WO2004091028A1 - Cooling liquid composition for fuel cell - Google Patents

Cooling liquid composition for fuel cell Download PDF

Info

Publication number
WO2004091028A1
WO2004091028A1 PCT/JP2003/004243 JP0304243W WO2004091028A1 WO 2004091028 A1 WO2004091028 A1 WO 2004091028A1 JP 0304243 W JP0304243 W JP 0304243W WO 2004091028 A1 WO2004091028 A1 WO 2004091028A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
composition
conductivity
fine particles
metal oxide
Prior art date
Application number
PCT/JP2003/004243
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Egawa
Naoshi Ito
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to JP2004570544A priority Critical patent/JP4512946B2/en
Priority to AU2003220837A priority patent/AU2003220837A1/en
Priority to PCT/JP2003/004243 priority patent/WO2004091028A1/en
Publication of WO2004091028A1 publication Critical patent/WO2004091028A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a coolant composition used for cooling a fuel cell, particularly to a fuel cell for an automobile, and more particularly to a coolant composition for a fuel cell having low electrical conductivity and excellent thermal characteristics.
  • the fuel cell receives a supply of fuel gas containing hydrogen on the anode side and a supply of oxidizing gas containing oxygen on the cathode side, and performs an electrochemical reaction (H 2 + (1/2)) 0 2 ⁇ H 2
  • an electrochemical reaction H 2 + (1/2)
  • the fuel cell directly converts chemical energy of the fuel supplied to the fuel cell into electric energy, and is known as a device having extremely high energy efficiency.
  • the electrochemical reaction is an exothermic reaction, heat is generated and discharged to the outside when the fuel cell is operated. For this reason, the fuel cell is required to have a configuration for removing heat generated during the operation of the fuel cell and keeping the operating temperature of the fuel cell within a predetermined temperature range.
  • a fuel cell is generally configured as a multi-layer stack structure in which single cells, which are power generation units, and separators are alternately stacked.
  • a flow path of a predetermined shape is formed in the stack structure.
  • cooling water is circulated through a flow path formed in the fuel cell stack structure to cool the stack, and the cooling water heated by the cooling of the stack is cooled.
  • the cooling water is cooled in a heat exchanging section such as the Lager and the cooled water is again supplied to the flow path in the fuel cell (for example, see Japanese Patent Application Laid-Open No. Hei 6-188013). ).
  • the temperature of the cooling water discharged from the fuel cell stack is as low as about 60 to 90 ° C, whereas the temperature of the external environment around the heat exchange section, such as Laje, is about 20 to 90 ° C. 40 ° C, and the temperature difference from the cooling water temperature is small, so the heat exchange efficiency of the heat exchange section such as Lager is poor, and the heat exchange area of the heat exchange section must be large for sufficient heat dissipation. I had to.
  • glycols, alcohols, glycol ethers, and the like as a base for the antifreezing property of the fuel cell, especially for the cooling liquid of an automobile fuel cell.
  • glycols, alcohols, glycol ethers, and the like were inferior in thermal properties to water, and in particular, had low thermal conductivity.
  • an object of the present invention is to provide a coolant composition for a fuel cell which has low electrical conductivity and excellent thermal characteristics. Disclosure of the invention
  • the composition of the present invention relates to a cooling liquid composition used for cooling a fuel cell, particularly a fuel cell for an automobile, characterized in that the base contains fine particles of a metal oxide. Things.
  • the base is selected from glycols, alcohols, and glycol ethers having low electrical conductivity (preferably 50 ⁇ SZ cm or less) and antifreeze (performance that does not freeze even at 0 ° C or less).
  • Bases composed of one or more kinds, or bases containing one or more kinds selected from glycols, alcohols and dalicol ethers, and water can be mentioned.
  • the glycols are, for example, one selected from ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, and hexylene glycol. Those composed of two or more types can be mentioned.
  • Examples of alcohols include those composed of one or more selected from methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, and octanol.
  • dalicol ethers examples include ethylene dalicol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, and triethylene.
  • One or two selected from glycol monoethyl ether, tetraethylene glycol monoethyl ether, ethylene glycol monobutyl ether, methylene glycol monobutyl ether, triethylene glycol monobutyl ether, and tetraethylene glycol monobutyl ether The following can be mentioned.
  • As the water low-conductivity ion exchange water or distilled water is used.
  • the fine particles of metal oxide include any of copper oxide, aluminum oxide, and titanium oxide, Or a mixture thereof can be mentioned.
  • the composition of the present invention absorbs the heat generated along with the progress of the electrochemical reaction in the stack structure due to the high thermal conductivity of the fine particles, resulting in highly efficient exhaustion. Heat will be applied.
  • the average particle size of the metal oxide fine particles is preferably from 0.01 to 0.1 m. If the average particle size is smaller than 0.001 m, sufficient thermal properties, especially thermal conductivity, cannot be provided to the composition, and if the average particle size is larger than 0.1 m, The harmful effects such as poor dispersibility in the composition will result.
  • the metal oxide fine particles be contained in the range of 0.1 to 15% by weight. If the content of the metal oxide fine particles is less than 0.1% by weight, sufficient thermal properties, especially thermal conductivity, cannot be provided to the composition, and the content of the metal oxide fine particles is reduced to 15%. If the content is more than the weight%, the effect cannot be expected only by the increased content, which is uneconomical.
  • the metal oxide fine particles are dispersed relatively stably because the average particle size is as small as 0.001 to 0.1 m.
  • the dispersant for fine particles can be contained within a range where the conductivity can be maintained at a low conductivity, preferably 50 S / cm or less without increasing the electric conductivity.
  • Examples of the fine particle dispersant include anionic surfactants, cationic surfactants, and nonionic surfactants.
  • Examples of the anionic surfactant include a carboxylate, a sulfonate, a sulfate ester salt, and a phosphate ester salt.In addition, low molecular weight compounds and high molecular weight compounds are also used as the anion surfactant. Can be used.
  • Examples of the nonionic surfactant include polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ether, and polyoxyethylene fatty acid ester.
  • compositions can be contained within a range that can maintain low conductivity, preferably 50 zS / cm or less, without increasing the low conductivity.
  • composition of the present invention may further contain a mackerel additive.
  • the protective additive is not particularly limited, and conventionally known protective additives can be used.
  • the conductivity of the composition is preferably low, It is more preferable that the metal can be maintained at 5 O SZcm or less and that the change in conductivity can be maintained in the range of 0 to 10 S / cm even when used for a long period of time.
  • a protective agent include a substance that suppresses oxidation of the base and prevents an increase in the electrical conductivity of the coolant composition, or blocks ions eluted into the coolant system, and A substance that prevents an increase in the conductivity of the composition can be used.
  • substances that suppress the oxidation of the base and prevent an increase in electrical conductivity include phenolsulfonic acid, chlorophenol, nitrophenol, bromophenol, aminophenol, dihydroxybenzene, oxine, hydroxyacetophenone, and methoxy.
  • Compounds that block ions and prevent an increase in conductivity include carbonization. Containing carbonylation Le compounds, amide compounds, Imido compound, and any of Jiazoru compound ani I can do it.
  • hydrocarbon carbonyl compound examples include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, and 3-pill-one 2,4-pentanedione.
  • Dithione 3-n-butyl-1,2, '4-pentanedione, 2,3-heptanedione, 2,5-hexanedione, phthalaldehyde, benzaldehyde, dihydroxybenzaldehyde, pentanone, 2-acetylcyclopentanone, Examples thereof include one or more selected from cyclohexanone, cyclohexanedione, 2,2,6,6-tetramethyl-3,5-heptanedione.
  • the amide compound is, for example, one or two selected from benzamide, methylbenzamide, nicotinamide, picolinamide, anthranilamide, succinamide, oxalic acid diamide, acetoamide, 2-pyrrolidone, and caprolactam And those comprising more than one species.
  • the imide compound for example, one or more compounds selected from succinimide, fluorinated imide, maleic imide, daltarimide, 1,8-naphthalimide, aloxane, and purpuric acid can be used. Can be mentioned.
  • diazo compound examples include imidazoline, 1,3-diazole, mercaptoimidazoline, mercaptoimidazole, benzimidazole, mercaptobenzimidazole, methylimidazole, dimethylimidazole, imidazo-lu-4,5-dicarboxylic acid, and 1,2,5-dicarboxylic acid.
  • diazole and methylpyrazole One or more of diazole and methylpyrazole.
  • the content of the protective additive is preferably in the range of 0.001 to 10.0% by weight based on the weight of the base.
  • composition of the present invention will be described in more detail with reference to Examples.
  • Table 1 as a preferred embodiment of the composition of the present invention, a composition based on ethylene glycol and ion-exchanged water was added with 5% of aluminum oxide having an average particle size of 30 nm. A sample without aluminum oxide was used as a comparative example.
  • Table 2 shows that the compositions of the examples not only have low initial conductivity, but also As for the conductivity, it was confirmed that the increase in the conductivity was smaller than that of the comparative example, and the conductivity was excellent in low conductivity.
  • the thermal conductivity was compared, it was confirmed that the addition of the fine aluminum oxide powder increased the thermal conductivity by about 10%. From the above, it was confirmed that the compositions according to the examples of the present invention had low electrical conductivity and excellent thermal characteristics.
  • the present invention relates to a method such as the addition of an antifoaming agent or a coloring agent in a range that can maintain the low electrical conductivity of the composition without increasing the low electrical conductivity, preferably 50 SZ cm or less. It can be implemented freely within the scope described in “Claims”.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A cooling liquid composition being used for cooling a fuel cell, especially a fuel cell for automobile, characterized in that the composition comprises one kind or more than one kind of base selected from glycols, alcohols, and glycol ethers, or a base containing water and one kind or more than one kind selected from glycols, alcohols, and glycol ethers, and fine particles of a metal oxide, thus delivering a low conductivity and exhibiting excellent thermal characteristics.

Description

明糸田書 燃料電池用冷却液組成物 技術分野  Akira Itoda Coolant composition for fuel cells Technical field
本発明は、 燃料電池、 特には自動車用燃料電池の冷却に使用される冷却液組成 物に関し、 詳細には低導電率であり、 かつ熱特性に優れる燃料電池用冷却液組成 物に関する。 背景技術  The present invention relates to a coolant composition used for cooling a fuel cell, particularly to a fuel cell for an automobile, and more particularly to a coolant composition for a fuel cell having low electrical conductivity and excellent thermal characteristics. Background art
燃料電池は、 陽極側に水素を含有する燃料ガスの供給を受け、 陰極側に酸素を 含有する酸化ガスの供給を受けて、 電気化学反応 (H 2 + ( 1 / 2 ) 0 2 → H 2 O) によって起電力を得る装置である。 このように、 燃料電池は、 燃料電池に供給される燃料が持つ化学エネルギーを 電気エネルギーに直接変換するものであり、 エネルギ効率が非常に高い装置とし て知られている。 ところが、 上記電気化学反応は発熱反応であることから、 当該燃料電池を運転 する際には熱が発生して外部に放出される。 このため、 燃料電池には、 燃料電池 の運転の際に生じる熱を取り除き、 燃料電池の運転温度を所定の温度範囲に保つ ための構成が要求される。 燃料電池は、 一般に発電単位である単セルとセパレー夕とが交互に積層した多 層のスタック構造として構成されており、 このスタック構造内に所定の形状の流 路を形成し、 この流路内に冷却水を流通させることによって、 電気化学反応の進 行と共に生じる熱を冷却水によって取り除き、 燃料電池の運転温度を所定の範囲 に保っていた。 従来、 このような構成を持つ燃料電池としては、 燃料電池のスタック構造内に 形成した流路内に冷却水を流通させてスタックを冷却し、 スタックの冷却によつ て昇温した冷却水を、 ラジェ一夕などの熱交換部において冷却し、 冷却した冷却 水を再び燃料電池内の上記流路に供給するものが知られている (例えば特開平 6 一 1 8 8 0 1 3号公報参照)。 ところが、 燃料電池のスタック内から排出された冷却水の温度は、 およそ 6 0 〜9 0 °Cと低く、 これに対してラジェ一夕などの熱交換部周りの外部環境温度は およそ 2 0〜4 0 °Cであり、 冷却水の温度との温度差が小さいことから、 ラジェ 一夕などの熱交換部の放熱効率が悪く、 十分に排熱するには熱交換部の放熱面積 を広くしなければならなかった。 このため、 燃料電池のシステム内に大型の熱交 換部を設置しなければならないという問題があつた。 一方、 燃料電池の冷却液は、 発電を実行しているスタックの流路内を流通させ て直接ス夕ックを冷却するため、 当該冷却液の電気伝導率が高いと、 スタックで 生じた電気が冷却液側へと流れて電気を損失し、 該燃料電池における発電力を低 下させるという不具合を引き起こすことになる。 このため、 従来の燃料電池の冷却液には、 スタック外部への漏電を防ぐために 導電性が低い、 換言すれば電気絶縁性が高い純水が使用されていた。 ところが、 例えば自動車用燃料電池など、 間欠運転型燃料電池の場合、 非作動 時に冷却液は周囲の温度まで低下してしまう。 特に氷点下での使用可能性がある 場合、 純水では凍結してしまい、 冷却液の体積膨張による冷却板の破損など、 燃 料電池の電池性能を損なう恐れがあつた。 このような事情から燃料電池、 特には自動車用燃料電池の冷却液には、 不凍性 を目的として、 グリコール類、 アルコール類およびグリコールエーテル類などを 基剤として使用することが考えられる。 しかしながら、 グリコ一ル類、 アルコール類およびグリコールエーテル類など は、 水と比較して熱特性に劣り、 特には熱伝導率が低いという性質があった。 こ のため、 これらを基剤とする冷却液を使用した場合には、 冷却液がスタック内か ら発生した熱を奪い難くなるために、 冷却水量を多くする必要があり、 さらに熱 交換部での放熱効率も悪くなることから、 放熱面積の大きな熱交換部を設置しな ければならないという問題があつた。 一方、 熱媒体などの熱伝導率を上昇させるために、 熱媒体中に熱伝導率の高い 金属や金属酸化物の微粒子を加えて、 熱媒体自体の熱伝達性能を向上させる方法 が知られている (例えば、 Transaction of the ASME , Journal of Heat Transfer 121, p280,1999や USPatentNo 6 , 2 2 1 , 2 7 5 Bl或いは WO01/98431A1参照)。 ところが、 これらの技術は、 燃料電池の冷却液として重要な低導電性を考慮し たものではないので、 当該技術をそのまま燃料電池用の冷却液組成物に適用した 場合には、 長期の使用によって導電性の上昇を引き起こす可能性があった。 本発明者は、 上記技術的課題に鑑み、 低導電率であり、 かつ熱特性に優れる燃 料電池用冷却液組成物について鋭意研究を重ねた結果、 本発明を完成するに至つ たのである。 すなわち本発明は、 低導電率であり、 かつ熱特性に優れる燃料電池用冷却液組 成物を提供することを目的とするものである。 発明の開示 The fuel cell receives a supply of fuel gas containing hydrogen on the anode side and a supply of oxidizing gas containing oxygen on the cathode side, and performs an electrochemical reaction (H 2 + (1/2)) 0 2 → H 2 This is a device to obtain electromotive force by O). As described above, the fuel cell directly converts chemical energy of the fuel supplied to the fuel cell into electric energy, and is known as a device having extremely high energy efficiency. However, since the electrochemical reaction is an exothermic reaction, heat is generated and discharged to the outside when the fuel cell is operated. For this reason, the fuel cell is required to have a configuration for removing heat generated during the operation of the fuel cell and keeping the operating temperature of the fuel cell within a predetermined temperature range. A fuel cell is generally configured as a multi-layer stack structure in which single cells, which are power generation units, and separators are alternately stacked. A flow path of a predetermined shape is formed in the stack structure. By passing the cooling water through, the heat generated with the progress of the electrochemical reaction was removed by the cooling water, and the operating temperature of the fuel cell was kept within a predetermined range. Conventionally, as a fuel cell having such a configuration, cooling water is circulated through a flow path formed in the fuel cell stack structure to cool the stack, and the cooling water heated by the cooling of the stack is cooled. It is known that the cooling water is cooled in a heat exchanging section such as the Lager and the cooled water is again supplied to the flow path in the fuel cell (for example, see Japanese Patent Application Laid-Open No. Hei 6-188013). ). However, the temperature of the cooling water discharged from the fuel cell stack is as low as about 60 to 90 ° C, whereas the temperature of the external environment around the heat exchange section, such as Laje, is about 20 to 90 ° C. 40 ° C, and the temperature difference from the cooling water temperature is small, so the heat exchange efficiency of the heat exchange section such as Lager is poor, and the heat exchange area of the heat exchange section must be large for sufficient heat dissipation. I had to. For this reason, there was a problem that a large heat exchange section had to be installed in the fuel cell system. On the other hand, since the coolant of the fuel cell circulates in the flow path of the stack that is generating power and directly cools the stack, if the electrical conductivity of the coolant is high, the electricity generated in the stack Will flow to the coolant side and lose electricity, causing a problem of lowering the power generation in the fuel cell. For this reason, pure water having low conductivity, in other words, highly electrically insulating, has been used as the coolant for the conventional fuel cell in order to prevent leakage to the outside of the stack. However, in the case of an intermittent fuel cell such as a fuel cell for an automobile, for example, the coolant drops to the ambient temperature when it is not operating. In particular, if there is a possibility that the battery can be used below the freezing point, it will freeze in pure water, and the cooling plate may be damaged due to volume expansion of the coolant, which may impair the battery performance of the fuel cell. Under these circumstances, it is conceivable to use glycols, alcohols, glycol ethers, and the like as a base for the antifreezing property of the fuel cell, especially for the cooling liquid of an automobile fuel cell. However, glycols, alcohols, glycol ethers, and the like were inferior in thermal properties to water, and in particular, had low thermal conductivity. For this reason, when using coolants based on these, it is difficult for the coolant to take away the heat generated from within the stack, so it is necessary to increase the amount of cooling water, and furthermore, in the heat exchange section However, the heat dissipation efficiency of the heat exchanger deteriorates, so a heat exchange area with a large heat dissipation area must be installed. On the other hand, there has been known a method of improving the heat transfer performance of the heat medium itself by adding fine particles of a metal or metal oxide having a high heat conductivity to the heat medium in order to increase the heat conductivity of the heat medium or the like. (For example, see Transaction of the ASME, Journal of Heat Transfer 121, p280, 1999, US Patent No. 6, 221, 275 Bl or WO01 / 98431A1). However, these technologies do not take into account the low conductivity that is important as a fuel cell coolant, and if these technologies were applied to the fuel cell coolant composition as they were, they would require long-term use. It could cause an increase in conductivity. In view of the above technical problems, the present inventors have conducted intensive studies on a cooling liquid composition for a fuel cell having low electrical conductivity and excellent thermal characteristics, and as a result, have completed the present invention. . That is, an object of the present invention is to provide a coolant composition for a fuel cell which has low electrical conductivity and excellent thermal characteristics. Disclosure of the invention
以下、 本発明の燃料電池用冷却液組成物 (以下、 単に組成物という) をさらに 詳しく説明する。 本発明の組成物は、 燃料電池、 特には自動車用燃料電池の冷却 に使用される冷却液組成物に関するものであり、 基剤中に金属酸化物の微粒子を 含有していることを特徴とするものである。 基剤としては、低導電率(好ましくは 5 0 ^ S Z c m以下)であって不凍性( 0 °C以下でも凍結しない性能) を有するグリコール類、 アルコール類およびグリコ ールエーテル類の中から選ばれる 1種若しくは 2種以上からなる基剤、 またはグ リコール類、 アルコール類およびダリコールエーテル類の中から選ばれる 1種若 しくは 2種以上と水とを含む基剤を挙げることができる。 グリコール類としては、 例えばエチレングリコール、 ジエチレングリコール、 トリエチレングリコール、 プロピレングリコール、 1, 3—プロパンジオール、 1 , 3—ブタンジオール、 1 , 5 _ペンタンジオール、 へキシレングリコールの 中から選ばれる 1種若しくは 2種以上からなるものを挙げることができる。 アルコール類としては、 例えばメタノール、 エタノール、 プロパノール、 ブタ ノール、 ペン夕ノール、 へキサノール、 ヘプ夕ノール、 ォクタノールの中から選 ばれる 1種若しくは 2種以上からなるものを挙げることができる。 ダリコールエーテル類としては、 例えばエチレンダリコールモノメチルエーテ ル、 ジエチレングリコールモノメチルエーテル、 トリエチレングリコールモノメ チルェ一テル、 テトラエチレングリコールモノメチルエーテル、 エチレングリコ —ルモノェチルエーテル、 ジエチレングリコールモノェチルエーテル、 トリェチ レングリコールモノェチルエーテル、 テトラェチレングリコールモノェチルエー テル、 エチレングリコールモノブチルエーテル、 ジェチレングリコールモノブチ ルエーテル、 トリエチレングリコールモノブチルエーテル、 テトラエチレンダリ コールモノブチルエーテルの中から選ばれる 1種若しくは 2種以上からなるもの を挙げることができる。 水には、 低導電率のィォン交換水や蒸留水などを用いる。 金属酸化物の微粒子としては、 酸化銅、 酸化アルミ、 酸化チタンのいずれか、 またはこれらの混合物を挙げることができる。 これらの金属酸化物の微粒子を含 有することにより、 本発明の組成物は、 当該微粒子の持つ高い熱伝導率によって スタック構造内での電気化学反応の進行と共に生じる熱を吸収し、 高効率な排熱 がなされることになる。' 金属酸化物の微粒子の平均粒径としては、 0 . 0 0 1〜0 . 1 mが好ましい。 平均粒径が 0 . 0 0 1 mよりも小さくなると、 十分な熱特性、 特には熱伝導率 を当該組成物にもたらすことができなくなり、 平均粒径が 0 . 1 mよりも大き い場合には、組成物中への分散性が悪くなるといった弊害をもたらすことになる。 また、 金属酸化物の微粒子は、 0 . 1〜1 5重量%の範囲で含有していること が望ましい。 金属酸化物の微粒子の含有量が 0 . 1重量%を下回る場合、 十分な 熱特性、 特には熱伝導率を当該組成物にもたらすことができなくなり、 金属酸化 物の微粒子の含有量が 1 5重量%を上回る場合には、 含有量が増えた分だけの効 果が期待できず、 不経済となる。 また、 金属酸化物の微粒子は、 平均粒径が 0 . 0 0 1〜0 . 1 mと小さいた め、 比較的安定に分散しているが、 さらに安定化させるため、 当該組成物の低導 電率を上昇させないで、 低導電率、 好ましくは 5 0 S / c m以下に維持できる 範囲で微粒子の分散剤を含有させることができる。 微粒子の分散剤としては、 ァ 二オン系界面活性剤、 カチオン系界面活性剤およびノニオン系界面活性剤を挙げ ることができる。 ァニオン系界面活性剤としては、 カルボン酸塩、 スルホン酸塩、 硫酸エステル 塩、 リン酸エステル塩などを挙げることができ、 その他に低分子の化合物や高分 子型化合物もァニオン系界面活性剤として用いることができる。 ノニオン系界面 活性剤としては、 例えばポリオキシエチレンアルキルフエノールエーテル、 ポリ ォキシエチレンアルキルエーテル、 ポリオキシエチレン脂肪酸エステルを挙げる ことができる。 また、 上記界面活性剤のほかに、 トリポリリン酸塩などの高分子分散剤、 メチ ルセルロース、 カルポキシメチルセルロースなどのセルロースエーテル類、 ポリ ピニルアルコールなどの水溶性高分子などの微粒子の分散剤も、 同じく当該組成 物の低導電率を上昇させないで低導電率、 好ましくは 50 zS/cm以下に維持 できる範囲で含有させることができる。 また本発明の組成物には、 さらに防鯖添加剤を含ませることができる。 防鲭添 加剤としては特に限定されず、 従来より公知の防鑌添加剤を使用することができ るが、 上記基剤中に添加したとき、 該組成物の導電率を低導電率、 好ましくは 5 O SZcm以下に維持でき、 かつ長期に亘つて使用した場合でも、 導電率の変 動を 0〜10 S/cmの範囲内に維持できるものがより望ましい。 このような防鲭添加剤としては、 基剤の酸化を抑制して、 冷却液組成物の導電 率の上昇を防止する物質、 又は冷却システム内に溶出するイオンを封鎖して、 前 記冷却液組成物の導電率の上昇を防止する物質を挙げることができる。 基剤の酸化を抑制して、 導電率の上昇を防止する物質としては 例えばフエノ 一ルスルホン酸、 クロ口フエノール、 ニトロフエノール、 ブロモフエノール、 ァ ミノフエノール、ジヒドロキシベンゼン、ォキシン、 ヒドロキシァセトフエノン、 メトキシフエノール、 2, 6—ジー t e r t—プチルー p—クレゾール、 t e r tーブチルー 4ーメ卜キシフエノール、 2, 6—ジー t e r t—ブチルー 4—ェ チルフエノール、 4, 4ーブチリデンビスー (3—メチルー 6— t e r t—ブチ ルフエノール)、 2, 2—メチレンビス一 (4ーメチルー 6— t e r t—ブチル フエノール、 2, 2一ビス (p—ヒドロキシフエニル) プロパンの中から選ばれ る 1種若しくは 2種以上からなるフェノール化合物を挙げることができる。 イオンを封鎖して、 導電率の上昇を防止する物質としては、 炭化水素カルボ二 ル化合物、 アミド化合物、 ィミド化合物、 及びジァゾール化合物のいずれかを挙 げることができる。 炭化水素カルポニル化合物としては、 例えば 2, 4一ペン夕ンジオン、 3—メ チルー 2 , 4—ペンタンジオン、 3—ェチル—2, 4一ペンタンジオン、 3—プ 口ピル一 2, 4—ペン夕ンジオン、 3— n—ブチル一 2, '4—ペンタンジオン、 2 , 3—ヘプタンジオン、 2, 5—へキサンジオン、 フタルアルデヒド、 ベンズ アルデヒド、 ジヒドロキシベンズアルデヒド、 ペン夕ノン、 2—ァセチルシクロ ペン夕ノン、 シクロへキサノン、 シクロへキサンジオン、 2, 2 , 6 , 6—テト ラメチルー 3, 5一ヘプタンジオンの中から選ばれる 1種若しくは 2種以上から なるものを挙げることができる。 ' アミド化合物としては、 例えばべンズアミド、 メチルベンズアミド、 ニコチン 酸アミド、 ピコリン酸アミド、 アントラニルアミド、 コハク酸アミド、 シユウ酸 ジアミド、 ァセトアミド、 2—ピロリドン、 力プロラクタムの中から選ばれる 1 種若しくは 2種以上からなるものを挙げることができる。 イミド化合物としては、 例えばコハク酸イミド、 フ夕ル酸イミド、 マレイン酸 イミド、 ダルタル酸イミド、 1, 8 _ナフタルイミド、 ァロキサン、 プルプル酸 の中から選ばれる 1種若しくは 2種以上からなるものを挙げることができる。 ジァゾ一ル化合物としては、 例えばイミダゾリン、 1 , 3—ジァゾール、 メル カプトイミダゾリン、 メルカプトイミダゾール、 ベンズイミダゾール、 メルカプ トベンズイミダゾール、 メチルイミダゾール、 ジメチルイミダゾール、 イミダゾ —ルー 4 , 5—ジカルボン酸、 1, 2—ジァゾ一ル、 メチルピラゾールの中から 選ばれる 1種若しくは 2種以上からなるものを挙げることができる。 防鲭添加剤の含有量としては、 基剤に対し、 0 . 0 0 1〜1 0 . 0重量%の範 囲とするのが望ましい。 上記範囲よりも防鯖添加剤の含有量が少ない場合には、 充分な防鲭カを得ることができず、 上記範囲よりも防鲭添加剤の含有量が多い場 合には、 増えた分だけの効果が得られず、 不経済となる。 本発明を実施する最良の態様 Hereinafter, the coolant composition for a fuel cell of the present invention (hereinafter, simply referred to as a composition) will be described in more detail. The composition of the present invention relates to a cooling liquid composition used for cooling a fuel cell, particularly a fuel cell for an automobile, characterized in that the base contains fine particles of a metal oxide. Things. The base is selected from glycols, alcohols, and glycol ethers having low electrical conductivity (preferably 50 ^ SZ cm or less) and antifreeze (performance that does not freeze even at 0 ° C or less). Bases composed of one or more kinds, or bases containing one or more kinds selected from glycols, alcohols and dalicol ethers, and water can be mentioned. The glycols are, for example, one selected from ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, and hexylene glycol. Those composed of two or more types can be mentioned. Examples of alcohols include those composed of one or more selected from methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, and octanol. Examples of dalicol ethers include ethylene dalicol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, and triethylene. One or two selected from glycol monoethyl ether, tetraethylene glycol monoethyl ether, ethylene glycol monobutyl ether, methylene glycol monobutyl ether, triethylene glycol monobutyl ether, and tetraethylene glycol monobutyl ether The following can be mentioned. As the water, low-conductivity ion exchange water or distilled water is used. The fine particles of metal oxide include any of copper oxide, aluminum oxide, and titanium oxide, Or a mixture thereof can be mentioned. By containing the fine particles of these metal oxides, the composition of the present invention absorbs the heat generated along with the progress of the electrochemical reaction in the stack structure due to the high thermal conductivity of the fine particles, resulting in highly efficient exhaustion. Heat will be applied. 'The average particle size of the metal oxide fine particles is preferably from 0.01 to 0.1 m. If the average particle size is smaller than 0.001 m, sufficient thermal properties, especially thermal conductivity, cannot be provided to the composition, and if the average particle size is larger than 0.1 m, The harmful effects such as poor dispersibility in the composition will result. It is desirable that the metal oxide fine particles be contained in the range of 0.1 to 15% by weight. If the content of the metal oxide fine particles is less than 0.1% by weight, sufficient thermal properties, especially thermal conductivity, cannot be provided to the composition, and the content of the metal oxide fine particles is reduced to 15%. If the content is more than the weight%, the effect cannot be expected only by the increased content, which is uneconomical. The metal oxide fine particles are dispersed relatively stably because the average particle size is as small as 0.001 to 0.1 m. The dispersant for fine particles can be contained within a range where the conductivity can be maintained at a low conductivity, preferably 50 S / cm or less without increasing the electric conductivity. Examples of the fine particle dispersant include anionic surfactants, cationic surfactants, and nonionic surfactants. Examples of the anionic surfactant include a carboxylate, a sulfonate, a sulfate ester salt, and a phosphate ester salt.In addition, low molecular weight compounds and high molecular weight compounds are also used as the anion surfactant. Can be used. Examples of the nonionic surfactant include polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ether, and polyoxyethylene fatty acid ester. In addition to the above surfactants, polymer dispersants such as tripolyphosphate, cellulose ethers such as methylcellulose and carboxymethylcellulose, and fine particles such as water-soluble polymers such as polypinyl alcohol are also used. Similarly, the composition can be contained within a range that can maintain low conductivity, preferably 50 zS / cm or less, without increasing the low conductivity. Further, the composition of the present invention may further contain a mackerel additive. The protective additive is not particularly limited, and conventionally known protective additives can be used. However, when added to the above-mentioned base, the conductivity of the composition is preferably low, It is more preferable that the metal can be maintained at 5 O SZcm or less and that the change in conductivity can be maintained in the range of 0 to 10 S / cm even when used for a long period of time. Examples of such a protective agent include a substance that suppresses oxidation of the base and prevents an increase in the electrical conductivity of the coolant composition, or blocks ions eluted into the coolant system, and A substance that prevents an increase in the conductivity of the composition can be used. Examples of substances that suppress the oxidation of the base and prevent an increase in electrical conductivity include phenolsulfonic acid, chlorophenol, nitrophenol, bromophenol, aminophenol, dihydroxybenzene, oxine, hydroxyacetophenone, and methoxy. Phenol, 2,6-di-tert-butyl-p-cresol, tert-butyl-4-methoxyphenol, 2,6-di-tert-butyl-4-ethyl phenol, 4,4-butylidenebis (3-methyl-6- Phenol consisting of one or more selected from tert-butylphenol), 2,2-methylenebis- (4-methyl-6-tert-butylphenol) and 2,2-bis (p-hydroxyphenyl) propane Compounds that block ions and prevent an increase in conductivity include carbonization. Containing carbonylation Le compounds, amide compounds, Imido compound, and any of Jiazoru compound ani I can do it. Examples of the hydrocarbon carbonyl compound include 2,4-pentanedione, 3-methyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, and 3-pill-one 2,4-pentanedione. Dithione, 3-n-butyl-1,2, '4-pentanedione, 2,3-heptanedione, 2,5-hexanedione, phthalaldehyde, benzaldehyde, dihydroxybenzaldehyde, pentanone, 2-acetylcyclopentanone, Examples thereof include one or more selected from cyclohexanone, cyclohexanedione, 2,2,6,6-tetramethyl-3,5-heptanedione. '' The amide compound is, for example, one or two selected from benzamide, methylbenzamide, nicotinamide, picolinamide, anthranilamide, succinamide, oxalic acid diamide, acetoamide, 2-pyrrolidone, and caprolactam And those comprising more than one species. As the imide compound, for example, one or more compounds selected from succinimide, fluorinated imide, maleic imide, daltarimide, 1,8-naphthalimide, aloxane, and purpuric acid can be used. Can be mentioned. Examples of the diazo compound include imidazoline, 1,3-diazole, mercaptoimidazoline, mercaptoimidazole, benzimidazole, mercaptobenzimidazole, methylimidazole, dimethylimidazole, imidazo-lu-4,5-dicarboxylic acid, and 1,2,5-dicarboxylic acid. — One or more of diazole and methylpyrazole. The content of the protective additive is preferably in the range of 0.001 to 10.0% by weight based on the weight of the base. When the content of the saba protection additive is smaller than the above range, sufficient protection cannot be obtained, and when the content of the saba protection additive is higher than the above range, In this case, the effect of the increased amount cannot be obtained, and it becomes uneconomical. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の組成物を実施例に従いさらに詳しく説明する。 下記表 1に示す ように、 本発明の組成物の好ましい実施例として、 エチレングリコールおよびィ オン交換水を基剤とする組成物に平均粒径 3 0 n mの酸化アルミニウムを 5 %添 加したものを用い、 酸化アルミニウムを添加しないものを比較例として用いた。  Hereinafter, the composition of the present invention will be described in more detail with reference to Examples. As shown in Table 1 below, as a preferred embodiment of the composition of the present invention, a composition based on ethylene glycol and ion-exchanged water was added with 5% of aluminum oxide having an average particle size of 30 nm. A sample without aluminum oxide was used as a comparative example.
(以下余白) (Hereinafter the margin)
(重量%) (% By weight)
Figure imgf000010_0001
表 1に示す実施例および比較例の各組成物について、 それぞれ初期導電率(
Figure imgf000010_0001
For each of the compositions of Examples and Comparative Examples shown in Table 1, the initial conductivity (
SZcm)、 耐久試験後の導電率 S /cm)、 および熱伝導率 (W/mK) を 測定した。その結果を表 2に示す。尚、耐久試験後の導電率の測定に関し、通常、 燃料電池を冷却する冷却液の液温は 80°C程度であるが、 加速を目的として耐久 試験では 120 で実施し、 168時間後の導電率を測定した。 表 2 SZcm), conductivity after endurance test S / cm), and thermal conductivity (W / mK) were measured. The results are shown in Table 2. For the measurement of the conductivity after the durability test, the temperature of the coolant for cooling the fuel cell is usually about 80 ° C. However, for the purpose of acceleration, the durability test was performed at 120 and the conductivity after 168 hours. The rate was measured. Table 2
Figure imgf000010_0002
表 2から、 実施例の組成物は、 初期導電率が低いだけではなく、 耐久試験後の 導電率についても、 比較例のものに比較して導電率の上昇は小さく、 低導電性に 優れることが確認された。 また、 熱伝導率を比較したとき、 酸化アルミニウム微 粉末の添加により、 約 1 0 %の熱伝導率の上昇が確認された。 以上のことから、 本発明の実施例に係る組成物は、 低導電率を有し、 かつ熱特性に優れていること が確認された。 尚、 本発明は、 例えば当該組成物の低導電率を上昇させないで低導電率、 好ま しくは 5 0 S Z c m以下に維持できる範囲で消泡剤や着色剤等を含有させるな ど、 「特許請求の範囲」 に記載された範囲で自由に実施することができる。
Figure imgf000010_0002
Table 2 shows that the compositions of the examples not only have low initial conductivity, but also As for the conductivity, it was confirmed that the increase in the conductivity was smaller than that of the comparative example, and the conductivity was excellent in low conductivity. When the thermal conductivity was compared, it was confirmed that the addition of the fine aluminum oxide powder increased the thermal conductivity by about 10%. From the above, it was confirmed that the compositions according to the examples of the present invention had low electrical conductivity and excellent thermal characteristics. In addition, the present invention relates to a method such as the addition of an antifoaming agent or a coloring agent in a range that can maintain the low electrical conductivity of the composition without increasing the low electrical conductivity, preferably 50 SZ cm or less. It can be implemented freely within the scope described in “Claims”.

Claims

言青求の範囲 Scope of Word
1 . 燃料電池を冷却する低導電性の冷却液組成物であって、 1. A low-conductive coolant composition for cooling a fuel cell,
グリコール類、 アルコール類およびダリコールエーテル類の中から選ばれる 1種 若しくは 2種以上からなる基剤、 またはグリコール類、 アルコール類およびダリ コールエーテル類の中から選ばれる 1種若しくは 2種以上と水とを含む基剤と、 金属酸化物の微粒子とを含有していることを特徴とする燃料電池用冷却液組成 物。 One or more bases selected from glycols, alcohols and dalicol ethers, or one or more bases selected from glycols, alcohols and dalicol ethers, and water A coolant composition for a fuel cell, comprising: a base material comprising: and a metal oxide fine particle.
2 . 金属酸化物の微粒子が、 酸化銅、 酸化アルミ、 酸化チタンのいずれか、 ま たはこれらの混合物であることを特徴とする請求項 1記載の燃料電池用冷却液組 成物。 2. The fuel cell coolant composition according to claim 1, wherein the metal oxide fine particles are any one of copper oxide, aluminum oxide, and titanium oxide, or a mixture thereof.
3 . 金属酸化物の微粒子の平均粒径が、 金属酸化物の微粒子の平均粒径として は、 0 . 0 0 1〜 0 . 1 !丄 mであることを特徴とする請求項 1または 2記載の燃 料電池用冷却液組成物。 3. The average particle diameter of the metal oxide fine particles is from 0.001 to 0.1! 3. The coolant composition for a fuel cell according to claim 1, wherein the composition is 丄 m.
4 · 金属酸化物の微粒子の含有量が. 0 . 1〜 1 5重量%であることを特徴と する請求項 1〜 3のいずれかに記載の燃料電池用冷却液組成物。 4. The coolant composition for a fuel cell according to claim 1, wherein the content of the metal oxide fine particles is 0.1 to 15% by weight.
5 . 微粒子の分散剤をさらに含有することを特徴とする請求項 1〜4のいずれ かに記載の燃料電池用冷却液組成物。 5. The cooling liquid composition for a fuel cell according to any one of claims 1 to 4, further comprising a fine particle dispersant.
6 · 防鲭添加剤をさらに含有することを特徴とする請求項 1〜 5のいずれかに 記載の燃料電池用冷却液組成物。 6. The coolant composition for a fuel cell according to any one of claims 1 to 5, further comprising a fire protection additive.
PCT/JP2003/004243 2003-04-02 2003-04-02 Cooling liquid composition for fuel cell WO2004091028A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004570544A JP4512946B2 (en) 2003-04-02 2003-04-02 Coolant composition for fuel cell
AU2003220837A AU2003220837A1 (en) 2003-04-02 2003-04-02 Cooling liquid composition for fuel cell
PCT/JP2003/004243 WO2004091028A1 (en) 2003-04-02 2003-04-02 Cooling liquid composition for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/004243 WO2004091028A1 (en) 2003-04-02 2003-04-02 Cooling liquid composition for fuel cell

Publications (1)

Publication Number Publication Date
WO2004091028A1 true WO2004091028A1 (en) 2004-10-21

Family

ID=33156419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004243 WO2004091028A1 (en) 2003-04-02 2003-04-02 Cooling liquid composition for fuel cell

Country Status (3)

Country Link
JP (1) JP4512946B2 (en)
AU (1) AU2003220837A1 (en)
WO (1) WO2004091028A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278197A (en) * 2005-03-30 2006-10-12 Cci Corp Cooling liquid composition for fuel cell
JP2010535884A (en) * 2007-08-06 2010-11-25 ザ セクレタリー,デパートメント オブ アトミック エナジー,ガヴァメント,オブ インディア Stabilization of natural circulation system with nanoparticles
JP2013104059A (en) * 2011-11-15 2013-05-30 Yen-Hao Huang Promoter to improve heat conduction efficiency
AT512757A1 (en) * 2012-04-10 2013-10-15 Vaillant Group Austria Gmbh Cooling system for a fuel cell
KR101799735B1 (en) 2014-11-14 2017-11-20 도요타 지도샤(주) Fuel cell vehicle coolant having improved storage stability and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823743A2 (en) * 1996-08-07 1998-02-11 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack with dual cooling system
JPH1077466A (en) * 1996-09-04 1998-03-24 Cci Corp Antifreeze and coolant composition
EP0833400A1 (en) * 1995-05-25 1998-04-01 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method for its control
JP2002063922A (en) * 2000-08-16 2002-02-28 Sanyo Electric Co Ltd Fuel cell system and its operation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232162A (en) * 1983-06-15 1984-12-26 Nippon Shokubai Kagaku Kogyo Co Ltd Anti-freeze
US5651916A (en) * 1995-08-23 1997-07-29 Prestone Products Corporation Process for the preparation of a propylene glycol antifreeze containing an alkali metal silicate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0833400A1 (en) * 1995-05-25 1998-04-01 Honda Giken Kogyo Kabushiki Kaisha Fuel cell and method for its control
EP0823743A2 (en) * 1996-08-07 1998-02-11 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack with dual cooling system
JPH1077466A (en) * 1996-09-04 1998-03-24 Cci Corp Antifreeze and coolant composition
JP2002063922A (en) * 2000-08-16 2002-02-28 Sanyo Electric Co Ltd Fuel cell system and its operation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278197A (en) * 2005-03-30 2006-10-12 Cci Corp Cooling liquid composition for fuel cell
JP2010535884A (en) * 2007-08-06 2010-11-25 ザ セクレタリー,デパートメント オブ アトミック エナジー,ガヴァメント,オブ インディア Stabilization of natural circulation system with nanoparticles
JP2013104059A (en) * 2011-11-15 2013-05-30 Yen-Hao Huang Promoter to improve heat conduction efficiency
AT512757A1 (en) * 2012-04-10 2013-10-15 Vaillant Group Austria Gmbh Cooling system for a fuel cell
KR101799735B1 (en) 2014-11-14 2017-11-20 도요타 지도샤(주) Fuel cell vehicle coolant having improved storage stability and method for producing the same

Also Published As

Publication number Publication date
AU2003220837A1 (en) 2004-11-01
JP4512946B2 (en) 2010-07-28
JPWO2004091028A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
RU2315797C2 (en) Composition of fuel element cooling fluid concentrate
JP4842420B2 (en) Cooling liquid, cooling liquid sealing method and cooling system
EP1476524B1 (en) Heat transfer compositions with high electrical resistance for fuel cell assemblies
EP1807478B1 (en) Corrosion inhibitors, corrosion inhibiting heat transfer fluids, and the use thereof
US7138199B2 (en) Fuel cell and fuel cell coolant compositions
JPWO2003094271A1 (en) Coolant composition for fuel cell
CA2574784A1 (en) Coolant composition, cooling system and process for producing coolant composition
WO2013042839A1 (en) Composition containing hydroquinone or quinoline for fuel cell coolant
WO2004091028A1 (en) Cooling liquid composition for fuel cell
JP4136591B2 (en) Cooling liquid, cooling liquid sealing method and cooling system
AU2003225581B2 (en) Heat transfer compositions with high electrical resisitivity for fuel cell assemblies
JPWO2005105948A1 (en) Heat medium composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004570544

Country of ref document: JP

122 Ep: pct application non-entry in european phase