TW200533238A - Phosphorescent solid body, organic electroluminescent element, and organic electroluminescent device - Google Patents

Phosphorescent solid body, organic electroluminescent element, and organic electroluminescent device Download PDF

Info

Publication number
TW200533238A
TW200533238A TW093108735A TW93108735A TW200533238A TW 200533238 A TW200533238 A TW 200533238A TW 093108735 A TW093108735 A TW 093108735A TW 93108735 A TW93108735 A TW 93108735A TW 200533238 A TW200533238 A TW 200533238A
Authority
TW
Taiwan
Prior art keywords
item
aforementioned
phosphorescent light
light
solid according
Prior art date
Application number
TW093108735A
Other languages
Chinese (zh)
Other versions
TWI245586B (en
Inventor
Tasuku Satoh
Wataru Sotoyama
Norio Sawatari
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of TW200533238A publication Critical patent/TW200533238A/en
Application granted granted Critical
Publication of TWI245586B publication Critical patent/TWI245586B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/74Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing arsenic, antimony or bismuth
    • C09K11/7492Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/89Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing mercury
    • C09K11/892Chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a phosphorescence emitting solid comprising an organometallic complex which has a tridentate ligand coordinating to a central metal through two nitrogen atoms and one carbon atom positioning between said two nitrogen atoms and binding with said two nitrogen atoms via bonds and has a halogen atom as a ligand. The present invention also provides a luminescent element using the solid and an organic EL device using the element. The phosphorescence emitting solid can emit a phosphorescence having very high intensity in a solid state, and thus, the use of the solid in an organic EL element allows the significant improvement of the luminous efficiency, which results in the reduction of electric power consumption in an organic EL device.

Description

200533238 玖、發明說明: L 明所屬技領威3 本發明是有關於含有具特定配位子之磷光發光性有機金 屬錯合物之磷光發光固體;使用該磷光發光固體之發光元件, 5 特別是有機電致發光元件(以下將「電致發光」略稱為EL); 及使用該有機EL元件之有機EL顯示器、有機EL照明裝置等 有機EL裝置。 C 角if 自從積層正電洞輸送性與電子輸送性之各個有機薄膜之 10 積層型元件之報告(例如 C.W.Tang and S.A.Vanslyke,Applied200533238 发明 Description of the invention: L Ming belongs to the technical leadership 3 The present invention relates to a phosphorescent light-emitting solid containing a phosphorescent light-emitting organometallic complex with a specific ligand; a light-emitting element using the phosphorescent light-emitting solid, 5 in particular Organic electroluminescence elements (hereinafter, "electroluminescence" is abbreviated as EL); and organic EL devices such as organic EL displays and organic EL lighting devices using the organic EL elements. C-angle if report of 10 multi-layer elements from each organic thin film with positive hole transport and electron transport (eg. C.W.Tang and S.A. Vanslyke, Applied

Physics Letters,第 51 卷,p.913,1987 年)以來,有機 EL 元件即 以具有自發光、高速回應等特徵之顯示元件而期待其可適用於 平板顯示器,特別受到注目的是作為以10V以下之低電壓發光 之大面積發光元件。 15 積層型有機EL元件基本上具有正極/正電洞輸送層/發光 層/電子輸送層/負極之構成。其中,發光層可如上述之Tang and Vanslyke之2層型元件之情況,構成為使正電洞輸送層或電子 輸送層兼具其機能。 為了得到高發光效率之有機EL元件,發光層必須具有高 20 發光效率。發光層之構造可為以1種材料形成單獨膜,再加上 於主成分之主體材料中摻雜少量作為客體之螢光發光性高之 色素分子之色素塗料膜者(例如C.W.Tang,S.A.Vanslyke,and C.H.Chen,Journal of Applied Physics,第 65 卷,ρ·3610,1989 年)。 又’近年來’已有利用來自分子之激光三重態之發光之石粦 200533238 來取代上述螢光材料, 而叉到注目(M.A.Baldo M.A.Baldo 等,Applied 光材料作為有機EL元件之發光材料, 藉此可提高有機EL元件之發光效率, 等,Nature,第 395 卷,ρ·151,1998 年; Physics Letters,第 75 卷,ρ·4,1999 年)。 利用在室溫下發出填光之有機金屬錯合物之有機虹元件 之習知例子可舉特開纖·363552號公報切記叙具有三座 配位子之金屬錯合物為其一例。該習知彳 J甲,揭示了以具有三 座配位子(NIC)之有機金屬錯合物作為有機扯元件之發 光材料來使用之技術,該三座配位子乃e茲 疋稭以鉑與氮形成的兩 10 個配位鍵及鉑與碳之間之一個配位鍵所形 心成,且該兩個氮與碳 以N,N,C之順序鍵、结Wc)。然而,該錯合物之碟光發光 在室温下並不充足,因此,前述習知例之古她 心百機E]L元件發光效 率低。 另-方面,關於在室溫下發出碟光之有機金屬錯合物之一 15般研究,J.A.G.Williams等報告中指出,1右 百N C N型三座配 位子構造之有機金屬錯合物,在溶液中可發出比N、N'c型更 強的磷光(Inorg.Chem·,第 42 卷,p.8609_86ll,2〇〇3 年)〇 來自有機物之發光依據引起發光之激光狀態之性質而可 分為螢光和填光兩大類。目前為止,由於_般的有機物不” 20 磷光,故有機EL元件中皆利用螢光發光。但是,從el 赞光機 構可預測磷光發光狀態係以螢光發光狀態的4倍之機率生成 故近年來,在室溫下引起磷光發光之重金屬錯合物適用於發光 材料,就成為EL元件之南效率化裂置而受到注目。然而在 室溫下發出強烈磷光之材料非常少,材料之選擇範圍狹窄是目 200533238 前最大的問題點。 L發明内容3 本發明檢討適用於有機EL元件之磷光發光材料,而目的 在於提供發光效率高之磷光發光固體、利用該磷光發光固體之 有機EL元件及有機EL裝置。本發明之其他目的及優點可從以 下說明而清楚明瞭。 10 15 為了解決課題而做各種檢討,結果發現,具有特定之三座 配位子與||素原子作為配位子之金屬錯合物,在固體狀態下尤 其可發出強烈磷光,而將之作為發光材料使用之有機EL元件 可高效率發光。 藉本發明之一態樣,可提供一種磷光發光固體,該磷光發 光固體含有分別配位一個以上之三座配位子與鹵素原子而形 成之有機金屬錯合物,且該三座配位子係以兩個氮原子、與位 於該兩個氮原子間且透過鍵與該兩個氮原子鍵結之一個碳原 子來配位鍵結於中心金屬原子。 本發明之磷光發光固體宜具有下述特徵,即: 磷光發光固體含有具有以下式(1)表示之構造之有機金屬錯 合物:Physics Letters, Vol. 51, p.913, 1987), organic EL elements are expected to be applicable to flat panel displays with display elements with self-luminous, high-speed response and other characteristics, and they have attracted particular attention as being below 10V. Low-voltage light-emitting large-area light-emitting element. 15 A multilayer organic EL element basically has a configuration of a positive electrode / positive hole transporting layer / light emitting layer / electron transporting layer / negative electrode. Among them, the light-emitting layer may be configured such that the positive hole transporting layer or the electron transporting layer has its function as in the case of the two-layer element of Tang and Vanslyke described above. In order to obtain an organic EL element with high light emitting efficiency, the light emitting layer must have high light emitting efficiency. The structure of the light-emitting layer can be a pigment coating film (such as CWTang, SAVanslyke) in which a single film is formed of one material, and a small amount of pigment molecules with high fluorescent luminosity are doped in the host material of the main component. , And CHChen, Journal of Applied Physics, Volume 65, ρ3610, 1989). In 'recent years', the light-emitting stone gangue 200533238 from the laser triplet of the molecule has been used to replace the above-mentioned fluorescent materials, and it has attracted attention (MABaldo MABaldo et al., Applied light materials have been used as light-emitting materials for organic EL elements. This can improve the luminous efficiency of organic EL elements, etc., Nature, Vol. 395, ρ · 151, 1998; Physics Letters, Vol. 75, ρ · 4, 1999). A conventional example of an organic rainbow device using an organometallic complex that emits light at room temperature is exemplified by JP-A-363552, which describes a metal complex having three ligands. The conventional method, JJ, discloses a technique using an organometallic complex with three ligands (NIC) as a light-emitting material for an organic pulling element. The three ligands are made of platinum. The two 10 coordination bonds formed with nitrogen and one coordination bond between platinum and carbon are formed at the center, and the two nitrogen and carbon are bonded in the order of N, N, C, and the junction Wc). However, the optical disc luminescence of this complex is not sufficient at room temperature, and therefore, the light emitting efficiency of the above-mentioned conventional example E] L element is low. On the other hand, regarding the general study of one of the organometallic complexes that emits light at room temperature, JAGWilliams et al. Report pointed out that the organometallic complexes with 1-three NCN type three-ligand structures are in Stronger phosphorescence than N, N'c type in solution (Inorg. Chem., Vol. 42, p. 8609_86ll, 2003). Luminescence from organic matter can be based on the nature of the laser state that causes luminescence. Divided into two categories of fluorescent and filling. So far, since organic materials do not have "20 phosphorescence", all organic EL elements use fluorescent light. However, it can be predicted from the EL light emitting mechanism that the phosphorescent light emitting state is generated with a 4 times the probability of fluorescent light emitting state in recent years. In the past, heavy metal complexes that cause phosphorescent emission at room temperature are suitable for light-emitting materials, and have attracted attention as the south-efficiency cracking of EL elements. However, there are very few materials that emit strong phosphorescence at room temperature, and the choice of materials Narrowness is the biggest problem before 200533238. L SUMMARY OF THE INVENTION The present invention reviews phosphorescent materials suitable for organic EL elements, and aims to provide phosphorescent solids with high luminous efficiency, organic EL elements using the phosphorescent solids, and organics. EL device. Other objects and advantages of the present invention can be clearly understood from the following description. 10 15 Various investigations have been made in order to solve the problem. As a result, it has been found that the metal has three specific ligands and || The complex compound can emit strong phosphorescence especially in the solid state, and the organic EL element using it as a light emitting material can be highly efficient According to one aspect of the present invention, a phosphorescent light-emitting solid can be provided. The phosphorescent light-emitting solid contains an organometallic complex formed by coordinating one or more three ligands and a halogen atom. The ligand is coordinated to the central metal atom by two nitrogen atoms and one carbon atom located between the two nitrogen atoms and bonded to the two nitrogen atoms through a bond. The phosphorescent light-emitting solid of the present invention is preferably It has the following characteristics: The phosphorescent light-emitting solid contains an organometallic complex having a structure represented by the following formula (1):

Μ——X (式(1 )中,Μ表示金屬原子,X表示鹵素原子,Ar1,Ar2, Ar3各自獨立地表示可具有取代基之環狀構造,Ar1 —Ar2及Ar2 200533238M—X (In the formula (1), M represents a metal atom, X represents a halogen atom, Ar1, Ar2, and Ar3 each independently represent a cyclic structure which may have a substituent, Ar1—Ar2 and Ar2 200533238

別在Ar1 , Ar2 , Ar3上互相鍵結形成環狀構造,以及分別在Arl 與Ar相互間、及Ar與Ar相互間互相鍵結形成環狀構造)。 5又,該磷光發光固體含有有機金屬錯合物,該有機金屬錯合物 係为別配位一個以上之二座配位子與鹵素原子而形成者,且該 三座配位子係以兩個氮原子與一個碳原子配位鍵結於中心金 屬原子,又,該兩個氮原子、一個碳原子及中心金屬原子具有 兩個5員環縮合之形狀之構造部分,且該兩個5員環共用該碳原 10子與中心金屬原子之鍵。又,前述有機金屬錯合物具有以下式Don't bond Ar1, Ar2, Ar3 to each other to form a ring structure, and respectively link Arl and Ar to each other, and Ar and Ar to each other to form a ring structure). 5 Also, the phosphorescent solid contains an organometallic complex, the organometallic complex is formed by two or more coordinated ligands and a halogen atom, and the three coordinated ligands are formed by two A nitrogen atom and a carbon atom are coordinated and bonded to the central metal atom, and the two nitrogen atom, one carbon atom and the central metal atom have two 5-membered ring-condensed structural parts, and the two 5-membered The ring shares the bond between the carbon 10 and the central metal atom. The organometallic complex has the following formula:

(式(2)中,Μ與X同式(^,γ為相互獨立地表示碳原子或 氮原子’ Ν—Υ鍵結部分構成前述式(1)中之Ari或Ar3之一部 15份,苯核可具有取代基,且配位子與中心金屬原子之鍵以外之 鍵可為單鍵亦可為雙鍵。) 又’則述有機金屬錯合物具有以下式(3)表示之構造部分:(In the formula (2), M and X are the same formula (^, γ represents a carbon atom or a nitrogen atom independently, and the N—Υ bonding portion constitutes 15 parts of Ari or Ar3 in the foregoing formula (1), The benzene nucleus may have a substituent, and the bond other than the bond between the ligand and the central metal atom may be a single bond or a double bond.) Also, the organometallic complex has a structural portion represented by the following formula (3) :

(式(3)中,M與X同式(1),苯核玎相互獨立地具有取代基, 200533238 取代基可在同一環上或鄰接之環之間相互鍵結。) 又,前述Ar1與Ar3相互獨立地含有單環或多環之芳香環。又, 前述Ar1與Ar3相同。又,前述有機金屬錯合物係由一個三座配 位子、一個齒素原子與一個中心金屬原子形成。又,前述有機 5金屬錯合物在固體狀態下為電中性,前述有機金屬錯合物 可藉真空蒸艘形成膜。又,月ij述碟光發光固體係使用純度99·5 重量%以上之前述有機金屬錯合物而形成者。又,前述中心金 屬原子為鉑。又,前述磷光發光固體至少含有各一個之前述有 機金屬錯合物、與具有高於前述有機金屬錯合物之第一激光三 10重態激光能量之有機材料。又,前述有機材料含有可具有取代 基之啼σ坐或其衍生物。 藉本發明之填光發光固體,可實現在固體狀態下非常強烈 之磷光。 藉有關本發明之其他態樣,可提供利用上述碟光發光固體 15 所形成之有機電致發光元件。 本發明之有機電致發光元件宜具有下述特徵,即:有機電 致發光元件係在發光層内含有前述鱗光發光固體。χ,前_ 光發光固體係作為主體或客體產生機能。又,前述發光層中含 有前述填光發光固體與低分子主體材料。又,前述發光層中含 20有前述填光發光固體與高分子主體材料。又,有機電致發光元 件係在色變換層内含有前述碟光發光固體。 藉本發明,可實現發光效率獲得大幅改善之有機EL元件。 藉有關本發明之另一態樣,可提供利用上述有機電致發光 元件而形成之有機電致發光裝置,更具體來說,可提供有機電 200533238 致發光顯示器或有機電致發光照明裝置。 藉本發明,可實現在固體狀態下非常強之磷光,將之使用 在有機EL元件,可大幅改善發光效率,使用該有機EL元件之 有機EL裝置可省電。 5 圖式簡單說明 第1圖是例示以式(4)表示之構造部分之圖。 第2圖是顯示Ar1及Ar3之例之圖。 第3圖是顯示Ar*2之例之圖。 第4圖是例示低分子系主體材料之圖。 10 第5圖是例示味唾化合物之圖。 第6圖是例示第5圖中之Ar之圖。 第7圖是例示第6圖中之連結基R。 第8圖是顯示CBP之構造之圖。 第9圖是例示高分子系主體材料之圖。 15 第10圖是顯示星狀放射胺(starburstamine)之構造之圖。 第11圖是顯示TPD之構造之圖。 第12圖是顯示Alq之構造之圖。 第13圖是例示光吸收端較有關本發明之磷光發光固體更 為短波長之材料之圖。 20 第14圖是顯示DCJTB之構造之圖。 第15圖是有機EL元件之模式側截面圖。 第16圖是有機EL元件之其他模式側截面圖。 第17圖是顯示dpt之合成路徑之圖。 第18圖是顯示Pt (dpt) C1之合成路徑之圖。 10 200533238 第19圖是顯示磷光量子獲率之測定法之圖。 第20圖是顯示比較例中所使用之有機金屬錯合物之分子 構造之圖。 第21圖是表示有機EL元件之EL光譜之圖。 5 第22圖是標示有機EL元件之電流密度與外部量子效率之 關係之圖表。 第23圖是顯示將關於本發明之有機EL元件使用於被動矩 陣顯示器時之模式立體圖。 第24圖是顯示將關於本發明之有機EL元件使用於動態矩 10 陣顯示器時之模式立體圖。 I:實施方式3 以下,利用圖、表、式、實施例等來說明本發明之實施型 態。又,這些圖、表、式、實施例等及說明乃是例示本發明者, 並不會限制本發明之範圍。只要與本發明之主旨一致,其他實 15 施型態也屬於本發明之範疇。又,圖中,就相同元件賦予同一 符號。 合成以鉑系有機金屬錯合物為首之多種類有機金屬錯合 物,進行其物性之評價,結果發現,具有N'CTN型三座配位 子之有機金屬錯合物若以磷光發光固體使用而不是溶液,則可 20 發出非常強烈的磷光,該磷光發光固體顯示出良好的真空蒸鍍 性,且藉真空蒸鍍可製作僅由具有N~(TN型三座配位子之有 機金屬錯合物形成之平滑膜、或含有具有N'CTN型三座配位 子之有機金屬錯合物之塗料膜,所製作之膜同樣顯示出平坦且 良好之發光特性,從而想出本發明。 200533238 有關本發明之嶙光發細體,含有分別配位—個以上之三 座配位子與齒素原子而形成之有機金屬錯合物,且該三座配位 和系以兩錢原子、與位於該兩個氮原子間且透過鍵與該兩個 氮原子鍵結之-個碳原子來配位鍵結於中心金屬原子。該有機 5 &屬錯〇物中’與金屬配位鍵結之上述兩個碳原子與石炭原子係 以N,C,N之順序結合”亦即,該有機金屬錯體具有型 三座配位子。、是表示N與c或c與N之間存在有鍵之符 號。有關本發明之三座配位子多為與中心金屬M 一起在實質上(In formula (3), M and X are the same as in formula (1), and the benzene nucleus has a substituent independently of each other. 200533238 substituents may be bonded to each other on the same ring or adjacent rings.) Further, the aforementioned Ar1 and Ar3 independently contains a monocyclic or polycyclic aromatic ring. The Ar1 and Ar3 are the same. The organometallic complex is formed of a three-segment ligand, a halogen atom, and a central metal atom. The organic 5-metal complex is electrically neutral in a solid state, and the organic-metal complex can be formed into a film by vacuum steaming. In addition, the moonlight disc solid-state light-emitting solid is formed by using the aforementioned organometallic complex with a purity of 99.5% by weight or more. The central metal atom is platinum. The phosphorescent solid includes at least one of the organic metal complex and an organic material having a first laser triplet 10 laser energy higher than that of the organic metal complex. The organic material may contain a substituent or a derivative thereof. With the light-filled luminescent solid of the present invention, very strong phosphorescence can be achieved in a solid state. According to other aspects of the present invention, an organic electroluminescence element formed by using the above-mentioned disc-light-emitting solid 15 can be provided. The organic electroluminescence element of the present invention preferably has a feature that the organic electroluminescence element contains the aforementioned scale light-emitting solid in a light-emitting layer. χ, anterior_ light-emitting solids function as a subject or object. The light-emitting layer contains the light-filled light-emitting solid and a low-molecular host material. The light-emitting layer contains 20 light-filled light-emitting solids and a polymer host material. The organic electroluminescence element contains the aforementioned disc-emitting light-emitting solid in a color conversion layer. According to the present invention, an organic EL device having a greatly improved luminous efficiency can be realized. According to another aspect of the present invention, an organic electroluminescence device formed by using the above-mentioned organic electroluminescence element can be provided. More specifically, an organic electroluminescence display device or an organic electroluminescence device can be provided. According to the present invention, very strong phosphorescence in a solid state can be realized. When it is used in an organic EL element, the luminous efficiency can be greatly improved, and an organic EL device using the organic EL element can save power. 5 Brief Description of Drawings Figure 1 is a diagram illustrating the structural part represented by the formula (4). Fig. 2 is a diagram showing examples of Ar1 and Ar3. Fig. 3 is a diagram showing an example of Ar * 2. FIG. 4 is a diagram illustrating a low-molecular-based host material. 10 Figure 5 is a diagram illustrating a taste salivary compound. FIG. 6 is a diagram illustrating Ar in FIG. 5. FIG. 7 illustrates the linking group R in FIG. 6. Fig. 8 is a diagram showing the structure of CBP. Fig. 9 is a view illustrating a polymer-based host material. 15 Figure 10 is a diagram showing the structure of starburstamine. Fig. 11 is a diagram showing the structure of the TPD. Fig. 12 is a diagram showing the structure of Alq. Fig. 13 is a diagram illustrating a material having a light absorption end having a shorter wavelength than the phosphorescent light-emitting solid of the present invention. 20 Figure 14 is a diagram showing the structure of DCJTB. Fig. 15 is a schematic side sectional view of an organic EL element. Fig. 16 is a sectional side view of another mode of the organic EL element. Fig. 17 is a diagram showing a synthetic path of dpt. Fig. 18 is a diagram showing a synthetic path of Pt (dpt) C1. 10 200533238 Figure 19 is a graph showing a method for measuring the quantum yield of phosphorescence. Fig. 20 is a diagram showing a molecular structure of an organometallic complex used in a comparative example. Fig. 21 is a diagram showing an EL spectrum of an organic EL element. 5 Figure 22 is a graph showing the relationship between the current density of an organic EL element and the external quantum efficiency. Fig. 23 is a perspective view showing a mode when the organic EL element of the present invention is used in a passive matrix display. Fig. 24 is a perspective view showing a mode when the organic EL element of the present invention is used in a dynamic momentary 10-array display. I: Embodiment 3 Hereinafter, embodiments of the present invention will be described using drawings, tables, formulas, examples, and the like. In addition, these figures, tables, formulas, examples, etc. and descriptions are illustrative of the present inventors, and do not limit the scope of the present invention. As long as it is consistent with the gist of the present invention, other implementation forms also belong to the scope of the present invention. In the drawings, the same elements are assigned the same symbols. A variety of organometallic complexes including platinum-based organometallic complexes were synthesized and evaluated for their physical properties. As a result, it was found that if an organometallic complex having a N'CTN type three-block ligand is used as a phosphorescent solid Instead of a solution, 20 can emit very strong phosphorescence. The phosphorescent solid shows good vacuum evaporation, and by vacuum evaporation can be made only by organometallic faults with N ~ (TN type three ligands) A smooth film formed by the composite, or a coating film containing an organometallic complex with an N'CTN-type three-segment ligand, the produced film also shows flat and good light-emitting characteristics, so the present invention was conceived. 200533238 The phosphorescent hair body of the present invention contains an organometallic complex formed by coordination of three or more ligands and a halogen atom, and the three complexes are coordinated by two atoms, and It is located between the two nitrogen atoms and is coordinated to the central metal atom through a carbon atom which is bonded to the two nitrogen atoms. The organic 5 & Of the above two carbon atoms and charcoal The sub-systems are combined in the order of N, C, and N. That is, the organometallic complex has a three-type ligand. It is a symbol indicating that there is a bond between N and c or c and N. Related to the present invention Most of the three ligands are together with the central metal M.

形成同一平面者,當然除此之外之空間配置者也屬於本發明之 10 範疇。 有關本發明之磷光發光固體可以僅由該有機金屬錯合物 形成,亦可含有其他成分,也包含以整體固體狀態者、與如有 機EL元件之發光層般呈膜狀者。如有機EL元件之發光層般為 膜狀時’包含了平滑膜之狀況、以及以有機金屬錯合物作為主 15 體或客體含於發光層中之情況之膜。Those who form the same plane, of course, those who arrange other spaces also belong to the scope of the present invention. The phosphorescent light-emitting solid according to the present invention may be formed only from the organometallic complex, may contain other components, and may also include those in a solid state as a whole and those having a film-like shape as a light-emitting layer of an organic EL element. When the film is like a light emitting layer of an organic EL element, the film includes a smooth film and a film containing an organometallic complex as a host or a guest in the light emitting layer.

有關本發明之填光發光固體,更具體來說,以含有具有以 下式(1)表示之構造之有機金屬錯合物為佳。Regarding the light-filled luminescent solid of the present invention, it is more preferable that it contains an organometallic complex having a structure represented by the following formula (1).

式(1)中,Μ表示金屬原子,X表示鹵素原子,Ari, 20 Ar3各自獨立地表示可具有取代基之環狀構造,Ar1 — Ar2乃 ^ Ar2 — Ar3之鍵可為單鍵或雙鍵。雙鍵亦可與其他雙鍵共軛。μ 與 12 200533238In the formula (1), M represents a metal atom, X represents a halogen atom, Ari, 20 Ar3 each independently represents a cyclic structure which may have a substituent, and the bond of Ar1 — Ar2 to ^ Ar2 — Ar3 may be a single bond or a double bond. . Double bonds can also be conjugated with other double bonds. μ and 12 200533238

Ar1及Μ與Ar3具有Μ — N之配位鍵,Μ與Ar2具有M—C之 直接鍵,Ar1,Ar2,Ar3之取代基可分別在Ar1,Ar2,Ar3上互 相鍵結形成環狀構造,以及分別在Ar1與Ar2相互間、及Ar2 與Ar3相互間互相鍵結形成環狀構造。 5 Μ是有關本發明之有機金屬錯合物之中心金屬原子,可使 用之金屬並無特別限制,可舉Fe,Co,Ni,Ru,Rh,Pd,Os, Ir,Pt等。其中又以Pt尤佳。 X表示鹵素原子,可舉F,Cl,Br*,I等。選擇時宜以三座 配位子與X來滿足中心金屬原子之安定配位數,並使錯合物全 10 體呈電中性。 上述環狀構造以含有芳香環為佳。亦可含有縮合環或雜 環。以Ar1,Ar2,Ar3皆含有芳香環為佳。 關於上述N'CTN鍵結,N與C或C與N之間之鍵結,通 常也包含有其他原子介於其間之情況。上述式(1)中之Ar1 — 15 Ar2及Ar*2 —Ar3之鍵結即相當於有其他原子介於其間之情況。 只要不違反本發明之主旨,可使用任何原子來作為其他原子, 不過以碳原子為佳。I^TCTN之鍵結中,N與C及/或C與N之 間之鍵結,宜為介在有兩個碳原子之鍵。 N~CTN之鍵結中,N與C及C與N之間之鍵結是有兩個 20 原子介於其間之鍵結時,係如式(4)所例示,有關本發明之 磷光發光固體包含有有機金屬錯合物,其中該有機金屬錯合物 係分別配位一個以上之三座配位子與函素原子而形成者,且該 三座配位子係以兩個氮原子與一個碳原子配位鍵結於中心金 屬原子,又,該兩個氮原子、一個碳原子及中心金屬原子具有 13 200533238 兩個5員環縮合之形狀之構造部分,且該兩個5員環共用該碳 原子與中心金屬原子之鍵。藉該構造部分,可輕易得到非常強 烈的磷光。又,式(4 )中,配位子與中心金屬原子之鍵以外 之鍵,可為單鍵或雙鍵。雙鍵亦可與其他雙鍵共軛。配位子與 5 中心金屬原子之鍵以外之鍵中,當然也包含式(4)中所省略 之鍵結部分。具體來說,可例示第1圖之構造部分。Ar1 and M and Ar3 have M—N coordination bonds, M and Ar2 have M—C direct bonds. The substituents of Ar1, Ar2, and Ar3 can be bonded to each other on Ar1, Ar2, and Ar3 to form a ring structure. And, Ar1 and Ar2 are bonded to each other, and Ar2 and Ar3 are bonded to each other to form a ring structure. 5M is the central metal atom of the organometallic complex of the present invention, and the metal to be used is not particularly limited, and examples thereof include Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, and Pt. Among them, Pt is particularly preferred. X represents a halogen atom, and examples thereof include F, Cl, Br *, I and the like. In the selection, three ligands and X should be used to satisfy the stable coordination number of the central metal atom and make the complex of all 10 bodies electrically neutral. The cyclic structure preferably contains an aromatic ring. It may contain a condensed ring or a hetero ring. It is preferred that Ar1, Ar2, and Ar3 all contain aromatic rings. Regarding the above-mentioned N'CTN bonding, the bonding between N and C or between C and N also generally includes the case where other atoms are interposed. The bonding of Ar1-15 Ar2 and Ar * 2-Ar3 in the above formula (1) is equivalent to the case where other atoms are interposed. As long as it does not violate the gist of the present invention, any atom may be used as the other atom, but a carbon atom is preferred. In the bond of I ^ TCTN, the bond between N and C and / or C and N is preferably a bond having two carbon atoms. In the bond of N ~ CTN, when the bond between N and C and between C and N has two 20 atoms in between, it is as exemplified by formula (4), and the phosphorescent light-emitting solid of the present invention is related Contains an organometallic complex, wherein the organometallic complex is formed by coordination of one or more three-segment ligands and halogen atoms, and the three-segment ligands are formed by two nitrogen atoms and one The carbon atom is coordinated and bonded to the central metal atom, and the two nitrogen atoms, one carbon atom, and the central metal atom have a structural part in the shape of a condensed two 5-membered ring of 13 200533238, and the two 5-membered rings share the same A bond between a carbon atom and a central metal atom. With this structural part, very strong phosphorescence can be easily obtained. In formula (4), the bond other than the bond between the ligand and the central metal atom may be a single bond or a double bond. Double bonds can also be conjugated with other double bonds. Of course, the bond other than the bond between the ligand and the 5 center metal atom also includes the bonding portion omitted in formula (4). Specifically, the structural part of FIG. 1 can be illustrated.

•·*(4) 、、C,丨• · * (4) 、、 C , 丨

Ar1〜Ar3以後述之組合尤佳,而配位子之分子構造之對稱性 很大則更佳。又,本發明中,配位子之分子構造對稱性很大係 10 指:Ar2除去或包含其取代基而就Μ — C之鍵結輛線具有對稱 構造之情況,或Ar1與Ar3之關係除去或包含其取代基而就Μ —C之鍵結軸線對稱之情況,或同時滿足上述兩者之情況。上 述分子構造之對稱性大,則錯合物之磷光發光強度變強。 依據這個觀點,上述兩個5員環縮合之形狀之構造部分若 15 為以下式(2)表示之構造部分,則分子構造之對稱性變大, 更為適宜。Ar1 to Ar3 are particularly preferred, and the molecular structure of the ligand is more symmetrical. In addition, in the present invention, the molecular structure of the ligand is highly symmetrical. 10 refers to the case where Ar2 is removed or contains its substituents, and the line with the M—C bond has a symmetrical structure, or the relationship between Ar1 and Ar3 is removed. Either the case of including the substituents and the symmetry of the bonding axis of M-C, or the case of satisfying both of the above. The greater the symmetry of the molecular structure, the stronger the phosphorescence intensity of the complex. According to this view, if the structural part of the shape of the two 5-membered rings condensed above is a structural part represented by the following formula (2), the symmetry of the molecular structure becomes larger, which is more suitable.

式(2)中,Μ與X同式(1),Υ為相互獨立地表示碳原 子或氮原子,Ν—Υ鍵結部分構成前述式(1)中之Ar1或Ar3 14 200533238 之一部份,構成Ar2之一部份之苯核可具有取代基。配位子與 中心金屬原子之鍵以外之鍵可為單鍵亦可為雙鍵。雙鍵可與其 他雙鍵共軛。配位子與中心金屬原子之鍵以外之鍵也包含式 (2)中省略之鍵結部分。 5 關於Ar1與Ar3以相互獨立地含有單環或多環之芳香環為 佳。又,Ar1與Ar3以相同為佳。這時,上述兩個5員環縮合之 形狀之構造部分若為以下式(3)表示之構造部分,則分子構 造之對稱性變得更大,更為適宜。In formula (2), M and X are the same as in formula (1), Υ represents a carbon atom or a nitrogen atom independently of each other, and the N-Υ bonding portion constitutes a part of Ar1 or Ar3 14 200533238 in the aforementioned formula (1). The benzene nucleus forming part of Ar2 may have a substituent. The bond other than the bond between the ligand and the central metal atom may be a single bond or a double bond. Double bonds can be conjugated with other double bonds. The bond other than the bond between the ligand and the central metal atom also includes a bond portion omitted in the formula (2). 5 It is preferable that Ar1 and Ar3 contain a monocyclic or polycyclic aromatic ring independently of each other. Ar1 and Ar3 are preferably the same. At this time, if the structural part of the shape in which the two 5-membered rings are condensed is a structural part represented by the following formula (3), the symmetry of the molecular structure becomes larger and more suitable.

10 (式(3)中,Μ與X同式(1),苯核可相互獨立地具有 取代基,且取代基可在同一環上或鄰接之環之間相互鍵結。) 關於上述Ar1,Ar2及Ar3,其環狀構造之任意位置可被取 代。關於Ar1與Ar3可舉第2圖之構造或其鏡像構造,關於Ar2 可舉第3圖之構造。各記號與式(1)之記號具有相同意義。 15 又,Ar1,Ar2,Ar3之構造係第2、3圖中以〇框住之部分。 第2、3圖中,環之氫可為取代基所取代。取代基可舉例 如鹵素原子、氰基、烷氧基、胺基、烷基、烷基乙酸酯基、環 烷基、芳基、芳氧基等,而該等可更被取代。更,Ar1,Ar2, Ar3之取代基可分別在Ar1,Ar2,Ar3上互相鍵結形成環狀構造, 20 以及分別在Ar1與Ar2相互間、及Ar2與Ar3相互間互相鍵結形 成〗哀狀構造。 15 200533238 有關本發明之有機金屬錯合物,係如二聚物等所例示的, 亦可含有多數個三座配位子、中心金屬Μ或鹵素原子X,不過 以由一個三座配位子、一個鹵素原子及一個中心金屬原子所形 成者為佳。具有容易製造蒸鍍膜等優點。 5 關於容易製造蒸鍍膜這一點,有機金屬錯合物以在固體狀 態下呈電中性或接近電中性為佳。而以中性較佳。該中性可由 有機金屬錯合物實質上不帶離子性、不具極化性或帶極小之極 化性來判斷。 有關本發明之磷光發光固體以使用純度99.5重量%以上之 10 有機金屬錯合物而形成者為佳,如此可容易得到發出強烈磷光 之磷光發光固體。而使用純度99.8重量%以上之有機金屬錯合 物形成則更佳。又,這裡所謂有機金屬錯合物之純度,在有關 本發明之磷光發光固體是由多數成分形成之情況時,並非指磷 光發光固體中之有機金屬錯合物之濃度,而是指為了構成磷光 15 發光固體所使用之有機金屬錯合物之純度。 有機EL元件用於全彩顯示器之方法之一是準備紅、綠、 藍各色之有機EL元件,將這三個的組合作為1個畫素使用, 這種方法廣為實行。有關本發明之磷光發光固體,可藉由使所 含之有機金屬錯合物之三座配位子之分子構造變化,來調節發 20 光色,故可將這種多數發光色作為發光材料等來適當使用於必 要之用途。特別是可適用於有機EL元件。 又,以下只要未特別強調,有關本發明之磷光發光固體即 為有關本發明之有機金屬錯合物之固體,主要是針對形成膜等 前之大塊狀態,不過如上所述的,有關本發明之磷光發光固 16 200533238 體,以大塊狀態含有本發明之有機金屬錯合物以外成分之情 況、在形成為膜等後之狀態下由有關本發明之有機金屬錯合物 之固體形成之情況、在形成為膜等後之狀態下含有有關本發明 之有機金屬錯合物以外成分之情況,皆屬於本發明之範疇。 5 有關本發明之磷光發光固體宜含在有機EL元件中作為發 光材料,亦可含於發光層,亦可含於發光層兼電子輸送層、發 光層兼電洞輸送層等。填光發光固體含於發光層時,發光層可 以磷光發光固體單獨成膜來形成,或亦可含有其他材料來形 成。又,由於本發明之有機EL元件中所使用之磷光發光固體 10 在室溫下可發出強烈磷光,故若為色變換方式之有機EL元件, 可作為含於色變換層之發光材料來使用。 有關本發明之磷光發光固體可作為客體或主體來產生機 能。又,亦可與其他主體材料或客體材料共存。共存之其他主 體材料為低分子者或高分子者。低分子者宜為數平均分子量在 15 1,000以下者,高分子者宜為數平均分子量20,000以上者。使 其為主體材料之第一激光三重態激光能量高於所含之有機金 屬錯合物之第一激光三重態激光能量之材料更佳。 低分子系主材料係如第4圖所示,可舉4,4’-雙(2,2’_二苯 乙烯基)-1,1’-聯苯(DPVBi)、p-六苯基(p-SP)、1,3,6,8-四苯 20 基 ( tppy ) ( l,3,6,8-tetraphenylpyrene )、N,N’-二萘基-N,N’-二苯基-[1,1’_聯苯]-4,4’-二胺(NPD)、可具有取代基之咔唑基 或其衍生物或該等之混合物等。 可具有取代基之咔唾基或其衍生物,亦即咔嗤化合物,可 舉第5圖所示之化合物。第5圖中,R1,R2表示可賦予在環狀 17 200533238 構之任思位置之取代基,可各自獨立地表示氣原子、_素原 子、烧氣基、胺基、炫基、環烧基、可含有氮原子或硫原子之 芳基、芳氧基,該等更可被取代。又,R1,R2可相互結合、形 成可含有氮原子、硫原子、氧原子之芳香環,該等可更被取代。 5 R,R就各個環狀構造存在1〜3個。第5圖中,Ar表示2,3價 之芳香族基或雜環式芳香族基。可舉第6圖所示之基為例。環 構造中之氫原子可被取代。又,這當中可舉第7圖之例來作為 連結基R。 上述咔唑化合物與本發明之有機金屬錯合物混合時,由於 10與錯合物之相互作用很小,故對錯合物本來之發光特性影響很 乍為主體材料特別有效。以該式表示之味唾化合物之一例 可舉第8圖所示之4,4,_雙(9_味唑基)_聯苯(CBp)。 又,向分子系主材料以第9圖所示之聚對亞苯基亞乙烯 ()σ塞吩(PAT )、聚對亞笨(PPP )、聚乙歸味嗤(p vc )、 >芴(PF)、聚乙炔(pA)衍生物適合。環構造中之氫原子可 被取代。 20 — 機疋件具有在正極與負極之間夾著電洞注入層、電 洞=¾層、發光層、電子輸送層、電子注人層等之構成。這些 層當中,有時電洞注人層、電洞輪送層、電子輸送層、電子注 ^層=存在。亦可包含其他層。亦可使-層具有多數機能。通 疋在由玻璃等形成之透明基板上構成上述積層體。有關本 夕有機EL疋件亦可包含該透明基板。採用色變換層時, 夕在負極上(基板之相反側)設置色變換層。第HI圖是 ’、有機EL TL件之構成之模式職面m頂是不具色變 18 200533238 換層之情況,第16圖是具有色變換層之情況。第15圖中顯示 了基板1,正極2,電洞輸送層3,發光層4,電子輸送層5,負極6, 而第16圖顯示除上述之外再加上色變換層161。 顯示層之構成例,則可舉如下所述者。 5 •正極/電洞注入層/電洞輸送層/發光層/電子輸送層/電子 注入層/負極 •正極/電洞注入層/電洞輸送層/發光層/電子輸送層/負極 •正極/電洞輸送層/發光層/電子輸送層/電子注入層/負極 •正極/電洞輸送層/發光層/電子輸送層/負極 10 •正極/電洞注入層/電洞輸送層/發光層兼電子輸送層/電 子注入層/負極 •正極/電洞注入層/電洞輸送層/發光層兼電子輸送層/負 極 •正極/電洞輸送層/發光層兼電子輸送層/電子注入層/負 15 極 •正極/電洞輸送層/發光層兼電子輸送層/負極 •正極/電洞注入層/電洞輸送層兼發光層/電子輸送層/電 子注入層/負極 •正極/電洞注入層/電洞輸送層兼發光層/電子輸送層/負 20 極 •正極/電洞輸送層兼發光層/電子輸送層/電子注入層/負 極 •正極/電洞輸送層兼發光層/電子輸送層/負極 •正極/電洞輸送層兼電子輸送層兼發光層/負極 19 200533238 又各層所使用之材料、各層之膜厚及製造方法例示如下。 •正極 正極之材料並無特別限制,可因應目的適當選擇,可舉例 如至屬、合金、金屬氧化物、電傳導性化合物、該等之混合物 5等,這當中又以工作係數_以上之材料為佳。 正極之材料之具體例可舉:氧化錫、氧化辞、氧化鋼、姻 錫氧化物(ITO)等之導電性金屬氧化物、金、銀、絡、錄等 金屬、該等金屬與導電性金屬氧化物之混合物或積層物、峨化 銅、硫化銅等無機導電性物質、聚苯胺、聚嘴吩、聚対等有 10機導電性材料、該等與IT〇之積層物等。這些可單獨使用,亦 可並用2種以上。當中又以導電性金屬氧化物為佳,從生產性、 高導電性、透明性等觀點來看尤以IT〇為佳。 正極之厚度並無特別限制,可依據材料等適當選擇,一般 以1〜50〇〇nm為佳,20〜200nm更佳。 15 正極通常形成於鹼石灰玻璃、無鹼玻璃等玻璃、透明樹脂 等基板上。利用玻璃作為基板時,基於減少從玻璃溶出離子之 觀點,故以無鹼玻璃、二氧化矽、施以障壁塗膜之鹼石灰玻璃 為佳。 基板之厚度只要是可保持機械性強度之充分厚度即可,並 20 黑特別限制,而利用破璃作為基材時,通常在〇.2mm以上,又 以〇.7mm以上為佳。 正極可藉例如蒸鍍法、濕式製膜法、電子束法、濺射法、 反應性濺射法、MBE (分子線磊晶)法、簇離子束法、離子噴 鏡法、電漿聚合法(高周波激光離子噴鍍法)、分子積層法、 20 200533238 印刷法、轉印法、化學反應法(溶膠一凝膠法等)塗布ιτο等 之分散物之方法等來適當形成。 正極可藉進行洗淨、其他處理使有機EL元件之驅動電壓 降低,提高發光效率。所謂其他處理在例如前述正極之素材為 5 ITO時,可適當舉UV—臭氧處理、電漿處理等。 •電洞注入層 電洞注入層之材料並無特別限制,可因應目的適當選擇, 可適當舉例如第10圖所示之星狀放射胺(starburstainine ) (4,4’,4” 一參[3 —甲基苯基(苯基)胺基]三苯基胺,m — 10 MTDATA ( 4,4,,410 (In formula (3), M and X are the same as in formula (1), the benzene nuclei may have substituents independently of each other, and the substituents may be bonded to each other on the same ring or adjacent rings.) Regarding the above-mentioned Ar1, Ar2 and Ar3 may be substituted at any position in the ring structure. For Ar1 and Ar3, the structure shown in Fig. 2 or its mirror structure can be mentioned, and for Ar2, the structure shown in Fig. 3 can be used. Each symbol has the same meaning as the symbol of formula (1). 15 In addition, the structures of Ar1, Ar2, and Ar3 are parts enclosed by 0 in Figs. In Figures 2 and 3, the hydrogen of the ring may be substituted by a substituent. Examples of the substituent include a halogen atom, a cyano group, an alkoxy group, an amine group, an alkyl group, an alkyl acetate group, a cycloalkyl group, an aryl group, an aryloxy group, and the like, and these may be further substituted. Furthermore, the substituents of Ar1, Ar2, and Ar3 may be bonded to each other on Ar1, Ar2, and Ar3 to form a cyclic structure, 20 and each of Ar1 and Ar2 and each other to be bonded to each other to form a cyclic structure. structure. 15 200533238 The organometallic complex of the present invention is exemplified by a dimer, etc., and may also contain a plurality of three-segment ligands, a central metal M, or a halogen atom X, but with a three-segment ligand It is better to form one halogen atom and one central metal atom. It has advantages such as being easy to produce a vapor-deposited film. 5 With regard to the ease of producing a vapor-deposited film, the organometallic complex is preferably electrically neutral or close to electrically neutral in a solid state. And neutral is better. The neutrality can be judged from the fact that the organometallic complex is substantially free of ionicity, polarization, or minimal polarizability. The phosphorescent light-emitting solid of the present invention is preferably formed by using an organometallic complex with a purity of 99.5% by weight or more. In this way, a phosphorescent light-emitting solid that emits intense phosphorescence can be easily obtained. It is more preferable to use an organometallic complex with a purity of 99.8% by weight or more. The purity of the organometallic complex here refers to the concentration of the organometallic complex in the phosphorescent light-emitting solid when the phosphorescent light-emitting solid of the present invention is formed from a large number of components, but refers to the phosphorescence 15 Purity of organometallic complexes used in luminescent solids. One method of using organic EL elements for full-color displays is to prepare organic EL elements of red, green, and blue colors, and use a combination of these three as one pixel. This method is widely practiced. Regarding the phosphorescent light-emitting solid of the present invention, the light emitting color can be adjusted by changing the molecular structure of the three ligands of the contained organometallic complex, so that the majority of light-emitting colors can be used as a light-emitting material, etc To properly use for necessary purposes. In particular, it is applicable to organic EL elements. In addition, unless specifically emphasized below, the phosphorescent light-emitting solid of the present invention is a solid of the organometallic complex of the present invention, and is mainly directed to the bulk state before the film is formed. The phosphorescent light-emitting solid 16 200533238 body, containing a component other than the organometallic complex of the present invention in a bulk state, and being formed from a solid of the organometallic complex of the present invention in a state after being formed into a film or the like In the case where a component other than the organometallic complex of the present invention is contained in a state after being formed into a film or the like, it belongs to the scope of the present invention. 5 The phosphorescent light-emitting solid according to the present invention is preferably contained in an organic EL element as a light-emitting material, and may also be contained in a light-emitting layer, a light-emitting layer and an electron transport layer, a light-emitting layer and a hole transport layer, and the like. When the light-filled light-emitting solid is contained in the light-emitting layer, the light-emitting layer may be formed by forming a phosphorescent light-emitting solid alone as a film, or may be formed by containing other materials. In addition, since the phosphorescent light-emitting solid 10 used in the organic EL device of the present invention can emit strong phosphorescence at room temperature, if it is a color conversion type organic EL device, it can be used as a light-emitting material included in the color conversion layer. The phosphorescent light-emitting solid of the present invention can function as an object or host. It can also coexist with other host materials or guest materials. The other coexisting host materials are low molecular or high molecular. Those with a low molecular weight should preferably have a number average molecular weight of 15 1,000 or less, and those with a high molecular weight should have a number average molecular weight of 20,000 or more. The material which makes the first laser triplet laser energy of the host material higher than the first laser triplet laser energy of the organic metal complex is more preferable. As shown in Fig. 4, the main material of the low molecular system is 4,4'-bis (2,2'_distyryl) -1,1'-biphenyl (DPVBi), p-hexaphenyl ( p-SP), 1,3,6,8-tetraphenyl20 (tppy) (l, 3,6,8-tetraphenylpyrene), N, N'-dinaphthyl-N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine (NPD), a carbazolyl group or a derivative thereof which may have a substituent, or a mixture thereof. A carbamoyl group or a derivative thereof which may have a substituent, that is, a carbamic compound, is a compound shown in Fig. 5. In Figure 5, R1 and R2 represent substituents that can be assigned to any position of the cyclic 17 200533238 structure, and each independently represent a gas atom, a hydrogen atom, a gas group, an amine group, a cyano group, or a cycloalkyl group. Aryl and aryloxy groups which may contain nitrogen or sulfur atoms, and these may be substituted. Furthermore, R1 and R2 may be combined with each other to form an aromatic ring which may contain a nitrogen atom, a sulfur atom, and an oxygen atom, and these may be further substituted. 5 R, R have 1 to 3 in each ring structure. In Fig. 5, Ar represents a 2,3-valent aromatic group or a heterocyclic aromatic group. Take the base shown in Figure 6 as an example. Hydrogen atoms in the ring structure can be replaced. Here, the linking group R can be taken as an example in FIG. 7. When the above carbazole compound is mixed with the organometallic complex of the present invention, since the interaction between 10 and the complex is very small, the original luminescence characteristics of the complex are greatly affected, which is particularly effective as a host material. An example of a taste salivary compound represented by this formula is 4,4, _bis (9_amizolyl) _biphenyl (CBp) shown in FIG. 8. In addition, the main material of the molecular system is polyparaphenylene vinylene (PA), polyparaphenylene (PPP), polyethylene terephthalate (pvc), > Perylene (PF) and polyacetylene (pA) derivatives are suitable. The hydrogen atom in the ring structure may be replaced. 20 — The mechanism has a structure in which a hole injection layer, a hole = ¾ layer, a light emitting layer, an electron transport layer, and an electron injection layer are sandwiched between the positive electrode and the negative electrode. Among these layers, the hole injection layer, the hole rotation layer, the electron transport layer, and the electron injection layer sometimes exist. Other layers may also be included. It is also possible to make the -layer have most functions. The laminated body is formed on a transparent substrate made of glass or the like. The organic EL device related to this evening may also include the transparent substrate. When a color conversion layer is used, a color conversion layer is provided on the negative electrode (the opposite side of the substrate). Figure HI shows the pattern of the organic EL TL components. The top surface of the model has no color change. 18 200533238 The layer change is the case. Figure 16 shows the color change layer. Fig. 15 shows the substrate 1, the positive electrode 2, the hole transport layer 3, the light emitting layer 4, the electron transport layer 5, and the negative electrode 6, and Fig. 16 shows a color conversion layer 161 in addition to the above. Examples of the structure of the display layer include the following. 5 • Positive electrode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / negative electrode • positive electrode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / negative electrode / positive electrode / Hole transporting layer / light emitting layer / electron transporting layer / electron injection layer / negative electrode • positive electrode / hole transporting layer / light emitting layer / electron transporting layer / negative electrode 10 • positive electrode / hole injection layer / hole transporting layer / light emitting layer Electron transport layer / electron injection layer / negative electrode / positive electrode / hole injection layer / hole transport layer / light emitting layer and electron transport layer / negative electrode / positive electrode / hole transport layer / light emitting layer and electron transport layer / electron injection layer / negative 15 poles • positive electrode / hole transport layer / light emitting layer and electron transport layer / negative electrode • positive electrode / hole injection layer / hole transport layer and light emitting layer / electron transport layer / electron injection layer / negative electrode • positive electrode / hole injection layer / Electrode transport layer and light emitting layer / Electron transport layer / Negative 20 poles / Negative electrode / Positive electrode / hole transport layer and electron transport layer and light emitting layer / negative electrode 19 200533238 The materials used in each layer, the film thickness of each layer, and the manufacturing method are exemplified below. • The material of the positive electrode is not particularly limited, and it can be appropriately selected according to the purpose. Examples include materials such as metals, alloys, metal oxides, electrically conductive compounds, and mixtures thereof. Among them, materials with a working coefficient of _ or more Better. Specific examples of the material of the positive electrode include conductive metal oxides such as tin oxide, oxide, steel oxide, and indium tin oxide (ITO), metals such as gold, silver, complex, and metal, and these metals and conductive metals. Mixtures or laminates of oxides, inorganic conductive materials such as copper elfide, copper sulfide, polyaniline, polyphenanthrene, polyfluorene and other organic conductive materials, such as laminates with IT0. These may be used alone or in combination of two or more. Among them, conductive metal oxides are preferred, and from the viewpoints of productivity, high conductivity, and transparency, IT0 is particularly preferred. The thickness of the positive electrode is not particularly limited, and may be appropriately selected depending on the material and the like, and generally it is preferably 1 to 5000 nm, and more preferably 20 to 200 nm. 15 The positive electrode is usually formed on glass such as soda-lime glass, alkali-free glass, and transparent resin. When glass is used as the substrate, alkali-free glass, silicon dioxide, and soda-lime glass with a barrier coating film are preferred from the viewpoint of reducing the amount of ions eluted from the glass. The thickness of the substrate is sufficient as long as it can maintain the mechanical strength, and 20 black is particularly limited. When using broken glass as the base material, it is usually 0.2 mm or more and preferably 0.7 mm or more. The positive electrode may be, for example, a vapor deposition method, a wet film formation method, an electron beam method, a sputtering method, a reactive sputtering method, an MBE (Molecular Wire Epitaxial) method, a cluster ion beam method, an ion spray method, or a plasma polymerization. The method (high-frequency laser ion plating method), molecular lamination method, 20 200533238 printing method, transfer method, chemical reaction method (sol-gel method, etc.), and a method for coating dispersions such as ιτο are appropriately formed. The positive electrode can be cleaned and other processed to reduce the driving voltage of the organic EL element and improve the luminous efficiency. For the other treatments, for example, when the material of the positive electrode is 5 ITO, UV-ozone treatment, plasma treatment, and the like can be appropriately adopted. • Hole injection layer The material of the hole injection layer is not particularly limited. It can be appropriately selected according to the purpose. For example, the starburstainine (4,4 ', 4 ”shown in Fig. 10 can be used as a reference. 3-methylphenyl (phenyl) amino] triphenylamine, m — 10 MTDATA (4,4,, 4

tris[3 — methylphenyl ( phenyl ) — MTDATA))、銅酞菁、聚苯胺等。 電洞注入層之厚度並無特別限制,可因應目的適當選擇 例如以1〜l〇〇〇nm為佳,5〜50〇nm更佳。 装聚合法(高職激光離子噴錢法)、分子積層法、⑶法、印 電洞注入層可藉例如蒸鍍法 射法、反應性濺射法、MBE法、 刷法、轉印法等適當形成。 、濕式製膜法、電子束法、濺 簇離子束法、離子噴鍍法、電 •電洞輸送層 電洞輸送層之材料並無特別限制 ,可因應目的適當選擇,tris [3 — methylphenyl (phenyl) — MTDATA)), copper phthalocyanine, polyaniline, etc. The thickness of the hole injection layer is not particularly limited, and may be appropriately selected according to the purpose. For example, 1 to 1000 nm is preferable, and 5 to 50 nm is more preferable. Polymerization method (high-level laser ion spraying method), molecular lamination method, ⑶ method, injection hole injection layer can be used, for example, vapor deposition method, reactive sputtering method, MBE method, brush method, transfer method, etc. Properly formed. , Wet film forming method, electron beam method, sputtering cluster ion beam method, ion spraying method, electric hole transport layer The material of the hole transport layer is not particularly limited, and can be appropriately selected according to the purpose.

一乙烯基咔唾)、笨胺系共聚物、 σ塞吩募聚物及聚合物、聚π塞 21 200533238 吩等導電性高分子寡聚物及聚合物、石墨膜等。又,將這些電 洞輸送層之材料與發光層材料混合製膜,則可形成電洞輸送層 兼發光層。 該等可單獨使用,亦可併用2種以上,這當中又以芳香族 5 胺化合物為佳。具體來說,以第11圖所示之N,N’一二苯基一 N,N’一雙(3—甲基苯基)_[1,1’一聯苯]—4,4’一二胺(TPD) 或NPD等芳香族胺更佳。 電洞輸送層之厚度並無特別限制,可因應目的適當選擇, 通常為1〜500nm,而以5〜100nm為佳。 10 電洞輸送層之形成可利用與電洞注入層同樣的方法,並適 當變更原料或條件。 •電子輸送層 電子輸送層之材料並無特別限制,可因應目的適當選擇, 可舉例如第12圖所示之三(8—羥基喳啉)鋁(Alq)等羥基 15 喳啉金屬錯合物、鋁羥基喳啉一聯苯氧基錯合物(BAlq)等羥 基α奎琳一芳氧基錯合物、嗔二唾化合物、三唾化合物、啡琳化 合物、获化合物、吼淀化合物、喊咬化合物、喑4琳化合物、 二苯基苯醌化合物、硝基取代苟化合物等。又,將該等電子輸 送層之材料與發光層之材料混合製膜,可形成發光層兼電子輸 20 送層,更進一步,若更混合電洞輸送層之材料製膜,則可形成 電洞輸送層兼發光層兼電子輸送層。 電子輸送層之厚度並無特別限制,可因應目的適當選擇, 例如通常為1〜500nm,又以10〜50nm為佳。 電子輸送層可以是2層以上之構成。這時,若利用光吸收 22 200533238 端較有關本發明之磷光發光固體更為短波長之材料來作為鄰 接於發光層之電子輸送層材料,則元件中之發光領域可限定在 發光層’可防止發自電子輸送層之多餘發光,故很適宜。 這種光吸收端較有關本發明之磷光發光固體更為短波長 5之材料,可舉羥基喳啉一芳氧基錯合物、啡啉化合物、噁二唑 化石物、二嗤化合物、以8一嗜琳盼乃至其化合物為配位子之 有機金屬錯合物等。特別是以Balq及第13圖中所表示之化合 物為佳。 又,第13圖中,前端未記載化學基之3根分叉表示tert — 丁基。 電子輸送層之形成,可利用與電洞注入層同樣的方法,並 適當變更原料或條件。 •電子注入層 電子注入層之材料並無特別限制,可因應目的適當選擇, 15可適當使用例如氟化鐘等驗金屬氟化物、氟化銘等驗土類金屬 敦化物等。電子注入層之厚度並無特別限制,可因應目的適當 選擇,例如通常為0.1〜l〇nm,而以〇 5〜2nm為佳。 電子注入層可藉例如装鍵法、雷工击、+ ^ 、毅次冤子束法、濺射法等適當形 成0 負極的材料並無特別限制,可因應與前述電子輸送層、前 述發光層等與負極鄰接之層或分子之密著性、離子電勢、安定Monovinyl carbamide), styrylamine copolymer, σ-phene polymer and polymer, poly-pi 21 21 33 033 238 conductive polymer oligomers, polymers, graphite films, etc. Furthermore, by mixing and forming the material of the hole transporting layer and the material of the light emitting layer, a hole transporting layer and a light emitting layer can be formed. These may be used singly or in combination of two or more kinds. Among them, aromatic 5-amine compounds are preferred. Specifically, take N, N'-diphenyl-N, N'-bis (3-methylphenyl) _ [1,1'-biphenyl] -4,4'- Aromatic amines such as diamine (TPD) or NPD are preferred. The thickness of the hole-transporting layer is not particularly limited, and can be appropriately selected according to the purpose, usually 1 to 500 nm, and preferably 5 to 100 nm. 10 The hole transport layer can be formed by the same method as the hole injection layer, and the materials or conditions can be changed appropriately. • Electron transport layer The material of the electron transport layer is not particularly limited, and can be appropriately selected according to the purpose. For example, a hydroxy 15 oxoline metal complex such as three (8-hydroxyxanthroline) aluminum (Alq) shown in FIG. 12 may be used. , Hydroxy alpha quinine-aryloxy complexes such as aluminum hydroxypyridinium-biphenoxy complex (BAlq), hydrazone-arylene compound, trisialyl compound, phlenyl compound, obtained compound, hydrazine compound, shout Bite compounds, stilbene compounds, diphenylbenzoquinone compounds, nitro-substituted compounds, and the like. In addition, by mixing the materials of the electron transport layer and the material of the light emitting layer to form a film, a light emitting layer and an electron transporting layer can be formed. Furthermore, if the material of the hole transport layer is further mixed into a film, an electric hole can be formed. Transport layer and light emitting layer and electron transport layer. The thickness of the electron transporting layer is not particularly limited and may be appropriately selected according to the purpose, for example, it is usually 1 to 500 nm, and preferably 10 to 50 nm. The electron transporting layer may be composed of two or more layers. At this time, if a material having a shorter wavelength than the phosphorescent light-emitting solid of the present invention is used as the material of the electron transport layer adjacent to the light-emitting layer, the light-emitting area in the element can be limited to the light-emitting layer. The excess light emission from the electron transport layer is suitable. Such a light absorbing end is a material having a shorter wavelength 5 than the phosphorescent light-emitting solid of the present invention, and examples thereof include hydroxyxanthine-aryloxy complex, phenanthroline compounds, oxadiazole fossils, difluorene compounds, and 8 A linophile and even its organometallic complexes whose compounds are ligands. Particularly, the compounds shown in Balq and Fig. 13 are preferable. In addition, in FIG. 13, the three branches with no chemical group at the front end indicate tert-butyl. The formation of the electron transport layer can be performed by the same method as the hole injection layer, and the materials or conditions can be appropriately changed. • Electron injection layer There is no particular limitation on the material of the electron injection layer. It can be appropriately selected according to the purpose. 15 For example, metal fluorides such as fluorinated clocks, and metal inspection compounds such as fluorides can be used appropriately. The thickness of the electron injection layer is not particularly limited and may be appropriately selected according to the purpose, for example, it is usually 0.1 to 10 nm, and preferably 5 to 2 nm. The electron injection layer can be formed by a material such as a bonding method, a lightning strike, + ^, a beamer method, a sputtering method, and the like. Adhesion, ion potential, and stability of the layer or molecule adjacent to the negative electrode

性等來適當選擇,可舉例如金屬、合 A 土蜀σ孟、金屬氧化物、電傳導 性化合物、該等之混合物等。 23 200533238 負極之材料之具體例可舉鹼金屬(例如Li'Na、K、Cs等)、 驗土類金屬(例如Mg、Ca等)、金、銀、錯、ig、納一If合金 或該等之混合金屬、鋰一鋁合金或該等之混合金屬、鎂一銀合 金或該等之混合金屬、銦、鏡等稀土類金屬、該等之合金等。 5 該等可單獨使用,亦可併用2種以上。該等當中又以工作函數 4eV以下之材料為佳,鋁、鋰一鋁合金或該等之混合金屬、鎂 一銀合金或該等之混合金屬等更佳。 負極之厚度並無特別限制,可因應負極之材料等適當選 擇,而以1〜lOOOOnm為佳,20〜200nm更佳。 10 負極可藉例如蒸鍍法、濕式製膜法、電子束法、濺射法、 反應性濺射法、MBE法、簇離子束法、離子喷鍍法、電漿聚合 法(高周波激光離子喷鍍法)、印刷法、轉印法等適當形成。 併用2種以上作為負極之材料時,可同時蒸鍍2種以上之 材料來形成合金電極等,亦可蒸鍍事先調製之合金來形成合金 15 電極等。 •其他層 本發明之有機EL元件亦可因應目的而具有適當選擇之其 他層。該其他層可舉例如電洞阻擋層或保護層等。 電洞阻擋層配置於發光層與電子輸送層之間。有機EL元 20 件若具有電洞阻擋層,則可以電洞阻擋層阻擋住從正極側輸送 之電洞,從負極輸送之電子通過電洞阻擋層到達發光層,藉此 電子與電洞可在發光層有效率地產生再結合。因此,可防止電 洞與電子在發光層以外之有機薄膜層再結合,可有效率地得到 目的之發光色素之發光,在色純度等點上很有利。電洞阻擋層 24 200533238 之材料並無特別限制 同之材料適當選擇。 可因應目的,從與電子輸送層之材料相 5 電洞阻擋層之厚度並無特別例如通常為__,又以5, 阻擔層可 以是單層構造,_為積層構造。 〜^層可藉例如驗法、濕式製膜法、電子束法、錢 射法反應ϋ/賤射法、MBE法、鎮離子束法、離子喷鑛法、電 限制,可因應目的適當選擇 10 聚聚合法(高周波激光離子讀法)、分子積層法、LB法、印 刷法、轉印法等適當形成。 保°又層疋保蠖有機EL元件不受到外界影響之層,係形成 為包住由上述各層形成之積層物。保護層之材料並無特別限 制,可因應目的適當 選擇’以例如可抑制水分或氧等會促進有 機EL元件低劣化之分子或物質侵人有機元件内之材料為 佳。 保濩層之材料可舉例如:In、Sn、Cu、A卜丁丨、Ni等金屬; Mg〇、Si0、Sl〇2、Al2〇3、GeO、NiO、CaO、BaO、Fe2〇3、 Y2〇3、Ti〇2等金屬氧化物;siN、siNx〇y等氮化物;MgF2、LiF、 AIF3、CaF2等金屬氟化物;聚乙烯、聚丙烯、聚甲基甲基丙烯 酸酯、聚醯胺、聚尿素、聚四氟乙烯、聚氣三氟乙烯、聚二氣 一氟乙烯、氣二氟乙烯與二氯二氟乙烯之共聚物、使含有四氟 乙烯與至少1種共聚用單體之單體混合物共聚合而得之共聚 物、共聚主鏈上具有環狀構造之含氟共聚物、吸水率丨重量% 以上之吸水性物質、吸水率0.1重量。/。以下之防潮性物質等。 保護層可藉例如蒸鍍法、濕式製膜法、濺射法、反應性濺 25 200533238 射法、MBE法、簇離子束法、離子喷鍍法、電漿聚合法(高周 波激光離子喷鍍法)、印刷法、轉印法等適當形成。 •色變換層 本發明之有機EL元件可因應目的具有適當選擇之色變換 5 層,該色變換層内可含有本發明之磷光發光固體。色變換層係 如特開平第3-152897號公報所記載的,係吸收來自有機EL元 件之發光變更其波長並放出之層,例如製作在青色單色之有機 EL元件之光取出側基板與ITO電極之間,將青色變換為綠色 或紅色後放出,可使顯示裝置多色化。色變換層只要可充分吸 10 收被變換光並將之變換為所希望之波長,則任何厚度、材質、 製法皆可,典型為0.01 // m〜100 // m,更適宜具有1 // m〜50 // m 之厚度,以藉光刻法等製作為佳。 在此,說明關於發光層之製作,可依據已知方法形成,例 如藉真空蒸鍍等蒸鍍法、濕式製膜法、MBE法、簇離子束法、 15 分子積層法、LB法、印刷法、轉印法等適當形成。這當中, 從不需使用有機溶劑而無廢水處理問題、可低成本、簡便且有 效率地製作這幾點來看,以蒸鍍法為佳,而以單層構造設計發 光層時,例如使發光層作為電洞輸送層兼發光層兼電子輸送層 等來形成時,以濕式製膜法為佳。 20 蒸鍍法並無特別限制,可因應目的從已知者當中適當選 擇,可舉例如真空蒸鍍法、電陰加熱蒸鍍法、化學蒸鍍法、物 理蒸鍍法等。化學蒸鍍法可舉例如電漿CVD法、雷射CVD法、 熱CVD法、氣體源(gas source) CVD法等。 濕式製膜法可在溶劑中混合主體及/或聚合物等形成之膠 26 200533238 黏劑與有關本發明之磷光 &九固體,糟旋轉塗膜法、噴墨法、 浸塗法、拖替抹法等濕式•手法塗布。這時,為了提高發 光層之電何輸祕,若將上述所舉作為電洞輸送層材料及電子 輸送層材料之上述材料同㈣合人溶液中來製膜,則可使發光 層中具有電洞輸送層或電子輪 御迗層性旎,而可以1層構成電洞 輸送層兼發光層、或發光層兼雷 敢冤子輸运層、或電洞輸送層兼發 光層兼電子輸送層。For example, a metal, a compound, a metal oxide, an electrically conductive compound, a mixture of these, and the like can be selected as appropriate. 23 200533238 Specific examples of negative electrode materials include alkali metals (such as Li'Na, K, Cs, etc.), soil testing metals (such as Mg, Ca, etc.), gold, silver, copper, ig, Na-If alloy, or the And other mixed metals, lithium-aluminum alloys or mixed metals, magnesium-silver alloys or mixed metals, indium, mirrors and other rare earth metals, and other alloys. 5 These can be used alone or in combination of two or more. Among these, materials with a work function of 4 eV or less are preferred, and aluminum, lithium-aluminum alloy or a mixed metal thereof, magnesium-silver alloy or a mixed metal thereof is more preferred. The thickness of the negative electrode is not particularly limited, and may be appropriately selected according to the material of the negative electrode, etc., but is preferably 1 to 1000 nm, and more preferably 20 to 200 nm. 10 The negative electrode can be formed by, for example, a vapor deposition method, a wet film forming method, an electron beam method, a sputtering method, a reactive sputtering method, a MBE method, a cluster ion beam method, an ion spraying method, and a plasma polymerization method (high-frequency laser ionization). Thermal spraying method), printing method, transfer method and the like are appropriately formed. When two or more kinds of materials are used in combination as a negative electrode, two or more kinds of materials can be vapor-deposited simultaneously to form an alloy electrode or the like, or an alloy prepared in advance can be vapor-deposited to form an alloy 15 electrode or the like. • Other layers The organic EL element of the present invention may have other layers appropriately selected depending on the purpose. The other layer may be, for example, a hole blocking layer or a protective layer. The hole blocking layer is disposed between the light emitting layer and the electron transporting layer. If the organic EL element has a hole blocking layer, the hole blocking layer can block the hole transported from the positive side, and the electrons transported from the negative electrode reach the light-emitting layer through the hole blocking layer, so that the electrons and holes can pass through The light emitting layer is efficiently recombined. Therefore, recombination of holes and electrons in an organic thin film layer other than the light emitting layer can be prevented, and the luminescence of the intended luminescent pigment can be efficiently obtained, which is advantageous in terms of color purity and the like. The material of the hole blocking layer 24 200533238 is not particularly limited, and the same material is appropriately selected. According to the purpose, the thickness of the hole blocking layer from the material of the electron transporting layer is not particularly special. For example, the thickness of the hole blocking layer is usually __, and the barrier layer can be a single-layer structure and _ is a multilayer structure. The ~ ^ layer can be selected by, for example, inspection method, wet film formation method, electron beam method, coinjection reaction method / base injection method, MBE method, ion beam method, ion spraying method, and electrical limitation, and can be appropriately selected according to the purpose. 10 Polymerization method (high frequency laser ion reading method), molecular lamination method, LB method, printing method, transfer method, etc. are appropriately formed. The layer that protects the organic EL element from external influences is formed to surround the laminate formed of the above-mentioned layers. The material of the protective layer is not particularly limited, and it may be appropriately selected according to the purpose, and for example, a material that can inhibit the intrusion of molecules or substances that promote low degradation of the organic EL element, such as moisture or oxygen, into the organic element is preferred. The material of the protective layer may include, for example, metals such as In, Sn, Cu, Abu Din, Ni; Mg0, Si0, Sl02, Al2O3, GeO, NiO, CaO, BaO, Fe2O3, Y2 Metal oxides such as 〇3, Ti〇2; nitrides such as siN, siNx〇y; metal fluorides such as MgF2, LiF, AIF3, CaF2; polyethylene, polypropylene, polymethylmethacrylate, polyamine, Polyurea, polytetrafluoroethylene, polytrifluoroethylene, polydifluoroethylene, a copolymer of difluoroethylene and dichlorodifluoroethylene, a unit containing tetrafluoroethylene and at least one comonomer A copolymer obtained by copolymerizing a polymer mixture, a fluorinated copolymer having a cyclic structure on the main chain of copolymerization, a water-absorbing substance having a water absorption rate of more than 5% by weight, and a water absorption rate of 0.1 weight. /. The following moisture-proof substances. The protective layer can be formed by, for example, a vapor deposition method, a wet film formation method, a sputtering method, a reactive sputtering method, or a sputtering method. 25 200533238 shot method, MBE method, cluster ion beam method, ion spraying method, plasma polymerization method (high-frequency laser ion sputtering) Method), printing method, transfer method, and the like. • Color conversion layer The organic EL element of the present invention may have five layers of color conversion appropriately selected according to the purpose, and the color conversion layer may contain the phosphorescent light-emitting solid of the present invention. The color conversion layer is a layer that absorbs light emitted from an organic EL element and changes its wavelength, as described in Japanese Patent Application Laid-Open No. 3-152897. For example, a light-emitting-side substrate of cyan monochromatic organic EL element and ITO are produced. Between the electrodes, cyan is converted into green or red, and then the display device is multicolored. As long as the color conversion layer can sufficiently absorb 10 received converted light and convert it to a desired wavelength, any thickness, material, and manufacturing method are acceptable, typically 0.01 // m to 100 // m, and more preferably 1 // The thickness of m ~ 50 // m is preferably made by photolithography. Here, it is explained that the production of the light-emitting layer can be formed according to known methods, such as a vacuum evaporation method, a wet film formation method, a MBE method, a cluster ion beam method, a 15-molecular layer method, an LB method, and printing. It is suitably formed by a method, a transfer method, or the like. Among these, from the point of not using an organic solvent and having no waste water treatment problem, and being able to be produced at a low cost, simply and efficiently, the vapor deposition method is preferred, and when the light emitting layer is designed with a single layer structure, for example, When the light emitting layer is formed as a hole transporting layer, a light emitting layer, an electron transporting layer, etc., a wet film forming method is preferred. 20 The vapor deposition method is not particularly limited, and may be appropriately selected from known ones according to the purpose, and examples thereof include a vacuum vapor deposition method, an electro-cavity heating vapor deposition method, a chemical vapor deposition method, and a physical vapor deposition method. Examples of the chemical vapor deposition method include a plasma CVD method, a laser CVD method, a thermal CVD method, and a gas source CVD method. The wet film-forming method can mix the glue formed by the main body and / or the polymer in a solvent. 26 200533238 Adhesive and the phosphorescent & nine solids related to the present invention, spin coating method, inkjet method, dip coating method, drag Wet and manual coating methods such as the wipe method. At this time, in order to improve the electrical transmission of the light-emitting layer, if the materials mentioned above as the material of the hole-transporting layer and the material of the electron-transporting layer are mixed into a solution to form a film, the hole can be provided in the light-emitting layer. The transport layer or the electron wheel can be layered, and one layer can constitute a hole transport layer and a light-emitting layer, or a light-emitting layer and a lightning transport layer, or a hole-transport layer and a light-emitting layer and an electron transport layer.

這時’可使用之膠黏劑之例可舉聚乙烯基μ、聚石炭酸 醋、?么氯乙烯、聚苯乙稀、聚甲基甲基丙稀酸醋、聚醋、聚鐵、 10水亞苯基氧化物、聚丁二歸、經樹脂、酮樹脂、苯氧基樹脂、 聚醯胺、乙基纖維素、醋酸乙烯、ABS樹脂、聚胺甲酸酯、三 聚氰胺樹脂、不飽和聚酯樹脂、醇酸樹脂、環氧樹脂、聚矽氧 樹脂等。 藉3色發光法之面板,需要各自發出紅、綠、青3色光之 15有機EL元件部分,這種情況之各色發光元件部分可例示下述 組合。In this case, examples of the adhesive that can be used include polyethylene μ, polyphenol vinegar,? Modyl chloride, polystyrene, polymethylmethacrylic acid vinegar, polyacetate, polyiron, 10-phenylene oxide, polybutylene dichloride, resin, ketone resin, phenoxy resin, polymer Resin, ethyl cellulose, vinyl acetate, ABS resin, polyurethane, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin, silicone resin, etc. The panel using the three-color light-emitting method requires 15 organic EL element portions each emitting three colors of red, green, and cyan. The light-emitting element portions of each color in this case can be exemplified by the following combinations.

•綠色發光元件部分 其構成係將有關本發明之磷光發光固體作為單獨或客體 使用(參考實施例4 )。 20 •紅色發光元件部分 ITO (正極)/NPD (電洞輸送層)/含有1重量%之第14 圖所示之4-二氰基亞甲基-6_cp-久洛尼啶基苯乙烯基-2-三級丁 基-4H-口辰喃(4-dicyanomethylene-6-cp-juloilidinostyryl-2-tert-b utyl-4H-pyran) (DCJTB)之 Alq (電子輸送層兼發光層)/Alq/ 27 200533238 A1 — Li (負極) •青色發光元件部分 IT0 (正極)/NPD/A1 —Li (負極) 利用有關本發明之有機EL元件之有機EL顯示器,可期待 5其發光效率高、驅動壽命長、可安定地驅動。該有機EL·元件 可作為被動矩陣面板或動態矩陣面板來使用(例如日經工 卜口二夕只,2000年3月13日號,第765號,p55〜62)。將有關 本發明之有機EL元件使用於被動矩陣顯示器之情況顯示於第 23圖。第23圖是正極/電洞輸送層/發光層/電子輸送層/負極之 1〇構成例。第23 _中,有機EL元件係於玻璃製基板i上積層有: 由TO化成之正極2、電洞輸送層3、發光層4、電子輸送層$、 由孟屬I成之負極6。纟ΙΤ〇形成之正極2為行列電極 (row electrodes )’由金屬形成之負極6為柱狀電極(⑶―, electrodes)。遠圖巾’藉由改變用於發光層4之發光層形成材 15料,可實現紅色發光7、綠色發光8、青色發光9。 $有關本發明之有機EL元件使用於動態矩陣顯示器之情 况顯π於第24圖。第24圖也是正極/電洞輸送層/發光層/電子 輸运層/負極之構成例。帛24圖中,有機EL元件係於玻璃製 基板1上積層有·驅動電路2l、tft (丁心叩⑺τ咖^伽)電 20路22、由ITO形成之正極2、電洞輸送層3、發光層4、電子 輸送層5、由金屬形成之負極6。該圖中,也可藉由改變用於 發光層4之發光層形成材料,實現紅色發光7、綠色發光8、 青色發光9。 以下,針對本發明之例子說明。 28 200533238 本發明之實施例中所使用之三座配位子係藉Stille偶合 法,依據文獻 Organometallics (D.J.Cardenas 及 A.M.Echavarre n,第18卷,p.3337 ( 1999年))之方法合成。該等三座配位子亦 可藉由鈐木偶合法(參考文獻:M.D.Sindkhedkar,H.R.Mulla,M. 5 A.Wurth 及 A.Cammers-Goodwin,Tetrahedron,第 57 卷,(2001 年))合成。又,利用三座配位子之金屬錯合物之合成,係依 據文獻 Organometallics (D.J.Cardenas 及 A.M.Echavarren,第 18 卷,p.3337 ( 1999年))之方法進行。 [合成例 1] (Pt (3,5—二(2—吼啶基)曱苯)Cl (Pt (3,5 10 一di ( 2 — pyridyl) toluene) C1 (以下略稱為:Pt ( dpt) C1)之 合成) (1) 三座配位子3,5—二(2—咄啶基)甲苯(3,5 —di (2 一pyridyl) toluene,以下略稱為(dpt))之合成(參考第17圖) 將3,5-二溴甲苯(6.9g,20mmoL)、2-三-η·丁基甲錫烷基咄 15 啶(26.9g,73mmoL)、雙(三苯基·膦)二氯化鈀(1.55g,2.2mmoL) 及氯化裡(11.7g,276mmoL )加入130mL之甲苯中,回流2天。 放冷後,加入KF飽和水溶液50mL,藉過遽取出析出之固 體,以少量之冷卻曱苯(20mLx3)洗淨,將之真空乾燥。將所 得到之固體放入二氣甲烷與NaHC03之混合溶液中充分洗淨。 20 分取有機層,以MgSCU粉末使之乾燥後,以蒸發裝置蒸發除去 溶劑。之後,以二氣甲烷再結晶,得到灰色固體之dpt2.2g。獲 率 45%。 (2) Pt (dpt) C1之合成(參考第18圖) 將 dpt ( 300mg,1.2mmoL)與 K2[PtCl]4 ( 550mg,1.3mmoL) 29 200533238 加入脫氣之醋酸(30mL)中,在130°C下回流2天。放冷後會 析出淡黃色結晶,故過濾取出。以甲醇、水、二***將濾取之 固體充分洗淨,將之真空乾燥。藉二氯甲烷將所得到之粗粉末 再結晶,得到黃色粉末之Pt (dpt) Cl,436mg。獲率77%。 5 [合成例 2] (Pt (3,5 —二(2—喳啉基)甲苯)Cl (Pt (3,5 —di ( 2 — quinolyl ) toluene ) C1 (以下略稱為:Pt ( dqt) C1) 之合成) 三座配位子3,5—二(2—喳啉基)甲苯(3,5 —di (2 — quinolyl ) toluene )(以下略稱為(dqt))係藉由以2 —三一n — 10 丁基甲錫烧基°奎琳取代2 —三一 η — 丁基甲錫烧基0比。定,除此之 外與合成例1同樣做法合成。獲率54%。又,Pt (dqt) C1係將 配位子從dpt換成dqt,除此之外與合成例1同樣做法合成。獲 率 42%。 [合成例 3] (Pt (3,5 —二(2—咄啶基)咄啶)Cl (Pt (3,5 15 一 di ( 2 — pyridyl ) pyridine ) C1 (以下略稱為:Pt ( dppr ) C1) 之合成) 三座配位子 3,5 —二(2 — 定基)吼^定(3,5 —di( 2 — pyridyl) pyridine,以下略稱為dppr)係藉由將3,5 —二溴甲苯以3,5 — 二溴吼啶取代,除此之外與合成例1同樣做法合成。獲率36%。 20 又,將配位子從dpt換成dppr,除此之外與合成例1同樣做法, 進行有機金屬錯合物Pt (dppr) C1之合成。獲率14%。 [實施例1] 在石英玻璃基板上藉共蒸鍍製作出將合成例1所合成之Pt (dpt) Cl於CBP摻雜2重量%之薄膜。厚度為50nm。又,藉 30 200533238 条鍍製作螢光置子獲率為已知之Alq之單獨膜,作為基準使用。 又,以基準之Alq薄膜之螢光量子獲率作為22%求得本發 明之磷光發光固體(薄膜)之磷光量子獲率。測定係如下進行。 亦即,第19圖之裝置中,利用36511111之定常光191作為激光, 5 面以光電一極體192 (濱松水卜二夕只製―photosensor C2719)監控經由鏡子194,195在樣本196之激光透過量與反射 量,一面藉分光放射輝度計193 ( S 乂少夕社製cs一 1〇〇〇)測 定樣本薄膜之發光光譜。將激光之每單位吸收量之發光強度與 已知化合物(Alq)之薄膜之值比較,藉此算出磷光量子獲率。 10 結果顯示於表1。 [實施例2] 以Pt (dqt) C1取代發光材料,除此之外,以與實施例1 完全相同之條件測定磷光發光之量子獲率。結果顯示於表i。 [實施例3] 15 以Pt ( dppr) C1取代發光材料,除此之外,以與實施例1 完全相同之條件測定磷光發光之量子獲率。結果顯示於表1。 表1 發光材料 PL量子效率(% ) 實施例1 Pt (dpt) Cl 98 實施例2 Pt (dqt) Cl 81 實施例3 Pt (dppr) Cl 59 比較例1 ref.l 3.7 比較例2 ref. 2 1.9 比較例3 ref.3 2.5 從表1可清楚得知,本發明之磷光發光薄膜具有非常高的 鱗光發光量子獲率。藉J.A.G.Williams等在Inorg.Chem.(第42 20 卷,ρ·8609_8611,2003年)中報告之pt (dpt) ci錯合物,在溶 31 200533238 液狀態下有68%之科光里子獲率,意外的是,在固體狀態下, 可大幅改善磷光量子獲率達98%。 表1中所顯示之比較例1〜3 (ref.l,ref.2,ref.3),係顯示出 特開2002-363552號公報中所記載之具有三個n、n、C型配位子 5 之有機金屬錯合物,在二氣甲烷溶液狀態下之磷光量子獲率。 該等具有三個N N C型配位子之有機金屬錯合物之分子構造 顯示於第20圖。從這個比較可理解出,本發明之利用具有 >TCTN型配位子之有機金屬錯合物之磷光發光固體(薄膜)顯 示出非常高的磷光量子獲率。 1〇 [實施例4] 如下所述地將Pt (dpt) C1錯合物用於發光層製作積層蜇 有機EL元件。藉水、丙醜I、異丙醇洗淨附IT〇電極之玻璃基 板,利用真空蒸鍍裝置((lxl(T4Pa),基板溫度為室溫),於該 附ITO電極之玻璃基板上以下述膜厚蒸鑛下述各層:術⑺之 15 2-TNATA(4,4,,4’’-三(2-萘基苯基胺基)三笨胺)作為電洞 注入層、1〇謂之卜NPD作為電洞輸送層、於其上蒸錢將Pt _)。1於。3?摻雜2重量%之層3〇11111作為發光層、於其上 蒸錢2〇nm之BCP作為電洞阻擔層、於其上蒸錢20nm之Alq 作為電子輸送層、更於其上蒸鍵〇.5nm之LiF作為電子注入層, 2〇最後条錢链l〇〇nm,錢環境下封止。於該元件以⑽為正極、 铭電極為負極來外加電壓,則在電壓4V以上觀測到綠色發光。 =2中’顯示出在實施例4〜9及比較例中,當元件為5v施加 時之發光高峰波長、電流效率、電力效率、外部量子效率。又, 所,月外部電子效率係表示鱗光輸出對輸入之能量之比率。電流 32 200533238 效率%力效率、外部量子效率係顯示輪入電流為〇— 時之值。 [貫施例 μ Ft 士八_ Uqt)C1取代發光材料,除此之外,以與實施例4 5之條件製作有機EL το件。以IT〇為正極、紹電極為 負極料力1壓,則在電壓〜以上觀測到橙色發光。 [貫施例6] 10 15 20 —入乂 Pt (dPpr) C1取代發光材料,除此之外,以與實施例4 完全相同之條件製作有機EL元件。以ιτ〇為正極、純極為 負極來外加電壓,則在電壓4V以上觀測到青綠色發光。 [實施例7] *下所述地將Pt (dpt) C1錯合物用於發光層製作高分子 有機EL元件。藉水、丙酮、異丙醇洗淨附仰電極之玻璃基 板。藉旋轉塗膜法,製作PEDQT : m (聚(乙稀二㈣吩): 聚(苯乙稀績酸醋))薄膜(5()nm厚)作為電洞注入層,在細 C加熱乾燥2小時。於其上藉旋轉塗膜製作在ρνκ (聚(…乙 烯基咔唑))中分散有3重量RPt(dpt)⑽合物之發光層 (35nm厚),在12(rc烘烤2小時。將基板移到真空蒸鍍裝置 ((1 10 Pa)’基板,置度為室溫),在發光層上蒸錢之BCp 作為電洞阻擔層、於其上蒸鑛2Gnm之Alq作為電子輸送層、 更於其上蒸鍵〇.5mn之LiF作為電子注入層,最後蒸鑛銘 l〇〇nm ’在氮環境下封止。於該元件以IT〇為正極、鋁電極為 負極來外加電壓,則在電壓4V以上觀測到綠色發光。 [實施例8] 33 200533238 以Pt (dqt) Cl取代發光材料,除此之外,以與實施例7 完全相同之條件製作有機EL元件。以ITO為正極 '鋁電極為 負極來外加電壓,則在電壓4V以上觀測到橙色發光。 [實施例9] 以Pt (dppr) C1取代發光材料,除此之外’以與實施例7 完全相同之條件製作有機EL元件。以ITO為正極、鋁電極為 負極來外加電壓,則在電壓4V以上觀測到青綠色發光。 表2 發光材料 發光波長 (nm) 電流效率 (cd/A ) 電力效率 (lm/W ) 外部量子效 率(%) 實施例4 Pt (dpt) Cl 509 45.1 28.0 13.1 實施例5 Pt (dqt) Cl 610 21.0 13.4 10.5 實施例6 pt ( dppr) Cl 479 18.3 10.3 7.3 實施例7 pt ( dpt) Cl 511 25.2 12.2 7.3 實施例8 pt (dqt) Cl 613 11.2 5.5 5.6 實施例9 pt ( dppr) Cl 479 9.5 3.8 3.8 比較例4 ref.l 582 4.2 比較例5 ref.2 600 2.4 比較例6 ref.3 616 卜1.4 從表2可理解,本發明之有機EL元件(實施例4〜9)全都 10 顯示出非常高的EL效率。特別是實施例4之利用Pt (dpt) C1 之元件,其外部量子效率高達13.1% (最大值為5.6V13.4%)。 表2之比較例4〜6中,顯示出與表1之情況相同之特開 2002-363552號公報中所記載之有機EL元件之電流效率。唯, 比較例之發光波長為在二氯甲烷溶液狀態下測定之值,電流效 15 率係顯示在25〜30mA/cm2之效率。從與這些比較,也可得知, 利用有關本發明之磷光發光固體之有機EL元件顯示出非常高 的發光效率。利用Pt( dpt) C1之元件其原本發光效率即很高, 標繪出其EL光譜、電流密度及外部量子效率之關係之結果顯 示於第21,22圖。 34 200533238 產業上可利用性 藉本發明,可提供發光效率高之有機EL元件或高性能之 有機EL裝置。 I:圖式簡單說明3 5 第1圖是例示以式(4)表示之構造部分之圖。 第2圖是顯示Ar1及Ar3之例之圖。 第3圖是顯示Ar2之例之圖。 第4圖是例示低分子系主體材料之圖。 第5圖是例示咔唑化合物之圖。 10 第6圖是例示第5圖中之Ar之圖。 第7圖是例示第6圖中之連結基R。 第8圖是顯示CBP之構造之圖。 第9圖是例示高分子系主體材料之圖。 第10圖是顯示星狀放射胺(starburstamine)之構造之圖。 15 第11圖是顯示TPD之構造之圖。 第12圖是顯示Alq之構造之圖。 第13圖是例示光吸收端較有關本發明之磷光發光固體更 為短波長之材料之圖。 第14圖是顯示DCJTB之構造之圖。 20 第15圖是有機EL元件之模式側截面圖。 第16圖是有機EL元件之其他模式側截面圖。 第17圖是顯示dpt之合成路徑之圖。 第18圖是顯示Pt (dpt) C1之合成路徑之圖。 第19圖是顯示磷光量子獲率之測定法之圖。 35 200533238 第20圖是顯示比較例中所使用之有機金屬錯合物之分子 構造之圖。 第21圖是表示有機EL元件之EL光譜之圖。 第22圖是標示有機EL元件之電流密度與外部量子效率之 5 關係之圖表。 第23圖是顯示將關於本發明之有機EL元件使用於被動矩 陣顯示器時之模式立體圖。 第24圖是顯示將關於本發明之有機EL元件使用於動態矩 陣顯示器時之模式立體圖。 10 【圖式之主要元件代表符號表】 1···玻璃製基板 21…驅動電路 2···正極 22"TFT電路 3···電洞輸送層 161…色變換層 4…發光層 191…定常光 5···電子輸送層 192…光電二極體 6···負極 193…分光放射輝度計 7···紅色發光 194,195…鏡子 8···綠色發光 196…樣本 9···青色發光 36• Green light-emitting element portion The phosphor light-emitting solid according to the present invention is used alone or as a guest (refer to Example 4). 20 • Red light-emitting element part ITO (positive electrode) / NPD (hole transporting layer) / 4-dicyanomethylene-6_cp-kilonidinyl styryl group-containing 1% by weight as shown in Figure 14- Alq (electron transport layer and light emitting layer) of 2-dicyanomethylene-6-cp-juloilidinostyryl-2-tert-b utyl-4H-pyran (DCJTB) / Alq / 27 200533238 A1 — Li (negative electrode) • Cyan light-emitting element part IT0 (positive electrode) / NPD / A1 —Li (negative electrode) By using the organic EL display of the organic EL element of the present invention, it is expected that its luminous efficiency is high and its driving life is long. It can be driven stably. The organic EL element can be used as a passive matrix panel or a dynamic matrix panel (for example, Nikkei Kogaku, Eve only, March 13, 2000, No. 765, p55 ~ 62). Fig. 23 shows a case where the organic EL element of the present invention is used in a passive matrix display. Fig. 23 is a configuration example of a positive electrode / hole transporting layer / light emitting layer / electron transporting layer / negative electrode. In No. 23_, the organic EL element is laminated on a glass substrate i: a positive electrode formed from TO 2, a hole transporting layer 3, a light emitting layer 4, an electron transporting layer $, and a negative electrode 6 formed of Mons. The positive electrode 2 formed by YITO is a row electrode. The negative electrode 6 formed of a metal is a column electrode (CD-, electrodes). The far-picture towel 'can realize red light emission 7, green light emission 8, and cyan light emission 9 by changing the light emitting layer forming material 15 used for the light emitting layer 4. The case where the organic EL element of the present invention is used in a dynamic matrix display is shown in FIG. Fig. 24 is also a configuration example of the positive electrode / hole transporting layer / light emitting layer / electron transporting layer / negative electrode. In Fig. 24, the organic EL element is laminated on a glass substrate 1 with a driving circuit 2l, a tft (丁 心 叩 ⑺τ Coffee) circuit 22, a positive electrode formed of ITO 2, a hole transport layer 3, The light emitting layer 4, the electron transport layer 5, and the negative electrode 6 formed of a metal. In this figure, red light emission 7, green light emission 8, and cyan light emission 9 can also be realized by changing the light emitting layer forming material used for the light emitting layer 4. Hereinafter, examples of the present invention will be described. 28 200533238 The three ligands used in the examples of the present invention were synthesized by the method of Stille coupling according to the method of Organometallics (D.J. Cardenas and A.M.Echavarren, Vol. 18, p. 3337 (1999)). These three ligands can also be synthesized by puppetry (References: M.D. Sindkhedkar, H.R. Mulla, M. 5 A. Wurth and A. Cammers-Goodwin, Tetrahedron, Vol. 57 (2001)). Furthermore, the synthesis of metal complexes using three ligands was performed according to the method of the document Organometallics (D.J. Cardenas and A.M. Echavarren, Vol. 18, p. 3337 (1999)). [Synthesis Example 1] (Pt (3,5—bis (2-pyridyl) benzene)) Cl (Pt (3,5 10—di (2-pyridyl) toluene)) C1 (hereinafter abbreviated as: Pt (dpt ) Synthesis of C1)) (1) Synthesis of three ligands 3,5-bis (2-pyridinyl) toluene (3,5-di (2-pyridyl) toluene, hereinafter abbreviated as (dpt)) (Refer to Fig. 17) 3,5-dibromotoluene (6.9 g, 20 mmoL), 2-tri-n-butylmethylstannylpyrene 15 pyridine (26.9 g, 73 mmoL), and bis (triphenyl · phosphine) Palladium chloride (1.55g, 2.2mmoL) and chlorinated chloride (11.7g, 276mmoL) were added to 130mL of toluene and refluxed for 2 days. After cooling, 50mL of a saturated aqueous KF solution was added. The cooled toluene (20 mL x 3) was washed and dried under vacuum. The obtained solid was thoroughly washed in a mixed solution of methane gas and NaHC03. 20 The organic layer was separated and dried with MgSCU powder. The solvent was evaporated to remove the solvent. After that, it was recrystallized with methane gas to obtain 2.2 g of dpt as a gray solid. The yield was 45%. (2) Synthesis of Pt (dpt) C1 (refer to Figure 18) Dpt (300 mg, 1.2 mmoL) and K2 [PtCl] 4 (550mg, 1.3mmoL) 29 200533238 Add to degassed acetic acid (30mL) and reflux at 130 ° C for 2 days. After cooling, light yellow crystals will precipitate, so it is filtered and removed. It is filtered with methanol, water and diethyl ether. The solid was sufficiently washed and dried under vacuum. The obtained crude powder was recrystallized by using dichloromethane to obtain Pt (dpt) Cl as a yellow powder, 436 mg. The yield was 77%. 5 [Synthesis Example 2] (Pt ( 3,5-bis (2-Phenyl) toluene) Cl (Pt (3,5-di (2-quinolyl) toluene) C1 (hereinafter abbreviated as: Synthesis of Pt (dqt) C1)) Three-seat coordination 3,5-di (2-Phenolinyl) toluene (3,5-di (2-quinolyl) toluene) (hereinafter abbreviated as (dqt)) is prepared by burning 2-trin n-10 butyltin Glycoline replaces 2-trin-n-butylmethyltin, and the ratio is 0. Besides, it is synthesized in the same manner as in Synthesis Example 1. The yield is 54%. In addition, Pt (dqt) C1 is a ligand from dpt was replaced by dqt, except that it was synthesized in the same manner as in Synthesis Example 1. The yield was 42%. [Synthesis Example 3] (Pt (3,5-bis (2-pyridinyl) pyridine) Cl (Pt (3 , 5 15-di (2-pyridyl) pyridine) C 1 (hereinafter abbreviated as: Synthesis of Pt (dppr) C1)) Three ligands 3,5-two (2-fixed base) ^ (3,5-di (2-pyridyl) pyridine, abbreviated hereinafter Dppr) was synthesized in the same manner as in Synthesis Example 1 except that 3,5-dibromotoluene was replaced with 3,5-dibromoaridine. The yield is 36%. 20 In addition, except that the ligand was changed from dpt to dppr, the same procedure as in Synthesis Example 1 was performed to synthesize an organometallic complex Pt (dppr) C1. The yield is 14%. [Example 1] A thin film of 2 wt% of Ct doped with Pt (dpt) Cl synthesized in Synthesis Example 1 was prepared by co-evaporation on a quartz glass substrate. The thickness is 50 nm. In addition, a separate film of Alq with a known fluorescence yield was obtained by using 30 200533238 strips as a reference. Furthermore, the phosphorescent quantum yield of the phosphorescent light-emitting solid (thin film) of the present invention was determined by taking the fluorescence quantum yield of the reference Alq film as 22%. The measurement system was performed as follows. That is, in the device of FIG. 19, the constant light 191 of 36511111 is used as the laser, and the photoelectrode 192 (photosensor C2719 made by Hamamatsu Miyuki only) is monitored on 5 sides by the mirror 194, 195 and the sample 196 laser. The transmission amount and the reflection amount were measured by a spectroradiometer 193 (CS-1000 manufactured by S 乂 Shaoxi Co., Ltd.). The phosphorescence quantum yield was calculated by comparing the luminous intensity per unit absorption of laser light with the value of a thin film of a known compound (Alq). 10 Results are shown in Table 1. [Example 2] Except replacing the light-emitting material with Pt (dqt) C1, the quantum yield of phosphorescent emission was measured under exactly the same conditions as in Example 1. The results are shown in Table i. [Example 3] 15 Except that Pt (dppr) C1 was used instead of the luminescent material, the quantum yield of phosphorescent emission was measured under the same conditions as in Example 1. The results are shown in Table 1. Table 1 PL quantum efficiency (%) of luminescent material Example 1 Pt (dpt) Cl 98 Example 2 Pt (dqt) Cl 81 Example 3 Pt (dppr) Cl 59 Comparative example 1 ref.l 3.7 Comparative example 2 ref. 2 1.9 Comparative Example 3 ref. 3 2.5 It is clear from Table 1 that the phosphorescent light-emitting film of the present invention has a very high quantum light emission quantum yield. Borrowing the pt (dpt) ci complex as reported by JAGWilliams et al. In Inorg. Chem. (Vol. 42 20, ρ 8609_8611, 2003), the yield of the photon neutron was 68% in the state of solution 31 200533238 Surprisingly, in the solid state, the phosphorescence quantum yield can be greatly improved by up to 98%. Comparative Examples 1 to 3 (ref.l, ref.2, ref.3) shown in Table 1 show three n, n, and C-type coordinations described in JP-A-2002-363552. Phosphorescent quantum yield of the organometallic complex of the ions 5 in the state of the two-gas methane solution. The molecular structures of these organometallic complexes with three N N C type ligands are shown in FIG. 20. From this comparison, it can be understood that the phosphorescent light-emitting solid (thin film) using an organometallic complex having a> TCTN type ligand of the present invention shows a very high quantum yield of phosphorescence. 10 [Example 4] A Pt (dpt) C1 complex was used to produce a laminated 蜇 organic EL device as described below. The glass substrate with IT0 electrode was washed with water, acrylic acid I, and isopropanol, and a vacuum evaporation device ((lxl (T4Pa), substrate temperature was room temperature)) was used on the glass substrate with ITO electrode with the following The film thickness of the following layers: 15-TNATA (4,4,4 ''-tris (2-naphthylphenylamino) tribenzylamine) as the hole injection layer, 10 NPD is used as a hole transporting layer, and Pt_) is steamed on it. 1 于。 1 in. 3? Doped with 2% by weight of layer 3011111 as the light-emitting layer, 20 nm of BCP steamed as a hole resistance layer, 20 nm of Alq steamed as an electron transport layer, and more LiF with a bond of 0.5 nm is used as an electron injection layer, and the last money chain is 100 nm, which is sealed in a money environment. When a voltage was applied to the device using ⑽ as the positive electrode and the Ming electrode as the negative electrode, green light emission was observed at a voltage of 4V or more. = 2 'shows the emission peak wavelength, current efficiency, power efficiency, and external quantum efficiency when the device is applied at 5v in Examples 4 to 9 and Comparative Examples. In addition, the monthly external electron efficiency indicates the ratio of scale light output to input energy. Current 32 200533238 Efficiency% Force efficiency and external quantum efficiency are values when the wheel current is 0-. [Exemplary Example μ Ft Shiba _ Uqt) C1 replaces the light-emitting material, and an organic EL το component is produced under the same conditions as in Example 45. When IT0 was used as the positive electrode and Shao electrode was used as the negative electrode for 1 press, orange light emission was observed at a voltage of ~. [Embodiment Example 6] 10 15 20 —Put (dPpr) C1 was substituted for the light-emitting material, and an organic EL device was fabricated under exactly the same conditions as in Example 4. Applying a voltage of ιτ〇 as the positive electrode and pure electrode as the negative electrode, a turquoise light emission was observed at a voltage of 4V or more. [Example 7] A polymer organic EL device was produced using a Pt (dpt) C1 complex as described below for a light-emitting layer. Wash the glass substrate with the electrodes with water, acetone, and isopropanol. By spin coating method, PEDQT: m (poly (ethylene diphenanthrene): poly (styrene diacetate)) thin film (5 () nm thick) was used as a hole injection layer, and heated and dried at fine C. 2 hour. A light-emitting layer (35 nm thick) in which 3 weight RPt (dpt) adduct was dispersed in ρνκ (poly (... vinylcarbazole)) was formed on the spin coating film, and baked at 12 (rc for 2 hours. The substrate was moved to a vacuum evaporation device ((1 10 Pa) 'substrate, room temperature), BCp vaporized on the light emitting layer was used as a hole resisting layer, and 2 Gnm of Alq was vaporized thereon as an electron transport layer. In addition, LiF with a bond of 0.5mn as an electron injection layer was evaporated thereon, and finally the ore deposit 100nm was sealed in a nitrogen environment. In this element, IT0 was used as a positive electrode, and an aluminum electrode was used as a negative electrode to apply a voltage. Green light emission was observed above the voltage of 4 V. [Example 8] 33 200533238 Except that Pt (dqt) Cl was used instead of the light-emitting material, an organic EL device was fabricated under exactly the same conditions as in Example 7. ITO was used as the positive electrode. 'Aluminum electrode is applied as a negative electrode and an orange light emission is observed at a voltage of more than 4 V. [Example 9] Pt (dppr) C1 was used instead of the light-emitting material, except that the organic material was produced under the same conditions as in Example 7. EL element. If ITO is used as the positive electrode and aluminum electrode is used as the negative electrode to apply the voltage, then the voltage is observed above 4V. It emits light to turquoise. Table 2 Luminescent wavelength of light-emitting material (nm) Current efficiency (cd / A) Power efficiency (lm / W) External quantum efficiency (%) Example 4 Pt (dpt) Cl 509 45.1 28.0 13.1 Example 5 Pt (dqt) Cl 610 21.0 13.4 10.5 Example 6 pt (dppr) Cl 479 18.3 10.3 7.3 Example 7 pt (dpt) Cl 511 25.2 12.2 7.3 Example 8 pt (dqt) Cl 613 11.2 5.5 5.6 Example 9 pt (dppr ) Cl 479 9.5 3.8 3.8 Comparative Example 4 ref.l 582 4.2 Comparative Example 5 ref. 2 600 2.4 Comparative Example 6 ref. 3 616 Bu 1.4 As can be understood from Table 2, the organic EL element of the present invention (Examples 4 to 9) All 10 exhibited very high EL efficiency. In particular, the element using Pt (dpt) C1 in Example 4 had an external quantum efficiency as high as 13.1% (the maximum value was 5.6V 13.4%). Comparative Examples 4 to 2 in Table 2 In Fig. 6, the current efficiency of the organic EL element described in Japanese Patent Application Laid-Open No. 2002-363552 is the same as that in Table 1. However, the light emission wavelength of the comparative example is a value measured in a dichloromethane solution state, and the current Efficiency 15 shows the efficiency at 25 ~ 30mA / cm2. From comparison with these, we can also know that The invention phosphorescent light emitting organic EL element solid showed a very high luminous efficiency. The original luminous efficiency of the element using Pt (dpt) C1 is very high. The results of plotting the relationship between its EL spectrum, current density, and external quantum efficiency are shown in Figures 21 and 22. 34 200533238 Industrial Applicability According to the present invention, it is possible to provide an organic EL device with high luminous efficiency or an organic EL device with high performance. I: Brief Description of Drawings 3 5 The first drawing is a diagram illustrating a structural part represented by the formula (4). Fig. 2 is a diagram showing examples of Ar1 and Ar3. Fig. 3 is a diagram showing an example of Ar2. FIG. 4 is a diagram illustrating a low-molecular-based host material. Fig. 5 is a diagram illustrating a carbazole compound. 10 FIG. 6 is a diagram illustrating Ar in FIG. 5. FIG. 7 illustrates the linking group R in FIG. 6. Fig. 8 is a diagram showing the structure of CBP. Fig. 9 is a view illustrating a polymer-based host material. Fig. 10 is a diagram showing the structure of starburstamine. 15 Figure 11 is a diagram showing the structure of a TPD. Fig. 12 is a diagram showing the structure of Alq. Fig. 13 is a diagram illustrating a material having a light absorption end having a shorter wavelength than the phosphorescent light-emitting solid of the present invention. Fig. 14 is a diagram showing the structure of DCJTB. 20 FIG. 15 is a schematic side sectional view of an organic EL element. Fig. 16 is a sectional side view of another mode of the organic EL element. Fig. 17 is a diagram showing a synthetic path of dpt. Fig. 18 is a diagram showing a synthetic path of Pt (dpt) C1. Fig. 19 is a diagram showing a method for measuring the quantum yield of phosphorescence. 35 200533238 Figure 20 shows the molecular structure of the organometallic complex used in the comparative example. Fig. 21 is a diagram showing an EL spectrum of an organic EL element. Fig. 22 is a graph showing the relationship between the current density of an organic EL element and the external quantum efficiency. Fig. 23 is a perspective view showing a mode when the organic EL element of the present invention is used in a passive matrix display. Fig. 24 is a perspective view showing a mode when the organic EL element of the present invention is used in a dynamic matrix display. 10 [Representative symbols for main elements of the drawing] 1 ··· Glass substrate 21 · Drive circuit 2 ·· Positive electrode 22 " TFT circuit 3 ·· hole transport layer 161 ... color conversion layer 4 ... light emitting layer 191 ... Constant light 5 ... Electron transport layer 192 ... Photodiode 6 ... Negative electrode 193 ... Spectroradiometer 7 ... Red light 194, 195 ... Mirror 8 ... Green light 196 ... Sample 9 ... Cyan light 36

Claims (1)

200533238 拾、申請專利範圍: 1. 一種磷光發光固體,含有分別配位一個以上之三座配位子 與鹵素原子而形成之有機金屬錯合物,且該三座配位子係 以兩個氮原子、與位於該兩個氮原子間且透過鍵與該兩個 氮原子鍵結之一個碳原子來配位鍵結於中心金屬原子。 2. 如申請專利範圍第1項之磷光發光固體,其中前述有機金屬 錯合物具有以下式(1)表示之構造:200533238 Scope of patent application: 1. A phosphorescent light-emitting solid containing an organometallic complex formed by coordination of one or more three ligands and a halogen atom, and the three ligands are based on two nitrogens. An atom and a carbon atom located between the two nitrogen atoms and bonded to the two nitrogen atoms through a bond are coordinated and bonded to the central metal atom. 2. For example, the phosphorescent light-emitting solid according to item 1 of the application, wherein the aforementioned organometallic complex has a structure represented by the following formula (1): Μ—X …⑴ 10 15 (式(1)中,Μ表示金屬原子,X表示鹵素原子,Ar1,Ar2, Ar3各自獨立地表示可具有取代基之環狀構造,Ar1 —Ar2及 Ar2 — Ar3之鍵可為單鍵或雙鍵,Μ與Ar1及Μ與Ar3具有Μ —N 之配位鍵,Μ與Ar2具有M—C之直接鍵,Ar1,Ar2,Ar3之 取代基可分別在Ar1,Ar2,Ar3上互相鍵結形成環狀構造, 以及分別在Ar1與Ar2相互間、及Ar2與Ar3相互間互相鍵結形 成壞狀構造)。 3.如申請專利範圍第1項之磷光發光固體,其中前述有機金屬 錯合物係分別配位一個以上之三座配位子與iS素原子而形 成者,且該三座配位子係以兩個氮原子與一個碳原子配位 鍵結於中心金屬原子,又,該兩個氮原子、一個碳原子及 中心金屬原子具有兩個5員環縮合之形狀之構造部分,且該 兩個5員環共用該碳原子與中心金屬原子之鍵。 37 200533238 4·如申請專利範圍第丨項之磷光發光固體,其中前述有機金屬 錯合物具有以下式(2)表示之構造部分:M—X… ⑴ 10 15 (In the formula (1), M represents a metal atom, X represents a halogen atom, Ar1, Ar2, and Ar3 each independently represents a cyclic structure which may have a substituent, and Ar1—Ar2 and Ar2—Ar3 The bond can be a single bond or a double bond. M and Ar1 and M and Ar3 have M-N coordination bonds, M and Ar2 have a direct bond of M-C, and the substituents of Ar1, Ar2, and Ar3 can be in Ar1 and Ar2, respectively. Ar3 is bonded to each other to form a ring structure, and Ar1 and Ar2 are each bonded to each other, and Ar2 and Ar3 are bonded to each other to form a bad structure). 3. The phosphorescent light-emitting solid according to item 1 of the patent application, wherein the organometallic complex is formed by coordinating one or more three ligands and an iS element atom, and the three ligands are formed by Two nitrogen atoms and one carbon atom are coordinated and bonded to the central metal atom, and the two nitrogen atoms, one carbon atom, and the central metal atom have two 5-membered ring-condensed structural parts, and the two 5 The member rings share the bond between the carbon atom and the central metal atom. 37 200533238 4. If the phosphorescent light-emitting solid according to item 丨 of the patent application, wherein the aforementioned organometallic complex has a structural portion represented by the following formula (2): (式(2)中,Μ與X同式(1),Υ為相互獨立地表示碳 原子或氮原子,Ν—Υ鍵結部分構成前述式(1)中之Afl或 Ar·3之一部份,苯核可具有取代基,且配位子與中心金屬原 子之鍵以外之鍵可為單鍵亦可為雙鍵)。 5·如申請專利範圍第1項之磷光發光固體,其中前述有機金屬 錯合物具有以下式(3)表示之構造部分:(In the formula (2), M and X are the same as in the formula (1), 表示 represents a carbon atom or a nitrogen atom independently of each other, and the N-Υ bonding portion constitutes a part of Afl or Ar · 3 in the formula (1). The benzene nucleus may have a substituent, and the bond other than the bond between the ligand and the central metal atom may be a single bond or a double bond). 5. The phosphorescent light-emitting solid according to item 1 of the application, wherein the aforementioned organometallic complex has a structural portion represented by the following formula (3): (式(3)中,Μ與X同式(1),苯核可相互獨立地具有取 代基,且取代基可在同一環上或鄰接之環之間相互鍵結)。 6·如申請專利範圍第丨項之磷光發光固體,其中前述有機金屬 錯合物具有以下式(3)表示之構造部分:(In formula (3), M and X are the same as in formula (1), the benzene nuclei may have a substituent independently of each other, and the substituents may be bonded to each other on the same ring or adjacent rings). 6. The phosphorescent light-emitting solid according to item 丨 of the patent application, wherein the aforementioned organometallic complex has a structural portion represented by the following formula (3): (式(3)中,Μ與X同式(1),笨核可相互獨立地具有取 38 200533238 代基,取代基可在同一環上或鄰接之環之間相互鍵結)。 7. 如申請專利範圍第1項之磷光發光固體,其中前述Ar1與Ar3 相互獨立地含有單環或多環之芳香環。 8. 如申請專利範圍第1項之磷光發光固體,其中前述Ar1與Ar·3 5 相同。 9. 如申請專利範圍第1項之磷光發光固體,其中前述有機金屬 錯合物係由一個三座配位子、一個鹵素原子與一個中心金 屬原子形成。 10. 如申請專利範圍第2項之磷光發光固體,其中前述有機金屬 10 錯合物係由一個三座配位子、一個鹵素原子與一個中心金 屬原子形成。 11. 如申請專利範圍第5項之磷光發光固體,其中前述有機金屬 錯合物係由一個三座配位子、一個鹵素原子與一個中心金 屬原子形成。 15 12.如申請專利範圍第6項之磷光發光固體,其中前述有機金屬 錯合物係由一個三座配位子、一個li素原子與一個中心金 屬原子形成。 13.如申請專利範圍第1項之磷光發光固體,其中前述有機金屬 錯合物在固體狀態下為電中性。 20 14.如申請專利範圍第1項之磷光發光固體,其中前述有機金屬 錯合物可藉真空蒸鍍形成膜。 15. 如申請專利範圍第2項之磷光發光固體,其中前述有機金屬 錯合物可藉真空蒸鍍形成膜。 16. 如申請專利範圍第5項之磷光發光固體,其中前述有機金屬 39 200533238 錯合物可藉真空蒸鍍形成膜。 17. 如申請專利範圍第6項之磷光發光固體,其中前述有機金屬 錯合物可藉真空蒸鍍形成膜。 18. 如申請專利範圍第9項之磷光發光固體,其中前述有機金屬 5 錯合物可藉真空蒸鍍形成膜。 19. 如申請專利範圍第10項之磷光發光固體,其中前述有機金 屬錯合物可藉真空蒸鍍形成膜。 20. 如申請專利範圍第11項之磷光發光固體,其中前述有機金 屬錯合物可藉真空蒸鍍形成膜。 10 21.如申請專利範圍第12項之磷光發光固體,其中前述有機金 屬錯合物可藉真空蒸鍍形成膜。 22. 如申請專利範圍第1項之磷光發光固體,係使用純度99.5重 量%以上之前述有機金屬錯合物而形成者。 23. 如申請專利範圍第1項之磷光發光固體,其中前述中心金屬 15 原子為鉑。 24. 如申請專利範圍第2項之磷光發光固體,其中前述中心金屬 原子為I白。 25. 如申請專利範圍第5項之磷光發光固體,其中前述中心金屬 原子為翻。 20 26.如申請專利範圍第6項之磷光發光固體,其中前述中心金屬 原子為翻。 27. 如申請專利範圍第9項之磷光發光固體,其中前述中心金屬 原子為在白。 28. 如申請專利範圍第10項之磷光發光固體,其中前述中心金 40 200533238 屬原子為鉑。 29. 如申請專利範圍第11項之磷光發光固體,其中前述中心金 屬原子為始。 30. 如申請專利範圍第12項之磷光發光固體,其中前述中心金 5 屬原子為始。 31. 如申請專利範圍第15項之磷光發光固體,其中前述中心金 屬原子為翻。 32. 如申請專利範圍第1項之磷光發光固體,其中至少含有各一 個之前述有機金屬錯合物、與具有高於前述有機金屬錯合 10 物之第一激光三重態激光能量之有機材料。 33. 如申請專利範圍第1項之磷光發光固體,其中前述有機材料 含有可具有取代基之咔唑或其衍生物。 34. 如申請專利範圍第2項之磷光發光固體,其中前述有機材料 含有可具有取代基之咔唑或其衍生物。 15 35.如申請專利範圍第5項之磷光發光固體,其中前述有機材料 含有可具有取代基之咔唑或其衍生物。 36. 如申請專利範圍第6項之磷光發光固體,其中前述有機材料 含有可具有取代基之咔唑或其衍生物。 37. 如申請專利範圍第9項之磷光發光固體,其中前述有機材料 20 含有可具有取代基之咔唑或其衍生物。 38. 如申請專利範圍第15項之磷光發光固體,其中前述有機材 料含有可具有取代基之咔唑或其衍生物。 39. —種有機電致發光元件,係使用申請專利範圍第1〜38項任 一項之磷光發光固體而形成者。 41 200533238 40. 如申請專利範圍第39項之有機電致發光元件,係在發光層 内含有前述磷光發光固體。 41. 如申請專利範圍第40項之有機電致發光元件,其中前述磷 光發光固體係作為主體或客體產生機能。 5 42.如申請專利範圍第41項之有機電致發光元件,係於前述發 光層中含有前述磷光發光固體與低分子主體材料。 43. 如申請專利範圍第41項之有機電致發光元件,係於前述發 光層中含有前述罐光發光固體與高分子主體材料。 44. 如申請專利範圍第39項之有機電致發光元件,係在色變換 10 層内含有前述填光發光固體。 45. —種有機電致發光裝置,係使用申請專利範圍第40〜44項任 一項之有機電致發光元件而形成者。 46. —種有機電致發光顯示器,係使用申請專利範圍第40〜44項 任一項之有機電致發光元件而形成者。 15 47. —種有機電致發光照明裝置,係使用申請專利範圍第40〜44 項任一項之有機電致發光元件而形成者。 42(In the formula (3), M and X are the same as the formula (1). The stupid core may independently have a substituent of 38 200533238, and the substituents may be bonded to each other on the same ring or adjacent rings). 7. The phosphorescent light-emitting solid according to item 1 of the application, wherein the aforementioned Ar1 and Ar3 independently contain a monocyclic or polycyclic aromatic ring. 8. The phosphorescent light-emitting solid according to item 1 of the patent application, wherein the aforementioned Ar1 is the same as Ar · 3 5. 9. The phosphorescent light-emitting solid according to item 1 of the patent application, wherein the aforementioned organometallic complex is formed by a three-segment ligand, a halogen atom and a central metal atom. 10. The phosphorescent light-emitting solid according to item 2 of the patent application, wherein the organometallic 10 complex is formed by a three-segment ligand, a halogen atom, and a central metal atom. 11. The phosphorescent luminescent solid according to item 5 of the patent application, wherein the aforementioned organometallic complex is formed by a three-segment ligand, a halogen atom and a central metal atom. 15 12. The phosphorescent light-emitting solid according to item 6 of the application, wherein the aforementioned organometallic complex is formed by a three-block ligand, a li element atom, and a central metal atom. 13. The phosphorescent light-emitting solid according to item 1 of the application, wherein the aforementioned organometallic complex is electrically neutral in a solid state. 20 14. The phosphorescent luminescent solid according to item 1 of the application, wherein the organic metal complex can be formed into a film by vacuum evaporation. 15. For example, the phosphorescent light-emitting solid according to item 2 of the application, wherein the aforementioned organometallic complex can be formed into a film by vacuum evaporation. 16. For example, the phosphorescent light-emitting solid of item 5 of the application, wherein the aforementioned organometallic 39 200533238 complex can be formed into a film by vacuum evaporation. 17. For example, the phosphorescent light-emitting solid according to item 6 of the application, wherein the aforementioned organometallic complex can be formed into a film by vacuum evaporation. 18. For example, the phosphorescent light-emitting solid according to item 9 of the application, wherein the organometallic complex 5 can be formed by vacuum evaporation. 19. For example, the phosphorescent light-emitting solid according to item 10 of the application, wherein the organic metal complex can be formed into a film by vacuum evaporation. 20. For the phosphorescent light-emitting solid according to item 11 of the application, wherein the aforementioned organic metal complex can be formed into a film by vacuum evaporation. 10 21. The phosphorescent luminescent solid according to item 12 of the application, wherein the organic metal complex can be formed into a film by vacuum evaporation. 22. For example, the phosphorescent light-emitting solid according to item 1 of the scope of patent application is formed by using the aforementioned organometallic complex with a purity of 99.5 wt% or more. 23. The phosphorescent light-emitting solid according to item 1 of the application, wherein the aforementioned central metal 15 atom is platinum. 24. The phosphorescent light-emitting solid according to item 2 of the patent application, wherein the aforementioned central metal atom is I white. 25. The phosphorescent light-emitting solid according to item 5 of the patent application, in which the aforementioned central metal atom is a flip. 20 26. The phosphorescent light-emitting solid according to item 6 of the patent application, wherein the aforementioned central metal atom is a flip. 27. The phosphorescent light-emitting solid according to item 9 of the application, wherein the aforementioned central metal atom is white. 28. For example, the phosphorescent light-emitting solid according to item 10 of the application, wherein the aforementioned central gold 40 200533238 belongs to platinum. 29. For the phosphorescent light-emitting solid according to item 11 of the application, wherein the aforementioned central metal atom is the starting point. 30. For example, the phosphorescent light-emitting solid according to item 12 of the application, wherein the aforementioned central metal atom is atomic. 31. For example, the phosphorescent light-emitting solid according to item 15 of the patent application, wherein the aforementioned central metal atom is a flip atom. 32. The phosphorescent light-emitting solid according to item 1 of the application, which contains at least one of the aforementioned organic metal complexes and an organic material having a first laser triplet laser energy higher than the aforementioned organic metal complexes. 33. The phosphorescent light-emitting solid according to item 1 of the application, wherein the aforementioned organic material contains a carbazole or a derivative thereof which may have a substituent. 34. The phosphorescent light-emitting solid according to item 2 of the patent application, wherein the aforementioned organic material contains a carbazole or a derivative thereof which may have a substituent. 15 35. The phosphorescent light-emitting solid according to item 5 of the application, wherein the aforementioned organic material contains a carbazole or a derivative thereof which may have a substituent. 36. The phosphorescent light-emitting solid according to item 6 of the application, wherein the aforementioned organic material contains a carbazole or a derivative thereof which may have a substituent. 37. The phosphorescent light-emitting solid according to item 9 of the application, wherein the aforementioned organic material 20 contains a carbazole or a derivative thereof which may have a substituent. 38. The phosphorescent light-emitting solid according to item 15 of the application, wherein the aforementioned organic material contains a carbazole or a derivative thereof which may have a substituent. 39. An organic electroluminescence element formed by using a phosphorescent light-emitting solid according to any one of claims 1 to 38 in the scope of patent application. 41 200533238 40. The organic electroluminescence element according to item 39 of the scope of patent application, which contains the aforementioned phosphorescent light-emitting solid in the light-emitting layer. 41. The organic electroluminescence element according to item 40 of the application, wherein the phosphorescent solid is used as a host or an object to generate a function. 5 42. The organic electroluminescence device according to item 41 of the scope of patent application, wherein the aforementioned light emitting layer contains the aforementioned phosphorescent solid and low molecular host material. 43. The organic electroluminescence element according to item 41 of the scope of patent application, wherein the aforementioned light emitting layer contains the aforementioned can light emitting solid and polymer host material. 44. For example, the organic electroluminescence element in the 39th scope of the patent application contains the aforementioned light-filled light-emitting solid in the color conversion layer 10. 45. An organic electroluminescence device formed by using an organic electroluminescence element according to any one of claims 40 to 44 in the scope of patent application. 46. An organic electroluminescence display, which is formed by using an organic electroluminescence element according to any one of claims 40 to 44 in the scope of patent application. 15 47. — An organic electroluminescence lighting device formed by using an organic electroluminescence element according to any one of the scope of application for patents Nos. 40 to 44. 42
TW093108735A 2004-03-30 2004-03-30 Phosphorescent solid body, organic electroluminescent element, and organic electroluminescent device TWI245586B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/004485 WO2005103195A1 (en) 2004-03-30 2004-03-30 Phosphorescence emitting solid, organic electroluminescence element and organic electroluminescence device

Publications (2)

Publication Number Publication Date
TW200533238A true TW200533238A (en) 2005-10-01
TWI245586B TWI245586B (en) 2005-12-11

Family

ID=35196959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093108735A TWI245586B (en) 2004-03-30 2004-03-30 Phosphorescent solid body, organic electroluminescent element, and organic electroluminescent device

Country Status (2)

Country Link
TW (1) TWI245586B (en)
WO (1) WO2005103195A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8106199B2 (en) 2007-02-13 2012-01-31 Arizona Board Of Regents For And On Behalf Of Arizona State University Organometallic materials for optical emission, optical absorption, and devices including organometallic materials
US20110301351A1 (en) 2007-12-21 2011-12-08 Arizona Board Of Regents For And On Behalf Of Arizona State University Platinum (II) Di (2-Pyrazolyl) Benzene Chloride Analogs and Uses
US8389725B2 (en) 2008-02-29 2013-03-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Tridentate platinum (II) complexes
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
US9502671B2 (en) 2014-07-28 2016-11-22 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US9865825B2 (en) 2014-11-10 2018-01-09 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312235B (en) * 1999-05-13 2010-06-09 普林斯顿大学理事会 Very high efficiency organic light emitting devices based on electrophosphorescence
TWI243197B (en) * 2001-03-08 2005-11-11 Univ Hong Kong Organometallic light-emitting material
JP2003077673A (en) * 2001-06-19 2003-03-14 Honda Motor Co Ltd Organic electroluminescent element
JP2003073355A (en) * 2001-09-04 2003-03-12 Toyota Central Res & Dev Lab Inc Metal complex compound and organic electroluminescent device using the same
JP2004006287A (en) * 2002-04-12 2004-01-08 Konica Minolta Holdings Inc Organic electroluminescent device
EP1577300A1 (en) * 2002-11-01 2005-09-21 Takasago International Corporation Platinum complexes
WO2004039914A1 (en) * 2002-11-01 2004-05-13 Takasago International Corporation Luminescents

Also Published As

Publication number Publication date
WO2005103195A1 (en) 2005-11-03
TWI245586B (en) 2005-12-11

Similar Documents

Publication Publication Date Title
JP4313308B2 (en) Organic metal complex, organic EL element, and organic EL display
KR102113251B1 (en) Light-emitting element
KR101457838B1 (en) Light-emitting element, light-emitting device, lighting device, and electronic device
CN100546993C (en) Organometallic complex, light-emitting solid, organic electroluminescent device and display of organic electroluminescence
JP4944557B2 (en) Organic light emitting device
CN110492005B (en) Organic electroluminescent device with exciplex as main material
CN104781232B (en) Nitrogen-containing heterocyclic derivative, material for organic electroluminescent element using same, and organic electroluminescent element and electronic device using same
JP4786917B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
JP7255592B2 (en) organic light emitting device
JP2002540572A (en) Cyclometallated metal complexes as phosphorescent dopants in organic LEDs
WO2005089027A1 (en) Material for organic electroluminescent element and organic electroluminescent element employing the same
JP4880450B2 (en) Organometallic complex, luminescent solid, organic EL device and organic EL display
TW202017742A (en) Light-emitting element, display including same, illumination apparatus, and sensor
KR101765199B1 (en) Iridium complex compounds and organic electroluminescent device using the same
TW200533238A (en) Phosphorescent solid body, organic electroluminescent element, and organic electroluminescent device
KR101516279B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP5143245B2 (en) Organic light emitting device
KR20070045361A (en) Metal complex, luminescent solid, organic el element, and organic el display
TWI683802B (en) Aromatic ketone compound and organic light-emitting element using the same
EP4340581A1 (en) An electroluminescent device comprising an anode layer, a cathode layer, a first emission layer, a hole injection layer and a first hole transport layer that comprises a compound containing a metal
JP2005089367A (en) Metal complex compound and organic electroluminescent device using the same

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent