WO2005102740A1 - Assembly of tire and rim, and hollow particles placed inside the assembly - Google Patents

Assembly of tire and rim, and hollow particles placed inside the assembly Download PDF

Info

Publication number
WO2005102740A1
WO2005102740A1 PCT/JP2005/007705 JP2005007705W WO2005102740A1 WO 2005102740 A1 WO2005102740 A1 WO 2005102740A1 JP 2005007705 W JP2005007705 W JP 2005007705W WO 2005102740 A1 WO2005102740 A1 WO 2005102740A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
pressure
rim
hollow particles
hollow
Prior art date
Application number
PCT/JP2005/007705
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Teratani
Koshito Fujita
Koji Otani
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Publication of WO2005102740A1 publication Critical patent/WO2005102740A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C29/00Arrangements of tyre-inflating valves to tyres or rims; Accessories for tyre-inflating valves, not otherwise provided for
    • B60C29/06Accessories for tyre-inflating valves, e.g. housings, guards, covers for valve caps, locks, not otherwise provided for
    • B60C29/062Accessories for tyre-inflating valves, e.g. housings, guards, covers for valve caps, locks, not otherwise provided for for filling a tyre with particular materials, e.g. liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/01Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional inflatable supports which become load-supporting in emergency
    • B60C17/02Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional inflatable supports which become load-supporting in emergency inflated or expanded in emergency only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/04Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency
    • B60C17/06Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency resilient
    • B60C17/066Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency resilient made-up of plural spherical elements provided in the tyre chamber

Definitions

  • the present invention relates to a tire / rim assembly and hollow particles arranged inside the assembly.
  • the present invention relates to an assembly of a tire and a rim that safely and reliably realizes a minimum movement to a place where tire repair can be performed after a puncture state after being injured.
  • it can be realized by combining a general-purpose tire and a general-purpose rim, and is excellent in durability, ride comfort, fuel economy and versatility in regular driving before tire injury, without sacrificing productivity.
  • the present invention relates to an assembly of a tire and a rim, which can provide low-cost running safety during a puncture.
  • a pneumatic tire for example, a tire for a passenger car
  • air is sealed under a pressure of about 150 to 250 kPa with a gauge pressure of about 150 kPa in a tire air chamber to generate tension in a tire skeleton such as a carcass and a belt of the tire.
  • a tire air chamber With this tension, the tire can be deformed and restored in response to the input to the tire.
  • a constant tension is generated in the tire skeleton to provide a load supporting function and to increase rigidity to improve driving, braking and turning performance.
  • the basic performance required for driving a vehicle is provided.
  • the method of adding the side reinforcing layer increases the tire weight by 30% to 40% and increases the hysteresis loss of the tire. I can't avoid evil daggers.
  • the increase in tire weight described above leads to an increase in the weight under the panel of the vehicle, and in combination with the increase in the panel constant of the tire!]
  • the ride comfort during normal driving is reduced.
  • the driving input to the suspension increases due to the increase in the panel constant of the tires, so a design change is required to improve the durability of the underbody of the vehicle. Therefore, when the tire is mounted on an existing vehicle for repair, there is a danger of failure due to insufficient durability of the underbody.
  • a rim is attached to a rim or the like in order to avoid heat generation in a sidewall portion due to relatively high-speed running over a long distance.
  • a runflat tire has been proposed in which the internal support is fixed to support the load during puncturing.
  • the problem is that the work of assembling the tire on the rim by placing the internal support inside the tire is troublesome and takes a long time.
  • infrastructure special training of assembly workers, etc. Is essential, and there are still many issues in providing services that are not very versatile.
  • the addition of the internal support increases the total weight by 30 to 40%. is there.
  • the first is a sealant tire.
  • a highly adhesive layer is disposed on the inner surface of the tire, and when a foreign substance stuck in the tire comes off, the damaged portion is sealed with the adhesive layer.
  • this type only delays the decrease in the internal pressure of the damaged tire. If the tire internal pressure becomes zero during parking, for example, subsequent running (so-called run flat running) cannot be performed. Therefore, spare tires are indispensable for subsequent driving, and replacement work on the spot is required. Further, the adhesive layer near the foreign matter may be hardened due to thermal aging, and the sealing ability is not reliable. Therefore, the practicality is not sufficient.
  • the second is a puncture repair agent. It is composed of an electric pump that feeds sticky sealing liquid and compressed air, and repairs tires after injury as soon as possible. In the case where the pressure in the tire chamber becomes zero while parking, and if this fact is noticed, the vehicle can be driven after the above-mentioned repair. However, it is necessary to choose a safe place for repairs.Especially on ice or snowy roads in winter or in insecure security! Parking is possible This should be avoided only in the event of a puncture in a secure parking lot.
  • a tire having a foam having closed cells filled into an internal cavity of an assembly of a tire and a rim to be mounted on the tire is disclosed in, for example, JP-A-6-127207 and JP-A-6-183226. It is described in Japanese Unexamined Patent Publication No. Hei 7-186610 and Japanese Unexamined Patent Publication No. Hei 8-332805. These proposed tires are mainly limited to specialty or small tires such as agricultural tires, rally tires, motorcycle tires and bicycle tires. Therefore, its application to tires, such as tires for passenger cars and tires for trucks and buses, which can withstand long-term use at high running speeds and in which rolling resistance and ride comfort are particularly important, has been unknown. Since all foams have low foaming ratios, the weight of the foam is inevitably reduced due to the vibration ride comfort and fuel economy, and the inside of the closed cells is at atmospheric pressure. Therefore, it was not functionally sufficient to replace conventional high-pressure air with tires.
  • Japanese Patent No. 2987076 discloses a pancress tire in which a foam filler is inserted into an inner peripheral portion.
  • the foam is disadvantageous. Since it is a urethane-based material, it has high self-heating due to large energy loss due to intermolecular hydrogen bonding of urethane groups. Therefore, when the urethane foam is filled in the tire, the foam generates heat due to repeated deformation during rolling of the tire, and the durability is greatly reduced.
  • a material that is difficult to form bubbles independently is used, it is difficult for the bubbles to communicate with each other, and there is a disadvantage in that a desired load supporting ability cannot be obtained.
  • Japanese Patent Application Laid-Open No. 48-47002 discloses that the outer periphery of a multi-cellular body mainly composed of closed cells is integrally formed with an outer coating having a thickness of 0.5 to 3 mm such as rubber or synthetic resin.
  • a tire is filled with a large number of wrapped and expanded pressure bubbles, and the tire is maintained at a specified pressure.
  • Steyr has been proposed.
  • the amount of the foaming agent in the closed-cell-forming raw material to be expanded pressure bubbles is set to be at least equal to or greater than the inner volume of the tire in order to make the pressure inside the cells of the foam higher than normal pressure.
  • the amount of the foaming agent that generates the generated gas is set so that the performance is at least the same as that of a normal pneumatic tire.
  • the force of integrally encapsulating and sealing with an outer coating to prevent the gas inside the bubbles in the inflated pressure foam from dissipating is.
  • Material such as a tubing or a tubing formulation.
  • the tire is sealed with a soft elastic outer coating mainly composed of butyl rubber, which is used for tire tubes and the like and has low nitrogen gas permeability, and many of these are filled in the tire.
  • a soft elastic outer coating mainly composed of butyl rubber, which is used for tire tubes and the like and has low nitrogen gas permeability, and many of these are filled in the tire.
  • an unvulcanized tire tube is used as a soft elastic outer covering film, and an unvulcanized closed cell forming compounding material is used as an inflation pressure foam, and a large number of these are placed inside the tire and rim assembly.
  • foaming is performed by heating to obtain a foam-filled tire.
  • the normal pressure air inside the tire due to the expansion of the foam is naturally exhausted by the exhaust pore force opened in the rim.
  • the internal pressure of a tire for a passenger car is generally set to about 150 to 250 kPa at normal temperature, and therefore, in order to manufacture the above-mentioned foam-filled tire, the vulcanization-molded tire must be heated (1 (About 40 ° C), it is estimated from the gas state equation that the absolute pressure is about 1.5 times the above internal pressure in absolute pressure.
  • the absolute pressure is about 1.5 times the above internal pressure in absolute pressure.
  • the internal pressure at room temperature greatly exceeds 300 kPa due to the increase in the compounding amount of the foaming agent. It was difficult.
  • the method of increasing the heating temperature causes a problem in durability in long-term use because the tire is greatly damaged due to thermal aging and the durability of the tire is greatly deteriorated.
  • a large number of inflated pressure bubbles wrapped in a soft elastic outer coating are arranged inside the tire and rim assembly! There are serious problems with durability, such as friction with the inner surface and the inner surface of the rim. From the above, the above problem is caused by the fact that the shape of the inflated pressure bubble is an integral donut shape.
  • the soft elastic outer coating film a composition mainly composed of butyl rubber having low nitrogen gas permeability, such as a tire tube, is used.
  • butyl rubber has a very slow vulcanization reaction speed.
  • a large heating time is required at a temperature of about 140 ° C. This means that the crosslink density of the soft elastic outer coating film is insufficient, and it is needless to say that the soft elastic outer coating film is one of the causes of peeling.
  • the extension of the heating time further increases the damage of the tire due to the heat aging described above.
  • Japanese Patent Application Laid-Open No. 51-126604 has an invention in which a hollow sphere containing gas is disposed in a tire to seal a puncture damaged portion to delay internal pressure leakage.
  • a large number of hollow particles obtained by heating and expanding inflatable resin particles using a liquid gas as an inflating material are arranged in a tire.
  • the pressure in the hollow portion after the heat expansion is determined by the ambient temperature and the vapor pressure of the gas, when the air is filled in the tire and filled to a predetermined internal pressure, the hollow particles are low due to the low pressure in the hollow portion.
  • the spherical shape cannot be maintained, and it exists in the tire in the shape of a crushed rugby ball.
  • Such a collapsed shape is not preferable for sealing a damaged portion at the time of puncturing.
  • the hollow particles can maintain a substantially spherical shape, so that the damaged portion can be sealed with a nail of about 2.5 mm ⁇ .
  • the damaged part with a 2.5 mm diameter nail cannot be sealed, and hollow particles will be ejected.
  • the average diameter of foreign matter sticking to the tire is about 3.5 mm ⁇ , so the above technology is not sufficient.
  • the present invention provides a thread between a tire and a rim that safely and reliably realizes minimum movement from a punctured state after a tire is injured to, for example, a place where tire repair can be performed. It is also intended to provide in three dimensions.
  • Another object of the present invention is to provide low-cost running during puncture at a low cost without sacrificing productivity, while being excellent in durability, riding comfort, fuel economy, and versatility in regular driving before tire damage. It is an object of the present invention to provide air particles suitable for being placed inside the above-described tire and rim assembly, which ensures safety.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, when gas in the tire chamber has leaked due to injury, the minimum pressure of the tire chamber required for subsequent traveling has been reduced.
  • the present inventors have found that it is necessary and effective to simultaneously recover the lost pressure by appropriately applying the pressure and to suppress the tire temperature during normal running, and have completed the present invention.
  • the gist configuration of the present invention is as follows.
  • a tire is mounted on a rim, and a large number of substantially spherical hollow particles composed of a continuous phase of thermally expandable resin and closed cells are arranged in a tire chamber partitioned by the tire and the rim. Further, an assembly of a tire and a rim, in which the tire chamber is filled with a high-pressure gas exceeding the atmospheric pressure, wherein the tire chamber is in a state where the pressure of the tire chamber has been reduced to the atmospheric pressure, and the tire chamber is running.
  • a tire and rim assembly having a function of recovering the pressure of the tire to at least a pressure at which the side portion of the tire does not contact the ground.
  • Particle volume value The total volume of all hollow particles placed in the tire chamber under atmospheric pressure and the void volume around the particles (cm 3 )
  • Tire air chamber volume The amount of charged air discharged when the air inside the tire and rim assembly is adjusted to the working pressure (kPa) by filling only the air with the air and then the filling pressure is reduced to atmospheric pressure (kPa) cm 3) using the following formula (II) force determined value (cm 3)
  • Tire air chamber volume value (filled air discharge) / (operating internal pressure Z atmospheric pressure)
  • the internal pressure used is a gauge pressure value (kPa)
  • the atmospheric pressure value is an absolute value (kPa) obtained by a barometer.
  • the tire / rim assembly according to any one of the above (2) to (8), wherein the filling rate of the hollow particles is 50 vol% or less.
  • the average particle size force of the hollow particles arranged in the tire air chamber is in the range of 0 ⁇ m to 200 ⁇ m, and the hollow particles An assembly of a tire and a rim, wherein the average true specific gravity of the group is in the range of 0.01 g / cm 3 or more and 0.06 g / cm 3 or less.
  • R 1 and R 2 in the formula are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and a part of the hydrogen atoms of the hydrocarbon group may be replaced with fluorine atoms.
  • the resin which is a continuous phase of the hollow particles is a polybutyl alcohol resin, an acrylonitrile polymer, an acrylic polymer, A thread and three-dimensional structure of a tire and a rim, wherein the tire and the rim are formed by at least one kind of force of any of a lithium polymer.
  • the continuous phase of the hollow particles is composed of an acrylonitrile polymer, and the acrylonitrile polymer is an acrylonitrile polymer, an acrylonitrile polymer.
  • a tire air chamber pressure drop warning function based on wheel speed detection by a wheel speed sensor of an anti-lock brake system, and a tire air chamber by a pressure sensor A tire and rim thread and solid body having one or both of a tire air chamber pressure drop warning function based on a direct pressure measurement method.
  • the tire air chamber may be further placed under atmospheric pressure.
  • the foam has a substantially spherical shape having a diameter of lmm to 15 mm or a cubic shape having a side of lmm to 15 mm, and an average bulk specific gravity of at least 0.06 g Zee.
  • the hollow particles have a hollow portion pressure of 70% or more of the internal pressure of a vehicle-specified tire during normal use, and expand when heated.
  • the expansion start temperature Ts2 of the hollow particles is 1
  • the gas inside the hollow particles before being arranged in the tire is a gas different from the gas filled in the tire chamber. Assembly of tire and rim.
  • the gas inside the hollow particles before being arranged in the tire is a nonflammable gas, and the gas inside the hollow particles in the assembly of the tire and the rim after the internal pressure is applied.
  • the acrylonitrile-based resin is a terpolymer composed of a terpolymer composed of acrylonitrile, methacrylic tritol and methyl methacrylate.
  • Fixing rate ⁇ (Amount of coating used) (Amount of sediment) ⁇ Z (Amount of coating used) X 100
  • a separating funnel 300 cc of at least one solvent selected from n- xane, isopropyl alcohol, ethanol and methanol, and hollow particles having a coating agent weighed in a range of 23 g are added at room temperature. After stirring for 1 minute, the mixture was left standing for 10 minutes, and the precipitate was drained from the funnel and collected.After adding the solvent again, the solvent in the separatory funnel was adjusted to 300 cc. Sampling is repeated four more times, and a total of five sediment components are weighed as the sediment amount after removing the solvent by a standard method, and the mass percentage based on the original hollow particle amount is calculated to be the sediment amount.
  • the pressure in the hollow portion of the hollow particles is higher than the atmospheric pressure, and the expansion start temperature Ts2 when the hollow particles are heated is 9
  • An assembly of a tire and a rim which is in a range of 0 ° C or more and 200 ° C or less, and wherein the melting point Tm of the coating agent is higher than the expansion start temperature Ts2 of the hollow particles.
  • the melting point Tm of the coating agent is determined by the following formula with respect to the expansion start temperature Tsl of the expandable resin particles in which the gas component is sealed in the resin as a liquid foaming agent.
  • the hollow particles are obtained by expanding the expandable resin particles to which the coating agent is attached at a temperature equal to or higher than the melting point Tm of the coating agent. 3D with tires and rims.
  • (A) at least one selected from the group consisting of polyvinyl alcohol resin, acrylonitrile-based polymer, acrylic polymer, and salted bilidene-based polymer
  • (B) at least one selected from di-trosopentamethylenetetramine, azodicarbonamide, paratoluenesulfurhydrazine and derivatives thereof, and oxybisbenzenesulfolhydrhydrazine
  • R 1 and R 2 in the formula are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and a part of the hydrogen atoms of the hydrocarbon group may be replaced with fluorine atoms.) At least one selected from ethereal daggers
  • Fixing rate ⁇ (Amount of coating used) (Amount of sediment) ⁇ Z (Amount of coating used) X 100
  • the hollow particles, wherein the fixing rate of the coating agent determined in the above is 90 mass% or more.
  • a separating funnel 300 cc of at least one solvent selected from n- xane, isopropyl alcohol, ethanol and methanol, and hollow particles having a coating agent weighed in a range of 23 g are added at room temperature. After stirring for 1 minute, the mixture was left standing for 10 minutes, and the precipitate was drained from the funnel and collected.After adding the solvent again, the solvent in the separatory funnel was adjusted to 300 cc. Sampling is repeated four more times, and a total of five sediment components are weighed as the sediment amount after removing the solvent by a standard method, and the mass percentage based on the original hollow particle amount is calculated to be the sediment amount.
  • the pressure in the tire air chamber described in the text is not particularly described, and in some cases, the gauge pressure is used.
  • the coating agent when the coating agent is applied to the surface of the hollow particles according to the above-mentioned means for solving the problems (26) to (34), the uniform distribution of the coating agent on the surface of the hollow particles and the strong coating on the surface can be achieved. Therefore, fusion between the hollow particles can be reliably prevented, and the durability of the hollow particles can be improved. Therefore, as a result of maintaining the original function of the hollow particles until the tire is injured, the high performance of the assembly of the tire and the rim can be guaranteed for a long time.
  • FIG. 1 is a sectional view in the tire width direction showing an assembly of a tire and a rim according to the present invention.
  • FIG. 2 is a cross-sectional view in the tire width direction showing an example of an assembly of a tire and a rim according to the present invention equipped with a tire air chamber pressure drop warning device.
  • FIG. 3 is a view showing an example of a “valve for a tire provided with a filter” which is mounted on an assembly of a tire and a rim according to the present invention and used for filling hollow particles and gas.
  • FIG. 1 showing a cross section in the width direction.
  • the tire 1 is mounted on the rim 2 and the tire 1 and the rim are mounted.
  • a large number of thermally expandable hollow particles 4 composed of a continuous phase made of resin and closed cells are filled and arranged under pressure in a tire air chamber 3 partitioned by a rubber 2.
  • the structure of the tire 1 is not particularly limited as long as it is a variety of automobile tires that comply with the standards, for example, truck and bus tires, passenger car tires, and the like.
  • the present invention is a technology that can be applied to all safety tires that are assembled with a tire and a rim, and the tire shown in the figure is provided with a crown portion of a carcass 6 extending in a toroidal shape between a pair of bead cores 5.
  • This is a general automobile tire in which a belt 7 and a tread 8 are arranged in order outward in the radial direction.
  • reference numeral 9 denotes a valve for supplying and exhausting gas to and from the tire chamber 3
  • 10 denotes an inner liner layer
  • 11 denotes a side portion
  • 12 denotes a space around the hollow particles 4.
  • the hollow particles 4 have closed cells surrounded by a continuous phase of substantially spherical resin, for example, a hollow body having a particle size distribution in the range of about 10 ⁇ m to 500 ⁇ m. Or, it is a spongy structure containing a large number of closed cells with closed cells. That is, the hollow particles 4 are particles containing closed cells which are closed without being communicated with the outside, and the number of the closed cells may be singular or plural. In this specification, this “inside the closed cells of the hollow particle group” is collectively referred to as “hollow portion”.
  • the particles have closed cells means that the particles have a “resin shell” for enclosing the closed cells in a closed state. "Continuous phase on the component composition of the shell made of fat”.
  • the composition of the resin shell is as described below.
  • the hollow particle group which is a large number of the hollow particles 4, is filled and arranged inside the tire air chamber 3 together with the high-pressure gas to partially reduce the "operating internal pressure" of the tire under normal use conditions.
  • the tire 1 When the tire 1 is injured, it serves as a source for expressing the function of restoring the lost pressure in the tire air chamber 3. This “internal pressure recovery function” will be described later.
  • the “operating internal pressure” refers to “the tire air chamber pressure value (gauge pressure value) for each mounting position specified by the automobile manufacturer for each vehicle”.
  • a conventional pneumatic tire travels in a state in which the tire chamber pressure has dropped to atmospheric pressure. Then, the tire is greatly radiused by the load, and the side part is in contact with the road surface, so that the carcass material of the skeleton is fatigued by the heat generated by friction with the road surface and repeated bending deformation, and wear and tear on the side part is reduced. Ultimately, it penetrates into the tire air chamber, causing destruction.
  • the present invention mainly provides that when gas in a tire chamber leaks due to an injury, the minimum tire chamber pressure necessary for subsequent traveling is appropriately given to recover the lost pressure.
  • the purpose is. Therefore, in the present invention, the assembly of the tire and the rim is regarded as a pressure vessel. That is, by temporarily sealing the wound of the pressure vessel damaged by the puncture with the hollow particles arranged in the tire air chamber, the hollow particles function to recover the lost pressure. It is to achieve the purpose. Therefore, as in the case of the conventional pneumatic tire described above, the running itself after puncturing must not cause the tire, that is, the pressure vessel, to break down.
  • the above-described function can be exerted at an early stage, so that the above-described tire destruction can be avoided and the tire can be made to function as a pressure vessel. It is important that the pressure in the tire chamber be restored to "at least the pressure at which the side of the tire does not touch the ground".
  • the filling rate of the hollow particles according to the following formula (I) is preferably 5 vol% or more and 80 vol% or less.
  • the particle volume value is calculated based on the atmospheric pressure of all the hollow particles arranged in the tire chamber. It is the total amount (cm 3 ) of the total volume and the void volume around the particle, and can be calculated by the following method.
  • the average bulk specific gravity of the particles under atmospheric pressure is determined. The method is calculated, for example, by measuring the weight of a known volume at atmospheric pressure. First, the particles are weighed into a graduated cylinder under atmospheric pressure and vibrated in an ultrasonic water bath. When the packing between the particles is stable, the total volume of the particles (including the void volume around the particles) is determined. The average bulk specific gravity under the above atmospheric pressure is calculated by measuring the total weight of the particles. That is, the average bulk specific gravity of the particles under atmospheric pressure is
  • Average bulk specific gravity of particles under atmospheric pressure (total weight of particles) / (total volume of particles) It is.
  • the “particle volume” disposed inside the tire is calculated by measuring the total weight of the particles disposed in the tire air chamber and dividing by the average bulk specific gravity under atmospheric pressure of the particles calculated above. be able to. That is,
  • Particle volume (Total weight of particles filled in tire) Z (Average bulk specific gravity of particles under atmospheric pressure)
  • a method of arranging particles in a tire air chamber while weighing the particles in a container having a known volume can also arrange particles having a desired particle volume in the tire.
  • the tire air chamber volume value is obtained by filling the tire and rim assembly only with air and using the internal pressure.
  • Tire air chamber volume value (filled air discharge amount) / (operating internal pressure Z atmospheric pressure)-( ⁇ )
  • the operating internal pressure is the gauge pressure value (kPa)
  • the atmospheric pressure value is the absolute value of the barometer.
  • the logarithmic value (kPa) the atmospheric pressure is a force expressed in gauge pressure of 0 [kPa] Since the atmospheric pressure value itself fluctuates every day, the absolute value of the barometric force measured at that time is used. Therefore, for example, if the atmospheric pressure at a certain time is 1013 hPa, use 101.3 kPa as the absolute value of the atmospheric pressure in the formula (II).
  • the filling rate of the hollow particles is set to 5 vol% or more and 80 vol% or less will be described in order from a normal use to an aspect in a case where a puncture state occurs.
  • the pressure of the tire air chamber becomes a desired internal pressure such as an internal pressure specified by the mounted vehicle. It is important to fill with a high-pressure gas such as air or nitrogen.
  • the pressure in the hollow portion of the hollow particles (the pressure in the closed cell) is initially increased.
  • the particles are reduced in volume because they are smaller than the pressure in the tire chamber.
  • Hollow particles at this point Has a spherical force rather than a substantially spherical shape, and is distorted by flattening. If the tire starts running with this particle shape flattened and distorted, the hollow particles are more likely to break due to collisions between the particles and collision with the tire and the inner surface of the rim, compared to the spherical case. Become. That is, if the hollow particles are flattened and distorted, the input due to the collision cannot be uniformly dispersed, resulting in a great disadvantage in durability.
  • the hollow particles distorted by flattening are in a state in which the volume is reduced due to the difference between the pressure in the hollow portion and the pressure in the tire air chamber.
  • the pressure in the hollow portions of the hollow particles in other words, the pressure in the closed cells in the particles, can be increased to about the pressure of the tire air chamber. That is, since the flattened hollow particles are deformed, a force is exerted on the shell portion to return to the original substantially spherical shape.
  • the pressure in the hollow portion of the flattened hollow particles is lower than the pressure in the tire chamber, the gas molecules in the tire chamber are converted into a continuous phase by resin in order to eliminate the pressure difference.
  • the hollow portion of the hollow particle is a closed cell and the gas therein is filled with a gas derived from the foaming agent, the gas may be different from the gas in the tire air chamber (the void around the particle).
  • the high-pressure gas in the tire chamber permeates into the hollow particles until the partial pressure difference is eliminated, not only according to the partial pressure difference of the gas but also the simple pressure difference described above.
  • the high-pressure gas in the tire air chamber permeates into the hollow portion of the hollow particles with time, so that the pressure in the tire air chamber is reduced by the amount permeated into the hollow portion.
  • the tire of the present invention which has been adjusted to the desired internal pressure, can be obtained at an early stage by continuously applying a desired pressure after filling with a high-pressure gas. it can.
  • the pressure in the hollow portion of the hollow particle approaches the pressure of the tire air chamber (the void around the particle) and recovers the once reduced particle volume, and the particle shape is flattened. It recovers from the distorted shape to the original roughly spherical shape!
  • the pressure inside the hollow particles increases to at least 70% of the pressure in the tire air chamber during the process, and the particle shape recovers from a flattened state to a substantially spherical shape. In this way, the durability of the particles described above can be guaranteed.
  • the high-pressure gas is interposed around the hollow particles, so that the load imposed on the hollow particles during normal traveling can be reduced to a negligible level, and the above-described particles can be reduced.
  • the particle shape has recovered to a substantially spherical shape, fatigue and destruction applied to the particles due to repeated deformation during rolling of the tire can be significantly reduced, resulting in particle durability. Is not compromised.
  • the pressure inside the particle cavity increases while the particles recover their volume in the desired high-pressure environment such as the internal pressure specified by the vehicle in which the tire is mounted.
  • the pressure in the hollow portion of the hollow particles is at least 70% of the desired pressure in the tire chamber.
  • the setting be as high as 80% or more, 90% or more, and 100% or more.
  • the gap gas around the hollow particles must be reduced.
  • the pressure should be maintained at least 70% or more higher than the desired pressure in the tire chamber, such as the internal pressure specified by the vehicle to be mounted, and an appropriate time should be passed while the pressure is kept applied.
  • the hollow particles are placed in a pressure vessel separate from the tire, the air gap pressure around the particles is kept at least 70% higher than the desired pressure in the tire chamber, and this pressure is applied. It is also desirable to store the pressure-enhanced particles in the hollow portion of the hollow particles together with the surrounding atmosphere in the tire air chamber after storing them in the pressure vessel for an appropriate time while continuing. Tire and rim assembly can be obtained.
  • the above-mentioned appropriate holding time is determined in consideration of the permeability of the void gas to the shell portion of the hollow particle, that is, the continuous phase of the particle, and the partial pressure difference between the gas in the hollow portion of the particle and the void gas. And set it.
  • the type and pressure of the gas to be filled in the tire air chamber are appropriately selected and adjusted, whereby the hollow particles are adjusted.
  • the pressure in the hollow portion of the child can be set in a desired range.
  • the particles in which the pressure in the hollow portion of the hollow particles is at least 70% of the pressure in the desired tire chamber are arranged in the tire chamber to thereby reduce the pressure in the tire chamber.
  • the pressure becomes the atmospheric pressure, when running, at least the side part of the tire It is necessary to restore the pressure in the tire air chamber to the pressure in the tire air chamber at which the tire does not contact the ground.
  • the pressure in the hollow portion of the hollow particles (the pressure in the closed cell) inside the hollow particles that existed under the above-mentioned working internal pressure remains high after the injury while maintaining a high pressure according to the working internal pressure.
  • the particles are present in the tire air chamber while maintaining the particle volume and the pressure in the hollow portion before the injury. Therefore, the rolling of the tire further causes the hollow particles themselves to directly bear the load while causing friction between the hollow particles and self-heating, so that the temperature of the hollow particles in the tire air chamber rapidly rises.
  • the temperature exceeds the thermal expansion start temperature of the resin forming the continuous phase which is the shell of the hollow particles (corresponding to the glass transition temperature of the resin) the shell of the particles is softened. Begin to.
  • the pressure inside the hollow part of the hollow particles is a high pressure corresponding to the used internal pressure, and the pressure inside the hollow part further rises due to the rapid rise in the temperature of the hollow particles, so that the volume of the hollow particles expands at once. Since the void gas around the particles is compressed, the pressure in the tire chamber can be restored to at least the pressure in the tire chamber where the side of the tire does not contact the ground.
  • the pressure in the hollow portion of the hollow particle is set to a pressure higher than the atmospheric pressure by the above mechanism, the internal pressure restoring function can be exhibited.
  • the pressure in the tire chamber is restored to the tire internal pressure at which the side portion does not touch the ground.
  • the filling rate of the hollow particles is less than 5 vol%, the wounded portion can be sealed without any problem, but the absolute amount of the hollow particles is insufficient, so that the side portion does not contact the ground and the pressure level becomes lower. It will be difficult to obtain sufficient resurrection internal pressure.
  • the filling rate of the hollow particles exceeds 80 vol%, some tires expand beyond the above-mentioned expansion start temperature of the hollow particles due to heat generated by particle friction during normal high-speed running, and There is a possibility that the internal pressure recovery function, which is the main function of the present invention, may be lost. The heat generation of the particles during normal use at high speed will be described later.
  • the function of sealing the damaged part by the hollow particles is an essential function that supports the internal pressure recovery function of the present invention.
  • the hollow space is reduced due to the decrease in the volume of the tire chamber due to the decrease in the internal pressure after puncturing and the increase in the radius of the tire.
  • the internal pressure is restored by the particle's expansion as well as the temperature of the particles rises sharply, enabling safe driving after puncture.
  • the inventors of the present invention have conducted intensive studies to solve this problem, and have found a means that can suppress frictional heat generation between particles during the high-speed running of the hollow particles filled in the tire. Reached.
  • the tire rotates at a high speed, thereby generating a centrifugal force according to the speed.
  • the hollow particles arranged in the air chamber of the tire are also subjected to the same centrifugal force.
  • This centrifugal force is proportional to the weight of the particles and to the square of the velocity, and inversely proportional to the radius of the tire.
  • the contact area has no curvature, and The force is almost zero.
  • the hollow particles in the assembly of the tire and the rim which rotate while bearing the load, receive the centrifugal force in the non-contact area as described above, while the centrifugal force is increased at the moment of entering the contact area. It is placed under the input of “repeated fluctuation of centrifugal force” such as exiting.
  • the hollow particle group arranged in the air chamber of the tire it is preferable to minimize the particle weight. That is, it is preferable that the average true specific gravity of the hollow particles be selected as small as possible. It is preferable to select a filling rate as small as possible within the range of “filling rate that exhibits internal pressure recovery function”.
  • the filling rate of the hollow particles is less than 5 vol%, depending on the tire, the side portion does not contact the ground. However, it becomes difficult to obtain a sufficient resurrection internal pressure up to a pressure level.
  • the filling ratio of hollow particles exceeds S80 vol%, some tires expand beyond the expansion start temperature of the hollow particles described above due to heat generated by particle friction during normal high-speed running. This is not preferable because the internal pressure recovery function, which is the main function, may be lost. Therefore, a preferable range of the filling rate of the hollow particles is 5 vol% or more and 80 vol% or less, and furthermore, 70 vol% or less. % Or less, 60 vol% or less, and 50 vol% or less.
  • the average true specific gravity of the hollow particles is preferably in the range of 0.01 to 0.06 gZcc. In other words, if it is less than 0. OlgZcc, the durability of the hollow particles during normal use is reduced, and the above-mentioned “internal pressure recovery function” may be lost during normal use. On the other hand, if it exceeds 0.06 gZcc, the input of the centrifugal force fluctuation in the above-mentioned ordinary high-speed running becomes large, and the calorific value increases.
  • the group of hollow particles arranged in the tire air chamber has a distribution of true specific gravity, and each hollow particle does not necessarily have the same true specific gravity value.
  • the reasons include the non-uniformity of the thermal history during thermal expansion and the retention of the expanded gas due to the foaming agent.
  • ⁇ expandable resin particles '' which are the raw materials of hollow particles, into individual hollow particles that expand by heating, if the heat history during heating is not uniform, the material will expand due to sufficient heat history.
  • expandable resin particles those having a small particle size have a relatively small thickness of the continuous phase, which is the shell of the particles (refers to the skin covering the foaming agent), and have a large particle size. Has a thick shell. Even if the heat history during heating is the same, the retention of the expanding gas generated by heating in the hollow particles depends on the absolute thickness of the shell. Therefore, the particle size before expansion is small! / ⁇ "Expandable resin particles” have a thin shell! As a result, hollow particles with low expansion gas retention and low expansion coefficient are obtained, and the true specific gravity is large.
  • expandable resin particles having a large particle size are hollow particles having high shell gas retention and high expansion coefficient due to the thick shell, and have a small true specific gravity because they can grow to a larger particle size.
  • hollow particles obtained by expanding an expandable composition such as microcapsules have a distribution of particle diameters in a state after expansion, and hollow particles having a small particle diameter are among them. There is a relationship that the true specific gravity is larger and the hollow particles having a larger particle size have a lower true specific gravity.
  • the fully expanded hollow particles have a small true specific gravity, and conversely, the hollow particles whose expansion has been stopped halfway become components having a large true specific gravity.
  • a centrifugal force corresponding to the speed is usually applied under running at an internal pressure.
  • the particles having a large true specific gravity are compared with the particles having a small true specific gravity in the tire air chamber.
  • particles having a small true specific gravity exist near the inner surface of the wheel in the assembly of the tire and the rim, and hollow particles having a large true specific gravity gradually exist as the rotational center force increases.
  • Particles having the largest true specific gravity exist on the inner liner side under the tread, and the particle groups move from the inner side of the wheel toward the inner liner side below the tread (the outer side in the tire rotation radial direction). It has a gradient in true specific gravity.
  • the hollow particles having a large true specific gravity are compared with the hollow particles having a small true specific gravity, and the variation input in the contact region is changed.
  • a large inertial force is generated below. Therefore, the hollow particles having a large true specific gravity move around to separate the coexisting “hollow particles having a smaller true specific gravity”, so that the relative inertial force between the small true specific gravity particles and the large true specific gravity particles is reduced.
  • the difference in kinetic energy due to the difference generates extra interparticle frictional heat, which worsens the heat generation of the whole particles.
  • the heat generation factors of the hollow particles are due to the relative inertial force difference between the large true specific gravity particles and the small true specific gravity particles and the frictional heat generated by the motion.
  • the width of the true specific gravity distribution of the hollow particles may be narrowed.
  • the true true specific gravity side (small particle size side) and the small true specific gravity side (large particle size side) force are also removed by the same volume ratio, so that the average true specific gravity remains unchanged. Since the width of the true specific gravity distribution can be narrowed, it is possible to suppress the above-described difference in the relative inertial force, and it is possible to suppress the heat generation of the entire hollow particle group.
  • a preferable range of the average particle size of the hollow particles is a range of 40 ⁇ m force to 200 ⁇ m.
  • the average particle size of the hollow particles falls below 40 m, the above-described true specific gravity distribution expands, and the heat generation due to frictional heat generated by the relative inertial force difference between the large true specific gravity particles and the small true specific gravity particles causes the heat generation. It is not preferable because it deteriorates.
  • the average particle size of the hollow particles When the force S exceeds 200 m, the hollow particles are directly scattered in a situation where the particles collide with each other during normal driving or when the tire air chamber pressure becomes atmospheric pressure due to nonk. In a situation where the load is supported, the particle force on the large particle size side is selectively destroyed, and there is a possibility that the desired running performance after puncturing may not be obtained, which is not preferable.
  • the present inventors have earnestly studied the actual state of heat generation of the hollow particles, and have further improved the heat resistance and durability of the hollow particles.
  • the hollow particles are obtained by expanding the raw material “expandable resin particles” by heating, and the expandable resin particles have an expansion start temperature Tsl. Furthermore, when the hollow particles obtained by the thermal expansion are heated again, the hollow particles start to expand further, and the expansion start temperature Ts2 of the hollow particles is present.
  • the inventors have produced and studied a lot of hollow particles having expandable resin particles, and as a result, Ts2 is suitable as an index of heat resistance and durability. It has been found that
  • the expansion behavior when the expandable resin particles were thermally expanded was observed. Since the expandable resin particles are in a stage before expanding, the resin shell, whose particle size is extremely small compared to the state of the hollow particles, is extremely thick. Therefore, the rigidity of the microcapsule is high. Therefore, even if the continuous phase of the resin shell exceeds the glass transition point in the process of thermal expansion, the expanding force of the internal gas increases the rigidity of the shell until the shell can be softened to some extent by further heating. Can't win. Therefore, Tsl shows a higher value than the actual glass point transfer of the shell.
  • Ts2 is positioned lower than Tsl because the continuous phase in the shell starts expanding at the same time as exceeding the glass transition point.
  • Ts2 should be used as an index instead of the conventional Tsl.
  • the hollow particles have a Ts2 of 90 ° C or more and 200 ° C or less. This is because if the Ts2 of the hollow particles is less than 90 ° C, the hollow particles may start re-expanding before the tire reaches the guaranteed speed, depending on the selected tire size. On the other hand, when the temperature exceeds 200 ° C, the expansion start temperature Ts2 may not be reached even if the temperature rises sharply due to the frictional heating of the hollow particles during run flat running after puncture, In some cases, it may not be possible to achieve the desired “internal pressure recovery function”.
  • the range of Ts2 is 90 ° C or more and 200 ° C or less, preferably 130 ° C or more, more preferably 150 ° C or more, and most preferably 160 ° C or more. .
  • R 1 and R 2 in the formula are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and a part of the hydrogen atoms of the hydrocarbon group may be replaced with fluorine atoms.
  • At least one selected from the group consisting of ether compounds represented by the formula The gas charged into the tyre chamber may be air, but if the gas force in the particles is not S-fluoride, the safety factor is oxygen-free gas, such as nitrogen or inert gas. Are preferred.
  • the method for obtaining hollow particles having closed cells is not particularly limited, but a method is generally used in which "expandable resin particles" are obtained using a blowing agent, and these are heated and expanded.
  • the foaming agent include a method utilizing a vapor pressure of a high-pressure compressed gas and a liquefied gas, and a method utilizing a thermally decomposable foaming agent which generates a gas by thermal decomposition.
  • many pyrolytic foaming agents have the characteristic of generating nitrogen. Particles obtained by appropriately controlling the reaction of expandable resin particles obtained by foaming with these mainly contain bubbles mainly in bubbles. It will have nitrogen.
  • thermally decomposable blowing agent examples include, but are not particularly limited to, dinitrosopentamethylenetetramine, azodicarbonamide, paratoluenesulfonylhydrazine and derivatives thereof, and oxybisbenzenesulfonylhydrazine. it can.
  • R 1 and R 2 in the formula are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and a part of the hydrogen atoms of the hydrocarbon group may be replaced by fluorine atoms
  • This is a method in which at least one selected from the group consisting of ethereal conjugates and powers represented by the formula is liquefied under high pressure as a foaming agent, and emulsion polymerization is carried out while dispersing in a reaction solvent.
  • the surface of the “expandable resin particles” is coated with an anti-blocking agent such as silica particles, fine powder of bonbon black, an antistatic agent, a surfactant, an oil agent, etc., and then heated and expanded.
  • an anti-blocking agent such as silica particles, fine powder of bonbon black, an antistatic agent, a surfactant, an oil agent, etc.
  • an anti-blocking agent such as silica particles or the like is applied to the surface of the "expandable resin particles".
  • the desired hollow particles can be obtained by coating with carbon black fine powder, an antistatic agent, a surfactant, an oil agent, and the like, followed by heat expansion.
  • the resin constituting the continuous phase is made of a material having low gas permeability, specifically, an acrylonitrile-based copolymer, an acrylic copolymer, a vinylidene chloride-based copolymer, and a polybutyl alcohol resin.
  • Acrylonitrile Z styrene resin AS
  • PE polyethylene resin
  • PP polypropylene resin
  • PET polyester resin
  • PS ZPE polystyrene Z polyethylene copolymer
  • acrylonitrile-based polymer acrylic polymer, and salted biureiden polymer, and polyvinyl alcohol resin.
  • acrylonitrile-based polymer acrylonitrile polymer, acrylonitrile Z-methacrylonitrile copolymer, acrylonitrile Z-methyl methacrylate copolymer, acrylonitrile Z-methacrylonitrile Z-methyl methacrylate terpolymer, and acrylonitrile terpolymer Crylo-tolyl Z methacrylonitrile Z methacrylic acid terpolymer
  • MMA methyl methacrylate resin
  • MMAZ AN methyl methacrylate Z acrylonitrile copolymer
  • MMAZMAN methyl methacrylate Z-methatary mouth-tolyl copolymer
  • a monomer constituting the polymer is a polymer selected from acrylonitrile, methacrylonitrile, methyl methacrylate, methacrylic acid, and bi-lidene chloride, and preferably acrylonitrile Z methacrylonitrile Z methyl methacrylate Polymer, Atari mouth-to-tril Z methacrylonitrile Z methacrylic acid terpolymer strength At least one selected is recommended.
  • the gas permeability coefficient 300X in 30 ° C 10- 12 (cc'cm / cm 's'cmHg) or less, preferably the gas permeability coefficient at 30 ° C 20X 10- 12 (cc'c m / cm 2 ' s'cmHg) or less, more preferably the gas permeability coefficient at 30 ° C is 2 X 10- 12 (cc'cmZcm 2' is recommended that at S'cmHg) less .
  • the maintainability of the point force peach 20X10- 12 (cc-cm / cm 2 's'cmHg ) or less, still more preferably not be a 2X 10- 12 (cc'cm / cm 2 's'cmHg) below.
  • the average bulk specific gravity is set to the average true specific gravity of the hollow particles.
  • Means for mixing a large number of larger foams into the hollow particle group is effective. More specifically, it has a substantially spherical shape with a diameter of 1 to 15 mm or a cubic shape with a side of 1 to 15 mm, has independent or open cells, has an average bulk specific gravity of 0.06 to 0.3 gZcc, and has an average particle true size.
  • the inner surface force of the damaged part and the damaged path to the tire outer peripheral surface are not straight but have an intricately complicated shape.Therefore, the particles including the inner surface wound force of the tire are impeded from moving along the path, resulting in a large number of particles.
  • the hollow particles collect in a compressed state on the inner surface of the damaged part, and the damaged part is temporarily sealed.
  • tentatively sealing refers to a state in which the hollow particles themselves do not leak, but the void gas around the particles gradually leaks.
  • the sealing level can be improved as follows.
  • the foam when the foam is a foam made of thermoplastic urethane having open cells, the foam easily adheres to the shape of the wound having high compressibility, and as a result, a large wound is extremely formed by the foam. Since the complicated and finely dispersible gas flow path can be changed to a state most suitable for sealing with the hollow particles, it is a very effective means.
  • the tire air chamber pressure drop warning function based on the wheel speed detection by the wheel speed sensor of the anti-lock brake system and the tire air chamber pressure reduction by the pressure sensor are further provided. It is preferable to provide one or both of the tire chamber pressure decrease warning functions based on the direct measurement method.
  • Figure 2 An example of a structure for mounting this type of sensor 9A to a tire is shown.
  • the vehicle travels while the pressure in the tire air chamber is reduced due to puncture, the internal pressure is restored by the above-described mechanism, and depending on the situation, there may be a case where the driver is not aware of the driver's tire damage. Since the tires themselves are injured by puncture, if they continue to drive, the tires may break down, which is very dangerous. Therefore, it is preferable to use the above-mentioned tire internal pressure drop warning function together.
  • the tire valve includes a filter that blocks hollow particles in the tire air chamber and allows only gas to pass out of the tire air chamber.
  • a tire valve having a structure having a filter 13 which can be made of, for example, a non-woven fabric is used for a supply / exhaust knob 9 attached to a valve mounting port 14 of a rim 2 as shown in FIG. I do.
  • an adhesion inhibitor around the hollow particles, for example, as described in JP-A-2003-306006.
  • the anti-adhesion agent is used to prevent the hollow particles expanded due to heat from fusing together to form a fused body after the internal pressure recovery function of the hollow particles after the puncturing is developed. It is for reforming.
  • the adhesion preventive agent mainly adheres to the surface of the hollow particles with a physical attraction force or frictional force, the distribution on the surface of the hollow particles tends to be uneven.
  • the adhesion preventing agent may be peeled off from the surface of the hollow particles due to the adhesion due to the physical adhesion force or the frictional force, and the effect of preventing fusion may not be sufficiently obtained.
  • adding an anti-adhesion agent In some cases, a large difference in specific gravity between the hollow particles and the anti-adhesion agent causes the two to separate in the tire, so that the desired effect may not be obtained.
  • a coating agent is applied to the surface of the hollow particles for the purpose of surface modification of the hollow particles and prevention of fusion between the hollow particles.
  • it is necessary to realize uniform distribution of the coating agent on the surface of the hollow particles and strong adhesion to the surface.
  • the present inventors have intensively studied the durability of hollow particles, specifically heat resistance, based on the actual state of heat generation of the hollow particles, and have further improved the durability (heat resistance) of the hollow particles. .
  • the expansion start temperature Tsl exists in the expandable resin particles, which are the raw materials of the hollow particles, and when the hollow particles obtained by this heat expansion are heated again from room temperature, the hollow particles start to expand further,
  • the expansion start temperature Ts2 of the hollow particles exists, and as described above, Ts2 is appropriate as an index of heat resistance.
  • the coating agent one that is fine particles at normal temperature and can be fixed by colliding with the surface of expandable resin particles that are the raw material of the hollow particles is used.
  • the coating agent is mixed with high-expansion resin particles in a high-speed air current such as a cyclone or jet mill, and collides with both to obtain expandable resin particles with the coating agent fixed on the surface. Can be. Then, if the expandable resin particles are heated to a temperature of Tsl or more to expand, the desired hollow particles having the coating agent fixed thereon through heat can be obtained.
  • the solid fixation of the coating agent on the surface of the hollow particles intended in the present invention is, specifically, the "fixation rate" which is the fixing amount on the surface of the hollow particles with respect to the amount of the coating agent used. Can be expressed.
  • 300 cc of at least one solvent selected from n- xane, isopropyl alcohol, ethanol and methanol, and hollow particles having a coating agent weighed in a range of 23 g are added at room temperature. After stirring for 1 minute, the mixture was left standing for 10 minutes, and the precipitate was drained from the funnel and collected.After adding the solvent again, the solvent in the separatory funnel was adjusted to 300 cc. The collection is repeated four more times, and the total amount of the sediment components for the total five times is weighed as the amount of sediment after removing the solvent by a standard method, and the mass percentage with respect to the amount of the original hollow particles is calculated to be “the amount of sediment”.
  • the “fixing rate” can be determined according to the following equation.
  • Fixing rate ⁇ (Amount of coating used) (Amount of sediment) ⁇ Z (Amount of coating used) X loo
  • the fixing rate determined as described above is 90 mass% or more. That is, the above-mentioned “amount of sediment” refers to the amount of the coating component in a free state, in other words, the amount of the coating agent that could not be fixed on the surface of the hollow particles.
  • the precipitation amount is used coating amount is less than 90 mA SS%, because although the coating agent particles in a free state is a high specific gravity as compared with the hollow particles, hollow particles against the centrifugal force variation input in the tire It is not preferable because heat generation is deteriorated.
  • a more preferable range of the fixing rate is 95 mass% or more, and 99 mass% or more.
  • the coating agent in fixing the coating agent to the surface of the hollow particles through heat, covering the entire surface of the hollow particles with the coating agent is particularly advantageous from the viewpoint of surface modification. It is effective to partially fix the particles on the surface of the particles. In that case, it is preferable that the coating agent is uniformly dispersed on the surface of the hollow particles under the above-mentioned fixing rate.
  • the thermally expandable particles and the coating agent are mixed under a high-speed airflow typified by a jet mill or a cyclone in the state of the thermally expandable particles, which are raw materials of the hollow particles, the two particles are mixed at a high speed.
  • the coating agent can be uniformly attached to the surface of the thermally expandable resin particles.
  • the heat-expandable resin particles are heat-expanded in a desired temperature environment, hollow particles in which the coating agent is uniformly dispersed and fixed can be obtained.
  • the amount of the coating agent used is preferably in the range of 3 to 20 mass% of the amount of the hollow particles, more preferably in the range of 3 to LOmass%. If the amount of the coating agent is less than 3 mas S % of the amount of the hollow particles, it is difficult to obtain the above-mentioned effects using the coating agent, but if it exceeds 20 ma SS %, the excess amount of the coating on the surface of the hollow particles is not obtained. Excessive coating agent particles attached to the surface of the hollow particles increase the specific gravity of the coating material, or excess coating agent particles in the free state as described above. It is not preferable because it induces deterioration of heat generation of hollow particles in response to centrifugal force fluctuation input.
  • a metal salt of an organic acid particularly a metal salt having 14 or more carbon atoms is preferable, and specifically, lithium stearate and magnesium stearate are suitably used. That is, organic acids such as lithium stearate and magnesium stearate A metal salt is a typical compound as a solid lubricant, and a good friction coefficient reduction effect can be obtained in a temperature range equal to or lower than the melting point of the coating agent.
  • the melting point Tm of the coating agent is lower than the expansion start temperature Ts2 of the hollow particles, the following problems may occur.
  • the melting point Tm of the coating material is lower than Ts2, part of the coating material will melt due to reaching Tm during normal driving, even though the hollow particles have not reached the expansion start temperature Ts2.
  • the fluidity of the hollow particles is reduced, and fusion between the hollow particles is caused.
  • the heat generation limit speed originally based on Ts2 of the hollow particles is significantly reduced, which is not preferable because it becomes an obstacle in exhibiting the above-mentioned internal pressure resuming function. Therefore, it is important that the melting point of the coating agent be at least Ts2 or higher.
  • the melting point Tm of the coating agent is equal to or higher than Tsl and the heating temperature during the expansion process of the expandable resin particles is higher than Tm, the melting of the shell resin of the expandable resin particles may occur. At the same time, the coating agent is melted, so that a closer and firmer fixation between the two can be achieved, and the coating of the hollow particle surface with the coating agent can be partially or entirely.
  • the upper limit of the melting point Tm of the coating agent Tsl + 150 ° C or less is preferable.
  • the melting point of the coating material exceeds Tm force Tsl + 150 ° C, it is necessary to heat the coating material to a higher temperature in order to expand it while melting it.In this case, it is difficult to adjust the degree of expansion. It is not preferable because hollow particles having a desired particle diameter and specific gravity cannot be obtained.
  • the rims of the sizes shown in Tables 1 and 2 were incorporated into the tires of the sizes shown in Tables 1 and 2 that satisfied the general structure shown in Fig. 1, and an assembly of passenger car tires and rims was prepared.
  • a target vehicle was selected for each tire size, loaded with a load equivalent to four passengers, and then filled with high-pressure air to adjust the pressure in the tire chamber to 200 kPa.
  • Each tire and rim assembly was mounted on the left front shaft.
  • the tire chamber pressure was gradually released while keeping the load applied, and the tire chamber pressure at which the side of the tire was in contact with the road surface was determined.
  • measurement of the air chamber volume of the assembly using tires and rims is performed according to the following procedure.
  • Step 1 While maintaining a state where no load is applied to the tire and rim assembly, fill it with air at room temperature and adjust to the specified internal pressure (operating internal pressure) P. At this time, the target tire under P
  • V the chamber volume
  • Step 2 Open the tire valve and release the air in the tire chamber to atmospheric pressure P
  • the integrating flow meter includes a DC DRY gas meter DC-2C manufactured by Shinagawa Seiki Co., Ltd.
  • Tire chamber volume value (filled air discharge amount) / (operating internal pressure Z atmospheric pressure)-( ⁇ ), the tire chamber volume V at the operating internal pressure P can be obtained.
  • equation (II) the internal pressure used was a gauge pressure value (kPa), and the atmospheric pressure value was an absolute value (kPa) measured by a barometer.
  • Hollow particles are placed in the tire air chamber, and the desired internal pressure P is maintained for a certain period.
  • V (cm 3 ) void volume around particle under P
  • the volume of the hollow particles decreases, and the volume of the voids around the particles increases accordingly. Therefore, the above measurement was started from a sufficiently low pressure level, and the pressure at which the void volume around the particle began to increase tl was defined as the pressure level in the hollow portion of the hollow particle.
  • Tables 1 and 2 the types of the compositions constituting the continuous phase of the particles are as shown in Table 3.
  • the expandable resin particles shown in Table 3 were heated and foamed to form hollow particles, and the average particle diameter and average true specific gravity of the obtained particle group were measured. The results are shown in Table 4.
  • the hollow particles shown in Table 4 were placed in each tire air chamber at the filling ratios shown in Tables 1 and 2, respectively.
  • the average true specific gravity of the particles is generally measured by a conventional liquid displacement method (Archimedes method) using isopropanol. In the present invention, the normal method is also used.
  • the measuring method of the average particle size and the particle size distribution of the hollow particles is as follows.
  • Dispersion pressure 2. OObar, feed: 50.00%, rotation: 60.00%
  • the measurement is performed under the above conditions, and the following measured values are adopted.
  • the volume-based average particle size is defined as the average particle size value (D50 value) of the present invention.
  • the method of measuring the expansion start temperature Ts2 of each hollow particle is as follows.
  • the expansion start temperature in Table 2 was obtained by measuring the amount of expansion displacement under the following conditions, and setting the temperature at the time of the rise of the amount of expansion.
  • Measurement conditions Heating rate 10 ° CZmin, Measurement start temperature 25 ° C, Measurement end temperature 200 ° C, Measurement physical quantity: Measurement of expansion displacement due to heating.
  • the assembly of the passenger car tire and the rim was filled with air or nitrogen to adjust the internal pressure to 200 kPa, which was the working internal pressure. Then, after studying the particle volume recovery behavior based on the investigation method described below, the holding time corresponding to the desired pressure in the hollow part was determined, and the tire air chamber pressure was maintained at the room temperature. The tire and rim assembly to be evaluated were prepared while recovering the particle volume by increasing the caloric pressure of the hollow particles.
  • a transparent pressure-resistant cylindrical container made of acrylic resin and having a constant inner cross-sectional diameter with an internal volume of about 1000 cm 3 is prepared.
  • this container was filled with a gas to be filled into the tire air chamber until a desired working pressure such as a vehicle-designated internal pressure was reached.
  • a desired working pressure such as a vehicle-designated internal pressure
  • the volume of the particles in the container decreases, and the height of the portion filled with hollow particles inside the container (hereinafter referred to as the hollow particle height) decreases.
  • the container was vibrated for 5 minutes in an ultrasonic water bath or the like, and then allowed to stand for 5 minutes.
  • the time until the target volume recovery rate is reached is calculated, and the tire and rim assembly where the hollow particles are arranged is filled with the gas at the desired pressure, and the above is calculated.
  • the pressure inside the hollow part of the hollow particles was increased by performing a recovery treatment of the total particle volume according to the holding time.
  • the above evaluation assembly adjusted to an internal pressure of 200 kpa was attached to a drum test machine set at a test environment temperature of 38 ° C, and running was started at a speed of 50 kmZh while applying the load shown in Table 1 for 5 minutes. Each time, the speed was increased by 10 kmZh, and when the speed reached 180 kmZh, the vehicle was driven while maintaining the speed, and the changes in the particle temperature in the tire chamber and the pressure in the tire chamber were measured.
  • a pressure sensor for monitoring the pressure in the tire chamber was placed on the inner surface of the rim to be evaluated, and a thermocouple for measuring the temperature of air particles was placed in the center of the inner liner on the inner surface in the tire width direction.
  • the signals of the pressure data and the temperature data were transmitted by radio waves using a commonly used telemeter, and the changes in the tire air chamber pressure and the hollow particle temperature were measured while receiving with the receiver installed in the test room.
  • the particle temperature under the condition of 180 kmZh-constant speed running was determined. This indicates that the lower the particle temperature, the more the frictional heat generation of the particles can be suppressed, and the case where the above-mentioned particle temperature is lower than the expansion start temperature was judged to be acceptable.
  • the evaluation tire was mounted on the left front wheel, and the axle weight of the left front wheel of this vehicle was measured.
  • four nails with a diameter of 5.Omm and a length of 50 mm were stepped from the tread surface of the assembly toward the inside of the tire, and after confirming that the tire chamber pressure was reduced to atmospheric pressure, 90 km
  • the circuit of the test course was run flat at the speed of Zh, and the particle temperature and air chamber pressure in the tire chamber were continuously measured to investigate the state of the internal pressure recovery function.
  • a pressure sensor for monitoring the tire chamber pressure is built in the inner surface of the rim assembly of the tire and rim to be evaluated, and the signal of the measured pressure data is transmitted by radio waves using a commonly used telemeter.
  • the vehicle traveled a maximum of 100 km while measuring changes in pressure by receiving signals with a receiver installed inside the test vehicle. It was judged that the case where the pressure value in the tire chamber due to the expression of the internal pressure recovery function during run-flat running was superior to the aforementioned ⁇ tire chamber pressure value at which the tire side contacted the road surface '' was passed. .
  • Example 1- Comparative Example 1-3 Invention Example 1-8 Invention Example 1-9 Invention Example 1-10 Comparative Example 1-4
  • Tire chamber volume (cm 3 ) 19920 19920 16620 13790 13790 13790 Tire chamber pressure (kPa) 200 200 200 200 200 200 200 200 200 200 200 200 200 200
  • Expansion start temperature of hollow particles Ts2 (° C) 105 105 118 158 158 158
  • a rim of the size shown in Table 5 was installed in a tire of the size shown in Table 5 that satisfies the general structure shown in Fig. 1, and an assembly of a passenger car tire and a rim was prepared.
  • each tire and rim was mounted on the left side of the front shaft.
  • the tire air chamber pressure is gradually released while keeping the load applied, and the force of the tire side contacting the road surface and the tire air chamber pressure value at which the inner surface of the inner liner contacts each other are determined.
  • This tire chamber pressure value was defined as “RF running limit internal pressure value”.
  • the measurement of the air chamber volume of the assembly using the tire and the rim is the same as in the case of the first embodiment. Also, the measurement of the pressure in the hollow portion of the hollow particles arranged in the tire air chamber shown in Table 5 is the same as in Example 1.
  • Table 5 the types of the compositions constituting the continuous phase of the hollow particles are as shown in Table 6.
  • the expandable resin particles shown in Table 6 were heated to expand to form hollow particles, and the average particle size and average true specific gravity of the obtained particle group were measured.
  • Table 7 shows the results.
  • the hollow particles shown in Table 7 were placed in each tire air chamber under the filling ratio shown in Table 5.
  • the assembly of the passenger car tire and the rim was filled with air or nitrogen to adjust the internal pressure to 200 kPa, which is the working internal pressure. Then, based on the investigation method described below, the particle volume recovery behavior was investigated, and the holding time corresponding to the desired pressure in the hollow part was calculated, and the room Preparing the tire and rim assembly to be evaluated while maintaining the tire air chamber pressure in a heating chamber maintained at a temperature or 45 ° C, increasing the hollow part pressure of the hollow particles and recovering the particle volume Was done.
  • the above evaluation assembly adjusted to each internal pressure value was attached to a drum test machine set to a test environment temperature of 38 ° C, and running at a speed of 100 kmZh while applying the load shown in Table 5; The speed was increased by lOkmZh every minute, and changes in particle temperature and tire chamber pressure in the tire chamber were measured.
  • a pressure sensor that monitors tire chamber pressure is placed on the inner surface of the rim to be evaluated, and a thermocouple that measures the temperature of hollow particles is placed at the center of the inner liner inside the tire in the tire width direction.
  • the data and temperature data signals were transmitted by radio waves using a commonly used telemeter, and the changes in tire air chamber pressure and hollow particle temperature were measured while receiving with a receiver installed in the test room.
  • the speed at which lOkmZh was added to the guaranteed speed according to the speed symbol of each tire was evaluated as the "upper limit speed". That is, when the temperature of the hollow particles reached Ts2, which is the expansion start temperature of the hollow particles, before reaching the upper limit speed described above, the traveling was stopped at the speed at that time. When the temperature of the hollow particles did not reach the expansion start temperature Ts2 of the hollow particles even under the upper limit speed, the running was stopped at the upper limit speed. Then, when the speed at the time of determining that the running was stopped was equal to or higher than the guaranteed speed according to the speed symbol of each tire, it was determined to be acceptable.
  • the evaluation tire was mounted on the left front wheel, and the axle weight of the left front wheel of this vehicle was measured.
  • four nails of 5. Omm in diameter and 50 mm in length were inserted into the tire from the tread surface of the assembly. After confirming that the tire chamber pressure has dropped to the atmospheric pressure, run the test circuit around the test course at a speed of 90 km Zh to run flat, and continuously monitor the particle temperature and the chamber pressure in the tire chamber. And the occurrence of internal pressure recovery function was investigated.
  • a pressure sensor for monitoring the tire chamber pressure is built in the inner surface of the rim assembly of the tire and rim to be evaluated, and the signal of the measured pressure data is transmitted by radio waves using a commonly used telemeter.
  • the vehicle traveled a maximum of 100 km while measuring changes in pressure by receiving signals with a receiver installed inside the test vehicle.
  • the above-mentioned “RF traveling limit internal pressure value" which is the “tire air chamber pressure value at which the tire side part touches the road surface or the inner surface of the inner liner is in contact with each other," The test was judged to be acceptable if the pressure in the tire air chamber was superior due to the expression of the resurrection function.
  • High pressure holding environment temperature (° c) 25 25 25 25 25 25 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 Hollow pressure level (kPa) 200 140 175 175 200 200 200 200 200 200 200 200 Ratio of hollow pressure to tire air chamber pressure (%) 100 or more 70 79.5 79.5 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more
  • Methyl / —fluoropropyl ether, methyl / —fluorobutyl ether, and I-chloro-fluorobutyl ether are both mixtures of the normal structure and the iso structure.
  • a rim of the size shown in Table 8 was incorporated into a tire of the size shown in Table 8, and an assembly of a passenger car tire and a rim was prepared.
  • the tire 1 conforms to the general structure of the type and size of the tire.
  • the combination of each tire and rim was attached to the left front shaft.
  • the tire air chamber pressure was gradually released while keeping the load applied, and the tire air chamber pressure value at which the side of the tire was in contact with the road surface or the inner surface of the inner liner was in contact with each other was determined. .
  • This tire chamber pressure value was defined as “RF running limit internal pressure value”.
  • the measurement of the air chamber volume of the assembly using the tire and the rim is the same as in the case of the first embodiment.
  • the measurement of the pressure in the hollow portion of the hollow particles arranged in the tire air chamber shown in Table 8 is the same as that in Example 1.
  • comparative examples and invention examples other than Comparative Example 3-1 were applied to the surfaces of the hollow particles or the expandable resin particles by the procedures shown in Tables 9 and 10 so that the seeds shown in Tables 9 and 10 were obtained.
  • Hollow particles were obtained after applying or fixing the various coating agents according to the methods and conditions shown in Tables 9 and 10, and the hollow particles were applied to the tire chamber. The measurement of the amount of precipitate in the hollow particles with a coating in Table 8 is as described above.
  • the assembly of the tire and the rim was filled with nitrogen, and adjusted to the working internal pressure.
  • the holding time corresponding to the desired pressure in the hollow section was determined, and the tire air chamber was kept in a heating room kept at room temperature or 45 ° C. While maintaining the pressure, the pressure of the hollow portion of the hollow particles was increased to recover the particle volume, and an assembly of the tire and the rim to be evaluated was prepared.
  • Table 8 the types of the compositions constituting the continuous phase of the hollow particles are as shown in Table 9. Hollow particles were obtained by heating and expanding the expandable resin particles shown in Table 9. At that time, in the invention example, the coating agent was attached to the expandable resin particles, and then heated and expanded. Table 10 shows the results of measurement of the average particle diameter and the average true specific gravity of the particle group obtained by pressing. The hollow particles shown in Table 10 were placed in each tire air chamber at the filling ratio shown in Table 8 7.
  • a pressure sensor that monitors and monitors the tire chamber pressure is incorporated on the inner surface of the rim assembly of the tire and rim to be evaluated, and a signal of the measured pressure data is transmitted using a generally used telemeter.
  • the vehicle traveled a maximum of 100 km while measuring the change in pressure by transmitting radio waves and receiving it with a receiver installed inside the test vehicle.
  • the above-mentioned "RF traveling limit internal pressure value" which is the "tire air chamber pressure value at which the tire side part touches the road surface or the inner surface of the inner liner is in contact with each other," The test was judged to be acceptable if the pressure in the tire air chamber was superior due to the expression of the resurrection function.
  • Comparative Example 3-1 is an example in which the coating agent was not used, and the volume of hollow particles was reduced by 10 vol% or more.
  • Comparative Example 3-2 is an example in which Li stearate was directly added to the hollow particles, and the fixation on the surface of the hollow particles was poor, so that the amount of the precipitate was large. Therefore, the coating agent did not function sufficiently on the surface of the hollow particles, and the volume retention of the hollow particles was low.
  • Invention Examples 3-1 and 3-2 were examples in which the coating agent was fixed to the surface of the expandable resin particles and then expanded at a temperature equal to or higher than the melting point Tm of the coating agent to obtain hollow particles. It is. Although the basic performance is sufficient, the Tm is lower than Ts2, and as the temperature of the hollow particles rises during running, a part of the particles melts and the fluidity of the hollow particles is impaired, or a slight decrease in volume is observed.
  • Inventive Examples 3-3 and 3-4 are examples in which a coating agent having a Tm higher than Ts2 was fixed to the surface of expandable resin particles, and expanded at a temperature of Tm or higher to obtain hollow particles. , Good durability, and high volume retention of hollow particles.
  • Inventive Examples 3-5 are examples in which a coating agent having a Tm higher than Ts2 was fixed to the surface of expandable resin particles, and expanded at a temperature lower than Tm to obtain hollow particles. Have A small amount of precipitate is generated, and the volume of the hollow particles is slightly reduced.
  • Inventive Examples 3-6 are examples in which a coating agent having a Tm higher than Ts2 was fixed to the surface of expandable resin particles, and expanded at a temperature higher than Tm to obtain hollow particles. The volume retention of hollow particles is also high.
  • Inventive Example 3-7 is an example in which a coating agent having a Tm higher than Ts2 was fixed to the surface of expandable resin particles, and expanded at a temperature lower than Tm to obtain hollow particles.
  • Inventive Example 3-7 Compared with 5, the use of endurance improver is increased. However, the fixing property of the coating material was lower than that of Invention Examples 3-5, and a precipitate was generated to that extent, and the volume of the hollow particles was slightly reduced.
  • Type of hollow particle • “AT ⁇ iT c ⁇ ⁇ TM-.. Expansion start temperature of expandable resin particles Tsl (° C) 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155
  • Ratio of hollow pressure to ear chamber pressure (%) 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more
  • Tire chamber pressure (kPa) 200 200 220 220 200 200 200 200 200 Load Weight (kN) 5.13 5.13 5.13 3.04 3.75 3.75 8.79 8.79 3.96 Volume of hollow particles before running (cm3) 4230 4240 4230 4230 4240 4230 4230 4240 Hollow particle volume after row (cm3) 3760 3830 4020 4030 4240 4230 4090 4220 4060 Hollow particle volume retention (%) 88.9 90.3 95.0 95.3 100.0 100.0 96.7 99.8 95.8

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

An assembly of a tire and a rim, where the tire is attached to a rim, a large number of substantially spherical hollow particles, each formed from a resin continuous phase and independent bubbles, are placed in a tire air chamber partitioned by the tire and the rim, and a high-pressure gas whose pressure exceeds the atmospheric pressure is put in the tire chamber. When travel starts with the pressure in the tire air chamber decreased to the atmospheric pressure, the pressure in the tire air chamber is recovered to at least a level at which the side portions of the tire are not in contact with the ground. By addition of a function, minimum movement from a flat tire condition after the tire is externally damaged to a place where the tire can be repaired can be safely and reliably realized.

Description

明 細 書  Specification
タイヤとリムとの組立体およびこの組立体の内側に配置する中空粒子 技術分野  TECHNICAL FIELD The present invention relates to a tire / rim assembly and hollow particles arranged inside the assembly.
[0001] 本発明は、外傷を受けた後のパンク状態力 タイヤ修理を行うことが出来る場所ま での最低限の移動を、安全かつ確実に実現するタイヤとリムとの組立体に関する。特 に、汎用のタイヤと汎用のリムとの組み合わせにて実現でき、タイヤ受傷前の常用走 行における耐久性、乗り心地性、省燃費性および汎用性に優れ、かつ生産性を犠牲 にせずに低コストでパンク時の走行安全性を提供できる、タイヤとリムとの組立体に関 するものである。  The present invention relates to an assembly of a tire and a rim that safely and reliably realizes a minimum movement to a place where tire repair can be performed after a puncture state after being injured. In particular, it can be realized by combining a general-purpose tire and a general-purpose rim, and is excellent in durability, ride comfort, fuel economy and versatility in regular driving before tire injury, without sacrificing productivity. The present invention relates to an assembly of a tire and a rim, which can provide low-cost running safety during a puncture.
背景技術  Background art
[0002] 空気入りタイヤ、例えば乗用車用タイヤにおいては、タイヤ気室内部にゲージ圧で 150kPaから 250kPa程度の圧力下に空気を封じ込めて、タイヤのカーカスおよびべ ルト等のタイヤ骨格部に張力を発生させ、この張力によって、タイヤへの入力に対し てタイヤの変形並びにその復元を可能としている。すなわち、タイヤ気室の内圧が所 定の範囲に保持されることによって、タイヤの骨格に一定の張力を発生させて、荷重 支持機能を付与するとともに、剛性を高めて、駆動、制動および旋回性能などの、車 両の走行に必要な基本性能を付与して 、る。  [0002] In a pneumatic tire, for example, a tire for a passenger car, air is sealed under a pressure of about 150 to 250 kPa with a gauge pressure of about 150 kPa in a tire air chamber to generate tension in a tire skeleton such as a carcass and a belt of the tire. With this tension, the tire can be deformed and restored in response to the input to the tire. In other words, by maintaining the internal pressure of the tire air chamber within a predetermined range, a constant tension is generated in the tire skeleton to provide a load supporting function and to increase rigidity to improve driving, braking and turning performance. The basic performance required for driving a vehicle is provided.
[0003] ところで、この所定の内圧に保持されたタイヤが外傷を受けると、この外傷を介して 高圧の空気が外部に漏れ出してタイヤ内圧が大気圧まで減少する、いわゆるパンク 状態となるため、タイヤ骨格部に発生させていた張力はほとんど失われることになる。 すると、タイヤに所定の内圧が付与されることによって得られる、荷重支持機能や、駆 動、制動および旋回性能も失われる結果、そのタイヤを装着した車両は走行不能に 陥るのである。  [0003] By the way, when the tire held at the predetermined internal pressure is damaged, high-pressure air leaks to the outside through the wound and the tire internal pressure decreases to the atmospheric pressure, resulting in a so-called puncture state. Most of the tension generated in the tire frame will be lost. Then, the load supporting function and the driving, braking and turning performances obtained by applying a predetermined internal pressure to the tires are also lost, so that the vehicle equipped with the tires cannot run.
[0004] そこで、パンク状態においても走行を可能とする、いわゆる安全タイヤについて多く の提案がなされている。例えば、自動車用の空気入り安全タイヤ及びリム組立体とし ては、二重壁構造を有するもの、タイヤ内に荷重支持装置を配設したもの、タイヤサ イド部を補強したものなど種々のタイプのものが提案されている。これらの提案の内、 実際に使用されて 、る技術としては、タイヤのサイドウォール部を中心にショルダー 部からビード部にかけての内面に比較的硬質のゴム力 なる三日月状のサイド補強 層を設けたタイヤがあり、この手法は主にへん平比が 60%以下の、いわゆる『ランフ ラットタイヤ』に適用されている。 [0004] Therefore, many proposals have been made on so-called safety tires that enable running even in a punctured state. For example, pneumatic safety tires and rim assemblies for automobiles are of various types, such as those with a double wall structure, those with a load supporting device in the tire, and those with reinforced tire side parts. Has been proposed. Of these proposals, As a technology actually used, there is a tire in which a crescent-shaped side reinforcing layer having relatively hard rubber force is provided on the inner surface from the shoulder portion to the bead portion around the sidewall portion of the tire. Is mainly applied to so-called “run-flat tires” with an averaging ratio of 60% or less.
[0005] しかし、サイド補強層を追加する手法は、タイヤ重量を 30%から 40%も増カロさせ、 またタイヤのヒステリシスロスも増加するため、転がり抵抗の大幅な悪ィ匕による省燃費 性の悪ィ匕を避けられない。さらに、上記タイヤ重量の増加は車両のパネ下重量増加 につながり、タイヤのパネ定数増力!]と相まって通常走行時の乗り心地性低下をまねく 不利がある。また、タイヤのパネ定数増加によりサスペンションに入る走行入力が増 加するため、車両の足回りの耐久性を向上させる設計変更が必要となる。従って、該 タイヤを既存車両に補修用として装着すると、足回りの耐久性が不足しているために 故障を招く危険がある。また、パンク後にランフラット走行するとサイド補強層の自己 発熱により熱老化してしまうため、パンク受傷部の修理による再利用は基本的に対応 できず廃棄せざるを得ないため、経済性および環境負荷の面からも、未だ汎用性に 乏しい技術である。 [0005] However, the method of adding the side reinforcing layer increases the tire weight by 30% to 40% and increases the hysteresis loss of the tire. I can't avoid evil daggers. In addition, the increase in tire weight described above leads to an increase in the weight under the panel of the vehicle, and in combination with the increase in the panel constant of the tire!], There is a disadvantage that the ride comfort during normal driving is reduced. In addition, the driving input to the suspension increases due to the increase in the panel constant of the tires, so a design change is required to improve the durability of the underbody of the vehicle. Therefore, when the tire is mounted on an existing vehicle for repair, there is a danger of failure due to insufficient durability of the underbody. In addition, running flat after puncturing causes thermal aging due to the self-heating of the side reinforcing layer, so reuse of the damaged punctured area cannot be basically dealt with and must be discarded, resulting in economic and environmental impact. From the point of view of the technology, it is still a technology with little versatility.
[0006] 一方、タイヤ断面高さの高い、へん平比が 60%以上の空気入りタイヤにおいては、 比較的高速かつ長距離の走行によるサイドウォール部の発熱を避けるために、リムに 中子などの内部支持体を固定してパンク時の荷重を支持する構造とした、ランフラッ トタイヤが提案されている。  [0006] On the other hand, in a pneumatic tire having a high tire cross-section height and an aspect ratio of 60% or more, a rim is attached to a rim or the like in order to avoid heat generation in a sidewall portion due to relatively high-speed running over a long distance. A runflat tire has been proposed in which the internal support is fixed to support the load during puncturing.
[0007] しかし、パンク後のランフラット時にタイヤと内部支持体との間で発生する、局所的 な繰り返し入力にタイヤが耐えることができずに、結果としてパンク後の走行距離は 1 00〜200km程度に限定されている。またパンク後のランフラット走行により、タイヤお よび内部支持体は大きなダメージを受けるために、再利用性が低く経済性および環 境負荷の面力 の不利は否めない。  [0007] However, the tire cannot withstand local repeated input generated between the tire and the internal support during run flat after puncture, and as a result, the mileage after puncture is 100 to 200 km. Limited to a degree. In addition, tires and internal supports are severely damaged by run-flat running after puncture, so the reusability is low and the disadvantages of economy and environmental load are undeniable.
カロえて、内部支持体をタイヤ内部に配置して力 タイヤをリムに組み付ける作業は、 煩雑で長時間を要することも問題である。この点、リムの幅方向一端側と他端側とのリ ム径に差を設けて、内部支持体を挿入し易くした工夫も提案されているが、特殊な専 用リム組み機を必要とするためインフラの再整備、組み付け作業者の特別教育など が必須なため、いまだ汎用性に乏しぐサービスを提供していくには課題が多い。ま た従来のタイヤとリムの組立体に比して、内部支持体が追加されることにより、トータ ル重量が 30〜40%も増加してしまうため、上述のサイド補強タイプと同様の不利が ある。 The problem is that the work of assembling the tire on the rim by placing the internal support inside the tire is troublesome and takes a long time. In this regard, there has been proposed a method in which a difference in rim diameter is provided between one end side and the other end side in the width direction of the rim so that the internal support can be easily inserted, but a special dedicated rim assembling machine is required. Of infrastructure, special training of assembly workers, etc. Is essential, and there are still many issues in providing services that are not very versatile. In addition, compared to the conventional tire and rim assembly, the addition of the internal support increases the total weight by 30 to 40%. is there.
[0008] なお、サイド補強タイプや内部支持体をそなえるタイプのパンク後走行距離を延ば すには、骨格材を追加してタイヤ構造をより重厚にすることが考えられるが、骨格材を 追加した分、通常使用時の転がり抵抗や乗り心地性がさらに悪ィ匕するため、この手法 を採用することは現実的ではない。  [0008] In order to extend the mileage after puncturing of the side reinforcement type or the type having the internal support, it is conceivable to make the tire structure heavier by adding a frame material. As a result, the rolling resistance during normal use and the riding comfort are further degraded, so that this method is not practical.
[0009] その一方で、タイヤ受傷による内圧低下に対する対応力や、パンク後の走行能力 が充分でな 、ものの、前述のサイド補強タイプや内部支持体タイプほど通常走行で の性能を悪化させな 、手段がある。  [0009] On the other hand, the ability to cope with a decrease in internal pressure due to tire damage and the running ability after puncture are not sufficient, but the performance in normal running is not deteriorated as compared with the aforementioned side reinforcement type or internal support type. There are means.
[0010] その 1つ目は、シーラントタイヤである。タイヤ内面に粘着性の高い層を配置させ、 タイヤに刺さった異物が抜ける時に受傷部を粘着層にて封止するものである。しかし このタイプは、あくまで受傷タイヤの内圧低下を遅延させるものであり、駐車中にタイ ャ内圧がゼロになった場合などではその後の走行 (いわゆるランフラット走行)は出来 ない。よってその後の走行のためには、スペアタイヤが必須であり、その場での交換 作業が必要となる。また、異物近傍の粘着層が熱老化による硬化を起こすことがあり 封止能力の信頼性に欠けるため、実用性は充分ではない。更に、長距離走行により タイヤ温度が上昇した状態で長時間停車すると、粘着層の流動性が増しているため に、重力によって粘着層が流動してしまい、タイヤ内面での偏在化が起こる事がある 。この場合、タイヤのウェイトバランスが崩れ、不快な振動発生の原因となるば力りで なぐ操縦安定性を損なうため、いまだ実用性に乏しい技術である。  [0010] The first is a sealant tire. A highly adhesive layer is disposed on the inner surface of the tire, and when a foreign substance stuck in the tire comes off, the damaged portion is sealed with the adhesive layer. However, this type only delays the decrease in the internal pressure of the damaged tire. If the tire internal pressure becomes zero during parking, for example, subsequent running (so-called run flat running) cannot be performed. Therefore, spare tires are indispensable for subsequent driving, and replacement work on the spot is required. Further, the adhesive layer near the foreign matter may be hardened due to thermal aging, and the sealing ability is not reliable. Therefore, the practicality is not sufficient. Furthermore, if the vehicle is stopped for a long time with the tire temperature rising due to long-distance running, the fluidity of the adhesive layer increases, and the adhesive layer flows due to gravity, which may cause uneven distribution on the inner surface of the tire. is there . In this case, the weight balance of the tires is lost, and the steering stability, which is caused by unpleasant force that causes unpleasant vibrations, is impaired.
[0011] 2つ目は、パンク修理剤である。粘着性のシール液と圧縮した空気を送り込む電動 ポンプにより構成され、受傷後のタイヤを応急的に修理するものである。このものは、 あくまで駐車中にタイヤ気室の圧力がゼロになった場合、かつその事実に気がつい た場合に、上述の修理によりその後の走行が可能となる。しかし、修理するためには 安全な場所を選ばねばならず、特に冬季の氷雪路面上や治安の悪!、市街地内では 、命の危険にさらされる状況がありうるため、パンク修理のための路上駐車は出来る だけ避けるべきであり、安全な駐車場内などでのパンクトラブル時に限定的に用いら れる手段といえる。 [0011] The second is a puncture repair agent. It is composed of an electric pump that feeds sticky sealing liquid and compressed air, and repairs tires after injury as soon as possible. In the case where the pressure in the tire chamber becomes zero while parking, and if this fact is noticed, the vehicle can be driven after the above-mentioned repair. However, it is necessary to choose a safe place for repairs.Especially on ice or snowy roads in winter or in insecure security! Parking is possible This should be avoided only in the event of a puncture in a secure parking lot.
一方で走行中に受傷部からタイヤ気室の圧力が徐々に抜けていく場合には、その 異常にドライバーが気付かない限り、いつタイヤ気室の圧力がゼロとなり走行不能に 陥る力判らない中で走行することとなるため、実際にはきわめて危険な走行状況が続 くこととなり、安全面力 充分な技術とはいえない。  On the other hand, if the pressure in the tire air chamber gradually drops from the injured part during running, unless the driver notices the abnormality, the pressure in the tire air chamber will become zero and the driving force that will make it impossible to run will not be known. In practice, extremely dangerous driving situations will continue, and safety technology is not sufficient.
[0012] また、タイヤとこれに組付けるリムとの組立体の内部空洞へ独立気泡を有する発泡 体を充填したタイヤ力 例えば特開平 6— 127207号公報、特開平 6— 183226号公 報、特開平 7— 186610号公報および特開平 8— 332805号公報などに記載されて いる。これらに提案されたタイヤは、主に農耕用タイヤ、ラリー用タイヤ、二輪車用タイ ャおよび自転車用タイヤなど特殊な、または小型のタイヤに限定されるものである。 従って、乗用車用タイヤやトラックおよびバス用タイヤなどのように、走行速度が高ぐ 長期間の使用に耐え、とりわけ転がり抵抗や乗り心地性を重視するタイヤへの適用は 未知数であった。そしていずれの発泡体も発泡倍率が低いために、気泡を有する発 泡体のわりには重量が大きぐ振動乗り心地性や燃費の悪ィ匕を避けられない上、そ の独立気泡内部は大気圧であるため、従来タイヤの高圧空気の代替とするには機能 的に不十分であった。  [0012] Further, a tire having a foam having closed cells filled into an internal cavity of an assembly of a tire and a rim to be mounted on the tire is disclosed in, for example, JP-A-6-127207 and JP-A-6-183226. It is described in Japanese Unexamined Patent Publication No. Hei 7-186610 and Japanese Unexamined Patent Publication No. Hei 8-332805. These proposed tires are mainly limited to specialty or small tires such as agricultural tires, rally tires, motorcycle tires and bicycle tires. Therefore, its application to tires, such as tires for passenger cars and tires for trucks and buses, which can withstand long-term use at high running speeds and in which rolling resistance and ride comfort are particularly important, has been unknown. Since all foams have low foaming ratios, the weight of the foam is inevitably reduced due to the vibration ride comfort and fuel economy, and the inside of the closed cells is at atmospheric pressure. Therefore, it was not functionally sufficient to replace conventional high-pressure air with tires.
[0013] さらに、特許第 2987076号公報には、発泡体充填材を内周部に挿入したパンクレ スタイヤが開示されている力 気泡内圧が大気圧に極めて近いことによる不利にカロえ 、発泡体がウレタン系材料であるために、ウレタン基の分子間水素結合に起因するェ ネルギーロスが大きぐ自己発熱性が高い。よって、ウレタン発泡体をタイヤ内に充填 した場合、タイヤ転動時のくり返し変形により、発泡体が発熱し大幅に耐久性が低下 する。また、気泡を独立して形成するのが難しい素材を用いているため、気泡が連通 しゃすく気体を保持することが難しいため、所望の荷重支持能力を得られない不利 がある。  [0013] Further, Japanese Patent No. 2987076 discloses a pancress tire in which a foam filler is inserted into an inner peripheral portion. Disadvantageously due to the fact that the internal pressure of a force bubble is extremely close to the atmospheric pressure, the foam is disadvantageous. Since it is a urethane-based material, it has high self-heating due to large energy loss due to intermolecular hydrogen bonding of urethane groups. Therefore, when the urethane foam is filled in the tire, the foam generates heat due to repeated deformation during rolling of the tire, and the durability is greatly reduced. In addition, since a material that is difficult to form bubbles independently is used, it is difficult for the bubbles to communicate with each other, and there is a disadvantage in that a desired load supporting ability cannot be obtained.
[0014] さらにまた、特開昭 48— 47002号公報には、独立気泡を主体とする多気泡体の外 周をゴムや合成樹脂等の厚さ 0. 5〜3mmの外***膜で一体的に包被密封した膨 張圧力気泡体の多数をタイヤ内に充填し、該タイヤを規定内圧に保持した、パンクレ スタイヤが提案されている。この技術は、発泡体の気泡内気圧を常圧より高くするた めに、膨張圧力気泡体となる独立気泡体形成配合原料中の発泡剤配合量をタイヤ 内容積に対して、少なくとも同等以上の発生ガスが発生する発泡剤配合量に設定し ており、これによつて通常の少なくとも空気入りタイヤと同様の性能を目指している。 [0014] Further, Japanese Patent Application Laid-Open No. 48-47002 discloses that the outer periphery of a multi-cellular body mainly composed of closed cells is integrally formed with an outer coating having a thickness of 0.5 to 3 mm such as rubber or synthetic resin. A tire is filled with a large number of wrapped and expanded pressure bubbles, and the tire is maintained at a specified pressure. Steyr has been proposed. In this technology, the amount of the foaming agent in the closed-cell-forming raw material to be expanded pressure bubbles is set to be at least equal to or greater than the inner volume of the tire in order to make the pressure inside the cells of the foam higher than normal pressure. The amount of the foaming agent that generates the generated gas is set so that the performance is at least the same as that of a normal pneumatic tire.
[0015] 上記技術では、膨張圧力気泡体中の気泡内ガスの散逸を防ぐために、外***膜で 一体的に包被密封している力 この外***膜の材料として例示されているものは、自 動車用チューブまたは該チューブ形成用配合物のような材料のみである。つまり、タ ィャチューブ等に用いられる、窒素ガス透過性の低 、プチルラバーを主体とした軟 質弾性外***膜にて包被密封を施し、これらの多数をタイヤ内に充填している。製 法としては、軟質弾性外***膜として未加硫のタイヤチューブを、膨張圧力気泡体と して未加硫の独立気泡体形成配合原料を用い、これらの多数をタイヤとリムの組立 体内部に配置後、加熱により発泡させ、発泡体充填タイヤを得ている。発泡体の膨 張によるタイヤ内部の常圧空気は、リムに開けられた排気小孔力 自然排気される。  [0015] In the above-described technology, the force of integrally encapsulating and sealing with an outer coating to prevent the gas inside the bubbles in the inflated pressure foam from dissipating. Material such as a tubing or a tubing formulation. In other words, the tire is sealed with a soft elastic outer coating mainly composed of butyl rubber, which is used for tire tubes and the like and has low nitrogen gas permeability, and many of these are filled in the tire. As the manufacturing method, an unvulcanized tire tube is used as a soft elastic outer covering film, and an unvulcanized closed cell forming compounding material is used as an inflation pressure foam, and a large number of these are placed inside the tire and rim assembly. After the arrangement, foaming is performed by heating to obtain a foam-filled tire. The normal pressure air inside the tire due to the expansion of the foam is naturally exhausted by the exhaust pore force opened in the rim.
[0016] ここで、乗用車用タイヤの内圧は、一般的に常温における 150〜250kPa程度に設 定されるため、上記の発泡体充填タイヤを製造するには、その加硫成形の加熱時(1 40°C程度)の状態において、絶対圧で上記内圧の約 1. 5倍程度になっているものと 、気体の状態方程式から推定される。ところが、この程度の圧力レベルでは、加硫圧 力不足をまねいてブローンが発生するのを避けることは出来ない。このブローン現象 を回避するためには、加硫時の圧力を増やすために発泡剤配合量を大幅に増量す るか、加熱温度を高めて架橋反応を促進させる必要がある。  Here, the internal pressure of a tire for a passenger car is generally set to about 150 to 250 kPa at normal temperature, and therefore, in order to manufacture the above-mentioned foam-filled tire, the vulcanization-molded tire must be heated (1 (About 40 ° C), it is estimated from the gas state equation that the absolute pressure is about 1.5 times the above internal pressure in absolute pressure. However, at such a pressure level, it is impossible to avoid the occurrence of blown air resulting from insufficient vulcanization pressure. In order to avoid this blown phenomenon, it is necessary to greatly increase the compounding amount of the blowing agent in order to increase the pressure during vulcanization, or to increase the heating temperature to accelerate the crosslinking reaction.
[0017] し力しながら、発泡剤配合量を増加する手法は、発泡剤配合量の増加により常温 時の内圧が 300kPaを大きく超えてしまうため、従来の空気入りタイヤの代替品とする のは困難であった。また、加熱温度を高める手法は、熱老化によるタイヤのダメージ が大きくなつてタイヤの耐久性を大幅に悪ィ匕させるため、長期使用における耐久性に 問題が生じる。一方、タイヤとリムの組立体の内部には、軟質弾性外***膜に包まれ た膨張圧力気泡体が多数配置されて!、るが、上記ブローンが発生した軟質弾性外 ***膜同士の摩擦、タイヤ内面およびリム内面との摩擦等、耐久性面での問題が大 きい。以上から上記の問題は、膨張圧力気泡体の形状が一体的なドーナツ形状をと るのとは異なり、分割された多数の膨張圧力気泡体を配置することに起因する、大き な欠点とも言える。また、リムに開けられた排気小孔は、膨張圧力気泡体の膨張によ るタイヤ内部の常圧空気を自然排気するためには有効であるものの、膨張圧力気泡 体中の気泡内ガスの散逸経路となってしまう。よって膨張圧力気泡体中の圧力が長 期間保持できず、長期間の使用に耐えうるものではない。 [0017] In the method of increasing the compounding amount of the blowing agent while increasing the force, the internal pressure at room temperature greatly exceeds 300 kPa due to the increase in the compounding amount of the foaming agent. It was difficult. In addition, the method of increasing the heating temperature causes a problem in durability in long-term use because the tire is greatly damaged due to thermal aging and the durability of the tire is greatly deteriorated. On the other hand, a large number of inflated pressure bubbles wrapped in a soft elastic outer coating are arranged inside the tire and rim assembly! There are serious problems with durability, such as friction with the inner surface and the inner surface of the rim. From the above, the above problem is caused by the fact that the shape of the inflated pressure bubble is an integral donut shape. In contrast to this, it can be said that this is a major drawback caused by arranging a large number of divided expanded pressure bubbles. Although the exhaust holes formed in the rim are effective for naturally exhausting the normal pressure air inside the tire due to the expansion of the inflation pressure bubbles, the gas inside the inflation pressure bubbles dissipates. It becomes a route. Therefore, the pressure in the expanded pressure bubble cannot be maintained for a long period of time, and cannot be used for a long period of time.
[0018] さらに、軟質弾性外***膜として、タイヤチューブ等の、窒素ガス透過性が小さい ブチルラバーを主体とした配合組成物を用いて ヽるが、ブチルラバーは加硫反応速 度が極めて遅いために、反応を完結させるためには、 140°C程度の温度では多大な る加熱時間を必要とする。このことは、軟質弾性外***膜の架橋密度不足を意味し、 軟質弾性外***膜の剥離発生の一要因になることはいうまでもない。また、加熱時 間の延長は、前述した熱老化によるタイヤのダメージを更に大きくするため、耐久性 の低下を避けられず、得策とはいえない。  [0018] Furthermore, as the soft elastic outer coating film, a composition mainly composed of butyl rubber having low nitrogen gas permeability, such as a tire tube, is used. However, butyl rubber has a very slow vulcanization reaction speed. In order to complete the reaction, a large heating time is required at a temperature of about 140 ° C. This means that the crosslink density of the soft elastic outer coating film is insufficient, and it is needless to say that the soft elastic outer coating film is one of the causes of peeling. In addition, the extension of the heating time further increases the damage of the tire due to the heat aging described above.
[0019] また、特開昭 51— 126604号公報には、ガスを包蔵した中空小球をタイヤ内に配 置し、パンク受傷部を封止して内圧の漏洩を遅らせる発明がある。この発明では膨張 材として液ィ匕ガスを用いた膨張性榭脂粒子を加熱膨張させて得られた中空粒子の多 数をタイヤ内に配置している。しかし、加熱膨張後の中空部圧力は環境温度とガスの 蒸気圧によって決定されるため、タイヤ内に配置して所定の内圧まで空気を充填す ると、中空部圧力が低いために中空粒子は球形状を保つことが出来ず、つぶれたラ グビーボール的な形でタイヤ内に存在することとなる。このようにつぶれた形状では パンク時の受傷部を封止するに際し好ましくない。タイヤ内圧が 50kPa程度の低い内 圧下にてタイヤを受傷させると、該中空粒子が略球形状を保てているため、 2. 5mm Φ程度の釘による受傷部であれば封止出来る。しかし、常用走行に必要な 200kpa 程度の高い内圧下にてタイヤを受傷させると、 2. 5mm φの釘による受傷部が封止 できず、中空粒子が噴出してしまう。また、現在の巿場でのパンク実態調査から、タイ ャに刺さる異物の平均直径は 3. 5mm φ程度であるため、上記技術では不十分であ る。さらに、タイヤ内圧を 200kPaとし 1000kmの常用走行後に中空粒子を取り出した ところ、ほとんどの粒子は破壊してしまっており、略球形状であるものはほとんど見ら れなかった。さらに上記 1000km走行後のタイヤに、 200kPa下にて 2. 5mm φの釘 刺し受傷を与えたが、受傷部を封止することが出来ず、中空粒子の破砕物が噴出し た。以上から、中空粒子をタイヤ内に配置するだけでは、受傷部を的確に封止するこ とが出来ず、また常用走行にて破壊してしまうため、十分な技術とはいえない。 [0019] Also, Japanese Patent Application Laid-Open No. 51-126604 has an invention in which a hollow sphere containing gas is disposed in a tire to seal a puncture damaged portion to delay internal pressure leakage. In the present invention, a large number of hollow particles obtained by heating and expanding inflatable resin particles using a liquid gas as an inflating material are arranged in a tire. However, since the pressure in the hollow portion after the heat expansion is determined by the ambient temperature and the vapor pressure of the gas, when the air is filled in the tire and filled to a predetermined internal pressure, the hollow particles are low due to the low pressure in the hollow portion. The spherical shape cannot be maintained, and it exists in the tire in the shape of a crushed rugby ball. Such a collapsed shape is not preferable for sealing a damaged portion at the time of puncturing. When the tire is injured under a low internal pressure of about 50 kPa, the hollow particles can maintain a substantially spherical shape, so that the damaged portion can be sealed with a nail of about 2.5 mmΦ. However, if the tire is damaged under the high internal pressure of about 200 kpa necessary for regular driving, the damaged part with a 2.5 mm diameter nail cannot be sealed, and hollow particles will be ejected. In addition, from the current survey of punctures on site, the average diameter of foreign matter sticking to the tire is about 3.5 mmφ, so the above technology is not sufficient. Further, when the internal pressure of the tire was set to 200 kPa and the hollow particles were taken out after 1000 km of regular running, most of the particles were broken, and almost no spherical particles were found. In addition, a 2.5mm diameter nail under 200kPa is applied to the tire after traveling 1000km. A stab wound was given, but the wounded part could not be sealed, and crushed hollow particles spewed out. From the above, simply placing the hollow particles in the tire cannot adequately seal the damaged portion and breaks it during normal driving, and is not a sufficient technology.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0020] そこで、本発明は、タイヤに外傷を受けた後のパンク状態から、例えばタイヤ修理を 行うことが出来る場所までの、最低限の移動を安全かつ確実に実現するタイヤとリム との糸且立体にっ ヽて提供することを目的とする。  [0020] Accordingly, the present invention provides a thread between a tire and a rim that safely and reliably realizes minimum movement from a punctured state after a tire is injured to, for example, a place where tire repair can be performed. It is also intended to provide in three dimensions.
[0021] また、本発明の別の目的は、タイヤ受傷前の常用走行における耐久性および乗り 心地性、省燃費性、汎用性に優れ、かつ生産性を犠牲にせず低コストでパンク時の 走行安全性を保証する、上記のタイヤとリムとの組立体の内側に配置するに適した中 空粒子を提供することにある。  [0021] Another object of the present invention is to provide low-cost running during puncture at a low cost without sacrificing productivity, while being excellent in durability, riding comfort, fuel economy, and versatility in regular driving before tire damage. It is an object of the present invention to provide air particles suitable for being placed inside the above-described tire and rim assembly, which ensures safety.
課題を解決するための手段  Means for solving the problem
[0022] 発明者らは、上記の問題点を解決すべく鋭意検討した結果、外傷によってタイヤ気 室内の気体が漏れ出た際に、その後の走行に必要な最低限のタイヤ気室の圧力を 適正に与えることによって失った圧力を回復させること、そして通常走行下におけるタ ィャ内温度を抑制することの両立が必要かつ有効であることを見出し、本発明を完成 するに至った。 [0022] The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, when gas in the tire chamber has leaked due to injury, the minimum pressure of the tire chamber required for subsequent traveling has been reduced. The present inventors have found that it is necessary and effective to simultaneously recover the lost pressure by appropriately applying the pressure and to suppress the tire temperature during normal running, and have completed the present invention.
[0023] すなわち、本発明の要旨構成は、次のとおりである。  That is, the gist configuration of the present invention is as follows.
(1)タイヤをリムに装着し、該タイヤとリムとで区画されたタイヤ気室に、熱膨張が可能 な榭脂による連続相と独立気泡とからなる略球形状の中空粒子の多数を配置し、さら に該タイヤ気室に大気圧を超える高圧気体を充填したタイヤとリムとの組立体であつ て、タイヤ気室の圧力が大気圧まで低下した状態力もの走行において、該タイヤ気 室の圧力を、少なくともタイヤのサイド部が接地しなくなる圧力まで回復する機能を有 することを特徴とするタイヤとリムとの組立体。  (1) A tire is mounted on a rim, and a large number of substantially spherical hollow particles composed of a continuous phase of thermally expandable resin and closed cells are arranged in a tire chamber partitioned by the tire and the rim. Further, an assembly of a tire and a rim, in which the tire chamber is filled with a high-pressure gas exceeding the atmospheric pressure, wherein the tire chamber is in a state where the pressure of the tire chamber has been reduced to the atmospheric pressure, and the tire chamber is running. A tire and rim assembly having a function of recovering the pressure of the tire to at least a pressure at which the side portion of the tire does not contact the ground.
[0024] (2)上記(1)において、下記式 (I)に従う中空粒子の充填率が 5vol%以上 80vol% 以下であることを特徴とするタイヤとリムとの組立体。  (2) An assembly of a tire and a rim according to the above (1), wherein the filling rate of the hollow particles according to the following formula (I) is 5 vol% or more and 80 vol% or less.
記 中空粒子の充填率 = (粒子体積値 zタイヤ気室容積値) X 100 一- (I) ここで、 Record Filling rate of hollow particles = (particle volume value z tire chamber volume value) x 100 one-(I) where
粒子体積値:タイヤ気室に配置した全中空粒子の大気圧下での合計体積と 粒子周囲の空隙体積との合計量 (cm3) Particle volume value: The total volume of all hollow particles placed in the tire chamber under atmospheric pressure and the void volume around the particles (cm 3 )
タイヤ気室容積値:タイヤとリムとの組立体に空気のみを充填して使用内 圧 (kPa)に調整した後、充填空気を内圧が大気圧になるまで排出した際の 充填空気排出量 (cm3)を用いて、次式 (II)力 求めた値 (cm3) Tire air chamber volume: The amount of charged air discharged when the air inside the tire and rim assembly is adjusted to the working pressure (kPa) by filling only the air with the air and then the filling pressure is reduced to atmospheric pressure (kPa) cm 3) using the following formula (II) force determined value (cm 3)
タイヤ気室容積値 = (充填空気排出量) / (使用内圧 Z大気圧)  Tire air chamber volume value = (filled air discharge) / (operating internal pressure Z atmospheric pressure)
— (II)  — (II)
なお、式 (II)において使用内圧はゲージ圧値 (kPa)を、大気圧値は 気圧計による絶対値 (kPa)を用いる。  In equation (II), the internal pressure used is a gauge pressure value (kPa), and the atmospheric pressure value is an absolute value (kPa) obtained by a barometer.
[0025] (3)上記(1)または(2)において、中空粒子の中空部内の圧力が、常用走行使用時 の車両指定タイヤ内圧の 70%以上であることを特徴とするタイヤとリムとの組立体。 (3) The tire and rim according to (1) or (2), wherein the pressure in the hollow portion of the hollow particles is at least 70% of the internal pressure of the vehicle-specified tire during normal use. Assembly.
[0026] (4)上記(1)、 (2)または(3)において、中空粒子の中空部内の圧力力 常用走行使 用時の車両指定タイヤ内圧の 80%以上であることを特徴とするタイヤとリムとの組立 体。 (4) The tire according to the above (1), (2) or (3), wherein the pressure in the hollow portion of the hollow particles is 80% or more of the internal pressure of the vehicle-specified tire when the vehicle is used for normal driving. And rim assembly.
[0027] (5)上記(1)ないし (4)のいずれかにおいて、中空粒子の中空部内の圧力力 常用 走行使用時の車両指定タイヤ内圧の 90%以上であることを特徴とするタイヤとリムと の糸且立体。  (5) The tire and the rim according to any one of the above (1) to (4), wherein the pressure force in the hollow portion of the hollow particles is 90% or more of the internal pressure of the vehicle-specified tire during normal use. And three-dimensional.
[0028] (6)上記(1)ないし(5)のいずれかにおいて、中空粒子の中空部内の圧力が、常用 走行使用時の車両指定タイヤ内圧の 100%以上であることを特徴とするタイヤとリム との組立体。  (6) The tire according to any one of the above (1) to (5), wherein the pressure in the hollow portion of the hollow particles is 100% or more of the internal pressure of the vehicle-specified tire during normal use. Assembly with rim.
[0029] (7)上記(2)な!、し (6)の!、ずれかにお 、て、中空粒子の充填率が 70vol%以下で あることを特徴とするタイヤとリムとの組立体。  [0029] (7) An assembly of a tire and a rim, wherein the filling rate of hollow particles is 70 vol% or less, according to (2) above or (6). .
[0030] (8)上記(2)な!、し (7)の!、ずれかにお 、て、中空粒子の充填率が 60vol%以下で あることを特徴とするタイヤとリムとの組立体。 (8) An assembly of a tire and a rim, wherein the filling rate of hollow particles is 60 vol% or less, according to (2) above or (7). .
[0031] (9)上記(2)ないし(8)のいずれかにおいて、中空粒子の充填率が 50vol%以下で あることを特徴とするタイヤとリムとの組立体。 [0032] (10)上記(1)ないし(9)のいずれかにおいて、タイヤ気室に配置した中空粒子群の 平均粒径力 0 μ m以上 200 μ m以下の範囲にあり、かつ該中空粒子群の平均真比 重が 0. 01g/cm3以上 0. 06g/cm3以下の範囲にあることを特徴とするタイヤとリム との組立体。 (9) The tire / rim assembly according to any one of the above (2) to (8), wherein the filling rate of the hollow particles is 50 vol% or less. (10) In any one of the above (1) to (9), the average particle size force of the hollow particles arranged in the tire air chamber is in the range of 0 μm to 200 μm, and the hollow particles An assembly of a tire and a rim, wherein the average true specific gravity of the group is in the range of 0.01 g / cm 3 or more and 0.06 g / cm 3 or less.
[0033] (11)上記(1)ないし(10)のいずれかにおいて、中空粒子の中空部内の気体力 窒 素、空気、炭素数 2から 8の直鎖状及び分岐状の脂肪族炭化水素およびそのフルォ 口化物、炭素数 2から 8の脂環式炭化水素およびそのフルォロ化物、そして次の一般 式(ΠΙ):  [0033] (11) In any one of the above (1) to (10), gaseous nitrogen, air, linear and branched aliphatic hydrocarbons having 2 to 8 carbon atoms in the hollow portion of the hollow particles, and The fluoride, an alicyclic hydrocarbon having 2 to 8 carbon atoms and the fluoride, and the following general formula (ΠΙ):
R'-O-R2 —— (III) R'-OR 2 —— (III)
(式中の R1および R2は、それぞれ独立に炭素数が 1から 5の一価の炭化水素基であ り、該炭化水素基の水素原子の一部をフッ素原子に置き換えても良い)にて表される エーテルィ匕合物、からなる群の中力 選ばれた少なくとも 1種の気体を有することを 特徴とするタイヤとリムとの組立体。 (R 1 and R 2 in the formula are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and a part of the hydrogen atoms of the hydrocarbon group may be replaced with fluorine atoms.) An assembly of a tire and a rim, characterized by having at least one kind of gas selected from the group consisting of:
[0034] ( 12)上記(1)ないし(11)のいずれかにおいて、中空粒子の連続相である樹脂が、 ポリビュルアルコール榭脂、アクリロニトリル系重合体、アクリル系重合体および塩ィ匕 ビ-リデン系重合体のいずれか少なくとも 1種力も成ることを特徴とするタイヤとリムと の糸且立体。 (12) In any one of the above (1) to (11), the resin which is a continuous phase of the hollow particles is a polybutyl alcohol resin, an acrylonitrile polymer, an acrylic polymer, A thread and three-dimensional structure of a tire and a rim, wherein the tire and the rim are formed by at least one kind of force of any of a lithium polymer.
[0035] (13)上記(1)ないし(12)のいずれかにおいて、中空粒子の連続相がアタリ口-トリ ル系重合体から成り、該アクリロニトリル系重合体は、アクリロニトリル重合体、アタリ口 二トリル Zメタアクリロニトリル共重合体、アクリロニトリル Zメチルメタタリレート共重合 体およびアクリロニトリル Zメタアクリロニトリル Zメチルメタタリレート 3元共重合体から 選ばれた少なくとも 1種であるであることを特徴とするタイヤとリムとの組立体。  (13) In any one of the above (1) to (12), the continuous phase of the hollow particles is composed of an acrylonitrile polymer, and the acrylonitrile polymer is an acrylonitrile polymer, an acrylonitrile polymer. A tire characterized in that it is at least one member selected from a tolyl Z methacrylonitrile copolymer, an acrylonitrile Z methyl methacrylate copolymer and an acrylonitrile Z methacrylonitrile Z methyl methacrylate copolymer. Assembly with rim.
[0036] (14)上記(1)ないし(13)のいずれかにおいて、さらにアンチロックブレーキシステム の車輪速度センサーによる車輪速度検知に基づくタイヤ気室圧力低下警報機能お よび、圧力センサーによるタイヤ気室圧力の直接測定方式に基づくタイヤ気室圧力 低下警報機能のいずれか一方または両方をそなえることを特徴とするタイヤとリムと の糸且立体。 (14) In any one of the above (1) to (13), a tire air chamber pressure drop warning function based on wheel speed detection by a wheel speed sensor of an anti-lock brake system, and a tire air chamber by a pressure sensor A tire and rim thread and solid body having one or both of a tire air chamber pressure drop warning function based on a direct pressure measurement method.
[0037] (15)上記(1)ないし(14)のいずれかにおいて、タイヤ気室内に、さらに大気圧下で の平均嵩比重が該中空粒子の平均真比重よりも大きい発泡体の多数を該中空粒子 群に混在して配置したことを特徴とするタイヤとリムとの組立体。 (15) In any one of the above (1) to (14), the tire air chamber may be further placed under atmospheric pressure. An assembly of a tire and a rim, wherein a large number of foams having an average bulk specific gravity larger than the average true specific gravity of the hollow particles are arranged in the hollow particle group.
[0038] (16)上記(15)において、前記発泡体は、直径が lmm以上 15mm以下の略球体形 状または一辺が lmm以上 15mm以下の立方体形状であり、平均嵩比重が 0. 06g Zee以上 0. 3gZcc以下であり、独立気泡または連通気泡を有するものであることを 特徴とするタイヤとリムとの組立体。  (16) In the above (15), the foam has a substantially spherical shape having a diameter of lmm to 15 mm or a cubic shape having a side of lmm to 15 mm, and an average bulk specific gravity of at least 0.06 g Zee. An assembly of a tire and a rim, which is 0.3 gZcc or less and has closed cells or open cells.
[0039] (17)上記(1)ないし(16)のいずれかにおいて、前記中空粒子は、常用走行使用時 の車両指定タイヤ内圧の 70%以上の中空部圧力を持ち、かつ加熱したときの膨張 開始温度 Ts2が 90°C以上 200°C以下の範囲であることを特徴とするタイヤとリムとの 組立体。  (17) In any one of the above (1) to (16), the hollow particles have a hollow portion pressure of 70% or more of the internal pressure of a vehicle-specified tire during normal use, and expand when heated. An assembly of a tire and a rim, wherein the starting temperature Ts2 is in a range of 90 ° C or more and 200 ° C or less.
[0040] (18)上記(1)ないし(17)のいずれかにおいて、中空粒子の膨張開始温度 Ts2が 1 (18) In any one of the above (1) to (17), the expansion start temperature Ts2 of the hollow particles is 1
10°C以上であるタイヤとリムとの組立体。 An assembly of a tire and a rim at 10 ° C or higher.
[0041] (19)上記(1)ないし(18)のいずれかにおいて、中空粒子の膨張開始温度 Ts2が 1(19) In any one of the above (1) to (18), the expansion start temperature Ts2 of the hollow particles is 1
30°C以上であるタイヤとリムとの組立体。 Assembly of tire and rim at 30 ° C or higher.
[0042] (20)上記(1)ないし(19)のいずれかにおいて、中空粒子の膨張開始温度 Ts2が 1(20) In any one of the above (1) to (19), the expansion start temperature Ts2 of the hollow particles is 1
60°C以上であるタイヤとリムとの組立体。 An assembly of a tire and a rim at 60 ° C or higher.
[0043] (21)上記(1)ないし(20)のいずれかにおいて、タイヤ内に配置する前の中空粒子 内部の気体が、タイヤ気室内に充填する気体と異なる気体であることを特徴とするタ ィャとリムとの組立体。 (21) In any one of the above (1) to (20), the gas inside the hollow particles before being arranged in the tire is a gas different from the gas filled in the tire chamber. Assembly of tire and rim.
[0044] (22) 上記(21)において、タイヤ内に配置する前の中空粒子内部の気体が不燃性 ガスであり、内圧を与えた後のタイヤとリムとの組立体内における中空粒子内部の気 体が、該不燃性ガスとタイヤ気室に充填した気体との混合物であることを特徴とする タイヤとリムとの組立体。  (22) In the above (21), the gas inside the hollow particles before being arranged in the tire is a nonflammable gas, and the gas inside the hollow particles in the assembly of the tire and the rim after the internal pressure is applied. An assembly of a tire and a rim, wherein the body is a mixture of the non-combustible gas and a gas filled in a tire chamber.
[0045] (23) 上記(1)ないし (22)のいずれかにおいて、中空粒子の殻部を構成する榭脂 による連続相力、アクリロニトリル系榭脂であることを特徴とするタイヤとリムとの組立 体。  (23) The tire according to any one of the above (1) to (22), wherein the resin constituting the shell of the hollow particles is a continuous force, and the resin is an acrylonitrile-based resin. Assembly.
[0046] (24) 上記(23)にお 、て、アクリロニトリル系榭脂が、アクリロニトリル、メタアタリ口- トリルおよびメチルメタタリレートからなる三元共重合体からなる三元共重合体である ことを特徴とするタイヤとリムとの組立体。 (24) In the above (23), the acrylonitrile-based resin is a terpolymer composed of a terpolymer composed of acrylonitrile, methacrylic tritol and methyl methacrylate. An assembly of a tire and a rim, characterized in that:
[0047] (25) 上記(23)にお 、て、アクリロニトリル系榭脂が、アクリロニトリル、メタアタリ口- トリルおよびメタクリル酸力もなる三元共重合体であることを特徴とするタイヤとリムとの 組立体。  (25) The combination of a tire and a rim according to the above (23), wherein the acrylonitrile-based resin is a terpolymer having acrylonitrile, methacrylic tritol and methacrylic acid power. Three-dimensional.
[0048] (26) 上記(1)ないし(25)のいずれかにおいて、前記中空粒子の表面の少なくとも 部分に、該表面に熱を介して定着された被覆剤を有することを特徴とするタイヤとリム との組立体。  (26) The tire according to any one of the above (1) to (25), wherein at least a part of the surface of the hollow particle has a coating agent fixed to the surface via heat. Assembly with rim.
[0049] (27) 上記(1)ないし(26)のいずれかにおいて、前記中空粒子の全表面に被覆剤 を有することを特徴とするタイヤとリムとの組立体。  (27) The assembly of a tire and a rim according to any one of the above (1) to (26), wherein a coating agent is provided on all surfaces of the hollow particles.
[0050] (28) 上記(1)ないし (27)のいずれかにおいて、中空粒子の被覆に使用した被覆 剤量および下記処理に従って得られる沈殿物量に基づ!/、て、次式 (28) In any one of the above (1) to (27), based on the amount of the coating agent used for coating the hollow particles and the amount of the precipitate obtained according to the following treatment, the following formula:
定着率 ={ (使用被覆剤量) (沈殿物量) }Z (使用被覆剤量) X 100  Fixing rate = {(Amount of coating used) (Amount of sediment)} Z (Amount of coating used) X 100
にて求められる被覆剤の定着率が 90mass%以上であることを特徴とするタイヤとリム との組立体。  An assembly of a tire and a rim, wherein the fixing rate of the coating agent required in the above is 90 mass% or more.
 Record
分液ロート内に、 n キサン、イソプロピルアルコール、エタノールおよびメタノー ルカも選ばれた少なくとも 1種の溶媒 300ccと、 2 3gの範囲で秤量した被覆剤を有 する中空粒子とを添加し、常温下で 1分間攪拌した後 10分間静置し、沈殿物をロート 力も排出そして採取した後、再度上記溶媒を追加し分液ロート内溶媒を 300ccに調 整した上で、上記攪拌、静置および排出そして採取を、さらに 4回繰り返し、合計 5回 分の沈殿成分を、定法により溶媒を除去後に沈殿物量として秤量し、元の中空粒子 量に対する質量百分率を算出して沈殿物量とする。 In a separating funnel, 300 cc of at least one solvent selected from n- xane, isopropyl alcohol, ethanol and methanol, and hollow particles having a coating agent weighed in a range of 23 g are added at room temperature. After stirring for 1 minute, the mixture was left standing for 10 minutes, and the precipitate was drained from the funnel and collected.After adding the solvent again, the solvent in the separatory funnel was adjusted to 300 cc. Sampling is repeated four more times, and a total of five sediment components are weighed as the sediment amount after removing the solvent by a standard method, and the mass percentage based on the original hollow particle amount is calculated to be the sediment amount.
[0051] (29) 上記(28)において、前記定着率が 95mass%以上であることを特徴とするタイ ャとリムとの組立体。 (29) The assembly of the tire and the rim according to (28), wherein the fixing rate is 95 mass% or more.
[0052] (30) 請求項 28または 29において、前記定着率が 99mass%以上であることを特徴 とするタイヤとリムとの組立体。  (30) The assembly of a tire and a rim according to claim 28 or 29, wherein the fixing rate is 99 mass% or more.
[0053] (31) 上記(28)ないし(30)のいずれかにおいて、前記中空粒子の中空部内の圧 力が大気圧以上の高圧であり、該中空粒子を加熱したときの膨張開始温度 Ts2が 9 0°C以上 200°C以下の範囲であり、前記被覆剤の融点 Tmが中空粒子の膨張開始 温度 Ts2より高いことを特徴とするタイヤとリムとの組立体。 (31) In any one of the above (28) to (30), the pressure in the hollow portion of the hollow particles is higher than the atmospheric pressure, and the expansion start temperature Ts2 when the hollow particles are heated is 9 An assembly of a tire and a rim, which is in a range of 0 ° C or more and 200 ° C or less, and wherein the melting point Tm of the coating agent is higher than the expansion start temperature Ts2 of the hollow particles.
[0054] (32) 上記(31)にお 、て、被覆剤の融点 Tmが、ガス成分を液体状態の発泡剤とし て榭脂に封じ込めた膨張性榭脂粒子の膨張開始温度 Tslに関して、下記の関係を 満たすことを特徴とするタイヤとリムとの組立体。 (32) In the above (31), the melting point Tm of the coating agent is determined by the following formula with respect to the expansion start temperature Tsl of the expandable resin particles in which the gas component is sealed in the resin as a liquid foaming agent. An assembly of a tire and a rim, characterized by satisfying the following relationship.
 Record
Tsl < Tm < Tsl + 150°C  Tsl <Tm <Tsl + 150 ° C
[0055] (33) 上記 (32)において、中空粒子は、被覆剤が付着された膨張性榭脂粒子を、 被覆剤の融点 Tm以上の温度で膨張させて得たものであることを特徴とするタイヤとリ ムとの,袓立体。 (33) In the above (32), the hollow particles are obtained by expanding the expandable resin particles to which the coating agent is attached at a temperature equal to or higher than the melting point Tm of the coating agent. 3D with tires and rims.
[0056] (34)上記(28)な 、し (33)の 、ずれかにお 、て、被覆剤が有機酸金属塩であること を特徴とするタイヤとリムとの組立体。  (34) An assembly of a tire and a rim according to (28) or (33), wherein the coating agent is an organic acid metal salt.
[0057] (35)タイヤをリムに装着したタイヤとリムとの組立体における該タイヤとリムとで区画さ れたタイヤ気室内に、大気圧を超える高圧気体とともに配置する、熱膨張が可能な榭 脂による連続相と独立気泡とからなる中空粒子であって、下記の榭脂 (A)と、下記の 熱分解性発泡剤 (B)および下記の発泡剤 (C)の ヽずれか一方または両方とを含有 する膨張性組成物を加熱膨張させて得られ、かつ中空粒子の中空部内の圧力が、 該中空粒子群が配置されるタイヤ気室内の高圧気体の圧力に対して 70%以上であ ることを特徴とする中空粒子。  [0057] (35) In a tire / rim assembly in which a tire is mounted on a rim, the tire and the rim are arranged together with a high-pressure gas exceeding the atmospheric pressure in a tire chamber partitioned by the tire and the rim.中空 Hollow particles consisting of a continuous phase and closed cells made of a resin, and one of the following resin (A) and one of the following thermally decomposable blowing agent (B) and the following blowing agent (C) or The pressure in the hollow portion of the hollow particles is 70% or more of the pressure of the high-pressure gas in the tire chamber in which the hollow particles are arranged. Hollow particles characterized by the following.
 Record
(A)ポリビニルアルコール榭脂、アクリロニトリル系重合体、アクリル系重合体および 塩ィ匕ビユリデン系重合体力 選ばれた少なくとも 1種  (A) at least one selected from the group consisting of polyvinyl alcohol resin, acrylonitrile-based polymer, acrylic polymer, and salted bilidene-based polymer
(B)ジ-トロソペンタメチレンテトラミン、ァゾジカルボンアミド、パラトルエンスルフォ- ルヒドラジンおよびその誘導体、そしてォキシビスベンゼンスルフォ-ルヒドラジンから 選ばれた少なくとも 1種  (B) at least one selected from di-trosopentamethylenetetramine, azodicarbonamide, paratoluenesulfurhydrazine and derivatives thereof, and oxybisbenzenesulfolhydrhydrazine
(C)炭素数 2から 8の直鎖状及び分岐状の脂肪族炭化水素およびそのフルォロ化物 、炭素数 2から 8の脂環式炭化水素およびそのフルォロ化物、そして次の一般式 (III) R'-O-R2—— (III) (C) linear and branched aliphatic hydrocarbons having 2 to 8 carbon atoms and fluorinated compounds thereof, alicyclic hydrocarbons having 2 to 8 carbon atoms and fluorinated compounds thereof, and the following general formula (III) R'-OR 2 —— (III)
(式中の R1および R2は、それぞれ独立に炭素数が 1から 5の一価の炭化水素基であ り、該炭化水素基の水素原子の一部をフッ素原子に置き換えても良い)にて表される エーテルィ匕合物カゝら選ばれた少なくとも 1種 (R 1 and R 2 in the formula are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and a part of the hydrogen atoms of the hydrocarbon group may be replaced with fluorine atoms.) At least one selected from ethereal daggers
[0058] (36)タイヤをリムに装着したタイヤとリムとの組立体における該タイヤとリムとで区画さ れたタイヤ気室内に、大気圧を超える高圧気体とともに配置する、熱膨張が可能な榭 脂による連続相と独立気泡とからなる中空粒子であって、その中空部内の圧力が大 気圧以上であり、かつ表面の少なくとも部分に、該表面に熱を介して定着された被覆 剤を有することを特徴とする中空粒子。  (36) In a tire-rim assembly in which a tire is mounted on a rim, the tire and the rim are arranged together with a high-pressure gas exceeding the atmospheric pressure in a tire chamber separated by the tire and the rim, so that thermal expansion is possible.中空 Hollow particles comprising a continuous phase of a resin and closed cells, wherein the pressure in the hollow part is equal to or higher than the atmospheric pressure, and at least part of the surface has a coating agent fixed to the surface via heat. A hollow particle characterized by the above-mentioned.
[0059] (37)上記(36)において、中空部内の圧力が、常用走行使用時の車両指定タイヤ内 圧の 70%以上であることを特徴とする中空粒子。  (37) The hollow particles according to the above (36), wherein the pressure in the hollow portion is 70% or more of the internal pressure of the tire designated by the vehicle during normal use.
[0060] (38)上記(36)または(37)において、全表面に被覆剤を有することを特徴とする中 空粒子。  (38) The hollow particles according to (36) or (37), further comprising a coating agent on the entire surface.
[0061] (39)上記(36)ないし(38)のいずれかにおいて、中空粒子の被覆に使用した被覆 剤量および下記処理に従って得られる沈殿物量に基づ!/、て、次式  (39) In any one of the above (36) to (38), based on the amount of the coating agent used for coating the hollow particles and the amount of the precipitate obtained according to the following treatment, the following formula:
定着率 ={ (使用被覆剤量) (沈殿物量) }Z (使用被覆剤量) X 100  Fixing rate = {(Amount of coating used) (Amount of sediment)} Z (Amount of coating used) X 100
にて求められる被覆剤の定着率が 90mass%以上であることを特徴とする中空粒子。  The hollow particles, wherein the fixing rate of the coating agent determined in the above is 90 mass% or more.
 Record
分液ロート内に、 n キサン、イソプロピルアルコール、エタノールおよびメタノー ルカも選ばれた少なくとも 1種の溶媒 300ccと、 2 3gの範囲で秤量した被覆剤を有 する中空粒子とを添加し、常温下で 1分間攪拌した後 10分間静置し、沈殿物をロート 力も排出そして採取した後、再度上記溶媒を追加し分液ロート内溶媒を 300ccに調 整した上で、上記攪拌、静置および排出そして採取を、さらに 4回繰り返し、合計 5回 分の沈殿成分を、定法により溶媒を除去後に沈殿物量として秤量し、元の中空粒子 量に対する質量百分率を算出して沈殿物量とする。 In a separating funnel, 300 cc of at least one solvent selected from n- xane, isopropyl alcohol, ethanol and methanol, and hollow particles having a coating agent weighed in a range of 23 g are added at room temperature. After stirring for 1 minute, the mixture was left standing for 10 minutes, and the precipitate was drained from the funnel and collected.After adding the solvent again, the solvent in the separatory funnel was adjusted to 300 cc. Sampling is repeated four more times, and a total of five sediment components are weighed as the sediment amount after removing the solvent by a standard method, and the mass percentage based on the original hollow particle amount is calculated to be the sediment amount.
[0062] (40)上記(39)において、前記定着率が 95mass%以上であることを特徴とする中空 粒子。 (40) The hollow particles according to the above (39), wherein the fixing rate is 95 mass% or more.
[0063] (41)上記(39)または(40)において、前記定着率が 99mass%以上であることを特 徴とする中空粒子。 (41) In the above (39) or (40), it is characterized in that the fixing rate is 99 mass% or more. Hollow particles
[0064] ここで、本文中で記載するタイヤ気室の圧力とは、特に記載しな 、場合はゲージ圧  [0064] Here, the pressure in the tire air chamber described in the text is not particularly described, and in some cases, the gauge pressure is used.
(ゲージに示される圧力)を指す。  (Pressure indicated on the gauge).
発明の効果  The invention's effect
[0065] 本発明によれば、タイヤ受傷後のタイヤ気室圧力低下時にあっても必要とされる距 離を安定して走行し得る機能を発現し、通常走行下にお 、て低速力も高速のあらゆ る走行条件下においても、上記機能を確実に保持するタイヤとリムとの組立体を提供 することができる。  [0065] According to the present invention, a function of stably traveling a required distance even when the tire air chamber pressure is reduced after a tire is injured is exhibited, and the low speed force is also high during normal traveling. It is possible to provide an assembly of a tire and a rim that reliably retains the above functions even under all running conditions.
[0066] 以上の効果は、タイヤ気室内に本発明により規定される充填率の下に本発明により 限定された中空粒子を配置することにより得られるから、タイヤ構造自体を規制する 必要はなぐ汎用のタイヤそして汎用のリムを活用して新たに安全タイヤとリムとの組 立体を提供できる。  [0066] The above effects can be obtained by arranging the hollow particles defined by the present invention in the tire air chamber under the filling ratio specified by the present invention, so that it is not necessary to regulate the tire structure itself. A new three-dimensional combination of safety tires and rims can be provided by utilizing the existing tires and general-purpose rims.
[0067] 特に、上記課題解決手段(26)ないし(34)の記載に従って中空粒子の表面に被覆 剤を適用すれば、該被覆剤の中空粒子表面での均一分布および同表面に対する強 固な被覆が実現されるため、中空粒子同士の融着が確実に防止され、また中空粒子 の耐久性を向上することができる。従って、タイヤが受傷するまでの期間にわたり、中 空粒子本来の機能が維持される結果、上記したタイヤとリムとの組立体の高機能を長 期にわたり保証できる。  [0067] In particular, when the coating agent is applied to the surface of the hollow particles according to the above-mentioned means for solving the problems (26) to (34), the uniform distribution of the coating agent on the surface of the hollow particles and the strong coating on the surface can be achieved. Therefore, fusion between the hollow particles can be reliably prevented, and the durability of the hollow particles can be improved. Therefore, as a result of maintaining the original function of the hollow particles until the tire is injured, the high performance of the assembly of the tire and the rim can be guaranteed for a long time.
図面の簡単な説明  Brief Description of Drawings
[0068] [図 1]本発明に従うタイヤとリムとの組立体を示すタイヤ幅方向断面図である。 FIG. 1 is a sectional view in the tire width direction showing an assembly of a tire and a rim according to the present invention.
[図 2]タイヤ気室圧力低下警報装置を搭載した本発明に従うタイヤとリムとの組立体 の一例を示すタイヤ幅方向断面図である。  FIG. 2 is a cross-sectional view in the tire width direction showing an example of an assembly of a tire and a rim according to the present invention equipped with a tire air chamber pressure drop warning device.
[図 3]本発明に従うタイヤとリムとの組立体に搭載する、中空粒子および気体の充填 に併用する『フィルターを備えたタイヤ用バルブ』の例を示す図である。  FIG. 3 is a view showing an example of a “valve for a tire provided with a filter” which is mounted on an assembly of a tire and a rim according to the present invention and used for filling hollow particles and gas.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0069] 以下に、本発明に従うタイヤとリムとの組立体について、その幅方向断面を示す図 1に基づいて説明する。 Hereinafter, an assembly of a tire and a rim according to the present invention will be described with reference to FIG. 1 showing a cross section in the width direction.
すなわち、図示のタイヤとリムとの組立体は、タイヤ 1をリム 2に装着し、該タイヤ 1とリ ム 2とで区画されたタイヤ気室 3内に、榭脂よりなる連続相と独立気泡とからなる熱膨 張可能な中空粒子 4の多数を、加圧下で充填配置してなる。 That is, in the illustrated tire and rim assembly, the tire 1 is mounted on the rim 2 and the tire 1 and the rim are mounted. A large number of thermally expandable hollow particles 4 composed of a continuous phase made of resin and closed cells are filled and arranged under pressure in a tire air chamber 3 partitioned by a rubber 2.
なお、タイヤ 1は、規格に従う各種自動車用タイヤ、たとえば、トラックやバス用タイ ャ、乗用車用タイヤ等であれば、特に構造を限定する必要はない。すなわち、本発 明はタイヤとリムとの組立体になるすべての安全タイヤに適用できる技術であり、図示 のタイヤは、 1対のビードコア 5間でトロイド状に延びるカーカス 6のクラウン部に、その 半径方向外側へ順にベルト 7およびトレッド 8を配設してなる一般的な自動車用タイ ャである。  Note that the structure of the tire 1 is not particularly limited as long as it is a variety of automobile tires that comply with the standards, for example, truck and bus tires, passenger car tires, and the like. In other words, the present invention is a technology that can be applied to all safety tires that are assembled with a tire and a rim, and the tire shown in the figure is provided with a crown portion of a carcass 6 extending in a toroidal shape between a pair of bead cores 5. This is a general automobile tire in which a belt 7 and a tread 8 are arranged in order outward in the radial direction.
図において、符号 9は、タイヤ気室 3に対して気体を給排するバルブを、 10はイン ナーライナ一層をそれぞれ示し、 11はサイド部を、そして 12は、中空粒子 4の周囲の 空隙をそれぞれ示す。  In the drawing, reference numeral 9 denotes a valve for supplying and exhausting gas to and from the tire chamber 3, 10 denotes an inner liner layer, 11 denotes a side portion, and 12 denotes a space around the hollow particles 4. Show.
[0070] 上記中空粒子 4は、略球形状の榭脂による連続相で囲まれた独立気泡を有する、 たとえば粒径が 10 μ m〜500 μ m程度の範囲で粒径分布を持った中空体、あるい は、独立気泡による小部屋の多数を含む海綿状構造体である。すなわち、該中空粒 子 4は、外部と連通せずに密閉された独立気泡を内包する粒子であり、該独立気泡 の数は単数であってもよいし、複数であってもよい。この明細書では、この『中空粒子 群の独立気泡内部』を総称して『中空部』と表現する。  [0070] The hollow particles 4 have closed cells surrounded by a continuous phase of substantially spherical resin, for example, a hollow body having a particle size distribution in the range of about 10 µm to 500 µm. Or, it is a spongy structure containing a large number of closed cells with closed cells. That is, the hollow particles 4 are particles containing closed cells which are closed without being communicated with the outside, and the number of the closed cells may be singular or plural. In this specification, this “inside the closed cells of the hollow particle group” is collectively referred to as “hollow portion”.
また、この粒子が独立気泡を有することは、該粒子が独立気泡を密閉状態で内包 するための『榭脂製の殻』を有することを指し、さらに、榭脂による連続相とは、この『 榭脂製の殻を構成する成分組成上の連続相』を指す。なお、この榭脂製の殻の組成 は後述のとおりである。  The fact that the particles have closed cells means that the particles have a “resin shell” for enclosing the closed cells in a closed state. "Continuous phase on the component composition of the shell made of fat". The composition of the resin shell is as described below.
[0071] この中空粒子 4の多数個である中空粒子群は、高圧気体とともにタイヤ気室 3の内 側に充填配置することによって、通常の使用条件下ではタイヤの『使用内圧』を部分 的に担うと共に、タイヤ 1の受傷時には、タイヤ気室 3内の失った圧力を復活させる機 能を発現する源となる。この『内圧復活機能』については後述する。  [0071] The hollow particle group, which is a large number of the hollow particles 4, is filled and arranged inside the tire air chamber 3 together with the high-pressure gas to partially reduce the "operating internal pressure" of the tire under normal use conditions. When the tire 1 is injured, it serves as a source for expressing the function of restoring the lost pressure in the tire air chamber 3. This “internal pressure recovery function” will be described later.
ここで、『使用内圧』とは、『自動車メーカーが各車両毎に指定した、装着位置ごとの タイヤ気室圧力値 (ゲージ圧力値)』を指す。  Here, the “operating internal pressure” refers to “the tire air chamber pressure value (gauge pressure value) for each mounting position specified by the automobile manufacturer for each vehicle”.
[0072] さて、従来の空気入りタイヤは、タイヤ気室圧力が大気圧まで低下した状態で走行 すると、荷重によりタイヤが大きく橈み、そのサイド部が路面に接地してしまうため、路 面との摩擦と繰り返し屈曲変形とによる発熱によって骨格のカーカス材が疲労し、サ イド部の磨耗傷が最終的にタイヤ気室内まで貫通することで破壊に到る。 [0072] Now, a conventional pneumatic tire travels in a state in which the tire chamber pressure has dropped to atmospheric pressure. Then, the tire is greatly radiused by the load, and the side part is in contact with the road surface, so that the carcass material of the skeleton is fatigued by the heat generated by friction with the road surface and repeated bending deformation, and wear and tear on the side part is reduced. Ultimately, it penetrates into the tire air chamber, causing destruction.
[0073] そこで、本発明では、外傷によってタイヤ気室内の気体が漏れ出た際に、その後の 走行に必要な最低限のタイヤ気室圧力を適正に与え、失った圧力を回復させること を主目的としている。よって本発明では、タイヤとリムの組立体を圧力容器と捕らえて いる。すなわち、パンクにより傷ついてしまった圧力容器の傷口を、タイヤ気室内に配 置した中空粒子群により暫定的に封止した上で、中空粒子を機能させて失った圧力 を回復することによって、この目的を達成しょうとするものである。従って、前述した従 来の空気入りタイヤのように、パンク後の走行自体がタイヤ、すなわち圧力容器を故 障破壊に導くような事があってはならない。  [0073] Therefore, the present invention mainly provides that when gas in a tire chamber leaks due to an injury, the minimum tire chamber pressure necessary for subsequent traveling is appropriately given to recover the lost pressure. The purpose is. Therefore, in the present invention, the assembly of the tire and the rim is regarded as a pressure vessel. That is, by temporarily sealing the wound of the pressure vessel damaged by the puncture with the hollow particles arranged in the tire air chamber, the hollow particles function to recover the lost pressure. It is to achieve the purpose. Therefore, as in the case of the conventional pneumatic tire described above, the running itself after puncturing must not cause the tire, that is, the pressure vessel, to break down.
[0074] すなわち、タイヤ気室圧力が大気圧にまで低下したとしても、早期に上述の機能を 発揮させること〖こよって、前述のタイヤ破壊に至ることを回避し、圧力容器として機能 させることが重要であり、そのために、タイヤ気室内の圧力を『少なくともタイヤのサイ ド部が接地しなくなる圧力』まで復活させることが肝要である。  That is, even if the tire air chamber pressure is reduced to the atmospheric pressure, the above-described function can be exerted at an early stage, so that the above-described tire destruction can be avoided and the tire can be made to function as a pressure vessel. It is important that the pressure in the tire chamber be restored to "at least the pressure at which the side of the tire does not touch the ground".
[0075] より具体的には、タイヤ気室に配置する中空粒子について、下記式 (I)に従う中空 粒子の充填率を 5vol%以上 80vol%以下とすることが好ましい。  [0075] More specifically, for the hollow particles arranged in the tire air chamber, the filling rate of the hollow particles according to the following formula (I) is preferably 5 vol% or more and 80 vol% or less.
 Record
中空粒子の充填率 = (粒子体積値 Zタイヤ気室容積値) X 100 一- (I) [0076] ここで、粒子体積値は、タイヤ気室に配置した全中空粒子の大気圧下での合計体 積と粒子周囲の空隙体積との合計量 (cm3)であり、以下の方法で算出できる。 まず、該粒子の大気圧下での平均嵩比重を求める。その方法は、例えば大気圧下 にて既知体積であるものの重量を測定することにより算出する。最初に、大気圧下で メスシリンダーに粒子を量りとり、超音波水浴中にて振動を与え、粒子間のパッキング が安定した状態にて、粒子の総体積 (粒子周囲の空隙体積を含む)と粒子の総重量 とを測定することによって、上記大気圧下での平均嵩比重を算出する。すなわち、粒 子の大気圧下での平均嵩比重は、 Filling rate of hollow particles = (particle volume value Z tire chamber volume value) X 100 1-(I) [0076] Here, the particle volume value is calculated based on the atmospheric pressure of all the hollow particles arranged in the tire chamber. It is the total amount (cm 3 ) of the total volume and the void volume around the particle, and can be calculated by the following method. First, the average bulk specific gravity of the particles under atmospheric pressure is determined. The method is calculated, for example, by measuring the weight of a known volume at atmospheric pressure. First, the particles are weighed into a graduated cylinder under atmospheric pressure and vibrated in an ultrasonic water bath. When the packing between the particles is stable, the total volume of the particles (including the void volume around the particles) is determined. The average bulk specific gravity under the above atmospheric pressure is calculated by measuring the total weight of the particles. That is, the average bulk specific gravity of the particles under atmospheric pressure is
粒子の大気圧下での平均嵩比重 = (粒子の総重量) / (粒子の総体積) である。 Average bulk specific gravity of particles under atmospheric pressure = (total weight of particles) / (total volume of particles) It is.
次に、タイヤ気室内に配置した粒子の総重量を測定し、前記にて算出した該粒子 の大気圧下での平均嵩比重で割ることによって、タイヤ内部に配置した『粒子体積』 を算出することができる。すなわち、  Next, the “particle volume” disposed inside the tire is calculated by measuring the total weight of the particles disposed in the tire air chamber and dividing by the average bulk specific gravity under atmospheric pressure of the particles calculated above. be able to. That is,
粒子体積 = (タイヤに充填した粒子の総重量) Z (粒子の大気圧下での平均嵩比 重)  Particle volume = (Total weight of particles filled in tire) Z (Average bulk specific gravity of particles under atmospheric pressure)
である。  It is.
なお、容積が既知の容器に粒子を量り取りながらタイヤ気室内に配置する方法でも 所望の粒子体積の粒子をタイヤ内に配置することが出来る。  In addition, a method of arranging particles in a tire air chamber while weighing the particles in a container having a known volume can also arrange particles having a desired particle volume in the tire.
[0077] また、タイヤ気室容積値は、タイヤとリムとの組立体に空気のみを充填して使用内圧  [0077] The tire air chamber volume value is obtained by filling the tire and rim assembly only with air and using the internal pressure.
(kPa)に調整した後、充填空気を内圧が大気圧になるまで排出した際の充填空気排 出量 (cm3)を用いて、次式 (II)力も求めた値 (cm3)である。 After adjusting the pressure to (kPa), using the filling air discharge amount (cm 3 ) when the filling air is discharged until the internal pressure reaches the atmospheric pressure, the force of the following formula (II) is also obtained (cm 3 ). .
タイヤ気室容積値 = (充填空気排出量) / (使用内圧 Z大気圧)― (Π) なお、式 (II)において使用内圧はゲージ圧値 (kPa)を、大気圧値は気圧計による絶 対値 (kPa)を用いる。すなわち大気圧は、ゲージ圧では 0[kPa]で表される力 大気圧 値自体は日々刻々と変動するものであるため、その時点での気圧計力 観測される 絶対値を用いる。よって例えばある時の大気圧が 1013hPaであった場合は、大気圧 絶対値として 101. 3kPaを式 (II)に用いる。  Tire air chamber volume value = (filled air discharge amount) / (operating internal pressure Z atmospheric pressure)-(Π) In formula (II), the operating internal pressure is the gauge pressure value (kPa), and the atmospheric pressure value is the absolute value of the barometer. Use the logarithmic value (kPa). In other words, the atmospheric pressure is a force expressed in gauge pressure of 0 [kPa] Since the atmospheric pressure value itself fluctuates every day, the absolute value of the barometric force measured at that time is used. Therefore, for example, if the atmospheric pressure at a certain time is 1013 hPa, use 101.3 kPa as the absolute value of the atmospheric pressure in the formula (II).
[0078] 以下に、上記した中空粒子の充填率を 5vol%以上 80vol%以下とする理由につい て、常用使用からパンク状態となった場合の態様へと順に説明する。 [0078] Hereinafter, the reason why the filling rate of the hollow particles is set to 5 vol% or more and 80 vol% or less will be described in order from a normal use to an aspect in a case where a puncture state occurs.
まず、タイヤ気室に中空粒子の多数を配置し、さらに該タイヤ気室に高圧気体を充 填して、タイヤ気室圧力を使用内圧とする場合から説明する。  First, a description will be given of a case where a large number of hollow particles are arranged in a tire chamber, and the tire chamber is filled with a high-pressure gas so that the tire chamber pressure is used as an internal pressure.
本発明では、中空粒子 4をタイヤ気室 3に配置した後、該粒子 4周囲の空隙部 10、 言い換えればタイヤ気室の圧力が、装着車両指定内圧等の所望の使用内圧となる ように、空気や窒素等の高圧気体を充填することが肝要である。  In the present invention, after arranging the hollow particles 4 in the tire air chamber 3, a gap 10 around the particles 4, in other words, the pressure of the tire air chamber becomes a desired internal pressure such as an internal pressure specified by the mounted vehicle. It is important to fill with a high-pressure gas such as air or nitrogen.
タイヤ気室 3に中空粒子 4を配置し、さらに気体を充填してタイヤ気室 3の圧力を所 望の圧力に設定すると、当初、中空粒子の中空部内の圧力(独立気泡内の圧力)が タイヤ気室の圧力より小さいために、粒子は体積減少する。この時点での中空粒子 の形状は略球形状ではなぐ球形状力 扁平ィ匕して歪んだ形状となっている。この粒 子形状が扁平ィヒして歪んだ状態のままタイヤ走行を開始すると、中空粒子は、球形 状の場合と比べて粒子同士の衝突やタイヤおよびリム内面との衝突により、破壊しや すくなる。すなわち、中空粒子が扁平ィ匕して歪んだ形状では、衝突による入力を均一 に分散させることができず、耐久性面で大きな不利をもたらすことになる。 When the hollow particles 4 are placed in the tire chamber 3 and filled with gas to set the pressure of the tire chamber 3 to a desired pressure, the pressure in the hollow portion of the hollow particles (the pressure in the closed cell) is initially increased. The particles are reduced in volume because they are smaller than the pressure in the tire chamber. Hollow particles at this point Has a spherical force rather than a substantially spherical shape, and is distorted by flattening. If the tire starts running with this particle shape flattened and distorted, the hollow particles are more likely to break due to collisions between the particles and collision with the tire and the inner surface of the rim, compared to the spherical case. Become. That is, if the hollow particles are flattened and distorted, the input due to the collision cannot be uniformly dispersed, resulting in a great disadvantage in durability.
[0079] 一方、扁平ィ匕して歪んだ中空粒子は、その中空部内の圧力とタイヤ気室の圧力と の差により体積減少した状態であるわけだが、一定期間にわたりタイヤ気室 (粒子周 囲の空隙部)の圧力を保ち続けることによって、中空粒子の中空部内の圧力、言い 換えれば該粒子内の独立気泡内の圧力を、タイヤ気室の圧力程度に高めることがで きる。すなわち、扁平ィ匕した中空粒子は変形させられているため、その殻の部分には 元の略球形状に戻ろうとする力が働いている。また、扁平化した中空粒子の中空部 内の圧力は、タイヤ気室の圧力よりも低いことから、その圧力差を解消するために、タ ィャ気室の気体の分子が榭脂による連続相の殻を通過して粒子の中空部内に浸透 する。さらに、中空粒子の中空部は独立気泡であり、その中の気体は発泡剤に起因 するガスで満たされているため、タイヤ気室 (粒子周囲の空隙部)の気体とは異なる 場合がある。この場合は、上述の単なる圧力差だけではなく気体の分圧差に従いな がら、その分圧差を解消するまでタイヤ気室内の高圧気体が粒子中空部内へ浸透し ていく。このように、タイヤ気室内の高圧気体は、時間と共に中空粒子の中空部内へ 浸透していくため、この中空部内に浸透した分だけ、タイヤ気室の圧力が低下するこ ととなる。よって、中空粒子の中空部内に浸透した分を補うために、高圧気体を充填 した上で所望の圧力をかけ続けることにより、所望の使用内圧に調整した、本発明の タイヤを早期に得ることができる。  [0079] On the other hand, the hollow particles distorted by flattening are in a state in which the volume is reduced due to the difference between the pressure in the hollow portion and the pressure in the tire air chamber. By maintaining the pressure in the voids, the pressure in the hollow portions of the hollow particles, in other words, the pressure in the closed cells in the particles, can be increased to about the pressure of the tire air chamber. That is, since the flattened hollow particles are deformed, a force is exerted on the shell portion to return to the original substantially spherical shape. In addition, since the pressure in the hollow portion of the flattened hollow particles is lower than the pressure in the tire chamber, the gas molecules in the tire chamber are converted into a continuous phase by resin in order to eliminate the pressure difference. Penetrates through the shell of the particle into the hollow part of the particle. Furthermore, since the hollow portion of the hollow particle is a closed cell and the gas therein is filled with a gas derived from the foaming agent, the gas may be different from the gas in the tire air chamber (the void around the particle). In this case, the high-pressure gas in the tire chamber permeates into the hollow particles until the partial pressure difference is eliminated, not only according to the partial pressure difference of the gas but also the simple pressure difference described above. As described above, the high-pressure gas in the tire air chamber permeates into the hollow portion of the hollow particles with time, so that the pressure in the tire air chamber is reduced by the amount permeated into the hollow portion. Therefore, in order to compensate for the permeation into the hollow portion of the hollow particles, the tire of the present invention, which has been adjusted to the desired internal pressure, can be obtained at an early stage by continuously applying a desired pressure after filling with a high-pressure gas. it can.
[0080] かように、中空粒子の中空部内の圧力は、タイヤ気室 (粒子周囲の空隙部)の圧力 に近づきながら、一旦減少した粒子体積を回復していき、粒子形状は扁平化されて 歪んだ形状から元の略球形状へと回復して!/、く。この形状を回復して 、く過程の中で 、中空粒子中空部内の圧力がタイヤ気室の圧力に対して少なくとも 70%にまで増加 することにより、粒子形状は扁平化した状態から略球形へ回復することが出来、これ によって上述した粒子の耐久性を保証することが出来る。 [0081] 上記の手法によれば、中空粒子のまわりに高圧気体が介在することになり、通常走 行時に中空粒子が負担する荷重を無視できるほど軽減できるのはもちろんのこと、上 述の粒子体積を回復した中空粒子にぉ 、ては、粒子形状が略球形に回復するため 、タイヤ転動時の繰り返し変形に伴って粒子に加わる疲労や破壊も大幅に低減でき る結果、粒子の耐久性が損なわれることはない。中空粒子の耐久性が損われない範 囲は、タイヤ気室内の圧力が、装着する車両指定内圧等の所望する高圧下環境の なかで粒子が体積を回復しながら粒子中空部の圧力が増加する過程において、中 空粒子の中空部の圧力が所望のタイヤ気室内の圧力に対して少なくとも 70%である ことが好ましい。さらには、 80%以上、 90%以上、そして 100%以上と高く設定するこ とが推奨される。 [0080] As described above, the pressure in the hollow portion of the hollow particle approaches the pressure of the tire air chamber (the void around the particle) and recovers the once reduced particle volume, and the particle shape is flattened. It recovers from the distorted shape to the original roughly spherical shape! In the process of recovering this shape, the pressure inside the hollow particles increases to at least 70% of the pressure in the tire air chamber during the process, and the particle shape recovers from a flattened state to a substantially spherical shape. In this way, the durability of the particles described above can be guaranteed. [0081] According to the above method, the high-pressure gas is interposed around the hollow particles, so that the load imposed on the hollow particles during normal traveling can be reduced to a negligible level, and the above-described particles can be reduced. In the case of hollow particles whose volume has been recovered, since the particle shape has recovered to a substantially spherical shape, fatigue and destruction applied to the particles due to repeated deformation during rolling of the tire can be significantly reduced, resulting in particle durability. Is not compromised. As long as the durability of the hollow particles is not impaired, the pressure inside the particle cavity increases while the particles recover their volume in the desired high-pressure environment such as the internal pressure specified by the vehicle in which the tire is mounted. In the process, it is preferable that the pressure in the hollow portion of the hollow particles is at least 70% of the desired pressure in the tire chamber. Furthermore, it is recommended that the setting be as high as 80% or more, 90% or more, and 100% or more.
[0082] ここで、中空粒子の中空部内の圧力を所望のタイヤ気室内の圧力に対して少なくと も 70%とするタイヤとリムとの組立体を得るには、中空粒子周囲の空隙気体の圧力を 、少なくとも装着する車両指定内圧等の所望するタイヤ気室内の圧力に対して 70% 以上まで高めた状態に保持し、この圧力をかけ続けたまま適切な時間を経過させれ ばよい。あるいは、中空粒子をタイヤとは別の圧力容器内に配置し、粒子周囲の空 隙圧力を少なくとも所望のタイヤ気室内の圧力に対して 70%以上まで高めた状態に 保持し、この圧力をかけ続けたまま該圧力容器内にて適切な時間保管したうえで、中 空粒子の中空部内の圧力が増加した状態の粒子をその周囲の雰囲気と共にタイヤ 気室内に配置することによつても、所望のタイヤとリムとの組立体を得ることができる。  Here, in order to obtain an assembly of a tire and a rim in which the pressure in the hollow portion of the hollow particles is at least 70% of the pressure in the desired tire chamber, the gap gas around the hollow particles must be reduced. The pressure should be maintained at least 70% or more higher than the desired pressure in the tire chamber, such as the internal pressure specified by the vehicle to be mounted, and an appropriate time should be passed while the pressure is kept applied. Alternatively, the hollow particles are placed in a pressure vessel separate from the tire, the air gap pressure around the particles is kept at least 70% higher than the desired pressure in the tire chamber, and this pressure is applied. It is also desirable to store the pressure-enhanced particles in the hollow portion of the hollow particles together with the surrounding atmosphere in the tire air chamber after storing them in the pressure vessel for an appropriate time while continuing. Tire and rim assembly can be obtained.
[0083] なお、上述の適切な保持時間は、中空粒子の殻の部分、すなわち粒子の連続相に 対する空隙気体の透過性と、粒子中空部内の気体と空隙気体との分圧差とを考慮し て、設定すればよい。  [0083] The above-mentioned appropriate holding time is determined in consideration of the permeability of the void gas to the shell portion of the hollow particle, that is, the continuous phase of the particle, and the partial pressure difference between the gas in the hollow portion of the particle and the void gas. And set it.
[0084] 以上の機構と粒子の形状、体積の変化過程に則り、タイヤ気室 (粒子周囲の空隙部) に充填する気体の種類と圧力とを適宜に選択、そして調節することによって、中空粒 子の中空部内の圧力を所望の範囲に設定できる。  [0084] According to the above mechanism and the process of changing the shape and volume of the particles, the type and pressure of the gas to be filled in the tire air chamber (gap around the particles) are appropriately selected and adjusted, whereby the hollow particles are adjusted. The pressure in the hollow portion of the child can be set in a desired range.
[0085] 以上述べてきたように、中空粒子の中空部内の圧力を所望のタイヤ気室内の圧力 に対して少なくとも 70%とした粒子を、タイヤ気室内に配置することにより、該タイヤ 気室の圧力が大気圧となった状態力 走行した時に、少なくとも該タイヤのサイド部 が接地しなくなるタイヤ気室圧力まで、該タイヤ気室の圧力を回復させることを実現 する必要がある。 [0085] As described above, the particles in which the pressure in the hollow portion of the hollow particles is at least 70% of the pressure in the desired tire chamber are arranged in the tire chamber to thereby reduce the pressure in the tire chamber. When the pressure becomes the atmospheric pressure, when running, at least the side part of the tire It is necessary to restore the pressure in the tire air chamber to the pressure in the tire air chamber at which the tire does not contact the ground.
以下に、そのタイヤ内圧の復活機構を説明する。  The mechanism for restoring the tire internal pressure will be described below.
[0086] さて、上述した中空粒子群をタイヤ気室内に配置したタイヤとリムとの組立体にあつ ては、該タイヤが受傷すると、中空粒子 4相互間の空隙 10に存在するタイヤ気室内 の高圧気体がタイヤの外側に漏れ出る結果、タイヤ気室の圧力は大気圧と同程度の 圧力にまで低下する。そして、このタイヤ気室圧力低下の過程において、以下の事が タイヤ気室内で起こって 、る。  [0086] Now, in an assembly of a tire and a rim in which the above-described hollow particle group is arranged in the tire air chamber, when the tire is damaged, the inside of the tire air chamber existing in the gap 10 between the hollow particles 4 is damaged. As a result of the high-pressure gas leaking out of the tire, the pressure in the tire chamber drops to a pressure approximately equal to the atmospheric pressure. Then, in the process of reducing the tire chamber pressure, the following occurs in the tire chamber.
[0087] まず、タイヤが受傷しタイヤ気室の圧力が低下し始めると、中空粒子の多数が受傷 部を封止し、急激な気室圧力の低下を抑制する。その一方、気室圧力の低下に伴い タイヤの橈み量は増加し、タイヤ気室容積が減少する。さらに、気室圧力が低下する とタイヤが大きく橈み、タイヤ気室内に配置した中空粒子は、タイヤ内面とリム内面と の間に挟まれながら、圧縮とせん断の入力を受けることとなる。  [0087] First, when the tire is damaged and the pressure in the tire air chamber starts to decrease, a large number of hollow particles seal the damaged part and suppress a sharp decrease in air chamber pressure. On the other hand, as the air chamber pressure decreases, the tire radius increases and the tire air volume decreases. Furthermore, when the air chamber pressure is reduced, the tire is greatly radiused, and the hollow particles placed in the tire air chamber receive compression and shear input while being sandwiched between the inner surface of the tire and the inner surface of the rim.
[0088] 一方、上述の使用内圧下で存在していた中空粒子の中空部内の圧力(独立気泡 中の気泡内圧力)は、受傷後も上記使用内圧に準じた高い圧力を保ったまま、言い 換えれば、受傷前の粒子体積と中空部圧力を保持したままタイヤ気室内に存在する 事となる。よって、さらにタイヤが転動する事により、中空粒子そのものが直接的に荷 重を負担しつつ中空粒子同士が摩擦を引き起こし自己発熱するために、タイヤ気室 内の中空粒子の温度が急上昇する。そして、該温度が、中空粒子の殻部である連続 相を形成する榭脂の熱膨張開始温度 (該榭脂のガラス転移温度に相当する)を超え ると、該粒子の殻は軟ィ匕し始める。このとき、中空粒子の中空部内の圧力が使用内 圧に準じた高い圧力であるのに加え、中空粒子温度の急上昇によりさらに中空部内 圧力が上昇しているために、中空粒子が一気に体積膨張し粒子周囲の空隙気体を 圧縮する事になるため、タイヤ気室の圧力を少なくともタイヤのサイド部が接地しなく なるタイヤ気室圧力まで回復させる事ができるのである。  [0088] On the other hand, the pressure in the hollow portion of the hollow particles (the pressure in the closed cell) inside the hollow particles that existed under the above-mentioned working internal pressure remains high after the injury while maintaining a high pressure according to the working internal pressure. In other words, the particles are present in the tire air chamber while maintaining the particle volume and the pressure in the hollow portion before the injury. Therefore, the rolling of the tire further causes the hollow particles themselves to directly bear the load while causing friction between the hollow particles and self-heating, so that the temperature of the hollow particles in the tire air chamber rapidly rises. When the temperature exceeds the thermal expansion start temperature of the resin forming the continuous phase which is the shell of the hollow particles (corresponding to the glass transition temperature of the resin), the shell of the particles is softened. Begin to. At this time, the pressure inside the hollow part of the hollow particles is a high pressure corresponding to the used internal pressure, and the pressure inside the hollow part further rises due to the rapid rise in the temperature of the hollow particles, so that the volume of the hollow particles expands at once. Since the void gas around the particles is compressed, the pressure in the tire chamber can be restored to at least the pressure in the tire chamber where the side of the tire does not contact the ground.
[0089] 上記の機構によって中空粒子の中空部内の圧力を大気圧以上の高い圧力に設定 すれば、内圧復活機能を発現させることができる。  [0089] If the pressure in the hollow portion of the hollow particle is set to a pressure higher than the atmospheric pressure by the above mechanism, the internal pressure restoring function can be exhibited.
[0090] すなわち、前述のサイド部が接地しないタイヤ内圧までタイヤ気室の圧力を復活さ せるには、前述の中空部内の圧力が使用内圧の少なくとも 70%である中空粒子を、 5vol%以上 80vol%以下の充填率の下にタイヤ気室内に配置しておくことが肝要で ある。その理由を、以下に示す。 [0090] That is, the pressure in the tire chamber is restored to the tire internal pressure at which the side portion does not touch the ground. In order to achieve this, it is important that the above-mentioned hollow particles having a pressure in the hollow portion of at least 70% of the used internal pressure be arranged in the tire air chamber at a filling rate of 5 vol% or more and 80 vol% or less. The reason is shown below.
中空粒子の充填率が 5vol%未満であると、受傷部の封止は問題なく行えるが、該 中空粒子の絶対量が不足して 、るために、サイド部が接地しな 、圧力レベルまでの 充分な復活内圧を得る事が難しくなる。一方、中空粒子の充填率が 80vol%を超え ると、タイヤによっては常用時の高速走行での粒子摩擦による発熱のために、前述し た中空粒子の膨張開始温度を超えて膨張してしまい、本発明の主たる機能である内 圧復活機能が失われる可能性が有る。この常用時の高速走行での粒子の発熱に関 しては後述する。  If the filling rate of the hollow particles is less than 5 vol%, the wounded portion can be sealed without any problem, but the absolute amount of the hollow particles is insufficient, so that the side portion does not contact the ground and the pressure level becomes lower. It will be difficult to obtain sufficient resurrection internal pressure. On the other hand, if the filling rate of the hollow particles exceeds 80 vol%, some tires expand beyond the above-mentioned expansion start temperature of the hollow particles due to heat generated by particle friction during normal high-speed running, and There is a possibility that the internal pressure recovery function, which is the main function of the present invention, may be lost. The heat generation of the particles during normal use at high speed will be described later.
[0091] また、前述した内圧復活機能を確実に発現させるためには、該内圧復活機能が発 現する前に、受傷部を確実に封止する事が肝要である。すなわち、受傷部の封止が 不完全であると、復活したはずの圧力が受傷部から漏洩してしまう結果、内圧復活機 能により得られた圧力がその後の走行能力に一時的にしか貢献できないために、受 傷後の走行性能を保証できなくなる恐れがある力 である。該中空粒子は、中空構 造による低比重かつ弾力性に富んだ粒子であるために、タイヤが受傷し受傷部から 中空粒子周囲の空隙気体が漏洩し始めると、空隙気体の漏洩による流れに乗って即 座に受傷部に密集し、受傷部の傷口を瞬時に封止する。以上述べたように、中空粒 子による受傷部の封止機能は、本発明の内圧復活機能を支える必須機能である。  [0091] Further, in order to reliably exhibit the above-described internal pressure recovery function, it is important to securely seal the damaged part before the internal pressure recovery function appears. In other words, if the damaged part is incompletely sealed, the pressure that should have recovered will leak from the damaged part, and the pressure obtained by the internal pressure recovery function will only temporarily contribute to the running performance thereafter. As a result, the driving performance after injury may not be guaranteed. Since the hollow particles are particles having a low specific gravity and a high elasticity due to the hollow structure, when the tire is damaged and the void gas around the hollow particles starts to leak from the damaged portion, the hollow particles ride on the flow due to the leakage of the void gas. Immediately and densely at the damaged part, and immediately seal the wound at the damaged part. As described above, the function of sealing the damaged part by the hollow particles is an essential function that supports the internal pressure recovery function of the present invention.
[0092] 以上述べたように、本発明に従う粒子を充填したタイヤとリムとの組立体では、パン ク後の内圧低下に伴うタイヤ気室容積の減少とタイヤの橈み量の増大により、中空粒 子間の摩擦を引き起こすことで粒子の急激な温度上昇とともに粒子の膨張による内 圧復活を果たし、パンク後の安全走行を実現できる。  [0092] As described above, in the assembly of the tire and the rim filled with the particles according to the present invention, the hollow space is reduced due to the decrease in the volume of the tire chamber due to the decrease in the internal pressure after puncturing and the increase in the radius of the tire. By causing friction between the particles, the internal pressure is restored by the particle's expansion as well as the temperature of the particles rises sharply, enabling safe driving after puncture.
[0093] ところで、タイヤとリムとの組立体における中空粒子間の摩擦は、通常走行下にお いても、微小ではあるが発生している。しかし、走行速度が lOOkmZh以下の領域で は、発生した摩擦熱自体が小さぐ走行による外気への放熱によって、その収支が保 たれている。  [0093] By the way, the friction between the hollow particles in the assembly of the tire and the rim is generated although it is very small even under normal running. However, in the region where the traveling speed is less than 100 kmZh, the balance is maintained by the heat released to the outside air due to the traveling where the generated frictional heat itself is small.
[0094] しかしながら、 150kmZhを超える高速度領域において、さらには外気の温度環境 が著しく高い酷暑環境下においては、発生する摩擦熱が増加するわりに外気への放 熱が不足する状態となり、中空粒子の温度環境が著しく悪ィ匕することがある。こういつ た状況が長時間続くと、中空粒子の温度がその膨張開始温度を上回ることによって 該粒子が膨張してしまい、その結果、前述したパンク時の内圧復活機能を損失する ことがある。 [0094] However, in the high-speed region exceeding 150kmZh, the temperature In a very hot environment where the temperature is extremely high, the generated frictional heat increases, but the heat release to the outside air becomes insufficient, and the temperature environment of the hollow particles may be significantly deteriorated. If such a situation continues for a long time, the temperature of the hollow particles exceeds the expansion start temperature, so that the particles expand, and as a result, the above-described internal pressure recovery function at the time of puncturing may be lost.
[0095] 発明者らは、この問題を解決すべく鋭意検討したところ、タイヤ内に充填した中空 粒子群の高速走行下での粒子間摩擦発熱を抑制することを可能とする手段を見出 すに到った。  [0095] The inventors of the present invention have conducted intensive studies to solve this problem, and have found a means that can suppress frictional heat generation between particles during the high-speed running of the hollow particles filled in the tire. Reached.
[0096] すなわち、タイヤは高速で回転することにより、速度に応じた遠心力を発生している 。タイヤの気室内に配置した中空粒子群も同様の遠心力を受けている。この遠心力 は、粒子の重量に比例かつ速度の 2乗に比例し、タイヤの半径に反比例する。さらに 、タイヤに荷重を負担させることにより一定の橈みを生じており、接地している領域は 、路面と平行な面の状態となっているため、この接地領域は曲率を持たずに、遠心力 がほぼゼロとなる。よって、荷重を負担しつつ回転するタイヤとリムとの組立体内にお ける中空粒子は、非接地領域では上述のように遠心力を受けつつ、その一方で接地 領域に入った瞬間に遠心力が抜けるといった『遠心力の繰り返し変動入力下』に置 かれるのである。  [0096] That is, the tire rotates at a high speed, thereby generating a centrifugal force according to the speed. The hollow particles arranged in the air chamber of the tire are also subjected to the same centrifugal force. This centrifugal force is proportional to the weight of the particles and to the square of the velocity, and inversely proportional to the radius of the tire. Furthermore, since a certain radius is generated by applying a load to the tire, and the area in contact with the ground is in a state of a plane parallel to the road surface, the contact area has no curvature, and The force is almost zero. Therefore, the hollow particles in the assembly of the tire and the rim, which rotate while bearing the load, receive the centrifugal force in the non-contact area as described above, while the centrifugal force is increased at the moment of entering the contact area. It is placed under the input of “repeated fluctuation of centrifugal force” such as exiting.
[0097] 従って、タイヤの気室内に配置する中空粒子群としては、粒子重量を極力抑えるこ とが好ましい。すなわち、中空粒子の平均真比重としては、出来るだけ小さいものを 選択することが好ましぐまたタイヤ気室容積に対する中空粒子の充填率は、前述の 『サイド部が接地しない圧力レベルまでの充分な内圧復活機能を発現する充填率』 の範囲の中で、出来るだけ少な ヽ充填率を選定する事が好ま ヽ。  [0097] Therefore, as the hollow particle group arranged in the air chamber of the tire, it is preferable to minimize the particle weight. That is, it is preferable that the average true specific gravity of the hollow particles be selected as small as possible. It is preferable to select a filling rate as small as possible within the range of “filling rate that exhibits internal pressure recovery function”.
中空粒子の充填率が 5vol%未満であると、タイヤによってはサイド部が接地しな ヽ 圧力レベルまでの充分な復活内圧を得る事が難しくなる。一方、中空粒子の充填率 力 S80vol%を超えると、タイヤによっては常用時の高速走行での粒子摩擦による発熱 のために、前述した中空粒子の膨張開始温度を超えて膨張してしまい、本発明の主 たる機能である内圧復活機能が失われる可能性が有るため好ましくない。よって、中 空粒子充填率の好ましい範囲は、 5vol%以上 80vol%以下であり、さらには、 70vol %以下、 60vol%以下、そして 50vol%以下である。 If the filling rate of the hollow particles is less than 5 vol%, depending on the tire, the side portion does not contact the ground. However, it becomes difficult to obtain a sufficient resurrection internal pressure up to a pressure level. On the other hand, if the filling ratio of hollow particles exceeds S80 vol%, some tires expand beyond the expansion start temperature of the hollow particles described above due to heat generated by particle friction during normal high-speed running. This is not preferable because the internal pressure recovery function, which is the main function, may be lost. Therefore, a preferable range of the filling rate of the hollow particles is 5 vol% or more and 80 vol% or less, and furthermore, 70 vol% or less. % Or less, 60 vol% or less, and 50 vol% or less.
[0098] また、中空粒子の平均真比重は、 0. 01〜0. 06gZccの範囲が好ましい。すなわ ち、 0. OlgZcc未満であると、常用走行下での中空粒子の耐久性が低下し、常用使 用中に前述の『内圧復活機能』が失われる事がある。一方、 0. 06gZccを超えると、 前述の常用高速走行における遠心力変動入力が大きくなつて、発熱量が大きくなる ため好ましくない。 [0098] The average true specific gravity of the hollow particles is preferably in the range of 0.01 to 0.06 gZcc. In other words, if it is less than 0. OlgZcc, the durability of the hollow particles during normal use is reduced, and the above-mentioned “internal pressure recovery function” may be lost during normal use. On the other hand, if it exceeds 0.06 gZcc, the input of the centrifugal force fluctuation in the above-mentioned ordinary high-speed running becomes large, and the calorific value increases.
[0099] ここで、タイヤ気室内に配置する中空粒子群は真比重に分布を持っており、中空粒 子一粒一粒が同一の真比重値を持つわけではない。その理由として、加熱膨張時の 熱履歴の不均一性と、発泡剤に起因する膨張気体の保持性とが挙げられる。中空粒 子の原料である『膨張性榭脂粒子』一粒一粒が加熱により膨張して中空粒子となる 過程において、加熱時の熱履歴が不均一であると、十分に熱履歴を受け膨張した中 空粒子と、受けた熱履歴が少な 、ために膨張を途中で停止してしまった中空粒子が 共存することになる。また、『膨張性榭脂粒子』において、粒径の小さいものは相対的 に粒子の殻 (発泡剤を包んで 、る表皮を指す)である連続相の厚さも薄く、粒径の大 きいものは殻の厚さも厚い。加熱時の熱履歴が同等であったとしても、加熱により発 生した膨張気体の中空粒子内での保持性は、殻の絶対厚さに依存する。よって、膨 張前の粒径が小さ!/ヽ『膨張性榭脂粒子』は、殻が薄!ヽために膨張気体の保持性が低 く膨張率の低い中空粒子となり、真比重が大きい。その逆に粒径が大きい『膨張性榭 脂粒子』は、殻が厚いために膨張気体の保持性が高く膨張率の高い中空粒子となり 、より大きい粒径まで成長できるために、真比重が小さくなる。すなわち、一般的に、 マイクロカプセル等の膨張性組成物の膨張によって得られる中空粒子は、膨張後の 状態にお 、て粒径に分布を持っており、その中で粒径の小さい中空粒子であるほど 真比重が大きぐ粒径が大きい中空粒子であるほど真比重が小さいという、関係にあ る。  [0099] Here, the group of hollow particles arranged in the tire air chamber has a distribution of true specific gravity, and each hollow particle does not necessarily have the same true specific gravity value. The reasons include the non-uniformity of the thermal history during thermal expansion and the retention of the expanded gas due to the foaming agent. In the process of expanding `` expandable resin particles '', which are the raw materials of hollow particles, into individual hollow particles that expand by heating, if the heat history during heating is not uniform, the material will expand due to sufficient heat history. The hollow particles that coexist with the hollow particles that have stopped expanding on the way because of the small heat history they received. In the case of "expandable resin particles", those having a small particle size have a relatively small thickness of the continuous phase, which is the shell of the particles (refers to the skin covering the foaming agent), and have a large particle size. Has a thick shell. Even if the heat history during heating is the same, the retention of the expanding gas generated by heating in the hollow particles depends on the absolute thickness of the shell. Therefore, the particle size before expansion is small! / ヽ "Expandable resin particles" have a thin shell! As a result, hollow particles with low expansion gas retention and low expansion coefficient are obtained, and the true specific gravity is large. Conversely, “expandable resin particles” having a large particle size are hollow particles having high shell gas retention and high expansion coefficient due to the thick shell, and have a small true specific gravity because they can grow to a larger particle size. Become. That is, generally, hollow particles obtained by expanding an expandable composition such as microcapsules have a distribution of particle diameters in a state after expansion, and hollow particles having a small particle diameter are among them. There is a relationship that the true specific gravity is larger and the hollow particles having a larger particle size have a lower true specific gravity.
[0100] よって、十分に膨張した中空粒子は真比重が小さぐその逆に膨張を途中で停止し た中空粒子は真比重が大きい成分となる。このような真比重分布を持った粒子群をタ ィャ気内に配置した場合、通常内圧の走行下では速度に応じた遠心力を受けること となる。このとき、真比重の大きい粒子は、真比重の小さい粒子に比して、タイヤ気室 内でより大きい遠心力を受ける。よって、タイヤとリムとの組立体内のホイール内面側 近傍には、真比重の小さい粒子群が存在し、回転中心力 離れるに従って、徐々に 真比重の大きい中空粒子群が存在することとなる。そして、トレッド下のインナーラィ ナ一面側には、もっとも真比重の大きい粒子群が存在することとなり、粒子群はホイ ール内面側からトレッド下のインナーライナ一面側に向かって(タイヤ回転半径方向 外側に向力つて)真比重的に傾斜を持つに到る。 [0100] Therefore, the fully expanded hollow particles have a small true specific gravity, and conversely, the hollow particles whose expansion has been stopped halfway become components having a large true specific gravity. When particles having such a true specific gravity distribution are arranged in the air of a tire, a centrifugal force corresponding to the speed is usually applied under running at an internal pressure. At this time, the particles having a large true specific gravity are compared with the particles having a small true specific gravity in the tire air chamber. Subject to greater centrifugal force within. Therefore, particles having a small true specific gravity exist near the inner surface of the wheel in the assembly of the tire and the rim, and hollow particles having a large true specific gravity gradually exist as the rotational center force increases. Particles having the largest true specific gravity exist on the inner liner side under the tread, and the particle groups move from the inner side of the wheel toward the inner liner side below the tread (the outer side in the tire rotation radial direction). It has a gradient in true specific gravity.
[0101] ここで、タイヤが前述の『繰り返し変動入力下』に置かれているなかで、真比重の小 さい中空粒子群に対して真比重の大きい中空粒子群は、接地領域での変動入力下 で大きな慣性力を発生する。よって大きな真比重を有する中空粒子群は、共存する" より小さい真比重を有する中空粒子群"を搔き分けるように動き回るため、小真比重 粒子と大真比重粒子との相対的な慣性力の差に起因する運動エネルギーの差が、 余分な粒子間摩擦熱を発生させる結果、粒子全体の発熱性を悪化させることとなる。 すなわち、中空粒子の発熱要因は、大真比重粒子群の小真比重粒子に対する相対 的な慣性力差とその運動による摩擦発熱とにあるのである。  [0101] Here, while the tire is placed under the above-mentioned "repeated variation input", the hollow particles having a large true specific gravity are compared with the hollow particles having a small true specific gravity, and the variation input in the contact region is changed. A large inertial force is generated below. Therefore, the hollow particles having a large true specific gravity move around to separate the coexisting “hollow particles having a smaller true specific gravity”, so that the relative inertial force between the small true specific gravity particles and the large true specific gravity particles is reduced. The difference in kinetic energy due to the difference generates extra interparticle frictional heat, which worsens the heat generation of the whole particles. In other words, the heat generation factors of the hollow particles are due to the relative inertial force difference between the large true specific gravity particles and the small true specific gravity particles and the frictional heat generated by the motion.
[0102] 従って、その摩擦発熱抑制のために、第 1に、上述の相対的な慣性力差を小さくす る手段として、中空粒子の持つ真比重分布幅を狭くすることがあげられる。例えば、 ある平均真比重を持つ中空粒子に対し、大真比重側 (小粒径側)と小真比重側 (大 粒径側)力も同体積率だけ除去することで、平均真比重は変わらずとも真比重分布 幅を狭くすることができるため、上述の相対的な慣性力の差を抑制することが可能と なり、中空粒子群全体の発熱を抑制することができる。  [0102] Therefore, in order to suppress the frictional heat generation, first, as a means for reducing the above-described relative inertial force difference, the width of the true specific gravity distribution of the hollow particles may be narrowed. For example, for hollow particles with a certain average true specific gravity, the true true specific gravity side (small particle size side) and the small true specific gravity side (large particle size side) force are also removed by the same volume ratio, so that the average true specific gravity remains unchanged. Since the width of the true specific gravity distribution can be narrowed, it is possible to suppress the above-described difference in the relative inertial force, and it is possible to suppress the heat generation of the entire hollow particle group.
[0103] 第 2に、発熱源である大比重粒子群 (小粒径側)だけを直接除去することで真比重 分布を狭くしながら、平均真比重をも小さくすることで、相対的な慣性力の差だけで はなぐ慣性力のレベル自体を抑制することにより、さらに中空粒子群全体の発熱を 抑帘 Uすることができる。  [0103] Second, by directly removing only the large specific gravity particles (small particle size side), which is a heat source, the true specific gravity distribution is narrowed, and the average true specific gravity is also reduced, thereby reducing the relative inertia. By suppressing the level of the inertial force itself that is not limited to the difference in force, heat generation of the entire hollow particle group can be further suppressed.
[0104] ここに、中空粒子の平均粒径について、好ましい範囲は 40 μ m力ら 200 μ mの範 囲である。該中空粒子の平均粒径が 40 mを下回ると、前述の真比重分布が広がり 大真比重粒子群の小真比重粒子群に対する相対的な慣性力差とその運動による摩 擦発熱により発熱性が悪化するため、好ましくない。一方、該中空粒子の平均粒径 力 S 200 mを上回ると、常用走行下での粒子同士が衝突している状況や、ノンクによ りタイヤ気室の圧力が大気圧となったときの走行にて中空粒子群が直接的に荷重を 支える状況において、大粒径側の粒子力 選択的に破壊してしまい、所望するパン ク後の走行性能を得られなくなる不利が生ずるおそれがあるため好ましくない。 [0104] Here, a preferable range of the average particle size of the hollow particles is a range of 40 µm force to 200 µm. When the average particle size of the hollow particles falls below 40 m, the above-described true specific gravity distribution expands, and the heat generation due to frictional heat generated by the relative inertial force difference between the large true specific gravity particles and the small true specific gravity particles causes the heat generation. It is not preferable because it deteriorates. On the other hand, the average particle size of the hollow particles When the force S exceeds 200 m, the hollow particles are directly scattered in a situation where the particles collide with each other during normal driving or when the tire air chamber pressure becomes atmospheric pressure due to nonk. In a situation where the load is supported, the particle force on the large particle size side is selectively destroyed, and there is a possibility that the desired running performance after puncturing may not be obtained, which is not preferable.
[0105] 以上のように、上記した上限値および下限値に従う充填率の下に中空粒子を配置 することにより、内圧復活機能を確実に発現させることができ、これをもって、タイヤ受 傷後の一定距離を安全に走行することが達成される。  [0105] As described above, by arranging the hollow particles under the filling ratios according to the above upper and lower limits, the internal pressure revival function can be surely exhibited, and as a result, the constant pressure after tire damage can be obtained. Driving safely over distance is achieved.
[0106] 前述のように、常用時の高速度走行や酷暑環境下にて懸念される中空粒子の発熱 の問題に対しては、粒子重量、中空粒子の平均真比重および中空粒子の真比重分 布幅に着眼した改良手段を挙げた。これらの手段により一定の効果を得ることが出来 たが、近年の車両の高性能化や高速ィ匕の実態を鑑みたとき、中空粒子の更なる耐熱 耐久性が求められている。  [0106] As described above, the problem of heat generation of hollow particles, which is a concern in high-speed running during normal use or in a very hot environment, is solved by the following: particle weight, average true specific gravity of hollow particles, and true specific gravity of hollow particles. Improvement means focusing on the cloth width were mentioned. Although a certain effect could be obtained by these means, in view of the recent high performance of vehicles and the actual state of high speed driving, further heat resistance and durability of hollow particles are required.
そこで、発明者らは中空粒子の発熱の実態について鋭意検討し、中空粒子の更な る耐熱耐久性の向上を達成した。さて、中空粒子はその原料である『膨張性榭脂粒 子』を加熱膨張することにより得られ、この膨張性榭脂粒子には膨張開始温度 Tslが 存在する。更に、加熱膨張によって得られた中空粒子を再度加熱すると、中空粒子 は更なる膨張を開始し、ここに中空粒子の膨張開始温度 Ts2が存在する。発明者ら は、これまで多くの膨張性榭脂粒子カゝら中空粒子を製造し検討を重ねてきた結果、 T siを耐熱耐久性の指標としてきた力 耐熱耐久性の指標としては Ts2が適切である ことを見出すに到った。  Then, the present inventors have earnestly studied the actual state of heat generation of the hollow particles, and have further improved the heat resistance and durability of the hollow particles. The hollow particles are obtained by expanding the raw material “expandable resin particles” by heating, and the expandable resin particles have an expansion start temperature Tsl. Furthermore, when the hollow particles obtained by the thermal expansion are heated again, the hollow particles start to expand further, and the expansion start temperature Ts2 of the hollow particles is present. The inventors have produced and studied a lot of hollow particles having expandable resin particles, and as a result, Ts2 is suitable as an index of heat resistance and durability. It has been found that
[0107] まず、膨張性榭脂粒子を加熱膨張させる場合における膨張挙動を観察した。膨張 性榭脂粒子は膨張する前の段階にあるため、中空粒子の状態に比して粒径が極端 に小さぐ榭脂製の殻部の厚さが極端に厚い。よって、マイクロカプセルとしての剛性 が高い状態にある。したがって、加熱膨張の過程で榭脂製の殻部の連続相がガラス 転移点を越えても、更なる加熱により殻部がある程度柔ら力べなるまでは、内部ガスの 拡張力が殻部の剛性にうち勝つことが出来ない。よって、 Tslは実際の殻部のガラス 点移転よりも高い値を示す。  First, the expansion behavior when the expandable resin particles were thermally expanded was observed. Since the expandable resin particles are in a stage before expanding, the resin shell, whose particle size is extremely small compared to the state of the hollow particles, is extremely thick. Therefore, the rigidity of the microcapsule is high. Therefore, even if the continuous phase of the resin shell exceeds the glass transition point in the process of thermal expansion, the expanding force of the internal gas increases the rigidity of the shell until the shell can be softened to some extent by further heating. Can't win. Therefore, Tsl shows a higher value than the actual glass point transfer of the shell.
一方で、中空粒子を再度加熱膨張させる場合では、中空粒子の殻部の厚さが極端 に薄ぐ中空体としての剛性が低い状態にある。したがって、加熱膨張の過程で殻部 の連続相がガラス転移点を越えると同時に膨張を開始するため、 Ts2は Tslより低い 位置づけとなる。 On the other hand, when the hollow particles are expanded again by heating, the thickness of the shell of the hollow particles is extremely large. The rigidity of the thin hollow body is low. Therefore, in the process of thermal expansion, Ts2 is positioned lower than Tsl because the continuous phase in the shell starts expanding at the same time as exceeding the glass transition point.
[0108] 本発明では、膨張性榭脂粒子の膨張特性を活用するのではなぐいったん膨張さ せた中空粒子の更なる膨張特性を活用するものであるため、耐熱耐久性を議論する には、従来の Tslではなく Ts2を指標とすべきである。  [0108] In the present invention, since the expansion characteristics of the once expanded hollow particles are utilized instead of utilizing the expansion characteristics of the expandable resin particles, in order to discuss heat resistance and durability, Ts2 should be used as an index instead of the conventional Tsl.
また、中空粒子の Ts2が 90°C以上 200°C以下であることが肝要である。なぜなら、 中空粒子の Ts2が 90°C未満では、選択したタイヤサイズによっては、そのタイヤの保 証速度に到達する以前に、中空粒子が再膨張を開始する場合があるからである。 一方 200°Cを超えると、パンク受傷後のランフラット走行において、中空粒子の摩擦 発熱に起因する急激な温度上昇が起こっても、膨張開始温度 Ts2に達することが出 来ない場合があり、よって目的とする『内圧復活機能』を十分に発現させることが出来 なくなる場合がある。  It is important that the hollow particles have a Ts2 of 90 ° C or more and 200 ° C or less. This is because if the Ts2 of the hollow particles is less than 90 ° C, the hollow particles may start re-expanding before the tire reaches the guaranteed speed, depending on the selected tire size. On the other hand, when the temperature exceeds 200 ° C, the expansion start temperature Ts2 may not be reached even if the temperature rises sharply due to the frictional heating of the hollow particles during run flat running after puncture, In some cases, it may not be possible to achieve the desired “internal pressure recovery function”.
[0109] よって、 Ts2の範囲は 90°C以上 200°C以下であり、好ましくは 130°C以上、更に好 ましくは 150°C以上であり、もっとも好ましくは 160°C以上の範囲である。  [0109] Therefore, the range of Ts2 is 90 ° C or more and 200 ° C or less, preferably 130 ° C or more, more preferably 150 ° C or more, and most preferably 160 ° C or more. .
[0110] 以上のように、上記した上限値および下限値に従う膨張開始温度 Ts2を有する中 空粒子を配置することにより、内圧復活機能を確実に発現させることはもとより、高速 度走行での耐熱耐久性を向上させる事によって、常用走行時の『内圧復活機能保持 』が達成される。  [0110] As described above, by arranging the hollow particles having the expansion start temperature Ts2 according to the above upper and lower limits, not only the internal pressure recovery function can be reliably exhibited, but also the heat resistance and durability during high-speed running can be achieved. By improving the performance, "maintenance of internal pressure recovery function" during normal driving is achieved.
[0111] 次に、中空粒子の中空部 (独立気泡)を構成する気体としては、窒素、空気、炭素 数 2から 8の直鎖状及び分岐状の脂肪族炭化水素およびそのフルォロ化物、炭素数 2から 8の脂環式炭化水素およびそのフルォロ化物、そして次の一般式 (III):  [0111] Next, as the gas constituting the hollow portion (closed cell) of the hollow particles, nitrogen, air, linear and branched aliphatic hydrocarbons having 2 to 8 carbon atoms and their fluorinated compounds, 2 to 8 cycloaliphatic hydrocarbons and their fluorides, and the following general formula (III):
R' -O-R2—— (III) R '-OR 2 —— (III)
(式中の R1および R2は、それぞれ独立に炭素数が 1から 5の一価の炭化水素基であ り、該炭化水素基の水素原子の一部をフッ素原子に置き換えても良い)にて表される エーテル化合物、力もなる群の中から選ばれた少なくとも 1種が挙げられる。また、タ ィャ気室内に充填する気体は空気でも良いが、上記粒子中の気体力 Sフルォロ化物 でない場合には、安全性の面力も酸素を含まない気体、たとえば窒素や不活性ガス 等が好ましい。 (R 1 and R 2 in the formula are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and a part of the hydrogen atoms of the hydrocarbon group may be replaced with fluorine atoms.) At least one selected from the group consisting of ether compounds represented by the formula The gas charged into the tyre chamber may be air, but if the gas force in the particles is not S-fluoride, the safety factor is oxygen-free gas, such as nitrogen or inert gas. Are preferred.
[0112] 尚、独立気泡を有する中空粒子を得る方法は特に限定されないが、発泡剤を用い て『膨張性榭脂粒子』を得、これを加熱膨張させる方法が一般的である。この発泡剤 としては、高圧圧縮ガス及び液化ガスなどの蒸気圧を活用する手法、熱分解によつ て気体を発生する熱分解性発泡剤を活用する手法などを挙げることができる。特に、 熱分解性発泡剤には窒素を発生させる特徴のあるものが多ぐこれらによる発泡によ つて得られる膨張性榭脂粒子の反応を適宜制御することによって得た粒子は気泡内 に主に窒素を有するものとなる。この熱分解性発泡剤としては特に限定されないがジ ニトロソペンタメチレンテトラミン、ァゾジカルボンアミド、パラトルエンスルフォ二ルヒド ラジンおよびその誘導体、そしてォキシビスベンゼンスルフォ-ルヒドラジンを好適に 挙げることができる。  [0112] The method for obtaining hollow particles having closed cells is not particularly limited, but a method is generally used in which "expandable resin particles" are obtained using a blowing agent, and these are heated and expanded. Examples of the foaming agent include a method utilizing a vapor pressure of a high-pressure compressed gas and a liquefied gas, and a method utilizing a thermally decomposable foaming agent which generates a gas by thermal decomposition. In particular, many pyrolytic foaming agents have the characteristic of generating nitrogen. Particles obtained by appropriately controlling the reaction of expandable resin particles obtained by foaming with these mainly contain bubbles mainly in bubbles. It will have nitrogen. Examples of the thermally decomposable blowing agent include, but are not particularly limited to, dinitrosopentamethylenetetramine, azodicarbonamide, paratoluenesulfonylhydrazine and derivatives thereof, and oxybisbenzenesulfonylhydrazine. it can.
[0113] 以下に高圧圧縮ガス及び液ィ匕ガスなどの蒸気圧を活用して中空粒子となる『膨張 性榭脂粒子』を得る手法を説明する。  A method for obtaining “expandable resin particles” as hollow particles by utilizing the vapor pressure of a high-pressure compressed gas, a liquid gas or the like will be described below.
粒子を形成する前記榭脂による連続相を重合する際、炭素数 2から 8の直鎖状及 び分岐状の脂肪族炭化水素およびそのフルォロ化物、炭素数 2から 8の脂環式炭化 水素およびそのフルォロ化物、そして次の一般式(III):  When the continuous phase of the resin forming particles is polymerized, a linear or branched aliphatic hydrocarbon having 2 to 8 carbon atoms and a fluorinated product thereof, an alicyclic hydrocarbon having 2 to 8 carbon atoms and Its fluoride, and the following general formula (III):
R'-O-R2—— (III) R'-OR 2 —— (III)
(式中の R1および R2は、それぞれ独立に炭素数が 1から 5の一価の炭化水素基で あり、該炭化水素基の水素原子の一部をフッ素原子に置き換えても良い)にて表され るエーテルィ匕合物、力 なる群の中から選ばれた少なくとも 1種を発泡剤として高圧 下で液化させ、反応溶媒中に分散させつつ、乳化重合させる手法である。これにより 上記に示されるガス成分を液体状態の発泡剤として前述の榭脂連続相にて封じ込め た『膨張性榭脂粒子』を得ることができ、これを加熱膨張させる事によって、所望の中 空粒子を得る事が出来る。 (R 1 and R 2 in the formula are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and a part of the hydrogen atoms of the hydrocarbon group may be replaced by fluorine atoms) This is a method in which at least one selected from the group consisting of ethereal conjugates and powers represented by the formula is liquefied under high pressure as a foaming agent, and emulsion polymerization is carried out while dispersing in a reaction solvent. This makes it possible to obtain “expandable resin particles” in which the gas components shown above are encapsulated in the above-mentioned resin continuous phase as a foaming agent in a liquid state. Particles can be obtained.
[0114] また、前記『膨張性榭脂粒子』の表面に、シリカ粒子等のアンチブロッキング剤、力 一ボンブラック微粉、帯電防止剤、界面活性剤、油剤等をコーティングした上で加熱 膨張させることにより、目的の中空粒子を得ることができる。  Also, the surface of the “expandable resin particles” is coated with an anti-blocking agent such as silica particles, fine powder of bonbon black, an antistatic agent, a surfactant, an oil agent, etc., and then heated and expanded. Thus, the desired hollow particles can be obtained.
[0115] また、前記『膨張性榭脂粒子』の表面に、シリカ粒子等のアンチブロッキング剤、力 一ボンブラック微粉、帯電防止剤、界面活性剤、油剤等をコーティングした上で加熱 膨張させることにより、 目的の中空粒子を得ることができる。 [0115] Further, an anti-blocking agent such as silica particles or the like is applied to the surface of the "expandable resin particles". The desired hollow particles can be obtained by coating with carbon black fine powder, an antistatic agent, a surfactant, an oil agent, and the like, followed by heat expansion.
[0116] また、受傷によりタイヤ気室圧力が低下した状態において、該中空粒子によって必 要最低限の内圧を付与するには、粒子の中空部内に所定圧力で封入された気体が 、粒子外部へ漏れ出ないこと、換言すると、中空粒子の殻の部分に相当する榭脂に よる連続相が気体を透過し難い性質を有することが肝要である。すなわち、連続相を 構成する榭脂はガス透過性の低い材質によること、具体的には、アクリロニトリル系共 重合体、アクリル系共重合体、塩化ビ-リデン系共重合体、ポリビュルアルコール榭 脂、アクリロニトリル Zスチレン榭脂 (AS)、ポリエチレン榭脂(PE)、ポリプロピレン榭 脂(PP)、ポリエステル榭脂(PET)およびポリスチレン Zポリエチレン共重合体 (PS ZPE)のいずれ力少なくとも 1種力も成ることが肝要である。これらの材料は、タイヤ 変形による入力に対して中空粒子としての柔軟性を有するため、本発明に特に有効 である。  [0116] In order to apply the minimum necessary internal pressure by the hollow particles in a state where the pressure of the tire air chamber is reduced due to the injury, the gas sealed at a predetermined pressure in the hollow portion of the particles flows to the outside of the particles. It is important that the resin does not leak out, in other words, that the continuous phase of the resin corresponding to the shell of the hollow particles has a property that it is difficult for gas to permeate. That is, the resin constituting the continuous phase is made of a material having low gas permeability, specifically, an acrylonitrile-based copolymer, an acrylic copolymer, a vinylidene chloride-based copolymer, and a polybutyl alcohol resin. , Acrylonitrile Z styrene resin (AS), polyethylene resin (PE), polypropylene resin (PP), polyester resin (PET) and polystyrene Z polyethylene copolymer (PS ZPE). Is essential. These materials are particularly effective in the present invention because they have flexibility as hollow particles against input due to tire deformation.
[0117] とりわけ、中空粒子の連続相には、アクリロニトリル系重合体、アクリル系重合体およ び塩ィ匕ビユリデン系重合体、ポリビニルアルコール榭脂の 、ずれかを適用することが 好ましい。さらに、アクリロニトリル系重合体としては、アクリロニトリル重合体、アタリ口 二トリル Zメタアクリロニトリル共重合体、アクリロニトリル Zメチルメタタリレート共重合 体、アクリロニトリル Zメタアクリロニトリル Zメチルメタタリレート 3元共重合体およびァ クリロ-トリル Zメタアクリロニトリル Zメタクリル酸 3元共重合体力 選ばれた少なくとも 1種、アクリル系重合体としては、メチルメタタリレート榭脂(MMA)、メチルメタクリレ ート Zアクリロニトリル共重合体(MMAZ AN)、メチルメタタリレート Zメタアタリ口-ト リル共重合体(MMAZMAN)およびメチルメタタリレート Zアクリロニトリル Zメタァク リロ-トリル 3元共重合体(MMAZANZMAN)から選ばれた少なくとも 1種、そして 塩ィ匕ビユリデン系重合体としては、塩ィ匕ビユリデン Zアクリロニトリル共重合体、塩ィ匕 ビ-リデン zメチルメタタリレート共重合体、塩ィ匕ビユリデン zメタアクリロニトリル共重 合体、塩ィ匕ビユリデン Zアクリロニトリル Zメタアクリロニトリル共重合体、塩ィ匕ビ -リデ ン zアクリロニトリル Zメチルメタタリレート共重合体、塩ィ匕ビユリデン Zメタアタリ口-ト リル Zメチルメタタリレート共重合体、塩ィ匕ビユリデン Zアクリロニトリル Zメタアタリ口- トリル Zメチルメタタリレート共重合体カゝら選ばれた少なくとも l種がそれぞれ有利に 適合する。これらの材料は、いずれもガス透過係数が小さくて気体が透過し難いため に、中空粒子の中空部内の気体が外部に漏れ難ぐ中空部内の圧力を保持すること ができる。 [0117] In particular, for the continuous phase of the hollow particles, it is preferable to apply any one of acrylonitrile-based polymer, acrylic polymer, and salted biureiden polymer, and polyvinyl alcohol resin. Further, as the acrylonitrile-based polymer, acrylonitrile polymer, acrylonitrile Z-methacrylonitrile copolymer, acrylonitrile Z-methyl methacrylate copolymer, acrylonitrile Z-methacrylonitrile Z-methyl methacrylate terpolymer, and acrylonitrile terpolymer Crylo-tolyl Z methacrylonitrile Z methacrylic acid terpolymer Able to use at least one selected acrylic polymer, methyl methacrylate resin (MMA), methyl methacrylate Z acrylonitrile copolymer (MMAZ AN), at least one selected from methyl methacrylate Z-methatary mouth-tolyl copolymer (MMAZMAN) and methyl methacrylate Z-acrylonitrile Z-methacrylo-tolyl terpolymer (MMAZANZMAN), and salts As a dani bilidene-based polymer, Lilonitrile copolymer, Shiridani bi-lidene z methyl methacrylate copolymer, Shiridani biylidene z Metaacrylonitrile copolymer, Shiridani biuryden Z acrylonitrile Z methacrylonitrile copolymer, Shiridani bilide Z acrylonitrile Z methyl metharylate copolymer, Shiridani biylidene Z metaatari mouth-Tril Z methyl metharylate copolymer, Shiridani viylidene Z acrylonitrile Z metaatari mouth- At least one selected from the tril Z methyl methacrylate copolymers are each advantageously adapted. Each of these materials has a small gas permeability coefficient and is difficult for gas to permeate, and therefore can maintain the pressure in the hollow part where the gas in the hollow part of the hollow particles hardly leaks to the outside.
[0118] 中でも、重合体を構成するモノマー力 アクリロニトリル、メタアクリロニトリル、メチル メタタリレート、メタクリル酸、塩化ビ-リデンから選択される重合体であり、好ましくは アクリロニトリル Zメタアクリロニトリル Zメチルメタタリレート 3元共重合体、アタリ口-ト リル Zメタアクリロニトリル Zメタクリル酸 3元共重合体力 選ばれた少なくとも 1種が推 奨される。  [0118] Above all, a monomer constituting the polymer is a polymer selected from acrylonitrile, methacrylonitrile, methyl methacrylate, methacrylic acid, and bi-lidene chloride, and preferably acrylonitrile Z methacrylonitrile Z methyl methacrylate Polymer, Atari mouth-to-tril Z methacrylonitrile Z methacrylic acid terpolymer strength At least one selected is recommended.
[0119] さらに、中空粒子の連続相は、 30°Cにおけるガス透過係数が 300X 10— 12(cc'cm /cm 's'cmHg)以下、好ましくは 30°Cにおけるガス透過係数が 20X 10— 12(cc'c m/cm2's'cmHg)以下、さらに好ましくは 30°Cにおけるガス透過係数が 2 X 10— 12 ( cc'cmZcm2's'cmHg)以下であることが推奨される。なぜなら、通常の空気入りタ ィャにおけるインナーライナ一層のガス透過係数は 300 X 10— 12 (cc · cm/cm2 · s · c mHg)以下のレベルにあって十分な内圧保持機能を有している実績を鑑み、粒子の 連続相についても、 30°Cにおけるガス透過係数を 300X10— 12(cc'cmZcm2 -s-c mHg)以下とした。ただし、このガス透過係数のレベルでは、 3〜6力月に 1度程度の 内圧補充が必要であるから、そのメンテナンス性の点力もも、 20X10— 12 (cc-cm/c m2 's'cmHg)以下、さらに好ましくは 2X 10— 12(cc'cm/cm2's'cmHg)以下とする ことが推奨される。 [0119] In addition, the continuous phase of the hollow particles, the gas permeability coefficient 300X in 30 ° C 10- 12 (cc'cm / cm 's'cmHg) or less, preferably the gas permeability coefficient at 30 ° C 20X 10- 12 (cc'c m / cm 2 ' s'cmHg) or less, more preferably the gas permeability coefficient at 30 ° C is 2 X 10- 12 (cc'cmZcm 2' is recommended that at S'cmHg) less . Because the greater gas permeability coefficient inner liner in a conventional pneumatic motor I catcher In the 300 X 10- 12 (cc · cm / cm 2 · s · c mHg) below the level of sufficient internal pressure retaining function in view of the results in which, for the continuous phase of the particles, was the gas permeability at 30 ° C 300X10- 12 (cc'cmZcm 2 -sc mHg) below. However, at the level of the gas permeability coefficient, because it is necessary to pressure supplementation of about 1 degree to 3-6 Chikaratsuki, the maintainability of the point force peach, 20X10- 12 (cc-cm / cm 2 's'cmHg ) or less, still more preferably not be a 2X 10- 12 (cc'cm / cm 2 's'cmHg) below.
[0120] ここで、本発明に従ってタイヤ気室に中空粒子を配置するに当り、タイヤが損傷した 際のタイヤ受傷部の封止機能を高めるために、平均嵩比重が該中空粒子の平均真 比重よりも大きい発泡体の多数を該中空粒子群に混在させる手段が有効である。具 体的には、直径が 1〜 15mmの略球体形状または一辺が 1〜 15mmの立方体形状 であり独立または連通気泡を有し、平均嵩比重が 0.06〜0. 3gZccでありかつ粒子 の平均真比重よりも大きいかさ比重値である発泡体の多数を加えることにより、該内 圧復活機能の発現期間を延ばし、タイヤ受傷後の走行能力を増大させることが可能 である。 [0121] すなわち、中空粒子は略球形状であるために流動性が高ぐよってタイヤバルブ等 の内径の小さい導入ロカもタイヤ気室内部に、容易に配置することができる。その一 方、タイヤが受傷したとき、該受傷部力もタイヤの外側へ中空粒子がタイヤ気室の高 圧気体と共に吹き出ようとして受傷部内面に集まることになる。しかしながら、受傷部 内面力もタイヤ外周面までの受傷経路は直線ではなく複雑に入り組んだ形状を呈す るため、タイヤ内面傷口力も入り込んだ該粒子は、該経路の途上行く手を阻まれる結 果、多数の中空粒子が受傷部内面に圧縮状態で集合することになり、受傷部が暫定 的に封止される。ここで、暫定的に封止とは、中空粒子そのものの漏洩はないが、該 粒子周囲の空隙気体が徐々に漏洩する状態を指す。 [0120] Here, in arranging the hollow particles in the tire air chamber according to the present invention, in order to enhance the sealing function of the damaged portion of the tire when the tire is damaged, the average bulk specific gravity is set to the average true specific gravity of the hollow particles. Means for mixing a large number of larger foams into the hollow particle group is effective. More specifically, it has a substantially spherical shape with a diameter of 1 to 15 mm or a cubic shape with a side of 1 to 15 mm, has independent or open cells, has an average bulk specific gravity of 0.06 to 0.3 gZcc, and has an average particle true size. By adding a large number of foams having a bulk specific gravity value larger than the specific gravity, it is possible to extend the period of exhibiting the internal pressure recovery function and to increase the running ability after the tire is damaged. [0121] That is, since the hollow particles have a substantially spherical shape, the flowability is high, and therefore, an introduction rocker having a small inner diameter such as a tire valve can be easily arranged in the tire air chamber. On the other hand, when the tire is injured, the force of the injured portion also collects on the inner surface of the injured portion as hollow particles try to blow out to the outside of the tire together with the high-pressure gas in the tire air chamber. However, the inner surface force of the damaged part and the damaged path to the tire outer peripheral surface are not straight but have an intricately complicated shape.Therefore, the particles including the inner surface wound force of the tire are impeded from moving along the path, resulting in a large number of particles. The hollow particles collect in a compressed state on the inner surface of the damaged part, and the damaged part is temporarily sealed. Here, tentatively sealing refers to a state in which the hollow particles themselves do not leak, but the void gas around the particles gradually leaks.
[0122] その際、受傷部の傷の形や大きさによっては、粒子のみによる暫定的封止が不完 全な場合がある。このような場合において、上述した発泡体の多数をカ卩えておくこと により、次のように封止のレベルを向上させることができる。  [0122] At that time, depending on the shape and size of the wound at the damaged portion, the provisional sealing using only the particles may be incomplete. In such a case, by sealing a large number of the above-mentioned foams, the sealing level can be improved as follows.
[0123] すなわち、転動中のタイヤ気室内においては、速度に応じた遠心力が発生しており 、その遠心力下において嵩比重の大きい該発泡体はタイヤのインナーライナ一側へ 、そして真比重の小さい該中空粒子は該発泡体よりは回転中心に近い側へ夫々偏 在する。この状態においては、もし該粒子のみでは封止できない程の大きさの傷を受 けたとしても、タイヤ内面のインナーライナ一面近傍に、該発泡体が多数偏在してい るため、該発泡体がタイヤ外部へ吹き出ようとして、受傷部の傷口内面にいち早く密 着することによって受傷部を封止する事となり、極めて有効である。  [0123] That is, in the rolling tire air chamber, a centrifugal force corresponding to the speed is generated. Under the centrifugal force, the foam having a large bulk specific gravity moves to one side of the inner liner of the tire and to the true side. The hollow particles having a low specific gravity are respectively eccentric to the side closer to the rotation center than the foam. In this state, even if the particle is damaged so large that it cannot be sealed with the particles alone, the foam is unevenly distributed near the inner liner on the inner surface of the tire. This is very effective because it quickly seals to the inside of the wound at the damaged part in order to blow it out and seals the damaged part.
[0124] 特に、該発泡体が連通気泡を持つ熱可塑性ウレタンによる発泡体の場合、圧縮性 が高ぐ傷口の形状に密着しやすい事と、結果的に大きな傷口を該発泡体により極 めて複雑かつ微細化できる事によって、その複雑'微細化された気体の散逸流路を 該中空粒子にて封止するに最も適した様態へ変化させることが出来るため、大変有 効な手段となる。 [0124] In particular, when the foam is a foam made of thermoplastic urethane having open cells, the foam easily adheres to the shape of the wound having high compressibility, and as a result, a large wound is extremely formed by the foam. Since the complicated and finely dispersible gas flow path can be changed to a state most suitable for sealing with the hollow particles, it is a very effective means.
[0125] ちなみに、本発明のタイヤとリムとの組立体では、さらにアンチロックブレーキシステ ムの車輪速度センサーによる車輪速度検知に基づくタイヤ気室圧力低下警報機能 および、圧力センサーによるタイヤ気室圧力の直接測定方式に基づくタイヤ気室圧 力低下警報機能のいずれか一方または両方をそなえることが好ましい。なお、図 2に 、この種センサー 9Aのタイヤへの装着構造の一例を示す。 [0125] Incidentally, in the assembly of the tire and the rim of the present invention, the tire air chamber pressure drop warning function based on the wheel speed detection by the wheel speed sensor of the anti-lock brake system and the tire air chamber pressure reduction by the pressure sensor are further provided. It is preferable to provide one or both of the tire chamber pressure decrease warning functions based on the direct measurement method. Figure 2 An example of a structure for mounting this type of sensor 9A to a tire is shown.
すなわち、本発明ではパンクによりタイヤ気室内の圧力が低下したまま走行すると、 前述の機構により内圧が復活するため、状況によっては運転者カ^イヤ受傷に気が 付かない場合がある。し力しタイヤ自身はパンクにより受傷しているため、そのまま走 行を続けるとタイヤが故障してしまう恐れがあり大変危険である。よって、上述のタイ ャ内圧低下警報機能を併用する事が好ましい。  In other words, in the present invention, if the vehicle travels while the pressure in the tire air chamber is reduced due to puncture, the internal pressure is restored by the above-described mechanism, and depending on the situation, there may be a case where the driver is not aware of the driver's tire damage. Since the tires themselves are injured by puncture, if they continue to drive, the tires may break down, which is very dangerous. Therefore, it is preferable to use the above-mentioned tire internal pressure drop warning function together.
[0126] さらに、中空粒子および気体の充填に併用するタイヤ用ノ レブを有することが好ま しい。このタイヤ用バルブは、中空粒子をタイヤ気室内に堰止め、かつ気体のみをタ ィャ気室外に通過可能としたフィルターを備えることを特徴とするものである。かような タイヤ用バルブを取り付けることによって、本発明によるパンクしたタイヤを修理する 際、 1つのバルブのみにて中空粒子をタイヤ気室内に配置する事が可能となるため、 1つのバルブ穴し力持たない汎用リムをそのまま使用することが出来る。加えて、修理 後の走行におけるタイヤ気室圧力の自然低下に対し、『気体補充作業における中空 粒子の漏洩』を防ぐ事が出来、簡便にタイヤ気室圧力をメンテナンスする事を実現で きる。 [0126] Further, it is preferable to have a knob for a tire used in combination with filling of hollow particles and gas. The tire valve includes a filter that blocks hollow particles in the tire air chamber and allows only gas to pass out of the tire air chamber. By installing such a tire valve, when repairing a punctured tire according to the present invention, it is possible to arrange hollow particles in the tire air chamber with only one valve, so that one valve piercing force is required. General-purpose rims that do not have can be used as they are. In addition, it is possible to prevent "leakage of hollow particles during gas refilling work" against spontaneous decrease in tire chamber pressure during running after repair, and it is possible to easily maintain tire chamber pressure.
力ようなタイヤ用バルブとしては、図 3に例示するように、リム 2のバルブ取付口 14に 装着した給排気ノ レブ 9について、たとえば不織布とすることができるフィルタ 13を 具える構造のものとする。  As shown in FIG. 3, a tire valve having a structure having a filter 13 which can be made of, for example, a non-woven fabric is used for a supply / exhaust knob 9 attached to a valve mounting port 14 of a rim 2 as shown in FIG. I do.
[0127] ところで、中空粒子をタイヤ気室内に配置するに当り、例えば特開 2003— 30600 6号公報に記載したように、該中空粒子周囲に付着防止剤を配置することが好ましい 。この付着防止剤は、パンク後の中空粒子による内圧復活機能の発現後において、 発熱により膨張した中空粒子同士が融着し融着体を形成することを防ぐことを目的と して、中空粒子表面を改質するためのものである。  [0127] By the way, when arranging the hollow particles in the tire air chamber, it is preferable to arrange an adhesion inhibitor around the hollow particles, for example, as described in JP-A-2003-306006. The anti-adhesion agent is used to prevent the hollow particles expanded due to heat from fusing together to form a fused body after the internal pressure recovery function of the hollow particles after the puncturing is developed. It is for reforming.
[0128] この付着防止剤は、中空粒子表面上に主に物理的吸着力または摩擦力をもって 付着しているため、中空粒子表面上の分布が不均一になり易い。また上記物理的吸 着力または摩擦力による付着のために、中空粒子表面から付着防止剤が剥離するこ ともあり、融着防止効果が十分に得られない場合がある。特に、転動中のタイヤの内 部では、大きな遠心力変動入力が発生しているため、付着防止剤を添加することで は、中空粒子と付着防止剤との大きな比重差によって、タイヤ内にて両者が分離する 結果、所期した効果が得られない場合がある。 [0128] Since the adhesion preventive agent mainly adheres to the surface of the hollow particles with a physical attraction force or frictional force, the distribution on the surface of the hollow particles tends to be uneven. In addition, the adhesion preventing agent may be peeled off from the surface of the hollow particles due to the adhesion due to the physical adhesion force or the frictional force, and the effect of preventing fusion may not be sufficiently obtained. In particular, since a large centrifugal force fluctuation input occurs inside the rolling tire, adding an anti-adhesion agent In some cases, a large difference in specific gravity between the hollow particles and the anti-adhesion agent causes the two to separate in the tire, so that the desired effect may not be obtained.
[0129] また、車輛指定内圧での常用高速走行においては、上述の遠心力変動入力に伴 つて中空粒子同士が衝突を繰り返すことから、この入力に対する耐久性を向上するこ と力 タイヤ気室内に中空粒子を配置したタイヤとリムとの組立体における重要な課 題である。そのためには、中空粒子表面を改質することが望まれている力 上述の理 由力 上記付着防止剤による粒子同士の摩擦低減効果は充分ではなぐこの付着 防止剤による中空粒子表面の改質を期待するのは難しぐ常用走行下での中空粒 子耐久性の面力 の改善も必要になる。  [0129] In ordinary high-speed running at a vehicle-specified internal pressure, since the hollow particles repeatedly collide with the above-mentioned centrifugal force fluctuation input, the durability against this input is improved, and the force inside the tire air chamber must be improved. This is an important issue in the assembly of a tire and a rim in which hollow particles are arranged. For that purpose, the force that is desired to modify the surface of the hollow particles is the above-mentioned reason. The effect of reducing the friction between particles by the anti-adhesion agent is not sufficient. It is also necessary to improve the durability of hollow particles under normal driving conditions, which is difficult.
[0130] ここに、タイヤ気室内に中空粒子を充填したタイヤとリムとの組立体において、中空 粒子の表面改質並びに中空粒子同士の融着防止を目的として、中空粒子の表面に 被覆剤を適用するに際しては、該被覆剤の中空粒子表面での均一分布および同表 面に対する強固な付着を実現する必要がある。 [0130] Here, in the assembly of the tire and the rim in which the hollow particles are filled in the tire chamber, a coating agent is applied to the surface of the hollow particles for the purpose of surface modification of the hollow particles and prevention of fusion between the hollow particles. Upon application, it is necessary to realize uniform distribution of the coating agent on the surface of the hollow particles and strong adhesion to the surface.
そのためには、上記した課題解決手段(36)ないし (41)に記載した中空粒子を用 For this purpose, the hollow particles described in the above-mentioned problem solving means (36) to (41) are used.
V、て同手段(26)な 、し (34)に記載のタイヤとリムとの組立体とすることが好ま 、。 V; It is preferable to use the tire and rim assembly described in (34) or (34).
[0131] すなわち、近年の車両の高性能化や高速ィ匕の実態を鑑みたとき、タイヤ気室内に 配置した中空粒子が所期した機能を発揮することが肝要であり、そのためには、中空 粒子の耐久性をさらに向上することが求められている。 [0131] That is, in view of the recent performance of vehicles and the actual situation of high-speed driving, it is important that the hollow particles disposed in the tire air chamber exhibit a desired function. There is a demand for further improving the durability of the particles.
そこで、発明者らは中空粒子の耐久性、具体的には耐熱性に関して、中空粒子の 発熱の実態にっ 、て鋭意検討し、中空粒子の更なる耐久性 (耐熱性)の向上を達成 した。  Accordingly, the present inventors have intensively studied the durability of hollow particles, specifically heat resistance, based on the actual state of heat generation of the hollow particles, and have further improved the durability (heat resistance) of the hollow particles. .
まず、中空粒子はその原料である膨張性榭脂粒子には膨張開始温度 Tslが存在 し、この加熱膨張によって得られた中空粒子を室温から再度加熱すると、中空粒子 は更なる膨張を開始し、ここに中空粒子の膨張開始温度 Ts2が存在し、耐熱性の指 標としては Ts2が適切であることは上述の通りである。  First, the expansion start temperature Tsl exists in the expandable resin particles, which are the raw materials of the hollow particles, and when the hollow particles obtained by this heat expansion are heated again from room temperature, the hollow particles start to expand further, Here, the expansion start temperature Ts2 of the hollow particles exists, and as described above, Ts2 is appropriate as an index of heat resistance.
[0132] 更に、中空粒子の殻部自体の耐熱性に加えて、中空粒子間衝突に起因する中空 粒子の破壊に対する耐久性を向上する手段に関しても、鋭意検討した。その結果、 中空粒子の表面を被覆剤で覆って中空粒子の表面を改質するのが肝要であることを 見出した。 [0132] Further, in addition to the heat resistance of the shell itself of the hollow particles, a means for improving the durability against the destruction of the hollow particles due to the collision between the hollow particles was also studied diligently. As a result, it is important to modify the surface of the hollow particles by coating the surface of the hollow particles with a coating agent. I found it.
すなわち、中空粒子の表面に熱を介して被覆剤を定着させることによって、常用走 行時の遠心力変動入力に起因した中空粒子同士の衝突における衝撃および摩擦 発熱を緩和できることを知見した。  In other words, it was found that by fixing the coating agent to the surface of the hollow particles via heat, the impact and frictional heat generated in the collision between the hollow particles due to the centrifugal force fluctuation input during normal running can be reduced.
[0133] ここで、被覆剤には、常温にて微粒子であり、中空粒子の原料である膨張性榭脂粒 子の表面に衝突させることによって固着させることができるものを用いる。被覆剤は、 例えばサイクロンやジェットミルなどの高速気流の中に、膨張性榭脂粒子とともに混 入して両者を衝突させることによって、被覆剤を表面に固着させた膨張性榭脂粒子 を得ることができる。次いで、この膨張性榭脂粒子を Tsl以上の温度に加熱して膨張 させれば、熱を介して被覆剤を定着させた所望の中空粒子を得ることができる。  [0133] Here, as the coating agent, one that is fine particles at normal temperature and can be fixed by colliding with the surface of expandable resin particles that are the raw material of the hollow particles is used. The coating agent is mixed with high-expansion resin particles in a high-speed air current such as a cyclone or jet mill, and collides with both to obtain expandable resin particles with the coating agent fixed on the surface. Can be. Then, if the expandable resin particles are heated to a temperature of Tsl or more to expand, the desired hollow particles having the coating agent fixed thereon through heat can be obtained.
[0134] かように、被覆剤を表面に固着させた膨張性榭脂粒子を加熱膨張させれば、その 過程において膨張性榭脂粒子の殻部榭脂が溶融するため、被覆剤は中空粒子の表 面に結合される結果、強固な定着が可能となる。  [0134] As described above, when the expandable resin particles having the coating agent fixed to the surface are heated and expanded, the shell resin of the expandable resin particles is melted in the process, so that the coating agent is formed of hollow particles. As a result, a firm fixation is possible.
[0135] 本発明で所期する中空粒子の表面に対する被覆剤の強固な定着とは、具体的に 言うと、使用した被覆剤量に対する中空粒子表面での定着量である『定着率』にて表 現する事ができる。  [0135] The solid fixation of the coating agent on the surface of the hollow particles intended in the present invention is, specifically, the "fixation rate" which is the fixing amount on the surface of the hollow particles with respect to the amount of the coating agent used. Can be expressed.
以下に、上記定着率の測定方法を示す。まず、選択された溶媒内に被覆剤による 表面被覆を施した中空粒子を、下記に従って処理したときに得られる『沈殿物量』を 求める事が肝要である。  Hereinafter, a method for measuring the fixing rate will be described. First, it is important to determine the “amount of precipitate” obtained when the hollow particles coated with the coating agent in the selected solvent are treated as described below.
 Record
分液ロート内に、 n キサン、イソプロピルアルコール、エタノールおよびメタノー ルカも選ばれた少なくとも 1種の溶媒 300ccと、 2 3gの範囲で秤量した被覆剤を有 する中空粒子とを添加し、常温下で 1分間攪拌した後 10分間静置し、沈殿物をロート 力も排出そして採取した後、再度上記溶媒を追加し分液ロート内溶媒を 300ccに調 整した上で、上記攪拌、静置および排出そして採取を、さらに 4回繰り返し、合計 5回 分の沈殿成分を、定法により溶媒を除去後に沈殿物量として秤量し、元の中空粒子 量に対する質量百分率を算出して『沈殿物量』とする。 In a separating funnel, 300 cc of at least one solvent selected from n- xane, isopropyl alcohol, ethanol and methanol, and hollow particles having a coating agent weighed in a range of 23 g are added at room temperature. After stirring for 1 minute, the mixture was left standing for 10 minutes, and the precipitate was drained from the funnel and collected.After adding the solvent again, the solvent in the separatory funnel was adjusted to 300 cc. The collection is repeated four more times, and the total amount of the sediment components for the total five times is weighed as the amount of sediment after removing the solvent by a standard method, and the mass percentage with respect to the amount of the original hollow particles is calculated to be “the amount of sediment”.
[0136] 次いで、上記沈殿物量、さらに実際に被覆のために使用した被覆剤量から、次式 に従って『定着率』を求めることができる。 [0136] Next, from the amount of the precipitate and the amount of the coating agent actually used for coating, the following formula was used. The “fixing rate” can be determined according to the following equation.
定着率 ={ (使用被覆剤量) (沈殿物量) }Z (使用被覆剤量) X loo  Fixing rate = {(Amount of coating used) (Amount of sediment)} Z (Amount of coating used) X loo
ここに、上記に従って求められる定着率が 90mass%以上であることが好ましい。す なわち、上記『沈殿物量』は、遊離状態の被覆剤成分量を指し、言い換えれば中空 粒子表面に定着できなかった被覆剤の量を意味する。  Here, it is preferable that the fixing rate determined as described above is 90 mass% or more. That is, the above-mentioned “amount of sediment” refers to the amount of the coating component in a free state, in other words, the amount of the coating agent that could not be fixed on the surface of the hollow particles.
そして、この沈殿物量が使用被覆剤量の 90maSS%未満では、遊離状態の被覆剤 粒子が中空粒子に比して高比重であるがゆえに、タイヤ内の遠心力変動入力に対 する中空粒子の発熱を悪ィ匕させるため好ましくない。より好ましい定着率の範囲は、 9 5mass%以上、そして 99mass%以上である。 Then, the precipitation amount is used coating amount is less than 90 mA SS%, because although the coating agent particles in a free state is a high specific gravity as compared with the hollow particles, hollow particles against the centrifugal force variation input in the tire It is not preferable because heat generation is deteriorated. A more preferable range of the fixing rate is 95 mass% or more, and 99 mass% or more.
[0137] ここで、中空粒子の表面に熱を介して被覆剤を定着させるに当り、中空粒子の全表 面を被覆剤で覆うことが特に表面改質の観点からは有利であるが、中空粒子の表面 に部分的に定着させても有効である。その場合は、上記の定着率の下で被覆剤が中 空粒子の表面に均一に分散していることが好ましい。そのためには、例えば、中空粒 子の原料である熱膨張性粒子の状態で、ジェットミルやサイクロンに代表される高速 気流下にて熱膨張性粒子と被覆剤とを混合すると、両者が高速度で衝突すること〖こ より、熱膨張性榭脂粒子表面に被覆剤を均一に付着させる事ができる。これをもって 所望の温度環境下にて熱膨張性榭脂粒子を加熱膨張させれば、該被覆剤が均一に 分散定着した中空粒子を得る事ができる。  [0137] Here, in fixing the coating agent to the surface of the hollow particles through heat, covering the entire surface of the hollow particles with the coating agent is particularly advantageous from the viewpoint of surface modification. It is effective to partially fix the particles on the surface of the particles. In that case, it is preferable that the coating agent is uniformly dispersed on the surface of the hollow particles under the above-mentioned fixing rate. For this purpose, for example, when the thermally expandable particles and the coating agent are mixed under a high-speed airflow typified by a jet mill or a cyclone in the state of the thermally expandable particles, which are raw materials of the hollow particles, the two particles are mixed at a high speed. Thus, the coating agent can be uniformly attached to the surface of the thermally expandable resin particles. When the heat-expandable resin particles are heat-expanded in a desired temperature environment, hollow particles in which the coating agent is uniformly dispersed and fixed can be obtained.
[0138] また、被覆剤の使用量は、中空粒子量の 3〜20mass%の範囲が好ましぐ更に好 ましくは 3〜: LOmass%の範囲である。なぜなら、被覆剤の使用量が中空粒子量の 3 masS%未満では、被覆剤を用いた上述の効果が得られ難ぐ一方 20maSS%を超え ると、中空粒子表面の被覆に対して余剰となった被覆剤の微粒子が、中空粒子表面 に付着することによる過剰な比重増や、前述同様に遊離状態の余剰な被覆剤粒子 1S 中空粒子に比して高比重であるがゆえのタイヤ内遠心力変動入力に対する中空 粒子の発熱悪化を誘発するため好ましくな ヽ。 [0138] The amount of the coating agent used is preferably in the range of 3 to 20 mass% of the amount of the hollow particles, more preferably in the range of 3 to LOmass%. If the amount of the coating agent is less than 3 mas S % of the amount of the hollow particles, it is difficult to obtain the above-mentioned effects using the coating agent, but if it exceeds 20 ma SS %, the excess amount of the coating on the surface of the hollow particles is not obtained. Excessive coating agent particles attached to the surface of the hollow particles increase the specific gravity of the coating material, or excess coating agent particles in the free state as described above. It is not preferable because it induces deterioration of heat generation of hollow particles in response to centrifugal force fluctuation input.
[0139] ここに、被覆剤としては、有機酸金属塩、とりわけ炭素数が 14以上の金属酸塩が好 ましぐ具体的にはステアリン酸リチウムおよびステアリン酸マグネシウムが好適に用 いられる。すなわち、ステアリン酸リチウムゃステアリン酸マグネシウムなどの有機酸 金属塩は、固体潤滑剤として代表的な化合物であり、該被覆剤の融点以下の温度範 囲にお 1ヽて、良好な摩擦係数低減効果を得る事ができる。 [0139] As the coating agent, a metal salt of an organic acid, particularly a metal salt having 14 or more carbon atoms is preferable, and specifically, lithium stearate and magnesium stearate are suitably used. That is, organic acids such as lithium stearate and magnesium stearate A metal salt is a typical compound as a solid lubricant, and a good friction coefficient reduction effect can be obtained in a temperature range equal to or lower than the melting point of the coating agent.
[0140] また、力べして得られた中空粒子をタイヤ気室内に配置するに際し、被覆剤の融点 Tmが中空粒子の膨張開始温度 Ts2より低いと、以下の不具合が発生する恐れがあ る。すなわち、被覆剤の融点 Tmが Ts2より低いと、常用走行中に、中空粒子が膨張 開始温度 Ts2に達していないにもかかわらず、被覆剤の一部が Tmに達することによ つて溶融してしまい、中空粒子の流動性が低下したり、中空粒子同士の融着を引き 起こすことになる。すると、本来中空粒子の持つ Ts2に基づいていた発熱限界速度 が大幅に引き下げられてしまうことになり、上記した内圧復活機能を発揮する上での 障害となるため好ましくない。従って、被覆剤の融点は少なくとも Ts2以上であること が肝要である。 [0140] When the hollow particles obtained by force are placed in the tire air chamber, if the melting point Tm of the coating agent is lower than the expansion start temperature Ts2 of the hollow particles, the following problems may occur. In other words, if the melting point Tm of the coating material is lower than Ts2, part of the coating material will melt due to reaching Tm during normal driving, even though the hollow particles have not reached the expansion start temperature Ts2. As a result, the fluidity of the hollow particles is reduced, and fusion between the hollow particles is caused. Then, the heat generation limit speed originally based on Ts2 of the hollow particles is significantly reduced, which is not preferable because it becomes an obstacle in exhibiting the above-mentioned internal pressure resuming function. Therefore, it is important that the melting point of the coating agent be at least Ts2 or higher.
[0141] 更に、被覆剤の融点 Tmが Tsl以上であり且つ前記膨張性榭脂粒子の膨張過程で の加熱温度が Tmより高 ヽ場合には、膨張性榭脂粒子の殻部榭脂の溶融と共に被 覆剤の溶融が起こるため、両者間のより密接かつ強固な定着が可能となり、被覆剤 による中空粒子表面の部分的または全面的な被覆が可能となる。これを満たすには 、被覆剤の融点 Tmの上限力Tsl + 150°C以下の範囲が好ましい。被覆剤の融点 T m力Tsl + 150°Cを超えると、被覆剤を溶融させつつ膨張させるためには更に高い 温度まで加熱する必要があり、この場合には膨張の程度を調整することが難しくなり、 所望の粒径や比重の中空粒子が得られなくなる、おそれがあるため好ましくない。  [0141] Further, when the melting point Tm of the coating agent is equal to or higher than Tsl and the heating temperature during the expansion process of the expandable resin particles is higher than Tm, the melting of the shell resin of the expandable resin particles may occur. At the same time, the coating agent is melted, so that a closer and firmer fixation between the two can be achieved, and the coating of the hollow particle surface with the coating agent can be partially or entirely. To satisfy this, the upper limit of the melting point Tm of the coating agent Tsl + 150 ° C or less is preferable. If the melting point of the coating material exceeds Tm force Tsl + 150 ° C, it is necessary to heat the coating material to a higher temperature in order to expand it while melting it.In this case, it is difficult to adjust the degree of expansion. It is not preferable because hollow particles having a desired particle diameter and specific gravity cannot be obtained.
[0142] [実施例 1]  [0142] [Example 1]
図 1に示した一般的構造を満たす表 1および表 2に示すサイズのタイヤに、表 1およ び表 2に示すサイズのリムを組み込み、乗用車用タイヤとリムとの組立体を準備した。 次に、タイヤサイズ毎に対象となる車両を選定し 4名乗車相当の荷重を搭載した上で 、高圧の空気を充填しタイヤ気室の圧力を 200kPaに調整した。それぞれのタイヤと リムとの組立体を前軸左側に装着した。ここで、荷重が負荷された状態を保ちながら タイヤ気室圧力を徐々に抜いていき、タイヤのサイド部が路面に接地するタイヤ気室 圧力値をもとめた。  The rims of the sizes shown in Tables 1 and 2 were incorporated into the tires of the sizes shown in Tables 1 and 2 that satisfied the general structure shown in Fig. 1, and an assembly of passenger car tires and rims was prepared. Next, a target vehicle was selected for each tire size, loaded with a load equivalent to four passengers, and then filled with high-pressure air to adjust the pressure in the tire chamber to 200 kPa. Each tire and rim assembly was mounted on the left front shaft. Here, the tire chamber pressure was gradually released while keeping the load applied, and the tire chamber pressure at which the side of the tire was in contact with the road surface was determined.
[0143] 次に、荷重が負荷されて 、な 、状態下で各タイヤの気室圧力を使用内圧である 20 OkPaに調整し、気室内の高圧空気を排出させることで気体の排出量を求め、各タイ ャの気室容積を算出した。その算出結果を、表 1および表 2に示した。 [0143] Next, when a load is applied, the air chamber pressure of each tire under the condition is the working internal pressure. The gas pressure was adjusted to OkPa and the high-pressure air in the air chamber was discharged to determine the gas discharge amount, and the air chamber volume of each tire was calculated. The calculation results are shown in Tables 1 and 2.
ここで、タイヤとリムによる組立体の気室容積の測定は、以下に示す手順によって行 つ 7こ。  Here, measurement of the air chamber volume of the assembly using tires and rims is performed according to the following procedure.
〔タイヤ気室容積の測定方法〕  [Method of measuring tire chamber volume]
手順 1:タイヤとリムの組立体に荷重が力からない状態を保持したまま、常温の空気 を充填し、所定内圧 (使用内圧) Pに調整する。このとき、 P下における目的のタイヤ  Step 1: While maintaining a state where no load is applied to the tire and rim assembly, fill it with air at room temperature and adjust to the specified internal pressure (operating internal pressure) P. At this time, the target tire under P
2 2  twenty two
気室容積を Vとする。 Let V be the chamber volume.
2  2
手順 2 :タイヤバルブを開放し、タイヤ気室内の空気を大気圧 Pに放出させつつ積  Step 2: Open the tire valve and release the air in the tire chamber to atmospheric pressure P
1  1
算流量計に流し、充填空気排出量 Vを測定する。なお積算流量計には、 品川精機 (株)製 DC DRYガスメーター DC— 2C、 Flow through the flow meter and measure the charged air discharge V. The integrating flow meter includes a DC DRY gas meter DC-2C manufactured by Shinagawa Seiki Co., Ltd.
インテリジェントカウンター SSF を用いた。 An intelligent counter SSF was used.
以上の各測定値を用いて、  Using the above measured values,
タイヤ気室容積値 = (充填空気排出量) / (使用内圧 Z大気圧)― (Π) に従って、使用内圧 P時のタイヤ気室容積 Vを求めることができる。  Tire chamber volume value = (filled air discharge amount) / (operating internal pressure Z atmospheric pressure)-(Π), the tire chamber volume V at the operating internal pressure P can be obtained.
2 2  twenty two
なお、式 (II)において使用内圧はゲージ圧値 (kPa)を、大気圧値は気圧計による絶 対値 (kPa)を用いた。  In equation (II), the internal pressure used was a gauge pressure value (kPa), and the atmospheric pressure value was an absolute value (kPa) measured by a barometer.
また、表 1および表 2に示したタイヤ気室に配置した中空粒子の中空部内の圧力は 、次のように測定した。  The pressure in the hollow portion of the hollow particles arranged in the tire air chamber shown in Tables 1 and 2 was measured as follows.
〔中空部内の圧力レベル確認方法〕 [How to check the pressure level in the hollow section]
タイヤ気室内に中空粒子を配置し所望の使用内圧 Pに一定期間保った、 目的のタ  Hollow particles are placed in the tire air chamber, and the desired internal pressure P is maintained for a certain period.
2  2
ィャを準備する。バルブにはフィルターを配置することで、ノ レブを開放した時、中空 粒子がタイヤ気室内に留まり、高圧の気体だけが排出される状態を得られる。次に、 ー且タイヤ気室の圧力を大気圧とし、再度気体を充填したうえで Pの 50%に相当す Prepare the unit. By placing a filter in the valve, it is possible to obtain a state in which when the knob is opened, hollow particles remain in the tire air chamber and only high-pressure gas is exhausted. Next, the pressure in the tire chamber is set to the atmospheric pressure, and the gas is filled again.
2  2
る圧力 P に調整し、タイヤバルブを開放してタイヤ気室内の空気を大気圧 Pに放Pressure P, release the tire valve and release the air in the tire chamber to atmospheric pressure P.
50% 1 出させつつ積算流量計に流し、空気排出量 V を測定する。そして、次式 Flow the gas into the integrating flow meter while taking out 50% 1 and measure the air discharge V. And the following equation
50%  50%
P 下における粒子周囲空隙容積値 V(cm3) = V (cm 3 ) = void volume around particle under P
50%  50%
〔空気排出量値 V (cm3)〕 /〔内圧値 P (kPa) /大気圧 P (kPa ) ] により、圧力 P における粒子周囲空隙容積値 Vを求める。同様に、 P P P[Air discharge value V (cm 3 )] / [Internal pressure value P (kPa) / Atmospheric pressure P (kPa)] To determine the void volume value V around the particle at the pressure P. Similarly, PPP
50% 30%、 70%、 8050% 30%, 70%, 80
P 等の各圧力水準における粒子周囲空隙容積を算出する。もし、中空部内圧Calculate the void volume around the particles at each pressure level such as P. If the hollow pressure
%、 90% %, 90%
力がタイヤ気室内の圧力に満たない場合は、中空粒子体積が減少するためその分 粒子周囲空隙容積が増カロした状態となる。よって、充分に低い圧力水準から上記測 定を開始し、粒子周囲空隙容積が増力 tlし始めた水準の圧力をもって、中空粒子の中 空部内の圧力レベルとした。  When the force is less than the pressure in the tire chamber, the volume of the hollow particles decreases, and the volume of the voids around the particles increases accordingly. Therefore, the above measurement was started from a sufficiently low pressure level, and the pressure at which the void volume around the particle began to increase tl was defined as the pressure level in the hollow portion of the hollow particle.
[0145] さらに、上記のタイヤとリムとの組立体のタイヤ気室に、種々の仕様の中空粒子を表 1および表 2に示すように適用し、表 1および表 2に示すタイヤおよびリムとの組立体 を得た。ここで、タイヤ 1は、当該タイヤ種およびサイズの一般的構造に従うものであ る。  [0145] Further, hollow particles of various specifications were applied as shown in Tables 1 and 2 to the tire chamber of the above-described tire / rim assembly, and the tires and rims shown in Tables 1 and 2 were used. The assembly of was obtained. Here, the tire 1 follows the general structure of the tire type and size.
[0146] なお、表 1および表 2における、粒子の連続相を構成する組成物の種類は表 3に示 すとおりである。この表 3に示す膨張性榭脂粒子を加熱して発泡させることによって中 空粒子とし、得られた粒子群の平均粒径、平均真比重を測定した結果は表 4に示し た。表 4に示した中空粒子を表 1および表 2に示す充填率の下で、各タイヤ気室に配 し 7こ。  [0146] In Tables 1 and 2, the types of the compositions constituting the continuous phase of the particles are as shown in Table 3. The expandable resin particles shown in Table 3 were heated and foamed to form hollow particles, and the average particle diameter and average true specific gravity of the obtained particle group were measured. The results are shown in Table 4. The hollow particles shown in Table 4 were placed in each tire air chamber at the filling ratios shown in Tables 1 and 2, respectively.
[0147] なお、中空粒子の平均真比重の計測法は、次に示す通りである。  [0147] The method of measuring the average true specific gravity of the hollow particles is as follows.
[平均真比重の計測法]  [Measurement method of average true specific gravity]
粒子の平均真比重値は、イソプロパノールを用いた、常法である液置換法 (アルキ メデス法)により測定するのが一般的であり、本発明においても、この常法に従うことと した。  The average true specific gravity of the particles is generally measured by a conventional liquid displacement method (Archimedes method) using isopropanol. In the present invention, the normal method is also used.
[0148] また、中空粒子の平均粒径および粒径分布の計測法は、次に示す通りである。  [0148] The measuring method of the average particle size and the particle size distribution of the hollow particles is as follows.
機器: Sympatec Gmbh 社製 レーザ回折式粒度分布測定装置  Equipment: Sympatec Gmbh Laser Diffraction Particle Size Analyzer
HELOS &RODOSシステム  HELOS & RODOS system
測定条件: 2S— lOOms/DRY  Measurement conditions: 2S—100ms / DRY
分散圧: 2. OObar、送り: 50. 00%、回転: 60. 00%  Dispersion pressure: 2. OObar, feed: 50.00%, rotation: 60.00%
形状係数: 1. 00  Shape factor: 1.00
上記の条件にて測定し、以下の測定値を採用する。  The measurement is performed under the above conditions, and the following measured values are adopted.
すなわち、体積基準平均粒径を、本発明の平均粒径値 (D50値)とする。 [0149] さらに、各中空粒子が持つ膨張開始温度 Ts2の測定法は、以下に示す通りである That is, the volume-based average particle size is defined as the average particle size value (D50 value) of the present invention. [0149] Further, the method of measuring the expansion start temperature Ts2 of each hollow particle is as follows.
〔粒子の膨張開始温度測定法〕 (Measurement method of particle expansion start temperature)
表 2における膨張開始温度は、以下に示す条件にて膨張変位量を測定し、その変 位量の立ち上がり時の温度とした。  The expansion start temperature in Table 2 was obtained by measuring the amount of expansion displacement under the following conditions, and setting the temperature at the time of the rise of the amount of expansion.
機器: PERKIN— ELMER 7Series  Equipment: PERKIN—ELMER 7Series
1 hernial Analysis system  1 hernial Analysis system
測定条件:昇温速度 10°CZmin、測定開始温度 25°C、測定終了温度 200°C、 測定物理量:加熱による膨張変位量を測定。  Measurement conditions: Heating rate 10 ° CZmin, Measurement start temperature 25 ° C, Measurement end temperature 200 ° C, Measurement physical quantity: Measurement of expansion displacement due to heating.
[0150] 次に、前記乗用車タイヤとリムとの組立体に、空気または窒素を充填し使用内圧で ある 200kPaに調整した。そして、あら力じめ以下に示す調査法に基づき粒子体積回 復挙動を調査の上、目的の中空部内圧力となるに相当する保持時間を割り出し、室 温にてタイヤ気室圧力を保つことで、中空粒子の中空部圧力を増カロさせることで粒 子体積を回復させながら、評価するタイヤとリムとの組立体の調製を行った。  Next, the assembly of the passenger car tire and the rim was filled with air or nitrogen to adjust the internal pressure to 200 kPa, which was the working internal pressure. Then, after studying the particle volume recovery behavior based on the investigation method described below, the holding time corresponding to the desired pressure in the hollow part was determined, and the tire air chamber pressure was maintained at the room temperature. The tire and rim assembly to be evaluated were prepared while recovering the particle volume by increasing the caloric pressure of the hollow particles.
[0151] ここで、中空粒子の中空部内圧力を増力!]させるための適切な保持時間を見出す方 法は、次のとおりである。  [0151] Here, a method for finding an appropriate holding time for increasing the pressure in the hollow portion of the hollow particle!] Is as follows.
まず、内容積が 1000cm3程度の内断面直径が一定で透明なアクリル榭脂製の円 筒型耐圧容器を準備し、該容器に超音波水浴等で振動を与えながら、本発明の中 空粒子を容器内が一杯になるまで充填した。次にこの容器にタイヤ気室に充填する 気体を、車両指定内圧等の所望する使用圧力になるまで充填した。圧力が高まるに つれて容器内の粒子は体積減少するため、中空粒子で満たされた部分の容器内側 の高さ(以下、中空粒子高さとする)は低下する。容器内圧が目標圧力に達したら、 超音波水浴等で容器に 5分間の振動を与えた後、 5分間静置した。そして、容器内 の中空粒子高さが安定したところで中空粒子高さを測定し、『加圧開始時の中空粒 子高さ: Hl』とした。更に上記使用圧力を力 4ナ続け、『一定期間経過した状態での中 空粒子高さ: Hx』を計測した。 First, a transparent pressure-resistant cylindrical container made of acrylic resin and having a constant inner cross-sectional diameter with an internal volume of about 1000 cm 3 is prepared. Was filled until the inside of the container was full. Next, this container was filled with a gas to be filled into the tire air chamber until a desired working pressure such as a vehicle-designated internal pressure was reached. As the pressure increases, the volume of the particles in the container decreases, and the height of the portion filled with hollow particles inside the container (hereinafter referred to as the hollow particle height) decreases. When the internal pressure of the container reached the target pressure, the container was vibrated for 5 minutes in an ultrasonic water bath or the like, and then allowed to stand for 5 minutes. Then, when the height of the hollow particles in the container became stable, the height of the hollow particles was measured, and the result was defined as “Hollow particle height at the start of pressurization: Hl”. Further, the above operating pressure was maintained at 4 times, and the “height of hollow particles after a certain period of time: Hx” was measured.
[0152] 次に、上記の圧力を付与したまま一定時間ごとに上記の中空粒子高さを測りながら 経時変化を記録していき、中空粒子高さが変化しなくなるまで測定を継続し、最終的 な『安定した中空粒子高さ: H2』を計測した。以上力 次式により、粒子体積回復率 を算出した。 [0152] Next, while the above pressure was applied, the change with time was recorded while measuring the height of the hollow particles at regular intervals, and the measurement was continued until the height of the hollow particles stopped changing. "Stable hollow particle height: H2" was measured. The force of particle volume recovery was calculated by the following equation.
すなわち、  That is,
粒子体積回復率 (%) =〔〔: Hx— H1〕Z〔H2— Hl〕〕 X 100  Particle volume recovery (%) = [[: Hx-H1] Z [H2-Hl]] X 100
以上の測定結果を基に、目標とする体積回復率となるまでの時間を割り出し、中空 粒子を配置したタイヤとリムとの組立体に所望する圧力の気体を充填した上で、上記 にて割り出した保持時間に従って粒子総体積の回復処置を施すことにより、中空粒 子の中空部内圧力を増カロさせた。  Based on the above measurement results, the time until the target volume recovery rate is reached is calculated, and the tire and rim assembly where the hollow particles are arranged is filled with the gas at the desired pressure, and the above is calculated. The pressure inside the hollow part of the hollow particles was increased by performing a recovery treatment of the total particle volume according to the holding time.
[0153] まず、得られたタイヤとリムとの組立体を用いて、高速発熱ドラム試験を実施した。 First, a high-speed heating drum test was performed using the obtained assembly of the tire and the rim.
すなわち、試験環境温度 38°Cに設定したドラム試験機に、内圧 200kpaに調整し た上記評価組立体を取り付け、表 1に示した負荷荷重を与えながら速度 50kmZhに て走行を開始し、 5分ごとに速度を lOkmZhずつ上昇させ、 180kmZhに到達した 時点からは速度を保ったまま走行させることで、タイヤ気室内の粒子温度およびタイ ャ気室圧力の変化を計測した。なお、評価を行うリムの内面には、タイヤ気室圧力を モニターする圧力センサーを、インナーライナ一内面のタイヤ幅方向中央部には中 空粒子の温度を計測する熱電対を配置し、測定した圧力データおよび温度データの 信号を、一般に使用されているテレメータを用いて電波伝送し、試験室内に設置した 受信機にて受信しながらタイヤ気室圧力および中空粒子温度の変化を計測した。本 試験では、上述の 180kmZh—定速度走行になった状態での粒子温度をもとめた。 粒子温度は低ければ低 、ほど、粒子の摩擦発熱が抑制できて 、ることを示しており、 上述の粒子温度が膨張開始温度より低い場合を合格と判断した。  That is, the above evaluation assembly adjusted to an internal pressure of 200 kpa was attached to a drum test machine set at a test environment temperature of 38 ° C, and running was started at a speed of 50 kmZh while applying the load shown in Table 1 for 5 minutes. Each time, the speed was increased by 10 kmZh, and when the speed reached 180 kmZh, the vehicle was driven while maintaining the speed, and the changes in the particle temperature in the tire chamber and the pressure in the tire chamber were measured. A pressure sensor for monitoring the pressure in the tire chamber was placed on the inner surface of the rim to be evaluated, and a thermocouple for measuring the temperature of air particles was placed in the center of the inner liner on the inner surface in the tire width direction. The signals of the pressure data and the temperature data were transmitted by radio waves using a commonly used telemeter, and the changes in the tire air chamber pressure and the hollow particle temperature were measured while receiving with the receiver installed in the test room. In this test, the particle temperature under the condition of 180 kmZh-constant speed running was determined. This indicates that the lower the particle temperature, the more the frictional heat generation of the particles can be suppressed, and the case where the above-mentioned particle temperature is lower than the expansion start temperature was judged to be acceptable.
[0154] また、別の各評価タイヤとリムとの組立体の気室圧力を 200kpaに調整し、表 1およ び表 2に示した負荷荷重を与えながら速度 90kmZhで距離 50000kmにわたるドラ ム走行を実施し、走行による履歴をカ卩えた。 [0154] In addition, the air chamber pressure of another assembly of each evaluation tire and the rim was adjusted to 200 kpa, and the vehicle traveled at a speed of 90 kmZh at a speed of 90 kmZh over a distance of 50,000 km while applying the load shown in Tables 1 and 2. Was carried out, and the history of traveling was obtained.
その後、各サイズのタイヤに相当するクラスの乗用車を 4名乗車相当の積載量に設 定後、評価タイヤを左前輪に装着し、この車両の左前輪での軸重量を測定した。次 に、直径 5. Omm、長さ 50mmの釘 4本を該組立体のトレッド表面からタイヤ内部に 向けて踏み抜き、タイヤ気室圧力が大気圧にまで低下するのを確認した後、 90km Zhの速度でテストコースの周回路をランフラット走行させ、タイヤ気室内の粒子温度 と気室圧力とを連続的に計測し、内圧復活機能の発現状況を調査した。 Then, after setting the passenger car of the class corresponding to the tires of each size to the loading capacity equivalent to four passengers, the evaluation tire was mounted on the left front wheel, and the axle weight of the left front wheel of this vehicle was measured. Next, four nails with a diameter of 5.Omm and a length of 50 mm were stepped from the tread surface of the assembly toward the inside of the tire, and after confirming that the tire chamber pressure was reduced to atmospheric pressure, 90 km The circuit of the test course was run flat at the speed of Zh, and the particle temperature and air chamber pressure in the tire chamber were continuously measured to investigate the state of the internal pressure recovery function.
なお、評価を行うタイヤとリムとの組立体のリム内面には、タイヤ気室圧力をモニタ 一する圧力センサーを組み込み、測定した圧力データの信号を一般に使用されてい るテレメータを用いて電波伝送し、試験車両内部に設置した受信機にて受信すること で圧力の変化を計測しながら、最大 100kmの走行を実施した。前述の『タイヤのサイ ド部が路面に接地するタイヤ気室圧力値』に対して、ランフラット走行下での内圧復 活機能発現によるタイヤ気室内の圧力値が優った場合を合格と判断した。  A pressure sensor for monitoring the tire chamber pressure is built in the inner surface of the rim assembly of the tire and rim to be evaluated, and the signal of the measured pressure data is transmitted by radio waves using a commonly used telemeter. The vehicle traveled a maximum of 100 km while measuring changes in pressure by receiving signals with a receiver installed inside the test vehicle. It was judged that the case where the pressure value in the tire chamber due to the expression of the internal pressure recovery function during run-flat running was superior to the aforementioned `` tire chamber pressure value at which the tire side contacted the road surface '' was passed. .
これらの調査結果を表 1および表 2に併記する。 The results of these surveys are shown in Tables 1 and 2.
表 1
Figure imgf000043_0001
table 1
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000043_0002
〕 〔1560
Figure imgf000044_0001
表 2
] (1560
Figure imgf000044_0001
Table 2
発明例 1-フ 比較例 1-3 発明例 1 - 8 発明例 1 - 9 発明例 1-10 比較例 1 - 4 Invention Example 1- Comparative Example 1-3 Invention Example 1-8 Invention Example 1-9 Invention Example 1-10 Comparative Example 1-4
<タイヤとリムの組立体 > <Assembly of tire and rim>
タイヤサイズ 195/45ZR16 195/45ZR16 145/80R12 165/50R15 165/50R15 165/50R15 タイヤの速度記号または速度カテゴリ一 Z ZR S V V V  Tire size 195 / 45ZR16 195 / 45ZR16 145 / 80R12 165 / 50R15 165 / 50R15 165 / 50R15 Tire speed symbol or speed category Z ZR S V V V
リムサイズ 7JJ-16 7JJ-16 4.5J-12 5J-15 5J-15 5J-15 選択車両の前軸左輪荷重 (kN) 3.75 3.75 3.04 3.04 3.04 3.04 サイド部が接地するタイヤ気室圧力(kPa) 40 40 60 30 30 30  Rim size 7JJ-16 7JJ-16 4.5J-12 5J-15 5J-15 5J-15 Front axle left wheel load of selected vehicle (kN) 3.75 3.75 3.04 3.04 3.04 3.04 Tire chamber pressure (kPa) where side part touches down 40 40 60 30 30 30
タイヤ気室に充填した気体 窒素 窒素 窒素 穿素 望素 皇素  Gas filled into the tire chamber Nitrogen Nitrogen Nitrogen Pirate
タイヤ気室容積 (cm3) 19920 19920 16620 13790 13790 13790 タイヤ気室圧力(kPa) 200 200 200 200 200 200 く中空粒子 > Tire chamber volume (cm 3 ) 19920 19920 16620 13790 13790 13790 Tire chamber pressure (kPa) 200 200 200 200 200 200
種類 2 2 4 3 3 3 Type 2 2 4 3 3 3
¾iナ体積、 cm3) 9960 16932 6648 1379 690 414 ¾i na volume, cm 3 ) 9960 16932 6648 1379 690 414
充填率 (%) 50 85 40 10 5 3 タイヤ気室内の高圧下保持圧力(kPa) 200 200 200 200 200 200 タイヤ気室内での高圧下保持時間(day) 7.0 - 7.0 7.0 7.0 7.0 7.0  Filling rate (%) 50 85 40 10 5 3 High pressure holding pressure in tire air chamber (kPa) 200 200 200 200 200 200 High pressure holding time in tire air chamber (day) 7.0-7.0 7.0 7.0 7.0 7.0
中空部圧力レベル(kPa) 200 200 200 200 200 200 タイヤ気室圧力に対する中空部圧力の比率 (%)' 100 100 100 100 100 100  Cavity pressure level (kPa) 200 200 200 200 200 200 Ratio of cavity pressure to tire chamber pressure (%) '100 100 100 100 100 100
中空粒子の膨張開始温度 Ts2 (°C) 105 105 118 158 158 158  Expansion start temperature of hollow particles Ts2 (° C) 105 105 118 158 158 158
<高達' 爇 ラ 戮 n>  <Takada '
負荷蓿重(kN) 3J5 3.75 3.04 3.04 3.04 3.04 速度 1 80 (kmZh)走行時の粒子温度(°C) 93 122 98 87 86 82  Load Initial load (kN) 3J5 3.75 3.04 3.04 3.04 3.04 Speed 1 80 (kmZh) Particle temperature during traveling (° C) 93 122 98 87 86 82
判定 合格 芣合 '格 合搽 合格 合格 合格 ぐランフラッ卜走 試験 >  Judgment Passed if 'Case Passed Passed Passed Run Flat Run Test>
タイヤ気室圧力値 (kPa) 47 76 66 43 35 26  Tire chamber pressure (kPa) 47 76 66 43 35 26
走行距離 (km) 100 100 100 100 100 45  Mileage (km) 100 100 100 100 100 45
判定 合格 合格 合格 合格 合格 不合格 Judgment Pass Pass Pass Pass Pass Pass Fail
膦 ¾ ¾ ¾雜嗨 ( 1132 膦 ¾ ¾ ¾ ¾ (1132
Figure imgf000045_0001
Figure imgf000045_0001
膨張性樹脂粒子の種類 商標 製造元 連続相組成物の種類 発泡剤の種類  Type of expandable resin particles Trademark Manufacturer Type of continuous phase composition Type of blowing agent
A 試作品 一 AN重合体 メチル A°—フルォロイソプチルェー亍ル A Prototype 1 AN polymer Methyl A ° —Fluoroisobutyl ester
B F77D 松本油脂製薬 (株) ANZMAN共重合体 イソブタン/イソ才クタン B F77D Matsumoto Yushi Pharmaceutical Co., Ltd. ANZMAN copolymer Isobutane / iso-isooctane
C ― MMA ANZMAN3元共重合体 ェチル /ぐ一フル才 Πイソプチルェ" ル C-MMA ANZMAN terpolymer Cotyl
D EXPANCEL 092 ァクゾ一ノーベル社 MMA/ANZMAN3元共重合体イソペンタン D EXPANCEL 092 Axzo Nobel MMA / ANZMAN terpolymer isopentane
E M430 大日精化工業 (株) MMA ANノ MAN3元共重合体 イソペンタン  E M430 Dainichi Seika Kogyo Co., Ltd. MMA ANNO MAN terpolymer Isopentane
F H750 大日精化工業 (株) MMA AN/MAN3元共重合体イソペンタン/イソ才クタン F H750 Dainichi Seika Kogyo Co., Ltd. MMA AN / MAN terpolymer isopentane / iso-isotan
※^!:アクリロニトリルを AN、メタアクリロニトリルを MAN、メチルメタクリレートを MMAと表示する ※ ^! : Acrylonitrile is indicated as AN, methacrylonitrile as MAN, methyl methacrylate as MMA
「1 表 4 "1 Table 4
中空粒子の内容 Hollow particle content
Figure imgf000046_0001
Figure imgf000046_0001
「01 sl [0160] [実施例 2] "01 sl [Example 2]
図 1に示した一般的構造を満たす表 5に示すサイズのタイヤに、表 5に示すサイズ のリムを組み込み、乗用車用タイヤとリムとの組立体を準備した。次に、タイヤサイズ 毎に対象となる車両を選定し 4名乗車相当の荷重を搭載した上で、高圧の空気を充 填しタイヤ気室の圧力を 200kPaに調整し、それぞれのタイヤとリムとの組立体を前 軸左側に装着した。ここで、荷重が負荷された状態を保ちながらタイヤ気室圧力を徐 々に抜いていき、タイヤのサイド部が路面に接地する力、インナーライナ一内面同士 が接触するタイヤ気室圧力値をもとめた。このタイヤ気室圧力値を『RF走行限界内 圧値』と定義した。  A rim of the size shown in Table 5 was installed in a tire of the size shown in Table 5 that satisfies the general structure shown in Fig. 1, and an assembly of a passenger car tire and a rim was prepared. Next, after selecting the target vehicle for each tire size, mounting a load equivalent to 4 passengers, filling with high-pressure air and adjusting the pressure in the tire chamber to 200 kPa, each tire and rim Was mounted on the left side of the front shaft. Here, the tire air chamber pressure is gradually released while keeping the load applied, and the force of the tire side contacting the road surface and the tire air chamber pressure value at which the inner surface of the inner liner contacts each other are determined. Was. This tire chamber pressure value was defined as “RF running limit internal pressure value”.
[0161] 次に、荷重が負荷されて 、な 、状態下で各タイヤの気室圧力を使用内圧である 20 OkPaに調整し、気室内の高圧空気を排出させることで気体の排出量を求め、各タイ ャの気室容積を算出した。その算出結果を、表 5に示した。  [0161] Next, when a load was applied, the air chamber pressure of each tire was adjusted to 20 OkPa, which is the working internal pressure, under the conditions, and the high-pressure air in the air chamber was discharged to determine the gas discharge amount. Then, the air chamber volume of each tire was calculated. Table 5 shows the calculation results.
ここで、タイヤとリムによる組立体の気室容積の測定は、実施例 1の場合と同様であ る。また、表 5に示したタイヤ気室に配置した中空粒子の中空部内圧力の測定も、実 施例 1の場合と同様である。  Here, the measurement of the air chamber volume of the assembly using the tire and the rim is the same as in the case of the first embodiment. Also, the measurement of the pressure in the hollow portion of the hollow particles arranged in the tire air chamber shown in Table 5 is the same as in Example 1.
[0162] さらに、上記のタイヤとリムとの組立体のタイヤ気室に、種々の仕様の中空粒子を表 5に示すように適用し、表 5に示すタイヤおよびリムとの組立体を得た。ここで、タイヤ 1は、当該タイヤ種およびサイズの一般的構造に従うものである。  [0162] Further, hollow particles of various specifications were applied as shown in Table 5 to the tire chamber of the above-described tire / rim assembly to obtain an assembly of the tire and rim shown in Table 5. . Here, the tire 1 follows the general structure of the tire type and size.
[0163] なお、表 5における、中空粒子の連続相を構成する組成物の種類は表 6に示すとお りである。この表 6に示す膨張性榭脂粒子を加熱して膨張させることによって中空粒 子とし、得られた粒子群の平均粒径、平均真比重を測定した結果は表 7に示した。表 7に示した中空粒子を表 5に示す充填率の下で、各タイヤ気室に配置した。  [0163] In Table 5, the types of the compositions constituting the continuous phase of the hollow particles are as shown in Table 6. The expandable resin particles shown in Table 6 were heated to expand to form hollow particles, and the average particle size and average true specific gravity of the obtained particle group were measured. Table 7 shows the results. The hollow particles shown in Table 7 were placed in each tire air chamber under the filling ratio shown in Table 5.
[0164] なお、中空粒子の平均真比重の計測法、中空粒子の平均粒径および粒径分布の 計測法、並びに各膨張性榭脂粒子の膨張開始温度 Tsl及び各中空粒子の膨張開 始温度 Ts2の測定法は、実施例 1の場合と同様である。  [0164] The method of measuring the average true specific gravity of the hollow particles, the method of measuring the average particle size and the particle size distribution of the hollow particles, the expansion start temperature Tsl of each expandable resin particle, and the expansion start temperature of each hollow particle The method of measuring Ts2 is the same as in Example 1.
[0165] 次に、前記乗用車タイヤとリムとの組立体に、空気または窒素を充填し使用内圧で ある 200kPaに調整した。そして、あら力じめ以下に示す調査法に基づき粒子体積回 復挙動を調査の上、 目的の中空部内圧力となるに相当する保持時間を割り出し、室 温または 45°Cに保たれた加温室にてタイヤ気室圧力を保つことで、中空粒子の中空 部圧力を増加させ粒子体積を回復させながら、評価するタイヤとリムとの組立体の調 製を行った。 [0165] Next, the assembly of the passenger car tire and the rim was filled with air or nitrogen to adjust the internal pressure to 200 kPa, which is the working internal pressure. Then, based on the investigation method described below, the particle volume recovery behavior was investigated, and the holding time corresponding to the desired pressure in the hollow part was calculated, and the room Preparing the tire and rim assembly to be evaluated while maintaining the tire air chamber pressure in a heating chamber maintained at a temperature or 45 ° C, increasing the hollow part pressure of the hollow particles and recovering the particle volume Was done.
ここで、中空粒子の中空部内圧力を増力!]させるための適切な保持時間を見出す方 法についても、実施例 1の場合と同様である。  Here, a method for finding an appropriate holding time for increasing the pressure in the hollow portion of the hollow particles!] Is also the same as in the case of Example 1.
[0166] まず、得られたタイヤとリムとの組立体を用いて、高速発熱ドラム試験を実施した。 [0166] First, a high-speed heating drum test was performed using the obtained assembly of the tire and the rim.
すなわち、試験環境温度 38°Cに設定したドラム試験機に、各内圧値に調整した上 記評価組立体を取り付け、表 5に示した負荷荷重を与えながら速度 lOOkmZhにて 走行を開始し、 5分ごとに速度を lOkmZhずつ上昇させ、タイヤ気室内の粒子温度 およびタイヤ気室圧力の変化を計測した。なお、評価を行うリムの内面には、タイヤ気 室圧力をモニターする圧力センサーを、インナーライナ一内面のタイヤ幅方向中央 部には中空粒子の温度を計測する熱電対を配置し、測定した圧力データおよび温 度データの信号を、一般に使用されているテレメータを用いて電波伝送し、試験室内 に設置した受信機にて受信しながらタイヤ気室圧力および中空粒子温度の変化を計 測した。  That is, the above evaluation assembly adjusted to each internal pressure value was attached to a drum test machine set to a test environment temperature of 38 ° C, and running at a speed of 100 kmZh while applying the load shown in Table 5; The speed was increased by lOkmZh every minute, and changes in particle temperature and tire chamber pressure in the tire chamber were measured. A pressure sensor that monitors tire chamber pressure is placed on the inner surface of the rim to be evaluated, and a thermocouple that measures the temperature of hollow particles is placed at the center of the inner liner inside the tire in the tire width direction. The data and temperature data signals were transmitted by radio waves using a commonly used telemeter, and the changes in tire air chamber pressure and hollow particle temperature were measured while receiving with a receiver installed in the test room.
[0167] 本試験では、各タイヤの速度記号に準じた保証速度に lOkmZhをカ卩えた速度を『 上限速度』として評価した。すなわち、上述の上限速度に達する前に中空粒子の温 度が中空粒子の膨張開始温度である Ts2に到達した場合は、その時点の速度まで で走行を停止した。また、上限速度下においても中空粒子の温度が中空粒子の膨張 開始温度である Ts2に到達しな 、場合は、その上限速度までにて走行を停止した。 そして走行停止を判断した時点の速度が、各タイヤの速度記号に準じた保証速度と 同等以上である場合を合格と判定した。  [0167] In this test, the speed at which lOkmZh was added to the guaranteed speed according to the speed symbol of each tire was evaluated as the "upper limit speed". That is, when the temperature of the hollow particles reached Ts2, which is the expansion start temperature of the hollow particles, before reaching the upper limit speed described above, the traveling was stopped at the speed at that time. When the temperature of the hollow particles did not reach the expansion start temperature Ts2 of the hollow particles even under the upper limit speed, the running was stopped at the upper limit speed. Then, when the speed at the time of determining that the running was stopped was equal to or higher than the guaranteed speed according to the speed symbol of each tire, it was determined to be acceptable.
[0168] また、別の各評価タイヤとリムとの組立体の気室圧力を各内圧値に調整し、表 5に 示した負荷荷重を与えながら速度 90kmZhで距離 50000kmにわたるドラム走行を 実施し、走行による履歴を加えた。  [0168] Further, the air chamber pressure of another assembly of each evaluation tire and the rim was adjusted to each internal pressure value, and the drum was run at a speed of 90kmZh at a speed of 90kmZh over a distance of 50,000km while applying a load shown in Table 5, Added history of driving.
その後、各サイズのタイヤに相当するクラスの乗用車を 4名乗車相当の積載量に設 定後、評価タイヤを左前輪に装着し、この車両の左前輪での軸重量を測定した。次 に、直径 5. Omm、長さ 50mmの釘 4本を該組立体のトレッド表面からタイヤ内部に 向けて踏み抜き、タイヤ気室圧力が大気圧にまで低下するのを確認した後、 90km Zhの速度でテストコースの周回路をランフラット走行させ、タイヤ気室内の粒子温度 と気室圧力とを連続的に計測し、内圧復活機能の発現状況を調査した。 Then, after setting the passenger car of the class corresponding to the tires of each size to the loading capacity equivalent to four passengers, the evaluation tire was mounted on the left front wheel, and the axle weight of the left front wheel of this vehicle was measured. Next, four nails of 5. Omm in diameter and 50 mm in length were inserted into the tire from the tread surface of the assembly. After confirming that the tire chamber pressure has dropped to the atmospheric pressure, run the test circuit around the test course at a speed of 90 km Zh to run flat, and continuously monitor the particle temperature and the chamber pressure in the tire chamber. And the occurrence of internal pressure recovery function was investigated.
なお、評価を行うタイヤとリムとの組立体のリム内面には、タイヤ気室圧力をモニタ 一する圧力センサーを組み込み、測定した圧力データの信号を一般に使用されてい るテレメータを用いて電波伝送し、試験車両内部に設置した受信機にて受信すること で圧力の変化を計測しながら、最大 100kmの走行を実施した。前述の『タイヤのサイ ド部が路面に接地するか、またはインナーライナ一内面同士が接触するタイヤ気室 圧力値』である『RF走行限界内圧値』に対して、ランフラット走行下での内圧復活機 能発現によるタイヤ気室内の圧力値が優った場合を合格と判断した。  A pressure sensor for monitoring the tire chamber pressure is built in the inner surface of the rim assembly of the tire and rim to be evaluated, and the signal of the measured pressure data is transmitted by radio waves using a commonly used telemeter. The vehicle traveled a maximum of 100 km while measuring changes in pressure by receiving signals with a receiver installed inside the test vehicle. The above-mentioned "RF traveling limit internal pressure value", which is the "tire air chamber pressure value at which the tire side part touches the road surface or the inner surface of the inner liner is in contact with each other," The test was judged to be acceptable if the pressure in the tire air chamber was superior due to the expression of the resurrection function.
これらの調査結果を表 5に併記する。 Table 5 shows the results of these surveys.
瞵 ¾繫 S1 瞵 ¾ 繫 S1
表! table!
評価タイヤの内容と評価結果  Evaluation tire contents and evaluation results
<タイヤとリムの組立体 >  <Assembly of tire and rim>
タイヤサイズ 235/35R19 235/35R19 245/45R18 165/50 15 195/45R16 275/70R16 275/70R16 175/70R13 195/60R15 195/60R 5 タイヤの速度記号 Y Y W V V Η Η S Q Q リムサイズ 8JJ-19 8JJ-19 7.5J-18 5J- 5 7J-16 7J-16 7J-16 5.5J- 3 6.5J-15 6.5J-15 選択車両の前軸左輪荷重(kN) 5.13 5.13 5.13 3.04 3.75 8.79 8.79 3.96 4.12 4.12 選択車両 旨定タイヤ気室圧力(kPa) 200 200 220 220 200 200 200 200 200 200  Tire size 235 / 35R19 235 / 35R19 245 / 45R18 165/50 15 195 / 45R16 275 / 70R16 275 / 70R16 175 / 70R13 195 / 60R15 195 / 60R5 Tire speed symbol YYWVV Η Η SQQ rim size 8JJ-19 8JJ-19 7.5 J-18 5J- 5 7J-16 7J-16 7J-16 5.5J- 3 6.5J-15 6.5J-15 Front axle left wheel load of selected vehicle (kN) 5.13 5.13 5.13 3.04 3.75 8.79 8.79 3.96 4.12 4.12 Selected vehicle Constant tire chamber pressure (kPa) 200 200 220 220 200 200 200 200 200 200
RF走行限界内圧値 (kPa) 35 35 35 30 40 30 30 70 60 60 や気'璧 Ϊこ茺¾匚テニ気俅 窒素 窒素 空気 空気 空気 wm 窒素 [ '靈蓁 タイヤ気室容積 (cm3) 22750 22750 34980 13790 19920 70130 70130 23640 27600 27600 ぐ中空粒子 > RF traveling limit internal pressure value (kPa) 35 35 35 30 40 30 30 70 60 60 Yaki's wall Nitrogen Nitrogen Air Air Air wm Nitrogen ['Rinshin Tire air chamber volume (cm 3 ) 22750 22750 34980 13790 19920 70130 70130 23640 27600 27600 hollow particles>
種類 1 5 4 4 3 1 2 6 1 4 中空粒子の膨張開始温度 Ts2(°C) 83 160 136 136 112 83 90 195 83 136  Type 1 5 4 4 3 1 2 6 1 4 Expansion start temperature of hollow particles Ts2 (° C) 83 160 136 136 112 83 90 195 83 136
粒子体積 (cm3) 6825 6825 10494 1379 7968 24545 24545 16548 13800 13800 充填率 (vol%) 30 30 30 10 40 35 35 70 50 50 タイヤ気室内の高圧下保持圧力(kPa) 200 200 220 220 200 200 200 200 200 200 タイヤ気室内での高圧下保持時間(day)' 7 7 7 7 7 7 7 7 7 7 Particle volume (cm 3 ) 6825 6825 10494 1379 7968 24545 24545 16548 13800 13800 Filling rate (vol%) 30 30 30 10 40 35 35 70 50 50 High pressure holding pressure in tire chamber (kPa) 200 200 220 220 200 200 200 200 200 200 200 Hold time under high pressure in tire chamber (day) '7 7 7 7 7 7 7 7 7 7
高圧下保持璟境温度 (°c) 25 25 25 25 45 45 45 45 45 45 中空部圧力レベル (kPa) 200 140 175 175 200 200 200 200 200 200 タイヤ気室圧力に対する中空部圧力の比率(%) 100以上 70 79.5 79.5 100以上 100以上 100以上 100以上 100以上 100以上 High pressure holding environment temperature (° c) 25 25 25 25 45 45 45 45 45 45 45 Hollow pressure level (kPa) 200 140 175 175 200 200 200 200 200 200 Ratio of hollow pressure to tire air chamber pressure (%) 100 or more 70 79.5 79.5 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more
<高速発熱ドラム試験 > <High-speed heating drum test>
タイヤ気室圧力(kPa) 200 200 220 220 200 200 200 200 200 200 負荷荷重 (kN) 5.13 5.13 5.13 3.04 3.75 8.79 8.79 3.96 4.12 4.12 タイヤの速度記号にて規定される最高速度 (kmZh) 300 300 270 240 240 210 210 180 160 160  Tire chamber pressure (kPa) 200 200 220 220 200 200 200 200 200 200 Load (kN) 5.13 5.13 5.13 3.04 3.75 8.79 8.79 3.96 4.12 4.12 Maximum speed specified by tire speed symbol (kmZh) 300 300 270 240 240 210 210 180 160 160
走行停止時の速度 (kmZh). 210 310 270 250 240 180 210 190 150 170  Speed when driving stopped (kmZh) .210 310 270 250 240 180 210 190 150 170
判定 不合格 合搭' 合菘 合格 合格 不合格 合格 合格 不合格 合格 くランフラット走行試験 >  Judgment Fail Combining Suzun Pass Pass Fail Pass Pass Fail Pass Fail
タイヤ気室圧力値 (kPa) 52 38 43 33 48 44 46 72 66 68 走行距離 (km) 100 100 100 100 100 100 100 100 100 100 判定 合格 合格 合格 合格 合格 合格 合格 合格 合格 合格  Tire chamber pressure value (kPa) 52 38 43 33 48 44 46 72 66 68 Mileage (km) 100 100 100 100 100 100 100 100 100 100 Judgment Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
〔〕
Figure imgf000051_0001
[]
Figure imgf000051_0001
表 6  Table 6
膨張性樹脂粒子の内容  Contents of expandable resin particles
Figure imgf000051_0003
Figure imgf000051_0003
※ AN:アクリロニトリル、 MAN:メタァクリロ二トリノレ、 MMA:メチルメタクリレート、 MA:メタクリル酸 * AN: acrylonitrile, MAN: methacrylonitrile, MMA: methyl methacrylate, MA: methacrylic acid
※? メチル / —フル才ロプロピルエーテル、メチル / —フルォロブチルエーテル、 Iチルハ-ーフルォロプチルェ—テルは、それぞれノルマル構造、イソ構造の両者混合物である
Figure imgf000051_0002
*? Methyl / —fluoropropyl ether, methyl / —fluorobutyl ether, and I-chloro-fluorobutyl ether are both mixtures of the normal structure and the iso structure.
Figure imgf000051_0002
表 7 Table 7
中空粒子の内容  Hollow particle content
中空粒子の種類 平均粒径( m) 平均真比重 (gZcc) 原料とした膨張性樹脂粒子 膨張開始温度 Ts2 (°C) Type of hollow particles Average particle size (m) Average true specific gravity (gZcc) Expandable resin particles used as raw material Expansion start temperature Ts2 (° C)
1 95 0.031 A 83 1 95 0.031 A 83
2 89 0.03 B 90  2 89 0.03 B 90
3 121 0.033 C 112  3 121 0.033 C 112
4 103 0.032 D 136  4 103 0.032 D 136
5 112 0.031 E 160  5 112 0.031 E 160
6 110 0.029 F 195  6 110 0.029 F 195
Figure imgf000052_0001
Figure imgf000052_0001
[0173] [実施例 3] [0173] [Example 3]
表 8に示すサイズのタイヤに、表 8に示すサイズのリムを組み込み、乗用車用タイヤ とリムとの組立体を準備した。ここで、タイヤ 1は、当該タイヤ種およびサイズの一般的 構造に従うものである。次に、タイヤサイズに対象となる車両を選定し 4名乗車相当の 荷重を搭載した上で、高圧の空気を充填しタイヤ気室の圧力を 200kPaに調整し、 それぞれのタイヤとリムとの組立体を前軸左側に装着した。ここで、荷重が負荷され た状態を保ちながらタイヤ気室圧力を徐々に抜いていき、タイヤのサイド部が路面に 接地するか、インナーライナ一内面同士が接触するタイヤ気室圧力値を求めた。この タイヤ気室圧力値を『RF走行限界内圧値』と定義した。  A rim of the size shown in Table 8 was incorporated into a tire of the size shown in Table 8, and an assembly of a passenger car tire and a rim was prepared. Here, the tire 1 conforms to the general structure of the type and size of the tire. Next, after selecting the target vehicle for the tire size and mounting a load equivalent to 4 passengers, filling with high-pressure air and adjusting the pressure of the tire chamber to 200 kPa, the combination of each tire and rim The solid was attached to the left front shaft. Here, the tire air chamber pressure was gradually released while keeping the load applied, and the tire air chamber pressure value at which the side of the tire was in contact with the road surface or the inner surface of the inner liner was in contact with each other was determined. . This tire chamber pressure value was defined as “RF running limit internal pressure value”.
[0174] 次いで、荷重が負荷されていない状態下で各タイヤの気室圧力を使用内圧に調整 し、気室内の高圧空気を排出させることで気体の排出量を求め、各タイヤの気室容 積を算出した。その算出結果を、表 8に示した。  [0174] Next, the air chamber pressure of each tire is adjusted to the working internal pressure under a state where no load is applied, and the discharge amount of gas is obtained by discharging high-pressure air in the air chamber. The product was calculated. Table 8 shows the calculation results.
ここで、タイヤとリムによる組立体の気室容積の測定は、実施例 1の場合と同様であ る。また、表 8に示したタイヤ気室に配置した中空粒子の中空部内圧力の測定も、実 施例 1の場合と同様である。  Here, the measurement of the air chamber volume of the assembly using the tire and the rim is the same as in the case of the first embodiment. In addition, the measurement of the pressure in the hollow portion of the hollow particles arranged in the tire air chamber shown in Table 8 is the same as that in Example 1.
[0175] さらに、上記のタイヤとリムとの組立体のタイヤ気室に、種々の仕様の中空粒子を表 8に示すように適用し、表 8に示すタイヤおよびリムとの組立体を得た。  [0175] Further, hollow particles of various specifications were applied as shown in Table 8 to the tire chamber of the above-described tire / rim assembly to obtain an assembly of the tire and rim shown in Table 8. .
ここで、比較例 3— 1以外の比較例および発明例については、表 9および表 10に示 す手順にて、中空粒子または膨張性榭脂粒子の表面に、表 9および表 10に示す種 々の被覆剤を表 9および表 10に示す手法並びに条件で付着または定着させた上で 中空粒子を得て、タイヤ気室に適用した。なお、表 8における被覆剤付き中空粒子に おける沈殿物量の測定は上述の通りである。  Here, comparative examples and invention examples other than Comparative Example 3-1 were applied to the surfaces of the hollow particles or the expandable resin particles by the procedures shown in Tables 9 and 10 so that the seeds shown in Tables 9 and 10 were obtained. Hollow particles were obtained after applying or fixing the various coating agents according to the methods and conditions shown in Tables 9 and 10, and the hollow particles were applied to the tire chamber. The measurement of the amount of precipitate in the hollow particles with a coating in Table 8 is as described above.
[0176] 次に、上記タイヤとリムとの組立体に窒素を充填し、使用内圧に調整した。そして、 あらかじめ以下に示す調査法に基づき粒子体積回復挙動を調査の上、 目的の中空 部内圧力となるに相当する保持時間を割り出し、室温または 45°Cに保たれた加温室 にてタイヤ気室圧力を保つことで、中空粒子の中空部圧力を増加させ粒子体積を回 復させながら、評価するタイヤとリムとの組立体の調製を行った。  [0176] Next, the assembly of the tire and the rim was filled with nitrogen, and adjusted to the working internal pressure. After examining the particle volume recovery behavior based on the following survey method in advance, the holding time corresponding to the desired pressure in the hollow section was determined, and the tire air chamber was kept in a heating room kept at room temperature or 45 ° C. While maintaining the pressure, the pressure of the hollow portion of the hollow particles was increased to recover the particle volume, and an assembly of the tire and the rim to be evaluated was prepared.
[0177] ここで、中空粒子の中空部内圧力を増力!]させるための適切な保持時間を割り出す 方法は、実施例 1の場合と同様である。また、表 8に示したタイヤ気室に配置した中空 粒子の中空部内圧力の測定も、実施例 1の場合と同様である。 [0177] Here, an appropriate holding time for increasing the pressure in the hollow portion of the hollow particle!] Is calculated. The method is the same as in Example 1. Also, the measurement of the pressure in the hollow portion of the hollow particles arranged in the tire air chamber shown in Table 8 is the same as in Example 1.
[0178] なお、表 8における、中空粒子の連続相を構成する組成物の種類は表 9に示すとお りである。この表 9に示す膨張性榭脂粒子を加熱して膨張させることによって中空粒 子とした。その際、発明例では膨張性榭脂粒子に被覆剤を付着させてから、加熱、 膨張させた。力べして得られた粒子群の平均粒径、平均真比重を測定した結果は表 10に示した。表 10に示した中空粒子を表 8に示す充填率の下で、各タイヤ気室に配 し 7こ。 [0178] In Table 8, the types of the compositions constituting the continuous phase of the hollow particles are as shown in Table 9. Hollow particles were obtained by heating and expanding the expandable resin particles shown in Table 9. At that time, in the invention example, the coating agent was attached to the expandable resin particles, and then heated and expanded. Table 10 shows the results of measurement of the average particle diameter and the average true specific gravity of the particle group obtained by pressing. The hollow particles shown in Table 10 were placed in each tire air chamber at the filling ratio shown in Table 8 7.
[0179] なお、中空粒子の平均真比重の計測法、中空粒子の平均粒径および粒径分布の 計測法、並びに各膨張性榭脂粒子の膨張開始温度 Tsl及び各中空粒子の膨張開 始温度 Ts2の測定法は、実施例 1の場合と同様である。  [0179] The method of measuring the average true specific gravity of the hollow particles, the method of measuring the average particle size and the particle size distribution of the hollow particles, the expansion start temperature Tsl of each expandable resin particle, and the expansion start temperature of each hollow particle The method of measuring Ts2 is the same as in Example 1.
[0180] まず、得られたタイヤとリムとの組立体を用いて、高速発熱ドラム試験を実施した。  [0180] First, a high-speed heating drum test was performed using the obtained assembly of the tire and the rim.
すなわち、試験環境温度 38°Cに設定したドラム試験機に、表 8に示した内圧値に 調整した上記タイヤとリムとの組立体を取り付け、表 8に示した負荷荷重を与えながら 速度 300kmZhにて 1時間走行させた。走行後のタイヤを室温まで放置冷却した後 、タイヤ気室圧力を使用内圧に調整し、前述の方法によって走行後の粒子周囲空隙 容積値を計測した。更に、タイヤ気室内から中空粒子を完全に抜き取った上で、再 度タイヤ気室圧力を使用内圧に調整し、前述同様の方法によって走行後のタイヤ気 室容積値を計測した。そして、上述の走行後タイヤ気室容積と走行後粒子周囲空隙 容積値との差分を求めることによって、使用内圧下におけるタイヤ気室内の走行後中 空粒子体積とした。  That is, an assembly of the above tire and rim adjusted to the internal pressure value shown in Table 8 was attached to a drum test machine set at a test environment temperature of 38 ° C, and the speed was increased to 300 kmZh while applying the load shown in Table 8. For an hour. After the running tire was left to cool to room temperature, the pressure in the tire chamber was adjusted to the internal pressure used, and the void volume around the particles after running was measured by the method described above. Further, after completely removing the hollow particles from the tire chamber, the tire chamber pressure was adjusted again to the working internal pressure, and the tire chamber volume value after running was measured by the same method as described above. Then, the difference between the above-described post-running tire air chamber volume and the post-running particle surrounding void volume value was determined to be the post-running air particle volume in the tire air chamber at the used internal pressure.
最後に、下式力も中空粒子の耐久性指標となる『中空粒子体積保持率』を算出した 。『中空粒子体積保持率』は 100%に近いほど優れており、 95%以上を合格とした。 『中空粒子体積保持率』 =  Lastly, the “hollow particle volume retention”, which is also an index of durability of the hollow particles, was calculated using the following formula. “Hollow particle volume retention rate” was excellent as it was closer to 100%, and 95% or more was accepted. `` Hollow particle volume retention rate '' =
(走行後の中空粒子体積 Z走行前の中空粒子体積) X 100  (Volume of hollow particles after traveling Z Volume of hollow particles before traveling) X 100
[0181] また、別の各評価用タイヤとリムとの組立体の気室圧力を使用内圧値に調整し、表 8に示した負荷荷重を与えながら速度 90kmZhで距離 50000kmにわたるドラム走 行を実施し、走行による履歴を加えた。 その後、各サイズのタイヤに相当するクラスの乗用車を 4名乗車相当の積載量に設 定後、評価タイヤを左前輪に装着し、この車両の左前輪での軸重量を測定した。次 に、直径 5. Omm、長さ 50mmの釘 4本を該組立体のトレッド表面からタイヤ内部に 向けて踏み抜き、タイヤ気室圧力が大気圧にまで低下するのを確認した後、 90km Zhの速度でテストコースの周回路をランフラット走行させ、タイヤ気室内の粒子温度 と気室圧力とを連続的に計測し、内圧復活機能の発現状況を調査した。 [0181] In addition, the air chamber pressure of another assembly of each evaluation tire and rim was adjusted to the used internal pressure value, and the drum ran at a speed of 90kmZh and a distance of 50,000km while applying the load shown in Table 8. And added the history by running. Then, after setting the passenger car of the class corresponding to the tires of each size to the loading capacity equivalent to four passengers, the evaluation tire was mounted on the left front wheel, and the axle weight of the left front wheel of this vehicle was measured. Next, four nails with a diameter of 5.Omm and a length of 50 mm were stepped on from the tread surface of the assembly toward the inside of the tire, and after confirming that the tire chamber pressure was reduced to atmospheric pressure, 90 km Zh The circuit of the test course was run flat at the speed, and the particle temperature and the air chamber pressure in the tire chamber were continuously measured to investigate the state of the internal pressure recovery function.
[0182] なお、評価を行うタイヤとリムとの組立体のリム内面には、タイヤ気室圧力をモニタ 一する圧力センサーを組み込み、測定した圧力データの信号を一般に使用されてい るテレメータを用いて電波伝送し、試験車両内部に設置した受信機にて受信すること で圧力の変化を計測しながら、最大 100kmの走行を実施した。前述の『タイヤのサイ ド部が路面に接地するか、またはインナーライナ一内面同士が接触するタイヤ気室 圧力値』である『RF走行限界内圧値』に対して、ランフラット走行下での内圧復活機 能発現によるタイヤ気室内の圧力値が優った場合を合格と判断した。  [0182] A pressure sensor that monitors and monitors the tire chamber pressure is incorporated on the inner surface of the rim assembly of the tire and rim to be evaluated, and a signal of the measured pressure data is transmitted using a generally used telemeter. The vehicle traveled a maximum of 100 km while measuring the change in pressure by transmitting radio waves and receiving it with a receiver installed inside the test vehicle. The above-mentioned "RF traveling limit internal pressure value", which is the "tire air chamber pressure value at which the tire side part touches the road surface or the inner surface of the inner liner is in contact with each other," The test was judged to be acceptable if the pressure in the tire air chamber was superior due to the expression of the resurrection function.
これらの調査結果を表 8に併記する。  Table 8 shows the results of these surveys.
[0183] 表 8において、比較例 3— 1は、被覆剤を使用していない例であり、 10vol%以上の 中空粒子体積減少が見られる。  [0183] In Table 8, Comparative Example 3-1 is an example in which the coating agent was not used, and the volume of hollow particles was reduced by 10 vol% or more.
また、比較例 3— 2は、中空粒子に直接ステアリン酸 Liを添加した例であり、中空粒 子表面への定着性が悪ぐそのため沈殿物量も多い。よって、中空粒子表面にて充 分に被覆剤が機能しておらず中空粒子の体積保持率が低い結果になった。  Comparative Example 3-2 is an example in which Li stearate was directly added to the hollow particles, and the fixation on the surface of the hollow particles was poor, so that the amount of the precipitate was large. Therefore, the coating agent did not function sufficiently on the surface of the hollow particles, and the volume retention of the hollow particles was low.
[0184] 一方、発明例 3—1および 3— 2は、被覆剤を膨張性榭脂粒子表面に固着させてか ら、被覆剤の融点 Tm以上の温度にて膨張させ中空粒子を得た例である。基本性能 は十分であるが、 Tmが Ts2より低ぐ走行中の中空粒子温度上昇と共に一部が溶融 し中空粒子の流動性が損なわれたせ ヽか、若干の体積減少が見られる。  [0184] On the other hand, Invention Examples 3-1 and 3-2 were examples in which the coating agent was fixed to the surface of the expandable resin particles and then expanded at a temperature equal to or higher than the melting point Tm of the coating agent to obtain hollow particles. It is. Although the basic performance is sufficient, the Tm is lower than Ts2, and as the temperature of the hollow particles rises during running, a part of the particles melts and the fluidity of the hollow particles is impaired, or a slight decrease in volume is observed.
[0185] 発明例 3— 3および 3—4は、 Ts2より高い Tmをもつ被覆剤を膨張性榭脂粒子表面 に固着させ、 Tm以上の温度にて膨張させて中空粒子を得た例であり、良好な耐久 性を示し、中空粒子の体積保持率も高い。  [0185] Inventive Examples 3-3 and 3-4 are examples in which a coating agent having a Tm higher than Ts2 was fixed to the surface of expandable resin particles, and expanded at a temperature of Tm or higher to obtain hollow particles. , Good durability, and high volume retention of hollow particles.
[0186] 発明例 3— 5は、 Ts2より高い Tmをもつ被覆剤を膨張性榭脂粒子表面に固着させ 、 Tmより低い温度にて膨張させ中空粒子を得た例であり、十分な性能を有するが、 沈殿物が若干発生しており、僅かだが中空粒子の体積減少が見られる。 [0186] Inventive Examples 3-5 are examples in which a coating agent having a Tm higher than Ts2 was fixed to the surface of expandable resin particles, and expanded at a temperature lower than Tm to obtain hollow particles. Have A small amount of precipitate is generated, and the volume of the hollow particles is slightly reduced.
[0187] 発明例 3— 6は、 Ts2より高い Tmをもつ被覆剤を膨張性榭脂粒子表面に固着させ 、Tmより高い温度にて膨張させ中空粒子を得た例であり、良好な耐久性を示し、中 空粒子の体積保持率も高 、。  [0187] Inventive Examples 3-6 are examples in which a coating agent having a Tm higher than Ts2 was fixed to the surface of expandable resin particles, and expanded at a temperature higher than Tm to obtain hollow particles. The volume retention of hollow particles is also high.
[0188] 発明例 3— 7は、 Ts2より高い Tmをもつ被覆剤を膨張性榭脂粒子表面に固着させ 、 Tmより低い温度にて膨張させ中空粒子を得た例であり、発明例 3— 5に比して耐 久向上剤の使用量を増やしている。しかし、被覆剤の定着性が発明例 3— 5よりは低 くなり、その分沈殿物が発生しており、僅かだが中空粒子の体積減少が見られる。 [0188] Inventive Example 3-7 is an example in which a coating agent having a Tm higher than Ts2 was fixed to the surface of expandable resin particles, and expanded at a temperature lower than Tm to obtain hollow particles. Inventive Example 3-7 Compared with 5, the use of endurance improver is increased. However, the fixing property of the coating material was lower than that of Invention Examples 3-5, and a precipitate was generated to that extent, and the volume of the hollow particles was slightly reduced.
評^面タイヤの内容と評価結果 The content and evaluation results of the evaluation tire
比較例 3-1 比較例 3- 2 発明例 3-1 発明例 3- 2 発明例 3- 3 発明例 3-4 発明例 3-5 発明例 3-6 発明例 3-7 Comparative Example 3-1 Comparative Example 3-2 Invention Example 3-1 Invention Example 3-2 Invention Example 3-3 Invention Example 3-4 Invention Example 3-5 Invention Example 3-6 Invention Example 3-7
<タイヤとリムの組立体 > <Assembly of tire and rim>
タイヤサイ 235/35R19 235/35R 9 235/35R19 235/35 19 235/35R19 235/35R19 235/35R19 235/35R19 235/35R19 タイヤの速度記号 Y Υ Y Y Y Y Y Y Y リムサイ X 8JJ-19 8JJ-19 8JJ-19 8JJ-19 8JJ-19 8JJ-19 8JJ-19 8JJ-19 8JJ-19 選択車両の前軸左輪荷重 (kN) 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 選択車両の指 タイヤ気室圧力(kPa) 230 230 230 230 230 230 230 . 230 230 Tire size 235 / 35R19 235 / 35R9 235 / 35R19 235 / 35R19 235 / 35R19 235 / 35R19 235 / 35R19 235 / 35R19 Tire speed symbol Y Υ YYYYYYY Rim size X 8JJ-19 8JJ-19 8JJ-19 8JJ- 19 8JJ-19 8JJ-19 8JJ-19 8JJ-19 8JJ-19 Load on the front axle left wheel of the selected vehicle (kN) 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 Finger of the selected vehicle Tire chamber pressure (kPa) 230 230 230 230 230 230 230. 230 230
RF走行限界内圧値 (kPa) 35 35 35 35 35 35 35 35 35' タイヤ気室に充瘼した気体 窒素 IS 窒素 窒素 11 窒素 靈 窒素 窒素 タイヤ気室容積(cm3) 22750 22750 22750 22750 22750 22750 22750 22750 22750RF traveling limit internal pressure value (kPa) 35 35 35 35 35 35 35 35 35 'Gas filled in the tire chamber Nitrogen IS Nitrogen Nitrogen 11 Nitrogen Nitrogen Nitrogen Tire chamber volume (cm 3 ) 22750 22750 22750 22750 22750 22750 22750 22750 22750
<中空粒子 > g-j ™ -.. <Hollow particles> g-j ™-..
中空 子の種類 •―" AT ··—· iT c ― ~™ -.. 膨張性樹脂粒子の膨張開始温度 Tsl (°C) 155 155 155 155 155 155 155 155 155 中空粒子の膨張開始温度 Ts2 (°C) 150 150 150 150 150 150 150 150 150  Type of hollow particle • — “AT ······ iT c ― ~ ™-.. Expansion start temperature of expandable resin particles Tsl (° C) 155 155 155 155 155 155 155 155 155 155 155 155 Expansion start temperature of hollow particles Ts2 ( ° C) 150 150 150 150 150 150 150 150 150
被覆剤の種類 なし ステアリン酸 Li ス亍アリン酸 Zn ス亍アリン酸 Ca ス亍アリン酸 Li ス亍アリン酸し' ステアリン酸 Ma ステアリン酸 ステアリン酸 Na 被覆剤の使用量 (maSS«½) 0 10 - 10 10 10 5 10 10 20 被 ¾剤の融点 Tm(°C) ― 220 128 147 220 220 280 280 280 被覆剤の添加方法 一 中空粒子に直接添加 膨張性樹脂粒子に固着後加熱 同左 同左 同左 同左 同左 同左 膨張性樹脂粒子の膨張環境温度 (°C) 260 260 260 j 260 260 260 260 300 260The amount of the coating agent of the type without stearic acid Li scan亍stearic acid Zn scan亍stearic acid Ca scan亍stearic acid Li scan亍Allyn sushi 'stearate Ma stearate N a coating agent (ma SS «½) 0 10-10 10 10 5 10 10 20 Melting point of coating material Tm (° C) ― 220 128 147 220 220 280 280 280 Coating agent addition method 1 Direct addition to hollow particles Heat after fixing to expandable resin particles Same as left Same as left Same as left Same as left Same as left Same as left Expandable ambient temperature of expandable resin particles (° C) 260 260 260 j 260 260 260 260 300 260
¾覆剤の定着率 (maSS%) 0 1 98 99 99 98 62 Θ9 44 被覆剤付き中空 fe子からの沈殿物量 (maSS。/o) 0.0 9.9 0.2 0.1 0.1 0.1 3.8 0.1 11.2 粒子体積値 (粒子周囲空隙含む) (cm3) 6825 6825 6825 6825 6825 6825 6825 6825 6825 ¾ retention rate Kutsugaezai (ma SS%) 0 1 98 99 99 98 62 Θ9 precipitation amount from 44 coating with hollow fe terminal (ma SS ./o) 0.0 9.9 0.2 0.1 0.1 0.1 3.8 0.1 11.2 particle volume value ( (Including voids around particles) (cm 3 ) 6825 6825 6825 6825 6825 6825 6825 6825 6825
充填率 (vol%) 30 30 30 30 30 30 30 30 30 タイヤ気室内の高圧下保持圧力 (kPa) 230 230 230 230 230 230 230 230 230 タイヤ気室内での高圧下保持時間 (day) 7 7 7 7 7 7 7 7 7  Filling rate (vol%) 30 30 30 30 30 30 30 30 30 High pressure holding pressure in tire chamber (kPa) 230 230 230 230 230 230 230 230 230 High pressure holding time in tire chamber (day) 7 7 7 7 7 7 7 7 7
高圧下保持璟璦温度 C) 45 45 45 45 45 45 45 45 45 イヤ気室圧力に対する中空部圧力の比率 (%) 100以上 100以上 100以上 100以上 100以上 100以上 100以上 100以上 100以上 Hold under high pressure 高 圧 Temperature C) 45 45 45 45 45 45 45 45 45 Ratio of hollow pressure to ear chamber pressure (%) 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more 100 or more
<高速発熱ドラム試験 > <High-speed heating drum test>
タイヤ気室圧力(kPa) 200 200 220 220 200 200 200 200 200 負荷 ¾重 (kN) 5.13 5.13 5.13 3.04 3.75 3.75 8.79 8.79 3.96 走行前の中空粒子体積 (cm3) 4230 4240 4230 4230 4240 4230 4230 4230 4240 是行後の中空粒子体積 (cm3) 3760 3830 4020 4030 4240 4230 4090 4220 4060 中空粒子俅積保持率 (%) 88.9 90.3 95.0 95.3 100.0 100.0 96.7 99.8 95.8  Tire chamber pressure (kPa) 200 200 220 220 200 200 200 200 200 Load Weight (kN) 5.13 5.13 5.13 3.04 3.75 3.75 8.79 8.79 3.96 Volume of hollow particles before running (cm3) 4230 4240 4230 4230 4240 4230 4230 4230 4240 Hollow particle volume after row (cm3) 3760 3830 4020 4030 4240 4230 4090 4220 4060 Hollow particle volume retention (%) 88.9 90.3 95.0 95.3 100.0 100.0 96.7 99.8 95.8
判定 不合格 不合格 合格 合格 合菘 合格 合格 合格 合格 ぐランフラット走行試験 >  Judgment Fail Fail Pass Pass Pass Pass Pass Pass Pass Pass
タイヤ気室圧力値 (kPa) 58 61 63 65 65 65 65 61 63 走行距離 (km) 100 100 100 100 100 100 100 100 100 判定 合格 合 合格 合格 合格 合格 合格 合格 合格  Tire chamber pressure value (kPa) 58 61 63 65 65 65 65 61 63 Mileage (km) 100 100 100 100 100 100 100 100 100 Judgment Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass
〔〕0189 ¾嗨^ · ¾() 0189 ¾ 嗨 ^ · ¾
Figure imgf000058_0001
9張性樹脂粒子の内容
Figure imgf000058_0003
Figure imgf000058_0001
9 Contents of tonic resin particles
Figure imgf000058_0003
1 AN:アクリロニトリル、 MAN:メタアクリロニトリル、 ΜΑ:メタクリル酸  1 AN: acrylonitrile, MAN: methacrylonitrile, ΜΑ: methacrylic acid
※ メチルハ '一フルォ 0プ (3ビルエ-テルは、ノルマル構造、イソ構造の両者混合物である  * Methyl halide (1 fluor ether) (3 building ether is a mixture of both normal structure and iso structure)
※3 被覆剤を含んだ中空粒子重量に対する被覆剤重量割合を示す
Figure imgf000058_0002
* 3 Indicates the weight ratio of the coating agent to the weight of the hollow particles containing the coating agent
Figure imgf000058_0002
Figure imgf000059_0001
Figure imgf000059_0001

Claims

請求の範囲 The scope of the claims
[1] タイヤをリムに装着し、該タイヤとリムとで区画されたタイヤ気室に、熱膨張が可能な 榭脂による連続相と独立気泡とからなる中空粒子の多数を配置し、さらに該タイヤ気 室に大気圧を超える高圧気体を充填したタイヤとリムとの組立体であって、タイヤ気 室の圧力が大気圧まで低下した状態力もの走行において、該タイヤ気室の圧力を、 少なくともタイヤのサイド部が接地しなくなる圧力まで回復する機能を有することを特 徴とするタイヤとリムとの組立体。  [1] A tire is mounted on a rim, and a large number of hollow particles composed of a continuous phase of thermally expandable resin and closed cells are arranged in a tire air chamber defined by the tire and the rim. An assembly of a tire and a rim, in which a tire chamber is filled with a high-pressure gas exceeding the atmospheric pressure, wherein when the tire chamber pressure is reduced to the atmospheric pressure, the tire chamber pressure is reduced by at least An assembly of a tire and a rim, having a function of recovering to a pressure at which a side portion of the tire does not contact the ground.
[2] 請求項 1にお 、て、下記式 (I)に従う中空粒子の充填率が 5vol%以上 80vol%以 下であることを特徴とするタイヤとリムとの組立体。  [2] The assembly of the tire and the rim according to claim 1, wherein the filling rate of the hollow particles according to the following formula (I) is 5 vol% or more and 80 vol% or less.
 Record
中空粒子の充填率 = (粒子体積値 Zタイヤ気室容積値) X 100 一- (I) ここで、  Filling rate of hollow particles = (particle volume value Z tire chamber volume value) x 100 one-(I) where
粒子体積値:タイヤ気室に配置した全中空粒子の大気圧下での合計体積と 粒子周囲の空隙体積との合計量 (cm3) Particle volume value: The total volume of all hollow particles placed in the tire chamber under atmospheric pressure and the void volume around the particles (cm 3 )
タイヤ気室容積値:タイヤとリムとの組立体に空気のみを充填して使用内 圧 (kPa)に調整した後、充填空気を内圧が大気圧になるまで排出した際の 充填空気排出量 (cm3)を用いて、次式 (II)力 求めた値 (cm3) Tire air chamber volume: The amount of charged air discharged when the air inside the tire and rim assembly is adjusted to the working pressure (kPa) by filling only the air with the air and then the filling pressure is reduced to atmospheric pressure (kPa) cm 3) using the following formula (II) force determined value (cm 3)
タイヤ気室容積値 = (充填空気排出量) / (使用内圧 Z大気圧)  Tire air chamber volume value = (filled air discharge) / (operating internal pressure Z atmospheric pressure)
— (II)  — (II)
なお、式 (II)において使用内圧はゲージ圧値 (kPa)を、大気圧値は 気圧計による絶対値 (kPa)を用いる。  In equation (II), the internal pressure used is a gauge pressure value (kPa), and the atmospheric pressure value is an absolute value (kPa) obtained by a barometer.
[3] 請求項 1または 2において、中空粒子の中空部内の圧力力 常用走行使用時の車 両指定タイヤ内圧の 70%以上であることを特徴とするタイヤとリムとの組立体。 [3] The assembly of a tire and a rim according to claim 1 or 2, wherein the pressure in the hollow portion of the hollow particles is 70% or more of the internal pressure of the vehicle designated tire during normal use.
[4] 請求項 1、 2または 3において、中空粒子の中空部内の圧力力 常用走行使用時の 車両指定タイヤ内圧の 80%以上であることを特徴とするタイヤとリムとの組立体。 [4] The assembly of a tire and a rim according to claim 1, 2 or 3, wherein the internal pressure of the hollow particles of the hollow particles is 80% or more of the internal pressure of the tire designated by the vehicle when the vehicle is used for normal driving.
[5] 請求項 1ないし 4のいずれかにおいて、中空粒子の中空部内の圧力力 常用走行 使用時の車両指定タイヤ内圧の 90%以上であることを特徴とするタイヤとリムとの組 立体。 [5] The three-dimensional structure of a tire and a rim according to any one of Claims 1 to 4, wherein the pressure force in the hollow portion of the hollow particles is 90% or more of the internal pressure of the vehicle-specified tire when the vehicle is used for normal driving.
[6] 請求項 1ないし 5のいずれかにおいて、中空粒子の中空部内の圧力力 常用走行 使用時の車両指定タイヤ内圧の 100%以上であることを特徴とするタイヤとリムとの 組立体。 [6] An assembly of a tire and a rim according to any one of claims 1 to 5, wherein the internal pressure of the hollow particles of the hollow particles is 100% or more of the internal pressure of the tire specified by the vehicle during normal use.
[7] 請求項 2ないし 6のいずれかにおいて、中空粒子の充填率が 70vol%以下であるこ とを特徴とするタイヤとリムとの組立体。  [7] The tire / rim assembly according to any one of claims 2 to 6, wherein the filling rate of the hollow particles is 70 vol% or less.
[8] 請求項 2ないし 7のいずれかにおいて、中空粒子の充填率が 60vol%以下であるこ とを特徴とするタイヤとリムとの組立体。 [8] The assembly of a tire and a rim according to any one of claims 2 to 7, wherein the filling rate of the hollow particles is 60 vol% or less.
[9] 請求項 2ないし 8のいずれかにおいて、中空粒子の充填率が 50vol%以下であるこ とを特徴とするタイヤとリムとの組立体。 [9] An assembly of a tire and a rim according to any one of claims 2 to 8, wherein the filling rate of the hollow particles is 50 vol% or less.
[10] 請求項 1ないし 9のいずれかにおいて、タイヤ気室に配置した中空粒子群の平均粒 径が 40 μ m以上 200 μ m以下の範囲にあり、かつ該中空粒子群の平均真比重が 0[10] In any one of claims 1 to 9, the average particle diameter of the hollow particle group arranged in the tire air chamber is in a range of 40 µm to 200 µm, and the average true specific gravity of the hollow particle group is 0
. 01g/cm3以上 0. 06g/cm3以下の範囲にあることを特徴とするタイヤとリムとの組 立体。 . Set stereoscopic the tire and rim, characterized in that in the 01G / cm 3 or more 0. 06g / cm 3 or less.
[11] 請求項 1ないし 10のいずれかにおいて、中空粒子の中空部内の気体力 窒素、空 気、炭素数 2から 8の直鎖状及び分岐状の脂肪族炭化水素およびそのフルォロ化物 、炭素数 2から 8の脂環式炭化水素およびそのフルォロ化物、そして次の一般式 (III)  [11] The gas force in the hollow part of the hollow particle according to any one of claims 1 to 10, nitrogen, air, a linear or branched aliphatic hydrocarbon having 2 to 8 carbon atoms and a fluorinated product thereof, and carbon number. An alicyclic hydrocarbon of 2 to 8 and its fluorinated compound, and the following general formula (III)
R' -O-R2 —— (III) R '-OR 2 —— (III)
(式中の R1および R2は、それぞれ独立に炭素数が 1から 5の一価の炭化水素基であ り、該炭化水素基の水素原子の一部をフッ素原子に置き換えても良い)にて表される エーテルィ匕合物、からなる群の中力 選ばれた少なくとも 1種の気体を有することを 特徴とするタイヤとリムとの組立体。 (R 1 and R 2 in the formula are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and a part of the hydrogen atoms of the hydrocarbon group may be replaced with fluorine atoms.) An assembly of a tire and a rim, characterized by having at least one kind of gas selected from the group consisting of:
[12] 請求項 1ないし 11のいずれかにおいて、中空粒子の連続相である榭脂力 ポリビ- ルアルコール榭脂、アクリロニトリル系重合体、アクリル系重合体および塩ィ匕ビ -リデ ン系重合体のいずれか少なくとも 1種力 成ることを特徴とするタイヤとリムとの組立体 [12] The resin according to any one of claims 1 to 11, wherein the continuous phase of the hollow particles is a resinous polyvinyl alcohol resin, an acrylonitrile-based polymer, an acrylic polymer, and a salt-formed bilidene-based polymer. An assembly of a tire and a rim, characterized by at least one of the following:
[13] 請求項 1ないし 12のいずれかにおいて、中空粒子の連続相がアクリロニトリル系重 合体から成り、該アクリロニトリル系重合体は、アクリロニトリル重合体、アクリロニトリル Zメタアクリロニトリル共重合体、アクリロニトリル Zメチルメタタリレート共重合体、ァク リロ-トリル Zメタアクリロニトリル Zメチルメタタリレート 3元共重合体およびアタリ口-ト リル、メタアクリロニトリルおよびメタクリル酸力 なる三元共重合体力 選ばれた少な くとも 1種であることを特徴とするタイヤとリムとの組立体。 [13] The method according to any one of claims 1 to 12, wherein the continuous phase of the hollow particles comprises an acrylonitrile-based polymer, and the acrylonitrile-based polymer is an acrylonitrile polymer, acrylonitrile. Z-methacrylonitrile copolymer, acrylonitrile Z-methyl methacrylate copolymer, acrylo-tolyl Z methacrylonitrile Z-methyl methacrylate ternary copolymer and tertiary tri-, methacrylonitrile and methacrylic acid Original copolymer power An assembly of a tire and a rim, characterized in that it is at least one selected.
[14] 請求項 1ないし 13のいずれかにおいて、さらにアンチロックブレーキシステムの車 輪速度センサーによる車輪速度検知に基づくタイヤ気室圧力低下警報機能および、 圧力センサーによるタイヤ気室圧力の直接測定方式に基づくタイヤ気室圧力低下警 報機能のいずれか一方または両方をそなえることを特徴とするタイヤとリムとの組立 体。  [14] The method according to any one of claims 1 to 13, further comprising a tire chamber pressure decrease warning function based on wheel speed detection by a wheel speed sensor of an anti-lock brake system, and a direct measurement method of tire chamber pressure by a pressure sensor. An assembly of a tire and a rim, characterized in that the tire and the rim have one or both of a tire chamber pressure drop warning function based on the above.
[15] 請求項 1ないし 14のいずれかにおいて、タイヤ気室内に、さらに大気圧下での平均 嵩比重が該中空粒子の平均真比重よりも大きい発泡体の多数を該中空粒子群に混 在して配置したことを特徴とするタイヤとリムとの組立体。  [15] The hollow particle group according to any one of claims 1 to 14, wherein a large number of foams having an average bulk specific gravity under atmospheric pressure larger than the average true specific gravity of the hollow particles are further included in the tire air chamber. An assembly of a tire and a rim, wherein the tire and the rim are arranged.
[16] 請求項 15において、前記発泡体は、直径が lmm以上 15mm以下の略球体形状 または一辺が lmm以上 15mm以下の立方体形状であり、平均嵩比重が 0. 06g/c c以上 0. 3gZcc以下であり、独立気泡または連通気泡を有するものであることを特 徴とするタイヤとリムとの組立体。  [16] The foam according to claim 15, wherein the foam has a substantially spherical shape having a diameter of lmm or more and 15mm or less or a cubic shape having one side of lmm or more and 15mm or less, and has an average bulk specific gravity of 0.06g / cc or more and 0.3gZcc or less. And a tire and rim assembly having closed cells or open cells.
[17] 請求項 1ないし 16のいずれかにおいて、前記中空粒子は、常用走行使用時の車 両指定タイヤ内圧の 70%以上の中空部圧力を持ち、かつ加熱したときの膨張開始 温度 Ts2が 90°C以上 200°C以下の範囲であることを特徴とするタイヤとリムとの組立 体。  [17] The hollow particle according to any one of claims 1 to 16, wherein the hollow particle has a hollow portion pressure of 70% or more of the internal pressure of a vehicle designated tire during normal use and has an expansion start temperature Ts2 of 90 when heated. An assembly of a tire and a rim, wherein the temperature is in a range of not less than 200 ° C and not less than ° C.
[18] 請求項 1ないし 17のいずれかにおいて、中空粒子の膨張開始温度 Ts2が 110°C 以上であるタイヤとリムとの組立体。  [18] The tire and rim assembly according to any one of claims 1 to 17, wherein the expansion start temperature Ts2 of the hollow particles is 110 ° C or more.
[19] 請求項 1ないし 18のいずれかにおいて、中空粒子の膨張開始温度 Ts2が 130°C 以上であるタイヤとリムとの組立体。 [19] The assembly of a tire and a rim according to any one of claims 1 to 18, wherein the expansion start temperature Ts2 of the hollow particles is 130 ° C or more.
[20] 請求項 1ないし 19のいずれかにおいて、中空粒子の膨張開始温度 Ts2が 160°C 以上であるタイヤとリムとの組立体。 [20] The assembly of a tire and a rim according to any one of claims 1 to 19, wherein the expansion start temperature Ts2 of the hollow particles is 160 ° C or more.
[21] 請求項 1ないし 20のいずれかにおいて、タイヤ内に配置する前の中空粒子内部の 気体が、タイヤ気室内に充填する気体と異なる気体であることを特徴とするタイヤとリ ムとの,袓立体。 [21] The tire according to any one of claims 1 to 20, wherein the gas inside the hollow particles before being arranged in the tire is a gas different from the gas charged into the tire chamber. And three-dimensional.
[22] 請求項 21において、タイヤ内に配置する前の中空粒子内部の気体が不燃性ガス であり、内圧を与えた後のタイヤとリムとの組立体内における中空粒子内部の気体が 、該不燃性ガスとタイヤ気室に充填した気体との混合物であることを特徴とするタイヤ とリムとの組立体。  [22] The gas according to claim 21, wherein the gas inside the hollow particles before being arranged in the tire is a non-flammable gas, and the gas inside the hollow particles in the assembly of the tire and the rim after the internal pressure is applied is the non-flammable gas. An assembly of a tire and a rim, which is a mixture of a neutral gas and a gas filled in a tire chamber.
[23] 請求項 1ないし 22のいずれかにおいて、中空粒子の殻部を構成する榭脂による連 続相力、アクリロニトリル系榭脂であることを特徴とするタイヤとリムとの組立体。  23. An assembly of a tire and a rim according to any one of claims 1 to 22, wherein the rim is a continuous acrylonitrile-based resin composed of a resin constituting a shell of a hollow particle.
[24] 請求項 23において、アクリロニトリル系榭脂が、アクリロニトリル、メタアクリロニトリル およびメチルメタタリレートからなる三元共重合体力 なる三元共重合体であることを 特徴とするタイヤとリムとの組立体。 [24] The tire / rim assembly according to claim 23, wherein the acrylonitrile-based resin is a ternary copolymer composed of acrylonitrile, methacrylonitrile and methyl methacrylate. .
[25] 請求項 23において、アクリロニトリル系榭脂が、アクリロニトリル、メタアクリロニトリル およびメタクリル酸力もなる三元共重合体であることを特徴とするタイヤとリムとの組立 体。 [25] The assembly of tire and rim according to claim 23, wherein the acrylonitrile-based resin is acrylonitrile, methacrylonitrile and a terpolymer having methacrylic acid strength.
[26] 請求項 1ないし 25のいずれかにおいて、前記中空粒子の表面の少なくとも部分に 、該表面に熱を介して定着された被覆剤を有することを特徴とするタイヤとリムとの組 立体。  26. The tire and rim assembly according to any one of claims 1 to 25, wherein at least a part of the surface of the hollow particle has a coating fixed to the surface via heat.
[27] 請求項 1ないし 26のいずれかにおいて、前記中空粒子の全表面に被覆剤を有す ることを特徴とするタイヤとリムとの組立体。  27. The assembly of a tire and a rim according to any one of claims 1 to 26, wherein a coating agent is provided on all surfaces of the hollow particles.
[28] 請求項 1ないし 27のいずれかにおいて、中空粒子の被覆に使用した被覆剤量およ び下記処理に従って得られる沈殿物量に基づ!/、て、次式 [28] The method according to any one of claims 1 to 27, wherein based on the amount of the coating agent used for coating the hollow particles and the amount of the precipitate obtained according to the following treatment,
定着率 ={ (使用被覆剤量) (沈殿物量) }Z (使用被覆剤量) X 100  Fixing rate = {(Amount of coating used) (Amount of sediment)} Z (Amount of coating used) X 100
にて求められる被覆剤の定着率が 90mass%以上であることを特徴とするタイヤとリム との組立体。  An assembly of a tire and a rim, wherein the fixing rate of the coating agent required in the above is 90 mass% or more.
 Record
分液ロート内に、 n キサン、イソプロピルアルコール、エタノールおよびメタノー ルカも選ばれた少なくとも 1種の溶媒 300ccと、 2 3gの範囲で秤量した被覆剤を有 する中空粒子とを添加し、常温下で 1分間攪拌した後 10分間静置し、沈殿物をロート 力も排出そして採取した後、再度上記溶媒を追加し分液ロート内溶媒を 300ccに調 整した上で、上記攪拌、静置および排出そして採取を、さらに 4回繰り返し、合計 5回 分の沈殿成分を、定法により溶媒を除去後に沈殿物量として秤量し、元の中空粒子 量に対する質量百分率を算出して沈殿物量とする。 In a separating funnel, 300 cc of at least one solvent selected from n- xane, isopropyl alcohol, ethanol and methanol, and hollow particles having a coating agent weighed in a range of 23 g are added at room temperature. After stirring for 1 minute, the mixture was left still for 10 minutes, the precipitate was drained from the funnel and collected, and then the above solvent was added again to adjust the solvent in the separatory funnel to 300 cc. The above stirring, standing, discharging, and sampling were repeated four more times, and the total amount of the precipitated components was weighed as the amount of the precipitate after removing the solvent by a conventional method, and the mass percentage relative to the amount of the original hollow particles was determined. Is calculated as the amount of sediment.
[29] 請求項 28において、前記定着率が 95mass%以上であることを特徴とするタイヤとリ ムとの,袓立体。 29. The three-dimensional structure of a tire and a rim according to claim 28, wherein the fixing rate is 95 mass% or more.
[30] 請求項 28または 29において、前記定着率が 99mass%以上であることを特徴とする タイヤとリムとの組立体。  30. The tire and rim assembly according to claim 28 or 29, wherein the fixing rate is 99 mass% or more.
[31] 請求項 1ないし 30のいずれかにおいて、請求項 28ないし 30のいずれ力において、 前記中空粒子の中空部内の圧力が大気圧以上の高圧であり、該中空粒子を加熱し たときの膨張開始温度 Ts2が 90°C以上 200°C以下の範囲であり、前記被覆剤の融 点 Tmが中空粒子の膨張開始温度 Ts2より高 、ことを特徴とするタイヤとリムとの組立 体。  [31] The method according to any one of claims 1 to 30, wherein the pressure in the hollow portion of the hollow particles is equal to or higher than the atmospheric pressure, and the hollow particles are expanded when heated. An assembly of a tire and a rim, wherein the starting temperature Ts2 is in the range of 90 ° C to 200 ° C and the melting point Tm of the coating agent is higher than the expansion starting temperature Ts2 of the hollow particles.
[32] 請求項 31にお 、て、被覆剤の融点 Tmが、ガス成分を液体状態の発泡剤として榭 脂に封じ込めた膨張性榭脂粒子の膨張開始温度 Tslに関して、下記の関係を満た すことを特徴とするタイヤとリムとの組立体。  [32] In Claim 31, the melting point Tm of the coating agent satisfies the following relationship with respect to the expansion start temperature Tsl of the expandable resin particles in which the gas component is encapsulated in the resin as a liquid foaming agent. An assembly of a tire and a rim, characterized in that:
 Record
Tsl < Tm < Tsl + 150°C  Tsl <Tm <Tsl + 150 ° C
[33] 請求項 32にお ヽて、中空粒子は、被覆剤が付着された膨張性榭脂粒子を、被覆 剤の融点 Tm以上の温度で膨張させて得たものであることを特徴とするタイヤとリムと の糸且立体。 [33] The method according to claim 32, wherein the hollow particles are obtained by expanding the expandable resin particles having the coating agent attached thereto at a temperature equal to or higher than the melting point Tm of the coating agent. A three-dimensional thread and rim.
[34] 請求項 28な 、し 33の 、ずれかにお 、て、被覆剤が有機酸金属塩であることを特徴 とするタイヤとリムとの組立体。  [34] The assembly of a tire and a rim according to any one of claims 28 to 33, wherein the coating agent is an organic acid metal salt.
[35] タイヤをリムに装着したタイヤとリムとの組立体における該タイヤとリムとで区画され たタイヤ気室内に、大気圧を超える高圧気体とともに配置する、熱膨張が可能な榭 脂による連続相と独立気泡とからなる中空粒子であって、下記の榭脂 (A)と、下記の 熱分解性発泡剤 (B)および下記の発泡剤 (C)の ヽずれか一方または両方とを含有 する膨張性組成物を加熱膨張させて得られ、かつ中空粒子の中空部内の圧力が、 該中空粒子群が配置されるタイヤ気室内の高圧気体の圧力に対して 70%以上であ ることを特徴とする中空粒子。 [35] A continuum of thermally expandable resin, which is disposed together with a high-pressure gas exceeding atmospheric pressure in a tire chamber separated by the tire and the rim in an assembly of the tire and the rim with the tire mounted on the rim. Hollow particles consisting of a phase and closed cells, containing the following resin (A) and one or both of the following thermally decomposable blowing agent (B) and the following blowing agent (C) And the pressure in the hollow portion of the hollow particles is at least 70% of the pressure of the high-pressure gas in the tire chamber in which the hollow particle group is arranged. Hollow particles, characterized in that:
 Record
(A)ポリビニルアルコール榭脂、アクリロニトリル系重合体、アクリル系重合体および 塩ィ匕ビユリデン系重合体力 選ばれた少なくとも 1種  (A) at least one selected from the group consisting of polyvinyl alcohol resin, acrylonitrile-based polymer, acrylic polymer, and salted bilidene-based polymer
(B)ジ-トロソペンタメチレンテトラミン、ァゾジカルボンアミド、パラトルエンスルフォ- ルヒドラジンおよびその誘導体、そしてォキシビスベンゼンスルフォ-ルヒドラジンから 選ばれた少なくとも 1種  (B) at least one selected from di-trosopentamethylenetetramine, azodicarbonamide, paratoluenesulfurhydrazine and derivatives thereof, and oxybisbenzenesulfolhydrhydrazine
(C)炭素数 2から 8の直鎖状及び分岐状の脂肪族炭化水素およびそのフルォロ化物 、炭素数 2から 8の脂環式炭化水素およびそのフルォロ化物、そして次の一般式 (III)  (C) linear and branched aliphatic hydrocarbons having 2 to 8 carbon atoms and fluorinated compounds thereof, alicyclic hydrocarbons having 2 to 8 carbon atoms and fluorinated compounds thereof, and the following general formula (III)
R'-O-R2—— (III) R'-OR 2 —— (III)
(式中の R1および R2は、それぞれ独立に炭素数が 1から 5の一価の炭化水素基であ り、該炭化水素基の水素原子の一部をフッ素原子に置き換えても良い)にて表される エーテルィ匕合物カゝら選ばれた少なくとも 1種 (R 1 and R 2 in the formula are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and a part of the hydrogen atoms of the hydrocarbon group may be replaced with fluorine atoms.) At least one selected from ethereal daggers
[36] タイヤをリムに装着したタイヤとリムとの組立体における該タイヤとリムとで区画され たタイヤ気室内に、大気圧を超える高圧気体とともに配置する、熱膨張が可能な榭 脂による連続相と独立気泡とからなる中空粒子であって、その中空部内の圧力が大 気圧以上であり、かつ表面の少なくとも部分に、該表面に熱を介して定着された被覆 剤を有することを特徴とする中空粒子。  [36] In a tire / rim assembly in which a tire is mounted on a rim, a continuum of thermally expandable resin is arranged together with a high-pressure gas exceeding atmospheric pressure in a tire chamber partitioned by the tire and the rim. A hollow particle comprising a phase and closed cells, wherein the pressure inside the hollow portion is equal to or higher than the atmospheric pressure, and at least a portion of the surface has a coating agent fixed to the surface via heat. Hollow particles.
[37] 請求項 36において、中空部内の圧力が、常用走行使用時の車両指定タイヤ内圧 の 70%以上であることを特徴とする中空粒子。  37. The hollow particle according to claim 36, wherein the pressure in the hollow portion is 70% or more of the internal pressure of the tire specified by the vehicle during normal use.
[38] 請求項 36または 37において、全表面に被覆剤を有することを特徴とする中空粒子  38. The hollow particle according to claim 36, wherein the hollow particle has a coating agent on the entire surface.
[39] 請求項 36ないし 38のいずれかにおいて、中空粒子の被覆に使用した被覆剤量お よび下記処理に従って得られる沈殿物量に基づ 、て、次式 [39] In any one of claims 36 to 38, based on the amount of the coating agent used for coating the hollow particles and the amount of the precipitate obtained according to the following treatment, the following formula:
定着率 ={ (使用被覆剤量) (沈殿物量) }Z (使用被覆剤量) X 100  Fixing rate = {(Amount of coating used) (Amount of sediment)} Z (Amount of coating used) X 100
にて求められる被覆剤の定着率が 90mass%以上であることを特徴とする中空粒子。  The hollow particles, wherein the fixing rate of the coating agent determined in the above is 90 mass% or more.
記 分液ロート内に、 n キサン、イソプロピルアルコール、エタノールおよびメタノー ルカも選ばれた少なくとも 1種の溶媒 300ccと、 2 3gの範囲で秤量した被覆剤を有 する中空粒子とを添加し、常温下で 1分間攪拌した後 10分間静置し、沈殿物をロート 力も排出そして採取した後、再度上記溶媒を追加し分液ロート内溶媒を 300ccに調 整した上で、上記攪拌、静置および排出そして採取を、さらに 4回繰り返し、合計 5回 分の沈殿成分を、定法により溶媒を除去後に沈殿物量として秤量し、元の中空粒子 量に対する質量百分率を算出して沈殿物量とする。 Record In a separating funnel, 300 cc of at least one solvent selected from n- xane, isopropyl alcohol, ethanol and methanol, and hollow particles having a coating agent weighed in a range of 23 g are added at room temperature. After stirring for 1 minute, the mixture was left standing for 10 minutes, and the precipitate was drained from the funnel and collected.After adding the solvent again, the solvent in the separatory funnel was adjusted to 300 cc. Sampling is repeated four more times, and a total of five sediment components are weighed as the sediment amount after removing the solvent by a standard method, and the mass percentage based on the original hollow particle amount is calculated to be the sediment amount.
[40] 請求項 39において、前記定着率が 95mass%以上であることを特徴とする中空粒 子。 40. The hollow particle according to claim 39, wherein the fixing rate is 95 mass% or more.
[41] 請求項 39または 40において、前記定着率が 99mass%以上であることを特徴とする 中空粒子。  41. The hollow particle according to claim 39, wherein the fixing rate is 99 mass% or more.
PCT/JP2005/007705 2004-04-22 2005-04-22 Assembly of tire and rim, and hollow particles placed inside the assembly WO2005102740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004127050 2004-04-22
JP2004-127050 2004-04-22

Publications (1)

Publication Number Publication Date
WO2005102740A1 true WO2005102740A1 (en) 2005-11-03

Family

ID=35196838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007705 WO2005102740A1 (en) 2004-04-22 2005-04-22 Assembly of tire and rim, and hollow particles placed inside the assembly

Country Status (1)

Country Link
WO (1) WO2005102740A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120080131A1 (en) * 2005-10-27 2012-04-05 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres and hollow fine particles and method for producing the same as well as tire/rim assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278424A (en) * 1993-03-29 1994-10-04 Mazda Motor Corp Tire air pressure warning device
JP2002144811A (en) * 2000-08-30 2002-05-22 Bridgestone Corp Safety tire
WO2002074558A1 (en) * 2001-03-21 2002-09-26 Bridgestone Corporation Assembly of tire and rim
JP2003118332A (en) * 2001-08-07 2003-04-23 Bridgestone Corp Tire-rim assembly body having satisfactory self-sealing property and self-balancing property
JP2003306006A (en) * 2002-04-12 2003-10-28 Bridgestone Corp Tire and rim assembly body, and foaming composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278424A (en) * 1993-03-29 1994-10-04 Mazda Motor Corp Tire air pressure warning device
JP2002144811A (en) * 2000-08-30 2002-05-22 Bridgestone Corp Safety tire
WO2002074558A1 (en) * 2001-03-21 2002-09-26 Bridgestone Corporation Assembly of tire and rim
JP2003118332A (en) * 2001-08-07 2003-04-23 Bridgestone Corp Tire-rim assembly body having satisfactory self-sealing property and self-balancing property
JP2003306006A (en) * 2002-04-12 2003-10-28 Bridgestone Corp Tire and rim assembly body, and foaming composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120080131A1 (en) * 2005-10-27 2012-04-05 Matsumoto Yushi-Seiyaku Co., Ltd. Heat-expandable microspheres and hollow fine particles and method for producing the same as well as tire/rim assembly

Similar Documents

Publication Publication Date Title
JP4382331B2 (en) Tire-rim assembly with excellent self-sealing and self-balancing properties
JP2004075039A (en) Safety tire and core for safety tire
JP4651662B2 (en) Safety tire and hollow ring body
JP2002332475A (en) Sealant composition, and pressure container and tire using the same
JP2004243985A (en) Assembly body of tire with rim, and particle group filled in the assembly body
JP2006248445A (en) Aggregate of tire and hollow particle
WO2005102740A1 (en) Assembly of tire and rim, and hollow particles placed inside the assembly
JP2004255981A (en) Assembly of tire and rim, and particles filled into assembly
JP4990485B2 (en) Tire and rim assembly and hollow particles arranged inside the assembly
JP2003306006A (en) Tire and rim assembly body, and foaming composition
JP2002103929A (en) Safety tire
JP4994231B2 (en) Tire and rim assembly and hollow particles
JP2002332474A (en) Sealant composition, and pressure container and tire using the same
JP2003025806A (en) Safety tire and rim assembly and foaming composition
JP2003118331A (en) Tire-rim assembly body having satisfactory self-sealing property
JP2003306004A (en) Tire and rim assembly body, and foaming composition
JP2003118325A (en) Assembly body of tire and rim and method for adjusting volume thereof
JP2003306005A (en) Tire and rim assembly body, and foaming composition
JP2003118326A (en) Assembly body of tire and rim
JP2003025807A (en) Safety tire and rim assembly and forming composition
JP2006298305A (en) Tire particle assembly
JP2006151118A (en) Tire particle assembly
JP2009190319A (en) Method for producing hollow particle composition to be disposed within tire-rim assembly
JP2006193117A (en) Tire-particle assemblage
JP2009090744A (en) Assembly body of tire and rim

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP