WO2005087975A1 - Material carburetor for organic metal chemical vapor phase deposition equipment - Google Patents

Material carburetor for organic metal chemical vapor phase deposition equipment Download PDF

Info

Publication number
WO2005087975A1
WO2005087975A1 PCT/JP2005/003877 JP2005003877W WO2005087975A1 WO 2005087975 A1 WO2005087975 A1 WO 2005087975A1 JP 2005003877 W JP2005003877 W JP 2005003877W WO 2005087975 A1 WO2005087975 A1 WO 2005087975A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
vaporizer
orifice
chemical vapor
vapor deposition
Prior art date
Application number
PCT/JP2005/003877
Other languages
French (fr)
Japanese (ja)
Inventor
Soichiro Okamura
Tadashi Shiosaki
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Publication of WO2005087975A1 publication Critical patent/WO2005087975A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material

Definitions

  • the present invention relates to a material degasser for a metalorganic chemical vapor deposition apparatus capable of performing liquid-filled equilibrium vaporization, and performs continuous supply and stable vaporization of the raw material during film formation by the apparatus. It relates to a vaporizer that can be used.
  • Source gases obtained by vaporizing various organometallic compounds using a vaporizer are transported into a reaction chamber using a carrier gas to be decomposed, and the decomposed products are deposited on a substrate disposed in the reaction chamber.
  • the metal organic chemical vapor deposition (MOCV D) method is used for (i) excellent step coverage, (ii) a dense film can be obtained, and (iii) large-area wafers. And (iv) the process can be performed at low temperature.Therefore, it is widely used in this field as a film forming method suitable for high integration and mass production. ing.
  • a sublimation gas obtained by heating a solid material contained in a container is transferred into a reaction chamber using a carrier gas by a simple solid sublimation method, Solid sublimation method in which the raw material is supported on porous ceramic balls to suppress the change in the amount of vaporization due to the change in surface area, and liquid publishing in which a carrier gas is passed through a heated liquid raw material to transport the raw material gas corresponding to the vapor pressure
  • a method and a liquid supply method for supplying a raw material in a liquid state into a gasifier are known!
  • More specific simple solid sublimation methods include: (i) after an organic alkaline earth metal complex is completely melted, the melt is cooled and solidified in a raw material container, and then the complex is cooled. Or the melt is poured into a cylindrical container so that the thickness in the longitudinal axis direction is substantially constant, and then the carrier gas is not allowed to flow in the longitudinal direction.
  • a method of vaporizing the complex at a temperature lower than its melting point see Patent Document 1
  • (ii) bis (cyclopentagel) ruthenium having an average particle size of 0.03-5. See Patent Document 2.
  • the simple solid sublimation method is not suitable for industrial use because the raw material cannot be continuously filled because the amount of vaporization is not stable due to the change in the surface area of the raw material due to sublimation.
  • the supported solid sublimation method is also unsuitable for industry because it is difficult to continuously fill the raw materials.
  • the liquid supply method is expected to be applied to industrialization in order to transport the raw material in a liquid state.
  • this method involves (i) feeding the raw material liquid into a vaporizer heated to a high temperature.
  • the raw material may be decomposed due to direct injection, and particles may be generated because the raw material is transported in a misted state.
  • a large amount of solvent gas may be deposited on the substrate together with the raw material. Not only carbon is taken into the film as impurities because it is transported to the membrane, but the burden on the exhaust system increases and maintenance costs increase.
  • Tetrahydrofuran (THF) which is frequently used as a solvent, has high erosion ! This can cause catastrophic damage to Northton O-rings and increase maintenance costs, and (iv) generally high carrier gas flow rates make the use of expensive raw materials inefficient and increase product costs There is a problem.
  • Patent Document 1 JP-A-11-193462
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-160865
  • the present invention relates to the above-mentioned problems of the liquid supply method in the metal organic chemical vapor deposition method, in particular, because the surface area of the raw material changes with the sublimation of the solid raw material and the temperature of the raw material changes.
  • a thin film cannot be formed with good reproducibility
  • a problem that the thin film forming apparatus has to be stopped in order to add a solid raw material a problem that an operation rate of the apparatus is reduced, and many problems.
  • the metal-organic chemical vapor phase enables continuous filling and stable vaporization of raw materials by eliminating the problem that the composition of the formed thin film fluctuates due to changes in the flow rate of liquid over time. Provide raw material vaporizer for deposition equipment It was done for.
  • a raw material vaporizer for a metal organic chemical vapor deposition apparatus in a raw material vaporizer for a metal organic chemical vapor deposition apparatus, the vapor pressure of a solid raw material present in the vaporizer is kept substantially constant.
  • the vaporizer is characterized by having an orifice having such a large hole diameter.
  • a raw material vaporizer for a metal organic chemical vapor deposition apparatus (i) a filling port for filling a liquid raw material, An orifice having a pore diameter large enough to keep the vapor pressure of the solid raw material in the vaporizer substantially constant when the solid raw material remaining after removing the contained solvent is vaporized; and
  • the vaporizer having a heater "is provided.
  • a method for supplying a source gas for an organometallic chemical vapor deposition apparatus wherein the orifice is provided in a vaporizer and is present in the vaporizer.
  • the raw material gas is supplied to an organometallic chemical vapor deposition system through an orifice having a pore size large enough to keep the vapor pressure of the raw material substantially constant.
  • a gas supply method is provided.
  • a method for supplying a source gas for a metal organic chemical vapor deposition apparatus having the following steps (i) to (V):
  • the vapor pressure of the raw material in the vaporizer is substantially one. Since the raw material is kept at a constant level, there is no problem that the vaporization amount of the raw material is not stable due to the change of the raw material surface area due to the sublimation of the raw material, and the solid raw material is prepared in a liquid state using a solvent. Since it can be filled into the vaporizer through piping later, it is possible to continuously supply raw materials that are important for application to industrialization. Further, when the vaporizer is used, it is sufficient that a predetermined amount or more of the liquid raw material is introduced into the vaporizer, and the vaporization amount of the raw material can be appropriately adjusted by the temperature in the vaporizer.
  • the lead zirconate titanate thin film which has been difficult to produce, can be industrially produced by the method.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of an organometallic chemical vapor deposition apparatus equipped with a vaporizer according to the present invention.
  • FIG. 2 is a schematic configuration diagram showing an operation procedure of the vaporizer according to the present invention shown in FIG. 1.
  • FIG. 3 is a TiO thin film on a substrate measured in an example of the present invention. Film thickness and source gas
  • FIG. 1 is a schematic configuration diagram showing one embodiment of an organometallic chemical vapor deposition apparatus equipped with a vaporizer according to the present invention.
  • FIG. 2 is a schematic configuration diagram showing an operation procedure of the vaporizer according to the present invention shown in FIG.
  • the vapor pressure of the solid raw material 10 existing in the vaporizer 9 is substantially constant.
  • the vaporizer 9 "provided with an orifice 8 having a hole diameter large enough to be held by the vaporizer 9".
  • the vapor pressure of the solid raw material 10 present in the vaporizer 9 is kept substantially constant
  • the vapor pressure PmmHg of the solid raw material 10 specified by the set temperature of the vaporizer 9 is equal to the vapor pressure PmmHg.
  • the difference from the vapor pressure P'mmHg of the solid raw material 10 measured in the vessel 9 is maintained within a range of about 0 to 0.5 mmHg, preferably about 0 to 0.2 mmHg, particularly preferably about 0 to 0.05 mmHg. Means to be done.
  • the diameter of the spores of the sifidus 8 arranged in the vaporizer 9 should be about 50-5000 ⁇ m, preferably ⁇ 100- It is set at 3000 ⁇ m, particularly preferably about 500-1500 ⁇ m. If the hole diameter of the orifice 8 is smaller than about 50 ⁇ m, the film forming speed of the thin film deposited on the substrate 2 becomes practically insufficient, and if the hole diameter of the orifice 8 is larger than about 5000 m, the vaporizer 9 It becomes impossible to keep the vapor pressure of the solid raw material 10 constant.
  • a plurality of orifices may be provided in consideration of the volume of the vaporizer 9, the hole diameter of the orifice 8, the film forming speed, the vapor pressure of the solid raw material 10, and the like.
  • the orifice 8 provided in the vaporizer 9 is compared with the amount of the raw material gas generated by vaporization inside the vaporizer 9. Since the amount of raw material gas supplied to the reaction chamber 3 through the reactor is almost negligible, the inside of the vaporizer 9 is always kept in an equilibrium state, and the amount of vaporized solid raw material 10 depends on the surface area of the raw material. Since it is substantially determined by the vapor pressure of the raw material without being performed, the supply of the raw material gas to the reaction chamber 3 is performed stably for a long time.
  • a raw material vaporizer 9 for a metal organic chemical vapor deposition apparatus wherein (i) a filling port 14 for filling a liquid raw material 13, When the solid raw material 10 remaining after the solvent contained in the liquid raw material 13 is removed is vaporized, the pore size is set so that the vapor pressure of the solid raw material 10 in the vaporizer 9 is kept substantially constant.
  • Orifice 8 having an orifice 8 and (iii) a heater 7 for heating.
  • a filling port 14 provided in the vaporizer 9 is connected to a pipe 11 communicating with a liquid source, and the liquid source 13 is filled into the vaporizer 9 through the filling port 14.
  • the diameter of the filling port 14 is not particularly limited, in the case of a commonly used vaporizer 9 (volume: about 10-lOOcc), it is usually about 18 mm, preferably about 2-6 mm, and particularly preferably about 2-6 mm. 3-4 mm. If desired, a plurality of filling ports may be provided depending on the volume of the vaporizer 9 to be used, the size of the diameter of the filling port 14, the continuous use time of the vaporizer 9, and the like.
  • the liquid raw material 13 introduced into the vaporizer 9 through the filling port 14 is subjected to a heating treatment by a heating heater 7 arranged at the bottom of the vaporizer 9, whereby the liquid raw material 13 is heated.
  • the solvent contained in the feed 13 is removed by evaporation, and the solid raw material 10 remains at the bottom of the vaporizer 9. .
  • the remaining solid raw material 10 is heated to an appropriate temperature using a heater 7 and vaporized to generate a raw material gas inside the vaporizer 9.
  • the vaporizer 9 includes an orifice 8 having a hole diameter large enough to keep the vapor pressure of the solid raw material in the vaporizer substantially constant when the residual solid raw material 10 is vaporized. Will be arranged. Regarding the configuration of the orifice 8, the above description in the case of the vaporizer according to the first aspect of the present invention is applied as it is.
  • a filling port 14 for filling the liquid raw material 13 and (ii) a vaporization of the solid raw material 10 remaining after removing the solvent contained in the liquid raw material 13,
  • the inside of the vaporizer 9 is kept in a normal equilibrium state, and the force of vaporization of the solid raw material 10 is not affected by the surface area of the raw material and the like.
  • the pressure of the source gas to the reaction chamber 3 Performed time Niwata connexion stably.
  • a method for supplying a source gas for an organometallic chemical vapor deposition apparatus wherein the orifice 8 disposed in the vaporizer 9, Wherein the source gas is supplied to an organometallic chemical vapor deposition system through an orifice 8 having a pore size large enough to keep the vapor pressure of the source present at a substantially constant level.
  • a source gas supply method is provided.
  • the organometallic chemical vapor deposition apparatus of the embodiment shown in FIG. 1 comprises (i) a reaction chamber 3 containing a substrate 2 and a substrate heater 1, (ii) an exhaust system including a vacuum pump 5 ′, and (iii) Supply source of argon gas as carrier gas, carrier gas supply system including flow controller 16 and preheater 4, and (iv) supply source of oxygen gas as reaction gas, flow controller 16 'and preheater 4' And a reaction gas supply system.
  • the carrier gas, the reaction gas, and the raw material gas before reaching the substrate 2 are kept warm by the warming heater 12 attached to the lower region of the reaction chamber 3.
  • a vaporizer 9 is connected to a lower region of the reaction chamber 3 in which the heat retaining heater 12 is mounted, and the lower region and the vaporizer are communicated via an orifice 8 provided in the vaporizer.
  • the orifice 8 has such a diameter as to keep the vapor pressure of the solid raw material present in the vaporizer substantially constant.
  • the above description in the case of the vaporizer according to the first aspect of the present invention is applied as it is.
  • the gas is generated by vaporization inside the vaporizer 9.
  • the amount of the source gas supplied to the reaction chamber 3 through the orifice 8 provided in the vaporizer 9 is almost negligible compared to the amount of the source gas to be vaporized.
  • a method for supplying a source gas for an organometallic chemical vapor deposition apparatus having the following step (i)-(V):
  • the liquid raw material 13 is prepared by dissolving, dispersing, suspending, or dissolving a solid raw material 10 which is a raw material of a thin film deposited on the substrate 2 installed inside the reaction chamber 3 in a solvent. It is prepared by emulsification, but the liquid raw material 13 is most preferably a solution.
  • the concentration of the liquid raw material 13 is not particularly limited as long as it can be appropriately selected according to the type of the solid raw material 10, the type of the solvent, the filling efficiency of the raw material, and the like, but is usually about 0.1 to 5 molZ1, Preferably it is about 0.2-2 mol Zl, particularly preferably about 0.5-Imol Zl.
  • the solvent used for preparing the liquid raw material 13 from the solid raw material may be appropriately selected in consideration of the solubility of the solid raw material and the cost and toxicity of the solvent, and is not particularly limited. Illustrative are: tetrahydrofuran, butyl acetate, ethylcyclohexane, toluene, xylene and tetraethylheptanedione.
  • two or more such solvents may be used in combination.
  • the liquid raw material 13 prepared as described above is introduced into a vaporizer 9 having an orifice 8 having a hole diameter large enough to keep the vapor pressure of the solid raw material 10 substantially constant.
  • the mixture is introduced through a pipe 11 connected to the gasifier 9, and then the solvent contained in the liquid raw material 13 is evaporated from the vaporizer 9 in the next step.
  • valve 6 communicating with the liquid material introduction pipe 11 is opened, and the valve 6 'communicating with the pipe 11 and the vacuum pump 5 is closed.
  • the pressure inside the reaction chamber (film formation chamber) 3 is set to be higher than the pressure inside the vaporizer 9, so that the solvent from the vaporizer 9 to the reaction chamber 3 Gas intrusion can be suppressed.
  • a method for supplying a source gas for an organometallic chemical vapor deposition apparatus is described.
  • the configuration of the orifice 8 the above description in the case of the vaporizer according to the first aspect of the present invention is applied as it is.
  • the solid raw material 10 remaining in the vaporizer 9 is heated and sublimated to generate a raw material gas in the vaporizer.
  • the source gas is then supplied to the metal organic chemical vapor deposition system through the orifice 8.
  • the film forming conditions are set as follows. That is, the temperature of the substrate 2 is set to a predetermined temperature (for example, 500 ° C.) using the substrate heater 1, and the pressure inside the reaction chamber 3 is set to a predetermined pressure (eg, 275 Pa), and the flow rate of argon as a carrier gas of the raw material gas generated by sublimation of the solid raw material 10 is adjusted to a predetermined flow rate (for example, 14 scc Zm) using the flow rate regulator 16, and the reaction gas as the reaction gas is adjusted.
  • a predetermined temperature for example, 500 ° C.
  • a predetermined pressure eg, 275 Pa
  • the flow rate of argon as a carrier gas of the raw material gas generated by sublimation of the solid raw material 10 is adjusted to a predetermined flow rate (for example, 14 scc Zm) using the flow rate regulator 16, and the reaction gas as the reaction gas is adjusted.
  • the flow rate of the oxygen gas is adjusted to a predetermined flow rate (for example, 100 scc / m) using the flow rate regulator 16 ′, and the temperature inside the gasifier 9 is specified using the heating heater 7. Temperature (eg, 150 ° C, 155 ° C or 160 ° C). Under such film forming conditions, a desired thin film (for example, a TiO thin film) is formed on the substrate 2.
  • the amount of the source gas generated by vaporization inside the vaporizer 9 is reduced. Since the amount of raw material gas supplied to the reaction chamber 3 through the orifice 8 provided is almost negligible, the inside of the vaporizer 9 is always kept in an equilibrium state, and the amount of vaporized solid raw material 10 is Since it is almost determined by the vapor pressure of the raw material without being influenced by the surface area of the raw material, the supply of the raw material gas to the reaction chamber 3 is performed stably for a long time.
  • the solid raw material after converting the solid raw material into a liquid state using a solvent, the solid raw material is connected to the inside of the vaporizer 9 through a pipe 11 of external force without opening the vaporizer 9. Before or after film formation, only the solvent in the liquid raw material 13 is evaporated and removed, so that a raw material gas is always generated in the vaporizer 9 as well as a fresh solid raw material power. Is continuously supplied to the metal organic chemical vapor deposition system through the orifice 8.
  • a TiO thin film was prepared using the metal organic chemical vapor deposition apparatus shown in FIG.
  • Titanium isopropoxide Sibi Varo yl methane (2. 66 g) was a raw material solution was prepared by dissolving in tetrahydrofuran (10 ml) (raw material concentration: 0. 5mol / l) 0 also compost the TiO thin film
  • a silicon wafer was used as the substrate 2 for stacking.
  • This raw material solution was introduced into the vaporizer 9 through the pipe 11.
  • the raw material solution was heated at 80 ° C. for 15 minutes using the heater 7 while evacuating the gasifier using the vacuum pump 5 to remove tetrahydrofuran from the vaporizer by evaporation.
  • the operation procedure in this case was performed according to the procedure described above with reference to FIG. Next, the temperature of the substrate 2 was set to 500 ° C using the substrate heater 1, the pressure inside the reaction chamber 3 was adjusted to 275 Pa using the vacuum pump 5 ', and the raw material generated by sublimation of the solid raw material 10
  • the flow rate of argon as a carrier gas of gas was adjusted to 14 scccZm using a flow regulator 16, and the flow rate of oxygen gas as a reaction gas was adjusted to 100 scccZm using a flow regulator 16 ′.
  • the temperature inside the dagger 9 was set to 150 ° C., 155 ° C. or 160 ° C. using the heater 7 for heating.
  • a TiO thin film is formed on a substrate, and the thickness of the TiO thin film is changed.
  • FIG. 3 shows that the rate of deposition of the source gas on the substrate can be controlled by appropriately selecting the temperature of the vaporizer 9.
  • the operation rate of the production process is a very important requirement in terms of product cost and the like.
  • the material vaporizer for the metal organic chemical vapor deposition apparatus according to the present invention, it is necessary to ensure the stable vaporization of the important material for producing a uniform thin film, and to increase the operation rate of the apparatus. Continuous or sequential supply of critical raw materials The salary becomes possible. Therefore, by incorporating the vaporizer according to the present invention into the mass production process of the thin film by the metalorganic chemical vapor deposition method, the operation rate of the mass production process is greatly increased, and this is combined with the stable vaporization of the raw material. As a result, it is possible to provide uniform thin-film products at low cost.
  • the raw material vaporizer for the metal organic chemical vapor deposition apparatus can be generally applied to the production of a thin film by the metal organic chemical vapor deposition method.

Abstract

A material carburetor (9) for organic metal chemical vapor phase deposition equipment is provided with (i) an application port (14) for applying a liquid material (13), (ii) an orifice (8) having a hole diameter which can keep a vapor pressure of a solid material (10) in the carburetor (9) actually fixed at the time of vaporizing the sold material (10) which is left after removing a solvent included in the liquid material (13), and (iii) a heater (7).

Description

明 細 書  Specification
有機金属化学気相堆積装置用原料気化器  Raw material vaporizer for metal organic chemical vapor deposition equipment
技術分野  Technical field
[0001] 本発明は、液体充填平衡気化を可能とする有機金属化学気相堆積装置用原料気 ィ匕器であって、該装置による成膜に際して、原料の連続的な供給と安定な気化を可 能とする気化器に関する。  [0001] The present invention relates to a material degasser for a metalorganic chemical vapor deposition apparatus capable of performing liquid-filled equilibrium vaporization, and performs continuous supply and stable vaporization of the raw material during film formation by the apparatus. It relates to a vaporizer that can be used.
背景技術  Background art
[0002] 種々の有機金属化合物を気化器を用いて気化させて得られる原料ガスをキャリア ガス用いて反応室内へ搬送して分解させ、該分解物を該反応室内に配置した基板 上へ堆積させることによって成膜する方法、即ち、有機金属化学気相堆積 (MOCV D)法は、(i)段差被覆性に優れている、(ii)緻密な膜が得られる、(iii)大面積ウェハ への均質な成膜が可能である、および (iv)プロセスの低温ィ匕が可能である、等の利 点を有するので、高集積化と量産化に適した成膜方法として当該分野では汎用され ている。  [0002] Source gases obtained by vaporizing various organometallic compounds using a vaporizer are transported into a reaction chamber using a carrier gas to be decomposed, and the decomposed products are deposited on a substrate disposed in the reaction chamber. In other words, the metal organic chemical vapor deposition (MOCV D) method is used for (i) excellent step coverage, (ii) a dense film can be obtained, and (iii) large-area wafers. And (iv) the process can be performed at low temperature.Therefore, it is widely used in this field as a film forming method suitable for high integration and mass production. ing.
[0003] この有機金属化学気相堆積法における原料気化方式としては、容器内に収容した 固体原料を加熱して得られる昇華ガスをキャリアガスを用いて反応室内へ搬送する 単純固体昇華法、粉体原料を多孔質セラミックボールに担持させて表面積変化に伴 う気化量変化を抑制する担持固体昇華法、加熱した液体原料中へキャリアガスを通 して蒸気圧分の原料ガスを搬送する液体パブリング法、および原料を液体状態で気 ィ匕器内へ供給する液体供給法が知られて!/ヽる。  [0003] As a material vaporization method in the metal organic chemical vapor deposition method, a sublimation gas obtained by heating a solid material contained in a container is transferred into a reaction chamber using a carrier gas by a simple solid sublimation method, Solid sublimation method in which the raw material is supported on porous ceramic balls to suppress the change in the amount of vaporization due to the change in surface area, and liquid publishing in which a carrier gas is passed through a heated liquid raw material to transport the raw material gas corresponding to the vapor pressure A method and a liquid supply method for supplying a raw material in a liquid state into a gasifier are known!
[0004] なお、より具体的な単純固体昇華法としては、 (i)有機アルカリ土類金属錯体を一 且溶融させた後、該溶融物を原料容器内で冷却固化させ、次いでこれを該錯体の 融点以下の温度で気化させるか、または該溶融物を筒状の容器内へ長手軸方向の 厚みが略一定になるように铸込み、次 、で該長手方向にキャリアガスを通流させなが ら該錯体をその融点以下の温度で気化させる方法 (特許文献 1参照)、および (ii)平 均粒子径が 0. 03—5. Ommのビス(シクロペンタジェ -ル)ルテニウムをキャリアガス を通流させながら加熱気化させる方法 (特許文献 2参照)が例示される。 [0005] し力しながら、単純固体昇華法には、昇華に伴う原料表面積の変化により気化量が 安定しないだけでなぐ原料の連続的充填ができないために工業ィ匕には不向きであ るという問題があり、また、担持固体昇華法も、原料の連続的充填が困難なためにェ 業ィ匕には不適当である。 [0004] More specific simple solid sublimation methods include: (i) after an organic alkaline earth metal complex is completely melted, the melt is cooled and solidified in a raw material container, and then the complex is cooled. Or the melt is poured into a cylindrical container so that the thickness in the longitudinal axis direction is substantially constant, and then the carrier gas is not allowed to flow in the longitudinal direction. However, a method of vaporizing the complex at a temperature lower than its melting point (see Patent Document 1), and (ii) bis (cyclopentagel) ruthenium having an average particle size of 0.03-5. (See Patent Document 2). [0005] However, the simple solid sublimation method is not suitable for industrial use because the raw material cannot be continuously filled because the amount of vaporization is not stable due to the change in the surface area of the raw material due to sublimation. There is a problem, and the supported solid sublimation method is also unsuitable for industry because it is difficult to continuously fill the raw materials.
[0006] さらに、パブリング法には、原料全体が長時間にわたって熱に曝されるために劣化 すると 、う問題があるだけでなく、チタン酸ジルコン酸鉛 (PZT)等を原料とする薄膜 の成膜においては毒性の高い Pb原料 (例えば、四ェチル鉛、テトラネオペントキシ鉛 等)を使用せざるを得な 、ために工業ィ匕は困難であると 、う問題がある。  [0006] Furthermore, in the publishing method, when the entire raw material is deteriorated due to exposure to heat for a long period of time, not only does it have a problem, but also the formation of a thin film using lead zirconate titanate (PZT) or the like as a raw material. There is a problem in that it is necessary to use a highly toxic Pb raw material (for example, tetraethyl lead, tetraneopentoxy lead, etc.) in the membrane, and thus it is difficult to perform industrial production.
[0007] 一方、液体供給法は、原料を液体状態で輸送するために、工業化への応用が期待 されているが、この方法には、(i)高温に加熱した気化器内へ原料液体を直接的に 噴射するために気化条件によっては原料の分解が生じることがあり、また、原料がミス ト状態で搬送されるためにパーティクルが発生する、 (ii)原料と共に大量の溶剤ガス も基板上まで搬送されるために膜中へ炭素が不純物として取り込まれるだけでなぐ 排気系への負担が大きくなつてメンテナンス費用が増加する、(iii)溶剤として多用さ れるテトラヒドロフラン (THF)は侵食性が高!、ためにノ ィトン製 Oリングに致命的損傷 を与え、メンテナンス費用を増加させる、および (iv)—般にキャリアガス流量が大きい ために高価な原料の利用効率が低ぐ製品のコストが増加する、という問題がある。 特許文献 1:特開平 11—193462号公報  [0007] On the other hand, the liquid supply method is expected to be applied to industrialization in order to transport the raw material in a liquid state. However, this method involves (i) feeding the raw material liquid into a vaporizer heated to a high temperature. Depending on vaporization conditions, the raw material may be decomposed due to direct injection, and particles may be generated because the raw material is transported in a misted state. (Ii) A large amount of solvent gas may be deposited on the substrate together with the raw material. Not only carbon is taken into the film as impurities because it is transported to the membrane, but the burden on the exhaust system increases and maintenance costs increase. (Iii) Tetrahydrofuran (THF), which is frequently used as a solvent, has high erosion ! This can cause catastrophic damage to Northton O-rings and increase maintenance costs, and (iv) generally high carrier gas flow rates make the use of expensive raw materials inefficient and increase product costs There is a problem. Patent Document 1: JP-A-11-193462
特許文献 2:特開 2003— 160865号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2003-160865
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、有機金属化学気相堆積法における液体供給法の上記問題点、特に、 固体原料の昇華に伴って該原料の表面積が変化すると共に、該原料の温度が変化 するために再現性良く薄膜を形成することができな 、と 、う問題、固体原料を追加す るためには薄膜形成装置を停止させなければならず、該装置の稼動率が低下すると いう問題、および多元素薄膜を作製する場合には、液体流量の経時的変化によって 形成される薄膜の組成が変動するという問題を解消することによって、原料の連続的 充填と安定気化を可能にする有機金属化学気相堆積装置用原料気化器を提供する ためになされたものである。 [0008] The present invention relates to the above-mentioned problems of the liquid supply method in the metal organic chemical vapor deposition method, in particular, because the surface area of the raw material changes with the sublimation of the solid raw material and the temperature of the raw material changes. There is a problem that a thin film cannot be formed with good reproducibility, a problem that the thin film forming apparatus has to be stopped in order to add a solid raw material, a problem that an operation rate of the apparatus is reduced, and many problems. When fabricating elemental thin films, the metal-organic chemical vapor phase enables continuous filling and stable vaporization of raw materials by eliminating the problem that the composition of the formed thin film fluctuates due to changes in the flow rate of liquid over time. Provide raw material vaporizer for deposition equipment It was done for.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の第一の観点によれば、「有機金属化学気相堆積装置用原料気化器にお いて、該気化器内に存在する固体原料の蒸気圧が実質上一定に保持されるような大 きさの孔径を有するオリフィスを具有することを特徴とする該気化器」が提供される。  According to a first aspect of the present invention, “in a raw material vaporizer for a metal organic chemical vapor deposition apparatus, the vapor pressure of a solid raw material present in the vaporizer is kept substantially constant. The vaporizer is characterized by having an orifice having such a large hole diameter.
[0010] 本発明の第二の観点によれば、「有機金属化学気相堆積装置用原料気化器であ つて、(i)液体原料を充填するための充填口、(ii)該液体原料に含まれる溶剤を除去 した後に残留する固体原料の気化に際して、該気化器内の該固体原料の蒸気圧が 実質上一定に保持されるような大きさの孔径を有するオリフィス、および (iii)加熱用ヒ 一ターを具備する該気化器」が提供される。  [0010] According to a second aspect of the present invention, "a raw material vaporizer for a metal organic chemical vapor deposition apparatus, (i) a filling port for filling a liquid raw material, An orifice having a pore diameter large enough to keep the vapor pressure of the solid raw material in the vaporizer substantially constant when the solid raw material remaining after removing the contained solvent is vaporized; and The vaporizer having a heater "is provided.
[0011] 本発明の第三の観点によれば、「有機金属化学気相堆積装置用原料ガスの供給 方法において、気化器内に配設されたオリフィスであって、該気化器内に存在する該 原料の蒸気圧が実質上一定に保持されるような大きさの孔径を有するオリフィスを通 して該原料ガスが有機金属化学気相堆積装置系へ供給されることを特徴とする該原 料ガスの供給方法」が提供される。  According to a third aspect of the present invention, there is provided a method for supplying a source gas for an organometallic chemical vapor deposition apparatus, wherein the orifice is provided in a vaporizer and is present in the vaporizer. The raw material gas is supplied to an organometallic chemical vapor deposition system through an orifice having a pore size large enough to keep the vapor pressure of the raw material substantially constant. A gas supply method "is provided.
[0012] 本発明の第四の観点によれば、「下記の工程 (i)一 (V)を有する有機金属化学気相 堆積装置用原料ガスの供給方法:  According to a fourth aspect of the present invention, there is provided a method for supplying a source gas for a metal organic chemical vapor deposition apparatus having the following steps (i) to (V):
(i)固体原料から溶剤を用いて液体原料を調製し、  (i) preparing a liquid raw material from a solid raw material using a solvent,
(ii)該液体原料を、該固体原料の蒸気圧が実質上一定に保持されるような大きさの 孔径を有するオリフィスを具有する気化器内へ、該気化器に接続された配管を通し て導入し、  (ii) passing the liquid raw material into a vaporizer having an orifice having a hole diameter large enough to keep the vapor pressure of the solid raw material substantially constant, through a pipe connected to the vaporizer. Introduce,
(iii)該気化器内の液体原料に含まれる溶剤を該気化器内から蒸発除去させ、 (iii) evaporating and removing the solvent contained in the liquid raw material in the vaporizer from the vaporizer,
(iv)該気化器内に残留する該固体原料を加熱昇華させることによって該気化器内に 該原料ガスを発生させ、次いで (iv) heating and sublimating the solid raw material remaining in the vaporizer to generate the raw material gas in the vaporizer,
(V)該原料ガスを該オリフィスを通して有機金属化学気相堆積装置系へ供給する」が 提供される。  (V) supplying the source gas to the metal organic chemical vapor deposition system through the orifice. "
発明の効果  The invention's effect
[0013] 本発明による気化器を使用する場合には、気化器内の原料の蒸気圧が実質上一 定に保持されるために、該原料の昇華に伴う原料表面積の変化に起因する原料の 気化量が安定しないという問題は発生せず、また、固体原料を、溶剤を用いて液体 状態に調製した後で配管を通して気化器内へ充填できるので、工業化への応用にと つて重要な原料の連続的供給が可能となる。さらに、該気化器を使用する場合には 、所定量以上の液体原料が気化器内へ導入されればよぐまた、該原料の気化量は 気化器内の温度によって適宜調整することができるので、多元素系薄膜を作成する 際の組成調整を正確かつ安定におこなうことが可能となり、従来の液体流量制御器 を使用する場合の液体流量の経時的変化に起因する組成変動の問題は発生しない 従って、例えば、従来は原料選択の幅が狭いために毒性の高い四ェチル鉛ゃテト ラネオペントキシ鉛等を使用しなければならないために、工業的な規模での有機金 属化学気相堆積法による製造が困難であったチタン酸ジルコン酸鉛薄膜も、本発明 によれば、該方法によって工業的に製造することが可能となる。 [0013] When the vaporizer according to the present invention is used, the vapor pressure of the raw material in the vaporizer is substantially one. Since the raw material is kept at a constant level, there is no problem that the vaporization amount of the raw material is not stable due to the change of the raw material surface area due to the sublimation of the raw material, and the solid raw material is prepared in a liquid state using a solvent. Since it can be filled into the vaporizer through piping later, it is possible to continuously supply raw materials that are important for application to industrialization. Further, when the vaporizer is used, it is sufficient that a predetermined amount or more of the liquid raw material is introduced into the vaporizer, and the vaporization amount of the raw material can be appropriately adjusted by the temperature in the vaporizer. In addition, it is possible to accurately and stably perform composition adjustment when forming a multi-element thin film, and there is no problem of composition fluctuation due to a temporal change in liquid flow rate when using a conventional liquid flow rate controller. Therefore, for example, conventionally, since the choice of raw materials is narrow, highly toxic tetraethyl lead and tetraneopentoxy lead must be used. According to the present invention, the lead zirconate titanate thin film, which has been difficult to produce, can be industrially produced by the method.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は、本発明による気化器を装備する有機金属化学気相堆積装置の一態様 を示す模式的構成図である。  FIG. 1 is a schematic configuration diagram showing one embodiment of an organometallic chemical vapor deposition apparatus equipped with a vaporizer according to the present invention.
[図 2]図 2は、図 1に示す本発明による気化器の操作手順を示す模式的構成図である [図 3]図 3は、本発明の実施例で測定された基板上の TiO薄膜の膜厚と原料ガスの  [FIG. 2] FIG. 2 is a schematic configuration diagram showing an operation procedure of the vaporizer according to the present invention shown in FIG. 1. [FIG. 3] FIG. 3 is a TiO thin film on a substrate measured in an example of the present invention. Film thickness and source gas
2  2
堆積時間との関係を示すグラフである。  4 is a graph showing a relationship with a deposition time.
符号の説明  Explanation of symbols
[0015] 1 基板加熱ヒーター [0015] 1 Substrate heater
2 基板  2 Board
3 反応室  3 Reaction chamber
4 予熱器  4 Preheater
4' 予熱器  4 'preheater
5 真空ポンプ  5 Vacuum pump
5' 真空ポンプ 6' バノレブ 5 'vacuum pump 6 'Vanoleb
7 加熱用ヒーター  7 Heating heater
8 オリフィス  8 orifice
9 気化器  9 Vaporizer
10 固体原料  10 Solid raw materials
11 液体原料導入用配管  11 Piping for liquid material introduction
12 保温用ヒーター  12 Heating heater
13 液体原料  13 Liquid raw materials
14 液体原料用充填口  14 Filling port for liquid material
15 液体流量調整器  15 Liquid flow regulator
16 流量調整器  16 Flow regulator
16' 流量調整器  16 'flow regulator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、上記の本発明を添付図に基づいて説明する。 Hereinafter, the present invention will be described with reference to the accompanying drawings.
図 1は、本発明による気化器を装備する有機金属化学気相堆積装置の一態様を示 す模式的構成図である。  FIG. 1 is a schematic configuration diagram showing one embodiment of an organometallic chemical vapor deposition apparatus equipped with a vaporizer according to the present invention.
また、図 2は、図 1に示す本発明による気化器の操作手順を示す模式的構成図で ある。  FIG. 2 is a schematic configuration diagram showing an operation procedure of the vaporizer according to the present invention shown in FIG.
[0017] 本発明の第一の観点によれば、「有機金属化学気相堆積装置用原料気化器 9〖こ おいて、該気化器 9内に存在する固体原料 10の蒸気圧が実質上一定に保持される ような大きさの孔径を有するオリフィス 8を具有することを特徴とする該気化器 9」が提 供される。  According to a first aspect of the present invention, “in the raw material vaporizer 9 for the metal organic chemical vapor deposition apparatus, the vapor pressure of the solid raw material 10 existing in the vaporizer 9 is substantially constant. The vaporizer 9 "provided with an orifice 8 having a hole diameter large enough to be held by the vaporizer 9".
この場合、「気化器 9内に存在する固体原料 10の蒸気圧が実質上一定に保持され る」とは、気化器 9の設定温度によって規定される固体原料 10の蒸気圧 PmmHgと気 ィ匕器 9内で実測される固体原料 10の蒸気圧 P'mmHgとの差が約 0— 0. 5mmHg、 好ましくは約 0— 0. 2mmHg、特に好ましくは約 0— 0. 05mmHgの範囲内に保持さ れることを意味する。 [0018] 固体原料 10の蒸気圧に関する上記の条件が満たされるためには、気化器 9に配設 される才ジフィス 8の孑し径を約 50一 5000 μ m、好まし <は約 100一 3000 μ m、特に 好ましくは約 500— 1500 μ mに設定する。オリフィス 8の孔径が約 50 μ mよりも小さく なると、基板 2に堆積される薄膜の成膜速度が実用上不十分となり、また、オリフィス 8 の孔径が約 5000 mよりも大きくなると、気化器 9内での固体原料 10の蒸気圧が一 定に保ち得なくなる。 In this case, "the vapor pressure of the solid raw material 10 present in the vaporizer 9 is kept substantially constant" means that the vapor pressure PmmHg of the solid raw material 10 specified by the set temperature of the vaporizer 9 is equal to the vapor pressure PmmHg. The difference from the vapor pressure P'mmHg of the solid raw material 10 measured in the vessel 9 is maintained within a range of about 0 to 0.5 mmHg, preferably about 0 to 0.2 mmHg, particularly preferably about 0 to 0.05 mmHg. Means to be done. [0018] In order to satisfy the above-mentioned condition regarding the vapor pressure of the solid raw material 10, the diameter of the spores of the sifidus 8 arranged in the vaporizer 9 should be about 50-5000 μm, preferably <100- It is set at 3000 μm, particularly preferably about 500-1500 μm. If the hole diameter of the orifice 8 is smaller than about 50 μm, the film forming speed of the thin film deposited on the substrate 2 becomes practically insufficient, and if the hole diameter of the orifice 8 is larger than about 5000 m, the vaporizer 9 It becomes impossible to keep the vapor pressure of the solid raw material 10 constant.
なお、気化器 9の体積、オリフィス 8の孔径、成膜速度および固体原料 10の蒸気圧 等を考慮して、複数個のオリフィスを配設してもよい。  Note that a plurality of orifices may be provided in consideration of the volume of the vaporizer 9, the hole diameter of the orifice 8, the film forming speed, the vapor pressure of the solid raw material 10, and the like.
[0019] 上記の本発明による気化器 9を使用する場合には、気化器 9の内部で気化して発 生する原料ガスの量に比較して、該気化器 9に配設されたオリフィス 8を通して反応 室 3へ供給される原料ガスの量は殆ど無視できる程度であるために、気化器 9の内部 は常に平衡状態に保たれ、しかも固体原料 10の気化量は該原料の表面積等に左右 されることなく該原料の蒸気圧によってほぼ決定されるため、反応室 3への原料ガス の供給は長時間にわたって安定しておこなわれる。  When the vaporizer 9 according to the present invention is used, the orifice 8 provided in the vaporizer 9 is compared with the amount of the raw material gas generated by vaporization inside the vaporizer 9. Since the amount of raw material gas supplied to the reaction chamber 3 through the reactor is almost negligible, the inside of the vaporizer 9 is always kept in an equilibrium state, and the amount of vaporized solid raw material 10 depends on the surface area of the raw material. Since it is substantially determined by the vapor pressure of the raw material without being performed, the supply of the raw material gas to the reaction chamber 3 is performed stably for a long time.
[0020] 本発明の第二の観点によれば、「有機金属化学気相堆積装置用原料気化器 9であ つて、(i)液体原料 13を充填するための充填口 14、(ii)該液体原料 13に含まれる溶 剤を除去した後に残留する固体原料 10の気化に際して、該気化器 9内の該固体原 料 10の蒸気圧が実質上一定に保持されるような大きさの孔径を有するオリフィス 8、 および (iii)加熱用ヒーター 7を具備する該気化器 9」が提供される。  According to a second aspect of the present invention, “a raw material vaporizer 9 for a metal organic chemical vapor deposition apparatus, wherein (i) a filling port 14 for filling a liquid raw material 13, When the solid raw material 10 remaining after the solvent contained in the liquid raw material 13 is removed is vaporized, the pore size is set so that the vapor pressure of the solid raw material 10 in the vaporizer 9 is kept substantially constant. Orifice 8 having an orifice 8 and (iii) a heater 7 for heating.
[0021] 気化器 9に配設された充填口 14には、液体原料源と連絡する配管 11が接続され、 液体原料 13は該充填口 14を通して気化器 9の内部へ充填される。充填口 14の口径 は特に限定的ではないが、常用される気化器 9 (容積:約 10— lOOcc)の場合には、 通常は約 1一 8mm、好ましくは約 2— 6mm、特に好ましくは約 3— 4mmである。 所望により、使用する気化器 9の容積、充填口 14の口径の大きさ、および気化器 9 の連続的な使用時間等に応じて、複数の充填口を配設してもょ 、。  A filling port 14 provided in the vaporizer 9 is connected to a pipe 11 communicating with a liquid source, and the liquid source 13 is filled into the vaporizer 9 through the filling port 14. Although the diameter of the filling port 14 is not particularly limited, in the case of a commonly used vaporizer 9 (volume: about 10-lOOcc), it is usually about 18 mm, preferably about 2-6 mm, and particularly preferably about 2-6 mm. 3-4 mm. If desired, a plurality of filling ports may be provided depending on the volume of the vaporizer 9 to be used, the size of the diameter of the filling port 14, the continuous use time of the vaporizer 9, and the like.
[0022] 上記の充填口 14を通して気化器 9の内部へ導入された液体原料 13は、気化器 9 の底部に配設された加熱用ヒーター 7による加熱処理に付され、これによつて液体原 料 13に含まれる溶剤は蒸発除去され、気化器 9の底部には固体原料 10が残留する 。この残留する固体原料 10を加熱用ヒーター 7を用いて適当な温度に加熱して気化 させることによって気化器 9の内部に原料ガスを発生させる。 [0022] The liquid raw material 13 introduced into the vaporizer 9 through the filling port 14 is subjected to a heating treatment by a heating heater 7 arranged at the bottom of the vaporizer 9, whereby the liquid raw material 13 is heated. The solvent contained in the feed 13 is removed by evaporation, and the solid raw material 10 remains at the bottom of the vaporizer 9. . The remaining solid raw material 10 is heated to an appropriate temperature using a heater 7 and vaporized to generate a raw material gas inside the vaporizer 9.
[0023] 気化器 9には、このような残留固体原料 10の気化に際して、該気化器内の該固体 原料の蒸気圧が実質上一定に保持されるような大きさの孔径を有するオリフィス 8が 配設される。該オリフィス 8の形態に関しては、本発明の第一の観点による気化器の 場合の上記説明がそのまま適用される。  [0023] The vaporizer 9 includes an orifice 8 having a hole diameter large enough to keep the vapor pressure of the solid raw material in the vaporizer substantially constant when the residual solid raw material 10 is vaporized. Will be arranged. Regarding the configuration of the orifice 8, the above description in the case of the vaporizer according to the first aspect of the present invention is applied as it is.
[0024] 従って、(i)液体原料 13を充填するための充填口 14、 (ii)該液体原料 13に含まれる 溶剤を除去した後に残留する固体原料 10の気化に際して、該気化器 9内の該固体 原料 10の蒸気圧が実質上一定に保持されるような大きさの孔径を有するオリフィス 8 、および (iii)加熱用ヒーター 7を具備する本発明による有機金属化学気相堆積装置 用原料気化器 9を使用する場合には、気化器 9の内部で気化して発生する原料ガス の量に比較して、該気化器 9に配設されたオリフィス 8を通して反応室 3へ供給される 原料ガスの量は殆ど無視できる程度であるために、気化器 9の内部は常の平衡状態 に保たれ、し力も固体原料 10の気化量は該原料の表面積等に左右されることなく該 原料の蒸気圧によってほぼ決定されるため、反応室 3への原料ガスの供給は長時間 にわたつて安定しておこなわれる。  Therefore, (i) a filling port 14 for filling the liquid raw material 13, and (ii) a vaporization of the solid raw material 10 remaining after removing the solvent contained in the liquid raw material 13, An orifice 8 having a pore diameter large enough to keep the vapor pressure of the solid raw material 10 substantially constant, and (iii) a raw material vaporizer for an organometallic chemical vapor deposition apparatus according to the present invention, which comprises a heater 7 for heating. When the reactor 9 is used, the amount of the source gas supplied to the reaction chamber 3 through the orifice 8 provided in the vaporizer 9 is compared with the amount of the source gas generated by vaporization inside the vaporizer 9. Since the volume of the raw material is almost negligible, the inside of the vaporizer 9 is kept in a normal equilibrium state, and the force of vaporization of the solid raw material 10 is not affected by the surface area of the raw material and the like. The pressure of the source gas to the reaction chamber 3 Performed time Niwata connexion stably.
[0025] 本発明の第三の観点によれば、「有機金属化学気相堆積装置用原料ガスの供給 方法において、気化器 9内に配設されたオリフィス 8であって、該気化器 9内に存在 する該原料の蒸気圧が実質上一定に保持されるような大きさの孔径を有するオリフィ ス 8を通して該原料ガスが有機金属化学気相堆積装置系へ供給されることを特徴と する該原料ガスの供給方法」が提供される。  According to a third aspect of the present invention, there is provided a method for supplying a source gas for an organometallic chemical vapor deposition apparatus, wherein the orifice 8 disposed in the vaporizer 9, Wherein the source gas is supplied to an organometallic chemical vapor deposition system through an orifice 8 having a pore size large enough to keep the vapor pressure of the source present at a substantially constant level. A source gas supply method ”is provided.
[0026] 図 1に示す態様の有機金属化学気相堆積装置は、 (i)基板 2と基板加熱ヒーター 1 を収容する反応室 3、(ii)真空ポンプ 5'を含む排気系、(iii)キャリアガスとしてのアル ゴンガスの供給源、流量調整器 16および予熱器 4を含むキャリアガス供給系、並び に (iv)反応ガスとしての酸素ガスの供給源、流量調整器 16'および予熱器 4'を含む 反応ガス供給系から構成される。この場合、基板2に達する前のキャリアガス、反応ガ スおよび原料ガスは、反応室 3の下部領域に装着された保温ヒーター 12によって保 温される。 [0027] 保温ヒーター 12が装着された反応室 3の下部領域には、気化器 9が接続され、該 下部領域と気化器は、該気化器に配設されたオリフィス 8を介して連絡される。該オリ フィス 8は、該気化器内に存在する固体原料の蒸気圧が実質上一定に保持されるよ うな大きさの孔径を有する。該オリフィス 8の形態に関しては、本発明の第一の観点に よる気化器の場合の上記説明がそのまま適用される。 The organometallic chemical vapor deposition apparatus of the embodiment shown in FIG. 1 comprises (i) a reaction chamber 3 containing a substrate 2 and a substrate heater 1, (ii) an exhaust system including a vacuum pump 5 ′, and (iii) Supply source of argon gas as carrier gas, carrier gas supply system including flow controller 16 and preheater 4, and (iv) supply source of oxygen gas as reaction gas, flow controller 16 'and preheater 4' And a reaction gas supply system. In this case, the carrier gas, the reaction gas, and the raw material gas before reaching the substrate 2 are kept warm by the warming heater 12 attached to the lower region of the reaction chamber 3. [0027] A vaporizer 9 is connected to a lower region of the reaction chamber 3 in which the heat retaining heater 12 is mounted, and the lower region and the vaporizer are communicated via an orifice 8 provided in the vaporizer. . The orifice 8 has such a diameter as to keep the vapor pressure of the solid raw material present in the vaporizer substantially constant. Regarding the form of the orifice 8, the above description in the case of the vaporizer according to the first aspect of the present invention is applied as it is.
[0028] 従って、有機金属化学気相堆積装置用原料ガスの供給方法において、気化器 9内 に配設されたオリフィス 8であって、該気化器 9内に存在する該原料の蒸気圧が実質 上一定に保持されるような大きさの孔径を有するオリフィス 8を通して該原料ガスを有 機金属化学気相堆積装置系へ供給する本発明方法によれば、気化器 9の内部で気 化して発生する原料ガスの量に比較して、該気化器 9に配設されたオリフィス 8を通し て反応室 3へ供給される原料ガスの量は殆ど無視できる程度であるために、気化器 9 の内部は常に平衡状態に保たれ、しかも固体原料 10の気化量は該原料の表面積等 に左右されることなく該原料の蒸気圧によってほぼ決定されるため、反応室 3への原 料ガスの供給は長時間にわたって安定しておこなわれる。  Therefore, in the method for supplying a source gas for a metal organic chemical vapor deposition apparatus, the orifice 8 disposed in the vaporizer 9, wherein the vapor pressure of the raw material existing in the vaporizer 9 is substantially According to the method of the present invention in which the raw material gas is supplied to the organic metal chemical vapor deposition system through the orifice 8 having a hole diameter large enough to be kept constant, the gas is generated by vaporization inside the vaporizer 9. The amount of the source gas supplied to the reaction chamber 3 through the orifice 8 provided in the vaporizer 9 is almost negligible compared to the amount of the source gas to be vaporized. Is always kept in an equilibrium state, and since the vaporization amount of the solid raw material 10 is almost determined by the vapor pressure of the raw material without being affected by the surface area of the raw material, the supply of the raw material gas to the reaction chamber 3 is limited. It is performed stably for a long time.
[0029] 本発明の第四の観点によれば、「下記の工程 (i)一 (V)を有する有機金属化学気相 堆積装置用原料ガスの供給方法:  According to a fourth aspect of the present invention, there is provided a method for supplying a source gas for an organometallic chemical vapor deposition apparatus having the following step (i)-(V):
(i)固体原料から溶剤を用いて液体原料 13を調製し、  (i) preparing a liquid raw material 13 from a solid raw material using a solvent,
(ii)該液体原料 13を、該固体原料の蒸気圧が実質上一定に保持されるような大きさ の孔径を有するオリフィス 8を具有する気化器 9内へ、該気化器 9に接続された配管 1 1を通して導入し、  (ii) The liquid raw material 13 was connected to the vaporizer 9 into a vaporizer 9 having an orifice 8 having a hole diameter large enough to keep the vapor pressure of the solid raw material substantially constant. Introduced through plumbing 1 1
(iii)該気化器 9内の液体原料 13に含まれる溶剤を該気化器 9内から蒸発除去させ、 (iii) evaporating and removing the solvent contained in the liquid raw material 13 in the vaporizer 9 from the vaporizer 9;
(iv)該気化器 9内に残留する該固体原料 10を加熱昇華させることによって該気化器 内に該原料ガスを発生させ、次いで (iv) heating and sublimating the solid raw material 10 remaining in the vaporizer 9 to generate the raw material gas in the vaporizer,
(V)該原料ガスを該オリフィス 8を通して有機金属化学気相堆積装置系へ供給する」 が提供される。  (V) supplying the source gas to the metal organic chemical vapor deposition system through the orifice 8 ”.
[0030] 液体原料 13は、反応室 3の内部に設置された基板 2に堆積される薄膜の原料とな る固体原料 10を溶剤中に溶解させるか、分散させるか、懸濁させるか、または乳濁さ せることによって調製されるが、該液体原料 13は溶液であるのが最も好ま ヽ。 液体原料 13の濃度は、固体原料 10の種類、溶剤の種類、および原料の充填効率 等に応じて適宜選定すればよぐ特に限定的ではないが、通常は、約 0. 1— 5molZ 1、好ましくは約 0. 2— 2molZl、特に好ましくは約 0. 5— ImolZlである。 The liquid raw material 13 is prepared by dissolving, dispersing, suspending, or dissolving a solid raw material 10 which is a raw material of a thin film deposited on the substrate 2 installed inside the reaction chamber 3 in a solvent. It is prepared by emulsification, but the liquid raw material 13 is most preferably a solution. The concentration of the liquid raw material 13 is not particularly limited as long as it can be appropriately selected according to the type of the solid raw material 10, the type of the solvent, the filling efficiency of the raw material, and the like, but is usually about 0.1 to 5 molZ1, Preferably it is about 0.2-2 mol Zl, particularly preferably about 0.5-Imol Zl.
[0031] 固体原料から液体原料 13を調製するために使用する溶剤は、固体原料の溶解度 および溶剤のコストや毒性等を考慮して適宜選択すればよぐ特に限定的ではない 力 次の溶剤が例示される:テトラヒドロフラン、酢酸ブチル、ェチルシクロへキサン、ト ルェン、キシレンおよびテトラエチルヘプタンジオン。 [0031] The solvent used for preparing the liquid raw material 13 from the solid raw material may be appropriately selected in consideration of the solubility of the solid raw material and the cost and toxicity of the solvent, and is not particularly limited. Illustrative are: tetrahydrofuran, butyl acetate, ethylcyclohexane, toluene, xylene and tetraethylheptanedione.
所望により、このような溶剤は 2種以上適宜併用してもよい。  If desired, two or more such solvents may be used in combination.
[0032] 上記のようにして調製された液体原料 13は、固体原料 10の蒸気圧が実質上一定 に保持されるような大きさの孔径を有するオリフィス 8を具有する気化器 9内へ、該気 ィ匕器 9に接続された配管 11を通して導入し、次 ヽで液体原料 13に含まれる溶剤を 該気化器 9内から蒸発除去させる。 [0032] The liquid raw material 13 prepared as described above is introduced into a vaporizer 9 having an orifice 8 having a hole diameter large enough to keep the vapor pressure of the solid raw material 10 substantially constant. The mixture is introduced through a pipe 11 connected to the gasifier 9, and then the solvent contained in the liquid raw material 13 is evaporated from the vaporizer 9 in the next step.
[0033] この場合の操作手順を図 2に基づいてさらに説明する。 The operation procedure in this case will be further described based on FIG.
図 2の (A)に示す状態においては、液体原料導入用配管 11に連絡するバルブ 6を 開放すると共に、配管 11と真空ポンプ 5に連絡するバルブ 6'を閉鎖する。  In the state shown in FIG. 2A, the valve 6 communicating with the liquid material introduction pipe 11 is opened, and the valve 6 'communicating with the pipe 11 and the vacuum pump 5 is closed.
図 2の(B)に示す状態においては、系外の液体原料 13は、液体流量調整器 15、 バルブ 6および配管 11を経由し、気化器 9の原料充填口 14から気化器内へ充填さ れる。  In the state shown in FIG. 2 (B), the liquid raw material 13 outside the system is charged into the vaporizer from the raw material charging port 14 of the vaporizer 9 via the liquid flow regulator 15, the valve 6, and the pipe 11. It is.
図 2の(C)に示す状態においては、ノ レブ 6の閉鎖とバルブ 6'の開放をおこなった 後、気化器 9の底部に貯留された液体原料 13を加熱ヒーター 7によって加熱すること によって溶剤を蒸発させると共に、真空ポンプ 5を駆動させて気化器 9の内部を排気 する。この排気によって、気化器内の溶剤は液体原料充填口 14から配管 11とバル ブ 6'を経由して系外へ除去され、気化器 9の底部には固体原料 10が残留する。溶 剤を除去した後は、バルブ 6'を閉鎖する。  In the state shown in FIG. 2 (C), after closing the knob 6 and opening the valve 6 ′, the liquid raw material 13 stored at the bottom of the vaporizer 9 is heated by the heater 7 so that the solvent is removed. Is evaporated, and the inside of the vaporizer 9 is exhausted by driving the vacuum pump 5. With this exhaust, the solvent in the vaporizer is removed from the liquid raw material filling port 14 to the outside of the system via the pipe 11 and the valve 6 ′, and the solid raw material 10 remains at the bottom of the vaporizer 9. After removing the solvent, close valve 6 '.
[0034] なお、上記の溶剤除去工程において、反応室 (成膜室) 3の内部の圧力を気化器 9 の内部の圧力よりも高く設定することによって、気化器 9から反応室 3への溶剤ガスの 侵入を抑止することができる。  In the above-mentioned solvent removing step, the pressure inside the reaction chamber (film formation chamber) 3 is set to be higher than the pressure inside the vaporizer 9, so that the solvent from the vaporizer 9 to the reaction chamber 3 Gas intrusion can be suppressed.
[0035] 本発明の第四の観点による有機金属化学気相堆積装置用原料ガスの供給方法に おいても、該オリフィス 8の形態に関しては、本発明の第一の観点による気化器の場 合の上記説明がそのまま適用される。 [0035] A method for supplying a source gas for an organometallic chemical vapor deposition apparatus according to a fourth aspect of the present invention is described. Regarding the configuration of the orifice 8, the above description in the case of the vaporizer according to the first aspect of the present invention is applied as it is.
[0036] 上記のようにして気化器 9内の液体原料 13から溶剤を除去することによって該気化 器 9内に残留する固体原料 10を加熱昇華させることにより、該気化器内に原料ガス を発生させ、次いで、該原料ガスは該オリフィス 8を通して有機金属化学気相堆積装 置系へ供給される。 By removing the solvent from the liquid raw material 13 in the vaporizer 9 as described above, the solid raw material 10 remaining in the vaporizer 9 is heated and sublimated to generate a raw material gas in the vaporizer. The source gas is then supplied to the metal organic chemical vapor deposition system through the orifice 8.
[0037] 有機金属化学気相堆積装置系内においては、例えば、次のようにして成膜条件を 設定する。即ち、基板 2の温度を基板加熱ヒーター 1を用いて所定の温度 (例えば、 5 00°C)に設定し、反応室 3の内部の圧力を真空ポンプ 5'を用いて所定の圧力(例え ば、 275Pa)に調整し、固体原料 10の昇華によって発生する原料ガスのキャリアガス としてのアルゴンの流量を流量調整器 16を用いて所定の流量 (例えば、 14sccZm) に調整すると共に、反応ガスとしての酸素ガスの流量を流量調整器 16'を用いて所 定の流量 (例えば、 100scc/m)に調整し、また、気ィ匕器 9の内部の温度は加熱用ヒ 一ター 7を用いて所定の温度(例えば、 150°C、 155°Cまたは 160°C)に設定する。 このような成膜条件下において、基板 2上に所望の薄膜 (例えば、 TiO薄膜)を形  In the metal organic chemical vapor deposition system, for example, the film forming conditions are set as follows. That is, the temperature of the substrate 2 is set to a predetermined temperature (for example, 500 ° C.) using the substrate heater 1, and the pressure inside the reaction chamber 3 is set to a predetermined pressure (eg, 275 Pa), and the flow rate of argon as a carrier gas of the raw material gas generated by sublimation of the solid raw material 10 is adjusted to a predetermined flow rate (for example, 14 scc Zm) using the flow rate regulator 16, and the reaction gas as the reaction gas is adjusted. The flow rate of the oxygen gas is adjusted to a predetermined flow rate (for example, 100 scc / m) using the flow rate regulator 16 ′, and the temperature inside the gasifier 9 is specified using the heating heater 7. Temperature (eg, 150 ° C, 155 ° C or 160 ° C). Under such film forming conditions, a desired thin film (for example, a TiO thin film) is formed on the substrate 2.
2  2
成させることができる。  Can be achieved.
[0038] 上記の本発明による有機金属化学気相堆積装置用原料ガスの供給方法によれば 、気化器 9の内部で気化して発生する原料ガスの量に比較して、該気化器 9に配設さ れたオリフィス 8を通して反応室 3へ供給される原料ガスの量は殆ど無視できる程度 であるために、気化器 9の内部は常に平衡状態に保たれ、しかも固体原料 10の気化 量は該原料の表面積等に左右されることなく該原料の蒸気圧によってほぼ決定され るため、反応室 3への原料ガスの供給は長時間にわたって安定しておこなわれる。  [0038] According to the method for supplying a source gas for an organometallic chemical vapor deposition apparatus according to the present invention described above, the amount of the source gas generated by vaporization inside the vaporizer 9 is reduced. Since the amount of raw material gas supplied to the reaction chamber 3 through the orifice 8 provided is almost negligible, the inside of the vaporizer 9 is always kept in an equilibrium state, and the amount of vaporized solid raw material 10 is Since it is almost determined by the vapor pressure of the raw material without being influenced by the surface area of the raw material, the supply of the raw material gas to the reaction chamber 3 is performed stably for a long time.
[0039] また、この原料ガス供給方法によれば、固体原料は溶剤を用いて液体状態に変換 した後で、気化器 9を開放することなぐ系外力 の配管 11を通して気化器 9内へ連 続的または逐次的に導入され、次いで成膜に先だって、該液体原料 13中の溶剤の みが蒸発除去させるので、気化器 9内においては常に新鮮な固体原料力も原料ガス が発生し、該原料ガスはオリフィス 8を通して連続的に有機金属化学気相堆積装置 系へ供給される。 実施例 1 Further, according to this raw material gas supply method, after converting the solid raw material into a liquid state using a solvent, the solid raw material is connected to the inside of the vaporizer 9 through a pipe 11 of external force without opening the vaporizer 9. Before or after film formation, only the solvent in the liquid raw material 13 is evaporated and removed, so that a raw material gas is always generated in the vaporizer 9 as well as a fresh solid raw material power. Is continuously supplied to the metal organic chemical vapor deposition system through the orifice 8. Example 1
[0040] 図 1に示す有機金属化学気相堆積装置を使用して TiO薄膜を作製した。  [0040] A TiO thin film was prepared using the metal organic chemical vapor deposition apparatus shown in FIG.
2  2
チタンイソプロポキシビバロイルメタン(2. 66g)をテトラヒドロフラン(10ml)に溶解さ せることによって原料溶液を調製した (原料濃度: 0. 5mol/l)0また、 TiO薄膜を堆 Titanium isopropoxide Sibi Varo yl methane (2. 66 g) was a raw material solution was prepared by dissolving in tetrahydrofuran (10 ml) (raw material concentration: 0. 5mol / l) 0 also compost the TiO thin film
2 積させるための基板 2としてはシリコンウェハを使用した。  A silicon wafer was used as the substrate 2 for stacking.
この原料溶液を気化器 9内へ配管 11を通して導入した。真空ポンプ 5を用いて気 ィ匕器内を排気しながら加熱用ヒーター 7を用 ヽて原料溶液を 80°Cで 15分間加熱す ることによってテトラヒドロフランを気化器内から蒸発除去した。  This raw material solution was introduced into the vaporizer 9 through the pipe 11. The raw material solution was heated at 80 ° C. for 15 minutes using the heater 7 while evacuating the gasifier using the vacuum pump 5 to remove tetrahydrofuran from the vaporizer by evaporation.
この場合の操作手順は、図 2に基づいて先に説明した手順に準拠しておこなった。 次いで、基板 2の温度を基板加熱ヒーター 1を用いて 500°Cに設定し、反応室 3の 内部の圧力を真空ポンプ 5'を用いて 275Paに調整し、個体原料 10の昇華によって 発生する原料ガスのキャリアガスとしてのアルゴンの流量を流量調整器 16を用いて 1 4sccZmに調整すると共に、反応ガスとしての酸素ガスの流量を流量調整器 16'を 用いて lOOsccZmに調整し、また、気ィ匕器 9の内部の温度は加熱用ヒーター 7を用 いて 150°C、 155°Cまたは 160°Cに設定した。  The operation procedure in this case was performed according to the procedure described above with reference to FIG. Next, the temperature of the substrate 2 was set to 500 ° C using the substrate heater 1, the pressure inside the reaction chamber 3 was adjusted to 275 Pa using the vacuum pump 5 ', and the raw material generated by sublimation of the solid raw material 10 The flow rate of argon as a carrier gas of gas was adjusted to 14 scccZm using a flow regulator 16, and the flow rate of oxygen gas as a reaction gas was adjusted to 100 scccZm using a flow regulator 16 ′. The temperature inside the dagger 9 was set to 150 ° C., 155 ° C. or 160 ° C. using the heater 7 for heating.
[0041] 上記の成膜条件下にお!/ヽて、基板上に TiO薄膜を形成させ、該薄膜の膜厚を経 Under the above film forming conditions, a TiO thin film is formed on a substrate, and the thickness of the TiO thin film is changed.
2  2
時的(20分後、 25分後、 30分後および 35分後)に測定した。この測定結果を図 3に 示す。  The time was measured (after 20, 25, 30, and 35 minutes). Figure 3 shows the measurement results.
図 3から明らかなように、いずれの気化温度においても、二酸化チタン薄膜の膜厚 は堆積時間の増加に伴ってほぼ直線的に増加しており、このことは、本発明による気 ィ匕器を使用する場合には、固体原料の安定した気化と一定の堆積速度が達成され ることを示す。また、図 3は、気化器 9の温度を適宜選定することによって、基板上へ の原料ガスの堆積速度を制御することができることも示す。  As is clear from FIG. 3, at any vaporization temperature, the thickness of the titanium dioxide thin film increases almost linearly with the increase of the deposition time, which indicates that the gasifier according to the present invention is used. When used, it indicates that stable vaporization of the solid source and a constant deposition rate are achieved. FIG. 3 also shows that the rate of deposition of the source gas on the substrate can be controlled by appropriately selecting the temperature of the vaporizer 9.
産業上の利用可能性  Industrial applicability
[0042] 工業的生産においては、生産プロセスの稼動率は製品のコスト等の観点力も非常 に重要な要件である。本発明による有機金属化学気相堆積装置用原料気化器を使 用する場合には、均一薄膜を製造するために重要な原料の安定的気化が保証され るだけでなぐ装置の稼動率を高めるために重要な原料の連続的もしくは逐次的供 給が可能となる。従って、有機金属化学気相堆積法による薄膜の量産プロセス中へ 本発明による気化器を組入れることによって、該量産プロセスの稼動率が大幅に高 められ、このことと原料の安定的気化と相俟って、均一な薄膜製品を低コストで提供 することが可能となる。 [0042] In industrial production, the operation rate of the production process is a very important requirement in terms of product cost and the like. In the case of using the material vaporizer for the metal organic chemical vapor deposition apparatus according to the present invention, it is necessary to ensure the stable vaporization of the important material for producing a uniform thin film, and to increase the operation rate of the apparatus. Continuous or sequential supply of critical raw materials The salary becomes possible. Therefore, by incorporating the vaporizer according to the present invention into the mass production process of the thin film by the metalorganic chemical vapor deposition method, the operation rate of the mass production process is greatly increased, and this is combined with the stable vaporization of the raw material. As a result, it is possible to provide uniform thin-film products at low cost.
本発明による有機金属化学気相堆積装置用原料気化器は、有機金属化学気相堆 積法による薄膜の製造に際して、一般的に適用できるものであるが、特に、機能性酸 化物薄膜の製造、就中、強誘電体薄膜メモリー FeRAM用の Pb (Zr, Ti) 0、 SrBi  The raw material vaporizer for the metal organic chemical vapor deposition apparatus according to the present invention can be generally applied to the production of a thin film by the metal organic chemical vapor deposition method. Above all, Pb (Zr, Ti) 0, SrBi for ferroelectric thin film memory FeRAM
3 2 3 2
Ta O、および (Bi, La) Ti O 等の成膜に有用である。 It is useful for film formation of TaO, (Bi, La) TiO and the like.

Claims

請求の範囲 The scope of the claims
[1] 有機金属化学気相堆積装置用原料気化器において、該気化器内に存在する固体 原料の蒸気圧が実質上一定に保持されるような大きさの孔径を有するオリフィスを具 有することを特徴とする該気化器。  [1] A material vaporizer for a metal-organic chemical vapor deposition apparatus, which has an orifice having a pore diameter large enough to keep the vapor pressure of a solid material present in the vaporizer substantially constant. The vaporizer characterized in that:
[2] オリフィスの孔径が 50— 5000 μ mである請求項 1記載の気ィ匕器。  [2] The gas-riding device according to claim 1, wherein the orifice has a hole diameter of 50 to 5000 µm.
[3] 原料がチタン酸ジルコン酸鉛である請求項 1または 2記載の気化器。 3. The vaporizer according to claim 1, wherein the raw material is lead titanate zirconate.
[4] 有機金属化学気相堆積装置用原料気化器であって、(i)液体原料を充填するため の充填口、 (ii)該液体原料に含まれる溶剤を除去した後に残留する固体原料の気化 に際して、該気化器内の該固体原料の蒸気圧が実質上一定に保持されるような大き さの孔径を有するオリフィス、および (iii)加熱用ヒーターを具備する該気化器。 [4] A raw material vaporizer for an organometallic chemical vapor deposition apparatus, wherein (i) a filling port for filling a liquid raw material, and (ii) a solid raw material remaining after removing a solvent contained in the liquid raw material. An orifice having a hole diameter large enough to keep the vapor pressure of the solid raw material in the vaporizer substantially constant during vaporization; and (iii) a vaporizer having a heater for heating.
[5] オリフィスの孔径が 50— 5000 μ mである請求項 4記載の気ィ匕器。 [5] The gas-riding device according to claim 4, wherein the orifice has a pore size of 50 to 5000 µm.
[6] 原料がチタン酸ジルコン酸鉛である請求項 4または 5記載の気化器。 6. The vaporizer according to claim 4, wherein the raw material is lead zirconate titanate.
[7] 有機金属化学気相堆積装置用原料ガスの供給方法において、気化器内に配設さ れたオリフィスであって、該気化器内に存在する該原料の蒸気圧が実質上一定に保 持されるような大きさの孔径を有するオリフィスを通して該原料ガスが有機金属化学 気相堆積装置系へ供給されることを特徴とする該原料ガスの供給方法。 [7] In the method for supplying a source gas for a metalorganic chemical vapor deposition apparatus, the orifice disposed in the vaporizer, wherein the vapor pressure of the source present in the vaporizer is maintained substantially constant. A source gas supplied to an organometallic chemical vapor deposition system through an orifice having a pore size large enough to be held.
[8] オリフィスの孔径が 50— 5000 μ mである請求項 7記載の方法。 [8] The method according to claim 7, wherein the orifice has a pore size of 50 to 5000 µm.
[9] 原料がチタン酸ジルコン酸鉛である請求項 7または 8記載の方法。 [9] The method according to claim 7 or 8, wherein the raw material is lead zirconate titanate.
[10] 下記の工程 (i)一 (V)を有する有機金属化学気相堆積装置用原料ガスの供給方法 [10] Method of supplying source gas for metal organic chemical vapor deposition apparatus having the following steps (i)-(V)
(i)固体原料から溶剤を用いて液体原料を調製し、 (i) preparing a liquid raw material from a solid raw material using a solvent,
(ii)該液体原料を、該固体原料の蒸気圧が実質上一定に保持されるような大きさの 孔径を有するオリフィスを具有する気化器内へ、該気化器に接続された配管を通し て導入し、  (ii) passing the liquid raw material into a vaporizer having an orifice having a pore size large enough to keep the vapor pressure of the solid raw material substantially constant, through a pipe connected to the vaporizer. Introduce,
(iii)該気化器内の液体原料に含まれる溶剤を該気化器内から蒸発除去させ、 (iii) evaporating and removing the solvent contained in the liquid raw material in the vaporizer from the vaporizer,
(iv)該気化器内に残留する該固体原料を加熱昇華させることによって該気化器内に 該原料ガスを発生させ、次いで (iv) heating and sublimating the solid raw material remaining in the vaporizer to generate the raw material gas in the vaporizer,
(V)該原料ガスを該オリフィスを通して有機金属化学気相堆積装置系へ供給する。 (V) supplying the source gas to the metal organic chemical vapor deposition system through the orifice;
[11] オリフィスの孔径力 0—5000 μ mである請求項 10記載の方法。 [11] The method according to claim 10, wherein the orifice has a pore diameter force of 0 to 5000 µm.
[12] 原料がチタン酸ジルコン酸鉛である請求項 10または 11記載の方法。  12. The method according to claim 10, wherein the raw material is lead zirconate titanate.
[13] 固体原料を溶剤に溶解させて液体原料を調製する請求項 10記載の方法。  13. The method according to claim 10, wherein the liquid raw material is prepared by dissolving the solid raw material in a solvent.
[14] 溶剤がテトラヒドロフラン、酢酸ブチル、ェチルシクロへキサン、トルエン、キシレンお よびテトラエチルヘプタンジオン力も成る群力も選択される溶剤である請求項 10記載 の方法。  14. The method according to claim 10, wherein the solvent is a solvent selected from the group consisting of tetrahydrofuran, butyl acetate, ethylcyclohexane, toluene, xylene, and tetraethylheptanedione.
PCT/JP2005/003877 2004-03-12 2005-03-07 Material carburetor for organic metal chemical vapor phase deposition equipment WO2005087975A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004070656A JP4595356B2 (en) 2004-03-12 2004-03-12 Raw material vaporizer for metalorganic chemical vapor deposition equipment
JP2004-070656 2004-03-12

Publications (1)

Publication Number Publication Date
WO2005087975A1 true WO2005087975A1 (en) 2005-09-22

Family

ID=34975611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003877 WO2005087975A1 (en) 2004-03-12 2005-03-07 Material carburetor for organic metal chemical vapor phase deposition equipment

Country Status (2)

Country Link
JP (1) JP4595356B2 (en)
WO (1) WO2005087975A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114402093A (en) * 2019-09-24 2022-04-26 东京毅力科创株式会社 Raw material supply device and raw material supply method
CN114402092A (en) * 2019-09-24 2022-04-26 东京毅力科创株式会社 Raw material supply device and raw material supply method
CN116018426A (en) * 2020-09-15 2023-04-25 东京毅力科创株式会社 Raw material supply device and raw material supply method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273936B2 (en) * 2007-04-02 2013-08-28 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method
JP5461786B2 (en) 2008-04-01 2014-04-02 株式会社フジキン Gas supply device with vaporizer
WO2021187134A1 (en) * 2020-03-17 2021-09-23 東京エレクトロン株式会社 Raw material supply system
JP2022007656A (en) * 2020-06-26 2022-01-13 東京エレクトロン株式会社 Cleaning method, cleaning mechanism and raw material supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298768A (en) * 1997-01-24 1998-11-10 Applied Materials Inc High-temperature and high-deposition-rate method for depositing titanium layer, and device therefor
JP2003332243A (en) * 2002-05-13 2003-11-21 Japan Pionics Co Ltd Vaporizer and vapor feeding apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282556A (en) * 2002-03-25 2003-10-03 Canon Inc Apparatus and method for supplying solid organic metal material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298768A (en) * 1997-01-24 1998-11-10 Applied Materials Inc High-temperature and high-deposition-rate method for depositing titanium layer, and device therefor
JP2003332243A (en) * 2002-05-13 2003-11-21 Japan Pionics Co Ltd Vaporizer and vapor feeding apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114402093A (en) * 2019-09-24 2022-04-26 东京毅力科创株式会社 Raw material supply device and raw material supply method
CN114402092A (en) * 2019-09-24 2022-04-26 东京毅力科创株式会社 Raw material supply device and raw material supply method
US11965242B2 (en) 2019-09-24 2024-04-23 Tokyo Electron Limited Raw material supply apparatus and raw material supply method
CN116018426A (en) * 2020-09-15 2023-04-25 东京毅力科创株式会社 Raw material supply device and raw material supply method

Also Published As

Publication number Publication date
JP2005256107A (en) 2005-09-22
JP4595356B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
US5945162A (en) Method and device for introducing precursors into chamber for chemical vapor deposition
TWI393803B (en) Method and apparatus for using solution based precursors for atomic layer deposition
JP3462852B2 (en) Method and apparatus for producing thin films by chemical vapor deposition
WO2005087975A1 (en) Material carburetor for organic metal chemical vapor phase deposition equipment
US7638074B2 (en) Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films
WO2011070945A1 (en) Thin film manufacturing apparatus, thin film manufacturing method, and method for manufacturing semiconductor device
US20060070575A1 (en) Solution-vaporization type CVD apparatus
JPH07268634A (en) Cvd apparatus for liquid raw material and cvd process using liuqid raw material and the liquid raw material
US8092870B2 (en) Preparation of metal oxide thin film via cyclic CVD or ALD
JP2011054789A (en) Substrate treatment device
TWI427182B (en) Methods and apparatus for the vaporization and delivery of solution precursors for atomic layer deposition
JP4759916B2 (en) Processing equipment
US10258959B2 (en) Methods of producing heterodiamond and apparatus therefor
JP2000104172A (en) Coating film forming method, coating film forming apparatus and solid raw material
JP2001313288A (en) Source-gas supplying device
JP4421119B2 (en) Manufacturing method of semiconductor device
US5952047A (en) CVD precursors and film preparation method using the same
JP3928245B2 (en) Chemical vapor deposition equipment
JP3998309B2 (en) Vaporization method of organic alkaline earth metal complex in CVD method
WO2005020311A1 (en) Process for producing oxide thin film and production apparatus therefor
JP2007227471A (en) Substrate processing apparatus
JPH03141192A (en) Device and method for gaseous phase growth
JP2005206874A (en) Iridium-containing film deposition material, and method for producing iridium-containing film
JP4754087B2 (en) Deposition method
JP3503790B2 (en) Method for producing Bi layer structure ferroelectric thin film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase