 9項に記載 の有機エレクトロルミネセンス素子。 40. The organic electroluminescent device according to claim 39, wherein the phosphorescent solid is contained in a light emitting layer.
4 1 . 前記リン光発光固体がホストまたはゲストとして機能する、 請求の範囲 第 4 0項に記載の有機エレクトロルミネセンス素子。 41. The organic electroluminescent device according to claim 40, wherein the phosphorescent solid functions as a host or a guest.
4 2 . 発光層に、 前記リン光発光固体と低分子ホスト材料とを含有する、 請求 の範囲第 4 1項に記載の有機エレクトロルミネセンス素子。 42. The organic electroluminescent device according to claim 41, wherein the light-emitting layer contains the phosphorescent solid and a low-molecular host material.
4 3 . 発光層に、 前記リン光発光固体と高分子ホスト材料とを含有する、 請求 の範囲第 4 1項に記載の有機エレクトロルミネセンス素子。 43. The organic electroluminescence device according to claim 41, wherein the light-emitting layer contains the phosphorescent solid and a polymer host material.
4 4. 前記リン光発光固体を色変換層内に含有する、 請求の範囲第 3 9項に記 載の有機エレクトロルミネセンス素子。 44. The organic electroluminescent device according to claim 39, wherein the phosphorescent solid is contained in a color conversion layer.
4 5 . 請求の範囲第 4 0〜4 4項のいずれかに記載の有機エレクトロノレミネセ ンス素子を用いてなる有機エレクトロルミネセンス装置。 45. An organic electroluminescence device using the organic electroluminescence element according to any one of claims 40 to 44.
4 6 . 請求の範囲第 4 0〜4 4項のいずれかに記載の有機エレクトロノレミネセ ンス素子を用いてなる有機エレク トロルミネセンスディスプレイ。 46. An organic electroluminescent display using the organic electroluminescent element according to any one of claims 40 to 44.
4 7 . 請求の範囲第 4 0〜4 4項に記載の有機エレクトロルミネセンス素子を 用いてなる有機エレクトロルミネセンス照明装置。 47. An organic electroluminescent lighting device using the organic electroluminescent element according to any one of claims 40 to 44.
PCT/JP2004/004485 2004-03-30 2004-03-30 Phosphorescence emitting solid, organic electroluminescence element and organic electroluminescence device WO2005103195A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW093108735A TWI245586B (en) 2004-03-30 2004-03-30 Phosphorescent solid body, organic electroluminescent element, and organic electroluminescent device
PCT/JP2004/004485 WO2005103195A1 (en) 2004-03-30 2004-03-30 Phosphorescence emitting solid, organic electroluminescence element and organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/004485 WO2005103195A1 (en) 2004-03-30 2004-03-30 Phosphorescence emitting solid, organic electroluminescence element and organic electroluminescence device

Publications (1)

Publication Number Publication Date
WO2005103195A1 true WO2005103195A1 (en) 2005-11-03

Family

ID=35196959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004485 WO2005103195A1 (en) 2004-03-30 2004-03-30 Phosphorescence emitting solid, organic electroluminescence element and organic electroluminescence device

Country Status (2)

Country Link
TW (1) TWI245586B (en)
WO (1) WO2005103195A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106199B2 (en) 2007-02-13 2012-01-31 Arizona Board Of Regents For And On Behalf Of Arizona State University Organometallic materials for optical emission, optical absorption, and devices including organometallic materials
US8389725B2 (en) 2008-02-29 2013-03-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Tridentate platinum (II) complexes
US8846940B2 (en) 2007-12-21 2014-09-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Platinum (II) di (2-pyrazolyl) benzene chloride analogs and uses
US9502671B2 (en) 2014-07-28 2016-11-22 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US9865825B2 (en) 2014-11-10 2018-01-09 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
US10790457B2 (en) 2014-07-29 2020-09-29 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363552A (en) * 2001-03-08 2002-12-18 Univ Of Hong Kong Organometallic light-emitting material
JP2003073355A (en) * 2001-09-04 2003-03-12 Toyota Central Res & Dev Lab Inc Metal complex compound and organic electroluminescent device using the same
JP2003077673A (en) * 2001-06-19 2003-03-14 Honda Motor Co Ltd Organic electroluminescent element
JP2003526876A (en) * 1999-05-13 2003-09-09 ザ、トラスティーズ オブ プリンストン ユニバーシティ High efficiency organic light emitting device based on electrophosphorescence
JP2004006287A (en) * 2002-04-12 2004-01-08 Konica Minolta Holdings Inc Organic electroluminescent device
WO2004039781A1 (en) * 2002-11-01 2004-05-13 Takasago International Corporation Platinum complexes
WO2004039914A1 (en) * 2002-11-01 2004-05-13 Takasago International Corporation Luminescents

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526876A (en) * 1999-05-13 2003-09-09 ザ、トラスティーズ オブ プリンストン ユニバーシティ High efficiency organic light emitting device based on electrophosphorescence
JP2002363552A (en) * 2001-03-08 2002-12-18 Univ Of Hong Kong Organometallic light-emitting material
JP2003077673A (en) * 2001-06-19 2003-03-14 Honda Motor Co Ltd Organic electroluminescent element
JP2003073355A (en) * 2001-09-04 2003-03-12 Toyota Central Res & Dev Lab Inc Metal complex compound and organic electroluminescent device using the same
JP2004006287A (en) * 2002-04-12 2004-01-08 Konica Minolta Holdings Inc Organic electroluminescent device
WO2004039781A1 (en) * 2002-11-01 2004-05-13 Takasago International Corporation Platinum complexes
WO2004039914A1 (en) * 2002-11-01 2004-05-13 Takasago International Corporation Luminescents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WILLIAMS J.A.G. ET AL: "An Alternative Route to Highly Luminescent Platinum(II) Complexes: Cyclometalation with N^C^N-Coordinating Dipyridylbenzene Ligands", INORGANIC CHEMISTRY, vol. 42, no. 26, 2003, pages 8609 - 8611, XP002980828 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106199B2 (en) 2007-02-13 2012-01-31 Arizona Board Of Regents For And On Behalf Of Arizona State University Organometallic materials for optical emission, optical absorption, and devices including organometallic materials
US8846940B2 (en) 2007-12-21 2014-09-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Platinum (II) di (2-pyrazolyl) benzene chloride analogs and uses
US9082989B2 (en) 2007-12-21 2015-07-14 Arizona Board of Regents for and on behalf of Arizona State Univesity Platinum (II) di (2-pyrazolyl) benzene chloride analogs and uses
US8389725B2 (en) 2008-02-29 2013-03-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Tridentate platinum (II) complexes
US8669364B2 (en) 2008-02-29 2014-03-11 Arizona Board Of Regents For And On Behalf Of Arizona State University Tridentate platinum (II) complexes
US9076974B2 (en) 2008-02-29 2015-07-07 Arizona Board Of Regents For And On Behalf Of Arizona State University Tridentate platinum (II) complexes
US9203039B2 (en) 2008-02-29 2015-12-01 Arizona Board Of Regents For And On Behalf Of Arizona State University Tridentate platinum (II) complexes
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
US9502671B2 (en) 2014-07-28 2016-11-22 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US10964897B2 (en) 2014-07-28 2021-03-30 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US9985224B2 (en) 2014-07-28 2018-05-29 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US10411202B2 (en) 2014-07-28 2019-09-10 Arizon Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US10790457B2 (en) 2014-07-29 2020-09-29 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US11145830B2 (en) 2014-07-29 2021-10-12 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US9865825B2 (en) 2014-11-10 2018-01-09 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10991897B2 (en) 2014-11-10 2021-04-27 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US11856840B2 (en) 2014-11-10 2023-12-26 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes

Also Published As

Publication number Publication date
TWI245586B (en) 2005-12-11
TW200533238A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
JP6077579B2 (en) Triphenylene host in phosphorescent light-emitting diodes
JP5211411B2 (en) Organic electroluminescence device
TWI429650B (en) Organic electroluminescent elements
KR100701143B1 (en) Organic Electroluminescence Element
EP2365735B1 (en) Luminescent element material and luminescent element comprising the same
US7989090B2 (en) Near infrared emitting organic compounds and organic devices using the same
TWI482837B (en) Complexes with tridentate ligands
JP5293875B2 (en) Organic electroluminescence element, display device and lighting device
US20060088728A1 (en) Arylcarbazoles as hosts in PHOLEDs
JP4786917B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
JP5255296B2 (en) Materials and compounds for organic electroluminescence devices
JP5243684B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
TWI586664B (en) Material for organic electroluminescent element and organic electroluminescent element using the same
WO2004020549A1 (en) Organometallic complexes, organic el devices, and organic el displays
JP2009194042A (en) Charge transporting material for use of organic electroluminescence element containing carbazolyl group and its use
KR20090007325A (en) Organic electronic devices using phthalimide compounds
JP4880450B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
JP2003026616A (en) Compound for organic el(electroluminescent) device and organic el device using it
US8941099B2 (en) Organic light emitting device and materials for use in same
WO2005103195A1 (en) Phosphorescence emitting solid, organic electroluminescence element and organic electroluminescence device
JP4192152B2 (en) Organic electroluminescence device
KR20070045361A (en) Metal complex, luminescent solid, organic el element, and organic el display
WO2004043901A1 (en) Peropyrene compound, organic el element, and organic el display
US8524381B2 (en) Organometallic complex for organic light-emitting layer and organic light-emitting diode using the same
JP4050939B2 (en) Organic electroluminescence device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase