WO2005091412A1 - Cooling liquid composition for fuel cell - Google Patents

Cooling liquid composition for fuel cell Download PDF

Info

Publication number
WO2005091412A1
WO2005091412A1 PCT/JP2004/003881 JP2004003881W WO2005091412A1 WO 2005091412 A1 WO2005091412 A1 WO 2005091412A1 JP 2004003881 W JP2004003881 W JP 2004003881W WO 2005091412 A1 WO2005091412 A1 WO 2005091412A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
composition
coolant
coolant composition
conductivity
Prior art date
Application number
PCT/JP2004/003881
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Egawa
Nobuyuki Kaga
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to PCT/JP2004/003881 priority Critical patent/WO2005091412A1/en
Priority to JP2006511109A priority patent/JPWO2005091412A1/en
Publication of WO2005091412A1 publication Critical patent/WO2005091412A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a cooling liquid composition used for cooling a fuel cell, particularly a fuel cell for an automobile, and more particularly, to a method for controlling the conductivity of the composition for a long time.
  • the present invention also relates to a fuel cell cooling liquid composition which is excellent in maintaining low electric conductivity.
  • a fuel cell is configured as a cell stack having a structure in which a single unit, which is a unit of power generation, and a large number of separators are stacked. Since heat is generated from the stack during power generation, cooling plates were inserted every few cells to cool the cell stack. A cooling fluid passage was formed inside the cooling plate, and the stack was cooled by flowing the cooling fluid through this passage.
  • the coolant of the fuel cell circulates through the stack that is generating power and cools the stack. If the electrical conductivity of the coolant is high, the electricity generated in the stack is transferred to the coolant. As a result, electricity is lost and the generated power in the fuel cell is reduced.
  • pure water having low electrical conductivity in other words, high electrical insulation, has been used as the coolant for the conventional fuel cell.
  • the coolant drops to the ambient temperature when it is not operating. Especially usable below freezing W
  • the coolant composition for a fuel cell of the present invention (hereinafter, simply referred to as a composition) will be described in more detail.
  • the composition of the present invention is characterized in that the base contains a metal ion.
  • a metal is capable of being ionized, and preferably has low conductivity and antifreeze properties.
  • one composed of one or more selected from water, glycols, alcohols and glycol ethers is preferable.
  • the glycols are selected from, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, and hexylene glycol. And species consisting of two or more species.
  • Examples of the alcohols include those composed of one or more selected from methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, and octanol.
  • Examples of the glycol ethers include alkyl ethers of polyoxyalkylene glycol, for example, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, ethylene glycol monoethyl ether.
  • Diethylene daricol monoethyl ether triethylene glycol monoethyl ether, tetraethylene daricol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene daricol monobutyl ether, tetraethylene diol
  • Examples thereof include one or two or more selected from among re-cold monobutyl ethers.
  • the metal ions contained in the base suppress the generation of ionic substances due to the oxidation of the base, and can maintain the coolant using the composition at low conductivity.
  • the conductivity of the composition can be maintained at 15/2 SZ cm or less, and the fluctuation of the conductivity of the composition over a long period can be maintained within the range of 0 to 10 ⁇ SZ cm.
  • the metal that generates metal ions include those composed of one or more selected from aluminum, titanium, chromium, manganese, iron, cobalt, nickel, copper, and zinc.
  • these metals include inorganic salts such as sulfates such as copper sulfate and iron sulfate, chlorides such as zinc chloride and aluminum chloride, and nitrates such as iron nitrate and copper nitrate.
  • the coolant in the form of citrates such as ferric citrate and zinc citrate, acetates such as aluminum acetate and chromium acetate, and organic acid salts. It may be added.
  • the electrode may be ionized by dissolving the anode in the anode.
  • the above-mentioned metal ions include those existing as complex ions such as hydrated oxo complex ions in the base.
  • the concentration of the metal ion is desirably in the range of 0.001 lmmo 1 to 1 Ommo 1 Z1. Outside this range, the above-mentioned sufficient effects cannot be obtained, and it is uneconomical.
  • composition of the present invention may contain, for example, an antifoaming agent, a coloring agent, and the like in addition to the above-mentioned components, and other conventionally known anti-moisture additives such as molybdate and tundastenoic acid. Salts, sulfates, nitrates, benzoates, and the like may be used in combination within a range that does not inhibit the low conductivity of the composition, in consideration of the concentration of the metal ion and the like. Examples Hereinafter, the composition of the present invention will be described in more detail with reference to examples.
  • Table 1 below shows a preferred example of a composition containing 0.001 part by weight of copper sulfate (II) pentahydrate with respect to 50 parts by weight of ethylene glycol and 50 parts by weight of ion-exchanged water (Example 1). ), 50 parts by weight of ethylene glycol and 50 parts by weight of ion-exchanged water, a composition containing 0.00004 parts by weight of iron sulfate (II) (Example 2) is shown. As a comparative example, 50 parts by weight of ethylene glycol was used.
  • the metal ion concentrations of Examples 1 and 2 were 0.04 mmol / l and 0.002 mmol 11, respectively.
  • the amount of generated acid and the conductivity after oxidative deterioration were measured. The results are shown in the lower column of Table 1.
  • the oxidative deterioration test of each composition was carried out at 100 ° C. for 336 hours. table 1
  • Table 1 shows that the amount of acid generated after oxidative deterioration is 0.2 mmo 1 Z1 in both Examples 1 and 2, whereas Comparative Examples 1 and 2 show 14 mmo l Zl, 1 It can be seen that 5mmo 1Z1 is generated as much.
  • each of the compositions of Comparative Examples 1 and 2 showed a high electrical conductivity of 68.0 2 S / cm and 73.7 ⁇ .S / cm.
  • Example 1 shows 11.7 SZcm
  • Example 2 shows 8.0 SZcm, indicating that the low conductivity of 15 ⁇ SZcm or less is maintained.
  • the invention's effect is indicating that the low conductivity of 15 ⁇ SZcm or less is maintained.
  • composition of the present invention contains a metal ion in the base, it can suppress the generation of ionic substances due to oxidation of the base and can maintain a low electrical conductivity for a long period of time. is there.

Abstract

A cooling liquid composition for fuel cell characterized in that metal ions are contained in a base, preferably at a concentration of 0.001 to 10 mmol/lit. In the use of this cooling liquid composition for fuel cell, the conductivity of the composition is maintained at 15 μS/cm or below.

Description

明糸田書 燃料電池用冷却液組成物 技術分野 本発明は、 燃料電池、 特には自動車用燃料電池の冷却に使用される冷却液組成 物に関し、 詳細には該組成物の導電率を長期に亘つて低導電率の維持に優れる燃 料電池用冷却液組成物に関する。 背景技術 燃料電池は、 一般に発電単位である単セルとセパレー夕を多数積層した構造の セルスタックとして構成されている。発電時にはスタックから熱が発生するので、 このセルス夕ックを冷却するために数セル毎に冷却板が挿入されていた。 冷却板内部には冷却液通路が形成されており、 この通路を冷却液が流れること により、 スタックが冷却されるようになつていた。 このように、 燃料電池の冷却液は、 発電を実行しているスタック内を循環して スタックを冷却するため、 冷却液の電気伝導率が高いと、 スタックで生じた電気 が冷却液側へと流れて電気を損失し、 該燃料電池における発電力を低下させるこ とになる。 - そこで、 従来の燃料電池の冷却液には、 導電率が低い、 換言すれば電気絶縁性 が高い純水が使用されていた。 ところが、 例えば自動車用燃料電池など、 間欠運転型燃料電池の場合、 非作動 時に冷却液は周囲の温度まで低下してしまう。 特に氷点下での使用可能性がある W TECHNICAL FIELD The present invention relates to a cooling liquid composition used for cooling a fuel cell, particularly a fuel cell for an automobile, and more particularly, to a method for controlling the conductivity of the composition for a long time. The present invention also relates to a fuel cell cooling liquid composition which is excellent in maintaining low electric conductivity. BACKGROUND ART In general, a fuel cell is configured as a cell stack having a structure in which a single unit, which is a unit of power generation, and a large number of separators are stacked. Since heat is generated from the stack during power generation, cooling plates were inserted every few cells to cool the cell stack. A cooling fluid passage was formed inside the cooling plate, and the stack was cooled by flowing the cooling fluid through this passage. In this way, the coolant of the fuel cell circulates through the stack that is generating power and cools the stack.If the electrical conductivity of the coolant is high, the electricity generated in the stack is transferred to the coolant. As a result, electricity is lost and the generated power in the fuel cell is reduced. -Therefore, pure water having low electrical conductivity, in other words, high electrical insulation, has been used as the coolant for the conventional fuel cell. However, in the case of an intermittent fuel cell such as a fuel cell for an automobile, for example, the coolant drops to the ambient temperature when it is not operating. Especially usable below freezing W
場合、 純水では凍結してしまい、 冷却液の体積膨張による冷却板の破損など、 燃 料電池の電池性能を損なう恐れがあつた。 このような事情から、 燃料電池、 特には自動車用燃料電池の冷却液には、 低導 電性および不凍性が要求される。 上記要求に対応することができる燃料電池用冷却液組成物として、 従来、 水と ダリコール類の混合溶液からなる基剤と、 冷却液の導電率を低導電率にて維持す るァミン系のアルカリ性添加剤を含むものが提案されている (特開 2 0 0 1 - 1 6 4 2 4 4号公報参照)。 ところが、 上記組成物におけるグリコール類などの基剤は、 燃料電池作動中に 酸化して僅かではあるがイオン性物質を生成する。 このため、 長期間の使用によ り冷却液中のイオン性物質量も増加し、 この結果、 冷却液の低導電率を維持でき なくなるという事態を招いていた。 - 本発明は、 このような事情に鑑みなされたものであり、 基剤の酸化によるィォ ン性物質の生成を抑制することにより、 長期に渡つて低導電率を維持するととも に不凍性に優れる燃料電池用冷却液組成物を提供することを目的とするものであ る。 発明の開示 以下、 本発明の燃料電池用冷却液組成物 (以下、 単に組成物という) をさらに 詳しく説明する。 本発明の組成物は、 基剤に金属イオンを含有することを特徴と するものである。 この組成物における基剤としては、 金属がイオン化可能なもの であり、 好ましくは、 低導電率であって、 不凍性を有するものがよい。 具体的に は水、 グリコール類、 アルコール類及びグリコールエーテル類の中から選ばれる 1種若しくは 2種以上からなるものが好ましい。 グリコール類としては、 例えばエチレングリコール、 ジエチレングリコール、 トリエチレングリコ一ル、 プロピレングリコール、 1 , 3—プロパンジオール、 1, 3一ブタンジオール、 1, 5—ペンタンジオール、 へキシレングリコールの 中から選ばれる 1種若しくは 2種以上からなるものを挙げることができる。 アルコール類としては、 例えばメタノール、 エタノール、 プロパノール、 ブ夕 ノール、 ペン夕ノール、 へキサノール、 ヘプ夕ノール、 ォクタノールの中から選 ばれる 1種若しくは 2種以上からなるものを挙げることができる。 グリコ一ルェ一テル類としては、 ポリォキシアルキレングリコールのアルキル ェ一テル、 例えばエチレングリコールモノメチルエーテル、 ジエチレングリコー ルモノメチルェ一テル、 トリエチレングリコールモノメチルエーテル、 テトラエ チレングリコールモノメチルエーテル、エチレングリコールモノェチルエーテル、 ジエチレンダリコールモノェチルエーテル、 トリエチレングリコールモノェチル エーテル、 テトラエチレンダリコールモノェチルェ一テル、 エチレングリコール モノブチルエーテル、 ジエチレングリコールモノブチルエーテル、 卜リエチレン ダリコールモノプチルエーテル、 テ卜ラエチレンダリコールモノブチルエーテル の中から選ばれる 1種若しくは 2種以上からなるものを挙げることができる。 基剤内に含有する金属イオンは、 上記基剤の酸化によるイオン性物質の生成を 抑制し、 当該組成物を使用した冷却液を低導電率に維持することができる。 具体 的には、 組成物の導電率を 1 5 /2 S Z c m以下を維持し、 さらに長期による組成 物の導電率の変動を 0〜1 0 ^ S Z c mの範囲内に維持することができる。 金属イオンを生成する金属としては、 アルミニウム、 チタン、 クロム、 マンガ ン、 鉄、 コバルト、 ニッケル、 銅、 亜鉛から選ばれる 1又は 2以上からなるもの が挙げられる。 これらの金属は、 一般的には、 硫酸銅、 硫酸鉄等の硫酸塩、 塩化 亜鉛、塩化アルミニウム等の塩化物、硝酸鉄、硝酸銅等の硝酸塩といった無機塩、 クェン酸第 2鉄、 クェン酸亜鉛等のクェン酸塩、 酢酸アルミニウム、 酢酸クロム 等の酢酸塩といつた有機酸塩の形で冷却液に添加されるが、 あらかじめ金属をィ オン化して単独で添加してもよい。 また、 電極をアノード溶解させることにより イオン化させてもよい。 前記金属イオンの中には、 基剤中では水和イオンゃォキソ錯体イオン等の錯ィ オンとして存在する場合も含まれる。 前記金属イオンの濃度としては、 0. 00 lmmo 1〜1 Ommo 1 Z 1の範 囲とすることが望ましい。 この範囲以外の場合には、 上述した十分な効果が得ら れず、 また不経済となる。 なお、 本発明の組成物には、 前記の成分以外に例えば消泡剤、 着色剤等を含有 させてもよいし、 他の従来公知の防鑌添加剤である、 モリブデン酸塩、 タンダス テン酸塩、 硫酸塩、 硝酸塩及び安息香酸塩などを、 前記金属イオンの濃度等を考 慮した上で、 該組成物の低伝導率を阻害しない範囲で併用してもよい。 実施例 以下、 本発明の組成物を実施例に従いさらに詳しく説明する。 下記表 1には、 好 ましい実施例として、 エチレングリコール 50重量部、 イオン交換水 50重量部 に対し、 硫酸銅 (Π) 5水和物 0. 001重量部を含む組成物 (実施例 1)、 ェ チレングリコール 50重量部、イオン交換水 50重量部に対し、硫酸鉄(ΠΙ) 0. 00004重量部を含む組成物 (実施例 2) を示すとともに、 比較例として、 ェ チレングリコール 50重量部とイオン交換水 50重量部を含む組成物 (比較例 1)、 エチレングリコール 50重量部とイオン交換水 50重量部と硫酸 0. 00 04重量部を含む組成物 (比較例 2) を挙げた。 In this case, the pure water would freeze, and the cooling plate could be damaged due to the volume expansion of the coolant, which could impair the battery performance of the fuel cell. Under these circumstances, low conductivity and antifreeze are required for fuel cells, particularly for coolants for automobile fuel cells. Conventionally, as a fuel cell coolant composition that can meet the above requirements, a base consisting of a mixed solution of water and dalicols and an amine-based alkalinity that maintains the conductivity of the coolant at low conductivity A composition containing an additive has been proposed (see JP-A-2001-164424). However, bases such as glycols in the above composition oxidize during operation of the fuel cell to produce ionic substances, albeit slightly. For this reason, the amount of ionic substances in the coolant has increased due to long-term use, and as a result, the low conductivity of the coolant cannot be maintained. -The present invention has been made in view of such circumstances, and by suppressing the formation of ionizable substances due to oxidation of a base material, it is possible to maintain low conductivity for a long time and to prevent It is an object of the present invention to provide a fuel cell coolant composition having excellent heat resistance. DISCLOSURE OF THE INVENTION Hereinafter, the coolant composition for a fuel cell of the present invention (hereinafter, simply referred to as a composition) will be described in more detail. The composition of the present invention is characterized in that the base contains a metal ion. As a base in this composition, a metal is capable of being ionized, and preferably has low conductivity and antifreeze properties. Specifically, one composed of one or more selected from water, glycols, alcohols and glycol ethers is preferable. The glycols are selected from, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, and hexylene glycol. And species consisting of two or more species. Examples of the alcohols include those composed of one or more selected from methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, and octanol. Examples of the glycol ethers include alkyl ethers of polyoxyalkylene glycol, for example, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, ethylene glycol monoethyl ether. , Diethylene daricol monoethyl ether, triethylene glycol monoethyl ether, tetraethylene daricol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene daricol monobutyl ether, tetraethylene diol Examples thereof include one or two or more selected from among re-cold monobutyl ethers. The metal ions contained in the base suppress the generation of ionic substances due to the oxidation of the base, and can maintain the coolant using the composition at low conductivity. Specifically, the conductivity of the composition can be maintained at 15/2 SZ cm or less, and the fluctuation of the conductivity of the composition over a long period can be maintained within the range of 0 to 10 ^ SZ cm. Examples of the metal that generates metal ions include those composed of one or more selected from aluminum, titanium, chromium, manganese, iron, cobalt, nickel, copper, and zinc. In general, these metals include inorganic salts such as sulfates such as copper sulfate and iron sulfate, chlorides such as zinc chloride and aluminum chloride, and nitrates such as iron nitrate and copper nitrate. It is added to the coolant in the form of citrates such as ferric citrate and zinc citrate, acetates such as aluminum acetate and chromium acetate, and organic acid salts. It may be added. Alternatively, the electrode may be ionized by dissolving the anode in the anode. The above-mentioned metal ions include those existing as complex ions such as hydrated oxo complex ions in the base. The concentration of the metal ion is desirably in the range of 0.001 lmmo 1 to 1 Ommo 1 Z1. Outside this range, the above-mentioned sufficient effects cannot be obtained, and it is uneconomical. In addition, the composition of the present invention may contain, for example, an antifoaming agent, a coloring agent, and the like in addition to the above-mentioned components, and other conventionally known anti-moisture additives such as molybdate and tundastenoic acid. Salts, sulfates, nitrates, benzoates, and the like may be used in combination within a range that does not inhibit the low conductivity of the composition, in consideration of the concentration of the metal ion and the like. Examples Hereinafter, the composition of the present invention will be described in more detail with reference to examples. Table 1 below shows a preferred example of a composition containing 0.001 part by weight of copper sulfate (II) pentahydrate with respect to 50 parts by weight of ethylene glycol and 50 parts by weight of ion-exchanged water (Example 1). ), 50 parts by weight of ethylene glycol and 50 parts by weight of ion-exchanged water, a composition containing 0.00004 parts by weight of iron sulfate (II) (Example 2) is shown. As a comparative example, 50 parts by weight of ethylene glycol was used. And a composition containing 50 parts by weight of ion-exchanged water and 50 parts by weight of ethylene glycol, 50 parts by weight of ion-exchanged water, and 0.0004 parts by weight of sulfuric acid (Comparative Example 2). .
このとき、 実施例 1、 及び 2の金属イオン濃度は、 それぞれ 0. 04mmo l /1、 0. 002mmo 1 1であった。 これらの実施例 1、 2及び比較例 1、 2の各組成物について、 酸化劣化後の酸 の生成量及び導電率を測定した。 その結果が表 1の下欄に示されている。 尚、 各 組成物の酸化劣化試験は、 1 0 0 °Cで 3 3 6時間の条件で実施した。 表 1 At this time, the metal ion concentrations of Examples 1 and 2 were 0.04 mmol / l and 0.002 mmol 11, respectively. For each of the compositions of Examples 1 and 2 and Comparative Examples 1 and 2, the amount of generated acid and the conductivity after oxidative deterioration were measured. The results are shown in the lower column of Table 1. The oxidative deterioration test of each composition was carried out at 100 ° C. for 336 hours. table 1
Figure imgf000006_0001
以下余白
Figure imgf000006_0001
Below margin
表 1から、酸化劣化後の酸の生成量を見ると、実施例 1及び実施例 2ともに 0. 2mmo 1 Z 1であるのに対し、 比較例 1及び比較例 2は、 14mmo l Zl、 1 5mmo 1Z1と多く生成されていることがわかる。 一方、 導電率についてみ ると、 比較例 1、 2の各組成物については、 68. 0 2 S/cm, 73. 7 μ. S /cmと高い導電率を示しているのに対し、 実施例 1が 1 1. 7 SZcm、 実 施例 2が 8. 0 SZcmといずれも 1 5 ^ S Z c m以下の低い導電率が維持さ れていることがわかる。 発明の効果 Table 1 shows that the amount of acid generated after oxidative deterioration is 0.2 mmo 1 Z1 in both Examples 1 and 2, whereas Comparative Examples 1 and 2 show 14 mmo l Zl, 1 It can be seen that 5mmo 1Z1 is generated as much. On the other hand, regarding the electrical conductivity, each of the compositions of Comparative Examples 1 and 2 showed a high electrical conductivity of 68.0 2 S / cm and 73.7 μ.S / cm. Example 1 shows 11.7 SZcm, and Example 2 shows 8.0 SZcm, indicating that the low conductivity of 15 ^ SZcm or less is maintained. The invention's effect
本発明の組成物は、 基剤内に金属イオンを含有することから、 基剤の酸化によ るイオン性物質の生成を抑制し、 長期に渡って低導電率を維持することができる ものである。  Since the composition of the present invention contains a metal ion in the base, it can suppress the generation of ionic substances due to oxidation of the base and can maintain a low electrical conductivity for a long period of time. is there.

Claims

言青求の範匪 Speaking Band
1. 燃料電池を冷却する冷却液組成物であって、 金属イオンを含有することを 特徴とする燃料電池用冷却液組成物。  1. A coolant composition for cooling a fuel cell, which contains metal ions.
2. 金属イオンの濃度が、 0. 001 mmo l/1〜; L 0 mmo lZlで あることを特徴とする請求項 1に記載の燃料電池用冷却液組成物。 2. The fuel cell coolant composition according to claim 1, wherein the concentration of the metal ion is 0.001 mmol / 1 to L0 mmolZl.
3. 燃料電池用冷却液組成物の導電率を 1 5 SZcm以下に維持することを 特徴とする請求項 1に記載の燃料電池用冷却液組成物。 3. The fuel cell coolant composition according to claim 1, wherein the conductivity of the fuel cell coolant composition is maintained at 15 SZcm or less.
4. 金属イオンが、 アルミニウム、 チタン、 クロム、 マンガン、 鉄、 コノ ルト、 ニッケル、 銅、 亜鉛から選ばれる 1種又は 2種以上からなることを特徴とする請 求項 1に記載の燃料電池用冷却液組成物。 4. The fuel cell according to claim 1, wherein the metal ions comprise one or more selected from aluminum, titanium, chromium, manganese, iron, conolt, nickel, copper, and zinc. Coolant composition.
5. 金属イオンの濃度が、 0. 001 mmo l/l〜1 0 mmo lZlで あることを特徴とする請求項 4に記載の燃料電池用冷却液組成物。 5. The coolant composition for a fuel cell according to claim 4, wherein the concentration of the metal ion is 0.001 mmol / l to 10 mmolZl.
6. 燃料電池用冷却液組成物の導電率を 15 iSZcm以下に維持することを 特徴とする請求項 4に記載の燃料電池用冷却液組成物。 6. The coolant composition for a fuel cell according to claim 4, wherein the conductivity of the coolant composition for a fuel cell is maintained at 15 iSZcm or less.
7. 請求項 1〜6のいずれかに記載の燃料電池用冷却液組成物を使用した、 燃 料電池用冷却液 7. A coolant for a fuel cell using the coolant composition for a fuel cell according to any one of claims 1 to 6.
PCT/JP2004/003881 2004-03-22 2004-03-22 Cooling liquid composition for fuel cell WO2005091412A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/003881 WO2005091412A1 (en) 2004-03-22 2004-03-22 Cooling liquid composition for fuel cell
JP2006511109A JPWO2005091412A1 (en) 2004-03-22 2004-03-22 Coolant composition for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/003881 WO2005091412A1 (en) 2004-03-22 2004-03-22 Cooling liquid composition for fuel cell

Publications (1)

Publication Number Publication Date
WO2005091412A1 true WO2005091412A1 (en) 2005-09-29

Family

ID=34994001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003881 WO2005091412A1 (en) 2004-03-22 2004-03-22 Cooling liquid composition for fuel cell

Country Status (2)

Country Link
JP (1) JPWO2005091412A1 (en)
WO (1) WO2005091412A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817441B1 (en) * 1966-07-27 1973-05-29
JPS57192270A (en) * 1981-05-18 1982-11-26 Katayama Chem Works Co Ltd Corrosion inhibitor
JPH0221572A (en) * 1988-07-08 1990-01-24 Tokyo Electric Power Co Inc:The High temperature purification system of fuel cell water cooling line
JP2001164244A (en) * 1999-09-28 2001-06-19 Toyota Motor Corp Cooling liquid, filling method thereof and cooling system
JP2002280039A (en) * 2001-03-19 2002-09-27 Honda Motor Co Ltd Fuel cell cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817441B1 (en) * 1966-07-27 1973-05-29
JPS57192270A (en) * 1981-05-18 1982-11-26 Katayama Chem Works Co Ltd Corrosion inhibitor
JPH0221572A (en) * 1988-07-08 1990-01-24 Tokyo Electric Power Co Inc:The High temperature purification system of fuel cell water cooling line
JP2001164244A (en) * 1999-09-28 2001-06-19 Toyota Motor Corp Cooling liquid, filling method thereof and cooling system
JP2002280039A (en) * 2001-03-19 2002-09-27 Honda Motor Co Ltd Fuel cell cooling device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUELLER S.A. ET AL: "Leaching of Ions from Fuel Cell Vehicle Cooling System and Their Removal to Maintain Low Conductivity", SPECIAL PUBLICATIONS. SOCIETY OF AUTOMOTIVE ENGINEERS SP-1741, 2003, pages 135 - 139, XP 002980470 *

Also Published As

Publication number Publication date
JPWO2005091412A1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
RU2315797C2 (en) Composition of fuel element cooling fluid concentrate
JP4842420B2 (en) Cooling liquid, cooling liquid sealing method and cooling system
JP4478449B2 (en) Refrigerant for cooling system in fuel cell drive, containing azole derivative
ES2701408T3 (en) Method to produce stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator and fuel cell
AU2002346913A1 (en) Corrosion inhibiting compositions and methods for fuel cell coolant systems
US8187763B2 (en) Cooling liquid composition for fuel cell
JP4944381B2 (en) Refrigerant based on 1,3-propanediol containing azole derivatives for fuel cell-cooling systems
JP2006057088A (en) Cooling liquid composition, cooling system, and method for producing the cooling liquid composition
JPWO2003094271A1 (en) Coolant composition for fuel cell
JPWO2005091413A1 (en) Coolant composition for fuel cell
US20050109979A1 (en) Coolant composition for fuel cell
WO2005091412A1 (en) Cooling liquid composition for fuel cell
JP5017093B2 (en) Coolant composition for fuel cell
JP2004143265A (en) Cooling liquid, method for sealing cooling liquid and cooling system
CN110380045B (en) Magnesium alloy anode material, preparation method and application thereof, and magnesium air battery
WO2005105948A1 (en) Heating medium composition
JP2008059990A (en) Cooling liquid composition for fuel cell
WO2004091028A1 (en) Cooling liquid composition for fuel cell
WO2006103757A1 (en) Coolant composition for fuel cell
JP4785527B2 (en) Coolant composition for fuel cell
JP2008059825A (en) Cooling liquid composition for fuel cell
CA3227209A1 (en) Novel use for coolants with low electrical conductivity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511109

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase