WO2005086402A1 - 受信装置、受信方法、および無線通信システム - Google Patents

受信装置、受信方法、および無線通信システム Download PDF

Info

Publication number
WO2005086402A1
WO2005086402A1 PCT/JP2005/003774 JP2005003774W WO2005086402A1 WO 2005086402 A1 WO2005086402 A1 WO 2005086402A1 JP 2005003774 W JP2005003774 W JP 2005003774W WO 2005086402 A1 WO2005086402 A1 WO 2005086402A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
reception
transmission
multipath
demodulation
Prior art date
Application number
PCT/JP2005/003774
Other languages
English (en)
French (fr)
Inventor
Junichiro Kawamoto
Noriyuki Maeda
Kenichi Higuchi
Mamoru Sawahashi
Shousei Yoshida
Masayuki Kimata
Original Assignee
Ntt Docomo, Inc.
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc., Nec Corporation filed Critical Ntt Docomo, Inc.
Priority to AT05720046T priority Critical patent/ATE498948T1/de
Priority to JP2006510745A priority patent/JP4322918B2/ja
Priority to DE200560026370 priority patent/DE602005026370D1/de
Priority to CN2005800071148A priority patent/CN1930813B/zh
Priority to US10/591,663 priority patent/US7991360B2/en
Priority to EP20050720046 priority patent/EP1722499B1/en
Publication of WO2005086402A1 publication Critical patent/WO2005086402A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7105Joint detection techniques, e.g. linear detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0656Cyclotomic systems, e.g. Bell Labs Layered Space-Time [BLAST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals

Definitions

  • Receiving device receiving method, and wireless communication system
  • the present invention relates to a receiving device, a receiving method, and a wireless communication system that perform signal demodulation (signal separation) using a plurality of antennas.
  • FIG. 14 is a diagram for explaining the MIMO multiplexing method, and is a diagram showing a configuration of a MIMO communication system using a plurality of antennas. According to this system, a plurality of antennas 1011 to 1011 on the transmitting side also transmit different signals using the same frequency, and transmit the signals to the receiving side.
  • the transmission speed can be increased in proportion to the number of transmission antennas without increasing the transmission band (for example, see Non-Patent Document 1).
  • BLAST Bell Labs Layered Space-Time
  • MIMO Multiple Access Multimedia Subsystem
  • BLAST is a method in which different information is transmitted simultaneously from a plurality of transmitting antennas at the same frequency and in parallel, and the receiving side performs signal separation by diversity reception controlled by interference suppression and subtraction of replied power (for example, non-transmission).
  • Patent Document 1 is a method in which different information is transmitted simultaneously from a plurality of transmitting antennas at the same frequency and in parallel, and the receiving side performs signal separation by diversity reception controlled by interference suppression and subtraction of replied power (for example, non-transmission).
  • the MIMO multiplexing method can achieve a high transmission rate.
  • the receiving apparatus receives the data sequence.
  • signal separation for extracting a transmission signal sequence transmitted from each transmitting antenna card is required.
  • a linear filter such as least mean square error (MMSE) or ZF (Zero Forcing) is used.
  • the signal separation algorithm is a method of combining multiple received signals received by the same number or more of receiving antennas so as to suppress the received signal power of the transmitting antenna other than the transmitting antenna of interest. This is a special feature that requires a relatively small amount of computation on the receiving side.
  • a signal separation algorithm using maximum likelihood detection generates replica candidates of the received signal from each transmitting antenna, and calculates the sum of the received signal and the replica candidates of the received signals from all the transmitting antennas.
  • MLD maximum likelihood detection
  • direct spread (DS) CDMA is a technique in which a plurality of communicators use the same frequency band by transmitting a conventional information data modulated signal by performing secondary modulation that spreads the signal with a high-rate spreading code.
  • DS-CDMA wireless communication using DS-CDMA
  • multi-nosing frequency-selective fading
  • transmitted signals have different propagation delay times from each other. Received after being separated into multipaths.
  • Rake reception combining these multiple paths can improve reception quality. Interference between different paths (hereinafter referred to as multinos interference) occurs. The reception quality improvement is offset.
  • the magnitude of the multipath interference is proportional to the reciprocal of the spreading factor defined by the ratio between the chip rate, which is the speed of multiplying the spreading code, and the symbol rate of the information symbol. For this reason, if the spreading factor approaches 1 in order to increase the information bit rate, the deterioration of reception quality due to multipath interference will be more dominant than the Rake reception effect, and the reception characteristics will deteriorate during high-speed data transmission. There was a problem. Therefore, in order to solve such a problem, a multipath interference canceller has been proposed (for example, see Non-Patent Document 3).
  • this multi-noise interference canceller transmits a transmission signal sequence estimated from a provisional Rake reception result and a channel coefficient of each reception path (a complex envelope of a propagation path). Estimates the received signal sequence for each path based on the received signal sequence and subtracts all the estimated received signal sequences other than the path with the strongest received signal power by the number of paths. By performing final Rake reception using signals, high-quality reception in a multipath environment is realized.
  • Non-Patent Document 2 Bin Dong, Xaodong Wang, and Amaud Doucet, "Sampling-based Near-optimal MIMO demodulation Algorithms, in Proc. 42nd IEEE Conference on Decision and Control, Hawaii, Dec. 2003.
  • Non-Patent Document 3 K. Higuchi, A. Fujiwara, and M. Sawahashi, "Multipath Interference Canceller for High-Speed Packet Transmission With Adaptive Modulation and Coding Scheme in W-CDMA Forward Link," IEEE J. Select. Areas Commun. , Vol.20, No.2, pp.419—432, February 2002.
  • Non-Patent Document 4 Frederik Petre et.Al, Combined Space-Time Chip Equalization And Parallel Interference Cancellation For DS— CDMA Downlink With Spatial
  • the previously proposed multipath interference canceller has a configuration in which a signal is transmitted with only one antenna power. Even when applied at the time of MIMO multiplexing, highly accurate estimation of a transmitted signal sequence cannot be performed with Rake reception. .
  • multipath interference during MIMO multiplexing is generated not only by interference with the same transmission antenna power but also from reception signals with different transmission antenna powers. Must also suppress these multi-noise interferences.
  • the above-mentioned MMSE has, in principle, poorer signal separation accuracy than MLD, and cannot obtain optimal performance on the receiving side.
  • filter coefficients are controlled to suppress multipath interference in addition to suppressing interference caused by received signals from other transmitting antennas, so that deterioration in signal separation accuracy is further reduced. There was a problem of getting bigger.
  • the present invention has been made in view of the above-described problems, and an object thereof is to realize highly accurate signal separation by suppressing deterioration of reception characteristics due to multipath interference. It is an object of the present invention to provide a receiving apparatus, a receiving method, and a wireless communication system that can perform the method. Means for solving the problem
  • the present invention provides a receiving apparatus that receives a signal using the CDMA method, wherein N (where N is a positive integer) transmission signals transmitted from M (M is a positive integer) transmission antennas are transmitted.
  • N where N is a positive integer
  • M is a positive integer
  • Multipath reception signal reproduction means for reproducing a reception signal of each path for each reception antenna in a multipath environment; and a multipath for subtracting the reproduction reception signal of a path other than the path of interest from the reception signal received by each reception antenna.
  • One of the features is to include a path interference canceling unit and a demodulating unit that performs secondary demodulation using the reduced signal.
  • the multipath received signal reproducing unit may be configured to execute the primary decoding.
  • the method is characterized in that the key is executed using a minimum mean square error (MMSE) method.
  • MMSE minimum mean square error
  • the multipath received signal reproducing means executes the primary demodulation using a maximum likelihood detection (MLD) method. .
  • MLD maximum likelihood detection
  • the multipath received signal reproducing means performs the primary demodulation collectively on a plurality of paths using a maximum likelihood detection method using QR decomposition.
  • the multipath reception signal reproducing means executes the primary demodulation for each path using a maximum likelihood detection method using QR decomposition.
  • the multipath received signal reproducing unit controls the amplitude of the received signal based on the likelihood of the transmission symbol sequence estimated using the above method.
  • the multipath received signal reproducing unit estimates a channel coefficient using a known pilot signal transmitted from the M transmitting antennas. .
  • the receiving apparatus is characterized in that a predetermined number of the multipath received signal reproducing means and the multipath interference canceling means are connected in multiple stages.
  • each of the M stages uses the signal reduced by the multipath interference canceling means in each stage. Transmit antenna power
  • the feature is to update the estimated channel coefficient based on the known pilot signal transmitted.
  • the demodulation means performs secondary demodulation using a maximum likelihood detection method.
  • the demodulation means performs secondary demodulation collectively on a plurality of paths by using a maximum likelihood detection method using QR decomposition.
  • the demodulation means may use a maximum likelihood detection method using QR decomposition.
  • the second characteristic is that the second demodulation is performed for each path by using the method.
  • the multipath reception signal reproducing means converts the reception signals received by each reception antenna.
  • First-order demodulation reproduces the received signal of each path for each receiving antenna for each spreading code
  • the multipath interference canceling means removes all paths other than the path of interest from the received signal received by each receiving antenna.
  • the demodulation means generates a signal obtained by subtracting the reproduction reception signal corresponding to the spread code, and performs the second demodulation for each spread code using the reduced signal.
  • the embodiment of the present invention when simultaneously transmitting data having different powers of a plurality of transmitting antennas using the CDMA system, multipath interference is reduced, and high accuracy of signals transmitted from different transmitting antennas is achieved. Separation can be realized. As a result, reception quality in a multipath fusing environment can be significantly improved.
  • FIG. 1 is a diagram showing a wireless communication system 1 including a receiving device according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram showing a first embodiment of a multipath received signal reproducing unit.
  • FIG. 3 is a configuration diagram illustrating a second embodiment of a multipath received signal reproducing unit.
  • FIG. 4 is a configuration diagram showing a third embodiment of a multipath received signal reproducing unit.
  • FIG. 5 is a configuration diagram showing a fourth embodiment of a multipath received signal reproducing unit.
  • FIG. 6 is a diagram illustrating a configuration of a channel coefficient estimating unit.
  • FIG. 7A is a diagram showing a frame configuration of a transmission signal transmitted from a transmission device.
  • FIG. 7B is a diagram showing a frame configuration of a transmission signal transmitted from the transmission device.
  • FIG. 8 is a configuration diagram showing a second embodiment of the receiving apparatus according to the embodiment of the present invention.
  • FIG. 9 is a configuration diagram showing a first embodiment of a demodulation unit according to the embodiment of the present invention.
  • FIG. 10 is a configuration diagram showing a second embodiment of the demodulation unit according to the embodiment of the present invention.
  • FIG. 11 is a configuration diagram showing a third embodiment of the demodulation unit according to the embodiment of the present invention.
  • FIG. 12 is a configuration diagram showing a third embodiment of the receiving device according to the embodiment of the present invention.
  • FIG. 13 is a diagram showing a result of a computer simulation according to the present invention.
  • FIG. 14 is a diagram showing a configuration of a MIMO communication system using a plurality of antennas.
  • FIG. 15 is a diagram for explaining that demodulation (signal separation) accuracy deteriorates due to the influence of multipath interference in MIMO multiplexing in DS-CDMA.
  • FIG. 1 is a diagram showing a wireless communication system 1 including a receiving device according to an embodiment of the present invention.
  • the wireless communication system 1 according to the present invention is a system using an Ml MO channel or a MISO (Multi-Input Single-Output, multiple-input single-output, that is, one receiving antenna of a receiving device) channel in DS-CDMA,
  • Ml MO channel or a MISO (Multi-Input Single-Output, multiple-input single-output, that is, one receiving antenna of a receiving device) channel in DS-CDMA
  • MISO Multi-Input Single-Output, multiple-input single-output, that is, one receiving antenna of a receiving device
  • a transmitting device 10 and a receiving device 20 can be connected in wireless communication.
  • the transmitting apparatus 10 performs serial-to-parallel conversion of the input transmission data bit sequence into M transmission sequences, performs data modulation using the same frequency band and the same spreading code, and generates M transmission antennas as transmission signals. 11 Same
  • the transmission signal transmitted in this way passes through the multipath propagation path, becomes L multipath reception signals, and is received by N reception antennas 21-21 provided in the reception device 20.
  • the receiving device 20 includes N receiving antennas 21 to 21, a multipath received signal reproducing unit 22, N multipath interference canceling units 23 to 23, and a demodulating unit 24.
  • h (t) is the signal transmitted from the transmitting antenna m at the receiving antenna n, m, n, 1
  • the received signal r (t) received by the three receiving antennas 21-21 is input to the multipath received signal reproducing unit 22.
  • the multipath received signal reproducing unit 22 performs temporary signal separation (referred to as first-order demodulation) based on the received signals received by the N receiving antennas 21-21, so that each of the receiving antennas 21-21 is separated.
  • each of the multi-path interference canceling units 23 to 23 corresponding to the number of the receiving antennas 21 to 21 includes the reception signals of the receiving antennas 21 to 21 and the transmitting antennas 11 to 21.
  • the received signal sequence for each received path from 1 n 1 11 is input, and the received signal power after multipath interference cancellation, which is obtained by subtracting all the received signals of other paths from the received signal r (t), is given by the following equation. Therefore, operate on, n, 1
  • the demodulation unit 24 outputs the output from the multipath interference cancellation units 23-23 as described above.
  • the likelihood of the Vol sequence or the likelihood ⁇ for the bit transmitted by the transmission symbol sequence is output as a secondary demodulation output to the subsequent error correction (channel) decoder such as a Viterbi decoder, turbo decoder, etc. to perform decoding processing. Let it run.
  • the subsequent error correction (channel) decoder such as a Viterbi decoder, turbo decoder, etc.
  • the primary demodulation is performed in the multipath reception signal reproduction unit, and the transmission signal is estimated. Then, by multiplying the estimated transmission signal by a channel variation value (channel coefficient), a reception signal for each path is estimated, and in the multipath interference canceller, estimation is performed on the reception signal from the path other than the path of interest from the reception signal. The received signal is subtracted.
  • the demodulation unit can perform demodulation using the received signal after removing the multipath interference, and can perform signal separation with high accuracy.
  • FIG. 2 is a configuration diagram showing a first embodiment of the multipath received signal reproduction unit shown in FIG.
  • the multipath received signal reproduction unit uses the MMSE algorithm as the primary demodulation method.
  • the multipath received signal reproducing unit 30 includes a channel coefficient estimating unit 31, a linear filter coefficient calculating unit 32, a linear filtering unit 33, M despreading units 34-34, and M Transmission symbol sequence estimators 35-35 and M multi-path received signal reproduction m 1 m
  • the channel coefficient estimating unit 31 receives the received signals r (t) received by the N receiving antennas 21-21 and receives the received signals.
  • the channel coefficient h of each path between the antennas 21-21 and the transmitting antennas 11-11 is estimated.
  • the linear filter coefficient calculator 32 calculates the estimated value of the obtained channel coefficient.
  • the coefficient of the linear filter that simultaneously suppresses the delay path component of the signal of the transmission antenna and the reception signal component from another transmission antenna is calculated for each transmission antenna. Specifically, the channel estimation value estimated using the pilot channel in the time domain
  • the impulse response of the channel between the transmitting antenna 11-11 and the receiving antenna 21-21 is obtained using
  • the coefficients of the linear filter can be obtained according to the ZF standard or the MMSE standard.
  • the coefficient of the linear filter based on the ZF can be obtained by the following equation.
  • the coefficient of the linear filter based on the MMSE can be obtained by the following equation.
  • the received signal of the ⁇ sequence is
  • a temporary demodulation sequence corresponding to the number of transmission antennas is despread with the same spreading code as that used in (1), and the despread signal z is output to the transmission symbol sequence estimation unit 35-35.
  • the Bol sequence estimator 35-35 performs hard decision or soft decision on the despread signal z.
  • transmission symbol d (i is a symbol candidate number
  • FIG. 3 is a configuration diagram showing a second embodiment of the multipath received signal reproducing unit.
  • the multipath received signal reproduction unit uses the MLD algorithm as the primary demodulation method.
  • the multipath received signal reproducing section 40 includes a channel coefficient estimating section 41, NXL despreading sections 42-45, a transmission symbol candidate generating section 46, and a received signal replica generating section 47. And likelihood calculating section 48 and M transmission symbol sequence estimating sections 49
  • channel coefficient estimating section 41 receives received signals r (t) received by N receiving antennas 21-21, and receives the signals.
  • the channel coefficient h of each path between the antennas 21-21 and the transmitting antennas 11-11 is estimated.
  • NXL despreading units 42-45 use received signals r (t) received by N receiving antennas 21-21 with the same spreading code as the spreading code used at the time of transmission. despread at the reception timing of the path to obtain the despread signal z of each path at each of the NXL reception antennas.
  • Transmission symbol candidate generation section 46 transmits transmission symbol d (i is
  • Received signal replica generation section 47 receives the transmission symbol generated by transmission symbol candidate generation section 46 and the channel coefficient estimated by channel coefficient estimation section 41, and receives the received signal replica.
  • the likelihood calculator 48 receives the received despread signal z and the received signal replica.
  • the input symbol and the corresponding error signal are input, the minimum error is selected, and the transmission symbol sequence that gives the error
  • ⁇ 2 (n) represents the noise power
  • the multipath received signal reproducing unit 36-36 transmits the transmission estimated as described above.
  • FIG. 4 is a configuration diagram illustrating a third embodiment of the multipath received signal reproducing unit.
  • the multipath received signal reproduction unit uses the MLD algorithm that performs the batch processing as the primary demodulation method.
  • the multipath receiving signal reproducing unit 50 includes a channel coefficient estimating unit 51, and NXL despread section 52- 55, the QR decomposition unit 56, a Q H calculation section 57, a transmission symbol A candidate generating section 58, a transformed signal replica generating section 59, a likelihood calculating section 60, M transmitting symbol sequence estimating sections 61-61, and M multipath received signal reproducing processing sections 62-62.
  • the channel coefficient estimating unit 51 inputs the received signal r (t) received by the N receiving antennas 21-21, and The channel coefficient h of each path between the antennas 21-21 and the transmitting antennas 11-11 is estimated.
  • NXL despreading units 52-55 use the same spreading code as the spreading code used at the time of transmitting the received signal r (t) received by N receiving antennas 21-21 for each. despread at the reception timing of the path to obtain the despread signal z of each path at each of the NXL reception antennas.
  • H represents a conjugate complex transpose
  • I represents an identity matrix
  • the R matrix is an upper triangular matrix with M rows and M columns.
  • Q H calculation section 57 performs a calculation according to the following equation is performed.
  • Transmission symbol candidate generation section 58 first transmits transmission symbol d for transmission antenna M
  • Transformed signal replica generation section 59 receives the transmission symbol generated by transmission symbol candidate generation section 58 and the R matrix output from QR decomposition section 56, and converts the converted signal replica.
  • the likelihood calculating unit 60 calculates X and
  • the likelihood calculating section 60 performs an error calculation, inputs the generated transmission f, symbol corresponding to the transmission antenna M, and the corresponding error signal, and generates S transmission antennas having a small error.
  • transmission symbol candidate generating section 58 transmits transmission symbol to transmission antenna M-1.
  • Converted signal replica generation section 59 generates S transmission symbols corresponding to transmission antenna M.
  • the likelihood calculation unit 60 then performs an error operation by the following equation,
  • transmission symbol candidate generation section 58 generates and outputs transmission symbol d for transmission antenna m.
  • the transformed signal replica generation unit 59 transmits the transmission antennas m + 1 to m,
  • the likelihood calculation unit 60 performs an error operation according to the following equation!
  • Transmission symbol sequence estimating sections 61-61 perform surviving transmission corresponding to each transmission antenna.
  • the received symbol and the corresponding error signal are input, the minimum error is selected, and the transmission symbol sequence that gives the error is estimated.
  • ⁇ 2 (n) represents the noise power
  • the configuration of the multipath received signal reproducing unit in the present embodiment allows a slight deterioration in the reproduction accuracy of the received signal sequence as compared with the configuration of the multipath received signal reproducing unit shown in FIG. if the number of times of error calculated from the C M times
  • FIG. 5 is a configuration diagram illustrating a fourth embodiment of the multipath received signal reproduction unit.
  • the multipath received signal reproduction unit uses an MLD algorithm that performs processing for each path as a primary demodulation method.
  • the multipath received signal reproducing unit 70 includes a channel coefficient estimating unit 71, NXL despreading units 72-75, L QR decomposing units 76 and 77, and L Q H operation units 78 and 79, transmission symbol candidate generation unit 80, converted signal replica generation unit 81, likelihood calculation unit 82, M transmission symbol sequence estimation units 83-83, and M multipaths Playback of received signal
  • the channel coefficient estimating section 71 inputs the received signal r (t) received by the N receiving antennas 21-21, and The channel coefficient h of each path between the antennas 21-21 and the transmitting antennas 11-11 is estimated.
  • NXL despreading sections 72-75 use received signals r (t) received by N receiving antennas 21-21 with the same spreading code as the spreading code used at the time of transmission. despread at the reception timing of the path to obtain the despread signal z of each path at each of the NXL reception antennas.
  • the first QR decomposition section generates the following channel matrices, which also have the channel coefficient power of the first path, for the number of paths, performs QR decomposition of the channel matrices, and generates the Q matrix And output the R matrix.
  • the R matrix is an upper triangular matrix with M rows and XM columns.
  • transmission symbol candidate generation section 80 first transmits transmission symbol d for transmission antenna ⁇
  • the transformed signal replica generator 81 receives the transmission symbol d and the R matrix,
  • the likelihood calculation unit 82 calculates X and
  • likelihood calculation section 82 After performing error calculation, likelihood calculation section 82 receives as input the generated transmission symbol corresponding to transmission antenna M and the corresponding error signal, and generates S transmission errors with small errors.
  • transmission symbol candidate generating section 80 transmits transmission symbol to transmission antenna M-1 (Equation 92).
  • Converted signal replica generation section 81 generates S transmission symbols corresponding to transmission antenna M
  • transmission symbol candidate generation section 80 generates and outputs transmission symbol d for transmission antenna m.
  • the converted signal replica generation unit 81 transmits the transmission antennas m + 1 to m,
  • the likelihood calculation unit 82 performs an error operation according to the following equation,
  • transmission symbol sequence estimation section 83-83 surviving transmission corresponding to each transmission antenna is performed.
  • the received symbol and the corresponding error signal are input, the minimum error is selected, and the transmission symbol sequence that gives the error is estimated.
  • Equation 105 When “w” is minimized, it is set to ⁇ from “le ' ⁇ ), ⁇ / ⁇ ).
  • ⁇ 2 (n) represents the noise power
  • each transmitting antenna can be Signal sequence for each reception path from
  • Equation 115 is estimated and output.
  • the configuration of the multipath received signal reproducing unit in the present embodiment is similar to that of the multipath received signal reproducing unit shown in FIG. compared to the configuration of the multipath reception signal reproducing unit shown in FIG. 3, if allow slight received signal sequence of the reproduction accuracy of the deterioration, the number of the error calculation from the C M times
  • FIG. 6 is a configuration diagram of a channel coefficient estimation unit according to the present invention.
  • Figs. 7A and 7B show a configuration example of a transmission signal transmitted from a transmission device when the channel coefficient estimation unit is used.
  • FIG. 7A and 7B show a configuration example of a transmission signal transmitted from a transmission device when the channel coefficient estimation unit is used.
  • a transmission signal transmitted from a transmission device will be described with reference to FIGS. 7A and 7B.
  • a pilot symbol hatchched portion
  • transmission antennas 1 and 2 the transmission antennas 1 and 2. It is periodically inserted for data symbols.
  • the pilot symbol patterns for each transmit antenna are orthogonal to each other.
  • spreading codes (Cl, C2) used for spreading pilot symbols of each transmitting antenna are orthogonal.
  • the transmission of the pilot signal can be performed by any of the methods shown in Fig. 7A and Fig. 7B.
  • the above-described orthogonal symbol pattern or orthogonal spreading code can be generated by using, for example, a Walsh sequence having the same length as the number of pilot symbols or the same length as the spreading factor of the pilot symbols.
  • p (n) the pilot signal sequence of transmitting antenna m
  • n represents a chip number.
  • the channel coefficient estimating section 100 has a function of estimating a channel coefficient of each path between the transmitting antenna m and the receiving antenna n.
  • This example shows a configuration example of the channel coefficient estimator in the case of three transmitting antennas and four receiving antennas. That is, the channel coefficient estimating section includes a 3 ⁇ 4 correlation detecting section 101-104 and pilot signal replica generating sections 111-114.
  • the correlation detection unit having a plurality of components and the pilot signal replica generation unit are illustrated with serial numbers added to the end of the code.
  • received signal rl received by receiving antenna 1 is input to correlation detecting section 101. Further, pilot signal replica generating section 111 generates pilot symbol sequence pi of transmitting antenna 1 and inputs the same to correlation detecting section 101.
  • Correlation detecting section 101 averages a value obtained by multiplying received signal rl by a complex conjugate value of pilot symbol sequence pi of transmitting antenna 1 in consideration of the reception timing of path 1 in four pilot symbol intervals.
  • the channel coefficient h between transmitting antenna 1 and receiving antenna 1 is estimated and output according to the following equation.
  • the transmission signal generated by the received signal r and the second-stage pilot symbol replica generator (not shown) is provided.
  • the pilot symbol sequence p of antenna m is estimated and output m1, m, 1
  • the pilot symbol sequence P of the transmitting antenna 1 is input to the correlation detecting section 103, and the correlation is obtained to estimate and output the channel coefficient h.
  • FIG. 8 is a configuration diagram showing a second embodiment of the receiving device according to the embodiment of the present invention.
  • the receiving apparatus 200 includes a plurality of multipath received signal reproduction channels—manifold transmission interference channels—221, 222, and 2
  • any of the configurations of the above-described arbitrary multipath reception signal reproducing units shown in Figs. 2 to 5 may be applied to the second and subsequent multipath reception signal reproduction units 212 and 213. Can be.
  • the input signal to the p-th multipath received signal reproduction unit in the second and subsequent stages [0225] [Number 119]
  • the channel coefficient estimator (not shown) in the second and subsequent p-th multipath received signal reproduction units performs estimation of the channel coefficient h in the first and second stages.
  • the subsequent multipath reception signal reproduction unit can use the reception signal after the multipath interference cancellation with high accuracy.
  • Channel estimation and transmission symbol sequence estimation can be performed, resulting in a more accurate received signal sequence for each receiving path of each transmitting antenna power for each receiving antenna.
  • FIG. 9 is a configuration diagram illustrating a first embodiment of the demodulation unit used in the receiving device according to the embodiment of the present invention.
  • the demodulation unit uses MLD as a demodulation algorithm.
  • demodulation section 300 includes channel coefficient estimating section 311, NXL despreading sections 312-315, transmission symbol candidate generating section 316, received signal replica generating section 317, and likelihood calculation. It comprises a section 318 and a transmission sequence estimation section 319. In the case where there are a plurality of constituent elements, they are illustrated with a serial number added to the end.
  • demodulation section 300 configured as described above will be described.
  • the input signal input to demodulation section 300 is a received signal after NXL multipath interference cancellation.
  • the channel coefficient estimator 311 estimates the channel coefficient h of each path between the receiving antenna and the transmitting antenna (for simplicity of the configuration, the channel coefficient h in the preceding stage is used).
  • Transmission symbol candidate generation section 316 generates transmission symbol d for each antenna
  • Received signal replica generation section 317 receives a transmission signal and a channel coefficient as inputs
  • Transmission sequence estimation section 319 receives as input the generated transmission symbol corresponding to each transmission antenna and the corresponding error signal, and outputs likelihood for the bit transmitted by the transmission symbol sequence.
  • the calculation method of the bit likelihood based on the error signal is based on the existing method.
  • bit likelihood is input to a channel decoder (for example, a turbo decoder) and the like, and an information bit sequence is finally restored.
  • a channel decoder for example, a turbo decoder
  • FIG. 10 is a configuration diagram illustrating a second embodiment of the demodulation unit according to the embodiment of the present invention.
  • the demodulation unit uses an MLD that performs processing in a batch of paths as a demodulation algorithm.
  • the demodulation unit 400 includes a channel coefficient estimating unit 411, and NXL despread unit 412- 415, a QR decomposition unit 416, Q and H calculation section 417, a transmission symbol candidate generating unit 41 8, a transformed signal replica generator 419, a likelihood calculator 420, and a transmission sequence estimator 421.
  • a serial number is added to the end.
  • demodulation section 400 configured as described above will be described below.
  • the input signal input to demodulation section 400 is the received signal after NXL multipath interference cancellation.
  • the channel coefficient estimator 411 estimates the channel coefficient h of each path between the receiving antenna and the transmitting antenna (for simplicity of the configuration,
  • the QR decomposition unit 416 generates a channel coefficient force becomes the channel matrix below, by performing QR decomposition of the channel matrix, and outputs a Q matrix and R matrix Q H arithmetic unit 417
  • the R matrix is an M-by-XM upper triangular matrix. Therefore, operation in Q H calculation section 417,
  • transmission symbol candidate generating section 418 generates and outputs transmission symbol d for transmission antenna M.
  • Transformed signal replica generation section 419 receives transmission symbol d and R matrix,
  • X is generated according to the following equation and output to likelihood calculation section 420.
  • Likelihood calculation section 420 receives as input the generated transmission symbol corresponding to transmission antenna M and the corresponding error signal, and transmits the transmission symbol corresponding to S transmission antennas M with small errors.
  • the transmission symbol candidate generation section 418 transmits the transmission symbol for the transmission antenna M-1. d
  • Converted signal replica generation section 419 generates S transmission symbols corresponding to transmission antenna M
  • the likelihood calculation unit 420 then performs an error operation by the following equation,
  • transmission symbol candidate generation section 418 generates and outputs transmission symbol d for transmission antenna m.
  • the converted signal replica generation unit 419 includes a transmitting antenna m + 1 m, l
  • the likelihood calculation unit 420 performs an error operation according to the following equation!
  • Transmission sequence estimation section 421 receives as input the surviving transmission symbols corresponding to each transmission antenna and the corresponding error signal, and outputs likelihood for bits transmitted by the transmission symbol sequence. It should be noted that, as the calculation method of the bit likelihood based on the error signal, an existing or similar method can be applied.
  • bit likelihood is input to a channel decoder (for example, a turbo decoder) or the like, and an information bit sequence is finally restored.
  • a channel decoder for example, a turbo decoder
  • the configuration of the demodulation unit according to the second embodiment (FIG. 10) will be described with reference to FIG.
  • the number of error operations can be reduced from c M times.
  • FIG. 11 is a configuration example diagram showing a third embodiment of the demodulation unit according to the embodiment of the present invention.
  • the demodulation unit uses an MLD that performs processing for each path as a demodulation algorithm.
  • demodulation section 500 includes channel coefficient estimating section 511, NXL despreading ⁇ — 515, L QR decompositions 516 and 517, and L QH calculation H 518, 519, a transmission symbol candidate generation section 520, a transformed signal replica generation section 521, a likelihood calculation section 522, and a transmission sequence estimation section 523.
  • a serial number is added to the end.
  • demodulation section 500 configured as described above will be described below.
  • the input signal input to demodulation section 500 is the received signal after N X L multipath interference cancellation.
  • the channel coefficient estimating section 511 estimates the channel coefficient h of each path between the receiving antenna and the transmitting antenna.
  • NXL received signals after multipath interference cancellation [0288] [Equation 156]) is input to the despreading unit corresponding to reception antenna n and path 1, and obtains a despread signal.
  • the first QR decomposition unit generates the following channel matrices, which also have the channel coefficient power of the first pass, for the number of passes, and performs QR decomposition of the channel matrices, respectively, to obtain the Q matrix And output R matrix.
  • the Q matrix output from the QR decomposition unit is a N-by-X M-tutorial matrix.
  • the 1 1 column is an M-by-M upper triangular matrix.
  • transmission symbol candidate generation section 520 generates transmission symbol d for transmission antenna M, and outputs the generated transmission symbol d to converted signal replica generation section 521.
  • Transformed signal replica generation section 521 receives transmission symbol d and R matrix,
  • likelihood calculation section 522 calculates
  • likelihood calculation section 522 After performing the error calculation, likelihood calculation section 522 receives the generated transmission symbol corresponding to transmission antenna M and the corresponding error signal as inputs, and generates S transmission errors with small errors.
  • transmission symbol candidate generating section 520 generates and outputs transmission symbol d for transmission antenna M-1.
  • Converted signal replica generation section 521 generates S transmission symbols corresponding to transmission antenna M
  • the likelihood calculation unit 522 then performs an error operation by the following equation,
  • transmission symbol candidate generating section 520 generates and outputs a transmission symbol d for transmission antenna m.
  • Converted signal replica generation section 521 receives as input S transmit symbol sequences corresponding to transmit antenna M, transmit symbols for transmit antenna m and an R matrix from transmit antenna m + 1, and
  • the likelihood calculation unit 522 performs an error calculation according to the following equation,
  • Transmission sequence estimation section 523 receives as input the surviving transmission symbols and the corresponding error signals corresponding to each of the transmission antennas obtained from the L likelihood calculation sections, and outputs the L error signals. From the sum of the likelihood for the bits transmitted by the transmitted symbol sequence
  • bit likelihood is input to a channel decoder (eg, a turbo decoder) or the like, and an information bit sequence is finally restored.
  • a channel decoder eg, a turbo decoder
  • the configuration of the demodulation unit according to the third embodiment (FIG. 11) has a bit likelihood of slightly higher bit likelihood than the configuration of the demodulation unit of the first embodiment described in FIG. If the estimation accuracy of the estimation is degraded, the number of error calculations can be reduced from C M
  • FIG. 12 is a configuration diagram showing a third embodiment of the receiving device according to the embodiment of the present invention.
  • a transmitting device (not shown) Then, the transmission data bit sequence is serial-to-parallel converted into M transmission sequences, and data modulation is performed using the same frequency band and the same spreading code group, and N multi-codes are transmitted from the M transmission antennas. Indicates the case of simultaneous transmission on the channel!
  • multipath received signal reproducing sections 611-614 corresponding to each code channel (in the present example, code channels 1 and 2) corresponding to the number of stages, and Corresponding demodulators 621 and 622 are prepared and connected via multipath interference cancellers 615-618.
  • Received signal r (t), and the multipath received signal reproducing sections 611 and 612 respectively provide a reproduced received signal sequence for each receiving path of each transmitting antenna power of the code channel.
  • ⁇ ⁇ k ⁇ N ⁇ c k (t) represents the spreading code of code channel k).
  • the input signals to the multipath received signal reproduction units 613 and 614 corresponding to each code channel of the second stage are the received signals after multipath interference cancellation.
  • FIG. 9 is a diagram showing a result when evaluation is performed by simulation.
  • the multipath received signal reproducing unit of the receiving device was configured in two stages, and the configuration in Fig. 2 was used in the first stage, and the configuration in Fig. 4 was used in the second stage.
  • the spreading factor is 16, and 15 code channels are code-multiplexed (the effective spreading factor is 15Z16).
  • R represents the coding rate of the channel coding using turbo coding
  • the solid line represents the characteristics (QR—MLD with 2-stage MPIC) according to the method of the present invention
  • the dotted line represents the conventional MMSE.
  • the X mark shows the characteristics of the conventional MLD.
  • ⁇ and ⁇ indicate the average reception EbZNo per reception antenna of MIMO multiplexing (4 transmission antennas, 4 reception antennas) using QPSK modulation, and the average reception per antenna of MIMO multiplexing using 16QAM modulation per reception antenna.
  • the EbZNo characteristics are shown respectively.
  • the present invention in order to increase the information bit rate in a CDMA system, multiple MIMO multiplexors that simultaneously transmit data with different transmission antenna powers are used. When weights are applied, multi-noise interference can be reduced and highly accurate separation of signals transmitted from different transmitting antennas can be realized. As a result, in a multipath fading environment, the reception bit error rate / reception packet error rate can be reduced, and the throughput (the transmission rate of information bits that can be transmitted without errors) can be significantly improved.
  • the multipath received signal reproducing unit employs an algorithm such as MMSE or MLD (for example, a program describing an algorithm). Adopt the QR-MLD algorithm that enables high-precision signal separation with a large amount of computation!
  • the present invention is applicable to a wireless communication system that demodulates a signal using a plurality of antennas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Noise Elimination (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Alarm Systems (AREA)

Abstract

 CDMA方式を用いて信号の受信を行う受信装置に、M本(Mは、正の整数)の送信アンテナから送信された送信信号を、N本(Nは、正の整数)の受信アンテナにより受信する受信装置であって、各受信アンテナで受信した受信信号を1次復調して各送信アンテナからの送信信号を推定し、推定結果に基づいてマルチパス環境における受信アンテナ毎の各パスの受信信号を再生するマルチパス受信信号再生手段と、前記各受信アンテナで受信した受信信号から着目するパス以外のパスの前記再生受信信号を減じるマルチパス干渉キャンセル手段と、前記減じた信号を用いて2次復調を行う復調手段と、を備えることにより達成される。

Description

明 細 書
受信装置、受信方法、および無線通信システム
技術分野
[0001] 本発明は、複数アンテナを用いて信号の復調 (信号分離)を行う受信装置、受信方 法、および無線通信システムに関する。
背景技術
[0002] 第 4世代移動体通信の無線通信方式においては、高速の伝送速度を実現すること が重要である。かかる観点から、複数の送受信アンテナを用いて信号伝送を行う Ml MO (Multi-Input Multi-Output,複数入出力)チャネルを用いた信号伝送法におい て、各送信アンテナより異なる信号を同一時刻、同一周波数を用いて送信する MIM O多重法(MIMO Multiplexing)の技術が注目されて!/、る。
[0003] 図 14は、 MIMO多重法を説明するための図であり、複数のアンテナを用いた MIM O通信システムの構成を示す図である。このシステムによれば、送信側の複数のアン テナ 1011— 1011 力も各々異なった信号を同じ周波数を用いて送り、受信側にお
1 N
いても複数のアンテナ 1021— 1021 を用いてそれら全てを同時に受信することに
1 N
より、伝送帯域を増やさずに、送信アンテナ数に比例した伝送速度の高速化が可能 である (例えば、非特許文献 1参照)。
[0004] また、 MIMOと総称される技術の 1つに BLAST(Bell Labs Layered Space-Time) がある。 BLASTは、異なる情報を複数の送信アンテナから同一周波数において同 時に並列伝送し、受信側にぉ 、て干渉抑圧で制御されたダイバーシチ受信とレプリ 力減算によって信号分離を行う方式である (例えば、非特許文献 1参照)。
[0005] 上記の通り、 MIMO多重法では高速の伝送速度を実現することが可能であるが、 複数送信アンテナから異なるデータ系列が同一の周波数帯域、時間スロットで送信 されるため、受信装置では受信信号力ゝら各送信アンテナカゝら送信された送信信号系 列を抽出する信号分離が復調のために必要となる。
[0006] MIMO多重における信号分離法にっ 、ては種々の方法が提案されて!、る。例え ば、最小平均自乗誤差法(MMSE)や ZF (Zero Forcing)等の線形フィルタを用いた 信号分離アルゴリズムは、送信アンテナ数と同じかそれよりも多い数の受信アンテナ で受信した複数の受信信号を、着目する送信アンテナ以外の送信アンテナ力 の受 信信号電力を抑圧するように合成する方法であり、受信側の演算量は比較的少なく てすむと ヽつた特徴がある。
[0007] また、最尤検出法 (MLD)を用いた信号分離アルゴリズムは、各送信アンテナから の受信信号のレプリカ候補を生成し、受信信号と全送信アンテナからの受信信号の レプリカ候補の和とのユークリッド距離が最小になる受信信号レプリカを求めることで 、最も確力 しい各送信アンテナの送信信号系列を推定する方法であり、上記した M MSEに比較して、信号分離精度が高ぐ復調性能は優れるが、信号分離に要する 演算量はアンテナ数に比例して指数的に増加するといつた欠点がある。そこで、 ML Dにおける演算量を低減するために、 QR分解を利用して MLDにおける 2乗ユータリ ッド距離を計算する信号点候補を大幅に削減する方法が提案されて!ヽる (例えば、 非特許文献 2参照)。
[0008] ところで、直接拡散 (DS) CDMAは従来の情報データ変調信号を高速レートの拡 散符号で拡散する 2次変調を行って伝送することで複数の通信者が同一の周波数 帯を用いて通信を行う方式であり、 DS— CDMAを用いた無線通信では、信号伝送 帯域幅の広帯域ィ匕により、マルチノ スフエージング (周波数選択性フェージング)が 生じ、送信信号は互いに伝搬遅延時間の異なる複数のマルチパスに分離されて受 信される。
[0009] DS— CDMAでの受信では、この複数のパスを合成する Rake受信により受信品質 を改善することができる力 異なるパス間には干渉(以下、マルチノス干渉という)が 生じるため、 Rake受信による受信品質改善がオフセットされる。
[0010] 上記マルチパス干渉は、拡散符号を乗算するスピードであるチップレートと情報シ ンボルのシンボルレートの比で定義される拡散率の逆数に大きさが比例する。このた め、情報ビットレートを増大するために拡散率を 1に近づけると、 Rake受信効果よりも マルチパス干渉による受信品質の劣化のほうが支配的になり、高速データ伝送時に 受信特性が劣化するという問題があった。そこで、このような問題を解決するために、 マルチパス干渉キャンセラが提案されている(例えば、非特許文献 3参照)。 [0011] このマルチノ ス干渉キャンセラは、非特許文献 3に記載されているように、仮の Rak e受信結果で推定された送信信号系列と各受信パスのチャネル係数 (伝搬路の複素 包絡線)を基にパス毎の受信信号系列を推定し、受信信号力もあるパス以外の全て の推定した受信信号系列を差し引くことを、パス数分繰り返すことで得られるマルチ パス干渉を低減したパス毎の受信信号を用いて最終的な Rake受信を行うことにより 、マルチパス環境下での高品質受信を実現している。
[0012] また、 DS— CDMAを用いた無線通信における MIMO多重でのマルチパス干渉の 影響を低減する信号分離法として、他の送信アンテナからの受信信号により生じる干 渉の抑圧とマルチパス干渉の抑圧を同時に行う 2次元 MMSEも提案されている。 特干文献 1 : G. J. Foschini, Layered Space-Time Architecture for Wireless Communication in a Fading Environment When Using Multiple Antennas, Bell Labs Technical Journal, Vol. 1, No. 2, autumn 1996, pp 41—59.
非特許文献 2: Bin Dong, Xaodong Wang, and Amaud Doucet, "Sampling- based Near-optimal MIMO demodulation Algorithms, in Proc. 42nd IEEE Conference on Decision and Control, Hawaii, Dec.2003.
非特許文献 3 : K. Higuchi, A. Fujiwara, and M. Sawahashi, "Multipath Interference Canceller for High-Speed Packet Transmission With Adaptive Modulation and Coding Scheme in W- CDMA Forward Link, " IEEE J. Select. Areas Commun., Vol.20, No.2, pp.419— 432, February 2002.
非特許文献 4 : Frederik Petre et. Al, Combined Space-Time Chip Equalization And Parallel Interference Cancellation For DS— CDMA Downlink With Spatial
Multiplexing," in Proc. IEEE PIMRC2002.
発明の開示
発明が解決しょうとする課題
[0013] ここで、 DS— CDMAを用いた無線通信に情報ビットレートの高速化のために、上記 した MIMO多重法を適用することを考えると、まず 1送信アンテナあたりの情報ビット レートを増大するために拡散率を小さくしなければならない。この場合、図 15に示す ように、同一の受信タイミングのパス同士の送信アンテナ間の相互干渉(同図(a)参 照)に加えて、全送信アンテナの異なる受信タイミングのマルチパス力ものマルチパ ス干渉(同図 (b)、(C)参照)が生じる。このため、受信側での信号分離の精度は、先 に述べた 1アンテナ送信時の Rake受信と同様に、マルチパス干渉の影響で大きく劣 化すると考えられる。
[0014] 先に提案されたマルチパス干渉キャンセラでは、 1アンテナ力ものみ信号が送信さ れる場合の構成であり、 MIMO多重時に適用しても、 Rake受信では高精度な送信 信号系列の推定ができない。
[0015] また、図 15から明らかなように、 MIMO多重時におけるマルチパス干渉は同一送 信アンテナ力 の干渉だけでなぐ異なる送信アンテナ力 の受信信号からも生じる ため、高精度な受信のためには、これらのマルチノ ス干渉も抑圧する必要がある。
[0016] し力しながら、上記した MMSEは原理的に MLDに比較して信号分離精度が悪ぐ 受信側で最適な性能が得られない。また、 2次元 MMSEにおいては、他の送信アン テナからの受信信号により生じる干渉の抑圧にカ卩えて、マルチパス干渉も抑圧するよ うにフィルタ係数が制御されるため、信号分離精度の劣化がさらに大きくなるといった 問題があった。
[0017] 本発明は、上記のような問題点に鑑みてなされたもので、その課題とするところは、 マルチパス干渉による受信特性の劣化を抑圧して高精度な信号分離を実現すること のできる受信装置、受信方法、および無線通信システムを提供することである。 課題を解決するための手段
[0018] 本発明は、 CDMA方式を用いて信号の受信を行う受信装置において、 M本 (Mは 、正の整数)の送信アンテナから送信された送信信号を、 N本 (Nは、正の整数)の受 信アンテナにより受信しているであって、各受信アンテナで受信した受信信号を 1次 復調して各送信アンテナからの送信信号を推定し、推定結果に基づ!、てマルチパス 環境における受信アンテナ毎の各パスの受信信号を再生するマルチパス受信信号 再生手段と、前記各受信アンテナで受信した受信信号から着目するパス以外のパス の前記再生受信信号を減じるマルチパス干渉キャンセル手段と、前記減じた信号を 用いて 2次復調を行う復調手段と、を備えることを特徴の 1つとして 、る。
[0019] また、前記受信装置であって、前記マルチパス受信信号再生手段は、前記 1次復 調を、最小平均自乗誤差法(MMSE: Minimum Mean Square Error)を用いて実行す ることを特徴としている。
[0020] また、前記受信装置であって、前記マルチパス受信信号再生手段は、前記 1次復 調を、最尤検出法(MLD: Maximum Likelihood Detention)を用いて実行することを特 徴としている。
[0021] また、前記受信装置であって、前記マルチパス受信信号再生手段は、 QR分解を 利用した最尤検出法を用いて複数パスを一括して前記 1次復調を実行することを特 徴としている。
[0022] また、前記受信装置であって、前記マルチパス受信信号再生手段は、 QR分解を 利用した最尤検出法を用いてパス毎に前記 1次復調を実行することを特徴として 、る
[0023] また、前記受信装置であって、前記マルチパス受信信号再生手段は、上記の方法 を用いて推定される送信シンボル系列の確からしさに基づいて、受信信号の振幅を 制御することを特徴として 、る。
[0024] また、前記受信装置であって、前記マルチパス受信信号再生手段は、前記 M本の 送信アンテナカゝら送信される既知のパイロット信号を用いてチャネル係数を推定する ことを特徴としている。
[0025] また、前記受信装置であって、所定数の前記マルチパス受信信号再生手段及び前 記マルチパス干渉キャンセル手段を多段接続することを特徴としている。
[0026] また、前記受信装置であって、前記マルチパス受信信号再生手段が多段接続され る場合に、各段において、前記マルチパス干渉キャンセル手段により減じられた信号 を用いて、前記 M本の送信アンテナ力 送信される既知のノ ィロット信号に基づ ヽて 推定されるチャネル係数推定値の更新を行うことを特徴としている。
[0027] また、前記受信装置であって、前記復調手段は、最尤検出法を用いて 2次復調を 行うことを特徴としている。
[0028] また、前記受信装置であって、前記復調手段は、 QR分解を利用した最尤検出法を 用いて複数パスを一括して 2次復調を行うことを特徴として 、る。
[0029] また、前記受信装置であって、前記復調手段は、 QR分解を利用した最尤検出法を 用いてパス毎に 2次復調を行うことを特徴として 、る。
[0030] また、前記受信装置であって、前記 M本の送信アンテナ力 符号多重された送信 信号が送信されたときに、前記マルチパス受信信号再生手段は、各受信アンテナで 受信した受信信号を 1次復調して拡散符号毎に受信アンテナ毎の各パスの受信信 号を再生し、前記マルチパス干渉キャンセル手段は、前記各受信アンテナで受信し た受信信号から着目するパス以外のパスの全ての拡散符号に対応する前記再生受 信信号を減じた信号を生成し、前記復調手段は、前記減じた信号を用いて拡散符号 毎に 2次復調を行うことを特徴としている。
発明の効果
[0031] 本発明の実施例によれば、 CDMA方式を用いて複数の送信アンテナ力も異なる データを同時送信したときに、マルチパス干渉を低減し、異なる送信アンテナから送 信された信号の高精度な分離を実現することができる。その結果、マルチパスフ ー ジング環境における、受信品質を大幅に向上させることができる。
図面の簡単な説明
[0032] [図 1]本発明の実施の形態に係る受信装置を含んで構成される無線通信システム 1 を示す図である。
[図 2]マルチパス受信信号再生部の第 1の実施形態を示す構成図である。
[図 3]マルチパス受信信号再生部の第 2の実施形態を示す構成図である。
[図 4]マルチパス受信信号再生部の第 3の実施形態を示す構成図である。
[図 5]マルチパス受信信号再生部の第 4の実施形態を示す構成図である。
[図 6]チャネル係数推定部の構成を示す図である。
[図 7A]送信装置より送信される送信信号のフレーム構成を示す図である。
[図 7B]送信装置より送信される送信信号のフレーム構成を示す図である。
[図 8]本発明の実施形態に係る受信装置の第 2の実施形態を示す構成図である。
[図 9]本発明の実施形態に係る復調部の第 1の実施形態を示す構成図である。
[図 10]本発明の実施形態に係る復調部の第 2の実施形態を示す構成図である。
[図 11]本発明の実施形態に係る復調部の第 3の実施形態を示す構成図である。
[図 12]本発明の実施形態に係る受信装置の第 3の実施形態を示す構成図である。 [図 13]本発明についての計算機シミュレーションの結果を示す図である。
[図 14]複数のアンテナを用いた MIMO通信システムの構成を示す図である。
[図 15]DS— CDMAにおける MIMO多重では、マルチパス干渉の影響で復調(信号 分離)の精度が劣化することを説明するための図である。
符号の説明
1 無線通信システム
10, 1010 送信装置
11一 11 , 1011
1一 1011 送信アンテナ
1 m n
20, 200, 600, 1020 受信装置
21一 21 , 1021一 1021 受信アンテナ
22, 30—50, 70, 211—213, 611— 614 マルチノ ス受信信号再生部
23, 221 , 221 , 222 , 222 , 223 , 223 , 615—618 マルチノ ス干渉キャン
1 2 1 2 1 2
セノレ咅
24, 300, 400, 500, 621, 622 復調部
31, 41, 51, 71, 100, 311, 411, 511 チャネル係数推定部
32 線形フィルタ係数計算部
33 線形フィルタリング部
34一 34 , 42—45, 52—55, 72—75, 312—315, 412—415, 512—515
1 m
逆拡散部
35— 35 送信シンボル系列推定部
1 m
36一 36 , 50一 50 , 62一 62 , 84一 84 マルチノ ス受信信号再生処理部
1 m l m l m l m
46, 58, 80, 316, 418, 520 送信シンボル候補生成部
47, 317 受信信号レプリカ生成部
48, 60, 82, 318, 420, 522 尤度計算部
49一 49 , 61— 61 , 83— 83 送信シンボル系列推定部
1 m l m l m
56, 76, 77, 416, 516, 517 QR分解部
57, 78, 79, 417, 518, 519 QH演算部
59, 81, 419, 521 変換信号レプリカ生成部 101— 104 相関検出部
111一 114 レプリカ信号生成部
319, 421, 523 送信系列推定部
631— 634, 641— 644 カロ算器
発明を実施するための最良の形態
[0034] 以下、本発明の実施の形態を図面に基づいて説明する。
[0035] 図 1は、本発明の実施の形態に係る受信装置を含んで構成される無線通信システ ム 1を示す図である。本発明に係る無線通信システム 1は、 DS— CDMAにおける Ml MOチャネルまたは MISO (Multi- Input Single- Output,複数入力単出力、つまり、 受信装置の受信アンテナが 1つ)チャネル用いたシステムであり、本実施形態では、 MIMOチャネルを用いて信号伝送がなされる場合を例にとり、以下説明する。
[0036] 同図において、この無線通信システム 1は、送信装置 10と受信装置 20が無線通信 において接続可能となっている。送信装置 10は、入力される送信データビット系列を M本の送信系列にシリアル 'パラレル変換し、同一の周波数帯かつ同一の拡散符号 を用いてデータ変調を行い、送信信号として M本の送信アンテナ 11 同
1一 11 力
m 時に送信する。このようにして送信された送信信号はマルチパス伝搬路を経て L個の マルチパス受信信号となつて受信装置 20に具備される N本の受信アンテナ 21— 2 1で受信される。受信装置 20は、 N本の受信アンテナ 21— 21と、マルチパス受信 信号再生部 22と、 N個のマルチパス干渉キャンセル部 23— 23と、復調部 24とを具 備して構成される。
[0037] ここで、送信装置 10の送信アンテナ mから送信された送信信号を S (t)とすると、 受信装置 20の受信アンテナ nで受信される受信信号!:(t)は、次式で表すことができ る。
[0038] [数 1]
∑∑ ) H ) 上記式にお!、て、 h (t)は、送信アンテナ mからの送信信号を受信アンテナ nで m, n, 1
受信したときの受信パス 1に対するチャネル係数を表し、 τは受信パス 1の伝搬遅延
1
時間を表す。
[0039] 次に、本発明に係る受信装置 20の動作を説明する。
[0040] 受信装置 20では、 Ν本の受信アンテナ 21— 21で受信された受信信号 r (t)力 マルチパス受信信号再生部 22に入力される。マルチパス受信信号再生部 22では、 N本の受信アンテナ 21— 21で受信された受信信号を基に、仮の信号分離 (1次復 調という)を行うことで、受信アンテナ 21— 21ごとに各送信アンテナ 11
1 n 1一 11 力も m の受信パス毎の受信信号系列
[0041] [数 2]
を推定して出力する。上記 1次復調の方法には、後述する所定のアルゴリズムが用い られる。
[0042] 次に、受信アンテナ 21— 21数分の各マルチパス干渉キャンセル部 23— 23で は、当該受信アンテナ 21— 21 の受信信号と、各送信アンテナ 11
1 n 1一 11 からの受 m 信パス毎の受信信号系列を入力とし、受信信号力 他のパスの受信信号全てを差し 引いたマルチパス干渉キャンセル後の受信信号 r (t)を次式にしたがって演算し、 n, 1
出力する。
[0043] [数 3]
(り ひ) _∑∑ ,ひ)
復調部 24は、上記のようにしてマルチパス干渉キャンセル部 23— 23から出力さ れる N X L個のマルチパス干渉キャンセル後の受信信号 r (t)を入力とし、送信シン
n, 1
ボル系列の尤度もしくは、送信シンボル系列によって送信されたビットに対する尤度 λを 2次復調出力として後続のビタビ復号器、ターボ復号器等の誤り訂正 (チャネル )復号器に出力して復号処理を実行させる。
[0044] このように本実施形態によれば、マルチパス受信信号再生部で、 1次復調が行われ 、送信信号が推定される。そして、その推定された送信信号とチャネル変動値 (チヤ ネル係数)とを掛け合わせることでパス毎の受信信号を推定し、マルチパス干渉キヤ ンセル部で、受信信号から着目するパス以外の推定した受信信号が減算される。こ れにより、復調部では、マルチパス干渉を除去した後の受信信号を用いて復調する ことが可能となり、高精度に信号分離を行うことができる。
[0045] すなわち、上りリンクに DS— CDMA方式を用い、 MIMO多重法を適用した場合で あっても、マルチパス干渉に起因した信号分離精度の劣化を回避することができる。
[0046] 図 2は、図 1に示すマルチパス受信信号再生部の第 1の実施形態を示す構成図で ある。本実施形態では、マルチパス受信信号再生部は、 1次復調方法として MMSE アルゴリズムを用いる。
[0047] 同図において、このマルチパス受信信号再生部 30は、チャネル係数推定部 31と、 線形フィルタ係数計算部 32と、線形フィルタリング部 33と、 M個の逆拡散部 34— 34 と、 M個の送信シンボル系列推定部 35— 35 と、 M個のマルチパス受信信号再生 m 1 m
処理部 36— 36 とから構成される。
1 m
[0048] 本実施形態におけるマルチパス受信信号再生部 30では、最初に、チャネル係数 推定部 31において、 N本の受信アンテナ 21— 21で受信された受信信号 r (t)を入 力し、受信アンテナ 21— 21と送信アンテナ 11一 11 (図 1参照)との間各々の各 パスのチャネル係数 h が推定される。
m, n, 1
[0049] 次に、線形フィルタ係数計算部 32にお 、て線形フィルタの係数計算、及びその求 めた線形フィルタ係数を用いた等化のためのフィルタリング処理が行われる。これら の処理は、時間領域の信号処理で実現する方法と、周波数領域の信号処理で実現 する方法とが考えられるが、以下では、周波数領域で信号処理を行う方法について 例を挙げて説明する。 [0050] 線形フィルタ係数計算部 32では、得られたチャネル係数の推定値
[0051] 画
を用いて、送信アンテナ毎に該送信アンテナの信号の遅延パス成分と他の送信アン テナからの受信信号成分を同時に抑圧する線形フィルタの係数を計算する。具体的 には、時間領域でパイロットチャネルを用いて推定したチャネル推定値
[0052] [数 5]
と、各受信パスの遅延時間
[0053] [数 6]
を用いて送信アンテナ 11一 11 と受信アンテナ 21— 21間のチャネルのインパル ス応答を求める。
[0054] 次に、上記のようにして求められたチャネルのインパルス応答に対して、線形フィル タリングするブロックサイズに相当するチップ数 Xオーバサンプリング数分の大きさと なる Νポイントの FFTを行うことで、送信アンテナ 11一 11力もの送信信号の受信ァ f 1 m
ンテナ 21— 21でのチャネル変動値の周波数成分である [0055] [数 7]
を推定し、これより、 n行 m列の行列表記したチャネル行列
[0056] [数 8]
H(/1 = [A( )](l<«<N,l<m<M)
の推定値
[0057] [数 9]
ήυ
を算出する。そして、このようにして算出された
[0058] [数 10]
を用いて、 FFT後の周波数成分毎に、線形フィルタリング係数を計算する。
[0059] 線形フィルタの係数は、 ZF基準あるいは MMSE基準にしたがって求めることがで きる。 [0060] 例えば、 ZF基準の線形フィルタの係数は、次式により求めることができる.
[0061] [数 11]
WU ={Hi )"\Hi (Hi )H\
また、 MMSE基準の線形フィルタの係数は、次式により求めることができる。
[0062] [数 12]
W > = (Hlf,)H {Ht {H' )H + Νί ΐ)
ここで、
[0063] [数 13]
Figure imgf000015_0001
は雑音成分を表す。
[0064] 次に、線形フィルタリング部 33では、 Νポイントの FFTにより、 Ν系列の受信信号そ
f
れぞれを周波数領域の受信信号 Υωに変換する。その後、周波数領域の受信信号 Y(f)に w(i)を乗算することにより、周波数領域のチャネル変動によるコードチャネル間 の直交性の崩れ(時間領域で見た MPII(Multi-Path-Interference))と送信アンテナ 間の干渉を同時に等化 (抑圧)した M個の送信信号の推定値
[0065] [数 14] 5 = ? …, T
を次式にしたがって生成する。
[0066] [数 15]
: ,)
' ,
,,
Figure imgf000016_0001
<:
なお、
[0067] [数 16]
は Nポイントの IFFT後に並直列変換'
f ことで時間領域の仮の復調信号 (1次復調 信号)
[0068] [数 17]
毎に再変換される。このようにして得られた送信アンテナ数分の仮の復調系列(1次 復調系列)は、逆拡散部 34— 34 に入力される。逆拡散部 34— 34では、送信時
1 m 1 m
に用いた拡散符号と同一の拡散符号で上記送信アンテナ数分の仮の復調系列を逆 拡散し、逆拡散信号 zを送信シンボル系列推定部 35— 35 に出力する。送信シン
m 1 m
ボル系列推定部 35— 35では、逆拡散信号 zを硬判定もしくは軟判定することによ
1 m m
り送信シンボル系列
[0069] [数 18]
を推定し出力する。
[0070] 例えば、送信シンボル系列推定部 35— 35 において硬判定を行う場合の実施例
1 m
は以下のようになる。
[0071] ここで、送信シンボル d (iはシンボル候補番号
m, i
[0072] [数 19]
d≤i≤C)
を表す。なお、 Cは送信シンボル点数を表し、 QPSKなら C=4、 16QAMなら C= l 6である)に対して、
[0073] [数 20]
min z 一 d' となるはり、
[0074] [数 21]
d = ,
とする。
[0075] また、送信シンボル系列推定部 35— 35 において軟判定を行う場合の実施例は
1 m
以下のようになる。
[0076] まず、次式にしたがって、軟判定のビット系列を求める。
[0077] [数 22]
Figure imgf000018_0001
ここで、
[0078] [数 23]
は、送信アンテナ mのビット iの対数尤度比である。
[0079] [数 24]
Figure imgf000019_0001
5(«)
上記式にお!、て、 S は、第 iビットが" V "であるシンボルの集合のなかで、送信
min,
信号点 z 力 のユークリッド距離が最小のシンボル候補を表し、 σ 2
は、雑音電力を表す。
[0080] 軟判定シンボル
[0081] [数 25]
[0082] [数 26]
を用いて以下のように推定される
[0083] [数 27] dn= + j · として、 QP SKの場合、 ίί'— :
〜 / 1 〜 ― - X - —— u ,(2~u j
" 2.5 "■' "·2
6 QAMの場合、
y = — ΰ Λ2-ΰ J
最後に、マルチパス受信信号再生処理部 36— 36 は、上記のようにして推定され
1 m
た送信シンボル系列
[0084] [数 28]
d
を入力し、次式に基づき、その入力された送信シンボル系列
[0085] [数 29]
d
に拡散符号とチャネル係数を乗算することにより、受信アンテナごとに各送信アンテ ナカ の受信パス毎の受信信号系列
[0086] [数 30] ,., )
を次式にしたがって推定して出力する。
[0087] [数 31]
L, = hm^t (t cひ— τ' )
次に、上記マルチパス受信信号再生部の他の実施形態について説明する。
[0088] 図 3は、マルチパス受信信号再生部の第 2の実施形態を示す構成図である。本実 施形態では、マルチパス受信信号再生部は、 1次復調方法として MLDアルゴリズム を用いる。
[0089] 同図において、このマルチパス受信信号再生部 40は、チャネル係数推定部 41と、 N X L個の逆拡散部 42— 45と、送信シンボル候補生成部 46と、受信信号レプリカ生 成部 47と、尤度計算部 48と、 M個の送信シンボル系列推定部 49
1一 49 と、 M個の m
マルチパス受信信号再生処理部 50— 50 とから構成される。
1 m
[0090] 本実施形態におけるマルチパス受信信号再生部 40では、最初に、チャネル係数 推定部 41において、 N本の受信アンテナ 21— 21で受信された受信信号 r (t)を入 力し、受信アンテナ 21— 21と送信アンテナ 11一 11との間各々の各パスのチヤネ ル係数 h が推定される。
m, n, 1
[0091] 次に、 N X L個の逆拡散部 42— 45により、 N本の受信アンテナ 21— 21で受信さ れた受信信号 r (t)を送信時に用いた拡散符号と同一の拡散符号で各パスの受信タ イミングで逆拡散し、 N X L個の各受信アンテナでの各パスの逆拡散信号 z を求め
n, 1 る。
[0092] 送信シンボル候補生成部 46は、各送信アンテナに対する送信シンボル d (iはシ
m, l ンボル候補番号
[0093] [数 32]
(l<i<C)
を表し、 Cは、送信シンボル点数を表し、例えば、 QPSKなら C=4、 16QAMなら C
= 16である)を生成して出力する。
[0094] 受信信号レプリカ生成部 47は、送信シンボル候補生成部 46で生成された送信シ ンボルと、チャネル係数推定部 41で推定されたチャネル係数とを入力して受信信号 レプリカ
[0095] [数 33]
を次式にしたがって生成して出力する
[0096] [数 34]
z ,.- · =h +k - dt +... + h„ du
尤度計算部 48は、受信逆拡散信号 z と受信信号レプリカ
[0097] [数 35] を入力し、次式にしたがって誤差演算を行う。
[0098] [数 36]
Figure imgf000023_0001
送信シンボル系列推定部 49
1一 49 では、各送信アンテナに対応する生成した送 m
信シンボルとそれに対応する誤差信号とを入力し、最小誤差を選択し、当該誤差を 与える送信シンボル系列
[0099] [数 37]
を推定する。この送信シンボル系列推定部 49 場合の
1一 49 において硬判定を行う
m
実施例は以下のようになる。
[0100] [数 38]
2.. が最小となったときの!;ふ…, より、 = とする。 また、送信シンボル系列推定部 49
1一 49 において軟判定を行う場合の実施例は m
以下のようになる。
[0101] まず、次式にしたがって、軟判定のビット系列を求める。
[0102] [数 39]
Figure imgf000024_0001
ここで、
[0103] [数 40]
Λ
は、送信アンテナ mのビット iの対数尤度比である,
[0104] [数 41]
人 ; ln-¾^^- )
尸 ( - 1 ,… )
ie . - e Λ
2σ (η )
上記式において、 e は、第 iビットが" V〃である
mm,
[0105] [数 42]
の最小値、 σ 2 (n)は雑音電力をあらわす。
[0106] 軟判定シンボル
[0107] [数 43]
は、
[0108] [数 44]
u .
を用いて以下のように推定される。
[0109] [数 45]
dm - +ゾ .51として、
QP SKの場合、 ~"
y =u二
1 〜 〜 、
X ― u ,(2— « 2)
6 QAMの場合、
Figure imgf000026_0001
最後に、マルチパス受信信号再生部 36— 36 は、上記のようにして推定された送
丄 m
信シンボル系列
[0110] [数 46]
d
を入力し、次式に基づき、その入力された送信シンボル系列
[0111] [数 47]
d
に拡散符号とチャネル係数を乗算することにより、
受信アンテナごとに各送信アンテナ力らの受信パス毎の受信信号系列
[数 48] を次式にしたがって推定して出力する。
[0113] [数 49]
, ) = hm^t dm{t> c{t- t)
図 4は、マルチパス受信信号再生部の第 3の実施形態を示す構成図である。本実 施形態では、マルチパス受信信号再生部は、 1次復調方法としてパス一括処理を行 う MLDアルゴリズムを用いる。
[0114] 同図において、このマルチパス受信信号再生部 50は、チャネル係数推定部 51と、 N X L個の逆拡散部 52— 55と、 QR分解部 56と、 QH演算部 57と、送信シンボル候 補生成部 58と、変換信号レプリカ生成部 59と、尤度計算部 60と、 M個の送信シンポ ル系列推定部 61— 61 と、 M個のマルチパス受信信号再生処理部 62— 62 とか
1 m 1 m ら構成される。
[0115] 本実施形態におけるマルチパス受信信号再生部 50では、最初に、チャネル係数 推定部 51において、 N本の受信アンテナ 21— 21で受信された受信信号 r (t)を入 力し、受信アンテナ 21— 21と送信アンテナ 11一 11との間各々の各パスのチヤネ ル係数 h が推定される。
m, n, 1
[0116] 次に、 N X L個の逆拡散部 52— 55により、 N本の受信アンテナ 21— 21で受信さ れた受信信号 r (t)を送信時に用いた拡散符号と同一の拡散符号で各パスの受信タ イミングで逆拡散し、 N X L個の各受信アンテナでの各パスの逆拡散信号 z を求め
n, 1 る。
[0117] 次に、 QR分解部 56では、チャネル係数からなる下記の M行 X (N X L)列のチヤネ ル行列を生成し、チャネル行列の QR分解を行って、 Q行列および R行列を出力する
[0118] [数 50]
チャネル行列 2のときの例)
Figure imgf000028_0001
H ^ QR
上記 QR分解部 56から出力される Q行列は、(N X L)行 X M列のュ-タリー行列で あり、 QHQ=Iを満たす。
[0119] ここで、 Hは共役複素転置を表し、 Iは単位行列を表す。また、 R行列は M行 X M列 の上三角行列となる。
[0120] QH演算部部 57では、次式にしたがった演算が行われる。
[0121] [数 51]
V " リ 、
, q ュ リ . ζίΛ
X = = QHZ =
" q ュ
," ." " リ 2 <
0
QB(HZ + N) = QB(QRD + N) = + 0BN = +
0 0
0 0 0 <
(M=4, N- 4, L= 2のときの例)
送信シンボル候補生成部 58は、まず、送信アンテナ Mに対する送信シンボル d
M, i を生成して変換信号レプリカ生成部 59に出力する。変換信号レプリカ生成部 59は、 送信シンボル候補生成部 58で生成された送信シンボルと、 QR分解部 56から出力さ れる R行列を入力して、変換信号レプリカ
[0122] [数 52]
を次式にしたがって生成して出力する
[0123] [数 53]
尤度計算部 60は、まず、 X と
M
[0124] [数 54]
を用い、次式にしたがって誤差演算を行う。
[0125] [数 55] " -
尤度計算部 60は、誤差演算を行った後、送信アンテナ Mに対応する生成した送 f, シンボルとそれに対応する誤差信号とを入力し、誤差の小さい S 個の送信アンテナ
M
Mに対応する送信シンボル系列
[0126] [数 56]
^.,ω〜
とそのときの誤差
[0127] [数 57] を保持する。
[0128] 次に、送信シンボル候補生成部 58は、送信アンテナ M— 1に対する送信シンボル [0129] [数 58]
を生成して出力する。
[0130] 変換信号レプリカ生成部 59は、送信アンテナ Mに対応する S 個の送信シンボル
M
系列と送信アンテナ M— 1に対する送信シンボルとから R行列を入力として変換信号 レプリカ
[0131] [数 59]
を次式にしたがって生成して出力する。
[0132] [数 60]
Figure imgf000031_0001
+ , >"· d,
尤度計算部 60は、次いで、誤差演算を次式により行い、
[0133] [数 61] X 一 X +
誤差の小さ ヽ S 個の送信アンテナ Mと送信アンテナ M— 1に対応する送信シンポ
M-1
ル系列の組み合わせ
[数 62]
Figure imgf000032_0001
とそのときの誤差
[数 63]
を保持する。
[0136] 同様にして、送信シンボル候補生成部 58は、送信アンテナ mに対する送信シンポ ル d を生成して出力する。変換信号レプリカ生成部 59は、送信アンテナ m+ 1から m,
、送信アンテナ Mに対応する S 個の送信シンボル系列と送信アンテナ mに対する m+1
送信シンボルと R行列を入力として変換信号レプリカ
[0137] [数 64]
を次式にしたがって生成して出力する。 [0138] [数 65]
x . . = r ' d + r , ' d + ... + f · d ,
尤度計算部 60は、誤差演算を次式にしたがって行!、、
[0139] [数 66]
e = — X + e
誤差の小さ ヽ S 個の送信アンテナ Μから送信アンテナ mに対応する送信シンボル 系列の組み合わせ
[0140] [数 67]
Figure imgf000033_0001
とそのときの誤差
[0141] [数 68]
e 〜e
を保持する。
[0142] 以上の操作を繰り返すことにより、得られた C' S個の全送信アンテナに対応する送
2
信シンボル系列の組み合わせ
[0143] [数 69] d ,d ,...,d \
とそのときの誤差
[0144] [数 70] "
を得る (j = l一 c'sの整数)。
2
[0145] 送信シンボル系列推定部 61— 61 では、各送信アンテナに対応する、生き残り送
1 m
信シンボルとそれに対応する誤差信号とを入力とし、最小誤差を選択し、当該誤差を 与える送信シンボル系列を推定する。
[0146] 送信シンボル系列推定部 61— 61 において硬判定を行う場合の実施例は以下の
1 m
ようになる。
[0147] [数 71] „ が最小となったときの、 ω,ί η,…人 )より、 = ^とする。
また、送信シンボル系列推定部 61— 61 において軟判定を行う場合の実施例は
1 m
以下のようになる。
[0148] まず、次式にしたがって、軟判定のビット系列を求める。
[0149] [数 72] 、
ύ , = tanh
V 2
ここで、
[0150] [数 73]
λ .
は、送信アンテナ mのビット iの対数尤度比である。
[数 74]
Figure imgf000035_0001
上記式にぉ 、て、 e は、第 iビットが" V "である
mm,
[0152] [数 75]
の最小値、 σ 2 (n)は雑音電力を表す,
[0153] 軟判定シンボル [0154] [数 76]
d
は、
[0155] [数 77]
を用いて以下のように推定される c
[0156] [数 78]
d =x +j - y として、
Q P S
Figure imgf000036_0001
X = ,ί u ,(2_« ,)
"
6 QAMの場合、
u
Figure imgf000036_0002
最後に、マルチパス受信信号再生処理部 62— 62 は、上記のようにして推定され
1 m
た送信シンボル系列
[0157] [数 79] を入力し、次式に基づき、その入力された送信シンボル系列
[0158] [数 80]
に拡散符号とチャネル係数を乗算することにより、受信アンテナごとに各送信アンテ ナからの受信パス毎の受信信号系列
[0159] [数 81]
を次式にしたがって推定して出力する。
[0160] [数 82]
以上説明したように、本実施形態におけるマルチパス受信信号再生部の構成は、 図 3に示すマルチパス受信信号再生部の構成に比較して、若干の受信信号系列の 再生精度の劣化を許容すれば、誤差演算の回数を CM回から
[0161] [数 83] 回に大幅に低減することが可能であり、受信装置の複雑さを大幅に低減することが可 能となる。
[0162] 図 5は、マルチパス受信信号再生部の第 4の実施形態を示す構成図である。本実 施形態では、マルチパス受信信号再生部は、 1次復調方法としてパス毎に処理を行 う MLDアルゴリズムを用いる。
[0163] 同図において、このマルチパス受信信号再生部 70は、チャネル係数推定部 71と、 N X L個の逆拡散部 72— 75と、 L個の QR分解部 76、 77と、 L個の QH演算部 78、 7 9と、送信シンボル候補生成部 80と、変換信号レプリカ生成部 81と、尤度計算部 82 と、 M個の送信シンボル系列推定部 83— 83 と、 M個のマルチパス受信信号再生
1 m
処理部 84— 84 とから構成される。
1 m
[0164] 本実施形態におけるマルチパス受信信号再生部 70では、最初に、チャネル係数 推定部 71において、 N本の受信アンテナ 21— 21で受信された受信信号 r (t)を入 力し、受信アンテナ 21— 21と送信アンテナ 11一 11との間各々の各パスのチヤネ ル係数 h が推定される。
m, n, 1
[0165] 次に、 N X L個の逆拡散部 72— 75により、 N本の受信アンテナ 21— 21で受信さ れた受信信号 r (t)を送信時に用いた拡散符号と同一の拡散符号で各パスの受信タ イミングで逆拡散し、 N X L個の各受信アンテナでの各パスの逆拡散信号 z を求め
n, 1 る。
[0166] 次に、第 1番目の QR分解部では、第 1番目のパスのチャネル係数力もなる下記のチ ャネル行列をパス数分生成し、それぞれ、チャネル行列の QR分解を行って、 Q行列 および R行列を出力する。
[0167] [数 84] h'
h,
チャネル行列 H, = κ,, κ (M=4, N=4ときの例)
κ,, κ h,
h .. h.
上記 QR分解部から出力される Q行
1 A列は、 N行 XM列のュ-タリー行列であり、 Q
Q =1を満たす。また、 R行列は、 M行 XM列の上三角行列となる。
1 1
[0168] したがって、第 1番目の QH演算部における演算は、
[0169] [数 85]
X. =
QH(
Figure imgf000039_0001
(Μ=4、 Ν 4のときの例)
と記述することができる。
[0170] 送信シンボル候補生成部 80は、まず、送信アンテナ Μに対する送信シンボル d
M, i を生成して変換信号レプリカ生成部 81に出力する。変換信号レプリカ生成部 81は、 送信シンボル d と、 R行列を入力して、変換信号レプリカ
M, i 1
[0171] [数 86] を次式にしたがって生成して出力する。
[0172] [数 87]
尤度計算部 82は、まず、 X と
M, 1
[0173] [数 88]
を用い、次式にしたがって誤差演算を行う。
[0174] [数 89]
― 7 -
尤度計算部 82は、誤差演算を行った後、送信アンテナ Mに対応する生成した 送信シンボルとそれに対応する誤差信号とを入力とし、誤差の小さい S 個の送信ァ
M
ンテナ Mに対応する送信シンボル系列
[0175] [数 90] とそのときの誤差
[0176] [数 91]
を保持する。
[0177] 次に、送信シンボル候補生成部 80は、送信アンテナ M— 1に対する送信シンボル [0178] [数 92]
を生成して出力する。
[0179] 変換信号レプリカ生成部 81は、送信アンテナ Mに対応する S 個の送信シンボル
M
系列と送信アンテナ M— 1に対する送信シンボルとから R行列を入力として変換信号 レプリカ
[0180] [数 93]
を次式にしたがって生成して出力する。
[0181] [数 94] 尤度計算部 82は、次いで、誤差演算を次式により行い
[0182] [数 95]
=Σ - +
誤差の小さ ヽ S 個の送信アンテナ Mと送信アンテナ M— 1に対応する送信シンポ
M-1
ル系列の組み合わせ
[0183] [数 96]
d ~^\d d
とそのときの誤差
[0184] [数 97]
u
を保持する。
[0185] 同様にして、送信シンボル候補生成部 80は、送信アンテナ mに対する送信シンポ ル d を生成して出力する。変換信号レプリカ生成部 81は、送信アンテナ m+ 1から m,
、送信アンテナ Mに対応する S 個の送信シンボル系列と送信アンテナ mに対する m+1
送信シンボルと R行列を入力として変換信号レプリカ [0186] [数 98]
x .
を次式にしたがって生成して出力する
[0187] [数 99]
尤度計算部 82は、誤差演算を次式にしたがって行い、
[数 100]
Figure imgf000043_0001
誤差の小さ ヽ S 個の送信アンテナ Mから送信アンテナ mに対応する送信シンボル 系列の組み合わせ
[0189] [数 101]
とそのときの誤差
[0190] [数 102] を保持する。
[0191] 以上の操作を繰り返すことにより、得られた C' S個の全送信アンテナに対応する送
2
信シンボル系列の組み合わせ
[0192] [数 103] d , d ,...,d \ とそのときの誤差
[0193] [数 104]
を得る (j = l一 C ' Sの整数)。
2
[0194] 送信シンボル系列推定部 83— 83 では、各送信アンテナに対応する、生き残り送
1 m
信シンボルとそれに対応する誤差信号とを入力とし、最小誤差を選択し、当該誤差を 与える送信シンボル系列を推定する。
[0195] 送信シンボル系列推定部 83— 83 において硬判定を行う場合の実施例は以下の
1 m
ようになる。
[0196] [数 105] w が最小となったときの、 "ル ' ■),···, ·/■)より、 : ^とする。
また、送信シンボル系列推定部 83— 83 において軟判定を行う場合の実施例は
1 m
以下のようになる。
[0197] まず、次式にしたがって、軟判定のビット系列を求める。
[0198] [数 106] ύ . = tanh 、
2
ノ ここで、
[0199] [数 107]
Λ
は、送信アンテナ mのビット iの対数尤度比である。
[数 108]
Figure imgf000045_0001
1
(e - e )
2(π)
上記式において、 e は、
[0201] [数 109]
の最小値を表し、 σ 2 (n)は雑音電力を表す。
[0202] 軟判定シンボル
[0203] [数 110] は、
[0204] [数 111]
を用いて以下のように推定される c
[0205] [数 112] dm =xn+j■ ^として、
QP S Kの場合、 ί~'— ~
1 6 Q AMの場合、
Figure imgf000046_0001
最後に、マルチパス受信信号再生処理部 84— 84 は、上記のようにして推定され
1 m
た送信シンボル系列
[0206] [数 113] d
を入力し、次式に基づき、その入力された送信シンボル系列
[0207] [数 114] d
に拡散符号とチャネル係数を乗算することにより、受信アンテナごとに各送信アンテ ナからの受信パス毎の受信信号系列
[0208] [数 115] . ) を推定して出力する。
[0209] [数 116] ) " )' d cひ— 以上説明したように、本実施形態におけるマルチパス受信信号再生部の構成は、 図 4に示すマルチパス受信信号再生部の構成と同様に、図 3に示すマルチパス受信 信号再生部の構成に比較して、若干の受信信号系列の再生精度の劣化を許容すれ ば、誤差演算の回数を CM回から
[0210] [数 117]
回に大幅に低減することが可能であり、受信装置の複雑さを大幅に低減することが可 能となる。
[0211] 図 6は、本発明に係るチャネル係数推定部の構成図であり、図 7Aおよび図 7Bは、 当該チャネル係数推定部を用いる場合の送信装置より送信される送信信号の構成 例を示す図である。
[0212] まず、図 7Aおよび図 7Bを参照しながら、送信装置から送信される送信信号につい て説明する。同図に示されるように、本実施形態では、各送信アンテナ (ここでは、送 信アンテナ 1、 2)からの送信信号に、送信アンテナ毎に異なる 4シンボル長のパイ口 ットシンボル (斜線部)がデータシンボルに対して周期的に挿入されている。図 7Aに 示される例では、各送信アンテナのパイロットシンボルパターンは互いに直交してい る。
[0213] また、図 7Bに示される例では、各送信アンテナのパイロットシンボルの拡散に用い られる拡散符号 (Cl、 C2)が直交している。
[0214] ノ ィロット信号の送信は、図 7A、図 7Bのいずれかの方法によって行えばよぐ送信 アンテナ間のパイロット信号を直交させることで高精度なチャネル推定が可能となる。 上記のような直交シンボルパターンもしくは直交拡散符号は、例えば、パイロットシン ボル数と同じ長さもしくは、パイロットシンボルの拡散率と同じ長さの Walsh系列を用 いることで生成可能である。これ以降、送信アンテナ mのパイロット信号系列を p (n)と して説明を進める。なお、 nはチップ番号を表すものとする。
[0215] 図 6に戻り、本発明に係るチャネル係数推定部の構成を説明する。このチャネル係 数推定部 100は、送信アンテナ mと受信アンテナ n間の各パスのチャネル係数を推 定する機能を備える。本例では、 3送信アンテナ、 4受信アンテナの場合のチャネル 係数推定部の構成例を示している。すなわち、このチャネル係数推定部は、 3 X 4の 相関検出部 101— 104と、パイロット信号レプリカ生成部 111一 114とを備える。なお 、本例では、構成要素が複数有る相関検出部と、パイロット信号レプリカ生成部の符 号の末尾に連番を付すものとして図示した。
[0216] まず、同図を参照しながら送信アンテナ 1と受信アンテナ 1間のチャネル係数 h を推定する場合の動作を説明する。
[0217] 同図において、受信アンテナ 1で受信された受信信号 rlは相関検出部 101に入力 される。また、パイロット信号レプリカ生成部 111では送信アンテナ 1のパイロットシン ボル系列 piを生成し、相関検出部 101に入力する。
[0218] 相関検出部 101では、受信信号 rlに送信アンテナ 1のパイロットシンボル系列 piの 複素共役値をパス 1の受信タイミングを考慮して乗算した値を 4パイロットシンボル区 間で平均化することにより送信アンテナ 1と受信アンテナ 1間のチャネル係数 h を 次式にしたがって推定し出力する。
[0219] [数 118] " .' = 4:^ ("+ > (")' ここで、 r n)は、パイロットシンボル nが受信されるときの受信信号 を示す。実際 には h の推定は複数のパイロットシンボル送信区間で得られたチャネル係数推定 値を重み付け平均することで求めることも可能である。
[0220] 同様にして、受信信号 rlを入力とする 2段目の相関検出部(図示省略)では、受信 信号 rと 2段目のパイロットシンボルレプリカ生成部(図示省略)で生成された送信ァ ンテナ mのパイロットシンボル系列 p を入力として、チャネル係数 h を推定し出力 m 1, m, 1
する。
[0221] さらに同様にして、受信信号 rとパイロットシンボルレプリカ生成部 113で生成され
4
る送信アンテナ 1のパイロットシンボル系列 Pを相関検出部 103に入力し、相関を求 めることでチャネル係数 h を推定し出力する。
4, 1, 1
[0222] 以上の動作を繰り返すことで、 3送信アンテナと 4受信アンテナ間の各ノ スのチヤネ ル係数を推定することができる。なお、上記では、パイロットシンボルがデータシンポ ルに時間的に多重される構成を例にあげて説明したが、符号多重を用いた場合も同 様の方法でチャネル係数推定値を得ることができる。
[0223] 図 8は、本発明の実施形態に係る受信装置の第 2の実施形態を示す構成図である 。同図に示すように本実施形態では、受信装置 200は、複数のマルチパス受信信号 再生咅 — 213カ ンジァノレにマノレチノ ス干渉キャンセノレ咅 、 221、 222、 2
1 2 1
22、 223、 223を介して接続されており(本例では、 3段構成)、最終段に復調部 2
2 1 2
31が配置されている。初段のマルチパス受信信号再生部 211には、上述した図 2か ら図 5に記載のいずれ力 f壬意のマルチパス受信信号再生部の構成を適用することが できる。
[0224] また、 2段目以降のマルチパス受信信号再生部 212、 213にも、以上で説明した図 2から図 5に記載のいずれか任意のマルチパス受信信号再生部の構成を適用するこ とができる。ここで、 2段目以降の第 p段目のマルチパス受信信号再生部への入力信 号 [0225] [数 119]
は、受信信号と第 P - 1段目のマルチパス受信信号再生部の出力信号
[0226] [数 120]
を用いて、マルチパス干渉キャンセル部により次式の演算により生成される。
[0227] [数 121]
Figure imgf000050_0001
上記式にしたカ^、演算されて得られた N X L個のマルチパス干渉キャンセル後の受 信信号
[0228] [数 122]
は受信アンテナ n、パス 1に対応する逆拡散部(図示省略)に入力される。
[0229] また、この構成を用いた場合は、 2段目以降の第 p段目のマルチパス受信信号再生 部におけるチャネル係数推定部(図示省略)では、チャネル係数 h の推定にぉ 、て
111
、受信信号 r (t)の代わりにマルチパス干渉キャンセル後の受信信号
[0230] [数 123] ) を用いることでより高精度なチャネル係数推定を行うことができる (構成の簡単ィ匕のた めに、前段のマルチパス受信信号再生部におけるチャネル係数を用いることも同様 に可能である)。
[0231] このように本実施形態によれば、マルチパス受信信号再生部を複数段設けることで 、後段のマルチパス受信信号再生部では、マルチパス干渉キャンセル後の受信信号 を用いて高精度にチャネル推定、送信シンボル系列推定を行うことができ、結果とし てより高精度な受信アンテナごとの各送信アンテナ力 の受信パス毎の受信信号系 列
[0232] [数 124]
) を推定することができる。
[0233] 図 9は、本発明の実施形態に係る受信装置で用いられる復調部の第 1の実施形態 を示す構成図である。本実施形態では、復調部は、復調アルゴリズムとして MLDを 用いる。
[0234] 同図において、この復調部 300は、チャネル係数推定部 311と、 N X L個の逆拡散 部 312— 315と、送信シンボル候補生成部 316と、受信信号レプリカ生成部 317と、 尤度計算部 318と、送信系列推定部 319とから構成される。なお、構成要素が複数 有る場合には、末尾に連番を付すものとして図示した。
[0235] 上記のように構成された復調部 300の動作にっ 、て説明する。
[0236] 復調部 300に入力される入力信号は、 N X L個のマルチパス干渉キャンセル後の 受信信号
[0237] [数 125] ,<;> ) であり、チャネル係数推定部 311において、受信アンテナと送信アンテナとの間各々 の各パスのチャネル係数 h が推定される(なお、構成の簡単化のために、前段の
m, n, 1
マルチパス受信信号再生部におけるチャネル係数を用いることも同様に可能である)
[0238] さらに、 N X L個のマルチパス干渉キャンセル後の受信信号
[0239] [数 126]
は受信アンテナ n、パス 1に対応する逆拡散部に入力され、逆拡散信号 を得る。
n、l
送信シンボル候補生成部 316は、各アンテナに対する送信シンボル d を生成して
m,
出力する。受信信号レプリカ生成部 317は、送信シンボルとチャネル係数とを入力と して受信信号レプリカ
[0240] [数 127]
7
を次式にしたがって生成して尤度計算部 318に出力する。
[0241] [数 128] . 'Λ — = ., .'· d +…" , 尤度計算部 318は、逆拡散部 312— 315から出力される逆拡散信号 と受信信
n、l 号レプリカ [0242] [数 129]
とを入力として、誤差演算を次式にしたがって行う。
[0243] [数 130]
Figure imgf000053_0001
送信系列推定部 319では、各送信アンテナに対応する生成した送信シンボルとそ れに対応する誤差信号とを入力し、送信シンボル系列によって送信されたビッに対 する尤度えを出力する 。ここで、誤差信号に基づいたビット尤度の計算法は、既存の
V、かなる方法も適用可能である。
[0244] 上述したビット尤度は、チャネル復号器 (例えば、ターボ復号器)等に入力されて最 終的に情報ビット系列が復元される。
[0245] 図 10は、本発明の実施形態に係る復調部の第 2の実施形態を示す構成図である。
本実施形態では、復調部は、復調アルゴリズムとしてパス一括で処理を行う MLDを 用いる。
[0246] 同図において、この復調部 400は、チャネル係数推定部 411と、 N X L個の逆拡散 部 412— 415と、 QR分解部 416と、 QH演算部 417と、送信シンボル候補生成部 41 8と、変換信号レプリカ生成部 419と、尤度計算部 420と、送信系列推定部 421とか ら構成される。なお、構成要素が複数有る場合には、末尾に連番を付すものとして図 示した。
[0247] 上記のように構成された復調部 400の動作にっ 、て以下説明する。
[0248] 復調部 400に入力される入力信号は、 N X L個のマルチパス干渉キャンセル後の 受信信号
[0249] [数 131] であり、チャネル係数推定部 411において、受信アンテナと送信アンテナとの間各々 の各パスのチャネル係数 h が推定される(なお、構成の簡単化のために、前段の
m, n, 1
マルチパス受信信号再生部におけるチャネル係数を用いることも同様に可能である)
[0250] さらに、 N X L個のマルチパス干渉キャンセル後の受信信号
[0251] [数 132]
は受信アンテナ n、パス 1に対応する逆拡散部に入力され、逆拡散信号 を得る。
n、l
[0252] 次に、 QR分解部 416では、チャネル係数力もなる下記のチャネル行列を生成し、 チャネル行列の QR分解を行って、 Q行列および R行列を QH演算部 417に出力する
[0253] [数 133]
チャネル行列 H = 2のときの例)
Figure imgf000054_0001
H = QR 上記 QR分解部 417から出力される Q行列は(N X L)行 X M列のュ-タリー行列で あり、 QHQ=Iを満たす。また、 R行列は M行 XM列の上三角行列となる。したがって 、 QH演算部 417における演算は、
[0254] [数 134]
' "
, .
" ら "
Figure imgf000055_0003
Figure imgf000055_0001
QH(H£> + N)
Figure imgf000055_0002
(M=4, N=4, L= 2のときの例) と記述することができる。
送信シンボル候補生成部 418は、まず、送信アンテナ Mに対する送信シンボル d を生成して出力する。変換信号レプリカ生成部 419は、送信シンボル d と R行列を 入力して変換信号レプリカ
[0256] [数 135]
X, を次式にしたがって生成して尤度計算部 420に出力する。
[0257] [数 136] = ' 尤度計算部 420はまず、 と、
M
[数 137]
の誤差演算を次式にしたがって行う。
[0259] [数 138]
e = | - f 尤度計算部 420では、送信アンテナ Mに対応する生成した送信シンボルとそれに 対応する誤差信号とを入力とし、誤差の小さい S 個の送信アンテナ Mに対応する送
M
信シンボル系列
[0260] [数 139]
" "〜 > とそのときの誤差
[0261] [数 140]
次に、送信シンボル候補生成部 418、送信アンテナ M— 1に対する送信シンボル [0262] [数 141] d
を生成して出力する。
[0263] 変換信号レプリカ生成部 419は、送信アンテナ Mに対応する S 個の送信シンボル
M
系列と送信アンテナ M— 1に対する送信シンボルとから R行列を入力として変換信号 レプリカ
[0264] [数 142]
X
を次式にしたがって生成して出力する。
[0265] [数 143]
尤度計算部 420は、次いで、誤差演算を次式により行い、
[0266] [数 144]
誤差の小さ ヽ S 個の送信アンテナ Μと送信アンテナ Μ— 1に対応する送信シンポ
M-1
ル系列の組み合わせ
[0267] [数 145] とそのときの誤差
[0268] [数 146]
を保持する。
[0269] 同様にして、送信シンボル候補生成部 418は、送信アンテナ mに対する送信シン ボル d を生成して出力する。変換信号レプリカ生成部 419は、送信アンテナ m+ 1 m, l
から、送信アンテナ Mに対応する S 個の送信シンボル系列と送信アンテナ mに対
m+1
する送信シンボルと R行列を入力として変換信号レプリカ
[0270] [数 147]
を次式にしたがって生成して出力する。
[0271] [数 148]
尤度計算部 420は、誤差演算を次式にしたがって行!、、
[0272] [数 149] p = I, ― τ I +
誤差の小さ ヽ S 個の送信アンテナ Mから送信アンテナ mに対応する送信シンボル 系列の組み合わせ
[0273] [数 150] t . .·■■. ^ J とそのときの誤差
[0274] [数 151] e 〜e
m+l を保持する。
[0275] 以上の操作を繰り返すことにより、得られた C' S個の全送信アンテナに対応する送
2
信シンボル系列の組み合わせ
[0276] [数 152] i I とそのときの誤差
[0277] [数 153]
£
を得る。
[0278] 送信系列推定部 421では、各送信アンテナに対応する、生き残り送信シンボルとそ れに対応する誤差信号とを入力とし、送信シンボル系列によって送信されたビット〖こ 対する尤度えを出力する。なお、誤差信号に基づいたビット尤度の計算法は、既存 の 、かなる方法も適用可能である。
[0279] 上述したビット尤度はチャネル復号器 (例えば、ターボ復号器)等に入力されて最 終的に情報ビット系列が復元される。
[0280] 以上のように、第 2の実施形態に係る復調部の構成(図 10)は、図 9において説明 した第 1の実施形態の復調部の構成に比較にして、若干のビット尤度の推定精度の 劣化を許容すれば、誤差演算の回数を cM回から
[0281] [数 154]
回に大幅に低減することが可能であり、受信装置の複雑さを大幅に低減することが可 能となる。
[0282] 図 11は、本発明の実施形態に係る復調部の第 3の実施形態を示す構成例図であ る。本実施形態では、復調部は、復調アルゴリズムとしてパス毎に処理を行う MLDを 用いる。
[0283] 同図において、この復調部 500は、チャネル係数推定部 511と、 N X L個の逆拡散 咅 — 515と、 L個の QR分解咅 516、 517と、 L個の QH演算咅 518、 519と、送信 シンボル候補生成部 520と、変換信号レプリカ生成部 521と、尤度計算部 522と、送 信系列推定部 523とから構成される。なお、構成要素が複数有る場合には、末尾に 連番を付すものとして図示した。
[0284] 上記のように構成された復調部 500の動作につ 、て以下説明する。
[0285] 復調部 500に入力される入力信号は、 N X L個のマルチパス干渉キャンセル後の 受信信号
[0286] [数 155]
であり、チャネル係数推定部 511において、受信アンテナと送信アンテナとの間各々 の各パスのチャネル係数 h が推定さ
m, n, 1
される(なお、構成の簡単ィ匕のために、前段のマルチパス受信信号再生部における チャネル係数を用いることも同様に可能である)。
[0287] さらに、 N X L個のマルチパス干渉キャンセル後の受信信号 [0288] [数 156] ) は受信アンテナ n、パス 1に対応する逆拡散部に入力され、逆拡散信号 を得る。
n、l
[0289] 次に、第 1番目の QR分解部では、第 1番目のパスのチャネル係数力もなる下記のチ ャネル行列をパス数分生成し、それぞれ、チャネル行列の QR分解を行って、 Q行列 および R行列を出力する。
[0290] [数 157]
チャネル行列 H, 4ときの例)
Figure imgf000061_0001
H, = Q,Rt
上記 QR分解部から出力される Q行列は、 N行 X M列のュ-タリー行列であり、 Q
1 1
Q =1を満たす。ここで、 Ηは共役複素転置を表し、 Iは単位行列を表す。また、 R行
1 1 列は、 M行 X M列の上三角行列となる。
[0291] したがって、第 1番目の QH演算部における演算は、
[0292] [数 158]
Figure imgf000062_0001
(M= 4 、 N = 4のときの例) と記述することができる。
送信シンボル候補生成部 520は、まず、送信アンテナ Mに対する送信シンボル d を生成して変換信号レプリカ生成部 521に出力する。変換信号レプリカ生成部 521 は、送信シンボル d と、 R行列を入力して、変換信号レプリカ
[0294] [数 159]
を次式にしたがって生成して出力する c
[0295] [数 160]
尤度計算部 522は、まず、 と
[0296] [数 161] を用い、次式にしたがって誤差演算を行う。
[0297] [数 162]
Figure imgf000063_0001
尤度計算部 522は、誤差演算を行った後、送信アンテナ Mに対応する生成した送 信シンボルとそれに対応する誤差信号とを入力とし、誤差の小さい S 個の送信アン
M
テナ Mに対応する送信シンボル系列
[0298] [数 163]
とそのときの誤差
[0299] [数 164]
を保持する。
[0300] 次に、送信シンボル候補生成部 520は、送信アンテナ M— 1に対する送信シンボル d を生成して出力する。
M-1, i
[0301] 変換信号レプリカ生成部 521は、送信アンテナ Mに対応する S 個の送信シンボル
M
系列と送信アンテナ M— 1に対する送信シンボルとから R行列を入力として変換信号 レプリカ
[0302] [数 165]
X を を次式にしたがって生成して出力する
[0303] [数 166]
尤度計算部 522は、次いで、誤差演算を次式により行い、
[0304] [数 167]
Figure imgf000064_0001
誤差の小さ ヽ S 個の送信アンテナ Mと送信アンテナ M— 1に対応する送信シンポ ル系列の組み合わせ
[0305] [数 168]
とそのときの誤差
[0306] [数 169]
を保持する。
[0307] 同様にして、送信シンボル候補生成部 520は、送信アンテナ mに対する送信シン ボル d を生成して出力する。変換信号レプリカ生成部 521は、送信アンテナ m+ 1 から、送信アンテナ Mに対応する S 個の送信シンボル系列と送信アンテナ mに対 する送信シンボルと R行列を入力として変換信号レプリカ
[0308] [数 170] を次式にしたがって生成して出力する
[0309] [数 171]
X , -r ; d . +r,„,、 d + +r."' d
尤度計算部 522は、誤差演算を次式にしたがって行い、
[0310] [数 172] e = e — +
誤差の小さ ヽ s個の送信アンテナ Mカゝら送信アンテナ mに対応する送信シンボル m
系列の組み合わせ
[0311] [数 173]
とそのときの誤差
[0312] [数 174]
€ 〜
を保持する。
[0313] 以上の操作を繰り返すことにより、得られた C'S個の全送信アンテナに対応する送
2
信シンボル系列の組み合わせ [0314] [数 175]
, とそのときの誤差
[0315] [数 176]
を得る。
[0316] 送信系列推定部 523では、 L個の尤度計算部カゝら得られた各送信アンテナに対応 する、生き残り送信シンボルとそれに対応する誤差信号とを入力とし、 L個の誤差信 号の和から、送信シンボル系列によって送信されたビットに対する尤度
λを出力する。なお、誤差信号に基づいたビット尤度の計算法は、既存のいかなる 方法も適用可能である。
[0317] 上述したビット尤度は、チャネル復号器 (例えば、ターボ復号器)等に入力されて最 終的に情報ビット系列が復元される。
[0318] 以上のように、第 3の実施形態に係る復調部の構成(図 11)は、図 9において説明 した第 1の実施形態の復調部の構成に比較にして、若干のビット尤度の推定精度の 劣化を許容すれば、誤差演算の回数を CM回から
[0319] [数 177]
Figure imgf000066_0001
回に大幅に低減することが可能であり、受信装置の複雑さを大幅に低減すること が可能となる。
[0320] 図 12は、本発明の実施形態に係る受信装置の第 3の実施形態を示す構成図であ る。本実施の形態による無線通信システムにおいては、送信装置(図示省略)におい て、送信データビット系列を M本の送信系列にシリアル 'パラレル変換し、同一の周 波数帯かつ同一の拡散符号群を用いてデータ変調を行い、 M本の送信アンテナか ら N 本のマルチコードチャネルで同時に送信される場合を示して!/、る。
code
[0321] 本実施形態に係る受信装置 600では、ステージ数分の各コードチャネル (本例で は、コードチャネル 1、 2)に対応するマルチパス受信信号再生部 611— 614と、各コ ードチャネルに対応する復調部 621、 622を用意し、マルチパス干渉キャンセル部 6 15— 618を介して接続される。
本実施形態では、初段の各コードチャネルに対応するマルチパス受信信号再生部 611、 612への入力信号は、 N本の受信アンテナ(ここでは、 N = 2の例を示している )で受信された受信信号 r (t)であり、マルチパス受信信号再生部 611、 612は、そ れぞれ当該コードチャネルの各送信アンテナ力 の受信パス毎の再生受信信号系 列
[0322] [数 178]
(kはコード番号で、
[0323] [数 179]
\ < k≤N^ck {t) はコードチャネル kの拡散符号を表す)を出力する。
[0324] N個のマルチパス干渉キャンセル部(本例では、 N= 2) 615、 616には、受信信号 r (t)と全コードチャネル再生受信信号系列
[0325] [数 180]
り と力 ロ算器 631— 634によりカロ算(合成)されて入力され、マルチパス干渉キャンセル 後の受信信号
[0326] [数 181] rl;' (i)
を次式にしたがって生成する。
[0327] [数 182]
第 2段の各コードチャネルに対応するマルチパス受信信号再生部 613、 614への 入力信号は、マルチパス干渉キャンセル後の受信信号
[0328] [数 183]
C )
となり、以上の操作をステージ数だけ繰り返して、最終的なマルチパス干渉キャンセ ル後の受信信号
[0329] [数 184] ; )(ί)
が生成される。
[0330] このようにして生成されたマルチパス干渉キャンセル後の受信信号
[0331] [数 185] ) は各コードチャネルに対応する復調部 621、 622〖こ入力され、各コードチャネルにお ける送信シンボル系列によって送信されたビットに対する尤度が出力される。
[0332] 次に、本発明について具体的に計算機シミュレーションを行った例を、図 13を用い て説明する。同図は、従来の MLDと 2次元 MMSEおよび本発明による受信装置の 復調方法を用いた場合の受信アンテナ当たりの平均受信 EbZNo (情報 1ビット当り の信号エネルギーに対する雑音電力密度)に対するスループット特性を計算機シミュ レーシヨンにより評価した場合の結果を示す図である。
[0333] 本シミュレーションでは、受信装置のマルチパス受信信号再生部を、 2ステージで 構成し、第 1ステージでは、図 2の構成を、第 2ステージでは図 4の構成を用いるもの とした。また、マルチパスとして平均受信電力が等しい 2パスモデルを仮定した。拡散 率は 16であり、 15コードチャネルを符号多重している(実効的な拡散率は 15Z16で ある)。図中 Rはターボ符号ィ匕を用いたチャネル符号ィ匕の符号ィ匕率を表し、実線は、 本発明法による特性(QR— MLD with 2— stage MPIC)を、点線は従来におけ る MMSEの特性を、 X印は従来における MLDの特性を示している。また、參、〇は QPSK変調を用いた MIMO多重 (4送信アンテナ、 4受信アンテナ)の受信アンテナ 当たりの平均受信 EbZNoを、國、口は 16QAM変調を用いた MIMO多重の受信 アンテナ当たりの平均受信 EbZNo特性をそれぞれ表して 、る。
[0334] 同図により、本発明の受信装置の構成を用いることで、従来の信号分離法を用いる 場合に比較して、大幅にあるスループットを得るために必要な平均受信電力 EbZN oを低減できていることがわかる力 これは、本発明の受信装置の構成を用いることで より大幅に少ない送信電力で従来と同じスループットを実現できることを示している。 換言すれば、同じ送信電力であれば従来よりも大幅にスループットを増大できること を示している。
[0335] 以上説明してきたように、本発明によれば、 CDMA方式において情報ビットレート を増大するために複数の送信アンテナ力 異なるデータを同時送信する MIMO多 重を適用したときに、マルチノ ス干渉を低減し、異なる送信アンテナから送信された 信号の高精度な分離を実現することができる。その結果、マルチパスフェージング環 境における、受信ビット誤り率 ·受信パケット誤り率の低減、並びにスループット (誤り 無く伝送できる情報ビットの伝送レート)を大幅に向上させることができる。
[0336] 上記各実施形態では、マルチパス受信信号再生部に、 MMSEや MLDなどのァ ルゴリズム (例えば、アルゴリズムを記述したプログラム)が採用される場合を例示した 力 より好ましくは、実用性の範囲の演算量で高精度な信号分離を実現可能とする Q R— MLDアルゴリズムを採用するとよ!/、。
[0337] また、上記各実施形態では、無線通信システムで用いられる受信装置を適用した 力 当該受信装置を、移動通信システムで用いている基地局において適用すること も勿論可能である。また、無線回線や有線回線を介して上記アルゴリズムを選択的に ダウンロードし、無線設備の特性を変化させる、いわゆるソフトウェア無線基地局を本 発明に適用することも可能である。
産業上の利用可能性
[0338] 本発明は、複数アンテナを用いて信号の復調を行う無線通信システムに適用可能 である。

Claims

請求の範囲
[1] CDMA方式を用いて信号の受信を行う受信装置にお 、て、
M本 (Mは、正の整数)の送信アンテナから送信された送信信号を、 N本 (Nは、正 の整数)の受信アンテナにより受信する受信装置であって、
各受信アンテナで受信した受信信号を 1次復調して各送信アンテナ力 の送信信 号を推定し、推定結果に基づ 、てマルチパス環境における受信アンテナ毎の各パス の受信信号を再生するマルチパス受信信号再生手段と、
前記各受信アンテナで受信した受信信号から着目するパス以外のパスの前記再生 受信信号を減じるマルチパス干渉キャンセル手段と、
前記減じた信号を用いて 2次復調を行う復調手段と、
を備えることを特徴とする受信装置。
[2] 請求項 1に記載の受信装置であって、
前記マルチパス受信信号再生手段は、前記 1次復調を、最小平均自乗誤差法( MMSE: Minimum Mean Square Error)を用いて実行することを特徴とする受信装置。
[3] 請求項 1に記載の受信装置であって、
前記マルチパス受信信号再生手段は、前記 1次復調を、最尤検出法 (MLD:
Maximum Likelihood Detention)を用いて実行することを特徴とする受信装置。
[4] 請求項 1に記載の受信装置であって、
前記マルチパス受信信号再生手段は、 QR分解を利用した最尤検出法を用いて複 数パスを一括して前記 1次復調を実行することを特徴とする受信装置。
[5] 請求項 1に記載の受信装置であって、
前記マルチパス受信信号再生手段は、 QR分解を利用した最尤検出法を用いてパ ス毎に前記 1次復調を実行することを特徴とする受信装置。
[6] 請求項 2に記載の受信装置であって、
前記マルチパス受信信号再生手段は、請求項 2に記載の方法を用いて推定される 送信シンボル系列の確からしさに基づ ヽて、受信信号の振幅を制御することを特徴と する受信装置。
[7] 請求項 2に記載の受信装置であって、 前記マルチパス受信信号再生手段は、前記 M本の送信アンテナ力 送信される既 知のパイロット信号を用いてチャネル係数を推定することを特徴とする受信装置。
[8] 請求項 2に記載の受信装置であって、
所定数の前記マルチパス受信信号再生手段及び前記マルチパス干渉キャンセル 手段を多段接続することを特徴とする受信装置。
[9] 請求項 8に記載の受信装置であって、
前記マルチパス受信信号再生手段が多段接続される場合に、各段において、前記 マルチパス干渉キャンセル手段により減じられた信号を用いて、前記 M本の送信ァ ンテナカゝら送信される既知のパイロット信号に基づいて推定されるチャネル係数推定 値の更新を行うことを特徴とする受信装置。
[10] 請求項 1に記載の受信装置であって、
前記復調手段は、最尤検出法を用いて 2次復調を行うことを特徴とする受信装置。
[11] 請求項 1に記載の受信装置であって、
前記復調手段は、 QR分解を利用した最尤検出法を用いて複数パスを一括して 2 次復調を行うことを特徴とする受信装置。
[12] 請求項 1に記載の受信装置であって、
前記復調手段は、 QR分解を利用した最尤検出法を用いてパス毎に 2次復調を行う ことを特徴とする受信装置。
[13] 請求項 1に記載の受信装置であって、
前記 M本の送信アンテナカゝら符号多重された送信信号が送信されたときに、 前記マルチパス受信信号再生手段は、各受信アンテナで受信した受信信号を 1次 復調して拡散符号毎に受信アンテナ毎の各パスの受信信号を再生し、
前記マルチパス干渉キャンセル手段は、前記各受信アンテナで受信した受信信号 力も着目するパス以外のパスの全ての拡散符号に対応する前記再生受信信号を減 じた信号を生成し、
前記復調手段は、前記減じた信号を用いて拡散符号毎に 2次復調を行うことを特 徴とする受信装置。
[14] CDMA方式を用いて信号の受信を行う受信装置において、 M本 (Mは、正の整数)の送信アンテナから送信された送信信号を、 N本 (Nは、正 の整数)の受信アンテナにより受信する受信装置の受信方法であって、
各受信アンテナで受信した受信信号を入力し、所定のアルゴリズムを用いて各送 信アンテナ力ゝらの送信信号を推定し、
前記推定された送信信号と、既知のパイロット信号に基づ 、て推定されるチャネル 推定値とを乗算することにより、マルチノ ス環境における受信アンテナ毎の各パスの 受信信号を再生し、
前記各受信アンテナで受信した受信信号から着目するパス以外のパスの前記再生 受信信号を減算し、
前記減算した信号を用いて復調を行うことを特徴とする受信方法。
M本 (Mは、正の整数)の送信アンテナを備え、各送信アンテナ力も CDMA信号を 送信する送信装置と、請求項 1に記載の受信装置と、
を備えることを特徴とする無線通信システム。
PCT/JP2005/003774 2004-03-05 2005-03-04 受信装置、受信方法、および無線通信システム WO2005086402A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT05720046T ATE498948T1 (de) 2004-03-05 2005-03-04 Empfängervorrichtung, empfangsverfahren und drahtloses kommunikationssystem
JP2006510745A JP4322918B2 (ja) 2004-03-05 2005-03-04 受信装置、受信方法、および無線通信システム
DE200560026370 DE602005026370D1 (de) 2004-03-05 2005-03-04 Empfängervorrichtung, empfangsverfahren und drahtloses kommunikationssystem
CN2005800071148A CN1930813B (zh) 2004-03-05 2005-03-04 接收装置、接收方法以及无线通信***
US10/591,663 US7991360B2 (en) 2004-03-05 2005-03-04 Receiver apparatus, receiving method, and wireless communication system
EP20050720046 EP1722499B1 (en) 2004-03-05 2005-03-04 Receiver apparatus, receiving method, and wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004063197 2004-03-05
JP2004-063197 2004-03-05

Publications (1)

Publication Number Publication Date
WO2005086402A1 true WO2005086402A1 (ja) 2005-09-15

Family

ID=34918146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003774 WO2005086402A1 (ja) 2004-03-05 2005-03-04 受信装置、受信方法、および無線通信システム

Country Status (8)

Country Link
US (1) US7991360B2 (ja)
EP (1) EP1722499B1 (ja)
JP (1) JP4322918B2 (ja)
CN (1) CN1930813B (ja)
AT (1) ATE498948T1 (ja)
DE (1) DE602005026370D1 (ja)
ES (1) ES2361418T3 (ja)
WO (1) WO2005086402A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166592A (ja) * 2005-12-09 2007-06-28 Korea Electronics Telecommun 反復デコーダーのための高次変調方式に適する軟判定デマップ方法及びそれを利用したエラー訂正装置
JP2007300383A (ja) * 2006-04-28 2007-11-15 Fujitsu Ltd Mimo−ofdm送信機
JP2009518894A (ja) * 2005-11-30 2009-05-07 クゥアルコム・インコーポレイテッド 無線通信用の多段受話器
WO2010013657A1 (ja) * 2008-07-28 2010-02-04 シャープ株式会社 通信システム、受信装置及び通信方法
JP2010118905A (ja) * 2008-11-13 2010-05-27 Samsung Electronics Co Ltd 受信装置、及び信号処理方法
JP2013046316A (ja) * 2011-08-25 2013-03-04 Fujitsu Ltd 受信装置
JP2015111835A (ja) * 2006-11-06 2015-06-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated オンタイムシンボル干渉除去を備えるmimo検波

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05000828A (es) 2002-07-19 2005-04-19 Interdigital Tech Corp Cancelacion de interferencia sucesiva por grupos para bloquear transmision con diversidad de recepcion.
JP4478119B2 (ja) * 2005-05-25 2010-06-09 パナソニック株式会社 受信装置
JP4666150B2 (ja) * 2005-05-31 2011-04-06 日本電気株式会社 Mimo受信装置、受信方法、および無線通信システム
US8315343B2 (en) * 2007-12-17 2012-11-20 Telefonaktiebolaget Lm Ericsson (Publ) Multi-antenna receiver interference cancellation method and apparatus
JP2009272725A (ja) * 2008-04-30 2009-11-19 Sharp Corp 通信システム、受信装置及び通信方法
US8902862B2 (en) * 2008-08-20 2014-12-02 Qualcomm Incorporated Method and apparatus for sharing signals on a single channel
US8238488B1 (en) * 2008-09-02 2012-08-07 Marvell International Ltd. Multi-stream maximum-likelihood demodulation based on bitwise constellation partitioning
JP5375965B2 (ja) * 2009-01-21 2013-12-25 日本電気株式会社 Mimoシステムのための復調方法
EP2701332B1 (en) * 2011-04-22 2015-11-18 Mitsubishi Electric Corporation Communication device using plurality of communication paths
US9876595B2 (en) * 2012-02-06 2018-01-23 Maxlinear, Inc. Method and system for a distributed receiver
US9722730B1 (en) 2015-02-12 2017-08-01 Marvell International Ltd. Multi-stream demodulation schemes with progressive optimization
WO2019134754A1 (en) 2018-01-08 2019-07-11 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for selecting a session management entity for serving a wireless communication device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152603A (ja) * 2001-02-20 2003-05-23 Ntt Docomo Inc ターボ受信方法及びその受信機
JP2004063197A (ja) 2002-07-26 2004-02-26 Hosiden Corp カードコネクタ
JP2004096603A (ja) * 2002-09-03 2004-03-25 Ntt Docomo Inc 信号分離方法および受信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506861A (en) * 1993-11-22 1996-04-09 Ericsson Ge Mobile Comminications Inc. System and method for joint demodulation of CDMA signals
US5887034A (en) * 1996-03-29 1999-03-23 Nec Corporation DS-CDMA multiple user serial interference canceler unit and method of transmitting interference replica signal of the same
SG84514A1 (en) * 1998-08-31 2001-11-20 Oki Techno Ct Singapore Pte Receiving device and channel estimator for use in a cdma communication system
JP3515033B2 (ja) * 2000-01-19 2004-04-05 松下電器産業株式会社 干渉信号除去装置及び干渉信号除去方法
GB0016663D0 (en) * 2000-07-06 2000-08-23 Nokia Networks Oy Receiver and method of receiving
US7181167B2 (en) * 2001-11-21 2007-02-20 Texas Instruments Incorporated High data rate closed loop MIMO scheme combining transmit diversity and data multiplexing
US7075972B2 (en) 2002-08-19 2006-07-11 Mitsubishi Electric Research Laboratories, Inc. Intra-cell interference cancellation in a W-CDMA communications network
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
KR100470401B1 (ko) * 2002-12-24 2005-02-05 한국전자통신연구원 그룹화 최유도 검출을 이용한 무선 통신 시스템 및 방법
US8036325B2 (en) * 2006-03-09 2011-10-11 Interdigital Technology Corporation Wireless communication method and apparatus for performing knowledge-based and blind interference cancellation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152603A (ja) * 2001-02-20 2003-05-23 Ntt Docomo Inc ターボ受信方法及びその受信機
JP2004063197A (ja) 2002-07-26 2004-02-26 Hosiden Corp カードコネクタ
JP2004096603A (ja) * 2002-09-03 2004-03-25 Ntt Docomo Inc 信号分離方法および受信装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ABE T. ET AL: "Performance Evaluatino of Space-Time Turbo Equalizer in Frecuency Selective MIMO Channels Using Field Measurement Data.", MIMO: COMMUNICATIONS SYSTEMS FROM CONCEPT TO IMPLEMENTATIONS(REF.NO.2001/175) IEEE SEMINAR., 12 December 2001 (2001-12-12), pages 21/1 - 21/5, XP002989171 *
G. J. FOSCHINI, LAYERED SPACE-TIME ARCHITECTURE FOR WIRELESS COMMUNICATION IN A FADING ENVIRONMENT WHEN USING
HIGUCHI K. ET AL: "W-CDMA Kudari Link ni Okeru Multiphath Kansho Canceller o Mochiiru Cho Kosoku Packet Denso Tokusei.", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU., vol. 100, no. 134, 6 October 2000 (2000-10-06), pages 45 - 52, XP002997463 *
ITO T. ET AL: "OFCDM MIMO Taju ni Okeru Symbol Replica Koho Sakugangata QR Bunkai-MLD no Throughput oyobi Enzan Shoriryo no Hikaku Hyoka.", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU., vol. 103, no. 80, 25 February 2004 (2004-02-25), pages 61 - 66, XP002997464 *
KA LEONG LO ET AL.: "Layered space time coding with joint iterative detection, channel estimation and decoding", SPREAD SPECTRUM TECHNIQUES AND APPLICATIONS, 2002 IEE SEVENTH INTERNATIONAL SYMPOSIUM ON SEPT. 2-5, 2002, vol. 2, 2 September 2002 (2002-09-02), pages 308 - 312
PETRÉ F ET AL.: "Combined space time chip equalization and parallel interference cancellation for DS-CDMA downlink with spatial multiplexing", PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, 2002, THE 13TH IEEE INTERNATIONAL SYMPOSIOUM ON SEPT. 15-18, 2002, vol. 3, 15 September 2002 (2002-09-15), pages 1117 - 1121
YUMIN ZHANG ET AL.: "Multistage multiuser. detection for CDMA with space-time coding", STATISTICAL SIGNAL AND ARRAY PROCESSING, 2000, PROCEEDINGS OF THE TENTH IEEE WORKSHOP ON AUGUST 14-16, 2000, 14 August 2000 (2000-08-14), pages 1 - 4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518894A (ja) * 2005-11-30 2009-05-07 クゥアルコム・インコーポレイテッド 無線通信用の多段受話器
US8107549B2 (en) 2005-11-30 2012-01-31 Qualcomm, Incorporated Multi-stage receiver for wireless communication
JP2007166592A (ja) * 2005-12-09 2007-06-28 Korea Electronics Telecommun 反復デコーダーのための高次変調方式に適する軟判定デマップ方法及びそれを利用したエラー訂正装置
JP2007300383A (ja) * 2006-04-28 2007-11-15 Fujitsu Ltd Mimo−ofdm送信機
US8488702B2 (en) 2006-04-28 2013-07-16 Fujitsu Limited MIMO-OFDM transmitter
JP2015111835A (ja) * 2006-11-06 2015-06-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated オンタイムシンボル干渉除去を備えるmimo検波
WO2010013657A1 (ja) * 2008-07-28 2010-02-04 シャープ株式会社 通信システム、受信装置及び通信方法
JP2010118905A (ja) * 2008-11-13 2010-05-27 Samsung Electronics Co Ltd 受信装置、及び信号処理方法
JP2013046316A (ja) * 2011-08-25 2013-03-04 Fujitsu Ltd 受信装置
US9203483B2 (en) 2011-08-25 2015-12-01 Fujitsu Limited Reception apparatus, radio communication method, and radio communication system

Also Published As

Publication number Publication date
ATE498948T1 (de) 2011-03-15
DE602005026370D1 (de) 2011-03-31
EP1722499B1 (en) 2011-02-16
US7991360B2 (en) 2011-08-02
ES2361418T3 (es) 2011-06-16
EP1722499A1 (en) 2006-11-15
CN1930813B (zh) 2010-05-05
JPWO2005086402A1 (ja) 2008-01-24
EP1722499A4 (en) 2008-06-04
JP4322918B2 (ja) 2009-09-02
US20070197166A1 (en) 2007-08-23
CN1930813A (zh) 2007-03-14

Similar Documents

Publication Publication Date Title
WO2005086402A1 (ja) 受信装置、受信方法、および無線通信システム
JP4072539B2 (ja) 多重入力多重出力方式を使用する通信システムにおける信号を受信する装置及び方法
EP1357693B1 (en) CDMA transceiver techniques for multiple input multiple output (mimo) wireless communications
KR100624504B1 (ko) Mimo시스템에서의 스펙트럼 효율 고속 송신을 위한 반복적 소프트 간섭 소거 및 필터링
US7397843B2 (en) Reduced complexity soft value generation for multiple-input multiple-output (MIMO) joint detection generalized RAKE (JD-GRAKE) receivers
US7339980B2 (en) Successive interference cancellation in a generalized RAKE receiver architecture
US7020175B2 (en) MMSE reception of DS-CDMA with transmit diversity
US7778355B2 (en) Space-time transmit diversity
US20030036359A1 (en) Mobile station loop-back signal processing
US20060268963A1 (en) Radio communication system that uses a MIMO receiver
US20030048857A1 (en) Space-time transmit diversity
JP2007522752A (ja) 複数送信および受信アンテナ構成のためのチップレベルまたはシンボルレベル等化器構造
Lozano et al. Space-time receiver for wideband BLAST in rich-scattering wireless channels
KR100789355B1 (ko) 수신장치, 수신방법, 및 무선 통신 시스템
US7746917B2 (en) Data transmission method and receiver
Song et al. Successive interference cancellation schemes for time-reversal space-time block codes
KR100651432B1 (ko) 다중 안테나를 사용하는 이동통신 시스템에서 간섭신호 제거 장치 및 방법
Juntti et al. Space-time equalizers for MIMO high speed WCDMA downlinks
Kumaratharan et al. Performance improvement in detection and estimation of MC-CDMA systems over MIMO channels
Ghosh et al. Advanced Receiver Architectures for HSPA and Their Performance Benefits
Jeong et al. An Iterative Receiver for Uplink of Coded MIMO DS-CDMA System Employing Layered Space-Time Transmission
Lee et al. Enhanced OSIC detection algorithm for double TxAA MIMO system
Mamun et al. Simulations and Performance Analyses of Multi-user Alamouti’s Space Time Block Coded MIMO CDMA Systems
Song et al. http://eprints. whiterose. ac. uk/3692
de Lamare et al. Adaptive MIMO reduced-rank equalization based on joint iterative least squares optimization of estimators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510745

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005720046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067018078

Country of ref document: KR

Ref document number: 200580007114.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005720046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10591663

Country of ref document: US

Ref document number: 2007197166

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067018078

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10591663

Country of ref document: US