WO2005080270A1 - Fine basic silica powder, process for producing the same and resin composition - Google Patents

Fine basic silica powder, process for producing the same and resin composition Download PDF

Info

Publication number
WO2005080270A1
WO2005080270A1 PCT/JP2004/000851 JP2004000851W WO2005080270A1 WO 2005080270 A1 WO2005080270 A1 WO 2005080270A1 JP 2004000851 W JP2004000851 W JP 2004000851W WO 2005080270 A1 WO2005080270 A1 WO 2005080270A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
basic
weight
silica
parts
Prior art date
Application number
PCT/JP2004/000851
Other languages
French (fr)
Japanese (ja)
Inventor
Takenobu Sakai
Susumu Abe
Kazuyoshi Hoshino
Takeshi Yanagihara
Yoshitaka Tomita
Original Assignee
Admatechs Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co., Ltd. filed Critical Admatechs Co., Ltd.
Publication of WO2005080270A1 publication Critical patent/WO2005080270A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof

Definitions

  • Finely basic silica powder finely basic silica powder, method for producing the same, and resin composition
  • the present invention relates to a silica powder which facilitates powder operations such as transportation and classification, suppresses agglomeration when mixed with a resin, is uniformly dispersed, and prevents an increase in viscosity, and a method for producing the same.
  • the present invention also relates to a resin composition comprising the silica powder and an organic resin, having excellent moisture absorption resistance and solder crack resistance, and having a low expansion property.
  • a sealing material for sealing a semiconductor device such as a flip-chip mounting method is required to have characteristics such as moisture resistance, electric corrosion resistance, and heat cycle resistance.
  • Moisture absorption by mixing inorganic fillers such as silicide A method has been implemented to improve the moisture resistance reliability and the heat cycle resistance by reducing the thermal expansion coefficient and the thermal expansion coefficient.
  • the amount of the inorganic filler such as silicide is increased, the moisture absorption rate of the sealing material can be reduced and the thermal expansion coefficient can be reduced, and the moisture reliability and heat cycle resistance can be improved.
  • the viscosity of the sealing material increases, and the fluidity tends to decrease significantly, which is a problem.
  • Japanese Patent Application Laid-Open No. 58-145613 discloses a method of melting silicide particles in a flame.
  • Japanese Patent Laid-Open Publication No. Sho 60-2555602 discloses that a chemical flame is formed by a wrench in an atmosphere containing oxygen, and metal powder is introduced into the chemical flame in an amount capable of forming a dust cloud.
  • a production method for synthesizing ultrafine oxide particles by burning the particles discloses a first step of supplying metal powder constituting an oxide together with a carrier gas into a reaction vessel, and igniting a flame in the reaction vessel.
  • Forming an oxide powder by burning the metal powder to synthesize an oxide powder wherein the first step comprises mixing a metal oxide having a small particle diameter with the metal powder.
  • a method for producing an oxide powder characterized in that, in the second step, particles are grown using an oxide synthesized by burning the metal powder with the metal oxide as a nucleus. There is.
  • Japanese Patent Application Laid-Open No. 2001-189497 and Japanese Patent Application Laid-Open No. Japanese Patent Application Laid-Open No. 11-48737 discloses an epoxy resin for semiconductor encapsulation that is excellent in moldability by treating the surface of the inorganic filler particles with a silane coupling agent (preferably containing at least two alkoxy groups). It is disclosed to make the composition.
  • a silane coupling agent preferably containing at least two alkoxy groups.
  • the above technique has a problem that the inorganic filler particles easily aggregate in the resin, are non-uniform, have a high viscosity, and as a result, have low fluidity and cannot be further improved in moldability. . Disclosure of the invention
  • the present invention relates to a finely basic silica powder and a silane printing agent that suppress aggregation, are uniformly dispersed, and prevent viscosity increase when mixed with a resin.
  • the present invention relates to a silica powder subjected to a secondary surface treatment, and a method for producing the same.
  • the present invention relates to a resin composition comprising the microbasic silica powder and an organic resin, having excellent moisture absorption resistance and solder crack resistance, and having a low expansion property.
  • the inorganic particles and the matrix polymer be connected by a strong bond.
  • a silane coupling agent As a method of modifying the surface of the particles to strengthen the bonding with the matrix, it is common to treat the particles with a silane coupling agent.
  • fine particles such as Admafine (trade name), which is a metal oxide powder obtained by burning metal, coagulation tends to occur due to the treatment, and it becomes difficult to disperse in the resin.
  • Admafine trade name
  • the viscosity at the time of molding increases. For example, when epoxysilane-treated silica is blended with an epoxy resin, the viscosity typically becomes very high.
  • the present invention is an invention of a finely basic silica powder in which the surface of the silica powder is treated with a basic substance or a basic mixture.
  • the coarse powder or fine basic powder has a coarse particle having a particle diameter of a predetermined value or more.
  • This basic silica powder has appropriate hydrophilicity and excellent fluidity and dispersibility. When this basic silica powder is blended with an epoxy resin composition, the viscosity of the composition is low and Later physical properties are also excellent.
  • the fluidity of the powder itself is dramatically improved, and transport and classification are performed. And other operations are facilitated. Moreover, adhesion to the production equipment was extremely low, and continuous production was made possible.
  • the basic silica powder of the present invention is slightly basic, for example, a silane coupling agent incorporated in an epoxy resin is efficiently adsorbed and fixed, and a resin compound having low viscosity and high fluidity is obtained.
  • the adhesive property between the filler surface and the resin is good, and excellent physical properties such as solder reflow resistance and low moisture absorption can be obtained.
  • those having a boiling point of 150 ° C. or less at 1 atm can be processed in a gaseous state, and thus are preferable.
  • those having a boiling point exceeding 150 ° C can be mixed with the sily powder.
  • Examples of the basic substance or the basic mixture include ammonia, organic amines, silanes, nitrogen-containing cyclic compounds or solutions thereof, and amine-based silane coupling agents or solutions thereof.
  • silazanes are preferably exemplified, and hexamethyldisilazane (HMDS) is particularly preferred.
  • the PH value of the extracted water of the treated sily powder is higher by at least 0.1 or more than the PH of the pure water used. This confirms that the silica powder has been basified to an appropriate amount.
  • the method of measuring the PH of the powdered extraction water is as follows. Weigh 3.5 g of powder and place in plastic container. Add 70 ml of deionized water and shake with a vibrator for 30 minutes. Separate the solid and liquid with a centrifuge and measure the pH of the supernatant water.
  • the method for producing the silica powder is not limited.
  • powdered silicon powder obtained by burning metal silicon powdered powder obtained by melting powdered silicon powder, powdered silicon powder, and the like are exemplified.
  • Spherical silicon powder obtained by burning metal silicon includes silicon metal powder, silicon and alloy powder such as aluminum, magnesium, zirconium, and titanium, and other aluminum powder mixed with mullite composition and aluminum powder.
  • a mixture of metal powders such as magnesium powder and aluminum powder mixed with a silica powder and a spinel composition, aluminum powder, magnesium powder and silicon powder mixed with a cordierite composition, and oxygen together with a carrier gas.
  • a chemical flame is formed in an atmosphere containing the gas, and ultrafine particles of a metal oxide containing silica (Sio 2 ) as a main component are obtained in the chemical flame.
  • a metal oxide powder whose main component is silicon power obtained by burning metal silicon is preferable.
  • the silica powder obtained by burning the metal is preferably spherical particles having an average particle diameter of 0.01 ⁇ m or more, and has an average particle diameter of 0.01 ⁇ m to 20 ⁇ m. Particles having a mean particle diameter of 0.2 ⁇ m to 20 ⁇ m are more preferable.
  • the molten silicon is produced by a method in which silica particles and the like are melted in a flame, and the production method is disclosed in, for example, the above-mentioned Japanese Patent Application Laid-Open No. 58-145613. .
  • the silazane referred to in the present invention is a silicon compound having a Si 1 N bond in a molecule, and may be referred to as an organosilazane. It is a compound selected from silazanes such as cyclotrisilazane, 1,1,3,3,5,5, -hexamethercyclotrisilazane, or a combination thereof. Among them, hexamethyldisilazane (HMDS) suppresses silica aggregation, tilts acidic silica to basicity, improves affinity for organic substances, and improves the uniformity of adhesion of silane coupling agents and the like. This is preferable in that the stability to the epoxy resin is improved.
  • HMDS hexamethyldisilazane
  • the amine-based silane printing agent which is a basic substance, has the following general formula:
  • R i n (R 2 ) ra (R 3 ), S 1 Represented by 1, n + m + 1 is 4.
  • R 2 is a hydrocarbon group bonded to the Si atom through a C-Si bond.
  • R 3 is a hydrolyzable substituent, Si atom and S i -OR (R is a hydrocarbon group), S i -O COR (: R is a hydrocarbon group), S i — NHCOR (R is a hydrocarbon group) Motoi), S i — NR! R 2 (R! And R 2 are a hydrocarbon group or hydrogen).
  • Specific examples include N-phenyl- ⁇ -aminopropyl built-in methoxysilane and y-aminopropyl built-in ethoxysilane.
  • the amount of the basic substance or the basic mixture to be applied to the powdery sily powder is from 0.05 to 5 ⁇ mol / m 2 of the powder surface area, preferably from 0.05 to 1 ⁇ mol. If there is less than 0. 0 5 mu mol, treatment effect is insufficient, the powder surface when it exceeds 5 mu mol deteriorates conversely Handori packaging property becomes hydrophobic. In addition, since the surface is hydrophobic, adhesion to an epoxy resin or the like also deteriorates. Furthermore, since the hydroxyl groups on the powder surface are eliminated, further treatment with a silane coupling agent or the like becomes impossible. In the case of silica, it is most desirable that the treatment be such that the absorption peak of the hydroxyl group near 370 cm- 1 on the IR spectrum is not completely eliminated.
  • the finely basic silica powder of the present invention is preferably treated with a silane coupling agent such as epoxy silane ', amino silane, acrylic silane and thiol silane.
  • a silane coupling agent such as epoxy silane ', amino silane, acrylic silane and thiol silane.
  • the silane coupling agent is a compound having an active group selected from an amino group, a daricidyl group, a mercapto group, a ureido group, a hydroxy group, an alkoxy group, and a mercapto group, or a combination thereof.
  • silane coupling agents include epoxy silanes such as ⁇ -dalicydoxyprobuilt ethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyl methoxysilane, aminopropyl ethoxy silane, and perylene silane coupling agents.
  • Hydrophobicity such as amidosilanes such as dopoxypropyl ethoxysilane and phenylaminopropyl methoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, octadecyltrimethoxysilane
  • amidosilanes such as dopoxypropyl ethoxysilane and phenylaminopropyl methoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, octadecyltrimethoxysilane
  • Examples include silane compounds and mercaptosilanes.
  • the coarse cut may be performed on the silica powder itself, or the basic siliceous powder treated with the basic substance may be coarse cut. Further, it is preferable that conductive particles such as metal particles having a particle size larger than the maximum particle size of the silicon powder are removed.
  • the coarse powder or the fine basic powder may have a single particle size distribution, or may have a plurality of particles having different particle size distributions. It may be a mixture of powders.
  • the general idea is to sequentially fill small gaps with gaps when large fillers are closest packed.
  • the Horsie1d model is one example. Also, a calculation method for blending the actual powder so as to be the closest packing is known. However, a sufficiently low viscosity cannot be achieved even for the untreated powder or the powder treated by a conventionally known method, even if the above-described close packing is performed.
  • the silica powder treated by the method of the present invention by using a basic substance in combination, is much more uniform than conventional coupling agent treatment, and has a significantly higher affinity for resin. Therefore, when the filler of the present invention is blended with a resin, the viscosity becomes extremely low. A low viscosity resin composition that cannot be obtained is obtained.
  • Specific examples of the average particle size and the coarse particle size in the present invention are as follows.
  • At least one kind of non-mixed powder or mixed powder of spherical sily particles having a particle size distribution of average particle size from 0.01 ⁇ m to 30 ⁇ m and maximum particle size of 75 ⁇ m.
  • At least one kind of non-mixed powder or mixed powder of spherical sily particles having a particle size distribution of average particle size from 0.01 ⁇ m to 20 ⁇ m and maximum particle size of 45 ⁇ m.
  • Particle size distribution with average particle size from 0.01 ⁇ m to 10 ⁇ m and maximum particle size of 20 ⁇ m At least one kind of non-mixed powder or mixed powder of spherical sily particles.
  • At least one kind of non-mixed powder or mixed powder of spherical silica particles having a particle size distribution of an average particle diameter of 0.01 ⁇ m to 1.5 ⁇ m and a maximum particle diameter of 3 ⁇ m.
  • the material is coarsely cut in order to exhibit various physical properties.
  • the present invention is a method for producing a finely basic silica powder by treating the surface of the silica powder with a basic substance or a basic mixture.
  • the silica powder or the fine basic silica powder includes a step of forcing coarse particles having a particle diameter of a predetermined value or more.
  • the sieve surface is converted from acidic to basic, and the adsorption and fixation of silane coupling agents other than silazanes such as HMDS are promoted. I do.
  • the activity of silica against organic resins such as epoxy resin is suppressed, and the increase in viscosity due to the reaction with epoxy resin is suppressed. This makes it possible to achieve low viscosity and high fluidity when filling with epoxy 'resin and the like.
  • the silica powder is treated with HMDS, the treatment is easy, and the silica becomes slightly basic and a part of the silica surface is trimethylated. It is suitable because the cohesion of the body is eliminated and the wettability to the resin is improved.
  • coarse cutting is preferable in that various physical properties of the organic resin and the like are exhibited.
  • the silica powder may be preliminarily treated, but this is performed in the process of mixing with a resin or the like to form a compound.
  • a silica powder is put into a Henschel mixer, mixed with a basic substance or a basic mixture, treated, and immediately after that, a resin, an additive, a curing agent, a catalyst, a coupling agent, etc. are added and premixed.
  • the compound can be made with a mouth extruder.
  • the present invention is a method for producing a siliceous powder, which comprises subjecting a silica powder to a surface treatment with a basic substance and a silane coupling agent.
  • the basic substance and the silane coupling agent may be used almost simultaneously, but it is preferable that the surface of the powder is first treated with a basic substance, and then the surface is treated with a silane coupling agent.
  • the processing amount of the basic substance is such that the basic substance or the basic mixture is 0.05 to 5 ⁇ mo 1 e, preferably 0.05 to 1 ⁇ m 0 1 e per 1 m 2 of the powder surface area. It is. Hexamethylsilazane (HMD S) is preferred as the basic substance because of its ease of processing.
  • HMD S Hexamethylsilazane
  • the present invention is an invention of an organic resin composition, and is characterized in that the above-mentioned sily powder which has been surface-treated with a basic substance or a basic mixture is blended in an organic resin.
  • the basic silica powder By adding the basic silica powder, the heat resistance of the organic resin is particularly increased, the thermal expansion is reduced, and the moisture absorption is reduced.
  • the resin used in the present invention is not particularly limited, and may be an epoxy resin, a polyurethane, an unsaturated polyester ', a phenol resin, a urea resin, a polyimide, a polyamideimide, a melamine resin, or a photocurable resin.
  • thermosetting resin such as silicone
  • thermoplastic resin such as LCP, PPS, PES, PEEK, PC, ABS, PMMA, polyolefin, nylon, PPO, POM, etc.
  • unsaturated polyester Paints or varnishes acrylic paints or varnishes, epoxy paints or varnishes, polyimides, polyamide imide paints or varnishes, phenolic resin paints and other coatings or varnishes for impregnating textiles are exemplified.
  • the present invention is an invention of an epoxy resin composition, wherein at least (A) an epoxy resin, (B) a curing agent, (C) a catalyst, and (D) an inorganic filler.
  • the above-mentioned fine basic silica powder is contained in the entire epoxy resin composition in an amount of 70% by weight or more.
  • (D) the above-mentioned basic silica powder as an inorganic filler is contained in the entire epoxy resin composition in an amount of 70% by weight or more, preferably 85 to 95% by weight.
  • Liquid epoxy resin composition At least (A) an epoxy resin, (B) a curing agent, and (C) a catalyst, and (D) an encapsulation characterized by containing the finely basic silica powder as an inorganic filler.
  • the resin composition further comprises a varnish for impregnating a woven cloth or a varnish for forming a film, and the finely basic silicic powder is blended with the varnish.
  • the epoxy resin used in the present invention is not particularly limited, and all monomers, oligomers and polymers having two or more epoxy groups in one molecule are used.
  • biphenyl-type epoxy resin, stilbene-type epoxy resin, bisphenol-type epoxy resin, triphenol-methane-type epoxy resin, alkyl-modified triphenyl-methane-type epoxy resin, dicyclopentene-modified phenol-type epoxy resin, naphthol Examples include a type epoxy resin and a triazine nucleus-containing epoxy resin. These may be used alone or as a mixture. Since it is preferable that the inorganic filler be highly filled in the epoxy resin composition, a low-viscosity resin is preferable in order to maintain good fluidity of the epoxy resin composition.
  • a phenol resin is added to the above-mentioned epoxy resin composition to obtain an epoxy resin composition for semiconductor encapsulation.
  • the phenolic resin used is not particularly limited, and refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule.
  • dicyclopentadiene modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, terpene modified phenol resin, triphenol methane type resin and the like are exemplified. These may be used alone or as a mixture.
  • the inorganic filler is highly filled in the epoxy resin composition, a low-viscosity resin is preferable for maintaining good fluidity of the epoxy resin composition.
  • the curing agent used in the present invention is not particularly limited as long as it promotes a curing reaction between an epoxy group and a phenolic hydroxyl group, and those generally used for a sealing material can be widely used. it can.
  • 1,8-diazabicyclo (5,4,0) indene-7,2-methylimidazole, triphenylphosphine and the like are exemplified. These may be used alone or as a mixture.
  • the epoxy resin composition of the present invention may further comprise, as necessary, a coloring agent such as carbon black and red iron oxide, a release agent such as natural wax and synthetic petals, a silicone oil, and the like, in addition to the components (A) to (D).
  • a coloring agent such as carbon black and red iron oxide
  • a release agent such as natural wax and synthetic petals
  • silicone oil and the like
  • additives such as ion scavengers, flame retardants, and low-stress additives such as rubber may be appropriately compounded.
  • the epoxy resin composition of the present invention is prepared by sufficiently mixing the components (A) to (D), and other additives at room temperature with a mixer or the like, and then melting the mixture with a hot roll or a kneader. It is obtained by kneading, cooling and pulverizing.
  • a molding method such as transfer molding, compression molding, or injection molding. What is necessary is just to harden.
  • the epoxy resin composition of the present invention is particularly useful as a sealing material for semiconductor devices and liquid crystal display devices.
  • FIG. 1 shows the measurement results of the viscosity of the epoxy resin compositions of Example 44 and Comparative Examples 13 and 14. BEST MODE FOR CARRYING OUT THE INVENTION
  • Comparative Example Sample 1 was prepared by removing coarse particles of at least 105 ⁇ m from SO-C 1) manufactured by Domatex using a sieve.
  • Sample 1 of Comparative Example 1 of Comparative Example 1 was charged into a powder mixer of 100 parts by weight, and while stirring the powder, 0.2 parts by weight of hexamethyldisilazane was atomized to treat the powder. The treated powder was removed with a sieve to remove coarse particles having a size of 75 ⁇ or more, thereby preparing Example Sample 1.
  • the comparative sample 1 of Comparative Example 1 was put into a 100 parts by weight mixer, and 0.2 parts by weight of hexamethyldisilazane was sprayed while the powder was being stirred to treat the powder.
  • the processed powder was removed with a sieve to remove coarse particles of 45 ⁇ m or more, thereby preparing Example Sample 2.
  • Sample 1 of Comparative Example 1 of Comparative Example 1 was charged into a powder mixer of 100 parts by weight, and powder was treated by spraying 0.2 parts by weight of hexamethyldisilazane while stirring the powder. The treated powder was removed with a sieve to remove coarse particles of 20 ⁇ m or more, thereby preparing Example Sample 3.
  • Example sample 1 of Comparative Example 1 of Comparative Example 1 was charged into a powder mixer of 100 parts by weight, and while stirring the powder, 0.2 parts by weight of hexamethyldisilazane was atomized to treat the powder.
  • Example sample 4 was manufactured by removing coarse particles of 10 ⁇ m or more from the powder after the treatment by airflow classification.
  • the comparative sample 1 of Comparative Example 1 was put into a 100 parts by weight mixer, and 0.2 parts by weight of hexamethyldisilazane was sprayed while the powder was being stirred to treat the powder.
  • the sample after the treatment was subjected to airflow classification to remove coarse particles of 5 ⁇ . Or more, thereby preparing Example Sample 5.
  • the comparative sample 1 of Comparative Example 1 was put into a 100 parts by weight mixer, and the powder was With stirring, the powder was treated by spraying 0.2 parts by weight of hexamethyldisilazane. The powder after the treatment was subjected to airflow classification to remove coarse particles of 3 ⁇ m or more, thereby preparing Example Sample 6.
  • Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while the powder was being stirred, 0.1 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles having a size of 75 ⁇ or more, thereby preparing Example Sample 7.
  • Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while the powder was being stirred, 0.1 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles having a size of 45 ⁇ m or more, thereby preparing Example Sample 8.
  • Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while the powder was being stirred, 0.1 parts by weight of hexamethyldisilazane was atomized to treat the powder. The treated powder was removed with a sieve to remove coarse particles of 20 ⁇ m or more, thereby preparing Example Sample 9.
  • Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while the powder was being stirred, 0.1 parts by weight of hexamethyldisilazane was sprayed to treat the powder.
  • the sample after the treatment was subjected to airflow classification to remove coarse particles of 10 ⁇ m or more, thereby producing an example sample 10.
  • the comparative sample 2 of Comparative Example 2 was put into a 100 parts by weight mixer, and the powder was While stirring, the powder was treated by spraying 0.1 part by weight of hexamethyldisilazane.
  • the sample after the treatment was subjected to airflow classification to remove coarse particles of 5 ⁇ m or more, thereby producing an example sample 11.
  • Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while stirring the powder, 0.1 parts by weight of hexamethyldisilazane was sprayed to treat the powder.
  • the powder after the treatment was subjected to airflow classification to remove coarse particles of 3 ⁇ or more, thereby producing an example sample 11.
  • Sample 2 of Comparative Example 2 of Comparative Example 2 was charged into a powder mixer of 100 parts by weight, and while stirring the powder, 0.01 parts by weight of hexamethyldisilazane was sprayed to treat the powder.
  • the treated powder was removed with a sieve to remove coarse particles of 20 ⁇ m or more, thereby preparing Example Sample 13.
  • Sample 2 of Comparative Example 2 of Comparative Example 2 was charged into a powder mixer of 100 parts by weight, and while stirring the powder, 0.3 parts by weight of hexamethyldisilazane was sprayed to treat the powder.
  • the treated powder was removed with a sieve to remove coarse particles of 20 ⁇ m or more, thereby preparing Example Sample 13.
  • Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while stirring the powder, 0.1 parts by weight of ammonia was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles of 20 ⁇ m or more to prepare Example Sample 15.
  • the comparative sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while the powder was being stirred, 0.1 parts by weight of ethylenediamine was sprayed to treat the powder.
  • the powder after the treatment was removed with a sieve to remove coarse particles of 20 ⁇ or more, whereby Example 16 was prepared.
  • Example 17 100 parts by weight of Comparative Example 2 of Comparative Example 2 was put into a powder mixing machine, and while stirring the powder, 1 part by weight of a 10% solution of KBM 903 in 10% methyl ethyl ketone was sprayed. Was processed. The treated powder was removed with a sieve to remove coarse particles having a size of 20 ⁇ or more, whereby Example Sample 17 was produced.
  • Comparative Example 2 of Comparative Example 2 100 parts by weight of a sample 2 was put into a powder mixer, and while stirring the powder, 1 part by weight of a 10% solution of imidazole in 10% methylethylketone was sprayed and powdered. Was processed. The treated powder was removed with a sieve to remove coarse particles having a size of 20 ⁇ or more, thereby preparing Example Sample 18.
  • Comparative Example Sample 3 was prepared by removing coarse particles having a particle diameter of 6 ⁇ m or more and a specific surface area of 4.8 m 2 / g from a fused spherical silica having a diameter of 105 ⁇ m or more with a sieve.
  • the comparative sample 3 of the comparative example 3 was screened to remove coarse particles having a size of 75 ⁇ m or more to prepare an example sample 19.
  • Sample 3 of Comparative Example 3 of Comparative Example 3 was charged into a powder mixer of 100 parts by weight, and while stirring the powder, 0.06 parts by weight of hexamethyldisilazane was sprayed to treat the powder.
  • the treated powder was removed with a sieve to remove coarse particles of 75 ⁇ m or more, thereby preparing Example Sample 20.
  • Sample 3 of Comparative Example 3 of Comparative Example 3 was charged into a powder mixer of 100 parts by weight, and while the powder was being stirred, 0.06 parts by weight of hexamethyldisilazane was atomized to treat the powder. .
  • the treated powder was removed with a sieve to remove coarse particles of 45; u or more to prepare Example Sample 21.
  • Example sample 3 of Comparative Example 3 of Comparative Example 3 was charged into a powder mixer of 100 parts by weight, and while the powder was being stirred, 0.06 parts by weight of hexamethyldisilazane was atomized to treat the powder. . The powder after treatment is removed with a sieve to remove coarse particles of 20 ⁇ or more. Example sample 22 was produced.
  • Sample 4 of Comparative Example was prepared by removing coarse particles of at least 105 ⁇ m from fused spherical silica having an average particle size of 25 ⁇ m and a specific surface area of 1.8 m 2 / g using a sieve.
  • Comparative Sample 4 of Comparative Example 4 was removed with a sieve to remove coarse particles of 75 ⁇ m or more to prepare Example Sample 23.
  • Comparative Example Sample 3 of Comparative Example 3 was charged into a powder mixer of 100 parts by weight, and while the powder was being stirred, 0.02 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles of 75 ⁇ m or more, thereby preparing Example Sample 24.
  • Tables 1 and 2 list various physical properties, basic substance treatments, and particle size cuts of the above Examples and Comparative Examples.
  • Admafin S-1 C2 was used as a reference. 20 parts by weight of cresol novolak type epoxy resin having a softening point of 70 ° C, 20 parts by weight of phenolic phenol resin having a softening point of 80 ° C, 0.2 parts by weight of triphenylphosphine, KBM403, 0. After mixing 4 parts by weight and Adomafine SO-C2, 60 parts by weight, the mixture was placed in a R60 lab blast mill manufactured by Toyo Seiki Co., Ltd., and rotated at 100 rpm and temperature at 100 ° C. Mix for 15 minutes under the above conditions and measure the minimum torque.
  • Relative minimum torque (minimum torque of test powder sample / minimum torque of S O—C 2) X100
  • Example 23 sample 38 parts by weight
  • Example 19 samples 16 parts by weight 46
  • Example 7 sample 5.5 parts by weight
  • Example 24 samples 38 parts by weight
  • Example 20 sample 16 parts by weight 31
  • Example 22 samples 42 parts by weight
  • Example 3 sample 3 parts by weight
  • Example 22 samples 42 parts by weight 63
  • Example 3 sample 3 parts by weight
  • Example 3 sample 3 parts by weight
  • Example 22 samples 42 parts by weight
  • Example 3 sample 3 parts by weight
  • Example 22 sample 42 parts by weight 58
  • Example 3 sample 3 parts by weight
  • Example 22 samples 42 parts by weight 67
  • Example 3 sample 3 parts by weight
  • Example 22 samples 42 parts by weight 65
  • Example 3 sample 3 parts by weight
  • Example 4 sample 3 parts by weight
  • Example 5 sample 3 parts by weight
  • Example 12 sample 57 parts by weight
  • Example 1 sample 0.5 parts by weight
  • Example 7 samples 5.5 parts by weight, good dispersion 0 pieces
  • Example 1 sample 0.5 parts by weight
  • Example 2 Sample 3 parts by weight, good dispersion 2
  • Examples 22 samples 42 parts by weight
  • Example 9 samples 15 parts by weight
  • Example 3 samples 3 parts by weight, good dispersion 3 pieces
  • Example 22 samples 42 parts by weight Good adhesion, gap at interface Sieve opening
  • Example 13 samples 15 parts by weight
  • Example 3 sample 3 parts by weight, good dispersion 3 pieces
  • Example 22 samples 42 parts by weight Good adhesion, gap at interface Sieve opening
  • Example 3 samples 3 parts by weight, good dispersion 3 pieces
  • Example 22 samples 42 parts by weight Good adhesion, gap at interface Sieve opening
  • Example 15 samples 15 parts by weight
  • Example 3 samples 3 parts by weight, good dispersion 2 pieces
  • Example 22 samples 42 parts by weight Good adhesion, gap at interface Sieve opening
  • Example 3 samples 3 parts by weight, good dispersion 3 pieces
  • Example 22 samples 42 parts by weight Good adhesion, gap at interface Sieve opening
  • Example 22 samples 42 parts by weight Good adhesion, gap at interface Sieve opening
  • Example 18 sample 15 parts by weight
  • Example 3 samples 3 parts by weight, good dispersion 3 pieces
  • Example 10 samples 57 parts by weight Good adhesion, gap at interface ⁇ ⁇ Opening
  • Example 4 samples 3 Parts by weight
  • Example 11 sample 57 parts by weight Good adhesion, gap at interface Sieve opening
  • Example: 12 samples 57 parts by weight Good adhesion, gaps at interface Sieve opening Example
  • spherical silica (Admafine S ⁇ 6200) with an average particle size of 2 ⁇ , a specific surface area of 2 m 2 / g and a maximum particle size of 20 ⁇ , an average particle size of 0.5 ⁇ 16 parts by weight of spherical silica (Admafine S ⁇ 2200) with a surface area of 5.5 m 2 / g and a maximum particle size of 20 ⁇ , average particle size of 0.2 ⁇ ⁇ specific surface area of 16 m 2 Z g, 4 parts by weight of spherical silica having a maximum particle size of 20 (Admafine SE 1200) is charged into a mixer, and while stirring the powder, 0.02 parts by weight of hexamethylsilazane is sprayed.
  • spherical silica (Admafine SE6000) having an average particle size of 2 ⁇ and specific surface area of Sn ⁇ Zg, spherical silica having an average particle size of 0.5 ⁇ and a specific surface area of 5.5 (Admafine) 16 parts by weight of SO—E 2), 4 parts by weight of spherical silica (Admafine SO—E 1) having an average particle size of 0.2 ⁇ m and a specific surface area of 16 m 2 Zg, ZX—1059 (Epoxy resin), 40 parts by weight of KB M403 (epoxysilane coupling ij), and 0.3 parts by weight of 2 PHZ (curing catalyst) were added and mixed.
  • the obtained resin composition was dispersed with a three-roll mill to obtain a liquid epoxy cured product. 30 of this resin composition. When the viscosity was measured at C and a shear rate of 23 S-1, a value of 3100 cPs was obtained.
  • epoxy resin EOCN 1020-65 (manufactured by Nippon Kayaku, epoxy equivalent: 200), phenol curing agent: DL-92 (manufactured by Meiwa Kasei, phenol equivalent: 110), Carnabattus ( Examples 41 to 43 and comparison of silica fillers consisting of KBMBM403 (epoxy silane coupling agent manufactured by Shin-Etsu Chemical) and triphenylphosphine (abbreviated as TPP manufactured by Hiko Kogyo) Example 12 was prepared.
  • KBMBM403 epoxy silane coupling agent manufactured by Shin-Etsu Chemical
  • TPP triphenylphosphine
  • bending strength is 1 ⁇ 5 ° C, 6.9 MPa, molding time 2 min. After bending at 180 ° C for 4 hours, the bending strength at room temperature was measured.
  • the epoxy resin composition of the present invention has low melt viscosity, excellent bending strength, and low water content.
  • Admafine S 0—25 R (trade name) treated with hexamethyldisilazane (HMD S) and ⁇ -glycidoxyprobitritrimethoxysilane (silane-based printing agent, trade name ⁇ ⁇ —403)
  • HMD S hexamethyldisilazane
  • ⁇ -glycidoxyprobitritrimethoxysilane silane-based printing agent, trade name ⁇ ⁇ —403
  • admafine SO-25R
  • KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 44 and Comparative Examples 13 and 14 were blended in Epicoat 8288 EL (manufactured by Japan Epoxy Resins Co., Ltd.) and the viscosity was measured. The results are shown in FIG. As can be seen from FIG. 1, the viscosity of the powder / resin mixture according to the invention was significantly reduced.
  • the evaluation method of the treated powder is as follows.
  • Admafine S O—25R was used as a reference. 20 parts by weight of cresol novolak type epoxy resin having a softening point of 70 ° C, 20 parts by weight of phenol monovolonolak resin having a softening point of 80 ° C, 0.2 parts by weight of triphenylphosphine, and admafine S 0 — After mixing 60 parts by weight of 25R, put it into a R60 lab blast mill manufactured by Toyo Seiki Co., Ltd., and mix for 15 minutes at 100 rpm and 100 ° C. And measure the lowest Tonolek.
  • the spiral flow value of the epoxy resin composition mixed with the Laboplus and the mill was measured using a transfer molding machine equipped with a die for measuring Spirano Leaf opening.
  • the transfer molding conditions were a mold temperature of 180 ° C., an injection pressure of 75 kg / cm 2 , and a dwell time of 160 seconds. -The value of Spiral 'flow was also taken as S0-25R.
  • Example 4 7 100 parts by weight of molten spherical silica having an average particle size of about 5 ⁇ was charged into a Henschel type mixer, and was replaced with nitrogen. The powder was agitated for 10 minutes while mixing 0.05 parts by weight of hexamethyl'disilazane. K BM-403 (Epoxysilane 'manufactured by Shin-Etsu Chemical Co., Ltd.) 1. The powder was stirred for 10 minutes while spraying 5 parts by weight to obtain a treated powder.
  • Table 9 summarizes the relative minimum torque and the relative spiral flow of the treated powders of Examples 45 to 49 and Comparative Examples 14 to 18. Table 9 Relative minimum torque and relative spiral flow of treated powder
  • Example 50 The test methods of Example 50 and Comparative Example 19 are as follows.
  • Table 10 shows the ratio of the torque and the ⁇ minimum torque after 15 minutes.
  • Adomafine silica S O—25 R 100 parts by weight having an average particle size of about 100 parts by weight was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of hexamethyldisilazane '. The powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
  • KBM-403 Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • Adomafine silica S O—25 R 100 parts by weight having an average particle size of about 0.5 ⁇ was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.01 part by weight of hexamethyldisilazane. ⁇ ⁇ ⁇ ⁇ 403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) The powder was stirred for 10 minutes while spraying 2 parts by weight to obtain a treated powder.
  • Adomafine silica with an average particle size of about 0.5 ⁇ SO- 25 R 100 A part by weight was put into a Henschel type mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.5 parts by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
  • KBM-403 Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • Admafine silica S O—25 R 100 parts by weight, having an average particle size of about 0.5 m, was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
  • KBM-403 Epoxysilane manufactured by Shin-Etsu Chemical
  • Adomafine silica S O—25 R 100 parts by weight having an average particle size of about 0.5 m was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 4 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
  • KBM-403 Epoxysilane manufactured by Shin-Etsu Chemical
  • Adomafine silica S O—25 R 100 parts by weight having an average particle size of about 0.5 ⁇ was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of hexamethylsilazane. The powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-573 (Shin-Etsu Chemical Aminoshiran) to obtain a treated powder.
  • Admafine silica S O—25 R 100 parts by weight with an average particle size of about 0.5 ⁇ was charged into a Henschel-type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of hexamethyl'disilazane. The powder was stirred for 10 minutes while spraying 2 parts by weight of KB M-5103 (acrylsilane 'manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
  • KB M-5103 acrylsilane 'manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 5 8 Adomafine silica SO—25R, 100 parts by weight, with an average particle size of about 0.5 ⁇ m, was charged into a Henschel-type powder mixer and replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of silane. The mixture was heated and decompressed to completely remove the hydrochloric acid gas, and the powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder. .
  • KBM-403 Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • Adomafine silica S O—25 R 100 parts by weight with an average particle size of about 0.5 ⁇ was charged into a Henschel-type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of trimethylmethoxysilane. The powder was stirred for 10 minutes while spraying 2 parts by weight of ⁇ —403 (Epoxysilane 'manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
  • Adomafine silica S O—32 R 100 parts by weight, with an average particle size of about 1.5 zm, was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.05 parts by weight of hexamethyldisilazane '. The powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
  • KBM-403 Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • the admafine silica S 0 — C 1, 100 parts by weight having an average particle size of about 0.2 im was charged into a Henschel type powder mixer, and was replaced with nitrogen.
  • the powder was stirred for 10 minutes while spraying 0.5 parts by weight of hexamethyldisilazane.
  • the powder was stirred for 10 minutes while spraying 4 parts by weight of KBM-403 (Epoxysilane 'manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
  • Admafinal 'Mina AO-502 100 parts by weight having an average particle size of about 0.7 zm was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while stirring 0.1 g of Hexamethyldisilazane 'in 0.1 part by weight. The powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
  • KBM-403 Hydrosilane manufactured by Shin-Etsu Chemical
  • Adomafine silica S O—25 R 100 parts by weight, with an average particle size of about 0.5 ⁇ m, was charged into a Henschel type powder mixer and replaced with nitrogen. The powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
  • KBM-403 Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • adomafine silica S O—25 R with an average particle size of about 0 100 parts by weight of adomafine silica S O—25 R with an average particle size of about 0 was charged into a Henschel-type mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying a mixture of 2 parts by weight of hydrolyzed KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) and 2 parts by weight of IPA to obtain a treated powder.
  • KBM-403 Hydrolyzed KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) and 2 parts by weight of IPA
  • adomafine silica S O—32 R having an average particle size of about 1.5 / z m
  • the powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
  • Admafine alumina AO-502 100 parts by weight having an average particle size of about 0 was charged into a Henschel type ats powder mill, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 2 parts by weight of K BM-403 (Epoxysilane manufactured by Shin-Etsu Kagaku) to obtain a treated powder.
  • K BM-403 Epoxysilane manufactured by Shin-Etsu Kagaku
  • admaffine alumina AO-509 having an average particle size of about 10 ⁇ m was charged into a Henschel type powder mixer and was purged with nitrogen. The powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
  • KBM-403 Epoxysilane manufactured by Shin-Etsu Chemical
  • Table 11 summarizes the relative minimum torque and relative spiral flow of the treated powder.
  • Example 5 60 parts by weight of the treated powder obtained in Example 5, 20 parts by weight of a cresol no-polak type epoxy resin having a softening point of 70 ° C., and 20 parts by weight of a phenol novolak resin having a softening point of 80 ° C. , Trif: 0.22 parts by weight of n-nylphosphine Thereafter, the mixture was placed in a R60 type lab blast mill manufactured by Toyo Seiki and mixed for 15 minutes at a rotation speed of 100 rpm and a temperature of 100 ° C. to obtain a cured composition. The cured composition was poured into a mold and cured at 190 ° C. for 6 hours to prepare a sample piece for evaluation.
  • Comparative Example 20 Treated powder obtained in 20 60 parts by weight, cresol novolak type epoxy resin having a softening point of 70 ° C. 20 parts by weight, phenol novolac resin having a softening point of 80 ° C. 20 parts by weight And 0.2% by weight of triphenylphosphine, and then mixed in a R60 lab blast mill manufactured by Toyo Seiki Co., Ltd. at a rotational speed of 100 rpm and a temperature of 100 ° C. After mixing for a minute, a cured composition was obtained. The cured composition was poured into a mold and cured at 190 ° C for 6 hours to prepare a sample piece for evaluation.
  • Table 4 summarizes the evaluation results of Example 65 and Comparative Example 27.
  • Table 12 Cured physical properties
  • the finely basic siliceous powder according to the present invention has (1) no agglomeration due to storage, (2) coarse particles of micro order or more can be easily removed by airflow classification and sieve classification, and (3) epoxy resin. Efficiently adsorbs and adheres the silane coupling agent when mixed. (4) Low viscosity epoxy resin compound and high fluidity. (5) Excellent physical properties such as solder reflow resistance of the cured product. The effect is that
  • the finely basic silica powder of the present invention when mixed with an epoxy resin, it has a lower viscosity than conventional surface-treated powders or untreated powders. As a result, the obtained The epoxy resin composition has high fluidity and enables high filling of metal oxide powder. Due to the high filling of the metal oxide powder, moisture resistance, hardness, thermal expansion, polymerization shrinkage, etc. are improved, and it becomes an excellent sealing material.
  • finely basic silica powder of the present invention can be used as a sealing material for semiconductor devices and liquid crystal display devices by being mixed with an epoxy resin or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Silicon Compounds (AREA)

Abstract

Metal oxide powder comprising fine basic silica powder comprising silica powder having its surface treated with a basic substance or basic mixture, which metal oxide powder, when mixed with a resin, inhibits coagulation thereof and can be uniformly dispersed, thereby suppressing viscosity increase; a process for producing the same; and a resin composition of low expansibility which excels in resistances to moisture absorption and solder cracking.

Description

明 細 書  Specification
微塩基性シ リ カ粉体、 その製造方法及び樹脂組成物 Finely basic silica powder, method for producing the same, and resin composition
技術分野 Technical field
本発明は、輸送、分級等の粉体操作が容易で、樹脂に混合された際に、 凝集を抑制し、 均一に分散され、 粘度上昇が防止されるシリ カ粉体及び その製造方法に関する。 また、 本発明は該シリ カ粉体と有機樹脂からな り、 耐吸湿性、 耐はんだクラック性に優れ、 低膨張性の樹脂組成物に関 する。 背景技術  TECHNICAL FIELD The present invention relates to a silica powder which facilitates powder operations such as transportation and classification, suppresses agglomeration when mixed with a resin, is uniformly dispersed, and prevents an increase in viscosity, and a method for producing the same. The present invention also relates to a resin composition comprising the silica powder and an organic resin, having excellent moisture absorption resistance and solder crack resistance, and having a low expansion property. Background art
半導体装置などの電子部品の封止方法と して、 セラミ ックスや、 熱硬 化性樹脂を用いる方法が、 従来よ り行われている。 なかでも、 エポキシ 樹脂系封止材による封止が、 経済性及び性能のパランスよ り好ましく広 く行われている。  2. Description of the Related Art As a method for sealing electronic components such as semiconductor devices, a method using ceramics or a thermosetting resin has been conventionally used. Above all, sealing with an epoxy resin-based sealing material has been carried out more preferably and more widely than economical and performance balance.
近年の半導体装置の高機能化、 高集積化等に伴い、 従来の主流であつ たボンディ ングワイヤーを用いる方法に変わって、 バンプ (突起電極) によ り半導体素子と基板を電気的に接続する方法、 いわゆるフリ ップチ ップを用いた表面実装が増加している。 このフリ ップチップ実装方式の 半導体装置では、 ヒー トサイクル試験でバンプの接合部等にクラック等 の欠陥が発生する場合がある。 その為これを防止するために、 半導体素 子と基板の隙間及びバンプの周囲等を液状のエポキシ樹脂系封止材で充 填し硬化することにより改良する方法 (アンダーフィル') が行われてい る。  As semiconductor devices become more sophisticated and highly integrated in recent years, instead of the conventional method using bonding wires, semiconductor elements and substrates are electrically connected by bumps (protruding electrodes). Methods, so-called flip-chip surface mounting are increasing. In the semiconductor device of the flip chip mounting method, a defect such as a crack may occur at a junction of bumps or the like in a heat cycle test. Therefore, in order to prevent this, a method of improving the gap between the semiconductor element and the substrate, the periphery of the bumps, and the like by filling and curing the liquid epoxy resin-based sealing material (underfill ') has been performed. You.
フ リ ップチップ実装方式等の半導体装置を封止する封止材は、 耐湿信 頼性、 耐電気腐食性、 耐ヒー トサイクル性等の特性が要求されるが、 そ の為に、 封止材中にシリ力等の無機充填材を配合することによ り吸湿率 を低下させるとともに熱膨張率を低下させることによ り耐湿信頼性ゃ耐 ヒー トサイ クル性を向上させる方法が行われている。 A sealing material for sealing a semiconductor device such as a flip-chip mounting method is required to have characteristics such as moisture resistance, electric corrosion resistance, and heat cycle resistance. Moisture absorption by mixing inorganic fillers such as silicide A method has been implemented to improve the moisture resistance reliability and the heat cycle resistance by reducing the thermal expansion coefficient and the thermal expansion coefficient.
シリ 力等の無機充填材の配合量を増加させる程、 封止材の吸湿率の低 下と熱膨張係数の低下が可能となり、 耐湿信頼性ゃ耐ヒー トサイクル性 を向上できるが、 一方無機充填材の配合量を増加させる程、 封止材の粘 度が増加し、 流動性が著しく低下する傾向があり問題となる。 特に、 フ リ ップチップ実装においては、 数十 μ. m程度の半導体素子と基板の隙間 に封止材を充填する必要があるため、 封止材には高い浸入充填性が要求 される。 よって、 このような封止材には、 無機充填材の充填率を高く し てもなるベく粘度が高くならずに、 高い侵入充填性を得る為に、 無機充 填材と して球状で比表面積の小さい無機粒子が要求されている。  As the amount of the inorganic filler such as silicide is increased, the moisture absorption rate of the sealing material can be reduced and the thermal expansion coefficient can be reduced, and the moisture reliability and heat cycle resistance can be improved. As the compounding amount of the filler increases, the viscosity of the sealing material increases, and the fluidity tends to decrease significantly, which is a problem. In particular, in the case of flip-chip mounting, it is necessary to fill the gap between the semiconductor element and the substrate of about several tens of μm with the sealing material, so that the sealing material is required to have a high penetration and filling property. Therefore, such a sealing material does not have a high viscosity even if the filling rate of the inorganic filler is increased. Inorganic particles having a small specific surface area are required.
係る観点から、 特開昭 5 8 - 1 4 5 6 1 3号公報には、 シリ力粒子を 火炎中で溶融する方法が開示されている。 特開昭 6 0— 2 5 5 6 0 2号 公報には、 酸素を含む雰囲気内においてパーナによ り化学炎を形成し、 この化学炎中に金属粉末を粉塵雲を形成しうる量投入して燃焼させて、 酸化物超微粒子を合成する製造方法の開示がある。 また、 特開平 1 一 2 4 0 0 4号公報には、 酸化物を構成する金属粉末をキヤ リ アガスととも に反応容器内へ供給する第 1工程と、 該反応容器内で発火させて火炎を 形成し、 該金属粉末を燃焼させ酸化物の粉末を合成する第 2工程とから なる酸化物粉末の製造方法において、 第 1工程は、 小粒径の金属酸化物 と上記金属粉末との混合物を供給し、 第 2工程は、 上記金属酸化物を核 と して上記金属粉末の燃焼によ り合成される酸化物によ り粒成長させる ことを特徴とする酸化物粉末の製造方法の開示がある。  From this point of view, Japanese Patent Application Laid-Open No. 58-145613 discloses a method of melting silicide particles in a flame. Japanese Patent Laid-Open Publication No. Sho 60-2555602 discloses that a chemical flame is formed by a wrench in an atmosphere containing oxygen, and metal powder is introduced into the chemical flame in an amount capable of forming a dust cloud. There is a disclosure of a production method for synthesizing ultrafine oxide particles by burning the particles. Also, Japanese Patent Application Laid-Open No. Hei 1-24404 discloses a first step of supplying metal powder constituting an oxide together with a carrier gas into a reaction vessel, and igniting a flame in the reaction vessel. Forming an oxide powder by burning the metal powder to synthesize an oxide powder, wherein the first step comprises mixing a metal oxide having a small particle diameter with the metal powder. A method for producing an oxide powder, characterized in that, in the second step, particles are grown using an oxide synthesized by burning the metal powder with the metal oxide as a nucleus. There is.
一方、 シリ力粒子を表面処理して封止材用充填材に使用する試みがな されており、 例えば、 特開 2 0 0 1— 1 8 9 4 0 7号公報ゃ特開 2 0 0 2 - 1 1 4 8 3 7号公報には、 無機質充填剤粒子表面をシランカップリ ング剤 (アルコキシ基を 2個以上含むものが好適) で表面処理し、 成形 性に優れた半導体封止用エポキシ樹脂組成物を製造することが開示され ている。 しかしながら、 上記の技術では、 樹脂中で無機質充填剤粒子が凝集し やすく、 不均一で、 粘度が高く、 その結果、 流動性が低く、 更なる成形 性向上を図ることができないという問題があった。 発明の開示 On the other hand, attempts have been made to use surface-treated silicic acid particles as a filler for a sealing material. For example, Japanese Patent Application Laid-Open No. 2001-189497 and Japanese Patent Application Laid-Open No. Japanese Patent Application Laid-Open No. 11-48737 discloses an epoxy resin for semiconductor encapsulation that is excellent in moldability by treating the surface of the inorganic filler particles with a silane coupling agent (preferably containing at least two alkoxy groups). It is disclosed to make the composition. However, the above technique has a problem that the inorganic filler particles easily aggregate in the resin, are non-uniform, have a high viscosity, and as a result, have low fluidity and cannot be further improved in moldability. . Disclosure of the invention
本発明は、 樹脂に混合された際に、 凝集を抑制し、 均一に分散され、 粘度上昇が防止される微塩基性シ リ 力粉体及びシラン力ップリ ング剤 The present invention relates to a finely basic silica powder and a silane printing agent that suppress aggregation, are uniformly dispersed, and prevent viscosity increase when mixed with a resin.
2次表面処理されたシリ カ粉体、 並びにその製造方法に関する。 また、 本発明は該微塩基性シ リ カ粉体と有機樹脂からなり、 耐吸湿性、 耐ハ ンダクラック性に優れ、 低膨張性の樹脂組成物に関する。 The present invention relates to a silica powder subjected to a secondary surface treatment, and a method for producing the same. In addition, the present invention relates to a resin composition comprising the microbasic silica powder and an organic resin, having excellent moisture absorption resistance and solder crack resistance, and having a low expansion property.
又、無機粒子含有樹脂複合材料において、無機粒子とマ ト リ ックスポリ マーとの間を強固な結合で結ぶことは重要'である。粒子の表面を改質し てマ ト リ ックスと結合を強くする方法と して、シランカ ツプリ ング剤で 処理するのは一般的である。しかし、金属を燃焼して得られる金属酸化物 粉体であるア ドマファイン (商標名) のような微粒子の場合は処理によ つて凝集が起こ りやすく、樹脂中に分散しにく くなり、コンパンドの成形 時の粘度が高く なる問題点がある。例えば、ェポキシシラン処理シリカを エポキシ樹脂に配合する場合は粘度が非常に高くなることがその典型で ある。  It is also important that in the resin composite material containing inorganic particles, the inorganic particles and the matrix polymer be connected by a strong bond. As a method of modifying the surface of the particles to strengthen the bonding with the matrix, it is common to treat the particles with a silane coupling agent. However, in the case of fine particles such as Admafine (trade name), which is a metal oxide powder obtained by burning metal, coagulation tends to occur due to the treatment, and it becomes difficult to disperse in the resin. There is a problem that the viscosity at the time of molding increases. For example, when epoxysilane-treated silica is blended with an epoxy resin, the viscosity typically becomes very high.
如何にコンパンドの粘度を下げ、流動性を上げることは無機フィ ラー を大量に配合しなければならない半導体 E M C ( E p o X i M o l d i n g c o m p a u n d:)射止剤等のアプリケ-ショ ンにおいて非常に 重要である。  It is very important to reduce the viscosity of the compound and increase the fluidity in applications such as semiconductor EMC (EpoXiMoldingcompaund :), which requires a large amount of inorganic filler. is there.
上記課題を解決するため、 第 1に本発明は、 シリカ粉体の表面が塩基 性物質又は塩基性混合物で処理された微塩基性シリカ粉体の発明である。 ここで、 該シリ力粉体又は微塩基性シリ力粉体は所定値以上の粒径の粗 粒がカッ トされていることが好ましい。 この塩基性シリ カ粉体は、 適当 な親水性を有し、 優れた流動性、 分散性を有する。 この塩基性シリカ粉 体をエポキシ樹脂組成物等に配合した場合、 組成物の粘度が低く、 硬化 後の物性も優れている。 In order to solve the above problems, first, the present invention is an invention of a finely basic silica powder in which the surface of the silica powder is treated with a basic substance or a basic mixture. Here, it is preferable that the coarse powder or fine basic powder has a coarse particle having a particle diameter of a predetermined value or more. This basic silica powder has appropriate hydrophilicity and excellent fluidity and dispersibility. When this basic silica powder is blended with an epoxy resin composition, the viscosity of the composition is low and Later physical properties are also excellent.
このよ うに、 シリ力粉体を少量の塩基性物質又は塩基性混合物で処理 すると ともに、 粗粒力ッ トを行う ことによって、 粉体自身の流動性が飛 躍的に向上され、 輸送、 分級等の操作が容易になる。 しかも、 製造装置 への付着が極めて少なく、 連続生産が可能になった。 本発明の塩基性シ リカ粉体は微塩基性であるため、 例えば、 エポキシ樹脂中に配合される シランカップリ ング剤を効率良く吸着、 固着し、 低粘度、 高流動性の樹 脂コンパウンドが得られる。 又、 シランカップリ ング剤を固着すること によって、 フィラー表面と樹脂の密着性が良く、 耐はんだリ フロー性、 低吸湿性等の優れた物性が得られる。  In this way, by treating the sily powder with a small amount of a basic substance or a basic mixture, and by performing coarse-graining, the fluidity of the powder itself is dramatically improved, and transport and classification are performed. And other operations are facilitated. Moreover, adhesion to the production equipment was extremely low, and continuous production was made possible. Since the basic silica powder of the present invention is slightly basic, for example, a silane coupling agent incorporated in an epoxy resin is efficiently adsorbed and fixed, and a resin compound having low viscosity and high fluidity is obtained. Can be In addition, by fixing the silane coupling agent, the adhesive property between the filler surface and the resin is good, and excellent physical properties such as solder reflow resistance and low moisture absorption can be obtained.
本発明において、 塩基性物質又は塩基性混合物と しては、 1 a t mの 時の沸点が 1 5 0 °C以下であるものがガス状で処理できるので好ましレ、。 但し、 沸点が 1 5 0 °Cを越えるものでもシリ力粉体との混合処理を行う ことが出来る。  In the present invention, as the basic substance or the basic mixture, those having a boiling point of 150 ° C. or less at 1 atm can be processed in a gaseous state, and thus are preferable. However, even those having a boiling point exceeding 150 ° C can be mixed with the sily powder.
塩基性物質又は塩基性混合物と しては、 アンモニア、 有機ァミ ン、 シ' ラザン類、 窒素を含む環状化合物又はその溶液、 アミ ン系シランカップ リ ング剤又はその溶液等が挙げられる。 これら塩基性物質の中で、 シラ ザン類が好ましく例示され、 特に、 へキサメチルジシラザン (H M D S ) が好ましい。  Examples of the basic substance or the basic mixture include ammonia, organic amines, silanes, nitrogen-containing cyclic compounds or solutions thereof, and amine-based silane coupling agents or solutions thereof. Among these basic substances, silazanes are preferably exemplified, and hexamethyldisilazane (HMDS) is particularly preferred.
シリ力粉体をシラザン類で処理した場合において、 処理されたシリ力 粉体の抽出水の P H値が、用いられる純水の P Hと比べて少なく とも 0 . 1以上高いことが好ましい。 これによ り, シリカ粉体が適量に塩基性化 されたことが確認できる。 ここで、 粉体抽出水の P H測定方法は次の通 りである。 粉体を 3 . 5 g秤量しプラスチック製容器に入れる。 7 0 m 1 の脱イオン水を入れて、 振動機で 3 0分間振動させる。 遠心分離機で 固液分離させて、 上澄みの水の P Hを測定する。  When the sily powder is treated with silazanes, it is preferable that the PH value of the extracted water of the treated sily powder is higher by at least 0.1 or more than the PH of the pure water used. This confirms that the silica powder has been basified to an appropriate amount. Here, the method of measuring the PH of the powdered extraction water is as follows. Weigh 3.5 g of powder and place in plastic container. Add 70 ml of deionized water and shake with a vibrator for 30 minutes. Separate the solid and liquid with a centrifuge and measure the pH of the supernatant water.
本発明において、 シリカ粉体の製造方法は限定されない。 例えば、 金 属シリ コンを燃焼して得られるシリ力粉体、 シリ力破砕物を溶融して得 られる溶融シリ力粉体、 シリ力破砕物等が例示される。 金属シリ コンを燃焼して得られる球状シリ力粉体とは、 シリ コン金属 粉末、 シリ コンとアルミニウム、 マグネシゥム、 ジル'コニゥム、 チタン 等の合金粉末、 その他ムライ ト組成に調合したアルミニウム粉末とシリ コ ン粉末、 スピネル'組成に調合したマグネシゥム粉末とアル'ミニゥム粉 末、 コージエライ ト組成に調合したアルミニウム粉末、 マグネシウム粉 末、 シ'リ コン粉末等の金属粉末混合物を、 キャ リ アガスとともに酸素を 含む雰囲気中で化学炎を形成し、 この化学炎中に目的とするシリカ ( S i o 2 ) を主成分とする金属酸化物の超微粒子を得るものである。 本発 明では、 金属シリ コンを燃焼して得るシリ力を主成分とする金属酸化物 粉体が好ましい。 また、 前記金属を燃焼してうるシリカ粉体は、 平均粒 子径が 0 . 0 1 μ m以上の真球状粒子であるものが好ましく、 平均粒子 径が 0 . 0 1 μ mから 2 0 mの真球状粒子であるものがより好ましく、 平均粒子径が 0 . 2 ;u mから 2 0 μ mの真球状粒子であるものがよ り好 ましい。 In the present invention, the method for producing the silica powder is not limited. For example, powdered silicon powder obtained by burning metal silicon, powdered powder obtained by melting powdered silicon powder, powdered silicon powder, and the like are exemplified. Spherical silicon powder obtained by burning metal silicon includes silicon metal powder, silicon and alloy powder such as aluminum, magnesium, zirconium, and titanium, and other aluminum powder mixed with mullite composition and aluminum powder. A mixture of metal powders such as magnesium powder and aluminum powder mixed with a silica powder and a spinel composition, aluminum powder, magnesium powder and silicon powder mixed with a cordierite composition, and oxygen together with a carrier gas. A chemical flame is formed in an atmosphere containing the gas, and ultrafine particles of a metal oxide containing silica (Sio 2 ) as a main component are obtained in the chemical flame. In the present invention, a metal oxide powder whose main component is silicon power obtained by burning metal silicon is preferable. The silica powder obtained by burning the metal is preferably spherical particles having an average particle diameter of 0.01 μm or more, and has an average particle diameter of 0.01 μm to 20 μm. Particles having a mean particle diameter of 0.2 μm to 20 μm are more preferable.
又、 溶融シリ コンは、 シリ カ粒子等を火炎中で溶融する方法で製造さ れ、 その製造方法は、 例えば上記特開昭 5 8— 1 4 5 6 1 3号公報等に 開示されている。  The molten silicon is produced by a method in which silica particles and the like are melted in a flame, and the production method is disclosed in, for example, the above-mentioned Japanese Patent Application Laid-Open No. 58-145613. .
本発明で言うシラザン類は分子中に S i 一 N結合を有する珪素化合物 で、 オルガノシラザンと称することもあり、 例えば、 へキサメチルジシ ラザン、へキサフエ二ルジシラザン、ジメチルァミ ノ ト リ メチルシラン、 ト リ シラザン、 シクロ ト リ シラザン、 1 , 1 , 3 , 3, 5 , 5 —へキサ メテルシク ロ ト リ シラザン、 などのシラサン類から選択される化合物又 はその組み合わせである。 この中で、 へキサメチルジシラザン (H M D S ) がシリカの凝集を抑制し、 酸性であるシリカを塩基性に傾け、 有機 物に対する親和性を向上させ、 シランカツプリ ング剤などの付着の均一 性を向上させて、 エポキシ樹脂に対する安定性を向上させるなどの点で 好ましい。  The silazane referred to in the present invention is a silicon compound having a Si 1 N bond in a molecule, and may be referred to as an organosilazane. It is a compound selected from silazanes such as cyclotrisilazane, 1,1,3,3,5,5, -hexamethercyclotrisilazane, or a combination thereof. Among them, hexamethyldisilazane (HMDS) suppresses silica aggregation, tilts acidic silica to basicity, improves affinity for organic substances, and improves the uniformity of adhesion of silane coupling agents and the like. This is preferable in that the stability to the epoxy resin is improved.
塩基性物質であるアミ ン系シラン力ップリ ング剤は下記一般式  The amine-based silane printing agent, which is a basic substance, has the following general formula:
( R i ) n ( R 2 ) ra ( R 3 ) , S 1 1 で表すもので、 n + m+ 1 は 4である。 は一級、 二級及び三級アミ ンの置換基で S i原子と C一 S i結合で結合されている。 R 2は炭化水 素基で S i原子と C一 S i結合で結合されている。 R 3は加水分解可能 な置換基で、 S i原子と S i -OR (Rは炭化水素基)、 S i -O COR (: Rは炭化水素基)、 S i — NHCOR (Rは炭化水素基)、 S i — NR ! R 2 (R! , R 2は炭化水素基又は水素) などの結合で結合されている。 具体的には N—フエ二ルー γ—ァミ ノプロ ビルト リ メ トキシシラン、 y ーァミ ノプロ ピルト リエトキシシラン'、 などがあげられる。 (R i) n (R 2 ) ra (R 3 ), S 1 Represented by 1, n + m + 1 is 4. Is a substituent of primary, secondary and tertiary amines and is bonded to Si atom by C-Si bond. R 2 is a hydrocarbon group bonded to the Si atom through a C-Si bond. R 3 is a hydrolyzable substituent, Si atom and S i -OR (R is a hydrocarbon group), S i -O COR (: R is a hydrocarbon group), S i — NHCOR (R is a hydrocarbon group) Motoi), S i — NR! R 2 (R! And R 2 are a hydrocarbon group or hydrogen). Specific examples include N-phenyl-γ-aminopropyl built-in methoxysilane and y-aminopropyl built-in ethoxysilane.
塩基性物質又は塩基性混合物のシリ力粉体に対する処理量は粉体表面 積 l m2当 り 0. 0 5から 5 μモル'、 好ましく は 0. 0 5力、ら 1 μモル がよい。 0. 0 5 μモル未満の場合は、 処理効果が不十分で、 5 μモル を超える場合は粉体表面が疎水性となりハンドリ ング性が逆に悪くなる。 又、 表面が疎水性であるため、 エポキシ樹脂などに対する密着性も悪く なる。 更に粉体表面の水酸基がなくなるため、 更なるシランカップリ ン グ剤などの処理が不可能となる。 シリカの場合は I Rスぺク トル上 3 7 4 0 c m-1付近の水酸基の吸収ピークが完全に消失しない程度の処理 は最も望ましい。 The amount of the basic substance or the basic mixture to be applied to the powdery sily powder is from 0.05 to 5 μmol / m 2 of the powder surface area, preferably from 0.05 to 1 μmol. If there is less than 0. 0 5 mu mol, treatment effect is insufficient, the powder surface when it exceeds 5 mu mol deteriorates conversely Handori packaging property becomes hydrophobic. In addition, since the surface is hydrophobic, adhesion to an epoxy resin or the like also deteriorates. Furthermore, since the hydroxyl groups on the powder surface are eliminated, further treatment with a silane coupling agent or the like becomes impossible. In the case of silica, it is most desirable that the treatment be such that the absorption peak of the hydroxyl group near 370 cm- 1 on the IR spectrum is not completely eliminated.
本発明の微塩基性シリカ粉体は、 エポキシシラン'、 アミノシラン、 ァ ク リルシラン、 チオールシラン等のシランカップリ ング剤で処理するこ とが好ましい。  The finely basic silica powder of the present invention is preferably treated with a silane coupling agent such as epoxy silane ', amino silane, acrylic silane and thiol silane.
本発明で言ぅシランカツプリ ング剤とは、 アミ ノ基、ダリ シジル基、メ ルカプト基、ウレイ ド基、ヒ ドロシ基、 アルコキシ基、 メルカプト基から 選択される活性基を有する化合物またはその組み合わせである。具体的 には、 シランカツプリ ング剤と して、 γ—ダリ シ ドキシプロ ビルト リエ トキシシラン、 β — (3, 4—エポキシシク ロへキシル) ェチルト リ メ トキシシラン等のエポキシシラン、ァミ ノプロ ピルト リエ トキシシラン、 ゥレイ ドプロ ピルト リエ トキシシラン、 Ν—フエニルァミ ノプロ ピルト リ メ トキシシラン等のァミ ノシラン、 フエニルト リ メ トキシシラン、 メ チルト リ メ トキシシラン、 ォクタデシルト リ メ トキシシラン等の疎水性 シラン化合物やメルカプトシラン等が例示される。 In the present invention, the silane coupling agent is a compound having an active group selected from an amino group, a daricidyl group, a mercapto group, a ureido group, a hydroxy group, an alkoxy group, and a mercapto group, or a combination thereof. . Specifically, silane coupling agents include epoxy silanes such as γ-dalicydoxyprobuilt ethoxysilane, β- (3,4-epoxycyclohexyl) ethyl methoxysilane, aminopropyl ethoxy silane, and perylene silane coupling agents. Hydrophobicity such as amidosilanes such as dopoxypropyl ethoxysilane and phenylaminopropyl methoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, octadecyltrimethoxysilane Examples include silane compounds and mercaptosilanes.
本発明においては、 粗粒カッ トはシリカ粉体自体に行ってもよく、 又 は塩基性物質で処理された塩基性シリ力粉体を粗粒力ッ ト してもよい。 又、 シリ 力粉体の最大粒子径以上の粒径を持つ金属粒子等の導電性粒 子が除去されていることが好ましい。  In the present invention, the coarse cut may be performed on the silica powder itself, or the basic siliceous powder treated with the basic substance may be coarse cut. Further, it is preferable that conductive particles such as metal particles having a particle size larger than the maximum particle size of the silicon powder are removed.
本発明においては、 粗粒力ッ トされたシリ力粉体又は微塩基性シリ力 粉体は、 単一の粒径分布を有するものであっても良く、 又は異なる粒径 分布を有する複数の粉体の混合物であっても良い。  In the present invention, the coarse powder or the fine basic powder may have a single particle size distribution, or may have a plurality of particles having different particle size distributions. It may be a mixture of powders.
フィラーを樹脂に高充填させるために、 粒径の異なるものを適当に配 合することが有効である。 具体的には大きいフィ ラーが最密充填した時 の隙間に小さいフィ ラーを順次充填していく考え方が一般的で、 例えば In order to highly fill the resin with the filler, it is effective to appropriately mix resins having different particle sizes. Specifically, the general idea is to sequentially fill small gaps with gaps when large fillers are closest packed.
H o r s i e 1 dモデルがその一例である。 又、 実際の粉体を最密充填 なるように配合するための計算法も知られている。 しかし、 未処理の粉 体、 或いは従来知られている方法で処理された粉体に対して、 上記最密 充填しても未だ十分な低粘度が達成できない。 本発明の方法で処理した シリカ粉体は、 塩基性物質を併用することによって、 従来のカップリ ン グ剤処理よ りはるかに処理が均一で、樹脂に対する親和性も格段に高い。 従って、本発明のフィラーを樹脂に配合すると、粘度が非常に低くなり、 上記最密充填の方法で異なる粒径の粉体を最密充填になるように配合す ると従来のフィラー技術では達成できない低粘度樹脂組成物が得られる。 本発明における平均粒径と粗粒力ッ 卜の具体例は以下のようなもので ある。 The Horsie1d model is one example. Also, a calculation method for blending the actual powder so as to be the closest packing is known. However, a sufficiently low viscosity cannot be achieved even for the untreated powder or the powder treated by a conventionally known method, even if the above-described close packing is performed. The silica powder treated by the method of the present invention, by using a basic substance in combination, is much more uniform than conventional coupling agent treatment, and has a significantly higher affinity for resin. Therefore, when the filler of the present invention is blended with a resin, the viscosity becomes extremely low. A low viscosity resin composition that cannot be obtained is obtained. Specific examples of the average particle size and the coarse particle size in the present invention are as follows.
( 1 ) 平均粒径 0 . 0 1 μから 3 0 μ、 最大粒径 7 5 μの粒径分布を有 する球状シリ力粒子の少なく とも一種類以上のシリ力粒子非混合粉又は 混合粉。  (1) At least one kind of non-mixed powder or mixed powder of spherical sily particles having a particle size distribution of average particle size from 0.01 μm to 30 μm and maximum particle size of 75 μm.
( 2 ) 平均粒径 0 . 0 1 μから 2 0 μ、 最大粒径 4 5 μの粒径分布を有 する球状シリ 力粒子の少なく とも一種類以上のシリ力粒子非混合粉又は 混合粉。  (2) At least one kind of non-mixed powder or mixed powder of spherical sily particles having a particle size distribution of average particle size from 0.01 μm to 20 μm and maximum particle size of 45 μm.
( 3 ) 平均粒径 0 . 0 1 μから 1 0 μ、 最大粒径 2 0 μの粒径分布を有 する球状シリ力粒子の少なく とも一種類以上のシリ力粒子非混合粉又は 混合粉。 (3) Particle size distribution with average particle size from 0.01 μm to 10 μm and maximum particle size of 20 μm At least one kind of non-mixed powder or mixed powder of spherical sily particles.
( 4 ) 平均粒径 0 . 0 1 μから 5 .、 最大粒径 1 0 μの粒径分布を有す る球状シリ力粒子の少なく とも一種類以上のシリ力粒子非混合粉又は混 合粉。  (4) At least one kind of non-mixed powder or mixed powder of spherical silica particles having an average particle diameter of 0.01 to 5 and a maximum particle diameter of 10 μ .
( 5 ) 平均粒径 0 . 0 1 μから 3 μ、 最大粒径 5 μの粒径分布を有する 球状シリ力粒子の少なく とも一種類以上のシリ 力粒子非混合粉又は混合 粉。  (5) At least one kind of non-mixed powder or mixed powder of spherical silica particles having a particle diameter distribution of average particle diameter of 0.01 μm to 3 μm and maximum particle diameter of 5 μm.
( 6 ) 平均粒径 0 . 0 1 μから 1 . 5 μ、 最大粒径 3 μの粒径分布を有 する球状シリ力粒子の少なく とも一種類以上のシリ力粒子非混合粉又は 混合粉。  (6) At least one kind of non-mixed powder or mixed powder of spherical silica particles having a particle size distribution of an average particle diameter of 0.01 μm to 1.5 μm and a maximum particle diameter of 3 μm.
上記のように、 粗粒カ ッ トされているこ とが、 諸物性を発揮させる上 で好ましい。  As described above, it is preferable that the material is coarsely cut in order to exhibit various physical properties.
第 2に、 本発明は、 シリカ粉体の表面を塩基性物質又は塩基性混合物 で処理する微塩基性シリ カ粉体の製造方法である。 ここで、 該シリ カ粉 体又は微塩基性シリ力粉体は所定値以上の粒径の粗粒を力ッ トする工程 を含むことが好ましい。  Secondly, the present invention is a method for producing a finely basic silica powder by treating the surface of the silica powder with a basic substance or a basic mixture. Here, it is preferable that the silica powder or the fine basic silica powder includes a step of forcing coarse particles having a particle diameter of a predetermined value or more.
塩基性物質又は塩基性混合物でシリ力粉体を処理することによ り、 シ リ力表面を酸性から塩基性に変換し、 H M D S等のシラザン類以外のシ ランカップリ ング剤の吸着、 固着を促進する。 また、 シリカのエポキシ 樹脂等の有機樹脂に対する活性を抑制しエポキシ樹脂等との反応による 粘性増加を抑制する。 これにより、 エポキシ'樹脂等の充填時に低粘度か つ高流動性を実現することが可能となる。 特に、 シリカ粉体を H M D S で処理した場合は、 処理作業が容易である上に、 シリ カが微塩基性にな ると同時に、 シリ カ表面の一部がト リ メチル化されるため、 粉体の凝集 がなくなり、 樹脂への濡れ性も向上され、 好適である。 又、 粗粒カッ ト することで、 有機樹脂等の諸物性を発揮させる上で好ましい。  By treating the sily powder with a basic substance or a basic mixture, the sieve surface is converted from acidic to basic, and the adsorption and fixation of silane coupling agents other than silazanes such as HMDS are promoted. I do. In addition, the activity of silica against organic resins such as epoxy resin is suppressed, and the increase in viscosity due to the reaction with epoxy resin is suppressed. This makes it possible to achieve low viscosity and high fluidity when filling with epoxy 'resin and the like. In particular, when the silica powder is treated with HMDS, the treatment is easy, and the silica becomes slightly basic and a part of the silica surface is trimethylated. It is suitable because the cohesion of the body is eliminated and the wettability to the resin is improved. In addition, coarse cutting is preferable in that various physical properties of the organic resin and the like are exhibited.
塩基性物質又は塩基性混合物の処理に関して、 シリ力粉体を予め処理 してもよいが、 樹脂などと混合してコンパゥン ドを造る工程中で行う こ ともできる。 例えば、 シリカ粉体をヘンシェルミキサーに投入して、 塩 基性物質又は塩基性混合物と混合して処理した後に直ちに樹脂、添加剤、 硬化剤、 触媒、 カップリ ング剤などを投入してプレミキシングして、 口 ールヽ 押し出し機などでコンパゥンドを作ることが出来る。 Regarding the treatment of the basic substance or the basic mixture, the silica powder may be preliminarily treated, but this is performed in the process of mixing with a resin or the like to form a compound. Can also be. For example, a silica powder is put into a Henschel mixer, mixed with a basic substance or a basic mixture, treated, and immediately after that, a resin, an additive, a curing agent, a catalyst, a coupling agent, etc. are added and premixed. The compound can be made with a mouth extruder.
又、 本発明は、 シリカ粉体を、 塩基性物質及びシランカップリ ング剤 で表面処理することを特徴とするシリ力粉体の製造方法である。ここで、 塩基性物質及びシランカツプリ ング剤はほぼ同時に用いても良いが、 粉 体を、 先に塩基性物質で表面処理し、 次いてシランカップリ ング剤で表 面処理することが好ましい。 塩基性物質の処理量は、 粉体表面積 1 m 2 に対して塩基性物質又は塩基性混合物が 0 . 0 5〜 5 μ m o 1 e 、 好ま しく は 0 . 0 5〜 1 μ m 0 1 e である。 塩基性物質と しては、 処理のし易さからへキサメ チルシラザン (HMD S ) が好ま しい。 第 3に、 本発明は、 有機樹脂組成物の発明であり、 塩基性物質又は塩 基性混合物で表面処理された上記シリ力粉体を、 有機樹脂に配合したこ とを特徴とする。 塩基性シリ カ粉体を添加することで、 特に有機樹脂の 耐熱性を高め、 低熱膨張と し、 低吸湿性とすることができる。 Further, the present invention is a method for producing a siliceous powder, which comprises subjecting a silica powder to a surface treatment with a basic substance and a silane coupling agent. Here, the basic substance and the silane coupling agent may be used almost simultaneously, but it is preferable that the surface of the powder is first treated with a basic substance, and then the surface is treated with a silane coupling agent. The processing amount of the basic substance is such that the basic substance or the basic mixture is 0.05 to 5 μmo 1 e, preferably 0.05 to 1 μm 0 1 e per 1 m 2 of the powder surface area. It is. Hexamethylsilazane (HMD S) is preferred as the basic substance because of its ease of processing. Thirdly, the present invention is an invention of an organic resin composition, and is characterized in that the above-mentioned sily powder which has been surface-treated with a basic substance or a basic mixture is blended in an organic resin. By adding the basic silica powder, the heat resistance of the organic resin is particularly increased, the thermal expansion is reduced, and the moisture absorption is reduced.
本発明で使用される樹脂と しては特に限定されず、 エポキシ樹脂、 ポ リ ウレタン、 不飽和ポリエステル'、 フエノール樹脂、 尿素樹脂、 ポリイ ミ ド、 ポリアミ ドイ ミ ド、 メ ラミ ン樹脂、 光硬化樹脂、 シ'リ コーンなど の熱硬化性樹脂、 L C P、 P P S、 P E S , P E EK, P C、 AB S、 PMMA、 ポリオレフイ ン、 ナイ ロン、 P P O、 P OM、 等の熱可塑性 樹脂、 不飽和ポリ エステル塗料又はワニス、 アク リル塗料又はワニス、 ェポキシ塗料又はワニス、 ポリイ ミ ド、 ポリアミ ドイ ミ ド塗料又はヮニ ス、 フエノール樹脂塗料などの塗膜又は織物含浸用ワニス等が例示され る。  The resin used in the present invention is not particularly limited, and may be an epoxy resin, a polyurethane, an unsaturated polyester ', a phenol resin, a urea resin, a polyimide, a polyamideimide, a melamine resin, or a photocurable resin. Resin, thermosetting resin such as silicone, thermoplastic resin such as LCP, PPS, PES, PEEK, PC, ABS, PMMA, polyolefin, nylon, PPO, POM, etc., unsaturated polyester Paints or varnishes, acrylic paints or varnishes, epoxy paints or varnishes, polyimides, polyamide imide paints or varnishes, phenolic resin paints and other coatings or varnishes for impregnating textiles are exemplified.
これらの中で、 半導体装置や液晶装置の封止材用樹脂と して用いられ る 1分子中にエポキシ基を 2個以上有するエポキシ樹脂が特に好ましレ、。 即ち、 第 4に、 本発明は、 エポキシ樹脂組成物の発明であり、 少なく と も (A) エポキシ樹脂、 (B) 硬化剤、 (C) 触媒に、 (D) 無機充填材と して上記微塩基性シリ力粉体を全エポキシ樹脂組成物中に 7 0重量%以 上含むことを特徴とする。 ここで、 (D ) 無機充填材と して上記の塩基性 シリ力粉体を全エポキシ樹脂組成物中に 7 0重量%以上、 好ましく は 8 5〜 9 5重量%含む。 Among these, an epoxy resin having two or more epoxy groups in one molecule, which is used as a resin for a sealing material of a semiconductor device or a liquid crystal device, is particularly preferred. Fourth, the present invention is an invention of an epoxy resin composition, wherein at least (A) an epoxy resin, (B) a curing agent, (C) a catalyst, and (D) an inorganic filler. In addition, the above-mentioned fine basic silica powder is contained in the entire epoxy resin composition in an amount of 70% by weight or more. Here, (D) the above-mentioned basic silica powder as an inorganic filler is contained in the entire epoxy resin composition in an amount of 70% by weight or more, preferably 85 to 95% by weight.
同様に、 少なく とも (A ) エポキシ樹脂、 (B ) 硬化剤、 (C ) 触媒に、 ( D ) 無機充填材と して上記微塩基性シリ 力粉体を含むことを特徴とす る封止用液状エポキシ樹脂組成物である。  Similarly, at least (A) an epoxy resin, (B) a curing agent, and (C) a catalyst, and (D) an encapsulation characterized by containing the finely basic silica powder as an inorganic filler. Liquid epoxy resin composition.
更に、 織物ク ロス含浸用ワニス又はフィルム形成用ワニスに、 上記微 塩基性シリ 力粉体を配合したことを特徴とする樹脂組成物である。  The resin composition further comprises a varnish for impregnating a woven cloth or a varnish for forming a film, and the finely basic silicic powder is blended with the varnish.
本発明に用いるエポキシ樹脂と しては特に限定されず、 1分子中にェ ポキシ基を 2個以上有するモノマー、 オリ ゴマー、 及びポリ マー全般が 用いられる。 例えば、 ビフエニル型エポキシ樹脂、 スチルベン型ェポキ シ樹脂、 ビスフエノール型エポキシ樹脂、 ト リ フエノールメタン型ェポ キシ樹脂、 アルキル変性ト リ フエノールメタン型エポキシ樹脂、 ジシク 口ペンタジェン変性フエノール型ェポキシ樹脂、 ナフ トール型エポキシ 樹脂、 ト リ アジン核含有エポキシ樹脂等が例示される。 これらは単独で も混合して用いてもよい。 無機充填材はエポキシ樹脂組成物中に高充填 されることが好ましいため、 エポキシ樹脂組成物の流動性を良好に維持 するには低粘度樹脂が好ましい。  The epoxy resin used in the present invention is not particularly limited, and all monomers, oligomers and polymers having two or more epoxy groups in one molecule are used. For example, biphenyl-type epoxy resin, stilbene-type epoxy resin, bisphenol-type epoxy resin, triphenol-methane-type epoxy resin, alkyl-modified triphenyl-methane-type epoxy resin, dicyclopentene-modified phenol-type epoxy resin, naphthol Examples include a type epoxy resin and a triazine nucleus-containing epoxy resin. These may be used alone or as a mixture. Since it is preferable that the inorganic filler be highly filled in the epoxy resin composition, a low-viscosity resin is preferable in order to maintain good fluidity of the epoxy resin composition.
本発明では、 上記エポキシ樹脂組成物にフエノール樹脂を加えて半導 体封止用エポキシ樹脂組成物とすることが出来る。 用いるフエノール樹 脂と しては特に限定されず、 1分子中にフエノール性水酸基を 2個以上 有するモノマー、 オリ ゴマー、 及びポリマー全般を言う。 例えば、 ジシ ク ロペンタジェン変性フエノール樹脂、 フエノールァラル'キル樹脂、 ナ フ トールァラルキル樹脂、 テルペン変性フヱノール樹脂、 ト リ フエノー ルメタン型樹脂等が例示される。 これらは単独でも混合して用いてもよ い。 無機充填材はエポキシ樹脂組成物中に高充填されるのが好ましいた め、 エポキシ樹脂組成物の流動性を良好に維持するには低粘度樹脂が好 ましい。 エポキシ樹脂のエポキシ基数とフヱノール樹脂のフェノール性 水酸基数との当量比としては、 エポキシ基数 フエノール性水酸基数 =In the present invention, a phenol resin is added to the above-mentioned epoxy resin composition to obtain an epoxy resin composition for semiconductor encapsulation. The phenolic resin used is not particularly limited, and refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule. For example, dicyclopentadiene modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, terpene modified phenol resin, triphenol methane type resin and the like are exemplified. These may be used alone or as a mixture. Since it is preferable that the inorganic filler is highly filled in the epoxy resin composition, a low-viscosity resin is preferable for maintaining good fluidity of the epoxy resin composition. Number of epoxy groups in epoxy resin and phenolic property of phenol resin The equivalent ratio to the number of hydroxyl groups is the number of epoxy groups, the number of phenolic hydroxyl groups =
0 . 8〜 : 1 . 2 の範囲が好ましい。 0.8 to: The range of 1.2 is preferable.
本発明に用いる硬化剤としては特に限定されず、 エポキシ基とフエノ ール性水酸基との硬化反応を促進させるものであればよく、 一般に封止 材料に使用されているものを広く使用することができる。 例えば、 1 , 8 —ジァザビシクロ (5 , 4 , 0 ) ゥンデセン— 7 、 2—メチルイ ミダ ゾール、 トリ フエニルホスフィン等が例示される。 これらは単独でも混 合して用いてもよい。  The curing agent used in the present invention is not particularly limited as long as it promotes a curing reaction between an epoxy group and a phenolic hydroxyl group, and those generally used for a sealing material can be widely used. it can. For example, 1,8-diazabicyclo (5,4,0) indene-7,2-methylimidazole, triphenylphosphine and the like are exemplified. These may be used alone or as a mixture.
本発明のエポキシ樹脂組成物は、 (A ) 〜 (D ) 成分の他、 必要に応じ て、 カーボンブラック、 ベンガラ等の着色剤、 天然ワックス、 合成ヮッ タス等の離型剤、 シリ コーンオイル、 イオン捕捉剤、 難燃剤、 ゴム等の 低応力添加剤等の種々の添加剤等を適宜配合しても差し支えない。  The epoxy resin composition of the present invention may further comprise, as necessary, a coloring agent such as carbon black and red iron oxide, a release agent such as natural wax and synthetic petals, a silicone oil, and the like, in addition to the components (A) to (D). Various additives such as ion scavengers, flame retardants, and low-stress additives such as rubber may be appropriately compounded.
本発明のエポキシ樹脂組成物は、 (A ) 〜 (D ) 成分、 及びその他の添 加剤等をミキサ一等を用いて充分に均一に常温混合した後、 熱ロール又 はニーダ一等で溶融混練し、 冷却後粉砕して得られる。 本発明のェポキ シ樹脂組成物を用いて、 半導体素子等の電子部品を封止し、 半導体装置 を製造するには、 ト ランスファーモール ド、コンプレッショ ンモール ド、 ィンジヱクショ ンモールド等の成形方法で成形硬化すればよい。  The epoxy resin composition of the present invention is prepared by sufficiently mixing the components (A) to (D), and other additives at room temperature with a mixer or the like, and then melting the mixture with a hot roll or a kneader. It is obtained by kneading, cooling and pulverizing. Using the epoxy resin composition of the present invention to encapsulate electronic components such as semiconductor elements and manufacture semiconductor devices, molding is performed by a molding method such as transfer molding, compression molding, or injection molding. What is necessary is just to harden.
本発明のエポキシ樹脂組成物は、 半導体装置や液晶表示装置の封止材 料として特に有用である。 図面の簡単な説明  The epoxy resin composition of the present invention is particularly useful as a sealing material for semiconductor devices and liquid crystal display devices. Brief Description of Drawings
第 1図は、 実施例 4 4と比較例 1 3 、 1 4のエポキシ樹脂組成物の粘 度の測定結果を示す。 発明を実施するための最良の形態  FIG. 1 shows the measurement results of the viscosity of the epoxy resin compositions of Example 44 and Comparative Examples 13 and 14. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例と比較例を用いて本発明を説明する。  Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
[比較例 1 ]  [Comparative Example 1]
平均粒径が 0 . 2 μ、 比表面積が 1 6 m 2 / gの球状シリ力 ( (株) ァ ドマテックス製、 S O— C 1 ) を篩で 1 0 5 μ以上の粗大粒子を除去し て、 比較例サンプル 1 を作製した。 Spherical spherical force with an average particle size of 0.2 μ and a specific surface area of 16 m 2 / g. Comparative Example Sample 1 was prepared by removing coarse particles of at least 105 μm from SO-C 1) manufactured by Domatex using a sieve.
[実施例 1 ]  [Example 1]
比較例 1 の比較例サンプル 1 を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 2重量部のへキサメチルジシラザンを嘖霧して粉体 を処理した。 処理後の粉体を篩で 7 5 μ以上の粗大粒子を除去して、 実 施例サンプル 1 を作製した。  Sample 1 of Comparative Example 1 of Comparative Example 1 was charged into a powder mixer of 100 parts by weight, and while stirring the powder, 0.2 parts by weight of hexamethyldisilazane was atomized to treat the powder. The treated powder was removed with a sieve to remove coarse particles having a size of 75 μ or more, thereby preparing Example Sample 1.
[実施例 2 ]  [Example 2]
比較例 1の比較例サンプル' 1 を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 2重量部のへキサメチルジシラザンを噴霧して粉体 を処理した。 処理後の粉体を篩で 4 5 μ以上の粗大粒子を除去して、 実 施例サンプル 2を作製した。  The comparative sample 1 of Comparative Example 1 was put into a 100 parts by weight mixer, and 0.2 parts by weight of hexamethyldisilazane was sprayed while the powder was being stirred to treat the powder. The processed powder was removed with a sieve to remove coarse particles of 45 μm or more, thereby preparing Example Sample 2.
[実施例 3 ]  [Example 3]
比較例 1の比較例サンプル 1 を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 2重量部のへキサメチルジシラザンを噴霧して粉体 を処理した。 処理後の粉体を篩で 2 0 μ以上の粗大粒子を除去して、 実 施例サンプル 3を作製した。  Sample 1 of Comparative Example 1 of Comparative Example 1 was charged into a powder mixer of 100 parts by weight, and powder was treated by spraying 0.2 parts by weight of hexamethyldisilazane while stirring the powder. The treated powder was removed with a sieve to remove coarse particles of 20 μm or more, thereby preparing Example Sample 3.
[実施例 4 ]  [Example 4]
比較例 1 の比較例サンプル 1 を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 2重量部のへキサメチルジシラザンを嘖霧して粉体 を処理した。 処理後の粉体を気流分級で 1 0 μ以上の粗大粒子を除去し て、 実施例サンプル 4を作製した。  Sample 1 of Comparative Example 1 of Comparative Example 1 was charged into a powder mixer of 100 parts by weight, and while stirring the powder, 0.2 parts by weight of hexamethyldisilazane was atomized to treat the powder. Example sample 4 was manufactured by removing coarse particles of 10 μm or more from the powder after the treatment by airflow classification.
[実施例 5 ]  [Example 5]
比較例 1の比較例サンプル' 1 を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 2重量部のへキサメチルジシラザンを噴霧して粉体 を処理した。処理後の粉体を気流分級で 5 μ.以上の粗大粒子を除去して、 実施例サンプル 5を作製した。  The comparative sample 1 of Comparative Example 1 was put into a 100 parts by weight mixer, and 0.2 parts by weight of hexamethyldisilazane was sprayed while the powder was being stirred to treat the powder. The sample after the treatment was subjected to airflow classification to remove coarse particles of 5 μ. Or more, thereby preparing Example Sample 5.
[実施例 6 ]  [Example 6]
比較例 1の比較例サンプル 1 を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0. 2重量部のへキサメチルジシラザンを噴霧して粉体 を処理した。処理後の粉体を気流分級で 3 μ以上の粗大粒子を除去して、 実施例サンプル 6を作製した。 The comparative sample 1 of Comparative Example 1 was put into a 100 parts by weight mixer, and the powder was With stirring, the powder was treated by spraying 0.2 parts by weight of hexamethyldisilazane. The powder after the treatment was subjected to airflow classification to remove coarse particles of 3 μm or more, thereby preparing Example Sample 6.
[比較例 2 ]  [Comparative Example 2]
平均粒径が 0. 5 μ、 比表面積が 6. 7 m2/gの球状シリカ ( (株) ア ドマテックス製、 S O— C 2) を篩で 1 0 5 μ以上の粗大粒子を除去 して、 比較例サンプル 2を作製した。 Spherical silica (SO-C2, manufactured by Admatex Co., Ltd.) having an average particle size of 0.5 μm and a specific surface area of 6.7 m 2 / g is removed with a sieve to remove coarse particles of more than 105 μm. Thus, Comparative Example Sample 2 was produced.
[実施例 7 ]  [Example 7]
比較例 2の比較例サンプル 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0. 1重量部のへキサメチルジシラザンを噴霧して粉体 を処理した。 処理後の粉体を篩で 7 5 μ以上の粗大粒子を除去して、 実 施例サンプル 7を作製した。  Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while the powder was being stirred, 0.1 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles having a size of 75 μ or more, thereby preparing Example Sample 7.
[実施例 S ]  [Example S]
比較例 2の比較例サンプル 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0. 1重量部のへキサメチルジシラザンを噴霧して粉体 を処理した。 処理後の粉体を篩で 4 5 μ以上の粗大粒子を除去して、 実 施例サンプル 8を作製した。  Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while the powder was being stirred, 0.1 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles having a size of 45 μm or more, thereby preparing Example Sample 8.
[実施例 9 ]  [Example 9]
比較例 2の比較例サンプル 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0. 1重量部のへキサメチルジシラザンを嘖霧して粉体 を処理した。 処理後の粉体を篩で 2 0 μ以上の粗大粒子を除去して、 実 施例サンプル 9を作製した。  Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while the powder was being stirred, 0.1 parts by weight of hexamethyldisilazane was atomized to treat the powder. The treated powder was removed with a sieve to remove coarse particles of 20 μm or more, thereby preparing Example Sample 9.
[実施例 1 0]  [Example 10]
比較例 2の比較例サンプル 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0. 1重量部のへキサメチルジシラザンを噴霧して粉体 を処理した。 処理後の粉体を気流分級で 1 0 μ以上の粗大粒子を除去し て、 実施例サンプル 1 0を作製した。  Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while the powder was being stirred, 0.1 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The sample after the treatment was subjected to airflow classification to remove coarse particles of 10 μm or more, thereby producing an example sample 10.
[実施例 1 1 ]  [Example 11]
比較例 2の比較例サンプル' 2を 1 00重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 1重量部のへキサメチルジシラザンを嘖霧して粉体 を処理した。処理後の粉体を気流分級で 5 μ以上の粗大粒子を除去して、 実施例サンプル 1 1を作製した。 The comparative sample 2 of Comparative Example 2 was put into a 100 parts by weight mixer, and the powder was While stirring, the powder was treated by spraying 0.1 part by weight of hexamethyldisilazane. The sample after the treatment was subjected to airflow classification to remove coarse particles of 5 μm or more, thereby producing an example sample 11.
[実施例 1 2 ]  [Example 12]
比較例 2の比較例サンプル 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 1重量部のへキサメチルジシラザンを噴霧して粉体 を処理した。処理後の粉体を気流分級で 3 μ以上の粗大粒子を除去して、 実施例サンプル 1 1を作製した。  Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while stirring the powder, 0.1 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The powder after the treatment was subjected to airflow classification to remove coarse particles of 3 μ or more, thereby producing an example sample 11.
[実施例 1 3 ]  [Example 13]
比較例 2の比較例サンプル 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 0 1重量部のへキサメチルジシラザンを噴霧して粉 体を処理した。 処理後の粉体を篩で 2 0 μ以上の粗大粒子を除去して、 実施例サンプル 1 3を作製した。  Sample 2 of Comparative Example 2 of Comparative Example 2 was charged into a powder mixer of 100 parts by weight, and while stirring the powder, 0.01 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles of 20 μm or more, thereby preparing Example Sample 13.
[実施例 1 4 ]  [Example 14]
比較例 2の比較例サンプル 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 3重量部のへキサメチルジシラザンを噴霧して粉体 を処理した。 処理後の粉体を篩で 2 0 μ以上の粗大粒子を除去して、 実 施例サンプル 1 3を作製した。  Sample 2 of Comparative Example 2 of Comparative Example 2 was charged into a powder mixer of 100 parts by weight, and while stirring the powder, 0.3 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles of 20 μm or more, thereby preparing Example Sample 13.
[実施例 1 5 ]  [Example 15]
比較例 2の比較例サンプル 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 1重量部のアンモニアを噴霧して粉体を処理した。 処理後の粉体を篩で 2 0 μ以上の粗大粒子を除去して、 実施例サンプル 1 5を作製した。  Comparative Example Sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while stirring the powder, 0.1 parts by weight of ammonia was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles of 20 μm or more to prepare Example Sample 15.
[実施例 1 6 ]  [Example 16]
比較例 2の比較例サンプル · 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 1重量部のエチレンジァミンを噴霧して粉体を処理 した。 処理後の粉体を篩で 2 0 μ以上の粗大粒子を除去して、 実施例サ ンプル 1 6を作製した。  The comparative sample 2 of Comparative Example 2 was put into a 100 parts by weight powder mixer, and while the powder was being stirred, 0.1 parts by weight of ethylenediamine was sprayed to treat the powder. The powder after the treatment was removed with a sieve to remove coarse particles of 20 μ or more, whereby Example 16 was prepared.
[実施例 1 7 ] 比較例 2の比較例サンプル 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 1重量部の K B M 9 0 3の 1 0 %メチルェチルケ トン溶 液を噴霧して粉体を処理した。 処理後の粉体を篩で 2 0 μ以上の粗大粒 子を除去して、 実施例サンプル 1 7を作製した。 [Example 17] 100 parts by weight of Comparative Example 2 of Comparative Example 2 was put into a powder mixing machine, and while stirring the powder, 1 part by weight of a 10% solution of KBM 903 in 10% methyl ethyl ketone was sprayed. Was processed. The treated powder was removed with a sieve to remove coarse particles having a size of 20 μ or more, whereby Example Sample 17 was produced.
[実施例 1 8 ]  [Example 18]
比較例 2の比較例サンプル 2を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 1重量部のィミダゾ一ルの 1 0 %メチルェチルケ トン溶 液を嘖霧して粉体を処理した。 処理後の粉体を篩で 2 0 μ以上の粗大粒 子を除去して、 実施例サンプル 1 8を作製した。  Comparative Example 2 of Comparative Example 2 100 parts by weight of a sample 2 was put into a powder mixer, and while stirring the powder, 1 part by weight of a 10% solution of imidazole in 10% methylethylketone was sprayed and powdered. Was processed. The treated powder was removed with a sieve to remove coarse particles having a size of 20 μ or more, thereby preparing Example Sample 18.
[比較例 3 ]  [Comparative Example 3]
平均粒径が 6 μ、 比表面積が 4 . 8 m 2 / gの溶融球状シリカを篩で 1 0 5 μ以上の粗大粒子を除去して、 比較例サンプル 3を作製した。 Comparative Example Sample 3 was prepared by removing coarse particles having a particle diameter of 6 μm or more and a specific surface area of 4.8 m 2 / g from a fused spherical silica having a diameter of 105 μm or more with a sieve.
[実施例 1 9 ]  [Example 19]
比較例 3の比較例サンプル 3を篩で 7 5 μ以上の粗大粒子を除去して、 実施例サンプル 1 9を作製した。  The comparative sample 3 of the comparative example 3 was screened to remove coarse particles having a size of 75 μm or more to prepare an example sample 19.
[実施例 2 0 ]  [Example 20]
比較例 3の比較例サンプル 3を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 0 6重量部のへキサメチルジシラザンを噴霧して粉 体を処理した。 処理後の粉体を篩で 7 5 μ以上の粗大粒子を除去して、 実施例サンプル 2 0を作製した。  Sample 3 of Comparative Example 3 of Comparative Example 3 was charged into a powder mixer of 100 parts by weight, and while stirring the powder, 0.06 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles of 75 μm or more, thereby preparing Example Sample 20.
[実施例 2 1 ]  [Example 21]
比較例 3の比較例サンプル 3を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 0 6重量部のへキサメチルジシラザンを嘖霧して粉 体を処理した。 処理後の粉体を篩で 4 5 ; u以上の粗大粒子を除去して、 実施例サンプル 2 1 を作製した。  Sample 3 of Comparative Example 3 of Comparative Example 3 was charged into a powder mixer of 100 parts by weight, and while the powder was being stirred, 0.06 parts by weight of hexamethyldisilazane was atomized to treat the powder. . The treated powder was removed with a sieve to remove coarse particles of 45; u or more to prepare Example Sample 21.
[実施例 2 2 ]  [Example 22]
比較例 3の比較例サンプル 3を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0 . 0 6重量部のへキサメチルジシラザンを嘖霧して粉 体を処理した。 処理後の粉体を篩で 2 0 μ以上の粗大粒子を除去して、 実施例サンプル 2 2を作製した。 Sample 3 of Comparative Example 3 of Comparative Example 3 was charged into a powder mixer of 100 parts by weight, and while the powder was being stirred, 0.06 parts by weight of hexamethyldisilazane was atomized to treat the powder. . The powder after treatment is removed with a sieve to remove coarse particles of 20μ or more. Example sample 22 was produced.
[比較例 4]  [Comparative Example 4]
平均粒径が 2 5 μ、 比表面積が 1. 8 m2/gの溶融球状シリカを篩で 1 0 5 μ以上の粗大粒子を除去して、 比較例サンプル 4を作製した。 Sample 4 of Comparative Example was prepared by removing coarse particles of at least 105 μm from fused spherical silica having an average particle size of 25 μm and a specific surface area of 1.8 m 2 / g using a sieve.
[実施例 2 3 ]  [Example 23]
比較例 4の比較例サンプル 4を篩で 7 5 μ以上の粗大粒子を除去して、 実施例サンプル 2 3を作製した。  Comparative Sample 4 of Comparative Example 4 was removed with a sieve to remove coarse particles of 75 μm or more to prepare Example Sample 23.
[実施例 2 4]  [Example 24]
比較例 3の比較例サンプル 3を 1 0 0重量部混粉機に投入し、 粉体を 攪拌しながら、 0. 0 2重量部のへキサメチルジシラザンを噴霧して粉 体を処理した。 処理後の粉体を篩で 7 5 μ以上の粗大粒子を除去して、 実施例サンプル 2 4を作製した。  Comparative Example Sample 3 of Comparative Example 3 was charged into a powder mixer of 100 parts by weight, and while the powder was being stirred, 0.02 parts by weight of hexamethyldisilazane was sprayed to treat the powder. The treated powder was removed with a sieve to remove coarse particles of 75 μm or more, thereby preparing Example Sample 24.
上記実施例及び比較例の諸物性、 塩基性物質処理、 粒径カッ トを第 1 表及び第 2表に一覧にした。 Tables 1 and 2 list various physical properties, basic substance treatments, and particle size cuts of the above Examples and Comparative Examples.
Figure imgf000018_0001
Figure imgf000018_0001
拏 L m lSS000/P00Z f/lDd 0 080/S00 OAV 第 2表 Halla L m lSS000 / P00Z f / lDd 0 080 / S00 OAV Table 2
Figure imgf000019_0001
Figure imgf000019_0001
[処理粉体の評価- 1 ] [Evaluation of treated powder-1]
ァ ドマフアイ ン S〇一 C 2をレファ レンス と して用いた。 軟化点 7 0 °Cのク レゾールノボラック型ェポキシ樹脂 2 0重量部、 軟化点 8 0 °C のフエノ一ノレノボラ ック樹脂 2 0重量部、 ト リ フエニルホスフィ ン 0. 2重量、 K BM403、 0. 4重量部とア ドマファイ ン S O— C 2、 6 0重 量部を混合した後、 東洋精機製 R 6 0型ラボブラス ト ミルに入れて、 回 転数 1 0 0 r p m、 温度 1 0 0 °Cの条件下で、 1 5分間混合し、 最低ト ルク を測定する。  Admafin S-1 C2 was used as a reference. 20 parts by weight of cresol novolak type epoxy resin having a softening point of 70 ° C, 20 parts by weight of phenolic phenol resin having a softening point of 80 ° C, 0.2 parts by weight of triphenylphosphine, KBM403, 0. After mixing 4 parts by weight and Adomafine SO-C2, 60 parts by weight, the mixture was placed in a R60 lab blast mill manufactured by Toyo Seiki Co., Ltd., and rotated at 100 rpm and temperature at 100 ° C. Mix for 15 minutes under the above conditions and measure the minimum torque.
軟化点 7 0°Cのク レゾールノボラック型エポキシ樹脂 20重量部、 軟化 点 8 0 °Cのフエノ一ルノポラック樹脂 2 0重量部、 ト リ フェニルホスフ イ ン 0. 2重量、 KBM403、 0. 4重量部と試験粉体 6 0重量部を混合 した後、 東洋精機製 R 6 0型ラボブラス ト ミルに入れて、 回転数 1 0 0 r p m、 温度 1 0 0 °Cの条件下で、 1 5分間混合し、 最低トルクを測定 する。 S O— C 2に対する相対最低トルクは下式であらわす。  20 parts by weight of cresol novolak epoxy resin with a softening point of 70 ° C, 20 parts by weight of phenol nopolak resin with a softening point of 80 ° C, 0.2 parts by weight of triphenylphosphine, 0.4 parts by weight of KBM403 and 0.4 parts by weight After mixing 60 parts by weight of the test powder and 60 parts by weight of the test powder, put the mixture into a R60 lab blast mill manufactured by Toyo Seiki Co., Ltd., and mix for 15 minutes at 100 rpm at 100 rpm. And measure the minimum torque. The relative minimum torque for S O — C 2 is expressed by the following equation.
相対最低トルク = (試験粉体サンプルの最低トルク / S O— C 2の最低 卜ノレク) X100  Relative minimum torque = (minimum torque of test powder sample / minimum torque of S O—C 2) X100
測定結果を第 3表及び第 4表にまとめた。 4000851 第 3表 The measurement results are summarized in Tables 3 and 4. 4000851 Table 3
実施例  Example
相対最低  Relative low
フィラー組成 トルク 最大粒径  Filler composition Torque Maximum particle size
( μ (μ
(%) (%)
実施例 23サンプル =38重量部  Example 23 sample = 38 parts by weight
実施例 19サンプル =16重量部 46  Example 19 samples = 16 parts by weight 46
実施例 25 75 Example 25 75
実施例 7サンプル =5.5重量部  Example 7 sample = 5.5 parts by weight
実施例 1 サンプル =0.5重量部  Example 1 Sample = 0.5 parts by weight
実施例 24サンプル =38重量部  Example 24 samples = 38 parts by weight
実施例 20サンプル =16重量部 31  Example 20 sample = 16 parts by weight 31
実施例 26 実施例 7サンプル =5.5重量部 75 Example 26 Example 7 Sample = 5.5 parts by weight 75
実施例 1 サンプル =0.5重量部  Example 1 Sample = 0.5 parts by weight
実施例 21 サンプル =42重量部 58  Example 21 Sample = 42 parts by weight 58
実施例 27 実施例 8サンプル =15重量部 45 Example 27 Example 8 Sample = 15 parts by weight 45
実施例 2サンプル =3重量部  Example 2 Sample = 3 parts by weight
実施例 22サンプル =42重量部  Example 22 samples = 42 parts by weight
58  58
実施例 28 実施例 9サンプル =15重量部 20 Example 28 Example 9 Sample = 15 parts by weight 20
実施例 3サンプル =3重量部  Example 3 sample = 3 parts by weight
実施例 22サンプル =42重量部 63  Example 22 samples = 42 parts by weight 63
実施例 29 実施例 13サンプル =15重量部 20 Example 29 Example 13 Sample = 15 parts by weight 20
実施例 3サンプル =3重量部  Example 3 sample = 3 parts by weight
実施例 22サンブル =42重量部  Example 22 Samble = 42 parts by weight
実施例 30 実施例 14サンプル =15重量部 54 20 Example 30 Example 14 Sample = 15 parts by weight 54 20
実施例 3サンプル =3重量部  Example 3 sample = 3 parts by weight
実施例 22サンプル =42重量部  Example 22 samples = 42 parts by weight
58  58
実施例 31 実施例 15サンプル =15重量部 20 Example 31 Example 15 Sample = 15 parts by weight 20
実施例 3サンプル =3重量部  Example 3 sample = 3 parts by weight
実施例 22サンプル =42重量部 58  Example 22 sample = 42 parts by weight 58
実施例 32 実施例 16サンプル =15重量部 20 Example 32 Example 16 Sample = 15 parts by weight 20
実施例 3サンプル =3重量部  Example 3 sample = 3 parts by weight
実施例 22サンプル =42重量部 67  Example 22 samples = 42 parts by weight 67
実施例 33 実施例 17サンプル =15重量部 20 Example 33 Example 17 Sample = 15 parts by weight 20
実施例 3サンプル =3重量部  Example 3 sample = 3 parts by weight
実施例 22サンプル =42重量部 65  Example 22 samples = 42 parts by weight 65
実施例 34 実施例 18サンプル =15重量部 20 Example 34 Example 18 Sample = 15 parts by weight 20
実施例 3サンプル =3重量部  Example 3 sample = 3 parts by weight
実施例 10サンプル =57重量部 84  Example 10 Sample = 57 parts by weight 84
実施例 35 10 Example 35 10
実施例 4サンプル =3重量部  Example 4 sample = 3 parts by weight
実施例 11 サンプル =57重量部  Example 11 Sample = 57 parts by weight
実施例 36 84 5 Example 36 84 5
実施例 5サンプル =3重量部  Example 5 sample = 3 parts by weight
実施例 12サンプル =57重量部  Example 12 sample = 57 parts by weight
実施例 37 84 3 Example 37 84 3
実施例 6サンプル =3重量部 第 4表 Example 6 Sample = 3 parts by weight Table 4
Figure imgf000021_0001
Figure imgf000021_0001
[樹脂組成物の硬化物断面の S E M観察] [SEM observation of cross section of cured resin composition]
上記各サンプルを第 5表のように混合して用いて得られた実施例 2 5 〜 3 7、 比較例 6〜 8の樹脂組成物をプレス成型して、 1 8 0 °C、 5時 間で硬化させた。 硬化物を破断し、 断面の S E M観察を行い、 ブイラ一 界面と樹脂マ トリ ッタスの密着性を評価した。 結果は表 3にまとめた。 又、 実施例 2 5〜 3 7、 比較例 6〜 8で得られた樹脂組成物 1 7 0 g をメチルェチルケ トンで溶かして、 超音波で分散させた。 最大粒径に応 じて籂を通してオン品中の導電性粒子を含む着色粒子の数を数えた。 結 果は第 5表及び第 6表にまとめた。 The resin compositions of Examples 25 to 37 and Comparative Examples 6 to 8 obtained by mixing each of the above samples as shown in Table 5 were press-molded, and were subjected to 180 ° C for 5 hours. And cured. The cured product was broken, and the cross section was observed by SEM to evaluate the adhesion between the boiler interface and the resin matrix. The results are summarized in Table 3. Also, 170 g of the resin compositions obtained in Examples 25 to 37 and Comparative Examples 6 to 8 were dissolved in methylethyl ketone and dispersed by ultrasonic waves. According to the maximum particle size, the number of the colored particles including the conductive particles in the ON product was counted through 籂. The results are summarized in Tables 5 and 6.
第 5表 Table 5
実施例  Example
フィラー組成 S E M観察 ¾ "B iiナ 数 実施例 23サンブル =38重量部 密着良好、界面に隙間 篩目開き 実施例 実施例 19サンプル =16重量部 無し、フィラー脱着無 =75 μ Filler composition SEM observation ¾ "Biina number Example 23 sembles = 38 parts by weight Good adhesion, gap at interface Sieve opening Example Example 19 samples = 16 parts by weight None, no filler desorption = 75 μ
25 実施例 7サンプル =5.5重量部 し、 分散良好 1 個 25 Example 7 Sample = 5.5 parts by weight, good dispersion 1 piece
実施例 1サンプル =0.5重量部  Example 1 sample = 0.5 parts by weight
実施例 24サンブル =38重量部 密着艮好、界面に隙間 蒒目開き 実施例 実施例 20サンプル =16重量部 無し、フィラー脱看無 =15 μ 26 実施例 7サンプル =5.5重量部 し、 分散良好 0個  Example 24 Samble = 38 parts by weight Good adhesion, gap at interface 蒒 Opening Example Example 20 samples = 16 parts by weight None, no filler removal = 15 μ 26 Example 7 samples = 5.5 parts by weight, good dispersion 0 pieces
実施例 1サンプル =0.5重量部  Example 1 sample = 0.5 parts by weight
実施例 21サンブル =42重量部 密着良好、界面に隙間 篩目開き 実施例 8  Example 21 Samble = 42 parts by weight Good adhesion, gap at interface Sieve opening Example 8
27 実施例 サンプル =15重量部 無し、フィラー脱着無 = 45μ 実施例 2サンプル =3重量部 し、 分散良好 2個 実施例 22サンブル =42重量部 密着艮好、界面に隙間 篩目開き 実施例 実施例 9サンプル =15重量部  27 Example Sample = 15 parts by weight None, no filler removal = 45μ Example 2 Sample = 3 parts by weight, good dispersion 2 Examples 22 samples = 42 parts by weight Example 9 samples = 15 parts by weight
28 無し、フィラー脱着無 =20 実施例 3サンプル =3重量部 し、 分散良好 3個 実施例 22サンプル =42重量部 密着艮好、界面に隙間 篩目開き 実施例 実施例 13サンプル =15重量部  28 None, no filler desorption = 20 Example 3 samples = 3 parts by weight, good dispersion 3 pieces Example 22 samples = 42 parts by weight Good adhesion, gap at interface Sieve opening Example Example 13 samples = 15 parts by weight
29 無し、フィラー脱着無 = 20μ 実施例 3サンプル =3重量部 し、 分散良好 3個 実施例 22サンプル =42重量部 密着良好、界面に隙間 篩目開き 実施例 実施例 14サンプル =15重量部 無し、フィラー脱着無 = 20μ 30  29 None, no filler desorption = 20μ Example 3 sample = 3 parts by weight, good dispersion 3 pieces Example 22 samples = 42 parts by weight Good adhesion, gap at interface Sieve opening Example Example 14 samples = 15 parts by weight None , No filler removal = 20μ 30
実施例 3サンプル =3重量部 し、 分散良好 3個 実施例 22サンプル =42重量部 密着良好、界面に隙間 篩目開き 実施例 実施例 15サンプル =15重量部  Example 3 samples = 3 parts by weight, good dispersion 3 pieces Example 22 samples = 42 parts by weight Good adhesion, gap at interface Sieve opening Example Example 15 samples = 15 parts by weight
31 無し、フィラー脱着無 = 20μ 実施例 3サンプル =3重量部 し、 分散良好 2個 実施例 22サンプル =42重量部 密着良好、界面に隙間 篩目開き 実施例 実施例 16サンプル =15重量部 無し、フィラ一脱着無 = 20μ 32  31 None, no filler removal = 20μ Example 3 samples = 3 parts by weight, good dispersion 2 pieces Example 22 samples = 42 parts by weight Good adhesion, gap at interface Sieve opening Example Example 16 samples = 15 parts by weight None , Filler without desorption = 20μ 32
実施例 3サンプル =3重量部 し、 分散良好 3個 実施例 22サンプル =42重量部 密着良好、界面に隙間 篩目開き 実施例 実施例 17サンプル =15重量部 無し、フィラ一脱着無 = 20μ 33  Example 3 samples = 3 parts by weight, good dispersion 3 pieces Example 22 samples = 42 parts by weight Good adhesion, gap at interface Sieve opening Example Example 17 samples = 15 parts by weight None, no filler detachment = 20μ 33
実施例 3サンプル =3重量部 し、 分散良好 4個 実施例 22サンプル =42重量部 密着良好、界面に隙間 篩目開き 実施例 実施例 18サンプル =15重量部  Example 3 Sample = 3 parts by weight, good dispersion 4 pieces Example 22 samples = 42 parts by weight Good adhesion, gap at interface Sieve opening Example Example 18 sample = 15 parts by weight
34 照し、フィラ一脱着無 =20 μ 実施例 3サンプル =3重量部 し、 分散良好 3個 実施例 10サンブル =57重量部 密着良好、界面に隙間 蒒目開き 実施例 実施例 4サンプル =3重量部  34, no filler removal = 20 μ Example 3 samples = 3 parts by weight, good dispersion 3 pieces Example 10 samples = 57 parts by weight Good adhesion, gap at interface 開 き Opening Example 4 samples = 3 Parts by weight
35 無し、フィラー脱着無 = 10  35 None, no filler removal = 10
し、 分散良好 3個 実施例 11サンプル =57重量部 密着良好、界面に隙間 篩目開き 実施例  Example 11 sample = 57 parts by weight Good adhesion, gap at interface Sieve opening Example
36 実施例 5サンプル =3重量部 照し、フィラー脱着無 =5  36 Example 5 Sample = 3 parts by weight, no filler removal = 5
し、 分散良好 2個 実施例 12サンプル =57重量部 密着良好、界面に隙間 篩目開き 実施例  Example: 12 samples = 57 parts by weight Good adhesion, gaps at interface Sieve opening Example
37 実施例 6サンプル =3重量部 照し、フィラー脱着無 =5 μ  37 Example 6 Sample = 3 parts by weight, no filler desorption = 5 μ
し、 分散良好 0個 第 6表 Good dispersion 0 pieces Table 6
Figure imgf000023_0001
Figure imgf000023_0001
[処理粉体の評価方法- 2 ] [Evaluation method of treated powder-2]
[実施例 3 8 ]  [Example 3 8]
平均粒径が 2 μ、 比表面積が 2 m 2/ g、 最大粒径 2 0 μの球状シリ 力 (ア ドマファイ ン S Ε 6200) を 4 0重量部、 平均粒径が 0 . 5 ^、 比 表面積が 5 . 5 m 2/ g、 最大粒径 2 0 ^の球状シリカ (ア ドマフアイ ン S Ε 2200) を 1 6重量部、 平均粒径が 0. 2 μ ヽ 比表面積が 1 6 m 2 Z g、 最大粒径 2 0 の球状シリカ (ア ドマファイン S E 1200) を 4重 量部、 をミキサーに投入して、 粉体を攪拌しながら、 0 . 0 2重量部の へキサメチルシラザンを噴霧して粉体を処理した後、 ミキサーに Z X— 1059 (エポキシ樹脂) を 4 0重量部、 K BM403(エポキシシランカップ リ ング剤)を 0. 3重量部、 2 P H Z (硬化触媒)を 3重量部投入して混合 した。 得られた樹脂組成物を三本ロールで分散させて、 液状エポキシ硬 化物を得た。 この樹脂組成物を 3 0 °C、 シェアレー ト 2 3 S — 1で粘度 を測定したところ、 9 6 0 0 c p s という値を得た。 40 parts by weight of spherical silica (Admafine SΕ6200) with an average particle size of 2 μ, a specific surface area of 2 m 2 / g and a maximum particle size of 20 μ, an average particle size of 0.5 ^ 16 parts by weight of spherical silica (Admafine S Ε 2200) with a surface area of 5.5 m 2 / g and a maximum particle size of 20 ^, average particle size of 0.2 μ μ specific surface area of 16 m 2 Z g, 4 parts by weight of spherical silica having a maximum particle size of 20 (Admafine SE 1200) is charged into a mixer, and while stirring the powder, 0.02 parts by weight of hexamethylsilazane is sprayed. After processing the powder, 40 parts by weight of ZX-1059 (epoxy resin), 0.3 parts by weight of KBM403 (epoxysilane coupling agent) and 3 parts by weight of 2 PHZ (curing catalyst) Charged and mixed. The obtained resin composition was dispersed with a three-roll mill to obtain a liquid epoxy cured product. The viscosity of this resin composition was measured at 30 ° C. and a shear rate of 23 S−1, and a value of 9600 cps was obtained.
[比較例 9 ] つつ 平均粒径が 2 μ、 比表面積が S n^Zg の球状シリカ (ア ドマファ イン S E 6000) を 40重量部、 平均粒径が 0. 5 μ、 比表面積が 5. 5 の球状シリカ (ア ドマファイン S O— E 2) を 1 6重量部、 平 均粒径が 0. 2 μ、 比表面積が 1 6 m 2 Z gの球状シリカ (ア ドマファ イン S O— E 1 ) を 4重量部、 Z X— 1059 (エポキシ樹脂) を 4 0重量 部、 K B M403(エポキシシランカップリ ング斉 ij )を 0. 3重量部、 2 P H Z (硬化触媒)を 3重量部投入して混合した。 得られた樹脂組成物を三本 ロールで分散させて、 液状エポキシ硬化物を得た。 この樹脂組成物を 3 0。C、 シェアレート 2 3 S— 1で粘度を測定したところ、 3 1 0 0 0 c P s という値を得た。 [Comparative Example 9] 40 parts by weight of spherical silica (Admafine SE6000) having an average particle size of 2 μ and specific surface area of Sn ^ Zg, spherical silica having an average particle size of 0.5 μ and a specific surface area of 5.5 (Admafine) 16 parts by weight of SO—E 2), 4 parts by weight of spherical silica (Admafine SO—E 1) having an average particle size of 0.2 μm and a specific surface area of 16 m 2 Zg, ZX—1059 (Epoxy resin), 40 parts by weight of KB M403 (epoxysilane coupling ij), and 0.3 parts by weight of 2 PHZ (curing catalyst) were added and mixed. The obtained resin composition was dispersed with a three-roll mill to obtain a liquid epoxy cured product. 30 of this resin composition. When the viscosity was measured at C and a shear rate of 23 S-1, a value of 3100 cPs was obtained.
[処理粉体の評価方法- 3 ]  [Evaluation method of treated powder-3]
軟化点 7 0°Cのク レゾ一ルノボラック型エポキシ樹脂 20重量部、 軟化 点 8 0 °Cのフエノールノポラック樹脂 2 0重量部、 ト リ フェニルホスフ イ ン 0. 2重量、 と試験粉体、 6 0重量部、 メチルェチルケ トン 1 0 0 重量部を混合して分散機で粉体を分散してワニスを作製した。 ワニスを 塗布して溶媒を蒸発した後、 1 9 0°C、 5時間塗布膜を硬化させた。 膜 の破断面の S EM観察を行った。 結果を第 7表にまとめた。 第 7表  20 parts by weight of a cresol novolak epoxy resin having a softening point of 70 ° C, 20 parts by weight of a phenol nopolak resin having a softening point of 80 ° C, 0.2 part by weight of triphenylphosphine, and test powder, A varnish was prepared by mixing 60 parts by weight and 100 parts by weight of methylethyl ketone and dispersing the powder with a disperser. After the varnish was applied and the solvent was evaporated, the applied film was cured at 190 ° C for 5 hours. SEM observation of the fracture surface of the film was performed. The results are summarized in Table 7. Table 7
Figure imgf000024_0001
Figure imgf000024_0001
[エポキシ樹脂封止材での評価] 第 8表に示すように、 エポキシ樹脂 : E O C N 1020-65 (日本化薬製、 エポキシ当量 2 0 0 ) 、 フエノール硬化剤 : D L— 92 (明和化成製、 フ ェノール当量 1 1 0)、カルナバヮッタス(日興フアインプロダクッ製)、 K BM403(信越化学製エポキシシランカツプリ ング剤)、 ト リ フエニルホ スフイ ン (北興化学製 T P Pと略す) からなるシリカ充填材を実施例 4 1〜 4 3及び比較例 1 2を調製した。これらをヘンシェルミキサー(三 井鉱山株式会社製、 型式 FM2 0 C/ I、 回転数 2 4 0 0 1- p m) により 1 0分プリブレンドした。 これらを、 3 0 mm φの二軸押出機を用いて 溶融混練温度 1 1 0°C、 平均滞留時間 5分で溶融混練後、 冷却 ·粉砕し て半導体封止用エポキシ樹脂組成物を製造した。 [Evaluation with epoxy resin encapsulant] As shown in Table 8, epoxy resin: EOCN 1020-65 (manufactured by Nippon Kayaku, epoxy equivalent: 200), phenol curing agent: DL-92 (manufactured by Meiwa Kasei, phenol equivalent: 110), Carnabattus ( Examples 41 to 43 and comparison of silica fillers consisting of KBMBM403 (epoxy silane coupling agent manufactured by Shin-Etsu Chemical) and triphenylphosphine (abbreviated as TPP manufactured by Hiko Kogyo) Example 12 was prepared. These were pre-blended by a Henschel mixer (Mitsui Mining Co., Ltd., model FM20 C / I, rotation speed 2401-pm) for 10 minutes. These were melt-kneaded using a 30 mm φ twin-screw extruder at a melt-kneading temperature of 110 ° C and an average residence time of 5 minutes, then cooled and pulverized to produce an epoxy resin composition for semiconductor encapsulation. .
これらの物性を以下のように評価した。  These physical properties were evaluated as follows.
《溶融粘度》 高化式フローテスターを用い、 9 8 Nの加圧下、 直径 1 mmのノズルを用い、 温度 1 7 5 °Cで粘度を測定した。 << Melt Viscosity >> The viscosity was measured at a temperature of 175 ° C. using a Koka type flow tester under a pressure of 98 N and a nozzle having a diameter of 1 mm.
《曲げ強度》 曲げ強度は、 J I S K 6 9 1 1に従って、 1 Ί 5 °C、 6. 9 MP a、 成形時間 2分の条件で 1 0 X 4 X 1 0 0 mmの抗折棒を成形 し、 1 8 0 °Cで 4時間ポス トキュア一したものの室温での曲げ強度を測 定した。 《Bending strength》 According to JISK 6111, bending strength is 1 × 5 ° C, 6.9 MPa, molding time 2 min. After bending at 180 ° C for 4 hours, the bending strength at room temperature was measured.
《吸水率》 1 7 5°C、 6. 9 MP a、 成形時間 2分の条件で直径 5 0 X 3 mmの円盤を成形し、 1 8 0°Cで 4時間ボス トキユア一したものを 8 5 °C 8 5 %RHの恒温恒湿器に 1 6 8時間放置し、 吸水率を測定し た。 《Water absorption rate》 1 75 ° C, 6.9MPa, Molding time 2min. The samples were left in a thermo-hygrostat at 5 ° C and 85% RH for 168 hours, and the water absorption was measured.
第 8表 Table 8
Figure imgf000026_0001
Figure imgf000026_0001
第 8表の結果よ り、本発明のエポキシ樹脂組成物は、溶融粘度が低く、 曲げ強度に優れ、 水率が低いことが分る。 From the results shown in Table 8, it can be seen that the epoxy resin composition of the present invention has low melt viscosity, excellent bending strength, and low water content.
以下、 シリ力を塩基性物質とシランカップリ ング剤で処理した実施例 及び比較例を示す。  Hereinafter, Examples and Comparative Examples in which the silicon force is treated with a basic substance and a silane coupling agent will be described.
[実施例 4 4]  [Example 4 4]
へキサメチルジシラザン (HMD S) と γ—グリ シドキシプロ ビルト リ メ トキシシラン(シラン力ップリ ング剤、 商品名 Κ Β Μ— 403)で処理し たア ドマファイン S 0— 2 5 R (商品名) を用いた。 ア ドマファイ ン (S O— 2 5 R)1 0 0重量部をミキサ一に投入し、 攪 拌しながら窒素気流下で、 へキサメチルジシラザン 0. 1重量部を嘖霧 添加して処理した後、 K BM— 403 (信越化学製) 1重量部を嘖霧添加し て処理紛体を得た。 Admafine S 0—25 R (trade name) treated with hexamethyldisilazane (HMD S) and γ-glycidoxyprobitritrimethoxysilane (silane-based printing agent, trade name Κ Κ—403) Using. 100 parts by weight of admafine (SO-25R) was charged into a mixer, and 0.1 parts by weight of hexamethyldisilazane was added under a nitrogen stream with stirring. 1 part by weight of KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added by spraying to obtain a treated powder.
[比較例 1 3 ]  [Comparative Example 13]
ア ドマファイ ン (S O— 2 5 R) 1 0 0重量部をミキサ一に投入し、 攪 拌しながら窒素気流下で、 KBM— 403 (信越化学製) 1重量部を噴霧添 加して処理紛体を得た。  100 parts by weight of admafine (SO-25R) is put into a mixer, and 1 part by weight of KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.) is spray-added under a nitrogen stream with stirring. Got.
[比較例 1 4]  [Comparative Example 14]
ア ドマファイ ン (S O— 2 5 R) 未処理を用いた。  Admafine (SO-25R) untreated was used.
実施例 4 4と比較例 1 3、 1 4の紛体をェピコー ト 8 2 8 E L (ジャ パンエポキシ樹脂株式会社製) に配合して粘度を測定した。 結果は第 1 図に示す。 第 1図から明らかなように、 本発明による粉末/樹脂混合物 の粘度は、 著しく低下した。  The powders of Example 44 and Comparative Examples 13 and 14 were blended in Epicoat 8288 EL (manufactured by Japan Epoxy Resins Co., Ltd.) and the viscosity was measured. The results are shown in FIG. As can be seen from FIG. 1, the viscosity of the powder / resin mixture according to the invention was significantly reduced.
[実施例 4 5 ]  [Example 45]
平均粒径約 2 0 μ πιの溶融球状シリ 力 1 0 0重量部をヘンシェル型混 紛機に投入し、 窒素置換した。 へキサメチルジシラザン、 0. 0 3重量 部を嘖霧しながら紛体を 1 0分間攪拌した。 ΚΒΜ— 4 0 3 (信越化学 製エポキシシラン) 1重量部を噴霧しながら紛体を 1 0分間攪拌して処 理紛体を得た。  100 parts by weight of a molten spherical silica having an average particle size of about 20 μπι was charged into a Henschel type blender, and was replaced with nitrogen. The powder was stirred for 10 minutes while whisking 0.03 parts by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 1 part by weight of Epoxysilane (Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
ここで、 処理粉体の評価方法は以下のとおりである。  Here, the evaluation method of the treated powder is as follows.
ア ドマファイ ン S O— 2 5 Rをレファレンスと して用いた。軟化点 7 0 °Cのク レゾールノボラック型ェポキシ樹脂 2 0重量部、軟化点 8 0 °C のフエノ一ノレノボラック樹脂 2 0重量部、 ト リ フェニルホスフィ ン 0.2 重量、とア ドマファイ ン S 0— 2 5 R, 6 0重量部を混合した後、東洋精 機製 R 6 0型ラボブラス ト ミルに入れて、回転数 1 0 0 r p m、温度 1 0 0°Cの条件下で、 1 5分間混合し、最低トノレクを測定する。  Admafine S O—25R was used as a reference. 20 parts by weight of cresol novolak type epoxy resin having a softening point of 70 ° C, 20 parts by weight of phenol monovolonolak resin having a softening point of 80 ° C, 0.2 parts by weight of triphenylphosphine, and admafine S 0 — After mixing 60 parts by weight of 25R, put it into a R60 lab blast mill manufactured by Toyo Seiki Co., Ltd., and mix for 15 minutes at 100 rpm and 100 ° C. And measure the lowest Tonolek.
軟化点 7 0°Cのク レゾールノボラック型エポキシ樹脂 20重量部、軟 化点 8 0 °Cのフヱノールノボラック樹脂 20重量部、 ト リ フエニルホスフ イ ン 0.2重量、と処理粉体、 6 0重量部を混合した後、東津精機製 R 6 0 型ラボブラス ト ミルに入れて、回転数 1 0 0 r p m、温度 1 0 0 °Cの条件 下で、 1 5分間混合し、 最低トルクを測定する。 20 parts by weight of cresol novolak type epoxy resin with softening point of 70 ° C, 20 parts by weight of phenol novolak resin with softening point of 80 ° C, triphenylphosphine After mixing 0.2 parts by weight of the powder and 60 parts by weight of the treated powder, the mixture was placed in an R60 type lab blast mill manufactured by Higashitsu Seiki Co., Ltd. under the conditions of rotation speed of 100 rpm and temperature of 100 ° C. Mix for 15 minutes and measure minimum torque.
S O - 2 5 Rに対する相対最低トルクは下式であらわす :  The relative minimum torque for S O-25 R is given by:
相対最低トルク - (処理粉体サンプルの最低トルク/ S O— 2 5尺の 最低トルク) X· 1 0 0 Relative minimum torque-(Minimum torque of processed powder sample / S O-minimum torque of 25 feet) X · 100
スパイ ラノレフ口一測定用金型を取り付けた トランスファ成形機を用い て、前記ラボプラスと ミルで混合したエポキシ樹脂組成物のスパイラル フロー値を測定した。 トランスファ成形条件は金型温度 1 8 0°C、注入圧 力 7 5 k g/ c m2、保圧硬化時間 1 6 0秒と した。 -スパイラル'フローの 値も S 0 - 2 5 Rをレファ レンスと した。 The spiral flow value of the epoxy resin composition mixed with the Laboplus and the mill was measured using a transfer molding machine equipped with a die for measuring Spirano Leaf opening. The transfer molding conditions were a mold temperature of 180 ° C., an injection pressure of 75 kg / cm 2 , and a dwell time of 160 seconds. -The value of Spiral 'flow was also taken as S0-25R.
S 0— 2 5 Rに対する相対スパイラルフ口一は下式であらわす : 相対スパイ ラルフロー == (処理粉体サンプルのスパイ ラルフ ローノ " S 0 - 2 5 Rのスパイ ラルフロー) X I 0 0  The relative spiral flow for S 0—25 R is expressed by the following formula: Relative spiral flow == (spiral flow of processed powder sample “S 0-25 R spiral flow”) X I 0 0
[比較例 1 4 ]  [Comparative Example 14]
平均粒径約 2 0 μπιの溶融球状シリ力 1 0 0重量部をヘンシェル型混 紛機に投入し、窒素置換した。 Κ ΒΜ— 403 (信越化学製エポキシシラン) 1重量部を嘖霧しながら紛体を 1 0分間攪拌して処理紛体を得た。  100 parts by weight of a molten spherical silica having an average particle size of about 20 μπι was charged into a Henschel type blender, and purged with nitrogen.紛 ΒΜ—403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) The powder was stirred for 10 minutes while spraying 1 part by weight to obtain a treated powder.
[実施例 4 6 ]  [Example 4 6]
平均粒径約 1 0 mの溶融球状シリ 力 1 ◦ 0重量部をヘンシェル型混 紛機に投入し、 窒素置換した。 へキサメチルジシラザン、 0. 0 3重量 部を嘖霧しながら紛体を 1 0分間攪拌した。 KBM— 403 (信越化学製ェ ポキシシラン') 1重量部を嘖霧しながら紛体を 1 0分間攪拌して処理紛 体を得た。  1 part by weight of a molten spherical silica having an average particle diameter of about 10 m was charged into a Henschel-type mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while whisking 0.03 parts by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[比較例 1 5 ]  [Comparative Example 15]
平均粒径約 1 0 μ πιの溶融球状シリ カ 1 0 0重量部をヘンシェル型混 紛機に投入し、窒素置換した。 ΚΒΜ— 403 (信越化学製エポキシシラン) 1重量部を噴霧しながら紛体を 1 0分間攪拌して処理紛体を得た。  100 parts by weight of a fused spherical silica having an average particle size of about 10 μπι was charged into a Henschel-type blender, and purged with nitrogen. The powder was stirred for 10 minutes while spraying 1 part by weight of ΚΒΜ—403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
[実施例 4 7] 平均粒径約 5 μ ΐηの溶融球状シリ カ 1 0 0重量部をヘンシェル型混紛 機に投入し、 窒素置換した。 へキサメチル'ジシラザン、 0. 0 5重量部 を嘖霧しながら紛体を 1 0分間攪拌した。 K BM— 403 (信越化学製ェポ キシシラン') 1. 5重量部を嘖霧しながら紛体を 1 0分間攪拌して処理 紛体を得た。 [Example 4 7] 100 parts by weight of molten spherical silica having an average particle size of about 5 μΐη was charged into a Henschel type mixer, and was replaced with nitrogen. The powder was agitated for 10 minutes while mixing 0.05 parts by weight of hexamethyl'disilazane. K BM-403 (Epoxysilane 'manufactured by Shin-Etsu Chemical Co., Ltd.) 1. The powder was stirred for 10 minutes while spraying 5 parts by weight to obtain a treated powder.
[比較例 1 6 ]  [Comparative Example 16]
均粒径約 5 μ πιの溶融球状シリ 力 1 0 0重量部をヘンシェル型混紛機 に投入し、窒素置換した。 KBM— 403 (信越化学製エポキシシラン) 1. 5重量部を噴霧しながら紛体を 1 0分間攪拌して処理紛体を得た。  100 parts by weight of a molten spherical silica having an average particle size of about 5 μπι was charged into a Henschel type blender, and was replaced with nitrogen. KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) 1. The powder was stirred for 10 minutes while spraying 5 parts by weight to obtain a treated powder.
[実施例 4 8  [Example 4 8
平均粒径約 7 μ ηιの破砕シリ力 1 0 0重量部をヘンシェル型混紛機に 投入し、 窒素置換した。 へキサメチルジシラザン、 0. 0 5重量部を嘖 霧しながら紛体を 1 0分間攪拌した。 KB Μ— 403 (信越化学製エポキシ シラン) 1重量部を嘖霧しながら紛体を 1 0分間攪拌して処理紛体を得 た。  100 parts by weight of a crushing slurry having an average particle size of about 7 μηι was charged into a Henschel type mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.05 parts by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 1 part by weight of KB Μ—403 (Epoxy Silane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[比較例 1 7 ]  [Comparative Example 17]
平均粒径約 7 μ ηιの破砕シリ カ 1 0 0重量部をヘンシェル型混紛機に 投入し、 窒素置換した。 ΚΒΜ— 403 (信越化学製エポキシシラン) 1重 量部を噴霧しながら紛体を 1 0分間攪拌して処理紛体を得た。  100 parts by weight of crushed silica having an average particle size of about 7 μηι was charged into a Henschel-type mixing machine, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 1 part by weight of ΚΒΜ—403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
[実施例 4 9 ]  [Example 4 9]
平均粒径約 1. 2 μ mの湿式合成球状シリ カ 1 0 0重量部をへンシェ ル型混紛機に投入し、 窒素置換した。 へキサメチル'ジシラザン、 0. 0 3重量部を噴霧しながら紛体を 1 0分間攪拌した。 K B M— 403 (信越化 学製エポキシシラン) 1. 5重量部を噴霧しながら紛体を 1 0分間攪拌 して処理紛体を得た。  100 parts by weight of wet synthetic spherical silica having an average particle size of about 1.2 μm was charged into a henshell type mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.03 parts by weight of hexamethyl'disilazane. KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) 1. The powder was stirred for 10 minutes while spraying 5 parts by weight to obtain a treated powder.
[比較例 1 8 ]  [Comparative Example 18]
平均粒径約 1. 2 μ mの湿式合成球状シリカ 1 0 0重量部をへンシェ ル型混紛機に投入し、 窒素置換した。 KBM— 403 (信越化学製エポキシ シラン') 1. 5重量部を噴霧しながら紛体を 1 0分間攪拌して処理紛体 を得た。 100 parts by weight of wet synthetic spherical silica having an average particle size of about 1.2 μm was charged into a henshell type blender, and was replaced with nitrogen. KBM-403 (Shin-Etsu Chemical's Epoxy Silane ') 1. Stir the powder for 10 minutes while spraying 5 parts by weight to treat the powder. Got.
実施例 4 5〜 4 9及び比較例 1 4〜 1 8の処理紛体の相対最低トルク と相対スパイラルフローを第 9表にまとめた。 第 9表 処理紛体の相対最低トルクと相対スパイラルフロー  Table 9 summarizes the relative minimum torque and the relative spiral flow of the treated powders of Examples 45 to 49 and Comparative Examples 14 to 18. Table 9 Relative minimum torque and relative spiral flow of treated powder
Figure imgf000030_0001
Figure imgf000030_0001
[実施例 5 0 ] [Example 50]
実施例 5 0 と比較例 1 9の試験方法は、 以下のとおりである。  The test methods of Example 50 and Comparative Example 19 are as follows.
軟化点 7 0 °Cのク レゾールノボラック型エポキシ樹脂 4 0重量部とフ イ ラ一、 6 0重量部を混合した後、 東洋精機製 R60型ラボプラス ト ミル に入れて、 回転数 1 0 0 r p m、 温度 1 0 0 °Cの条件下で、 1 5分間混 合し、 最低トルク と 1 5分後の トルクを測定する。 1 5分後の トルク Z 最低トルクの比でフィラーの反応性を評価した。  After mixing 40 parts by weight of cresol novolak type epoxy resin with a softening point of 70 ° C and 60 parts by weight of filler, put the mixture into a R60 lab plastic mill manufactured by Toyo Seiki and rotate at 100 rpm. Mix at a temperature of 100 ° C for 15 minutes, and measure the minimum torque and the torque after 15 minutes. After 15 minutes, the reactivity of the filler was evaluated based on the ratio of the torque Z to the minimum torque.
軟化点 7 0 °Cのク レゾ一ルノボラック型ェポキシ樹脂 4 0重量部と実 施例 1で処理した S0-25R、 6 0重量部を混合した後、 東洋精機製 R60型 ラボブラス ト ミルに入れて、 回転数 1 0 0 r p m、 温度 1 0 0 °Cの条件 下で、 1 5分間混合し、 最低トルク と 1 5分後の トルクを測定した。 [比較例 1 9 ] After mixing 40 parts by weight of cresol novolac epoxy resin having a softening point of 70 ° C with 60 parts by weight of S0-25R treated in Example 1, the mixture was placed in a Toyo Seiki R60 lab blast mill. The mixture was mixed for 15 minutes at a rotation speed of 100 rpm and a temperature of 100 ° C., and the minimum torque and the torque after 15 minutes were measured. [Comparative Example 19]
軟化点 7 0 °Cのタレゾールノポラック型ェポキシ樹脂 4 0重量部と比 較例 1 3で処理した S〇一 2 5 R、 6 0重量部を混合した後、 東洋精機 製 R 6 0型ラボブラス ト ミルに入れて、 回転数 1 0 0 r p m、 温度 1 0 0°Cの条件下で、 1 5分間混合し、 最低トルク と 1 5分後の トルクを測 定した。  After mixing 40 parts by weight of talesol nopolak-type epoxy resin having a softening point of 70 ° C with 60 parts by weight of S-125R treated in Comparative Example 13, R60 type manufactured by Toyo Seiki Co., Ltd. The mixture was placed in a lab blast mill and mixed at a rotation speed of 100 rpm and a temperature of 100 ° C. for 15 minutes, and the minimum torque and the torque after 15 minutes were measured.
実施例 5 0及び比較例 1 9について、 1 5分後の トルク, κ最低トルク の比を第 1 0表にまとめた。 第 1 0表
Figure imgf000031_0001
For Example 50 and Comparative Example 19, Table 10 shows the ratio of the torque and the κ minimum torque after 15 minutes. Table 10
Figure imgf000031_0001
[実施例 5 1 ] [Example 5 1]
平均粒径約 のア ドマファイ ンシリ カ S O— 2 5 R、 1 0 0重 量部をヘンシェル型混粉機に投入し、窒素置換した。へキサメチルジシラ ザン'、 0. 1重量部を噴霧しながら粉体を 1 0分間攪拌した。 KBM— 403 (信越化学製ェポキシシラン ·) 2重量部を噴霧しながら粉体を 1 0分 間攪拌して処理粉体を得た。  Adomafine silica S O—25 R, 100 parts by weight having an average particle size of about 100 parts by weight was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of hexamethyldisilazane '. The powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[実施例 5 2 ]  [Example 52]
平均粒径約 0. 5 μ πιのア ドマファイ ン シリ カ S O— 2 5 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、窒素置換した。へキサメチルジシ ラザン、 0. 0 1重量部を噴霧しながら粉体を 1 0分間攪拌した。 Κ Β Μ ― 403(信越化学製ェポキシシラン) 2重量部を噴霧しながら粉体を 1 0 分間攪拌して処理粉体を得た。  Adomafine silica S O—25 R, 100 parts by weight having an average particle size of about 0.5 μπι was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.01 part by weight of hexamethyldisilazane. Κ Β Μ ― 403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) The powder was stirred for 10 minutes while spraying 2 parts by weight to obtain a treated powder.
[実施例 5 3 ]  [Example 53]
平均粒径約 0. 5 μ πιのア ドマファイ ンシリ カ S O— 2 5 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、窒素置換した。へキサメチルジシ ラザン、 0. 5重量部を嘖霧しながら粉体を 1 0分間攪拌した。 K BM— 403(信越化学製ェポキシシラン) 2重量部を噴霧しながら粉体を 1 0分 間攪拌して処理粉体を得た。 Adomafine silica with an average particle size of about 0.5 μπι SO- 25 R, 100 A part by weight was put into a Henschel type mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.5 parts by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[実施例 5 4]  [Example 54]
平均粒径約 0. 5 mのア ドマファイ ンシリ カ S O— 2 5 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、窒素置換した。へキサメチルジシ ラザン、 0. 1重量部を噴霧しながら粉体を 1 0分間攪拌した。 K BM— 403(信越化学製エポキシシラン) 1重量部を噴霧しながら粉体を 1 0分 間攪拌して処理粉体を得た。  Admafine silica S O—25 R, 100 parts by weight, having an average particle size of about 0.5 m, was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
[実施例 5 5]  [Example 55]
平均粒径約 0. 5 . mのア ドマファイ ンシリ カ S O— 2 5 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、窒素置換した。へキサメチルジシ ラザン、 0. 1重量部を噴霧しながら粉体を 1 0分間攪拌した。 K BM— 403(信越化学製エポキシシラン) 4重量部を噴霧しながら粉体を 1 0分 間攪拌して処理粉体を得た。  Adomafine silica S O—25 R, 100 parts by weight having an average particle size of about 0.5 m was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 4 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
[実施例 5 6 ]  [Example 56]
平均粒径約 0. 5 μπιのア ドマファイ ンシリ カ S O— 2 5 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、窒素置換した。へキサメチルシシ ラザン ·、 0. 1重量部を噴霧しながら粉体を 1 0分間攪拌した。 K BM— 573(信越化学製ァミ ノシシラン) 2重量部を噴霧しながら粉体を 1 0分 間攪拌して処理粉体を得た。  Adomafine silica S O—25 R, 100 parts by weight having an average particle size of about 0.5 μπι was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of hexamethylsilazane. The powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-573 (Shin-Etsu Chemical Aminoshiran) to obtain a treated powder.
[実施例 5 7 ]  [Example 5 7]
平均粒径約 0.5 μ ηιのア ドマファイ ンシリ カ S O— 2 5 R、 1 0 0重 量部をヘンシェル型混粉機に投入し、窒素置換した。へキサメチル'ジシラ ザン、 0. 1重量部を噴霧しながら粉体を 1 0分間攪拌した。 KB M— 5103(信越化学製ァク リルシラン') 2重量部を噴霧しながら粉体を 1 0分 間攪拌して処理粉体を得た。  Admafine silica S O—25 R, 100 parts by weight with an average particle size of about 0.5 μηι was charged into a Henschel-type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of hexamethyl'disilazane. The powder was stirred for 10 minutes while spraying 2 parts by weight of KB M-5103 (acrylsilane 'manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[実施例 5 8] 平均粒径約 0. 5 μ mのア ドマファイ ンシリ カ S O— 2 5 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、窒素置換した。 ト リ メチルク口 口 シラン、 0. 1重量部を噴霧しながら粉体を 1 0分間攪拌した。混粉機を 加熱減圧して塩酸ガスを完全に除去した後 K B M— 403 (信越化学製ェポ キシシラン) 2重量部を嘖霧しながら粉体を 1 0分間攪拌して処理粉体 を得た。 [Example 5 8] Adomafine silica SO—25R, 100 parts by weight, with an average particle size of about 0.5 μm, was charged into a Henschel-type powder mixer and replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of silane. The mixture was heated and decompressed to completely remove the hydrochloric acid gas, and the powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder. .
[実施例 5 9 ]  [Example 5 9]
平均粒径約 0. 5 μ πιのア ドマファイ ンシリ カ S O— 2 5 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、窒素置換した。 ト リ メチルメ トキ シシラン、 0. 1重量部を嘖霧しながら粉体を 1 0分間攪拌した。 ΚΒΜ — 403(信越化学製エポキシシラン') 2重量部を噴霧しながら粉体を 1 0 分間攪拌して処理粉体を得た。  Adomafine silica S O—25 R, 100 parts by weight with an average particle size of about 0.5 μπι was charged into a Henschel-type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.1 part by weight of trimethylmethoxysilane. The powder was stirred for 10 minutes while spraying 2 parts by weight of ΚΒΜ—403 (Epoxysilane 'manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[実施例 6 0 ]  [Example 60]
平均粒径約 1. 5 z mのア ドマファイ ンシリ カ S O— 3 2 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、窒素置換した。へキサメチルジシ ラザン '、 0. 0 5重量部を噴霧しながら粉体を 1 0分間攪拌した。 K BM — 403(信越化学製エポキシシラン ·)1重量部を噴霧しながら粉体を 1 0 分間攪拌して処理粉体を得た。  Adomafine silica S O—32 R, 100 parts by weight, with an average particle size of about 1.5 zm, was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.05 parts by weight of hexamethyldisilazane '. The powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[実施例 6 1 ]  [Example 6 1]
平均粒径約 0. 2 i mのア ドマファイ ンシリ カ S 0— C 1 , 1 0 0重 量部をヘンシェル型混粉機に投入し、窒素置換した。へキサメチルジシラ ザン、 0. 5重量部を噴霧しながら粉体を 1 0分間攪拌した。 K B M— 403(信越化学製ェポキシシラン') 4重量部を噴霧しながら粉体を 1 0分 間攪拌して処理粉体を得た。  The admafine silica S 0 — C 1, 100 parts by weight having an average particle size of about 0.2 im was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.5 parts by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 4 parts by weight of KBM-403 (Epoxysilane 'manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[実施例 6 2]  [Example 6 2]
平均粒径約 7 μ mのア ドマフアイ ンシリ力試作品、 1 0 0重量部をへ ンシェル型混粉機に投入し、窒素置換した。へキサメチルジシラザン、 0. 0 5重量部を噴霧しながら粉体を 1 0分間攪拌した。 KBM— 403(信越 化学製エポキシシラン) 1重量部を噴霧しながら粉体を 1 0分間攪拌し て処理粉体を得た。 100 parts by weight of a prototype adomafin sieve with an average particle size of about 7 μm was charged into a hel-shell type mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 0.05 parts by weight of hexamethyldisilazane. The powder is stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Shin-Etsu Chemical epoxysilane). Thus, a treated powder was obtained.
[実施例 6 3 ]  [Example 6 3]
平均粒径約 0. 7 z mのア ドマファイ ンァル'ミナ A O— 502, 1 0 0重 量部をヘンシェル型混粉機に投入し、窒素,置換した。へキサメチルジシ ラザン'、 0. 1重量部を嘖霧しながら粉体を 1 0分間攪拌 Bした。 K BM —403(信越化学製エポキシシラン) 2重量部を噴霧しながら粉体を 1 0 分間攪拌して処理粉体を得た。  Admafinal 'Mina AO-502, 100 parts by weight having an average particle size of about 0.7 zm was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while stirring 0.1 g of Hexamethyldisilazane 'in 0.1 part by weight. The powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
[実施例 6 4 ]  [Example 6 4]
平均粒径約 Ι Ο μ πιのア ドマフアインアルミナ A Ο— 509, 1 0 0重量 部をヘンシェル型混粉機に投入し、窒素置換した。へキサメチルジシラザ ン 0. 0 2重量部を噴霧しながら粉体を 1 0分間攪拌した。 K B M— 403(信越化学製エポキシシラン') 1重量部を嘖霧しながら粉体を 1 0分 間攪拌して処理粉体を得た。  509,100 parts by weight of adumaffin alumina A の —average particle size of about Ομμπι was charged into a Henschel type powder mixer and purged with nitrogen. The powder was stirred for 10 minutes while spraying 0.02 parts by weight of hexamethyldisilazane. The powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane 'manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[比較例 2 0 ]  [Comparative Example 20]
平均粒径約 0. 5 μ mのア ドマファイ ンシリ カ S O— 2 5 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、窒素置換した。 K BM— 403(信越 化学製ェポキシシラン) 2重量部を噴霧しながら粉体を 1 0分間攪拌し て処理粉体を得た。  Adomafine silica S O—25 R, 100 parts by weight, with an average particle size of about 0.5 μm, was charged into a Henschel type powder mixer and replaced with nitrogen. The powder was stirred for 10 minutes while spraying 2 parts by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[比較例 2 1 ]  [Comparative Example 21]
平均粒径約 0. のア ドマファイ ンシリ カ S O— 2 5 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、 窒素置換した。加水分解した K BM— 403(信越化学製エポキシシラン) 2重量部と I P A, 2重量部の混 合液を、噴霧しながら粉体を 1 0分間攪拌して処理粉体を得た。  100 parts by weight of adomafine silica S O—25 R with an average particle size of about 0 was charged into a Henschel-type mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying a mixture of 2 parts by weight of hydrolyzed KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) and 2 parts by weight of IPA to obtain a treated powder.
[比較例 2 2]  [Comparative Example 2 2]
平均粒径約 1. 5 /z mのア ドマファイ ンシリ カ S O— 3 2 R, 1 0 0 重量部をヘンシェル型混粉機に投入し、窒素置換した。 K BM— 403(信越 化学製エポキシシラン) 1重量部を噴霧しながら粉体を 1 0分間攪拌し て処理粉体を得た。  100 parts by weight of adomafine silica S O—32 R, having an average particle size of about 1.5 / z m, was charged into a Henschel-type mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[比較例 2 3 ] 平均粒径約 0. 2 /i mのア ドマファイ ンシリ カ S O— C l、 l 0 0重量 部をヘンシェル型混粉機に投入し、窒素置換した。 K BM— 403(信越化学 製エポキシシラン) 4重量部を噴霧しながら粉体を 1 0分間攪拌して処 理粉体を得た。 [Comparative Example 23] Adomafine silica SO—Cl, 100 parts by weight, having an average particle size of about 0.2 / im, was charged into a Henschel type powder mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 4 parts by weight of K BM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
[比較例 2 4 ]  [Comparative Example 24]
平均粒径約 7 mのア ドマファイ ンシリカ試作品、 1 0 0重量部をへ ンシェル型混粉機に投入し、窒素置換した。 K BM— 403(信越化学製ェポ キシシラン') 1重量部を嘖霧しながら粉体を 1 0分間攪拌して処理粉体 を得た。  100 parts by weight of a prototype adomafine silica having an average particle size of about 7 m was charged into a hel-shell type mixer, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane 'manufactured by Shin-Etsu Chemical Co., Ltd.) to obtain a treated powder.
[比較例 2 5 ] 3  [Comparative Example 25] 3
平均粒径約 0. のアドマフアインアルミナ A O— 502, 1 0 0重 量部をヘンシェル型渥粉機に投入し、窒素置換した。 K BM— 403(信越化 学製エポキシシラン) 2重量部を噴霧しながら粉体を 1 0分間攪拌して 処理粉体を得た。  Admafine alumina AO-502, 100 parts by weight having an average particle size of about 0 was charged into a Henschel type ats powder mill, and was replaced with nitrogen. The powder was stirred for 10 minutes while spraying 2 parts by weight of K BM-403 (Epoxysilane manufactured by Shin-Etsu Kagaku) to obtain a treated powder.
[比較例 2 6 ]  [Comparative Example 26]
平均粒径約 1 0 μ mのァ ドマフアインアルミナ AO— 509, 1 0 0重量 部をヘンシェル型混粉機に投入し、窒素置換した。 K BM— 403(信越化学 製エポキシシラン) 1重量部を噴霧しながら粉体を 1 0分間攪拌して処 理粉体を得た。  100 parts by weight of admaffine alumina AO-509 having an average particle size of about 10 μm was charged into a Henschel type powder mixer and was purged with nitrogen. The powder was stirred for 10 minutes while spraying 1 part by weight of KBM-403 (Epoxysilane manufactured by Shin-Etsu Chemical) to obtain a treated powder.
実施例 5 1〜 6 4及び比較例 2 1〜 2 6について、 処理粉体の相対最 低トルク と相対スパイ ラルフローを第 1 1表にまとめた。 For Examples 51 to 64 and Comparative Examples 21 to 26, Table 11 summarizes the relative minimum torque and relative spiral flow of the treated powder.
処理紛体の相対最低トルクと相対スパイラルフ口 Relative minimum torque of processed powder and relative spiral port
Figure imgf000036_0001
実施例 6 5
Figure imgf000036_0001
Example 6 5
実施例 5 1で得た処理粉体 6 0重量部、軟化点 7 0 °Cのク レゾールノ ポラック型ェポキシ樹脂 2 0重量部、軟化点 8 0 °Cのフエノールノボラ ック樹脂 2 0重量部、 ト リ フ: nニルホスフィ ン 0 . 2 2重量部を混合した 後、東洋精機製 R 6 0型ラボブラス ト ミルに入れて、回転数 1 0 0 r p m、 温度 1 0 0 °Cの条件下で、 1 5分間混合し、硬化組成物を得た。 硬化組成 物を金型に流し、 1 9 0 °C、 6時間硬化させて評価用サンプルピースを作 成した。 60 parts by weight of the treated powder obtained in Example 5, 20 parts by weight of a cresol no-polak type epoxy resin having a softening point of 70 ° C., and 20 parts by weight of a phenol novolak resin having a softening point of 80 ° C. , Trif: 0.22 parts by weight of n-nylphosphine Thereafter, the mixture was placed in a R60 type lab blast mill manufactured by Toyo Seiki and mixed for 15 minutes at a rotation speed of 100 rpm and a temperature of 100 ° C. to obtain a cured composition. The cured composition was poured into a mold and cured at 190 ° C. for 6 hours to prepare a sample piece for evaluation.
比較例 2 7  Comparative Example 2 7
比較例 2 0で得た処理粉体 6 0重量部、軟化点 7 0 °Cのク レゾールノ ボラック型エポキシ樹脂 2 0重量部、軟化点 8 0 °Cのフエノールノボラ ック樹脂 2 0重量部、 ト リ フエニルホスフィ ン 0 . 2重量、を混合した後、 東洋精機製 R 6 0型ラボブラス ト ミルに入れて、回転数 1 0 0 r p m、温 度 1 0 0 °Cの条件下で、 1 5分間混合し、硬化組成物を得た。硬化組成物 を金型に流し、 1 9 0 °C、 6時間硬化させて評価用サンプルピースを作成 した。  Comparative Example 20 Treated powder obtained in 20 60 parts by weight, cresol novolak type epoxy resin having a softening point of 70 ° C. 20 parts by weight, phenol novolac resin having a softening point of 80 ° C. 20 parts by weight And 0.2% by weight of triphenylphosphine, and then mixed in a R60 lab blast mill manufactured by Toyo Seiki Co., Ltd. at a rotational speed of 100 rpm and a temperature of 100 ° C. After mixing for a minute, a cured composition was obtained. The cured composition was poured into a mold and cured at 190 ° C for 6 hours to prepare a sample piece for evaluation.
実施例 6 5及び比較例 2 7について、 評価結果を第 4表にまとめた。 第 1 2表 硬化物物性  Table 4 summarizes the evaluation results of Example 65 and Comparative Example 27. Table 12 Cured physical properties
Figure imgf000037_0001
産業上の利用可能性
Figure imgf000037_0001
Industrial applicability
本発明の微塩基性シリ力粉体は、 ( 1 )保存による凝集が発生しない、 ( 2 ) ミク ロオーダー以上の粗粒を気流分級、 篩分級で容易に除去でき る、 ( 3 ) エポキシ樹脂と混合する際、 シランカップリ ング剤を効率良 く吸着、 固着する、 (4 ) エポキシ樹脂コンパウンドの粘度が低く、 高 流動性を示す、 ( 5 ) 硬化物の耐はんだリ フロー性等の物性が優れてい る、 という効果を奏する。  The finely basic siliceous powder according to the present invention has (1) no agglomeration due to storage, (2) coarse particles of micro order or more can be easily removed by airflow classification and sieve classification, and (3) epoxy resin. Efficiently adsorbs and adheres the silane coupling agent when mixed. (4) Low viscosity epoxy resin compound and high fluidity. (5) Excellent physical properties such as solder reflow resistance of the cured product. The effect is that
又、本発明の微塩基性シリ力粉体は、 エポキシ樹脂に配合した際、従来 の表面処理粉末や未処理粉末よ り低粘度である。 これによ り、 得られた エポキシ樹脂組成物は高流動性で、 かつ金属酸化物粉末の高充填を可能 とする。 金属酸化物粉末の高充填により、耐湿性、硬性、熱膨張、重合収縮 等が改善され、 封止材料として優れたものとなる。 Further, when the finely basic silica powder of the present invention is mixed with an epoxy resin, it has a lower viscosity than conventional surface-treated powders or untreated powders. As a result, the obtained The epoxy resin composition has high fluidity and enables high filling of metal oxide powder. Due to the high filling of the metal oxide powder, moisture resistance, hardness, thermal expansion, polymerization shrinkage, etc. are improved, and it becomes an excellent sealing material.
又、 本発明の微塩基性シリカ粉体は、 エポキシ樹脂等に配合して、 半 導体装置や液晶表示装置の封止材料等に用いることが出来る。  Further, the finely basic silica powder of the present invention can be used as a sealing material for semiconductor devices and liquid crystal display devices by being mixed with an epoxy resin or the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . シ リ 力粉体の表面が塩基性物質又は塩基性混合物で処理さ れた微塩基性シ リ 力粉体である こ と を特徴とする微塩基性シ リ 力 粉体。 1. A finely basic silica powder characterized in that the surface of the powder is a finely basic silica powder treated with a basic substance or a basic mixture.
2 . 前記シ リ カ粉体又は微塩基性シ リ 力粉体は所定値以上の粒 径の粗粒がカ ツ ト されている こ と を特徴とする請求の範囲第 1 項 に記載の微塩基性シリ カ粉体。  2. The fine powder according to claim 1, wherein the silica powder or the finely basic silica powder is cut into coarse particles having a particle diameter of a predetermined value or more. Basic silica powder.
3 . 前記塩基性物質又は塩基性混合物は 1 a t mの時の沸点が 1 5 0 °C以下である こ と を特徴とする請求の範囲第 1 項又は第 2 項に記載の微塩基性シリ 力粉体。  3. The microbasic silicic acid according to claim 1 or 2, wherein the basic substance or the basic mixture has a boiling point at 1 atm of 150 ° C or less. powder.
4 . 前記塩基性物質又は塩基性混合物は、 ア ンモニア、 有機ァ ミ ン、 シラザン類、 窒素を含有する環状化合物又はその溶液、 ァ ミ ン系シラ ンカ ッ プリ ング剤又はその溶液、 から選択される 1 種 以上である こ と を特徴とする請求の範囲第 1 から 3 項のいずれか に記載の微塩基性シリ 力粉体。  4. The basic substance or the basic mixture is selected from ammonia, organic amines, silazanes, a nitrogen-containing cyclic compound or a solution thereof, and an amide-based silane coupling agent or a solution thereof. 4. The finely basic silica powder according to any one of claims 1 to 3, wherein the powder is at least one kind.
5 . 前記シリ 力粉体 1 m 2に対して塩基性物質又は塩基性混合物 が 0 . 0 5 〜 5 μ πι ο 1 e 塩基当量で処理されている こ と を特徴 とする請求の範囲第 1 から 4項のいずれかに記載の微塩基性シ リ 力粉体。 5. The basic substance or a basic mixture with respect to silica Chikarakotai 1 m 2 is 0. 0 5 ~ 5 μ πι ο 1 e base range first claims are equiv characterized and this is 5. The finely basic silica powder according to any one of items 1 to 4.
6 . 前記塩基性物質がォルガノ シラザン類である こ と を特徴と する請求項 1 から 5 のいずれかに記載の微塩基性シリ 力粉体。 6. The finely basic silica powder according to any one of claims 1 to 5, wherein the basic substance is an organosilazane.
7 . 前記塩基性物質が、 へキサメ チルジシラザン (H M D S ) である こ と を特徴とする請求の範囲第 1 から 5 項のいずれかに記 載の微塩基性シリ 力粉体。 7. The finely basic silica powder according to any one of claims 1 to 5, wherein the basic substance is hexamethyldisilazane (HMDS).
8 . 前記シリ カ粉体が、 金属シ リ コ ンを酸素と反応させて得ら れる球状シ リ カ粉体、 破砕シ リ 力 を溶融して得られる球状シ リ 力 粉体、 シ リ カ破砕物から選ばれる こ と を特徴とする請求の範囲第 1 から 7項のいずれかに記載の微塩基性シリ 力粉体。 8. A spherical silica powder obtained by reacting metallic silicon with oxygen, a spherical silica powder obtained by melting a crushed silica force, Claims characterized by being selected from crushed materials Item 8. The slightly basic siliceous powder according to any one of Items 1 to 7.
9 . シリ カ粉体の最大粒子径以上の粒径を持つ導電性粒子が除 去されたこ とを特徴とする請求の範囲第 1 から 8項のレヽず hかに 記載の微塩基性シリ カ粉体。  9. The finely basic silica according to any one of claims 1 to 8, wherein the conductive particles having a particle size not less than the maximum particle size of the silica powder have been removed. powder.
1 0 . 前 sdシリ カ粉体は、 平均粒径 0 . 0 1 から 3 0 μ、 最 大粒径 7 5 IX の粒径分布を有する球状シ リ 力粒子の少なく と も一 種類以上のシリ 力粒子非混合粉又は混合粉であるこ と を特徴とす る請求の車 E囲第 1 から 9項のいずれかに記載の微 性シリ カ粉  The pre-sd silica powder has at least one kind of spherical silica particles having a particle size distribution of an average particle size of 0.01 to 30 μm and a maximum particle size of 75 IX. The fine silica powder according to any one of claims 1 to 9, wherein the powdery car is non-mixed powder or mixed powder.
,
1 1 . 刖記シ.リ カ粉体は、 平均粒径 0 . 0 1 βから 2 0 μ、 最 大粒径 4 5 の粒径分布を有する球状シ リ 力粒子の少なく と も一 種類以上のシ ]) 力粒子非混合粉又は混合粉であるこ と を特徴とす る請求の範囲第 1 から 9項のいずれかに記載の微 性シリ 力粉  1 1. The silica powder has at least one kind of spherical silica particles having an average particle size of 0.01 β to 20 μm and a particle size distribution of a maximum particle size of 45. 10) The fine silicon powder according to any one of claims 1 to 9, wherein the powder is non-mixed powder or mixed powder.
1 2 . m記シリ カ粉体は、 平均粒径 0 . 0 1 μから 1 0 .、 最 大粒径 2 0 β の粒径分布を有する球状シ リ 力粒子の少なく と も一 種類以上のシ.ジ 力粒子非混合粉又は混合粉であるこ と を特徴とす る請求の in囲第 1 から 9項のいずれかに記载の微塩基性シリ 力粉 体。 The silica powder described above has at least one kind of spherical silica particles having an average particle size of 0.01 μm to 10 μm and a maximum particle size of 20β. 10. The microbasic siliceous powder according to any one of claims 1 to 9, wherein the powder is non-mixed powder or mixed powder.
1 3 . 前記シリ カ粉体は、 平均粒径 0 . 0 1 μから 5 μ、 最大 粒径 1 0 μの粒径分布を有する球状シリ カ粒子の少なく と も一種 類以上のシリ 力粒子非混合粉又は混合粉であるこ と を特徴とする 請求の範囲第 1 から 9項のいずれかに記载の微塩基性シリ カ粉体。 13. The silica powder has at least one kind of spherical silica particles having a particle size distribution of an average particle size of 0.01 μm to 5 μm and a maximum particle size of 10 μm. The finely basic silica powder according to any one of claims 1 to 9, which is a mixed powder or a mixed powder.
1 4 . 前記シ リ カ粉体は、 平均粒径 0 . 0 1 μから 3 μ、 最大 粒径 5 の粒径分布を有する球状シリ カ粒子の少なく と も一種類 以上のシリ カ粒子非混合粉又は混合粉であるこ と を特徴とする請 求の範囲第 1 から 9項のいずれかに記載の微塩基性シリ カ粉体。14. The silica powder is non-mixed with at least one type of spherical silica particles having a particle size distribution of an average particle size of 0.01 μm to 3 μm and a maximum particle size of 5. 10. The finely basic silica powder according to any one of claims 1 to 9, wherein the powder is a powder or a mixed powder.
1 5 . 前記シ リ カ粉体は、 平均粒径 0 . 0 1 μカゝら 1 . 5 μ 、 最大粒径 3 μの粒径分布を有する球状シリ カ粒子の少なく と も一 種類以上のシ リ カ粒子非混合粉又は混合粉である こ と を特徴とす る請求の範囲第 1 から 9項のいずれかに記載の微塩基性シ リ 力粉 体。 15. The silica powder has at least one spherical silica particle having a particle size distribution of an average particle size of 0.01 μm, 1.5 μm, and a maximum particle size of 3 μm. 10. The finely basic silica powder according to any one of claims 1 to 9, wherein the powder is a non-mixed powder or a mixed powder of silica particles.
1 6 . 前記微塩基性シ リ カ粉体がシラ ンカ ツプリ ング剤で処理 されたこ と を特徴とする請求の範囲第 1 から 1 5項のいずれかに 記載の微塩基性シリ 力粉体。  16. The finely basic silica powder according to any one of claims 1 to 15, wherein the finely basic silica powder has been treated with a silane coupling agent.
1 7 . 前記シラ ンカ ップリ ング剤は、 アミ ノ基、 グリ シジル基、 メルカ プ ト基、 ゥ レイ ド基、 アルコキシ基、 メルカ プ ト基、 ァク リ ル基、 フヱニル'基、 ァルキル基から選択される活性基を有する 化合物の一種以上である こ と を特徴とする請求の範囲第 1 6項記 載の表面処理シリ 力粉体。  17. The silane coupling agent is selected from an amino group, a glycidyl group, a mercapto group, a perylene group, an alkoxy group, a mercapto group, an acryl group, a phenyl group, and an alkyl group. 17. The surface-treated silica powder according to claim 16, which is one or more compounds having an active group selected.
1 8 . シリ カ粉体の表面を塩基性物質又は塩基性物質で処理す る こ と を特徴とする微塩基性シリ カ粉体の製造方法。  18. A method for producing a finely basic silica powder, comprising treating the surface of the silica powder with a basic substance or a basic substance.
1 9 . 前記微塩基性シリ カ粉体の所定値以上の粒径の粗粒を力 ッ 卜する工程を含むこ と を特徴とする請求の範囲第 1 8 項に記載 の微塩基性シリ カ粉体の製造方法。  19. The microbasic silica according to claim 18, comprising a step of forcing coarse particles having a particle size equal to or larger than a predetermined value of the microbasic silica powder. Powder manufacturing method.
2 0 . 前記シ リ 力粉体の表面を塩基性物質又は塩基性物質で処 理する工程が、 樹脂組成物配合工程中に行われる こ と を特徴とす る請求の範囲第 1 8又は 1 9項に記載の微塩基性シ リ カ粉体の製 造方法。  20. The method according to claim 18 or 1, wherein the step of treating the surface of the crushed powder with a basic substance or a basic substance is performed during a resin composition blending step. 10. The method for producing a slightly basic silica powder according to item 9.
2 1 . シリ カ粉体を、 塩基性物質及びシラ ンカ ッ プ リ ング剤で 表面処理する こ と を特徴とする請求の範囲第 1 8 から 2 0項のい ずれかに記載の微塩基性シリ カ粉体の製造方法  21. The fine basicity according to any one of claims 18 to 20, wherein the silica powder is subjected to a surface treatment with a basic substance and a silane coupling agent. Manufacturing method of silica powder
2 2 . シ リ カ粉体を、 先に塩基性物質で表面処理し、 次いてシ ラ ン力 ップリ ング剤で表面処理する こ と を特徴とする請求の範囲 第 2 1 項に記載の微塩基性シ リ カ粉体の製造方法。  22. The fine powder according to claim 21, wherein the silica powder is first subjected to a surface treatment with a basic substance, and then subjected to a surface treatment with a silane coupling agent. A method for producing basic silica powder.
2 3 . シリ カ粉体を、 へキサメ チルジシラザン及びシラ ンカ ツ プリ ング剤で表面処理する こ と を特徴とする請求の範囲第 2 1 又 は 2 2項に記載の微塩基性シリ カ粉体の製造方法 23. The slightly basic silica powder according to claim 21 or 22, wherein the silica powder is subjected to a surface treatment with a hexamethyldisilazane and a silane coupling agent. Manufacturing method
2 4 . 請求の範囲第 1 から 1 7項のいずれかに記载の微塩基性 シ リ 力粉体を有機樹脂に配合した樹脂組成物。 24. A resin composition comprising the finely basic silica powder according to any one of claims 1 to 17 mixed with an organic resin.
2 5 . 少なく と も ( A ) エポキシ樹脂、 ( B ) 硬化剤、 ( C ) 触 媒を配合したエポキシ樹脂組成物であって、 (D) 無機充填材と し て請求の範囲第 1 から 1 7項のいずれかに記載の微塩基性シ リ 力 粉体を全エポキシ樹脂組成物中に 7 0重量%以上含むこ と を特徴 とする封止用エポキシ樹脂組成物。  25. An epoxy resin composition containing at least (A) an epoxy resin, (B) a curing agent, and (C) a catalyst, and (D) an inorganic filler as claimed in claims 1 to 1. 8. An epoxy resin composition for encapsulation, wherein the epoxy resin composition contains 70% by weight or more of the finely basic silica powder according to any one of items 7 in all epoxy resin compositions.
2 6 . 少なく と も (A) エポキシ樹脂、 ( B ) 硬化剤、 ( C ) 触 媒を配合したエポキシ樹脂組成物であって、 (D) 無機充填材と し て請求の範囲第 1 から 1 7項のいずれかに記載の微塩基性シ リ 力 粉体を含むこ と を特徴とする封止用液状エポキシ樹脂組成物。  26. An epoxy resin composition containing at least (A) an epoxy resin, (B) a curing agent, and (C) a catalyst, and (D) an inorganic filler as claimed in claims 1 to 1 A liquid epoxy resin composition for encapsulation, comprising the finely basic silica powder according to claim 7.
2 7 . 織物ク ロ ス含浸用ワ ニス又はフ ィ ルム形成用 ワ ニス に、 請求の範囲第 1 から 1 7 項のいずれかに記載の微塩基性シ リ 力粉 体を配合したこ と を特徴とする樹脂組成物。 27. A varnish for impregnating a woven cloth or a varnish for forming a film, to which the finely basic dust powder according to any one of claims 1 to 17 is blended. Characteristic resin composition.
PCT/JP2004/000851 2003-12-15 2004-01-29 Fine basic silica powder, process for producing the same and resin composition WO2005080270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-417108 2003-12-15
JP2003417108A JP5220981B2 (en) 2003-12-15 2003-12-15 Finely basic silica powder, method for producing the same, and resin composition

Publications (1)

Publication Number Publication Date
WO2005080270A1 true WO2005080270A1 (en) 2005-09-01

Family

ID=34736117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000851 WO2005080270A1 (en) 2003-12-15 2004-01-29 Fine basic silica powder, process for producing the same and resin composition

Country Status (2)

Country Link
JP (1) JP5220981B2 (en)
WO (1) WO2005080270A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356742A (en) * 2017-12-21 2020-06-30 纳美仕有限公司 Resin composition, semiconductor sealing agent, one-component adhesive, and adhesive film

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130698B2 (en) * 2006-11-21 2013-01-30 住友ベークライト株式会社 Insulating resin composition for multilayer printed wiring board, insulating sheet with substrate, multilayer printed wiring board, and semiconductor device
JP5195454B2 (en) * 2009-01-22 2013-05-08 味の素株式会社 Resin composition
JP2011173779A (en) * 2010-01-26 2011-09-08 Sakai Chem Ind Co Ltd Silica particles, process for production of same, and resin composition containing same
TW201302907A (en) * 2011-06-01 2013-01-16 Sumitomo Bakelite Co A liquid resin composition and a semiconductor device using said liquid resin composition
JP2012054573A (en) * 2011-10-11 2012-03-15 Sumitomo Bakelite Co Ltd Insulating resin composition for multilayer printed circuit board, insulation sheet with substrate, multilayer printed circuit board, and semiconductor device
JP4993031B2 (en) * 2011-10-11 2012-08-08 住友ベークライト株式会社 Insulating resin composition for multilayer printed wiring board, insulating sheet with substrate, multilayer printed wiring board, and semiconductor device
JP5892692B2 (en) * 2011-12-20 2016-03-23 住友化学株式会社 Liquid crystal polyester-containing liquid composition and method for producing liquid crystal polyester-containing liquid composition
JP5644823B2 (en) * 2012-09-21 2014-12-24 味の素株式会社 Resin composition
JP5252109B2 (en) * 2012-10-19 2013-07-31 住友ベークライト株式会社 Insulating resin composition for multilayer printed wiring board, insulating sheet with substrate, multilayer printed wiring board, and semiconductor device
JP6074278B2 (en) * 2013-01-30 2017-02-01 株式会社アドマテックス Modified inorganic oxide particles
JP7028163B2 (en) * 2016-05-20 2022-03-02 住友化学株式会社 Injection molded body
US10927238B2 (en) * 2016-12-13 2021-02-23 Dupont Safety & Construction, Inc. Solid polymeric highly durable surfacing
JP2018104634A (en) * 2016-12-28 2018-07-05 ナミックス株式会社 Surface-treated silica filler, and resin composition containing surface-treated silica filler
JP7336146B2 (en) * 2016-12-28 2023-08-31 ナミックス株式会社 Surface-treated silica filler, method for producing same, and resin composition containing surface-treated silica filler
JP6483205B2 (en) * 2017-07-13 2019-03-13 株式会社アドマテックス Method for producing surface-modified silica particles and method for producing filler-containing composition
JP2019143050A (en) * 2018-02-21 2019-08-29 株式会社トクヤマデンタル Method for producing polyaryletherketone resin composite material
JP7464218B2 (en) * 2018-02-21 2024-04-09 株式会社トクヤマデンタル Method for producing polyaryletherketone resin composite material
JP7201177B2 (en) * 2019-04-26 2023-01-10 株式会社トクヤマデンタル Method for evaluating polyaryletherketone resin composites
JP2021055108A (en) * 2020-12-24 2021-04-08 ナミックス株式会社 Surface treatment method of silica filler, silica filler obtained by the same, and resin composition containing the silica filler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232296A (en) * 1993-02-05 1994-08-19 Nitto Denko Corp Semiconductor device
JPH1112267A (en) * 1997-06-18 1999-01-19 Sumitomo Chem Co Ltd Production of polyhydric phenol compound, epoxy resin composition and product using the same
JP2001055487A (en) * 1999-06-08 2001-02-27 Shin Etsu Chem Co Ltd Encapsulant for flip chip type semiconductor device and flip chip type semiconductor device
JP2002179885A (en) * 2000-12-15 2002-06-26 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for sealing semiconductor by screen printing
JP2003321594A (en) * 2002-04-26 2003-11-14 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3647959B2 (en) * 1996-02-01 2005-05-18 水澤化学工業株式会社 Method for producing amorphous silica-based regular particles
JP3719801B2 (en) * 1996-12-26 2005-11-24 住友ベークライト株式会社 Resin composition for sealing electronic parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232296A (en) * 1993-02-05 1994-08-19 Nitto Denko Corp Semiconductor device
JPH1112267A (en) * 1997-06-18 1999-01-19 Sumitomo Chem Co Ltd Production of polyhydric phenol compound, epoxy resin composition and product using the same
JP2001055487A (en) * 1999-06-08 2001-02-27 Shin Etsu Chem Co Ltd Encapsulant for flip chip type semiconductor device and flip chip type semiconductor device
JP2002179885A (en) * 2000-12-15 2002-06-26 Shin Etsu Chem Co Ltd Liquid epoxy resin composition for sealing semiconductor by screen printing
JP2003321594A (en) * 2002-04-26 2003-11-14 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111356742A (en) * 2017-12-21 2020-06-30 纳美仕有限公司 Resin composition, semiconductor sealing agent, one-component adhesive, and adhesive film

Also Published As

Publication number Publication date
JP2005170771A (en) 2005-06-30
JP5220981B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
WO2005080270A1 (en) Fine basic silica powder, process for producing the same and resin composition
JP4279521B2 (en) Metal oxide powder for epoxy resin composition for semiconductor encapsulation, its production method, and epoxy resin composition for semiconductor encapsulation
JP4276423B2 (en) Basic silica powder, method for producing the same, and resin composition
WO2006075599A1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2005171208A (en) Filler and resin composition
JP3060530B2 (en) Surface treatment method of inorganic particles and thermosetting resin composition
CN111356742A (en) Resin composition, semiconductor sealing agent, one-component adhesive, and adhesive film
JP6950299B2 (en) Resin composition for encapsulant and electronic device using it
JP2019176023A (en) Semiconductor-sealing resin composition and semiconductor device
JPH061605A (en) Silica fine powder, production thereof and resin composition containing silica fine powder
JP2002322243A (en) Method of production for epoxy resin composition and semiconductor device
KR20030067513A (en) Black Composite Particles for Semiconductor Sealing Material, and Semiconductor Sealing Material Using the Same
JP5410095B2 (en) Amorphous siliceous powder, method for producing the same, and semiconductor sealing material
JPH06100313A (en) Surface treated silica, its production and filler for resin composition for sealing semiconductor
JP2005171199A (en) Slightly basic alumina powdery material, method for producing the same and resin composition
JP2005171206A (en) Powdery mixture for blending with resin, and resin composition
JP5101860B2 (en) Epoxy resin composition and semiconductor device
JP3421134B2 (en) Composition containing silica and silicone rubber and method for producing the same
JP2005171209A (en) Filler-containing resin composition and its production method
JP2006206722A (en) Lowly reactive silica powder, epoxy resin composition given by using the same, and epoxy resin molded product
TW201936773A (en) Epoxy resin composition and electronic device
CN106751915A (en) A kind of nanoscale electric chip encapsulation material and preparation method
JPH065743A (en) Liquid epoxy resin composition for sealing semiconductor
JPH0496929A (en) Epoxy resin composition and semiconductor device
JP4618407B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase