WO2005095796A1 - Control device and pressure control valve for variable displacement compressor - Google Patents

Control device and pressure control valve for variable displacement compressor Download PDF

Info

Publication number
WO2005095796A1
WO2005095796A1 PCT/JP2005/006455 JP2005006455W WO2005095796A1 WO 2005095796 A1 WO2005095796 A1 WO 2005095796A1 JP 2005006455 W JP2005006455 W JP 2005006455W WO 2005095796 A1 WO2005095796 A1 WO 2005095796A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
area
chamber
control
discharge
Prior art date
Application number
PCT/JP2005/006455
Other languages
French (fr)
Japanese (ja)
Inventor
Sakae Hayashi
Masao Futami
Kazuto Toshima
Original Assignee
Valeo Thermal Systems Japan Corporation
Saginomiya Seisakusho, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corporation, Saginomiya Seisakusho, Inc. filed Critical Valeo Thermal Systems Japan Corporation
Publication of WO2005095796A1 publication Critical patent/WO2005095796A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters

Definitions

  • the present invention adjusts the control pressure chamber by controlling the flow rate of control gas flowing into the control pressure chamber from the discharge pressure area and the flow rate of control gas released into the suction pressure area of the control pressure chamber.
  • TECHNICAL FIELD The present invention relates to a control device and a pressure control valve for a variable displacement compressor with a variable discharge capacity, and more particularly to a technology applicable to a clutchless type compressor.
  • Variable displacement control of such a variable displacement compressor is performed by controlling the pressure in the crank chamber.
  • the discharge pressure region is communicated with the crank chamber.
  • a configuration in which a pressure control valve is provided in an air supply passage and a fixed orifice is provided in a bleed passage that communicates a crank chamber with a suction pressure region is mainly used (see Patent Document 1).
  • a three-way valve control valve that simultaneously controls an air supply passage that connects the discharge pressure area to the crank chamber and a bleed air path that connects the crank chamber to the suction pressure area has been proposed (see Patents).
  • Reference 2
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-153042 (Column 0030, FIG. 1, FIG. 3)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-12358 (columns 0024 to 0029, FIG. 3)
  • the present invention has been completed based on such knowledge, and has a control that ensures a sufficient refrigerant circulation path inside the compressor at the time of the minimum discharge capacity and does not contribute to the refrigeration effect at the time of the intermediate discharge capacity.
  • the main task is to provide a control device and a pressure control valve for a variable displacement compressor which can reduce the amount of gas to increase the compressor efficiency and further reduce power consumption.
  • a control device for a variable displacement compressor is configured such that the discharge capacity decreases when the pressure in the control pressure chamber increases, and the discharge capacity decreases when the pressure in the control pressure chamber decreases. It is used in a variable displacement compressor configured to increase the output capacity, and is used for the area of a passage that communicates the control pressure chamber and the suction pressure area, and the area of a passage that communicates the discharge pressure area and the control pressure chamber.
  • the area of a passage communicating the control pressure chamber and the suction pressure area is set to be equal to the area of the discharge pressure area and the other area.
  • the pressure gradually decreases up to a first predetermined value, and gradually increases below the first predetermined value, so as to communicate the discharge pressure region with the control pressure chamber. Area of the discharge pressure region and the pressure of the other region As the force difference becomes smaller, the change rate is gradually increased up to a second predetermined value, and the change rate is gradually increased below the second predetermined value than the change rate up to the second predetermined value. (Chart 1).
  • the differential force between the pressure in the discharge pressure region and the pressure in the other region becomes smaller, and this pressure difference becomes the first pressure difference.
  • the first differential pressure valve operates to connect the control pressure chamber to the suction pressure area. Therefore, even at the time of the minimum discharge capacity, the communication state between the control pressure chamber and the suction pressure region is ensured by the differential pressure valve, so that the refrigerant circulation path can be secured inside the compressor at the time of the minimum discharge capacity. .
  • the second differential pressure valve operates to connect the discharge pressure region and the control pressure chamber.
  • the control gas supplied to the control pressure chamber increases, and the state of the minimum discharge capacity can be maintained.
  • the discharge pressure region The area of the passage connecting the pressure chamber and the control pressure chamber can be suppressed by reducing the rate of change up to the second predetermined value, so that the amount of control gas can be reduced without contributing to the refrigeration effect. It becomes.
  • the discharge pressure region and the control pressure chamber are connected to each other in order to reliably maintain the state of the minimum discharge capacity.
  • the area of the communication path be larger than the area of the communication path between the control pressure chamber and the suction pressure region (claim 2).
  • the area characteristic of the passage communicating the control pressure chamber and the suction pressure region below the first predetermined value is that the pressure difference between the discharge pressure region and the other region is the first predetermined value. This is realized by providing a first differential pressure valve for communicating the control pressure chamber with the suction pressure area when the pressure becomes less than or equal to, and the discharge pressure area and the control pressure chamber at or below the second predetermined value.
  • the first differential pressure valve and the second differential pressure valve may be provided in a housing constituting the compressor, but the control pressure chamber and the suction pressure region may be separated from each other.
  • a pressure control valve that changes the area of the communication path and the area of the communication path between the control pressure chamber and the suction pressure region may be provided.
  • a variable pressure valve including a supply passage communicating the discharge pressure region with the control pressure chamber and a bleed passage communicating the control pressure chamber with the suction pressure region.
  • a pressure control valve for a variable displacement compressor which is used in a displacement compressor and controls a pressure in the control pressure chamber by adjusting a communication state between the air supply passage and the bleed passage, the discharge pressure region and other As the pressure difference between the control pressure chamber and the control pressure chamber decreases, the passage area of the air supply passage connecting the discharge pressure area and the control pressure chamber gradually increases, and the control pressure chamber communicates with the suction pressure area.
  • the variable displacement compressor described above includes a drive shaft provided in a cylinder block, a drive swash plate that rotates together with the drive shaft and has a variable inclination angle with respect to the drive shaft, A cylinder having an axis parallel to the drive shaft, a piston slidably disposed in the cylinder, and a piston reciprocating in the cylinder with the rotation of the drive swash plate, and a cylinder and a piston.
  • a compression chamber that forms a control pressure chamber formed on the side opposite to the compression chamber of the piston; a suction chamber that forms a suction pressure area that communicates with the compression chamber during the suction stroke of the piston; It is preferable to use a swash plate type variable displacement compressor having a discharge chamber which forms a discharge pressure region communicating with the compression chamber in the compression stroke.
  • the area of the passage communicating the control pressure chamber and the suction pressure area is reduced by the pressure difference between the discharge pressure area and the other area.
  • the area of the passage connecting the discharge pressure region and the control pressure chamber is gradually reduced to a first predetermined value and gradually increased to a value less than the first predetermined value.
  • the rate of change is gradually increased up to the second predetermined value, and the rate of change is set to be larger than the second predetermined value below the second predetermined value. Since the size is gradually increased, a large passage area between the discharge pressure area and the control pressure chamber is secured while securing the internal circulation path at the minimum discharge capacity of the clutchless variable displacement compressor.
  • the area of the passage communicating the discharge pressure region and the control pressure chamber is reduced. Since the area of the passage connecting the control pressure chamber and the suction pressure area is made larger, the pressure in the control pressure chamber can be kept high at the time of the minimum discharge capacity, and the state of the minimum discharge capacity can be reliably maintained. It becomes possible.
  • the area characteristic of the passage communicating the control pressure chamber and the suction pressure region below the first predetermined value is reduced by the pressure between the discharge pressure region and the other regions.
  • This is realized by providing a first differential pressure valve for communicating the control pressure chamber with the suction pressure area when the difference becomes equal to or less than the first predetermined value, and the discharge pressure area and the control pressure chamber when the difference is equal to or less than the second predetermined value.
  • the area characteristic of the passage that communicates the pressure difference between the discharge pressure region and the other region is equal to or less than a second predetermined value. Therefore, it is possible to cope with the problem by adding the first and second differential pressure valves to the existing configuration.
  • the passage area of the air supply passage connecting the discharge pressure region and the control pressure chamber gradually increases.
  • the pressure difference between the discharge pressure area and the other areas is increased by the pressure control valve equipped with a valve mechanism that gradually increases the passage area of the bleed passage connecting the control pressure chamber and the suction pressure area.
  • a second differential pressure valve is provided to communicate the discharge pressure area with the control pressure chamber in the event of a change in the pressure. It is possible to maintain the minimum discharge capacity state while securing the circulation path Thus, at the time of the intermediate discharge capacity, it is possible to increase the compressor efficiency by reducing the control gas amount without contributing to the refrigeration effect, and to achieve power saving.
  • FIG. 1 is a schematic configuration diagram showing a control device for a refrigeration cycle and a variable displacement compressor according to an embodiment of the present invention.
  • FIG. 2 is a sectional view showing a configuration example of a clutchless type variable displacement compressor according to an embodiment of the present invention.
  • FIG. 3 is a sectional view showing a pressure control valve used in the compressor of FIG. 2.
  • FIG. 4 is a partially enlarged cross-sectional view showing a configuration example in which first and second differential pressure valves are provided in a pressure control valve.
  • FIG. 4 (a) is a diagram in which the first and second differential pressure valves are closed.
  • (B) is the first difference The state where the pressure valve is opened and the second differential pressure valve is closed is shown, and (c) shows the state where the first and second differential pressure valves are opened.
  • FIG. 5 is a diagram showing opening degree characteristics of a first differential pressure valve.
  • FIG. 6 is a diagram showing opening degree characteristics of a second differential pressure valve.
  • FIG. 7 is a diagram showing an opening characteristic between a crank chamber and a suction chamber and an opening characteristic between a discharge chamber and a crank chamber of the variable displacement compressor according to the present invention.
  • FIG. 8 is a partially enlarged cross-sectional view showing another configuration example in which first and second differential pressure valves are provided in a pressure control valve.
  • FIG. 8 (a) is a diagram in which the first and second differential pressure valves are closed.
  • (B) shows a state in which the first differential pressure valve is opened and a second differential pressure valve is closed, and (c) shows a state in which the first and second differential pressure valves are opened. Show.
  • FIG. 9 is a diagram showing opening degree characteristics of a conventional compressor having a fixed orifice in a bleed passage.
  • FIG. 10 is a diagram showing opening degree characteristics of a conventional three-way valve control valve.
  • FIG. 11 is a diagram showing an opening degree characteristic obtained by improving FIG. 10;
  • FIG. 1 shows a configuration example of a refrigeration cycle using a variable displacement compressor mounted on a vehicle.
  • the refrigeration cycle 1 includes a variable displacement compressor (hereinafter referred to as a compressor) 3 having a pressure control valve 2 described below, a radiator 4 for cooling the refrigerant, 5, a high-pressure line 7 is formed by a path extending from the discharge chamber 27 of the compressor 3 to the inflow side of the expansion device 5 via the heat radiator 4,
  • the low pressure line 8 is formed by a path leading to the suction chamber 26 of the compressor 3 via the outlet side force of the expansion device 5 through the evaporator 6.
  • Reference numeral 9 denotes a pressure sensor for detecting the suction pressure Ps of the compressor provided in the low-pressure line 8.
  • the signal from the pressure sensor 9 is a signal from various sensors 11 for detecting a vehicle interior temperature and the like.
  • the signal is input to the control unit 13 together with a signal from the operation panel 12 for setting a target temperature in the passenger compartment and the like.
  • the control unit 13 includes an input circuit for inputting the various signals described above as data, a memory unit including a read-only memory (ROM) and a random access memory (RAM), and a program stored in the memory unit.
  • a central processing unit (CPU) that processes the data and calculates a control signal, and a control signal output circuit that outputs a control signal to the pressure control valve 2.
  • the compressor 3 is, for example, a clutchless type swash plate type variable displacement compressor as shown in FIG. 2, and a housing 20 of the compressor 3 has a front head defining a crank chamber 24.
  • a cylinder block 22 having a plurality of cylinders 25 defined therein, and a rear head 23 which is assembled to the cylinder block 22 via a valve plate 19 and defines a suction chamber 26 and a discharge chamber 27. Have been.
  • a drive shaft 28 penetrating through the housing 20 is rotatably held by a front head 21 and a cylinder block 22 via bearings 29a and 29b.
  • the engine is connected to a running engine via a belt and a pulley, and the power of the engine is transmitted to rotate.
  • the drive shaft 28 is provided with a swash plate 30 which rotates together with the rotation of the drive shaft 28 and is freely tiltable with respect to the drive shaft 28.
  • a plurality of cylinders 25 formed in the cylinder block 22 are formed around the drive shaft 28 at predetermined intervals, and are formed in a cylindrical shape having a central axis parallel to the drive shaft 28.
  • a piston 32 held by the swash plate 30 is slidably inserted into the cylinder 25 via a rod 31.
  • the swash plate 30 rotates with a predetermined inclination, so that the edge of the swash plate 30 swings with a predetermined width in the axial direction of the drive shaft 28. It will be.
  • the piston 32 held at the edge of the swash plate 30 moves back and forth in the axial direction of the drive shaft 28, changing the volume of the compression chamber 33 defined in the cylinder 25, and
  • the refrigerant is sucked from the suction chamber 26 through a suction port 35 formed in a valve plate 19 opened and closed by a valve 34, and discharged through a discharge port 37 formed in the valve plate 19 opened and closed by a discharge valve 36.
  • the compressed refrigerant is discharged into the discharge chamber 27.
  • the discharge capacity of the compressor 3 is determined by the stroke of the piston 32.
  • the piston stroke applies a pressure acting on the front surface of the piston 32, that is, a pressure acting on the compression chamber 33 and a pressure acting on the back surface of the piston 32. That is, it is determined by the pressure difference between the pressure in the crank chamber 24 (crank chamber pressure Pc).
  • crank chamber pressure Pc the pressure difference between the pressure in the crank chamber 24
  • the pressure difference between the compression chamber 33 and the crank chamber 24 increases, and the inclination angle (swing angle) of the swash plate 30 decreases, and the piston stroke decreases.
  • the discharge capacity decreases.
  • the pressure in the crank chamber 24 is reduced, the pressure difference between the compression chamber 33 and the crank chamber 24 is reduced, the inclination angle (swing angle) of the swash plate 30 is increased, and the piston stroke is increased.
  • the capacity increases.
  • the pressure Pc of the crank chamber 24 is determined by the amount of refrigerant flowing from the discharge chamber 27 into the crank chamber 24 and the amount of refrigerant flowing from the crank chamber 24 to the suction chamber 26. It is made to be variable by controlling by 2.
  • the pressure control valve 2 used here is provided with a communication state of an air supply passage 38 that communicates between the discharge chamber 27 (discharge pressure area) and the crank chamber 24 (control pressure chamber), a crank chamber (control pressure chamber), and a suction chamber. (A suction pressure area).
  • the opening time of the supply passage determined by the duty signal of the external force
  • the opening degree of each passage is determined by the ratio of the opening time of the bleed passage.
  • the pressure control valve 2 is controlled by a control signal from the control unit 13 to adjust the crank chamber pressure Pc so that the suction pressure becomes a target value, thereby controlling the discharge capacity.
  • FIGS. 3 and 4 show specific examples of the configuration of the pressure control valve 2.
  • the pressure control valve 2 includes a driving unit 40, an intermediate block unit 50, and a front end block unit 60.
  • Drive The moving part 40 includes a fixed iron core 41 screwed to one end of the intermediate block part 50, a cylindrical case 42 fixed by caulking to a lower case 49 on a disk screwed to the fixed iron core 41, A plunger case 59 which is housed inside and fixed to the fixed iron core 41 by welding, a bobbin 43 arranged outside the plunger case 59, an exciting coil 44 wound around the bobbin 43, and a plan.
  • a plunger 46 slidably inserted into the jar case 59 and abutting against the valve body drive rod 45 on the fixed core 41 side, and an adjustment block 47 welded and fixed to the opening end of the plunger case 59. And a spring 48 mounted between the plunger 46 and the adjusting block 47.
  • the intermediate block portion 50 has a through hole 51 into which the valve body drive rod 45 inserted through the fixed iron core is inserted, and a low-pressure side communication hole 53 formed radially from the through hole 51.
  • a valve body 62 is inserted into the through-hole 51, and a sliding portion 62d is formed on the head of the valve body 62 to be in contact with the distal end of the valve body drive rod 45 and slidably contact the through-hole 51.
  • the intermediate portion 62e of the valve element 62 is freely inserted into the through hole 51 with a predetermined clearance, and defines a low pressure communication space 52 communicating with the low pressure side communication hole 53 with the through hole 51.
  • the front end block portion 60 is fixed to the front end of the intermediate block portion 50 by force.
  • a pressure adjustment chamber 61 is defined between the front end block portion 60 and the intermediate block portion 50, and a valve is provided in the pressure adjustment chamber 61.
  • the opening / closing part 62a of the body 62 is accommodated.
  • the valve body 62 includes an opening / closing portion 62a housed in the pressure adjustment chamber 61, a sliding portion 62b slidably inserted into a through hole 63 formed in the tip block portion 60, and the opening / closing portion 62a.
  • the low-pressure side communication hole 53 communicates with the suction chamber 26 of the compressor 3 via a passage (bleed passage 39) (not shown) formed in the rear head 23. It communicates with the crank chamber 24 via a communication hole 55 formed in 50 and a passage (not shown) formed in the rear head 23.
  • the high-pressure communication space 66 defined around the small-diameter portion 62c of the valve element 62 has a high-pressure communication hole 67 formed in the front block 60, and a high-pressure communication hole 67 formed so that the high-pressure communication hole 67 is open.
  • An annular recess 68 formed in the peripheral wall of the cylinder 60 and a passage (air supply passage 38) (not shown) formed in the rear head 23 communicate with the discharge chamber 27. Has been passed.
  • the high-pressure side communication hole 67 communicating with the discharge chamber 27 and the pressure adjustment chamber 61 communicating with the crank chamber 24 can communicate with each other via the high-pressure communication space 66.
  • the communication state of the air supply passage 38 that communicates with the valve is adjusted by the opening / closing portion 62a of the valve body 62.
  • the low-pressure side communication hole 53 communicating with the suction chamber 26 and the pressure adjusting chamber 61 communicating with the crank chamber 24 can communicate with each other via a low-pressure communication space 52, and the crank chamber 24 and the suction chamber 26 communicate with each other.
  • the communicating state of the bleed passage 39 is adjusted by the opening / closing portion 62a of the valve body 62. As shown in FIG.
  • the opening characteristics of the air supply passage 38 and the bleed air passage 39 by the valve mechanism described above are such that the smaller the discharge capacity is, the more the opening degree of the air supply passage 38 (discharge chamber The passage area between the crank chambers is increased, and the opening degree of the bleed passage 39 (the passage area between the suction chambers of the crank chamber) is reduced, so that at the minimum discharge capacity, the supply passage 38 is fully opened and the bleed passage Make sure that 39 is fully closed.
  • the pressure Pd of the discharge chamber 27 and the pressure of the suction chamber 27 are provided between the pressure adjustment chamber 61 communicating with the crank chamber 24 and the low-pressure side communication hole 53 communicating with the suction chamber 26.
  • the pressure adjustment chamber 61 is connected to the low pressure side communication hole 53, and the first differential pressure valve 70 is provided for communicating the crank chamber 24 and the suction chamber 26.
  • the difference between the pressure Pd of the discharge chamber 27 and the pressure Pc of the crank chamber 24 is a predetermined pressure between the annular recess 68 communicating with the discharge chamber 27 and the pressure adjusting chamber 61 communicating with the crank chamber 24.
  • a second differential pressure valve 80 that connects the annular concave portion 68 and the pressure adjustment chamber 61 and allows the discharge chamber 27 and the crank chamber 24 to communicate with each other.
  • the first differential pressure valve 70 is provided with a valve body accommodating hole 71 connected to the pressure adjusting chamber 61 in the intermediate block section 50, and the valve element accommodating hole 71 is provided in the valve body accommodating hole 71. So that the valve head 72a of the valve body 72 can be seated on the valve seat 74 formed on the periphery of the valve hole 73 communicating the valve body housing hole 71 and the low pressure side communication hole 53.
  • the compression spring 75 mounted between the valve body 72 and the periphery of the valve seat 74 in the valve body accommodation hole 71 urges the valve body 71 in a direction away from the valve hole 73.
  • the valve body receiving hole 71 and the valve hole 73 form a no-pass passage that bypasses the low-pressure communication space 52 of the valve mechanism (the opening and closing mechanism including the valve body drive rod 45 and the valve body 62) and communicates with the bleed passage 39.
  • the base 72b of the valve body 72 Is provided with a plurality of radially protruding guide pieces 72c that are in sliding contact with the inner wall of the valve body housing hole 71, and a passage is formed between the guide pieces so that refrigerant can pass through the front and rear of the valve body 72.
  • a through-hole 76 is formed in the distal block 60 in the axial direction from the annular concave portion 68 and opens to the pressure adjustment chamber 61.
  • the pressure-sensitive rod extending from the base 72b of the valve body 72 in this through-hole 76 72d is slidably inserted.
  • the valve element 72 is configured such that the pressure Pd of the discharge chamber 27 acting on the tip of the pressure-sensitive rod 72d, the pressure Ps of the suction chamber 26 acting on the valve head 72a, and the spring force of the compression spring 75 It is displaced to a balanced position, and starts to open when the difference between the pressure Pd of the discharge chamber 27 and the pressure Ps of the suction chamber 26 becomes equal to or less than a predetermined pressure.
  • the differential pressure between Pd and Ps that starts to open (Pd-Ps) is a first predetermined pressure PI
  • the first differential pressure valve 70 has an opening degree characteristic as shown in FIG.
  • a valve body accommodating hole 81 connected to the annular concave portion 68 is provided in the distal end block portion 60, and the valve element 82 is slid into the valve body accommodating hole 81.
  • the valve body 82 is movably accommodated, and the valve body 82 can be landed at an end 84 provided near a valve hole 83 communicating the valve body accommodation hole 81 and the pressure adjustment chamber 61.
  • the valve body 82 is urged in a direction away from the valve hole 83 by a compression spring 85 mounted between the 82 and the periphery of the valve hole 83.
  • valve element 82 used here is constituted by a cylindrical spool valve with a closed valve head, the peripheral wall of which is in sliding contact with the inner surface of the valve element accommodation hole 81, and the open end of which is an annular ring of the valve element accommodation hole 81.
  • the amount of displacement is regulated by a stopper member 86 provided on the concave portion 68 side.
  • a lateral passage 87 formed in the radial direction and opening to the through hole 63 is formed.
  • An opening 88 is formed which starts to communicate with the lateral passage 87 when the valve body 82 is displaced by a predetermined amount from the valve seat 84, and through the opening 88, the inside and outside of the peripheral wall of the valve body 82, that is, The passage 87 is communicated with.
  • the valve element 82 is displaced to a position where the pressure Pd of the discharge chamber 27 acting inside, the pressure Pc of the crank chamber 24 acting on the valve head, and the spring force of the compression spring 85 are balanced.
  • the difference between the pressure Pd of the discharge chamber 27 and the pressure Pc of the crank chamber 24 becomes less than a predetermined pressure.
  • the second differential pressure valve 80 has an opening degree characteristic as shown in FIG.
  • the above-described pressure control valve 2 has an opening degree characteristic of a valve mechanism formed by the valve body driving rod 45 and the valve body 62 shown in FIG. 10, and a first differential pressure valve 70 shown in FIG.
  • the opening characteristic is combined with the opening characteristic of the second differential pressure valve 80 shown in FIG. 6, and as shown in FIG. 7, the area of the passage communicating the crank chamber 24 and the suction chamber 26 is increased.
  • the pressure gradually decreases to the first predetermined value P1, and when the pressure difference is equal to or less than the first predetermined value P1, Gradually increases, and the area of the passage communicating the discharge chamber 27 and the crank chamber 24 becomes smaller as the pressure difference between the discharge chamber 27 and the other area (the crank chamber 24 in this example) decreases. Gradually increase up to the second predetermined value P2, and change the rate of change up to the second predetermined value P2 below the second predetermined value P2. Than the proportion becomes that was gradually increased in large listen.
  • the area force of the passage connecting the discharge chamber 27 and the crank chamber 24 is equal to the S crank chamber 24 and the suction chamber 26. It is set to be larger than the area of the communicating passage.
  • the differential pressure (Pd-Pc) between the discharge chamber 27 and the crank chamber 24 decreases. Therefore, when the differential pressure becomes P2 or less, the second differential pressure valve 80 is activated to start communication between the discharge chamber 27 and the crank chamber 24 (see FIG. 4 (c)). For this reason, the passage area between the discharge chamber 27 and the crank chamber 24 may be reduced until the pressure difference between the discharge chamber 27 and the crank chamber 24 reaches P2. Since a large passage area between the discharge chamber 27 and the crank chamber 24 can be ensured, it is possible to maintain the minimum discharge capacity while maintaining the crank chamber 24 at a high pressure and at the same time. In this case, the passage area between the discharge chamber 27 and the crank chamber 24 can be reduced to reduce the circulating amount of the working gas, so that the compressor efficiency can be improved.
  • the area of the passage connecting the discharge chamber 27 and the crank chamber 24 is larger than the area of the passage connecting the crank chamber 24 and the suction chamber 26. It is possible to maintain the minimum discharge capacity by reliably maintaining the pressure.
  • FIG. 8 shows a modification of the above configuration example.
  • This configuration is different from the above configuration example in that the second differential pressure valve 80 has the same configuration as the first differential pressure valve 70.
  • the second differential pressure valve 80 has a valve housing hole 90 connected to the pressure adjustment chamber 61 in the distal end block portion 60.
  • the valve body 91 is slidably housed in the valve body housing hole 90, and a valve hole 92 that is opened and closed by a valve head 91b of the valve body 91 is provided at an open end of the valve body housing hole 90.
  • a communication hole 96 communicating with the annular recess 68 and having a diameter smaller than that of the valve element housing hole 90 is formed on a side of the valve element housing hole 90 opposite to the side where the annular member 93 is provided.
  • the base 91b of the valve element 91 is provided with a plurality of radially projecting guide pieces 91c that are in sliding contact with the inner wall of the valve element housing hole 90.
  • the valve element 91 is positioned at a position where the pressure Pd of the discharge chamber 27 acting on the base 91b, the pressure Pc of the crank chamber 24 acting on the valve head 91a, and the spring force of the compression spring 95 are balanced. It is displaced, and starts to open when the difference between the pressure Pd of the discharge chamber 27 and the pressure Pc of the crank chamber 24 becomes equal to or less than a predetermined pressure.
  • the differential pressure (Pd-Pc) between Pd and Pc that starts to open is the second predetermined pressure P2, and the second differential pressure valve 80 has the same opening degree characteristics as in FIG. Since other configurations are the same as those of the above configuration example, the same portions are denoted by the same reference numerals and description thereof will be omitted.
  • the first differential pressure valve 70 is operated by utilizing the differential pressure between the discharge chamber 27 and the suction chamber 26.
  • the differential pressure between the discharge chamber 27 and the crank chamber 24 Using You may make it move.
  • the second differential pressure valve 80 is operated by using a differential pressure between the discharge chamber 27 and the suction chamber 26 by using a differential pressure between the discharge chamber 27 and the crank chamber 24. Hey.
  • the pressure control valve 2 is provided with the first and second differential pressure valves to obtain the characteristic shown in FIG. 7, but the first and second differential pressure valves It may be provided on a compressor component other than the pressure control valve 2, for example, the rear head 23 or the like. Also, the above An example of an externally controlled pressure control valve that operates by supplying a drive control signal from the outside has been shown.However, a sensing member that detects differential pressure is provided to control the degree of opening between the air supply passage and the bleed passage. May be applied to a three-way valve control valve.
  • variable displacement compressor 3 is not limited to the above-described swash plate type, and the discharge capacity decreases as the pressure in the crank chamber 24 increases, and the discharge capacity increases as the pressure in the crank chamber 24 decreases.
  • a similar configuration may be adopted for other types of compressors.
  • the present invention can be used in various industries that manufacture or use a compressor that controls the discharge capacity by controlling the pressure in the crankcase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

A control device for a variable displacement compressor, which, at the minimum discharge capacity, secures a sufficient refrigerant circulation route inside a compressor, and at an intermediate discharge capacity, reduces the amount of controlling gas to increase compressor efficiency, thereby saving power. In the control device, the area of a path communicating a control pressure chamber and a suction pressure region and the area of a path communicating a discharge pressure region and the control pressure chamber are varied to control the pressure in the control pressure chamber. As the pressure difference between the discharge pressure region and the regions other than that becomes smaller, the area of the path communicating the control pressure chamber and the suction pressure region is gradually reduced to a first predetermined value of the difference, and gradually increased when the difference is equal to or less than the first predetermined value. Further, as the pressure difference between the discharge pressure region and the regions other than that becomes smaller, the area of the path communicating the discharge pressure region and the control pressure chamber is increased up to a second predetermined value of the difference, and when the difference is at the second predetermined value or less, the area is gradually increased at a variation rate higher than that used up to the second predetermined value.

Description

明 細 書  Specification
可変容量型圧縮機の制御装置及び圧力制御弁  Control device and pressure control valve for variable displacement compressor
技術分野  Technical field
[0001] 本発明は、吐出圧領域から制御圧室へ流入される制御ガス流量、及び、制御圧室 力 吸入圧領域へ放出される制御ガス流量を制御することで制御圧室を調節し、吐 出容量を可変させるようにして!/ヽる可変容量型圧縮機の制御装置及び圧力制御弁 に関し、特に、クラッチレスタイプの圧縮機に対応しうる技術に関する。  The present invention adjusts the control pressure chamber by controlling the flow rate of control gas flowing into the control pressure chamber from the discharge pressure area and the flow rate of control gas released into the suction pressure area of the control pressure chamber. TECHNICAL FIELD The present invention relates to a control device and a pressure control valve for a variable displacement compressor with a variable discharge capacity, and more particularly to a technology applicable to a clutchless type compressor.
背景技術  Background art
[0002] 近年、車両用空調装置の省動力化のニーズが高まり、吐出容量を任意に変更し得 る可変容量型圧縮機が用いられつつある。中でも、圧縮機の軽量化、コストの低減等 の観点力もクラッチレスタイプの可変容量型圧縮機が注目されて 、る。  [0002] In recent years, the need for power saving of air conditioners for vehicles has increased, and variable displacement compressors capable of arbitrarily changing the discharge capacity have been used. Above all, attention has been paid to clutchless type variable displacement compressors in view of their lightness and cost reduction.
[0003] このような可変容量型圧縮機の容量可変制御は、クランク室の圧力を制御すること により行われるが、特許文献 1に示されるように、吐出圧領域とクランク室とを連通す る給気通路に圧力制御弁を設け、クランク室と吸入圧領域とを連通する抽気通路に 固定オリフィスを設ける構成が主流となっている(特許文献 1参照)。また、吐出圧領 域とクランク室とを連通する給気通路とクランク室と吸入圧領域とを連通する抽気通 路とを同時に制御する 3方弁方式の制御弁なども提案されている(特許文献 2参照) [0003] Variable displacement control of such a variable displacement compressor is performed by controlling the pressure in the crank chamber. However, as shown in Patent Document 1, the discharge pressure region is communicated with the crank chamber. A configuration in which a pressure control valve is provided in an air supply passage and a fixed orifice is provided in a bleed passage that communicates a crank chamber with a suction pressure region is mainly used (see Patent Document 1). In addition, a three-way valve control valve that simultaneously controls an air supply passage that connects the discharge pressure area to the crank chamber and a bleed air path that connects the crank chamber to the suction pressure area has been proposed (see Patents). Reference 2)
[0004] 特許文献 1 :特開 2001— 153042号公報(0030欄、図 1、図 3) Patent Document 1: Japanese Patent Application Laid-Open No. 2001-153042 (Column 0030, FIG. 1, FIG. 3)
特許文献 2:特開 2001— 12358号公報(0024〜0029欄、図 3)  Patent Document 2: Japanese Patent Application Laid-Open No. 2001-12358 (columns 0024 to 0029, FIG. 3)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、クラッチレスタイプの可変容量型圧縮機においては、エアコンオフ時にお いても圧縮機に車両エンジンの回転動力が伝達されるので、このようなオフ時にはク ランク室圧を高めて吐出容量を最小に維持する必要がある。このため、エアコンオフ 時においても、圧縮冷媒は微小ながら吐出されることになるので、冷凍サイクルへの 冷媒流出を避ける必要から圧縮機の吐出通路に逆止弁を設け、また、給気通路を開 放して吐出された冷媒をクランク室へ導き、このクランク室を介して吸入圧領域へ冷 媒を戻す内部循環経路を形成しておく必要がある。 [0005] In a clutchless type variable displacement compressor, the rotational power of the vehicle engine is transmitted to the compressor even when the air conditioner is off. Capacity must be kept to a minimum. For this reason, even when the air conditioner is off, the compressed refrigerant is discharged in a small amount.Therefore, a check valve must be provided in the discharge passage of the compressor to prevent the refrigerant from flowing out to the refrigeration cycle. The refrigerant discharged and discharged is guided to the crank chamber, and cooled to the suction pressure region through the crank chamber. It is necessary to form an internal circulation path for returning the medium.
[0006] ところが、特許文献 1に示されるような構成においては、図 9に示されるように、抽気 通路 (Pc— Ps間)が常時開放されているので、中間容量運転時にクランク室圧を所 定圧に保っために多くの制御ガス (冷凍効果に寄与しない内部循環する冷媒ガス) の供給が必要となり、圧縮機効率が悪ぐ省動力化を図りづらいという欠点がある。  [0006] However, in the configuration as shown in Patent Document 1, as shown in FIG. 9, the bleed passage (between Pc and Ps) is always open, so that the crank chamber pressure is reduced during the intermediate displacement operation. In order to maintain a constant pressure, it is necessary to supply a large amount of control gas (refrigerant gas circulating internally that does not contribute to the refrigeration effect), which has the disadvantage that the compressor efficiency is low and power saving is difficult to achieve.
[0007] この点、特許文献 2に示されるような三方弁方式の制御弁を用いれば、図 10に示さ れるように、圧縮機の吐出容量が小さくなるにつれて、給気通路の開度が大きくなる と共に抽気通路の開度が小さくなるので、クランク室圧を一定に保っために特許文献 1の構成と比較して多くの圧縮ガスが必要とならず、圧縮機効率に優れ、省動力化の ニーズに適うものである。し力しながら、このような構成によれば、圧縮機の最小吐出 容量時に抽気通路が全閉となるので、圧縮機内部に冷媒循環経路が形成できなくな り、クラッチレスタイプの可変容量型圧縮機には対応できない不都合がある。また、抽 気通路が全閉になるので、クランク室圧が必要以上に上昇し、シャフトシールなどに 大きな負荷がかかり、機械損失を増大させる等の不都合もある。  [0007] In this regard, if a three-way valve type control valve as shown in Patent Document 2 is used, as shown in FIG. 10, as the discharge capacity of the compressor becomes smaller, the degree of opening of the air supply passage becomes larger. In addition, the opening degree of the bleed passage becomes smaller, so that a larger amount of compressed gas is not required as compared with the configuration of Patent Document 1 in order to keep the crank chamber pressure constant, so that the compressor efficiency is excellent and power saving is achieved. It meets your needs. However, according to such a configuration, the bleed passage is fully closed at the time of the minimum discharge capacity of the compressor, so that a refrigerant circulation path cannot be formed inside the compressor, and a clutchless variable displacement type. There are inconveniences that compressors cannot cope with. Further, since the extraction passage is fully closed, the crank chamber pressure rises more than necessary, a large load is applied to the shaft seal and the like, and there are also disadvantages such as an increase in mechanical loss.
[0008] 以上のような点を考慮して、吐出圧領域 (吐出室)とそれ以外の領域、例えば、吸入 圧領域との圧力差が所定値以下となった場合に制御圧室 (クランク室)と吸入圧領域 (吸入室)とを連通させる差圧弁を付加して図 11に示されるような開度特性を形成し、 省動力化を図りつつ、この差圧弁により最小吐出容量時に制御圧室と吸入圧領域と の連通状態を確保して圧縮機内部の冷媒循環を確保することが本出願人により検討 されている。  [0008] In consideration of the above points, when the pressure difference between the discharge pressure region (discharge chamber) and the other region, for example, the suction pressure region becomes equal to or smaller than a predetermined value, the control pressure chamber (crank chamber) ) And the suction pressure area (suction chamber) are added to form an opening degree characteristic as shown in Fig. 11 to reduce power consumption while controlling the control pressure at the minimum discharge capacity with this differential pressure valve. It has been studied by the present applicant to ensure the state of communication between the chamber and the suction pressure region to ensure the circulation of the refrigerant inside the compressor.
[0009] ところが、本発明者らの更なる研究により、このような構成においても、さらに省動力 化を図る余地があることが見出されている。即ち、最小吐出容量時においては、この 状態を維持するために給気通路の通路面積を大きく確保しておく必要があるが、吐 出圧、クランク室圧、吸入圧、吸入温度などの諸条件を同一にし、給気通路と抽気通 路の通路径のみを異ならせた 2つの圧縮機で同一の冷凍効果を得るために必要な 単位時間当たりの制御ガス量 (冷凍効果に寄与しな 、内部循環する冷媒ガス量)を 調べると、通路径を小さくした方が制御ガス量を少なくできるので、圧縮機効率が高く なるという知見を得ている。 [0010] 本発明は、このような知見に基づき完成されたもので、最小吐出容量時においては 圧縮機内部に十分な冷媒循環経路を確保し、中間吐出容量時においては冷凍効果 に寄与しない制御ガス量を減らして圧縮機効率を高め、一層の省動力化を図ること が可能な可変容量型圧縮機の制御装置及び圧力制御弁を提供することを主たる課 題としている。 [0009] However, further studies by the present inventors have revealed that even with such a configuration, there is room for further power saving. That is, at the time of the minimum discharge capacity, it is necessary to secure a large passage area of the air supply passage in order to maintain this state, but various conditions such as the discharge pressure, the crank chamber pressure, the suction pressure, and the suction temperature are required. The amount of control gas per unit time required to obtain the same refrigeration effect with two compressors that differ only in the passage diameter of the air supply passage and the extraction passage When examining the amount of circulating refrigerant gas), it has been found that a smaller passage diameter can reduce the amount of control gas, thereby increasing the compressor efficiency. [0010] The present invention has been completed based on such knowledge, and has a control that ensures a sufficient refrigerant circulation path inside the compressor at the time of the minimum discharge capacity and does not contribute to the refrigeration effect at the time of the intermediate discharge capacity. The main task is to provide a control device and a pressure control valve for a variable displacement compressor which can reduce the amount of gas to increase the compressor efficiency and further reduce power consumption.
課題を解決するための手段  Means for solving the problem
[0011] 上記課題を達成するために、本発明に係る可変容量型圧縮機の制御装置は、制 御圧室の圧力が高くなると吐出容量が減少し、前記制御圧室の圧力が低くなると吐 出容量が増加するように構成された可変容量型圧縮機に用いられ、前記制御圧室と 吸入圧領域とを連通する通路の面積と吐出圧領域と前記制御圧室とを連通する通 路の面積を変化させて前記制御圧室の圧力を制御するようにしている構成において 、前記制御圧室と前記吸入圧領域とを連通する通路の面積を、前記吐出圧領域とそ れ以外の領域との圧力差が小さくなるにつれて、第 1の所定値までは徐々に小さくし 、且つ、前記第 1の所定値以下においては徐々に大きくし、前記吐出圧領域と前記 制御圧室とを連通する通路の面積を、前記吐出圧領域とそれ以外の領域との圧力 差が小さくなるにつれて、第 2の所定値までは徐々に大きくし、且つ、前記第 2の所定 値以下においては変化割合を前記第 2の所定値までの変化割合よりも徐々に大きく したことを特徴として 、る(請求項 1)。  [0011] In order to achieve the above object, a control device for a variable displacement compressor according to the present invention is configured such that the discharge capacity decreases when the pressure in the control pressure chamber increases, and the discharge capacity decreases when the pressure in the control pressure chamber decreases. It is used in a variable displacement compressor configured to increase the output capacity, and is used for the area of a passage that communicates the control pressure chamber and the suction pressure area, and the area of a passage that communicates the discharge pressure area and the control pressure chamber. In a configuration in which the area is changed to control the pressure of the control pressure chamber, the area of a passage communicating the control pressure chamber and the suction pressure area is set to be equal to the area of the discharge pressure area and the other area. As the pressure difference becomes smaller, the pressure gradually decreases up to a first predetermined value, and gradually increases below the first predetermined value, so as to communicate the discharge pressure region with the control pressure chamber. Area of the discharge pressure region and the pressure of the other region As the force difference becomes smaller, the change rate is gradually increased up to a second predetermined value, and the change rate is gradually increased below the second predetermined value than the change rate up to the second predetermined value. (Chart 1).
[0012] したがって、吐出容量が小さくなると、吐出圧領域の圧力とそれ以外の領域(吸入 圧領域又は制御圧室)の圧力との差力 、さくなつてくるので、この圧力差が第 1の所 定値以下となった場合に第 1の差圧弁が作動して制御圧室と吸入圧領域とが連通さ れる。このため、最小吐出容量時においても制御圧室と吸入圧領域との連通状態が この差圧弁によって確保されるので、最小吐出容量時において圧縮機内部に冷媒 循環経路を確保することが可能となる。また、吐出圧領域とそれ以外の領域との圧力 差が第 2の所定値以下となった場合に第 2の差圧弁が作動して吐出圧領域と制御圧 室とが連通されるので、最小吐出容量時においては、吐出圧領域と制御圧室との連 通状態が大きく確保されて制御圧室へ供給される制御ガスが多くなり、最小吐出容 量の状態を維持することが可能となり、また、中間吐出領域においては、吐出圧領域 と制御圧室とを連通する通路の面積を第 2の所定値までの変化割合を小さくすること で抑えることが可能となるので、冷凍効果に寄与しな 、制御ガス量を減らすことが可 能となる。 [0012] Accordingly, when the discharge capacity is reduced, the differential force between the pressure in the discharge pressure region and the pressure in the other region (the suction pressure region or the control pressure chamber) becomes smaller, and this pressure difference becomes the first pressure difference. When the pressure falls below a predetermined value, the first differential pressure valve operates to connect the control pressure chamber to the suction pressure area. Therefore, even at the time of the minimum discharge capacity, the communication state between the control pressure chamber and the suction pressure region is ensured by the differential pressure valve, so that the refrigerant circulation path can be secured inside the compressor at the time of the minimum discharge capacity. . Further, when the pressure difference between the discharge pressure region and the other region becomes equal to or less than the second predetermined value, the second differential pressure valve operates to connect the discharge pressure region and the control pressure chamber. At the time of the discharge capacity, a large communication state between the discharge pressure region and the control pressure chamber is ensured, the control gas supplied to the control pressure chamber increases, and the state of the minimum discharge capacity can be maintained. In the intermediate discharge region, the discharge pressure region The area of the passage connecting the pressure chamber and the control pressure chamber can be suppressed by reducing the rate of change up to the second predetermined value, so that the amount of control gas can be reduced without contributing to the refrigeration effect. It becomes.
[0013] ここで、吐出圧領域とそれ以外の領域との圧力差が最小となる場合にお!、て最小 吐出容量の状態を確実に維持するために、吐出圧領域と制御圧室とを連通する通 路の面積を、制御圧室と吸入圧領域とを連通する通路の面積よりも大きくすることが 好ましい (請求項 2)。また、前記第 1の所定値以下における前記制御圧室と前記吸 入圧領域とを連通する通路の面積特性は、前記吐出圧領域とそれ以外の領域との 圧力差が前記第 1の所定値以下となった場合に前記制御圧室と前記吸入圧領域と を連通させる第 1の差圧弁を設けることによって実現し、前記第 2の所定値以下にお ける前記吐出圧領域と前記制御圧室とを連通する通路の面積特性は、前記吐出圧 領域とそれ以外の領域との圧力差が前記第 2の所定値以下となった場合に前記吐 出圧領域と前記制御圧室とを連通させる第 2の差圧弁を設けることによって実現する とよい (請求項 3)。  [0013] Here, when the pressure difference between the discharge pressure region and the other region is minimized, the discharge pressure region and the control pressure chamber are connected to each other in order to reliably maintain the state of the minimum discharge capacity. It is preferable that the area of the communication path be larger than the area of the communication path between the control pressure chamber and the suction pressure region (claim 2). Further, the area characteristic of the passage communicating the control pressure chamber and the suction pressure region below the first predetermined value is that the pressure difference between the discharge pressure region and the other region is the first predetermined value. This is realized by providing a first differential pressure valve for communicating the control pressure chamber with the suction pressure area when the pressure becomes less than or equal to, and the discharge pressure area and the control pressure chamber at or below the second predetermined value. The area characteristic of the passage that communicates between the discharge pressure region and the control pressure chamber when the pressure difference between the discharge pressure region and the other region becomes equal to or less than the second predetermined value. This may be achieved by providing a second differential pressure valve (claim 3).
[0014] 上述のような制御装置を構成するために、第 1の差圧弁と第 2の差圧弁は、圧縮機 を構成するハウジングに設けるようにしても、制御圧室と吸入圧領域とを連通する通 路の面積と、制御圧室と吸入圧領域とを連通する通路の面積とを変化させる圧力制 御弁に設けるようにしてもよい。  [0014] In order to configure the control device as described above, the first differential pressure valve and the second differential pressure valve may be provided in a housing constituting the compressor, but the control pressure chamber and the suction pressure region may be separated from each other. A pressure control valve that changes the area of the communication path and the area of the communication path between the control pressure chamber and the suction pressure region may be provided.
[0015] このうち、圧力制御弁に設ける構成としては、吐出圧領域と制御圧室とを連通する 給気通路と、前記制御圧室と吸入圧領域とを連通する抽気通路とを備えた可変容量 型圧縮機に用いられ、前記給気通路及び前記抽気通路の連通状態を調節して前記 制御圧室の圧力を制御する可変容量型圧縮機の圧力制御弁において、前記吐出 圧領域とそれ以外の領域との圧力差が小さくなるにつれて、前記吐出圧領域と前記 制御圧室とを連通する前記給気通路の通路面積を徐々に大きくし、且つ、制御圧室 と吸入圧領域とを連通する前記抽気通路の通路面積を徐々に小さくする弁機構と、 前記吐出圧領域とそれ以外の領域との圧力差が第 1の所定値以下となった場合に 前記制御圧室と前記吸入圧領域とを連通させる第 1の差圧弁と、前記吐出圧領域と それ以外の領域との圧力差が第 2の所定値以下となった場合に前記吐出圧領域と 前記制御圧室とを連通させる第 2の差圧弁とを具備する構成にするとよい (請求項 4) [0015] Among these, as a configuration provided in the pressure control valve, a variable pressure valve including a supply passage communicating the discharge pressure region with the control pressure chamber and a bleed passage communicating the control pressure chamber with the suction pressure region is provided. A pressure control valve for a variable displacement compressor, which is used in a displacement compressor and controls a pressure in the control pressure chamber by adjusting a communication state between the air supply passage and the bleed passage, the discharge pressure region and other As the pressure difference between the control pressure chamber and the control pressure chamber decreases, the passage area of the air supply passage connecting the discharge pressure area and the control pressure chamber gradually increases, and the control pressure chamber communicates with the suction pressure area. A valve mechanism for gradually reducing the passage area of the bleed passage; and a control pressure chamber and the suction pressure region when a pressure difference between the discharge pressure region and the other region is equal to or less than a first predetermined value. A first differential pressure valve that communicates the When the pressure difference from the other area becomes equal to or less than a second predetermined value, the discharge pressure area and the It is preferable that a second differential pressure valve for communicating with the control pressure chamber is provided (claim 4).
[0016] 尚、上述の可変容量圧縮機としては、シリンダブロック内に設けられる駆動軸と、駆 動軸と共に回転し、該駆動軸に対する傾斜角度が可変自在である駆動斜板と、前記 シリンダブロック内に設けられ、駆動軸と平行な軸を有するシリンダと、シリンダに摺動 自在に配され、駆動斜板の回転に伴ってシリンダ内を往復動するピストンと、シリンダ とピストンとによって画成される圧縮室と、ピストンの反圧縮室側に形成される制御圧 室を構成するクランク室と、ピストンの吸入行程において圧縮室と連通する吸入圧領 域を構成する吸入室と、及び、ピストンの圧縮行程において圧縮室と連通する吐出 圧領域を構成する吐出室とを有して構成される斜板式可変容量型圧縮機などを用 いるとよい。 The variable displacement compressor described above includes a drive shaft provided in a cylinder block, a drive swash plate that rotates together with the drive shaft and has a variable inclination angle with respect to the drive shaft, A cylinder having an axis parallel to the drive shaft, a piston slidably disposed in the cylinder, and a piston reciprocating in the cylinder with the rotation of the drive swash plate, and a cylinder and a piston. A compression chamber that forms a control pressure chamber formed on the side opposite to the compression chamber of the piston; a suction chamber that forms a suction pressure area that communicates with the compression chamber during the suction stroke of the piston; It is preferable to use a swash plate type variable displacement compressor having a discharge chamber which forms a discharge pressure region communicating with the compression chamber in the compression stroke.
発明の効果  The invention's effect
[0017] 以上述べたように請求項 1に係る発明によれば、制御圧室と吸入圧領域とを連通す る通路の面積を、吐出圧領域とそれ以外の領域との圧力差が小さくなるにつれて、 第 1の所定値までは徐々に小さくすると共に、第 1の所定値以下においては徐々に 大きくし、吐出圧領域と制御圧室とを連通する通路の面積を、吐出圧領域とそれ以 外の領域との圧力差が小さくなるにつれて、第 2の所定値までは徐々に大きくすると 共に、第 2の所定値以下においては変化割合を第 2の所定値までの変化割合よりも 大きくして徐々に大きくするようにしたので、クラッチレスタイプの可変容量型圧縮機 の最小吐出容量時において、内部循環経路を確保しつつ、吐出圧領域と制御圧室 との間の通路面積を大きく確保して、最小吐出容量の状態を維持することが可能とな り、また、中間吐出領域において、吐出圧領域と制御圧室とを連通する通路の面積 を小さくすることが可能となるので、冷凍効果に寄与しな 、制御ガス量を減らして圧 縮機効率を高め、一層の省動力化を図ることが可能になる。  [0017] As described above, according to the invention of claim 1, the area of the passage communicating the control pressure chamber and the suction pressure area is reduced by the pressure difference between the discharge pressure area and the other area. As the pressure decreases, the area of the passage connecting the discharge pressure region and the control pressure chamber is gradually reduced to a first predetermined value and gradually increased to a value less than the first predetermined value. As the pressure difference with the outside area decreases, the rate of change is gradually increased up to the second predetermined value, and the rate of change is set to be larger than the second predetermined value below the second predetermined value. Since the size is gradually increased, a large passage area between the discharge pressure area and the control pressure chamber is secured while securing the internal circulation path at the minimum discharge capacity of the clutchless variable displacement compressor. To maintain the minimum discharge capacity. In addition, since the area of the passage communicating the discharge pressure region and the control pressure chamber can be reduced in the intermediate discharge region, the amount of control gas can be reduced without contributing to the refrigeration effect. It will be possible to increase compressor efficiency and further reduce power consumption.
[0018] また、請求項 2に係る発明によれば、吐出圧領域とそれ以外の領域との圧力差が最 小となる場合に、吐出圧領域と制御圧室とを連通する通路の面積を制御圧室と吸入 圧領域とを連通する通路の面積よりも大きくしたので、最小吐出容量時には制御圧 室の圧力を高く保つことが可能となり、最小吐出容量の状態を確実に維持することが 可能となる。 According to the invention of claim 2, when the pressure difference between the discharge pressure region and the other region is minimized, the area of the passage communicating the discharge pressure region and the control pressure chamber is reduced. Since the area of the passage connecting the control pressure chamber and the suction pressure area is made larger, the pressure in the control pressure chamber can be kept high at the time of the minimum discharge capacity, and the state of the minimum discharge capacity can be reliably maintained. It becomes possible.
[0019] さらに、請求項 3に係る発明によれば、第 1の所定値以下における制御圧室と吸入 圧領域とを連通する通路の面積特性を、吐出圧領域とそれ以外の領域との圧力差 が第 1の所定値以下となった場合に制御圧室と吸入圧領域とを連通させる第 1の差 圧弁を設けることによって実現し、第 2の所定値以下における吐出圧領域と制御圧室 とを連通する通路の面積特性を、吐出圧領域とそれ以外の領域との圧力差が第 2の 所定値以下となった場合に吐出圧領域と制御圧室とを連通させる第 2の差圧弁を設 けることによって実現するようにしたので、既存の構成に第 1及び第 2の差圧弁を付 設することで対応することが可能となる。  [0019] Further, according to the invention according to claim 3, the area characteristic of the passage communicating the control pressure chamber and the suction pressure region below the first predetermined value is reduced by the pressure between the discharge pressure region and the other regions. This is realized by providing a first differential pressure valve for communicating the control pressure chamber with the suction pressure area when the difference becomes equal to or less than the first predetermined value, and the discharge pressure area and the control pressure chamber when the difference is equal to or less than the second predetermined value. The area characteristic of the passage that communicates the pressure difference between the discharge pressure region and the other region is equal to or less than a second predetermined value. Therefore, it is possible to cope with the problem by adding the first and second differential pressure valves to the existing configuration.
[0020] 請求項 4に係る発明によれば、吐出圧領域とそれ以外の領域との圧力差が小さくな るにつれて、吐出圧領域と制御圧室とを連通する給気通路の通路面積を徐々に大き くし、且つ、制御圧室と吸入圧領域とを連通する抽気通路の通路面積を徐々に小さく する弁機構を備えた圧力制御弁に、吐出圧領域とそれ以外の領域との圧力差が第 1 の所定値以下となった場合に制御圧室と吸入圧領域とを連通させる第 1の差圧弁と 、吐出圧領域とそれ以外の領域との圧力差が第 2の所定値以下となった場合に吐出 圧領域と制御圧室とを連通させる第 2の差圧弁とを設けるようにしたので、圧力制御 弁を取り替えることでクラッチレス圧縮機の最小吐出容量時において、圧縮機内部に 冷媒循環経路を確保しつつ、最小吐出容量状態を維持することが可能となり、中間 吐出容量時にぉ 、て、冷凍効果に寄与しな 、制御ガス量を減らして圧縮機効率を高 め、省動力化を図ることが可能となる。  [0020] According to the invention according to claim 4, as the pressure difference between the discharge pressure region and the other region becomes smaller, the passage area of the air supply passage connecting the discharge pressure region and the control pressure chamber gradually increases. The pressure difference between the discharge pressure area and the other areas is increased by the pressure control valve equipped with a valve mechanism that gradually increases the passage area of the bleed passage connecting the control pressure chamber and the suction pressure area. A first differential pressure valve for communicating the control pressure chamber with the suction pressure area when the pressure becomes equal to or less than the first predetermined value, and a pressure difference between the discharge pressure area and other areas becomes equal to or less than the second predetermined value. In this case, a second differential pressure valve is provided to communicate the discharge pressure area with the control pressure chamber in the event of a change in the pressure. It is possible to maintain the minimum discharge capacity state while securing the circulation path Thus, at the time of the intermediate discharge capacity, it is possible to increase the compressor efficiency by reducing the control gas amount without contributing to the refrigeration effect, and to achieve power saving.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]図 1は、本願発明の実施形態に係る冷凍サイクルと可変容量型圧縮機の制御 装置を示す概略構成図である。  FIG. 1 is a schematic configuration diagram showing a control device for a refrigeration cycle and a variable displacement compressor according to an embodiment of the present invention.
[図 2]図 2は、本発明の実施形態に係るクラッチレスタイプの可変容量型圧縮機の構 成例を示す断面図である。  FIG. 2 is a sectional view showing a configuration example of a clutchless type variable displacement compressor according to an embodiment of the present invention.
[図 3]図 3は、図 2の圧縮機に用いられる圧力制御弁を示す断面図である。  FIG. 3 is a sectional view showing a pressure control valve used in the compressor of FIG. 2.
[図 4]図 4は、圧力制御弁に第 1及び第 2の差圧弁を設けた構成例を示す部分拡大 断面図であり、(a)は第 1及び第 2の差圧弁が閉じられた状態を示し、(b)は第 1の差 圧弁が開かれ、第 2の差圧弁が閉じられた状態を示し、(c)は第 1及び第 2の差圧弁 が開かれた状態を示す。 [FIG. 4] FIG. 4 is a partially enlarged cross-sectional view showing a configuration example in which first and second differential pressure valves are provided in a pressure control valve. FIG. 4 (a) is a diagram in which the first and second differential pressure valves are closed. (B) is the first difference The state where the pressure valve is opened and the second differential pressure valve is closed is shown, and (c) shows the state where the first and second differential pressure valves are opened.
[図 5]図 5は、第 1の差圧弁の開度特性を示す線図である。  FIG. 5 is a diagram showing opening degree characteristics of a first differential pressure valve.
[図 6]図 6は、第 2の差圧弁の開度特性を示す線図である。  FIG. 6 is a diagram showing opening degree characteristics of a second differential pressure valve.
[図 7]図 7は、本発明に係る可変容量型圧縮機のクランク室 吸入室間の開度特性と 吐出室一クランク室間の開度特性を示す線図である。  FIG. 7 is a diagram showing an opening characteristic between a crank chamber and a suction chamber and an opening characteristic between a discharge chamber and a crank chamber of the variable displacement compressor according to the present invention.
[図 8]図 8は、圧力制御弁に第 1及び第 2の差圧弁を設けた他の構成例を示す部分 拡大断面図であり、(a)は第 1及び第 2の差圧弁が閉じられた状態を示し、(b)は第 1 の差圧弁が開かれ、第 2の差圧弁が閉じられた状態を示し、(c)は第 1及び第 2の差 圧弁が開かれた状態を示す。  FIG. 8 is a partially enlarged cross-sectional view showing another configuration example in which first and second differential pressure valves are provided in a pressure control valve. FIG. 8 (a) is a diagram in which the first and second differential pressure valves are closed. (B) shows a state in which the first differential pressure valve is opened and a second differential pressure valve is closed, and (c) shows a state in which the first and second differential pressure valves are opened. Show.
[図 9]図 9は、抽気通路に固定オリフィスを設けた従来の圧縮機の開度特性を示す線 図である。  FIG. 9 is a diagram showing opening degree characteristics of a conventional compressor having a fixed orifice in a bleed passage.
[図 10]図 10は、従来の三方弁式制御弁の開度特性を示す線図である。  FIG. 10 is a diagram showing opening degree characteristics of a conventional three-way valve control valve.
[図 11]図 11は、図 10を改良した開度特性を示す線図である。  FIG. 11 is a diagram showing an opening degree characteristic obtained by improving FIG. 10;
符号の説明  Explanation of symbols
[0022] 3 圧縮機 [0022] 3 compressor
24 クランク室  24 Crankcase
26 吸入室  26 Inhalation chamber
27 吐出室  27 Discharge chamber
38 給気通路  38 Air supply passage
39 抽気通路  39 Bleed passage
70 第 1の差圧弁  70 1st differential pressure valve
80 第 2の差圧弁  80 Second differential pressure valve
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、この発明の最良の実施形態を添付図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0024] 図 1において、車両に搭載される可変容量型圧縮機を用いた冷凍サイクルの構成 例が示されている。この冷凍サイクル 1は、後述する圧力制御弁 2を備えた可変容量 型圧縮機 (以下、圧縮機という) 3、冷媒を冷却する放熱器 4、冷媒を減圧する膨張装 置 5、冷媒を蒸発気化する蒸発器 6を有して構成され、圧縮機 3の吐出室 27から放 熱器 4を介して膨張装置 5の流入側に至る経路によって高圧ライン 7が形成され、膨 張装置 5の流出側力 蒸発器 6を介して圧縮機 3の吸入室 26に至る経路によって低 圧ライン 8が形成されている。 FIG. 1 shows a configuration example of a refrigeration cycle using a variable displacement compressor mounted on a vehicle. The refrigeration cycle 1 includes a variable displacement compressor (hereinafter referred to as a compressor) 3 having a pressure control valve 2 described below, a radiator 4 for cooling the refrigerant, 5, a high-pressure line 7 is formed by a path extending from the discharge chamber 27 of the compressor 3 to the inflow side of the expansion device 5 via the heat radiator 4, The low pressure line 8 is formed by a path leading to the suction chamber 26 of the compressor 3 via the outlet side force of the expansion device 5 through the evaporator 6.
[0025] 9は、低圧ライン 8に設けられた圧縮機の吸入圧力 Psを検出する圧力センサであり 、この圧力センサ 9からの信号は、車室内温度などを検出する各種センサ 11からの 信号や、車室内の目標温度などを設定する操作パネル 12からの信号などと共にコン トロールユニット 13に入力される。  Reference numeral 9 denotes a pressure sensor for detecting the suction pressure Ps of the compressor provided in the low-pressure line 8. The signal from the pressure sensor 9 is a signal from various sensors 11 for detecting a vehicle interior temperature and the like. The signal is input to the control unit 13 together with a signal from the operation panel 12 for setting a target temperature in the passenger compartment and the like.
[0026] このコントロールユニット 13は、前述した各種信号をデータとして入力する入力回路 、読出専用メモリ (ROM)及びランダムアクセスメモリ(RAM)からなるメモリ部、前記メ モリ部に格納されたプログラムを呼び出して前記データを加工したり制御信号を演算 する中央演算処理装置 (CPU)、圧力制御弁 2へ制御信号を出力する制御信号出 力回路など力 構成されて 、る。  The control unit 13 includes an input circuit for inputting the various signals described above as data, a memory unit including a read-only memory (ROM) and a random access memory (RAM), and a program stored in the memory unit. A central processing unit (CPU) that processes the data and calculates a control signal, and a control signal output circuit that outputs a control signal to the pressure control valve 2.
[0027] 前記圧縮機 3は、例えば図 2に示されるようなクラッチレスタイプの斜板型可変容量 圧縮機であり、この圧縮機 3のハウジング 20は、クランク室 24を画成するフロントへッ ド 21と、複数のシリンダ 25が画成されたシリンダブロック 22と、このシリンダブロック 22 にバルブプレート 19を介して組みつけられ、吸入室 26及び吐出室 27を画成するリア ヘッド 23とによって構成されている。  The compressor 3 is, for example, a clutchless type swash plate type variable displacement compressor as shown in FIG. 2, and a housing 20 of the compressor 3 has a front head defining a crank chamber 24. A cylinder block 22 having a plurality of cylinders 25 defined therein, and a rear head 23 which is assembled to the cylinder block 22 via a valve plate 19 and defines a suction chamber 26 and a discharge chamber 27. Have been.
[0028] 前記ハウジング 20内を貫通して配される駆動軸 28は、フロントヘッド 21及びシリン ダブロック 22にベアリング 29a, 29bを介して回転自在に保持されており、この駆動軸 28は、図示しない走行用エンジンとベルト及びプーリを介して接続され、エンジンの 動力が伝達されて回転するようになっている。また、この駆動軸 28には、駆動軸 28の 回転と共に回転し、この駆動軸 28に対して傾斜自在である斜板 30が設けられている  A drive shaft 28 penetrating through the housing 20 is rotatably held by a front head 21 and a cylinder block 22 via bearings 29a and 29b. The engine is connected to a running engine via a belt and a pulley, and the power of the engine is transmitted to rotate. Further, the drive shaft 28 is provided with a swash plate 30 which rotates together with the rotation of the drive shaft 28 and is freely tiltable with respect to the drive shaft 28.
[0029] 前記シリンダブロック 22に形成されたシリンダ 25は、前記駆動軸 28の周囲に所定 の間隔を空けて複数形成され、前記駆動軸 28に平行な中心軸を有する円筒状に形 成されているもので、このシリンダ 25には、ロッド 31を介して前記斜板 30に保持され たピストン 32が摺動自在に挿入されて!、る。 [0030] 以上の構成において、駆動軸 28が回転すると斜板 30が所定の傾斜を有して回転 するので、斜板 30の縁部は駆動軸 28の軸方向に所定の幅で揺動することとなる。こ れによって、この斜板 30の縁部に保持されたピストン 32は、駆動軸 28の軸方向に往 復動して、シリンダ 25内に画成された圧縮室 33の容積を変化させ、吸入弁 34によつ て開閉されるバルブプレート 19に形成された吸入口 35を介して吸入室 26から冷媒 を吸引し、吐出弁 36によって開閉されるバルブプレート 19に形成された吐出口 37を 介して圧縮された冷媒を吐出室 27に吐出するようにして 、る。 [0029] A plurality of cylinders 25 formed in the cylinder block 22 are formed around the drive shaft 28 at predetermined intervals, and are formed in a cylindrical shape having a central axis parallel to the drive shaft 28. A piston 32 held by the swash plate 30 is slidably inserted into the cylinder 25 via a rod 31. In the above configuration, when the drive shaft 28 rotates, the swash plate 30 rotates with a predetermined inclination, so that the edge of the swash plate 30 swings with a predetermined width in the axial direction of the drive shaft 28. It will be. As a result, the piston 32 held at the edge of the swash plate 30 moves back and forth in the axial direction of the drive shaft 28, changing the volume of the compression chamber 33 defined in the cylinder 25, and The refrigerant is sucked from the suction chamber 26 through a suction port 35 formed in a valve plate 19 opened and closed by a valve 34, and discharged through a discharge port 37 formed in the valve plate 19 opened and closed by a discharge valve 36. The compressed refrigerant is discharged into the discharge chamber 27.
[0031] この圧縮機 3の吐出容量はピストン 32のストロークによって決定され、このピストンス トロークは、ピストン 32の前面に力かる圧力、即ち圧縮室 33の圧力と、ピストン 32の 背面に力かる圧力、即ちクランク室 24内の圧力(クランク室圧 Pc)との差圧によって 決定される。具体的には、クランク室 24内の圧力を高くすれば、圧縮室 33とクランク 室 24との差圧が大きくなつて斜板 30の傾斜角度 (揺動角度)が小さくなり、ピストンス トロークが小さくなつて吐出容量が少なくなる。逆に、クランク室 24の圧力を低くすれ ば、圧縮室 33とクランク室 24との差圧が小さくなつて斜板 30の傾斜角度 (揺動角度) が大きくなり、ピストンストロークが大きくなつて吐出容量が大きくなる。  [0031] The discharge capacity of the compressor 3 is determined by the stroke of the piston 32. The piston stroke applies a pressure acting on the front surface of the piston 32, that is, a pressure acting on the compression chamber 33 and a pressure acting on the back surface of the piston 32. That is, it is determined by the pressure difference between the pressure in the crank chamber 24 (crank chamber pressure Pc). Specifically, if the pressure in the crank chamber 24 is increased, the pressure difference between the compression chamber 33 and the crank chamber 24 increases, and the inclination angle (swing angle) of the swash plate 30 decreases, and the piston stroke decreases. As a result, the discharge capacity decreases. Conversely, if the pressure in the crank chamber 24 is reduced, the pressure difference between the compression chamber 33 and the crank chamber 24 is reduced, the inclination angle (swing angle) of the swash plate 30 is increased, and the piston stroke is increased. The capacity increases.
[0032] そして、クランク室 24の圧力 Pcは、吐出室 27からクランク室 24に流入する冷媒量と クランク室 24から吸入室 26へ流出する冷媒量とを例えばリアヘッド 23に設けられた 圧力制御弁 2によって制御することで可変させるようにして 、る。ここで用いられる圧 力制御弁 2は、吐出室 27 (吐出圧領域)とクランク室 24 (制御圧室)とを連通する給気 通路 38の連通状態とクランク室 (制御圧室)と吸入室(吸入圧領域)とを連通する抽 気通路 39の連通状態とを同時に調節する三方弁式の制御弁力 成るもので、例え ば、外部力 のデューティ信号によって決定される給気通路の開放時間と抽気通路 の開放時間との割合によりそれぞれの通路の開度が決定されるものである。この圧力 制御弁 2は、前記コントロールユニット 13からの制御信号によって制御され、吸入圧 力が目標値となるようにクランク室圧 Pcを調整し、吐出容量を制御するようにしている  The pressure Pc of the crank chamber 24 is determined by the amount of refrigerant flowing from the discharge chamber 27 into the crank chamber 24 and the amount of refrigerant flowing from the crank chamber 24 to the suction chamber 26. It is made to be variable by controlling by 2. The pressure control valve 2 used here is provided with a communication state of an air supply passage 38 that communicates between the discharge chamber 27 (discharge pressure area) and the crank chamber 24 (control pressure chamber), a crank chamber (control pressure chamber), and a suction chamber. (A suction pressure area). The three-way valve control valve force for simultaneously adjusting the communication state of the bleed passage 39 communicating with the (intake pressure region). For example, the opening time of the supply passage determined by the duty signal of the external force The opening degree of each passage is determined by the ratio of the opening time of the bleed passage. The pressure control valve 2 is controlled by a control signal from the control unit 13 to adjust the crank chamber pressure Pc so that the suction pressure becomes a target value, thereby controlling the discharge capacity.
[0033] 図 3、図 4に圧力制御弁 2の具体的構成例が示され、この例において、圧力制御弁 2は、駆動部 40、中間ブロック部 50、及び先端ブロック部 60から構成されている。駆 動部 40は、中間ブロック部 50の一端と螺合する固定鉄心 41と、この固定鉄心 41と 螺合する円板上の下ケース 49にかしめ固定される円筒状のケース 42と、このケース 42内に収納されると共に固定鉄心 41に溶着固定されるプランジャーケース 59と、プ ランジャーケース 59の外側に配置されるボビン 43と、ボビン 43の周囲に卷回される 励磁コイル 44と、プランジャーケース 59の内部に摺動自在に挿入され、前記固定鉄 心 41側で弁体駆動ロッド 45に当接するプランジャ 46と、プランジャーケース 59の開 口端部に溶接固定されたアジャストブロック 47と、プランジャ 46とアジャストブロック 4 7との間に弹装されたスプリング 48とによって構成されている。 FIGS. 3 and 4 show specific examples of the configuration of the pressure control valve 2. In this example, the pressure control valve 2 includes a driving unit 40, an intermediate block unit 50, and a front end block unit 60. I have. Drive The moving part 40 includes a fixed iron core 41 screwed to one end of the intermediate block part 50, a cylindrical case 42 fixed by caulking to a lower case 49 on a disk screwed to the fixed iron core 41, A plunger case 59 which is housed inside and fixed to the fixed iron core 41 by welding, a bobbin 43 arranged outside the plunger case 59, an exciting coil 44 wound around the bobbin 43, and a plan. A plunger 46 slidably inserted into the jar case 59 and abutting against the valve body drive rod 45 on the fixed core 41 side, and an adjustment block 47 welded and fixed to the opening end of the plunger case 59. And a spring 48 mounted between the plunger 46 and the adjusting block 47.
[0034] 中間ブロック部 50は、固定鉄心を挿通する弁体駆動ロッド 45を挿入する貫通孔 51 と、この貫通孔 51から径方向に形成された低圧側連通孔 53とを有している。貫通孔 51には、弁体 62が挿入され、弁体 62の頭部には、弁体駆動ロッド 45の先端部と接 して貫通孔 51に摺接する摺動部 62dが形成され、また、弁体 62の中間部 62eは、所 定のクリアランスで貫通孔 51に遊動自在に挿入され、貫通孔 51との間で前記低圧側 連通孔 53に通じる低圧連通空間 52を画成している。  [0034] The intermediate block portion 50 has a through hole 51 into which the valve body drive rod 45 inserted through the fixed iron core is inserted, and a low-pressure side communication hole 53 formed radially from the through hole 51. A valve body 62 is inserted into the through-hole 51, and a sliding portion 62d is formed on the head of the valve body 62 to be in contact with the distal end of the valve body drive rod 45 and slidably contact the through-hole 51. The intermediate portion 62e of the valve element 62 is freely inserted into the through hole 51 with a predetermined clearance, and defines a low pressure communication space 52 communicating with the low pressure side communication hole 53 with the through hole 51.
[0035] 先端ブロック部 60は、前記中間ブロック部 50の先端に力しめ固定されているもので 、中間ブロック部 50との間に圧力調整室 61が画成され、この圧力調整室 61に弁体 6 2の開閉部 62aが収容されている。弁体 62は、前記圧力調整室 61に収容された開 閉部 62aと、先端ブロック部 60に形成された貫通孔 63に摺動自在に挿入される摺動 部 62bと、前記開閉部 62aと摺動部 62bとを連結する小径部 62cとを有して構成され 、貫通孔 63の先端開口部に設置された調整部材 64との間に弾装されたスプリング 6 5により弁体駆動ロッド 45側へ付勢されている。  [0035] The front end block portion 60 is fixed to the front end of the intermediate block portion 50 by force. A pressure adjustment chamber 61 is defined between the front end block portion 60 and the intermediate block portion 50, and a valve is provided in the pressure adjustment chamber 61. The opening / closing part 62a of the body 62 is accommodated. The valve body 62 includes an opening / closing portion 62a housed in the pressure adjustment chamber 61, a sliding portion 62b slidably inserted into a through hole 63 formed in the tip block portion 60, and the opening / closing portion 62a. And a small-diameter portion 62c connecting the sliding portion 62b, and a valve body driving rod 45 provided by a spring 65 elastically mounted between the adjusting member 64 and the adjusting member 64 installed at the tip end opening of the through hole 63. Biased to the side.
[0036] そして、前記低圧側連通孔 53は、リアヘッド 23に形成された図示しない通路 (抽気 通路 39)を介して圧縮機 3の吸入室 26に連通され、圧力調整室 61は、中間ブロック 部 50に形成された連通孔 55及びリアヘッド 23に形成された図示しない通路を介し てクランク室 24に連通されている。また、弁体 62の小径部 62cの周囲に画成された 高圧連通空間 66は、先端ブロック部 60に形成された高圧側連通孔 67、この高圧側 連通孔 67が開口するように先端ブロック部 60の周壁に形成された環状凹部 68、及 びリアヘッド 23に形成された図示しない通路 (給気通路 38)を介して吐出室 27に連 通されている。 The low-pressure side communication hole 53 communicates with the suction chamber 26 of the compressor 3 via a passage (bleed passage 39) (not shown) formed in the rear head 23. It communicates with the crank chamber 24 via a communication hole 55 formed in 50 and a passage (not shown) formed in the rear head 23. The high-pressure communication space 66 defined around the small-diameter portion 62c of the valve element 62 has a high-pressure communication hole 67 formed in the front block 60, and a high-pressure communication hole 67 formed so that the high-pressure communication hole 67 is open. An annular recess 68 formed in the peripheral wall of the cylinder 60 and a passage (air supply passage 38) (not shown) formed in the rear head 23 communicate with the discharge chamber 27. Has been passed.
[0037] したがって、吐出室 27に通じる高圧側連通孔 67とクランク室 24に通じる圧力調整 室 61とは、高圧連通空間 66を介して連通可能となっており、吐出室 27とクランク室 2 4を連通する給気通路 38は、弁体 62の開閉部 62aにより連通状態が調節されるよう になっている。また、吸入室 26に通じる低圧側連通孔 53とクランク室 24に通じる圧 力調整室 61とは、低圧連通空間 52を介して連通可能となっており、クランク室 24と 吸入室 26とを連通する抽気通路 39は、弁体 62の開閉部 62aにより連通状態が調節 されるようになつている。以上のような弁機構による給気通路 38と抽気通路 39との開 度特性は、図 10に示されるように、吐出容量を小さくする要請があるほど、給気通路 38の開度(吐出室 クランク室間の通路面積)を大きくし、また、抽気通路 39の開度 (クランク室 吸入室間の通路面積)を小さくして、最小吐出容量時においては、給 気通路 38を全開、抽気通路 39を全閉とするようにして ヽる。  Therefore, the high-pressure side communication hole 67 communicating with the discharge chamber 27 and the pressure adjustment chamber 61 communicating with the crank chamber 24 can communicate with each other via the high-pressure communication space 66. The communication state of the air supply passage 38 that communicates with the valve is adjusted by the opening / closing portion 62a of the valve body 62. The low-pressure side communication hole 53 communicating with the suction chamber 26 and the pressure adjusting chamber 61 communicating with the crank chamber 24 can communicate with each other via a low-pressure communication space 52, and the crank chamber 24 and the suction chamber 26 communicate with each other. The communicating state of the bleed passage 39 is adjusted by the opening / closing portion 62a of the valve body 62. As shown in FIG. 10, the opening characteristics of the air supply passage 38 and the bleed air passage 39 by the valve mechanism described above are such that the smaller the discharge capacity is, the more the opening degree of the air supply passage 38 (discharge chamber The passage area between the crank chambers is increased, and the opening degree of the bleed passage 39 (the passage area between the suction chambers of the crank chamber) is reduced, so that at the minimum discharge capacity, the supply passage 38 is fully opened and the bleed passage Make sure that 39 is fully closed.
[0038] 以上の弁機構を備えた構成において、クランク室 24に連通する圧力調整室 61と吸 入室 26に連通する低圧側連通孔 53との間には、吐出室 27の圧力 Pdと吸入室 26の 圧力 Psとの差が所定圧以下となった場合に、圧力調整室 61を低圧側連通孔 53に 接続し、クランク室 24と吸入室 26とを連通させる第 1の差圧弁 70が設けられている。  [0038] In the configuration including the above valve mechanism, the pressure Pd of the discharge chamber 27 and the pressure of the suction chamber 27 are provided between the pressure adjustment chamber 61 communicating with the crank chamber 24 and the low-pressure side communication hole 53 communicating with the suction chamber 26. When the pressure difference between the pressure Ps and the pressure Ps becomes equal to or less than the predetermined pressure, the pressure adjustment chamber 61 is connected to the low pressure side communication hole 53, and the first differential pressure valve 70 is provided for communicating the crank chamber 24 and the suction chamber 26. Have been.
[0039] また、吐出室 27に連通する環状凹部 68とクランク室 24に連通する圧力調整室 61 との間には、吐出室 27の圧力 Pdとクランク室 24の圧力 Pcとの差が所定圧以下とな つた場合に、環状凹部 68と圧力調整室 61とを接続し、吐出室 27とクランク室 24とを 連通させる第 2の差圧弁 80が設けられて ヽる。  The difference between the pressure Pd of the discharge chamber 27 and the pressure Pc of the crank chamber 24 is a predetermined pressure between the annular recess 68 communicating with the discharge chamber 27 and the pressure adjusting chamber 61 communicating with the crank chamber 24. In the following cases, there is provided a second differential pressure valve 80 that connects the annular concave portion 68 and the pressure adjustment chamber 61 and allows the discharge chamber 27 and the crank chamber 24 to communicate with each other.
[0040] ここで、第 1の差圧弁 70は、具体的には、中間ブロック部 50に圧力調整室 61と接 続する弁体収容孔 71を設け、この弁体収容孔 71に弁体 72を摺動可能に収容し、こ の弁体 72の弁頭部 72aを弁体収容孔 71と低圧側連通孔 53とを連通する弁孔 73の 周縁に形成された弁座 74に着座可能とし、弁体収容孔 71において弁体 72と弁座 7 4の周囲との間に弹装された圧縮スプリング 75により弁体 71を弁孔 73から離反する 方向に付勢するようにしている。この弁体収容孔 71及び弁孔 73によって前記弁機構 (前記弁体駆動ロッド 45と弁体 62とによる開閉機構)の低圧連通空間 52をバイパス して抽気通路 39に通じるノ ィパス通路が構成されている。また、弁体 72の基部 72b には、弁体収容孔 71の内壁に摺接する径方向に突設された複数のガイド片 72cが 設けられ、このガイド片間に弁体 72の前後で冷媒を通過可能とする通路が形成され ている。さらに、先端ブロック部 60に環状凹部 68から軸方向に形成されて圧力調整 室 61に開口する通孔 76を形成し、この通孔 76に弁体 72の基部 72bから延設された 感圧ロッド 72dを摺動可能に挿入するようにして 、る。 Here, specifically, the first differential pressure valve 70 is provided with a valve body accommodating hole 71 connected to the pressure adjusting chamber 61 in the intermediate block section 50, and the valve element accommodating hole 71 is provided in the valve body accommodating hole 71. So that the valve head 72a of the valve body 72 can be seated on the valve seat 74 formed on the periphery of the valve hole 73 communicating the valve body housing hole 71 and the low pressure side communication hole 53. The compression spring 75 mounted between the valve body 72 and the periphery of the valve seat 74 in the valve body accommodation hole 71 urges the valve body 71 in a direction away from the valve hole 73. The valve body receiving hole 71 and the valve hole 73 form a no-pass passage that bypasses the low-pressure communication space 52 of the valve mechanism (the opening and closing mechanism including the valve body drive rod 45 and the valve body 62) and communicates with the bleed passage 39. ing. Also, the base 72b of the valve body 72 Is provided with a plurality of radially protruding guide pieces 72c that are in sliding contact with the inner wall of the valve body housing hole 71, and a passage is formed between the guide pieces so that refrigerant can pass through the front and rear of the valve body 72. ing. Further, a through-hole 76 is formed in the distal block 60 in the axial direction from the annular concave portion 68 and opens to the pressure adjustment chamber 61. The pressure-sensitive rod extending from the base 72b of the valve body 72 in this through-hole 76 72d is slidably inserted.
[0041] したがって、弁体 72は、感圧ロッド 72dの先端に作用する吐出室 27の圧力 Pdと、 弁頭部 72aに作用する吸入室 26の圧力 Psと、圧縮スプリング 75のばね力とが釣り合 つた位置に変位することとなり、吐出室 27の圧力 Pdと吸入室 26の圧力 Psとの差が所 定圧以下となった場合に開きはじめる。この開きはじめる Pdと Psの差圧 (Pd— Ps)を 第 1の所定圧 PIとすると、第 1の差圧弁 70は図 5に示されるような開度特性を有して いる。 Therefore, the valve element 72 is configured such that the pressure Pd of the discharge chamber 27 acting on the tip of the pressure-sensitive rod 72d, the pressure Ps of the suction chamber 26 acting on the valve head 72a, and the spring force of the compression spring 75 It is displaced to a balanced position, and starts to open when the difference between the pressure Pd of the discharge chamber 27 and the pressure Ps of the suction chamber 26 becomes equal to or less than a predetermined pressure. Assuming that the differential pressure between Pd and Ps that starts to open (Pd-Ps) is a first predetermined pressure PI, the first differential pressure valve 70 has an opening degree characteristic as shown in FIG.
[0042] また、第 2の差圧弁 80は、具体的には、先端ブロック部 60に環状凹部 68と接続す る弁体収容孔 81を設け、この弁体収容孔 81に弁体 82を摺動可能に収容し、この弁 体 82を弁体収容孔 81と圧力調整室 61とを連通する弁孔 83の近傍に設けられた端 部 84に着地可能とし、弁体収容孔 81において弁体 82と弁孔 83の周囲との間に弹 装された圧縮スプリング 85により弁体 82を弁孔 83から離反する方向に付勢するよう にしている。また、ここで用いられる弁体 82は、弁頭部が閉塞された筒状のスプール 弁によって構成され、周壁が弁体収容孔 81の内面に摺接し、開口端が弁体収容孔 81の環状凹部 68側に設けられたストッパ部材 86によって変位量が規制されるように なっている。  [0042] In the second differential pressure valve 80, specifically, a valve body accommodating hole 81 connected to the annular concave portion 68 is provided in the distal end block portion 60, and the valve element 82 is slid into the valve body accommodating hole 81. The valve body 82 is movably accommodated, and the valve body 82 can be landed at an end 84 provided near a valve hole 83 communicating the valve body accommodation hole 81 and the pressure adjustment chamber 61. The valve body 82 is urged in a direction away from the valve hole 83 by a compression spring 85 mounted between the 82 and the periphery of the valve hole 83. Further, the valve element 82 used here is constituted by a cylindrical spool valve with a closed valve head, the peripheral wall of which is in sliding contact with the inner surface of the valve element accommodation hole 81, and the open end of which is an annular ring of the valve element accommodation hole 81. The amount of displacement is regulated by a stopper member 86 provided on the concave portion 68 side.
[0043] そして、弁体収容孔 81の弁体 82の周壁に臨む位置には、径方向に形成されて貫 通孔 63に開口する横通路 87が形成され、また、弁体 82の周壁には、弁体 82が弁座 84から所定量変位した時点から横通路 87に連通し始める開口 88が形成され、この 開口 88を介して弁体 82の周壁の内外、即ち、環状凹部 68と横通路 87とが連通され るようになっている。  [0043] At a position facing the peripheral wall of the valve element 82 of the valve element accommodating hole 81, a lateral passage 87 formed in the radial direction and opening to the through hole 63 is formed. An opening 88 is formed which starts to communicate with the lateral passage 87 when the valve body 82 is displaced by a predetermined amount from the valve seat 84, and through the opening 88, the inside and outside of the peripheral wall of the valve body 82, that is, The passage 87 is communicated with.
[0044] したがって、弁体 82は、内部に作用する吐出室 27の圧力 Pdと、弁頭部に作用する クランク室 24の圧力 Pcと、圧縮スプリング 85のばね力とが釣り合った位置に変位す ることとなり、吐出室 27の圧力 Pdとクランク室 24の圧力 Pcとの差が所定圧以下となつ た場合に開きはじめる。この開きはじめる Pdと Pcの差圧 (Pd— Pc)を第 2の所定圧 P 2とすると、第 2の差圧弁 80は図 6に示されるような開度特性を有している。 Therefore, the valve element 82 is displaced to a position where the pressure Pd of the discharge chamber 27 acting inside, the pressure Pc of the crank chamber 24 acting on the valve head, and the spring force of the compression spring 85 are balanced. As a result, the difference between the pressure Pd of the discharge chamber 27 and the pressure Pc of the crank chamber 24 becomes less than a predetermined pressure. When it starts to open. Assuming that the differential pressure (Pd-Pc) between Pd and Pc that begins to open is the second predetermined pressure P2, the second differential pressure valve 80 has an opening degree characteristic as shown in FIG.
[0045] よって、上述した圧力制御弁 2は、図 10で示される弁体駆動ロッド 45と弁体 62とに よる弁機構の開度特性と、図 5で示される第 1の差圧弁 70の開度特性と、図 6で示さ れる第 2の差圧弁 80の開度特性とを合成したものとなり、図 7で示されるように、クラン ク室 24と吸入室 26とを連通する通路の面積を、吐出室 27とそれ以外の領域 (この例 では吸入室 6)との圧力差が小さくなるにつれて、第 1の所定値 P1までは徐々に小さ くし、且つ、第 1の所定値 P1以下においては徐々に大きくし、吐出室 27とクランク室 2 4とを連通する通路の面積を、吐出室 27とそれ以外の領域 (この例ではクランク室 24 )との圧力差が小さくなるにつれて、第 2の所定値 P2までは徐々に大きくし、且つ、第 2の所定値 P2以下においては変化割合を第 2の所定値 P2までの変化割合よりも大 きくして徐々に大きくしたものとなる。尚、吐出室 27とそれ以外の領域との圧力差が 最小となる最小吐出容量時においては、吐出室 27とクランク室 24とを連通する通路 の面積力 Sクランク室 24と吸入室 26とを連通する通路の面積よりも大きくなるように設 定されている。 Therefore, the above-described pressure control valve 2 has an opening degree characteristic of a valve mechanism formed by the valve body driving rod 45 and the valve body 62 shown in FIG. 10, and a first differential pressure valve 70 shown in FIG. The opening characteristic is combined with the opening characteristic of the second differential pressure valve 80 shown in FIG. 6, and as shown in FIG. 7, the area of the passage communicating the crank chamber 24 and the suction chamber 26 is increased. As the pressure difference between the discharge chamber 27 and the other area (in this example, the suction chamber 6) decreases, the pressure gradually decreases to the first predetermined value P1, and when the pressure difference is equal to or less than the first predetermined value P1, Gradually increases, and the area of the passage communicating the discharge chamber 27 and the crank chamber 24 becomes smaller as the pressure difference between the discharge chamber 27 and the other area (the crank chamber 24 in this example) decreases. Gradually increase up to the second predetermined value P2, and change the rate of change up to the second predetermined value P2 below the second predetermined value P2. Than the proportion becomes that was gradually increased in large listen. At the time of the minimum discharge capacity where the pressure difference between the discharge chamber 27 and the other area is minimum, the area force of the passage connecting the discharge chamber 27 and the crank chamber 24 is equal to the S crank chamber 24 and the suction chamber 26. It is set to be larger than the area of the communicating passage.
[0046] 以上の構成において、吐出容量を多くする要請があり、圧力制御弁 2の励磁コイル 44への通電時間が長くなると(デューティ比が大きくなると)、プランジャ 46が固定鉄 心 41に吸引されて、スプリング 65の付勢力に抗して弁体 62が移動し、弁体 62の開 閉部 62aが高圧連通空間 66を閉塞すると共に低圧連通空間 52を開放する方向へ 変位する。このため、圧力調整室 61と低圧側連通孔 53との連通が大きく確保され、 高圧側連通孔 67と圧力調整室 61との連通が絞られるので、クランク室 24と吸入室 2 6との間の通路面積は大きくなり、吐出室 27とクランク室 24との間の通路面積は小さ くなる。このため、クランク室圧が低下し、ピストンストロークが大きくなつて圧縮機 3の 吐出容量が増大することとなる。  In the above configuration, there is a demand for increasing the discharge capacity, and when the energizing time to the excitation coil 44 of the pressure control valve 2 is increased (when the duty ratio is increased), the plunger 46 is attracted to the fixed core 41. Accordingly, the valve body 62 moves against the urging force of the spring 65, and the opening / closing portion 62a of the valve body 62 closes the high-pressure communication space 66 and is displaced in a direction to open the low-pressure communication space 52. Therefore, the communication between the pressure adjustment chamber 61 and the low-pressure communication hole 53 is largely secured, and the communication between the high-pressure communication hole 67 and the pressure adjustment chamber 61 is narrowed. The passage area between the discharge chamber 27 and the crank chamber 24 becomes smaller. For this reason, the crank chamber pressure decreases and the piston stroke increases, so that the discharge capacity of the compressor 3 increases.
[0047] これに対して、吐出容量を少なくする要請があり、圧力制御弁 2の電磁コイル 44へ の通電時間が短くなると(デューティ比が小さくなると)、プランジャ 46の固定鉄心 41 への吸引力は弱くなり、スプリング 65のばね力により、プランジャ 46が固定鉄心 41か ら離反する方向へ移動し、弁体 62の開閉部 62aが高圧連通空間 66を開放すると共 に低圧連通空間 52を閉塞する方向へ変位する。このため、圧力調整室 61と低圧側 連通孔 53との連通が絞られると共に高圧側連通孔 67と圧力調整室 61の連通が大き く確保されるので、クランク室 24と吸入室 26との間の通路面積が小さくなり、吐出室 2 7とクランク室 24との間の通路面積は大きくなる。このため、クランク室圧が増大し、ピ ストンストロークが小さくなつて圧縮機 3の吐出容量が減少することとなる。 [0047] On the other hand, there is a demand for reducing the discharge capacity, and when the energization time to the electromagnetic coil 44 of the pressure control valve 2 is shortened (when the duty ratio is reduced), the attractive force of the plunger 46 to the fixed iron core 41 is reduced. The plunger 46 moves in a direction away from the fixed iron core 41 due to the spring force of the spring 65, and the opening / closing portion 62a of the valve body 62 opens the high-pressure communication space 66. Is displaced in a direction to close the low-pressure communication space 52. As a result, the communication between the pressure adjustment chamber 61 and the low-pressure communication hole 53 is reduced, and the communication between the high-pressure communication hole 67 and the pressure adjustment chamber 61 is largely secured. The passage area between the discharge chamber 27 and the crank chamber 24 increases. For this reason, the crank chamber pressure increases, and the piston stroke decreases, so that the discharge capacity of the compressor 3 decreases.
[0048] 以上のような制御は、第 1及び第 2の差圧弁 70, 80が閉塞している図 4 (a)の状態 において行われる力 圧縮機 3の吐出容量が小さくなると、圧縮機 3の吐出室 27と吸 入室 26との差圧 (Pd— Ps)が小さくなるので、この差圧が P1以下になると、第 1の差 圧弁 70が作動してクランク室 24と吸入室 26との間が連通し始める(図 4 (b)参照)。こ のため、最小吐出容量時においては圧力制御弁 2の弁体 62によってクランク室 24と 吸入室 26との間の連通は遮断されることとなる力 第 1の差圧弁 70を介してクランク 室 24と吸入室 26との連通が確保されるので、圧縮機の内部に冷媒循環経路を確保 することが可能となる。 [0048] The control as described above is performed in the state of Fig. 4 (a) in which the first and second differential pressure valves 70 and 80 are closed. Since the pressure difference (Pd-Ps) between the discharge chamber 27 and the suction chamber 26 of the suction chamber 26 becomes small, when the pressure difference becomes P1 or less, the first differential pressure valve 70 is actuated, and the pressure difference between the crank chamber 24 and the suction chamber 26 is reduced. Communication begins (see Fig. 4 (b)). For this reason, at the time of the minimum discharge capacity, the communication between the crank chamber 24 and the suction chamber 26 is cut off by the valve body 62 of the pressure control valve 2. Since communication between the suction chamber 24 and the suction chamber 26 is ensured, it is possible to secure a refrigerant circulation path inside the compressor.
[0049] また、圧縮機 3の吐出容量が小さくなると、吐出室 27とクランク室 24との差圧 (Pd— Pc)も小さくなるので、この差圧が P2以下になると、第 2の差圧弁 80が作動して吐出 室 27とクランク室 24との間が連通し始める(図 4 (c)参照)。このため、吐出室 27とクラ ンク室 24との差圧が P2と至るまでは吐出室 27とクランク室 24との間の通路面積を小 さくすることがあっても、最小吐出容量時においては吐出室 27とクランク室 24との通 路面積を大きく確保することができるので、クランク室 24を高 、圧力に保って最小吐 出容量を維持することが可能になり、また、中間吐出容量時においては吐出室 27と クランク室 24との通路面積を小さくして作動ガスの循環量を減らすことができるので、 圧縮機効率を高めることが可能となる。  [0049] Further, when the discharge capacity of the compressor 3 decreases, the differential pressure (Pd-Pc) between the discharge chamber 27 and the crank chamber 24 also decreases. Therefore, when the differential pressure becomes P2 or less, the second differential pressure valve 80 is activated to start communication between the discharge chamber 27 and the crank chamber 24 (see FIG. 4 (c)). For this reason, the passage area between the discharge chamber 27 and the crank chamber 24 may be reduced until the pressure difference between the discharge chamber 27 and the crank chamber 24 reaches P2. Since a large passage area between the discharge chamber 27 and the crank chamber 24 can be ensured, it is possible to maintain the minimum discharge capacity while maintaining the crank chamber 24 at a high pressure and at the same time. In this case, the passage area between the discharge chamber 27 and the crank chamber 24 can be reduced to reduce the circulating amount of the working gas, so that the compressor efficiency can be improved.
[0050] さらに、最小吐出容量時には、吐出室 27とクランク室 24とを連通する通路の面積が クランク室 24と吸入室 26とを連通する通路の面積よりも大きくなるので、クランク室 24 の高い圧力を確実に保って最小吐出容量を維持することが可能になる。  Further, at the time of the minimum discharge capacity, the area of the passage connecting the discharge chamber 27 and the crank chamber 24 is larger than the area of the passage connecting the crank chamber 24 and the suction chamber 26. It is possible to maintain the minimum discharge capacity by reliably maintaining the pressure.
[0051] 図 8に上記構成例の変形例が示されている。この構成においては、第 2の差圧弁 8 0を第 1の差圧弁 70と同様の構成にした点で前記構成例と異なっている。即ち、第 2 の差圧弁 80は、先端ブロック部 60に圧力調整室 61と接続する弁体収容孔 90を設 け、この弁体収容孔 90に弁体 91を摺動可能に収容し、この弁体収容孔 90の開口端 部に弁体 91の弁頭部 91bにて開閉される弁孔 92を備えた環状部材 93を嵌入して バネ材 94にて位置決めし、弁体 91と環状部材 92との間に圧縮スプリング 95を弹装 して弁体 91を弁孔 92から離反する方向に付勢するようにして!/、る。弁体収容孔 90の 環状部材 93が設けられた側と反対側には、環状凹部 68に連通し、弁体収容孔 90よ りも径が小さく形成された連通孔 96が形成されている。また、弁体 91の基部 91bには 、弁体収容孔 90の内壁に摺接する径方向に突設された複数のガイド片 91cが設けら れ、このガイド片間に弁体 91の前後で冷媒を通過可能とする通路が形成されている FIG. 8 shows a modification of the above configuration example. This configuration is different from the above configuration example in that the second differential pressure valve 80 has the same configuration as the first differential pressure valve 70. In other words, the second differential pressure valve 80 has a valve housing hole 90 connected to the pressure adjustment chamber 61 in the distal end block portion 60. The valve body 91 is slidably housed in the valve body housing hole 90, and a valve hole 92 that is opened and closed by a valve head 91b of the valve body 91 is provided at an open end of the valve body housing hole 90. The annular member 93 is fitted and positioned by the spring member 94, and a compression spring 95 is mounted between the valve body 91 and the annular member 92 to urge the valve body 91 in a direction away from the valve hole 92. Then! / A communication hole 96 communicating with the annular recess 68 and having a diameter smaller than that of the valve element housing hole 90 is formed on a side of the valve element housing hole 90 opposite to the side where the annular member 93 is provided. The base 91b of the valve element 91 is provided with a plurality of radially projecting guide pieces 91c that are in sliding contact with the inner wall of the valve element housing hole 90. The passage which can pass through is formed
[0052] したがって、弁体 91は、基部 91bに作用する吐出室 27の圧力 Pdと、弁頭部 91aに 作用するクランク室 24の圧力 Pcと、圧縮スプリング 95のばね力とが釣り合った位置 に変位することになり、吐出室 27の圧力 Pdとクランク室 24の圧力 Pcとの差が所定圧 以下となった場合に開きはじめる。この開きはじめる Pdと Pcの差圧 (Pd—Pc)は前記 第 2の所定圧 P2であり、第 2の差圧弁 80は前記図 6と同様の開度特性を有している 。尚、他の構成は前記構成例と同様であるので、同一箇所に同一番号を付して説明 を省略する。 Therefore, the valve element 91 is positioned at a position where the pressure Pd of the discharge chamber 27 acting on the base 91b, the pressure Pc of the crank chamber 24 acting on the valve head 91a, and the spring force of the compression spring 95 are balanced. It is displaced, and starts to open when the difference between the pressure Pd of the discharge chamber 27 and the pressure Pc of the crank chamber 24 becomes equal to or less than a predetermined pressure. The differential pressure (Pd-Pc) between Pd and Pc that starts to open is the second predetermined pressure P2, and the second differential pressure valve 80 has the same opening degree characteristics as in FIG. Since other configurations are the same as those of the above configuration example, the same portions are denoted by the same reference numerals and description thereof will be omitted.
[0053] このような構成においても、圧縮機 3の吐出容量が小さくなると、吐出室 27とクランク 室 24との差圧 (Pd—Pc)も小さくなるので、この差圧が P2以下になると、第 2の差圧 弁 80が作動して吐出室 27とクランク室 24との間が連通し始め、図 8 (a)及び図 8 (b) に示す状態から図 8 (c)に示す状態となる。このため、吐出室 27とクランク室 24との 差圧が P2に至るまでは吐出室 27とクランク室 24との間の通路面積を小さくしても、 最小吐出容量時においては吐出室とクランク室との通路面積を大きく確保することが 可能となるので、クランク室を高 、圧力に保って最小吐出容量を維持することが可能 になり、また、中間吐出容量時においては吐出室 27とクランク室 24との通路面積を 小さくして作動ガスの循環量を減らすことができるので、圧縮機効率を高めることが可 能となり、前記構成例と同様の作用効果を有することとなる。  [0053] Even in such a configuration, when the discharge capacity of the compressor 3 decreases, the differential pressure (Pd-Pc) between the discharge chamber 27 and the crank chamber 24 also decreases. The second differential pressure valve 80 is actuated to start communication between the discharge chamber 27 and the crank chamber 24, and the state shown in FIGS. 8 (a) and 8 (b) is changed to the state shown in FIG. 8 (c). Become. For this reason, even if the passage area between the discharge chamber 27 and the crank chamber 24 is reduced until the pressure difference between the discharge chamber 27 and the crank chamber 24 reaches P2, the discharge chamber and the crank chamber are at the minimum discharge capacity. As a result, it is possible to maintain a large discharge passage area by maintaining the crank chamber at a high pressure and a minimum discharge capacity, and at the time of an intermediate discharge capacity, the discharge chamber 27 and the crank chamber. Since the circulation area of the working gas can be reduced by reducing the passage area to the passage 24, the efficiency of the compressor can be increased, and the same operational effects as those of the above configuration example can be obtained.
[0054] なお、上述の構成においては、第 1の差圧弁 70は吐出室 27と吸入室 26との差圧 を利用して作動させるようにした力 吐出室 27とクランク室 24との差圧を利用して作 動させるようにしてもよい。また、第 2の差圧弁 80は吐出室 27とクランク室 24との差圧 を利用して作動させるようにした力 吐出室 27と吸入室 26との差圧を利用して作動さ せるようにしてちょい。 In the above-described configuration, the first differential pressure valve 70 is operated by utilizing the differential pressure between the discharge chamber 27 and the suction chamber 26. The differential pressure between the discharge chamber 27 and the crank chamber 24 Using You may make it move. In addition, the second differential pressure valve 80 is operated by using a differential pressure between the discharge chamber 27 and the suction chamber 26 by using a differential pressure between the discharge chamber 27 and the crank chamber 24. Hey.
[0055] さらに、以上の構成においては、圧力制御弁 2に第 1及び第 2の差圧弁を設けて図 7に示される特性を得るようにしたが、第 1及び第 2の差圧弁は、圧力制御弁 2以外の 圧縮機構成部材、例えば、リアヘッド 23などに設けるようにしてもよい。また、上述の
Figure imgf000018_0001
、ては、外部から駆動制御信号を供給して作動させる外部制御式の圧力 制御弁の例を示したが、差圧を検知する感応部材を有して給気通路ゃ抽気通路を 開度制御する三方弁式制御弁に適用してもよい。
Further, in the above configuration, the pressure control valve 2 is provided with the first and second differential pressure valves to obtain the characteristic shown in FIG. 7, but the first and second differential pressure valves It may be provided on a compressor component other than the pressure control valve 2, for example, the rear head 23 or the like. Also, the above
Figure imgf000018_0001
An example of an externally controlled pressure control valve that operates by supplying a drive control signal from the outside has been shown.However, a sensing member that detects differential pressure is provided to control the degree of opening between the air supply passage and the bleed passage. May be applied to a three-way valve control valve.
[0056] さらにまた、可変容量型圧縮機 3の構成は、上述した斜板式に限るものではなぐク ランク室 24の圧力が高くなると吐出容量が減少し、低くなると吐出容量が増加するよ うに構成される他形式の圧縮機に対して同様の構成を採用してもよ ヽ。  Further, the configuration of the variable displacement compressor 3 is not limited to the above-described swash plate type, and the discharge capacity decreases as the pressure in the crank chamber 24 increases, and the discharge capacity increases as the pressure in the crank chamber 24 decreases. A similar configuration may be adopted for other types of compressors.
産業上の利用可能性  Industrial applicability
[0057] 本発明は、クランク室の圧力を制御して吐出容量を制御する圧縮機を製造し、又は 使用する各種産業に利用することが可能である。 [0057] The present invention can be used in various industries that manufacture or use a compressor that controls the discharge capacity by controlling the pressure in the crankcase.

Claims

請求の範囲 The scope of the claims
[1] 制御圧室の圧力が高くなると吐出容量が減少し、前記制御圧室の圧力が低くなると 吐出容量が増加するように構成された可変容量型圧縮機に用いられ、前記制御圧 室と吸入圧領域とを連通する通路の面積と吐出圧領域と前記制御圧室とを連通する 通路の面積を変化させて前記制御圧室の圧力を制御するようにしている可変容量型 圧縮機の制御装置において、  [1] Used in a variable displacement compressor configured so that the discharge capacity decreases as the pressure in the control pressure chamber increases and the discharge capacity increases as the pressure in the control pressure chamber decreases. Control of a variable displacement compressor in which the pressure of the control pressure chamber is controlled by changing the area of a passage communicating with a suction pressure area and the area of a passage communicating with a discharge pressure area and the control pressure chamber. In the device,
前記制御圧室と前記吸入圧領域とを連通する通路の面積を、前記吐出圧領域とそ れ以外の領域との圧力差が小さくなるにつれて、第 1の所定値までは徐々に小さくし 、且つ、前記第 1の所定値以下においては徐々に大きくし、前記吐出圧領域と前記 制御圧室とを連通する通路の面積を、前記吐出圧領域とそれ以外の領域との圧力 差が小さくなるにつれて、第 2の所定値までは徐々に大きくし、且つ、前記第 2の所定 値以下においては変化割合を前記第 2の所定値までの変化割合よりも大きくして徐 々に大きくしたことを特徴とする可変容量型圧縮機の制御装置。  The area of the passage communicating the control pressure chamber and the suction pressure region is gradually reduced to a first predetermined value as the pressure difference between the discharge pressure region and the other region decreases, and When the pressure difference between the discharge pressure region and the other region decreases, the area of the passage communicating the discharge pressure region and the control pressure chamber decreases. The change rate is gradually increased up to a second predetermined value, and when the value is equal to or less than the second predetermined value, the change rate is made larger than the change rate up to the second predetermined value and gradually increased. Control device for a variable displacement compressor.
[2] 前記吐出圧領域とそれ以外の領域との圧力差が最小となる場合に、前記吐出圧領 域と前記制御圧室とを連通する通路の面積を、前記制御圧室と前記吸入圧領域とを 連通する通路の面積よりも大きくしたことを特徴とする請求項 1記載の可変容量型圧 縮機の制御装置。 [2] When the pressure difference between the discharge pressure area and the other area is minimized, the area of the passage communicating the discharge pressure area and the control pressure chamber is reduced by the control pressure chamber and the suction pressure. 2. The control device for a variable displacement compressor according to claim 1, wherein an area of the passage communicating with the region is larger than an area of the passage.
[3] 前記第 1の所定値以下における前記制御圧室と前記吸入圧領域とを連通する通路 の面積特性は、前記吐出圧領域とそれ以外の領域との圧力差が前記第 1の所定値 以下となった場合に前記制御圧室と前記吸入圧領域とを連通させる第 1の差圧弁を 設けることによって実現し、前記第 2の所定値以下における前記吐出圧領域と前記 制御圧室とを連通する通路の面積特性は、前記吐出圧領域とそれ以外の領域との 圧力差が前記第 2の所定値以下となった場合に前記吐出圧領域と前記制御圧室と を連通させる第 2の差圧弁を設けることによって実現したことを特徴とする請求項 1記 載の可変容量型圧縮機の制御装置。  [3] The area characteristic of the passage communicating the control pressure chamber and the suction pressure area below the first predetermined value is that the pressure difference between the discharge pressure area and the other area is the first predetermined value. This is realized by providing a first differential pressure valve for communicating the control pressure chamber with the suction pressure area when the pressure becomes less than or equal to, and the discharge pressure area and the control pressure chamber at the second predetermined value or less are provided. The area characteristic of the communicating passage is such that when the pressure difference between the discharge pressure region and the other region becomes equal to or less than the second predetermined value, the second characteristic is that the discharge pressure region communicates with the control pressure chamber. 2. The variable displacement compressor control device according to claim 1, wherein the control device is realized by providing a differential pressure valve.
[4] 吐出圧領域と制御圧室とを連通する給気通路と、前記制御圧室と吸入圧領域とを連 通する抽気通路とを備えた可変容量型圧縮機に用いられ、前記給気通路及び前記 抽気通路の連通状態を調節して前記制御圧室の圧力を制御する可変容量型圧縮 機の圧力制御弁において、 [4] The variable pressure compressor used in a variable displacement compressor including a supply passage communicating the discharge pressure region with the control pressure chamber and a bleed passage communicating the control pressure chamber with the suction pressure region. A variable displacement type compression which controls a pressure in the control pressure chamber by adjusting a communication state of a passage and the bleed passage. Machine pressure control valve,
前記吐出圧領域とそれ以外の領域との圧力差が小さくなるにつれて、前記吐出圧 領域と前記制御圧室とを連通する前記給気通路の通路面積を徐々に大きくし、且つ 、前記制御圧室と前記吸入圧領域とを連通する前記抽気通路の通路面積を徐々に 小さくする弁機構と、  As the pressure difference between the discharge pressure region and the other region decreases, the passage area of the air supply passage connecting the discharge pressure region and the control pressure chamber gradually increases, and the control pressure chamber A valve mechanism for gradually reducing the passage area of the bleed passage that communicates with the suction pressure region;
前記吐出圧領域とそれ以外の領域との圧力差が第 1の所定値以下となった場合に 前記制御圧室と前記吸入圧領域とを連通させる第 1の差圧弁と、  A first differential pressure valve for communicating the control pressure chamber and the suction pressure area when a pressure difference between the discharge pressure area and the other area is equal to or less than a first predetermined value;
前記吐出圧領域とそれ以外の領域との圧力差が第 2の所定値以下となった場合に 前記吐出圧領域と前記制御圧室とを連通させる第 2の差圧弁と  A second differential pressure valve for communicating the discharge pressure region and the control pressure chamber when a pressure difference between the discharge pressure region and the other region is equal to or less than a second predetermined value;
を具備することを特徴とする可変容量型圧縮機の圧力制御弁。 A pressure control valve for a variable displacement compressor, comprising:
PCT/JP2005/006455 2004-04-02 2005-04-01 Control device and pressure control valve for variable displacement compressor WO2005095796A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004109706A JP2005291142A (en) 2004-04-02 2004-04-02 Control device and pressure control valve for variable displacement compressor
JP2004-109706 2004-04-02

Publications (1)

Publication Number Publication Date
WO2005095796A1 true WO2005095796A1 (en) 2005-10-13

Family

ID=35063845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006455 WO2005095796A1 (en) 2004-04-02 2005-04-01 Control device and pressure control valve for variable displacement compressor

Country Status (2)

Country Link
JP (1) JP2005291142A (en)
WO (1) WO2005095796A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111712638A (en) * 2018-02-15 2020-09-25 伊格尔工业股份有限公司 Capacity control valve
US11156301B2 (en) 2018-01-26 2021-10-26 Eagle Industry Co., Ltd. Capacity control valve
CN113646531A (en) * 2019-04-03 2021-11-12 伊格尔工业股份有限公司 Capacity control valve
US11319940B2 (en) 2018-02-15 2022-05-03 Eagle Industry Co., Ltd. Capacity control valve
US11754194B2 (en) 2019-04-03 2023-09-12 Eagle Industry Co., Ltd. Capacity control valve
US11821540B2 (en) 2019-04-03 2023-11-21 Eagle Industry Co., Ltd. Capacity control valve
US11873804B2 (en) 2018-02-27 2024-01-16 Eagle Industry Co., Ltd. Capacity control valve
US11988296B2 (en) 2019-04-24 2024-05-21 Eagle Industry Co., Ltd. Capacity control valve

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6709410B2 (en) * 2016-06-02 2020-06-17 株式会社テージーケー Variable capacity compressor and its control valve
KR20190092234A (en) * 2018-01-29 2019-08-07 한온시스템 주식회사 Control system for a compressor, electronic control valve for the same, and compressor with the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280238A (en) * 2000-03-30 2001-10-10 Saginomiya Seisakusho Inc Solenoid control valve for variable displacement compressor
JP2002021721A (en) * 2000-07-07 2002-01-23 Toyota Industries Corp Capacity control mechanism for variable displacement compressor
JP2002070732A (en) * 2000-09-01 2002-03-08 Zexel Valeo Climate Control Corp Variable displacement controller for refrigeration cycle
JP2002070730A (en) * 2000-08-25 2002-03-08 Zexel Valeo Climate Control Corp Pressure controller for variable displacement compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280238A (en) * 2000-03-30 2001-10-10 Saginomiya Seisakusho Inc Solenoid control valve for variable displacement compressor
JP2002021721A (en) * 2000-07-07 2002-01-23 Toyota Industries Corp Capacity control mechanism for variable displacement compressor
JP2002070730A (en) * 2000-08-25 2002-03-08 Zexel Valeo Climate Control Corp Pressure controller for variable displacement compressor
JP2002070732A (en) * 2000-09-01 2002-03-08 Zexel Valeo Climate Control Corp Variable displacement controller for refrigeration cycle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156301B2 (en) 2018-01-26 2021-10-26 Eagle Industry Co., Ltd. Capacity control valve
CN111712638B (en) * 2018-02-15 2022-05-03 伊格尔工业股份有限公司 Capacity control valve
EP3754191A4 (en) * 2018-02-15 2021-07-21 Eagle Industry Co., Ltd. Capacity control valve
JPWO2019159999A1 (en) * 2018-02-15 2021-02-04 イーグル工業株式会社 Capacity control valve
US11319940B2 (en) 2018-02-15 2022-05-03 Eagle Industry Co., Ltd. Capacity control valve
CN111712638A (en) * 2018-02-15 2020-09-25 伊格尔工业股份有限公司 Capacity control valve
US11401923B2 (en) 2018-02-15 2022-08-02 Eagle Industry Co., Ltd. Capacity control valve
JP7237919B2 (en) 2018-02-15 2023-03-13 イーグル工業株式会社 capacity control valve
US11873804B2 (en) 2018-02-27 2024-01-16 Eagle Industry Co., Ltd. Capacity control valve
CN113646531A (en) * 2019-04-03 2021-11-12 伊格尔工业股份有限公司 Capacity control valve
EP3951171A4 (en) * 2019-04-03 2022-11-30 Eagle Industry Co., Ltd. Capacity control valve
US11754194B2 (en) 2019-04-03 2023-09-12 Eagle Industry Co., Ltd. Capacity control valve
US11821540B2 (en) 2019-04-03 2023-11-21 Eagle Industry Co., Ltd. Capacity control valve
US11988296B2 (en) 2019-04-24 2024-05-21 Eagle Industry Co., Ltd. Capacity control valve

Also Published As

Publication number Publication date
JP2005291142A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
WO2005095796A1 (en) Control device and pressure control valve for variable displacement compressor
JP6495634B2 (en) Variable capacity compressor
JP4330576B2 (en) Compressor
JP4456906B2 (en) Control valve for variable capacity compressor
US20080175727A1 (en) Electromagnetic displacement control valve in clutchless type variable displacement compressor
WO2006137270A1 (en) Capacity control valve
JP2006097665A (en) Capacity control valve in variable displacement compressor
JP4422512B2 (en) Control valve for variable capacity compressor
JP4392631B2 (en) Variable capacity controller for refrigeration cycle
JP2002285956A (en) Control valve of variable displacement compressor
WO2007142021A1 (en) Opening regulation valve and variable capacity compressor employing it
JP5281320B2 (en) Capacity control system for variable capacity compressor
JP4209522B2 (en) Swash plate type variable capacity compressor
JP4501112B2 (en) Control unit for variable capacity compressor
JP4064066B2 (en) Variable capacity swash plate compressor
JP5430401B2 (en) Variable capacity compressor
JP2009293386A (en) Compressor
JP5240535B2 (en) Variable capacity clutchless compressor
JP2007113504A (en) Variable displacement swash-plate type compressor
JP2002147349A (en) Control device of variable displacement type compressor
JP6192365B2 (en) Variable capacity compressor
JP2007064056A (en) Control valve of variable displacement type compressor
WO2011001621A1 (en) Variable displacement swash plate-type compressor and air conditioning system using said compressor
JP4049888B2 (en) Variable displacement swash plate compressor
JP4663579B2 (en) Volume control valve for variable capacity compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase