WO2005078889A1 - 電力変換器 - Google Patents

電力変換器 Download PDF

Info

Publication number
WO2005078889A1
WO2005078889A1 PCT/JP2004/001461 JP2004001461W WO2005078889A1 WO 2005078889 A1 WO2005078889 A1 WO 2005078889A1 JP 2004001461 W JP2004001461 W JP 2004001461W WO 2005078889 A1 WO2005078889 A1 WO 2005078889A1
Authority
WO
WIPO (PCT)
Prior art keywords
series
transformer
converter
transformers
primary winding
Prior art date
Application number
PCT/JP2004/001461
Other languages
English (en)
French (fr)
Inventor
Tomohiko Aritsuka
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA 2519394 priority Critical patent/CA2519394C/en
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to DE200460032576 priority patent/DE602004032576D1/de
Priority to US10/544,126 priority patent/US7365451B2/en
Priority to AT04710513T priority patent/ATE508524T1/de
Priority to PCT/JP2004/001461 priority patent/WO2005078889A1/ja
Priority to MXPA05010785A priority patent/MXPA05010785A/es
Priority to CNB2004800072714A priority patent/CN100364200C/zh
Priority to ES04710513T priority patent/ES2365917T3/es
Priority to JP2005517841A priority patent/JP4272208B2/ja
Priority to EP20040710513 priority patent/EP1715557B1/en
Priority to AU2004314118A priority patent/AU2004314118B8/en
Publication of WO2005078889A1 publication Critical patent/WO2005078889A1/ja
Priority to HK06107208A priority patent/HK1087251A1/xx

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • H02J3/1814Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • H02J3/1857Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters wherein such bridge converter is a multilevel converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Definitions

  • the present invention relates to a power converter connected in series to a power system, a distribution system, a single-phase AC overhead line, and the like, and more particularly to a power converter that can continue operation even with a partial failure.
  • FIG. 8 is a circuit diagram showing a configuration of a conventional power converter disclosed in, for example, US Pat. No. 5,646,511.
  • This power converter is composed of a series transformer in which the primary winding is connected in series to a single-phase AC overhead line (hereinafter abbreviated as a system) for power systems, distribution systems, or railways, and a multiplex of the secondary transformer. Transformers are combined in two stages, and the AC / DC converter unit is connected to the grid.
  • This power converter has the function of a power flow control device for the system.
  • a primary winding 201 of a series transformer 200 is connected between the power supply side 1 of the system and the power supply side of the system or the load side 2.
  • the AC / DC converter unit 5110 to 540 is connected to the secondary windings 4 12 to 4 42 of the multiple transformers 4 10 to 4 4 0, respectively, and 4 AC / DC converters are connected.
  • the DC side of the unit 510 to 540 is connected to the common DC circuit 511.
  • the conventional power converter is configured as described above, if at least one of the plurality of AC / DC converter units 510 to 540 fails, Since the DC voltage of the circuit 5 11 could not be maintained, all AC / DC converter units could not be operated, and the power converter had to be stopped. In addition, the power converter must be stopped until repairs or periodic inspections have been completed, and there has been a problem that the operating rate of the system has been reduced.
  • the present invention has been made to solve such a problem, and even if one of a plurality of AC / DC conversion units fails or stops due to periodic inspection, the power converter can continue operating as a system.
  • the purpose is to obtain a certain power converter. Disclosure of the invention
  • a power converter includes: a series transformer having a primary winding connected in series to a system; a multiplex transformer connected in series to a secondary winding of the series transformer; A normally-closed switch connected in series to both ends of each secondary winding, and a normally-open type current connected in parallel to the series body of each primary winding of the multiple transformer and switches at both ends A bypass device, an AC / DC converter unit connected to the AC side of each secondary winding of the multiple transformer, and an AC / DC converter unit connected to each DC side of the AC / DC converter unit and independent of each other.
  • a DC circuit and closing the current bypass device of the primary winding of the specific multi-transformer, opening the switches at both ends of the primary winding, and connecting to the specific multi-transformer and connected thereto.
  • the above-mentioned AC / DC converter unit can be disconnected. Is.
  • the power converter according to the present invention comprises a multi-transformer having a primary winding connected in series to a system, and a normally-closed type in which both ends of each primary winding of the multi-transformer are connected in series respectively.
  • Switches and the primary windings of the multiple transformers And a normally-open first current bypass device connected in parallel to a series body with switches at both ends thereof, and AC / DC conversion in which the AC side of each secondary winding of the multiple transformer is connected to the first current bypass device.
  • a DC unit connected to each DC side of each AC / DC converter unit and an independent DC circuit, and a normally open type DC power unit connected in parallel to all the multiple transformers connected in series.
  • the first current bypass device of the primary winding of the specific multi-transformer, and the switches at both ends of the primary winding are opened.
  • the transformer can be disconnected from the AC / DC converter unit connected to the transformer.
  • FIG. 1 is a circuit diagram showing a configuration of a power converter according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration of a power converter according to Embodiment 2.
  • FIG. 3 is a circuit diagram showing the configuration of a general single-phase AC / DC converter.
  • FIG. 4 is a circuit diagram showing the configuration of a power converter according to the third embodiment.
  • FIG. 6 is a circuit diagram illustrating a configuration of a power converter according to a fifth embodiment.
  • FIG. 7 is a circuit diagram illustrating a configuration of a power converter according to a sixth embodiment.
  • FIG. 8 is a circuit diagram showing a configuration of a conventional power converter.
  • FIG. 1 is a circuit diagram showing a configuration of a power converter according to an embodiment of the present invention. It is. In each drawing, the same reference numerals indicate the same or corresponding parts, and the same applies hereinafter.
  • a primary winding 201 of a series transformer 200 is connected in series between a power supply side 1 of the system and a power supply side or load side 2 of the system.
  • the primary windings 411 to 441 of the multiple transformers 410 to 440 (showing the case of four-stage multiplexing) are connected in series to the secondary winding 202 of the series transformer 200.
  • the AC windings of AC / DC converter units 5110 to 540 are connected to the secondary windings 4 12 to 442 of the multiple transformers 410 to 440, respectively, and the four AC / DC converter units are connected.
  • G Independent DC circuits 51 1 to 54 1 are connected to the DC side of G 110 to G 54.
  • the power converter of the present invention has a configuration in which the individual DC circuits 511 to 541 of the AC / DC converter units 511 to 540 are made independent of each other and are not connected to the DC circuits of other AC / DC converter units. And Normally closed switches (breakers, disconnectors, or semiconductor switches) at both ends of each primary winding 4 11 1 to 44 1 of multiple transformers 4 11 0 to 44 0 3 1 1 to 34 1 and 3 1 2 to 342 are arranged (connected) in series, and the individual multiple transformers 4 1 1 to 4 4 0 primary windings 4 1 1 to 4 4 1 and switches 311 to 34 1 and 3 1 2
  • a normally open type current bypass device (circuit breaker, disconnector, or semiconductor switch) 310 to 340 is arranged (connected) in parallel with the series body with 342. Therefore, by closing the current bypass device of the primary winding of a specific multiple transformer and opening the switches at both ends of the primary winding, the specific multiple transformer can be disconnected from the system.
  • switches (breakers, disconnectors, or semiconductor switches) 101 and 102 are arranged (connected) in series at both ends of the primary winding 201 of the series transformer 200, respectively.
  • a current bypass device (circuit breaker, disconnector, or semiconductor switch) 103 is connected in parallel with a series body of a transformer 200 primary winding 210 and two switches 101, 102. Placed (connected).
  • a short-circuit device (interrupter, disconnector, or semiconductor switch) 300 that short-circuits the secondary winding 202 of the DC transformer 200 will be placed, and AC-DC conversion from short-circuit current in the event of a system fault will occur.
  • the unit 511 to 540 and the multiple transformers 410 to 440 can be collectively protected.
  • the short-circuit device 300 may be omitted. They can be selected based on cost, installation space, and redundancy design concepts.
  • the winding configuration of the secondary winding 202 of the series transformer 200 can be applied to a Dell (triangular) connection, a Y-connection, or a single-phase connection.
  • the winding configuration of the secondary windings 4 12 to 4 42 of the multiple transformers 4 10 to 4 40 can be applied to a Del-Yang (triangular) connection, a Y-shaped connection, or a single-phase connection. is there.
  • a feature of the power converters connected in series to the grid is that the AC / DC converter units 510 to 540 cannot themselves directly control the current flowing through the unit, and the unit 51 It is only the magnitude and phase of the voltage output from 0 to 540.
  • the power converter can control the system current indirectly because the vector sum of the output voltages of the AC / DC converter units 510 to 540 is mediated by the multiple transformers 410 to 440.
  • this power converter has the function of a power flow controller for the system.
  • the AC / DC converter units 510 to 540 of the power converters use a voltage source, which is a voltage source, "Voltage Sourced Converter".
  • a voltage source which is a voltage source, "Voltage Sourced Converter”.
  • each AC / DC converter unit does not need to generate the same voltage, and even if one AC / DC converter unit is stopped, the power converter can operate without any problems. is there.
  • the current bypass device 103 In the normal state of the power converter of the first embodiment, the current bypass device 103 is in the ⁇ FF state, the switches 101 and 102 are in the 0N state, and the short-circuit device 300 is in the 0FF state. In addition, the current bypass devices 310 to 340 are in the OFF state, and the switches 311 to 341 and 312 to 342 are in the 0N state. Now, suppose that the AC / DC converter unit 510 is disconnected from the system due to a failure. At this time, the current bypass device 3110 is closed and the switches 311 and 312 are open, and in the first embodiment, the DC circuit 5111 is connected to the other AC / DC converter unit.
  • the group of AC / DC converter units 510 to 540 is required to generate a differential voltage designated as a whole in the primary winding 201 of the series transformer 200.
  • the AC / DC converter units 510 to 540 are independently configured, one or several AC / DC converter units are disconnected. However, it can be operated as a power converter. If the required specifications of the power converter are satisfied with the number (N) of AC / DC converter units, (N + n) AC / DC converter units with one or several redundant units (n) added If the system is equipped, even if n units of AC / DC converter units fail, operation can be performed without impairing the maximum rating of the system.
  • the redundant AC / DC converter It is possible to operate the power converter at the rated 100% even with the converter unit disconnected. Thereby, a highly reliable device can be obtained. If the maximum current flowing through the AC / DC converter unit 510 to 540 at the time of a system failure becomes larger than the rated current of the AC / DC converter unit 510 to 540, By adopting a configuration in which the number of multiplex stages of the AC / DC converter unit is increased, the maximum current of the AC / DC converter units 510 to 540 can be reduced. This is due to the nature of the power converters connected in series to the grid.
  • the rating of the power converter the rating of one stage of the multiplex transformer and AC / DC converter unit Dividing the power converter rating (Vsxls) by the product of the voltage Vc and the rated current Ic (Vcxlc) gives the number of stages N.
  • the number of stages N1 obtained from the rated current of the system under normal conditions remains unchanged, the maximum current of the AC / DC converter unit will exceed the rated current in the event of a system failure, etc., so the rated current of the AC / DC converter unit Ic2
  • the normal rating of the AC / DC converter unit and multiple transformers it is advisable to use the normal rating of the AC / DC converter unit and multiple transformers by derating the maximum rating. This means that the voltage of the primary windings 411 to 441 of the multiplex transformers 410 to 440 is reduced, and as a result, the number N of multiplex stages increases.
  • the multi-transformer and the AC / DC converter unit are added in series after the power converter is installed by utilizing the properties of the power converters connected in series to the above-described system. As a result, the capacity of the power converter can be increased. This is a feature that becomes possible only because the DC circuit of the AC / DC converter unit is independent.
  • the maximum current of the secondary winding 202 is a semiconductor switch (short circuit device)
  • Embodiment 2 The method of optimizing the rating of 42 can also be adopted in the first embodiment. Embodiment 2.
  • the AC / DC converter units 510 to 540 can be separated one by one. However, as shown in FIG.
  • the paired DC circuits 55 1 and 55 2 are common, but are independent of the DC circuits 56 1 and 56 2 of another pair. This is the same as in the first embodiment.
  • the number of AC / DC converter units is 2 XN units
  • the number of stages of multiple transformers is N, which is half of that in Embodiment 1, so that the production cost of multiple transformers can be expected to be low.
  • two AC / DC converter units are stopped due to a failure or periodic inspection, but if redundancy does not affect the expected operation rate, a system that does not cause any problems will be implemented. Can be provided.
  • some of the control units (not shown) such as DC voltage control are shared and one is omitted. The cost can be reduced.
  • Fig. 3 is a circuit diagram showing the configuration of a general single-phase AC / DC converter (single-phase inverter).
  • the self-arc-extinguishing elements 911 and 912 and the flywheel diodes 921 and 9222 are connected to the AC side terminal 901.
  • the self-extinguishing elements 913, 914 and the flywheel diodes 923, 924 are connected to the AC terminal 9 02.
  • a capacitor 930 is connected to the DC terminal.
  • Embodiment 2 can also be applied to a case where the AC / DC converter unit forms a single-phase bridge as shown in FIG.
  • a series transformer 200 is arranged between the power supply side 1 of the system and the power supply side or the load side 2 of the system, and is connected to the multiple transformers 410-440.
  • the converter units 510 to 540 are configured, in Embodiment 3 as shown in FIG. 4, the multiplex transformers 410 to 440 are directly connected to the power supply side 1 of the system and the system.
  • a configuration is also possible in which the power supply side or the load side 2 is connected in series.
  • a current bypass device 300 is connected in parallel to the entire primary winding 4 11 1 to 4 4 1 of the multiple transformers 4 1 0 to 4 4 0 Therefore, in the event of a system failure, the entire primary windings 4 1 1 to 4 4 1 of the multiple transformers 410 to 450 are bypassed together.
  • the circuit in Fig. 4 can be used to connect a multi-transformer directly to the system, to connect a semiconductor switch directly to the system, or to perform AC-DC conversion from a system voltage where the multi-transformer is considered to be relatively high voltage. It can be applied to cases where the voltage can be transformed (usually step-down) to the AC voltage of the unit in one step.
  • a series transformer 200 is arranged between the power supply side 1 of the system and the power supply side of the system or the load side 2, and is connected to the multiple transformers 450 to 460.
  • the converter units 550 to 580 are configured, in Embodiment 4 as shown in FIG. 5, the multiplex transformers 450 to 460 are directly connected to the power supply side 1 of the system and the system.
  • a configuration is also possible in which the power supply side or the load side 2 is connected in series.
  • Circuit breakers, disconnectors, or semiconductor switches 300 are connected in parallel to the entire primary windings 45 51 to 46 1 of multiple transformers 450 to 450 Therefore, in the event of a system accident, etc., the entire primary windings 45 1 to 46 1 of the multiple transformers 450 to 450 are bypassed collectively.
  • the circuit in Fig. 5 can be used to connect a multi-transformer directly to the grid, to connect a solid-state switch to the grid directly, or to perform AC-DC conversion from a system voltage where the multi-transformer is considered to be relatively high voltage. It can be applied to cases where the voltage can be transformed (usually step-down) into the AC voltage of the unit in one step.
  • normally-closed switches 33 1 and 34 2 are connected in series at both ends of the series winding of multiple transformers 83 0 and 84 0 .
  • One normally-open type current bypass device 310 is connected in parallel with a series body of a plurality of transformers 81 0 and 82 0 and switches 31 1 and 32 2 at both ends.
  • one planned current bypass device 330 is connected in parallel with a series body of a plurality of transformers 830 and 840 and switches 331 and 342 at both ends.
  • each of the secondary windings 8 12, 8 2 2, 8 32, and 8 42 of each of the transformers 8 10 to 8 40 has an AC / DC converter unit 5 10 to 5 4 0, respectively. Is connected.
  • the configuration shown in FIG. 6 can reduce costs.
  • Embodiment 6 The method of changing the configuration from the first embodiment to the fifth embodiment is also applicable to the second, third, or fourth embodiment.
  • Embodiment 6 is also applicable to the second, third, or fourth embodiment.
  • the insertion voltage output from the power converter is also an effective component.
  • the voltage of the invalid component can be output at any phase of 360 degrees.
  • energy storage devices include secondary batteries such as batteries, energy storage devices such as large-capacity devices, and mechanical energy sources such as flywheels, which are connected to a power generator and generator. There is another AC / DC converter unit to connect.
  • Embodiment 6 shown in FIG. 5 has a configuration known as a dynamic voltage restorer (DVR) and a unified power flow controller (UPFC).
  • DVR dynamic voltage restorer
  • UPFC unified power flow controller
  • Another AC / DC converter 5 1 3 to 5 4 3 is connected independently via the DC circuit 5 1 1 to 5 4 1 of AC / DC converter unit 5 10 to 5 4 0, and AC / DC converter 5 1 3
  • transformers 6 10-6 4 By connecting them separately to the system from ⁇ 5 4 3 through transformers 6 10-6 4 0, circuit breakers 6 1 1-6 4 1, transformers 7 0 0, and circuit breakers 7 0 1
  • An independent energy source can be obtained.
  • the power converter according to the present invention is suitably applied to a power flow control device of a system capable of continuing operation even in the event of a partial failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Amplifiers (AREA)
  • Control Of Eletrric Generators (AREA)
  • Ac-Ac Conversion (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

この発明にかかる電力変換器は、一次巻線が系統に直列に接続される直列変圧器の二次巻線に直列に接続された多重変圧器と、上記多重変圧器の各一次巻線の両端にそれぞれ直列に接続された常閉形の開閉器と、上記多重変圧器の各一次巻線とその両端の開閉器との直列体に並列に接続された常開形の電流バイパス機器と、上記多重変圧器の各二次巻線のそれぞれに交流側が接続された交直変換器ユニットと、上記各交直変換器ユニットのそれぞれの直流側に接続され互いに独立した直流回路とを備え、特定の上記多重変圧器の一次巻線の上記電流バイパス機器を閉じ、その一次巻線の両端の上記開閉器を開いて、上記特定の多重変圧器とそれに接続された上記交直変換器ユニットを切り離し得るようにして、部分故障に対しても、装置を稼働できるようにした。

Description

明 細 書 電力変換器 技術分野
この発明は、 電力系統、 配電系統、 単相交流架線等の系統に直列に 接続される電力変換器に関し、 特に、 部分故障に対しても運転継続が 可能な電力変換器に係わるものである。 背景技術
第 8図は、 例えば米国特許第 5 , 6 4 6 , 5 1 1号公報に示された 従来の電力変換器の構成を示す回路図である。 この電力変換器は、 電 力系統、 配電系統、 又は電鉄用等の単相交流架線 (以下、 系統と略称 する) に一次巻線が直列に接続された直列変圧器とその二次側の多重 変圧器を二段に組み合わせて、 交直変換器ユニッ トを系統に接続して いる。 この電力変換器は、 系統の電力潮流制御装置の機能を有してい る。 図において、 系統の電源側 1 と系統の電源側、 も しくは負荷側 2 の間に、 直列変圧器 2 0 0の一次巻線 2 0 1が接続されている。 直列 変圧器 2 0 0の二次卷線 2 0 2に、 多重変圧器 4 1 0〜 4 4 0 ( 4段 多重の場合を示す)の一次卷線 4 1 1〜 4 4 1を直列に接続している。 多重変圧器 4 1 0〜 4 4 0の二次卷線 4 1 2〜 4 4 2に、 交直変換器 ュニッ ト 5 1 0〜 5 4 0の交流側をそれそれ接続し、 4台の交直変換 器ュニッ ト 5 1 0〜 5 4 0の直流側を共通の直流回路 5 1 1に接続し ている。
従来の電力変換器は以上のように構成されているので、 複数台の交 直変換器ュニッ ト 5 1 0〜 5 4 0のう ち 1台でも故障した場合、 直列 回路 5 1 1の直流電圧を維持できないために、 すべての交直変換器ュ ニッ 卜が運転できず、 電力変換器を停止させる必要があった。 また、 修理、 もしくは定期点検が終了するまで、 電力変換器を停止させてお く ことになり、 システムの稼働率が低下する問題があった。
この発明はかかる課題を解決するためになされたものであり、 複数 台の交直変換ユニッ トのうち一台が故障、 もしくは定期点検で停止し ても、 電力変換器はシステムとして運転継続が可能である電力変換器 を得ることを目的とする。 発明の開示
この発明に係わる電力変換器は、 一次卷線が系統に直列に接続され る直列変圧器と、 この直列変圧器の二次卷線に直列に接続された多重 変圧器と、 上記多重変圧器の各 次巻線の両端にそれぞれ直列に接続 された常閉形の開閉器と、 上記多重変圧器の各一次卷線とその両端の 開閉器との直列体に並列に接続された常開形の電流バイパス機器と、 上記多重変圧器の各二次卷線のそれそれに交流側が接続された交直変 換器ュニッ トと、 上記各交直変換器ュニッ 卜のそれそれの直流側に接 続され互いに独立した直流回路とを備え、 特定の上記多重変圧器の一 次卷線の上記電流バイパス機器を閉じ、 その一次卷線の両端の上記開 閉器を開いて、 上記特定の多重変圧器とそれに接続された上記交直変 換器ュニッ トを切り離し得るようにしたものである。
これによつて、装置全体の稼働率の向上、信頼性の向上だけでなく、 増設の容易性により装置容量を増大させることもできる。
また、 この発明に係わる電力変換器は、 一次卷線が系統に直列に接 続される多重変圧器と、 上記多重変圧器の各一次巻線の両端にそれそ れ直列に接続された常閉形の開閉器と、 上記多重変圧器の各一次卷線 とその両端の開閉器との直列体に並列に接続された常開形の第 1の電 流バイパス機器と、 上記多重変圧器の各二次巻線のそれそれに交流側 が接続された交直変換器ュニッ トと、 上記各交直変換器ュニッ 卜のそ れそれの直流側に接続され互いに独立した直流回路と、 直列接続され た全ての上記多重変圧器に並列に接続される常開形の第 2の電流バイ パス機器とを備え、 特定の上記多重変圧器の一次巻線の上記第 1の電 流バイパス機器を閉じ、 その一次卷線の両端の上記開閉器を開いて、 上記特定の多重変圧器とそれに接続された上記交直変換器ュニッ トを 切り離し得るようにしたものである。
これによって、装置全体の稼働率の向上、信頼性の向上だけでなく、 増設の容易性により装置容量を増大させることもできる。 図面の簡単な説明
第 1図はこの発明の実施の形態 1の電力変換器の構成を示す回路図 である。
第 2図は実施の形態 2の電力変換器の構成を示す回路図である。 第 3図は一般的な単相交直変換器の構成を示す回路図である 第 4図は実施の形態 3の電力変換器の構成を示す回路図である 第 5図は実施の形態 4の電力変換器の構成を示す回路図である 第 6図は実施の形態 5の電力変換器の構成を示す回路図である 第 7図は実施の形態 6の電力変換器の構成を示す回路図であ 第 8図は従来の電力変換器の構成を示す回路図である。 発明を実施するための最良の形態
実施の形態 1 .
第 1図はこの発明の実施の形態 の電力変換器の構成を示す回路図 である。 なお、 各図において、 同一符号は同一又は相当部分を示し、 以下同様とする。 第 1図において、 系統の電源側 1 と系統の電源側、 もしくは負荷側 2の間に、 直列変圧器 2 0 0の一次卷線 2 0 1が直列 に接続されている。 直列変圧器 2 00の二次卷線 2 0 2に、 多重変圧 器 4 1 0〜440 ( 4段多重の場合を示す) の一次卷線 4 1 1〜 44 1を直列に接続している。 多重変圧器 4 1 0〜44 0の二次巻線 4 1 2〜 44 2に、 交直変換器ュニッ ト 5 1 0〜 5 40の交流側をそれそ れ接続し、 4台の交直変換器ユニッ ト 5 1 0〜 54 0の直流側に互い に独立した直流回路 5 1 1〜 54 1を接続している。
こ発明の電力変換器は、 交直変換器ュニッ ト 5 1 0〜 54 0の個々 の直流回路 5 1 1〜 54 1を互いに独立させ、 他の交直変換器ュニッ 卜の直流回路とは接続させない構成としている。 多重変圧器 4 1 0〜 44 0の各一次卷線 4 1 1〜 44 1の両端にそれそれ常閉形の開閉器 (遮断器、 断路器、 又は半導体開閉器) 3 1 1〜 34 1および 3 1 2 〜 342を直列に配置 (接続) し、 個々の多重変圧器 4 1 0〜44 0 の一次巻線 4 1 1〜44 1とその両端の開閉器 3 1 1〜 34 1および 3 1 2〜 34 2との直列体に並列に常開形の電流バイパス機器 (遮断 器、 断路器、 又は半導体開閉器) 3 1 0〜 34 0を配置 (接続) して いる。 そのため、 特定の多重変圧器の一次巻線の電流バイパス機器を 閉じ、 その一次卷線の両端の開閉器を開く と、 系統からその特定の多 重変圧器を切り離せる構成としている。
また、 直列変圧器 2 0 0の一次巻線 2 0 1の両端にそれぞれ開閉器 (遮断器、 断路器、 又は半導体開閉器) 1 0 1 と 1 0 2を直列に配置 (接続) し、 直列変圧器 2 0 0の一次卷線 2 0 1 と 2つの開閉器 1 0 1, 1 0 2との直列体に並列に電流バイパス機器 (遮断器、 断路器、 又は半導体開閉器) 1 0 3を配置 (接続) している。 さらに、直流変圧器 2 0 0の二次巻線 2 0 2 を短絡する短絡機器(遮 断器、 断路器、 又は半導体開閉器) 3 0 0 を配置し、 系統事故時に短 絡電流から交直変換器ュニッ ト 5 1 0〜 5 4 0や多重変圧器 4 1 0〜 4 4 0をまとめて保護することもできる構成と している。 場合によつ ては、 電流バイパス機器 3 1 0〜 3 4 0があるため、 短絡機器 3 0 0 を省略してもかまわない。 それらは、 コス ト、 設置スペース、 冗長性 の設計思想によって、 選択することができる。
なお、 実施の形態 1は、 直列変圧器 2 0 0の二次巻線 2 0 2の卷線 構成は、 デル夕 (三角) 結線、 Y 字結線、 あるいは単相結線でも適用 可能である。 また、 多重変圧器 4 1 0〜 4 4 0の二次巻線 4 1 2〜 4 4 2の卷線構成は、 デル夕 (三角) 結線、 Y 字結線、 あるいは単相結 線でも適用可能である。
次に、 その動作について説明する。 系統に直列に接続された電力変 換器の特徴は、 交直変換器ュニッ ト 5 1 0〜 5 4 0 自身はュニッ トに 流れる電流を直接制御できないことであり、 制御するのはユニッ ト 5 1 0〜 5 4 0が出力する電圧の大きさと位相だけである。 電力変換器 が系統の電流を間接的に制御できるのは、 交直変換器ュニッ ト 5 1 0 〜 5 4 0の出力電圧のべク トル和が多重変圧器 4 1 0〜 4 4 0を媒介 して直列変圧器 2 0 0の一次巻線電圧 2 0 1 に電圧を発生させ、 その 挿入電圧(injection vo ltage )が系統 1 と系統 2の間に、ある位相で、 ある大きさの電圧を発生させることによ り、 系統ネッ ト ワーク上のす ベての電圧源 · 電流源、 すべての系統イ ンビーダンスの状態で、 電力 変換器を通過する電流を変えることができるからである。この意味で、 この電力変換器は、 系統の電力潮流制御装置の機能を有している。 こ のため、 電力変換器の交直変換器ュニッ ト 5 1 0〜 5 4 0は、 電圧源 となる電圧形コ ンノ、"一夕 ( Vo l tage Sourced Converter ) を採用してレ、 る。 この動作原理のため、 各々の交直変換器ユニッ トは同じ電圧を発 生させる必要がなくなり、 仮に 1台の交直変換器ュニッ トが停止して いても、 電力変換器は問題なく運転が可能である。
実施の形態 1の電力変換器の平常時では、 電流バイパス機器 1 0 3 は〇 F F状態、 開閉器 1 0 1 と 1 0 2は 0 N状態、 短絡機器 3 0 0は 0 F F状態であ り、 かつ電流バイパス機器 3 1 0〜 34 0は O F F状 態、 開閉器 3 1 1 - 34 1および 3 1 2〜 34 2は 0 N状態である。 今仮に、 交直変換器ュニッ ト 5 1 0が故障で系統から解列している ことを想定する。 この時、 電流バイパス機器 3 1 0は閉じられ、 開閉 器 3 1 1と 3 1 2は開いているため、 また、 実施の形態 1では、 直流 回路 5 1 1は他の交直変換器ュニッ 卜の直流回路 5 2 1〜 54 1と電 気的に切り離されているため、 電力変換器としては運転を継続するこ とが可能である。 従来の電力変換器では一部の交直変換器ュニッ トを 解列して運転ができなかった理由は、 交直変換器ュニッ トが交流側と 直流側でいずれも独立していなかつたためである。
交直変換器ュニッ ト 5 1 0〜 5 4 0群は、 全体と して指定された差 電圧を直列変圧器 2 00の一次卷線 2 0 1に発生させることが求めら れている。 この実施の形態 1では、 交直変換器ュニッ ト 5 1 0〜 5 4 0群は独立して構成されているので、 そのうちの 1台も しくは数台の 交直変換器ユニッ トが解列していても、 電力変換器と しては運転する ことができる。 . 電力変換器の要求仕様を交直変換器ュニッ 卜の数 (N) で満足する 場合、 1台か数台 (n) の冗長を加えた、 (N + n) 台の交直変換器ュ ニッ トを具備しておけば、交直変換器ュニッ 卜が n台まで故障しても、 システムの最大定格を損なうことなく運転が可能となる。 そのため、 冗長としての交直変換器ュニッ トを具備してあれば、 冗長分の交直変 換器ュニッ トを解列したままでも電力変換器の定格 1 0 0 %での運転 も可能である。これによつて、信頼性の高い装置を得ることができる。 系統事故時等に交直変換器ュニッ ト 5 1 0〜 5 4 0に流れる最大 ¾ 流が、 交直変換器ュニッ ト 5 1 0〜 5 4 0の定格電流よ り大き くなる 場合、 多重変圧器と交直変換器ユニッ トの多重段数を増やした構成と することによ り、 交直変換器ュニッ ト 5 1 0〜 5 4 0の最大電流を減 らすことができる。 これは系統に直列に接続された電力変換器の性質 によるものである。 直列変圧器 2 0 0の一次卷線に挿入する電圧 Vs と系統の最大電流 Isの積を電力変換器の定格と定義するならば、多重 変圧器と交直変換器ュニッ トの 1段分の定格電圧 Vc と定格電流 Icの 積 (Vcxlc) で、 電力変換器の定格 (Vsxls) を除算すれば、 段数 N が求められる。 平常時の系統の定格電流から求めた段数 N 1のままで は、 系統事故時等には交直変換器ュニッ トの最大電流は定格電流を超 過するので、 交直変換器ユニッ トの定格電流 Ic2に系統事故時の最大 電流 Is2を考慮して、 交直変換器ユニッ ト と多重変圧器の平常時の定 格を最大定格よ りディ レ一ティ ング (derating) して使うようにする と良い。 このことは、 多重変圧器 4 1 0〜 4 4 0の一次卷線 4 1 1〜 4 4 1の電圧を下げて設計することになるので、 結果として、 多重段 数 Nが増えることになる。
さらに、 実施の形態 1では、 上記で示した系統に直列に接続された 電力変換器の性質を利用して、 電力変換器の設置後に、 多重変圧器と 交直変換器ュニッ トを直列に増設することで、 電力変換器の容量を増 やすことも可能である。 これは、 交直変換器ユニッ トの直流回路が独 立している構成であるからこそ、 可能になる特徴である。
又、 実施の形態 1 においては、 直列変圧器 2 0 0で、 通常、 二次巻 線の電圧を降圧した場合、 系統事故時等で二次卷線 2 0 2の最大電流 が大き く なる。二次卷線 2 0 2の最大電流が半導体開閉器(短絡機器)
3 0 0や遮断器 (電流バイパス機器) 3 1 0〜 3 4 0や断路器 (開閉 器) 3 1 1〜 3 4 1、 3 1 2〜 3 4 2の定格電流を超過する場合、 直 列変圧器 2 0 0で、 逆に、 二次卷線の電圧を昇圧して、 半導体開閉器 3 0 0や遮断器 3 1 0〜 3 4 0や断路器 3 1 1〜 3 4 1、 3 1 2〜 3
4 2の定格を最適化する方法も、 実施の形態 1では採用できる。 実施の形態 2.
実施の形態 1では、 交直変換器ュニッ ト 5 1 0〜 5 4 0を 1台ずつ 切り離せる構成としたが、 第 2図に示すように、 交直変換器ュニッ ト
5 5 0 - 5 8 0を 2台ずつ多重変圧器 4 5 0 と 4 6 0の二次卷線 4 5 2 と 4 6 2に接続する。 この場合は、 ペアとなる 2台の直流回路 5 5 1 と 5 5 2は共通になつているが、 別のペアの直流回路 5 6 1 と 5 6 2からは独立している。 その点は実施の形態 1 と同様である。
交直変換器ユニッ トの台数が 2 X N台の場合、 実施の形態 1に比べ て多重変圧器の段数が半分の N台で済むため、 多重変圧器の製作コス トが安価になることが期待できる。 しかし、 実施の形態 2では、 交直 変換器ユニッ トの故障、 も しくは定期点検で、 2台分停止させること になるが、 冗長が期待する稼働率に影響しなければ、 問題ないシステ ムを提供できる。 また、 実施の形態 2では、 2台の交直変換器ュニッ トを同時に制御するため、 制御ュニッ ト (図示せず) のうち、 直流電 圧制御といった一部の回路を共用化して 1つを省略し、 コス トを低減 することができる。
第 3図は一般的な単相交直変換器 (単相イ ンバー夕) の構成を示す 回路図である。 図において、 交流側端子 9 0 1には、 自己消弧形素子 9 1 1 , 9 1 2 とフライホイールダイオー ド 9 2 1, 9 2 2が接続さ れ、 交流側端子 9 0 2 には、 自己消弧形素子 9 1 3 , 9 1 4 とフライ ホイールダイォ一 ド 9 2 3, 9 2 4が接続されている。 直流側端子に は、 コンデンサ 9 3 0が接続されている。 実施の形態 2は、 交直変換 器ュニッ 卜が第 3図に示すような単相プリ ッジを構成する場合にも適 用できる。 電鉄用単相交流架線のような系統の場合は、 3相ブリ ッジ の交直変換器ュニッ トを採用することはできないので、 第 3図のよう な単相プリ ッジの交直変換器ュニッ トを採用する必要がある。 実施の形態 3 .
実施の形態 1 では、 系統の電源側 1 と系統の電源側、 も しくは負荷 側 2の間に、 直列変圧器 2 0 0を配置して、 多重変圧器 4 1 0〜 4 4 0 と交直変換器ュニッ ト 5 1 0〜 5 4 0 を構成したが、 第 4図に示す ような実施の形態 3では、 多重変圧器 4 1 0〜 4 4 0を、 直接、 系統 の電源側 1 と系統の電源側、 も しくは負荷側 2の間に、 直列に接続す る構成も可能である。 電流バイパス機器 (遮断器、 断路器、 又は半導 体開閉器) 3 0 0が、 多重変圧器 4 1 0〜 4 4 0の一次卷線 4 1 1〜 4 4 1全体に並列に接続されており、 系統事故時等に、 多重変圧器 4 1 0〜 4 4 0の一次巻線 4 1 1〜 4 4 1全体をまとめてバイパスする。 第 4図の回路は、 多重変圧器を、 直接、 系統に接続できる場合や、 系統に、 直接、 半導体開閉器を接続できる場合や、 多重変圧器が比較 的高圧と考えられる系統電圧から交直変換器ュニッ 卜の交流電圧に一 段で変圧 (通常、 降圧) できる場合、 などに適用できる。
実施の形態 1 において、 通常、 直列変圧器 2 0 0の二次卷線の電圧 を降圧した場合、 二次巻線 2 0 2の電流が大き くなる。 このために系 統事故時等に、 二次卷線 2 0 2 に流れる最大電流が大き く なりすぎる 場合、 定格電流の大きい半導体開閉器 3 0 0を製作することになる。 低電圧で定格電流の大きい半導体開閉器 3 0 0 よ り、 高電圧で定格電 流の小さい半導体開閉器 3 0 0の製作が容易である場合、 直列変圧器 2 0 0 を省略して、 実施の形態 3のような構成を採用することができ 。 実施の形態 4 .
実施の形態 2では、 系統の電源側 1 と系統の電源側、 も しく は負荷 側 2の間に、 直列変圧器 2 0 0を配置して、 多重変圧器 4 5 0〜 4 6 0 と交直変換器ュニッ ト 5 5 0〜 5 8 0を構成したが、 第 5図に示す ような実施の形態 4では、 多重変圧器 4 5 0〜 4 6 0を、 直接、 系統 の電源側 1 と系統の電源側、 も しくは負荷側 2の間に、 直列に接続す る構成も可能である。 電流バイパス機器 (遮断器、 断路器、 又は半導 体開閉器) 3 0 0が、 多重変圧器 4 5 0〜 4 6 0の一次巻線 4 5 1 〜 4 6 1全体に並列に接続されており、 系統事故時等に、 多重変圧器 4 5 0〜 4 6 0の一次卷線 4 5 1〜 4 6 1全体をまとめてバイパスする。 第 5図の回路は、 多重変圧器を、 直接、 系統に接続できる場合や、 系統に、 直接、 半導体開閉器を接続できる場合や、 多重変圧器が比較 的高圧と考えられる系統電圧から交直変換器ュニッ トの交流電圧に一 段で変圧 (通常、 降圧) できる場合、 などに適用できる。
実施の形態 2 において、 通常、 直列変圧器 2 0 0の二次卷線の電圧 を降圧した場合、 二次巻線 2 0 2の電流が大き くなる。 このために系 統事故時等に、 二次巻線 2 0 2 に流れる最大電流が大き く なりすぎる 場合、 定格電流の大きい半導体開閉器 3 0 0 を製作することになる。 低電圧で定格電流の大きい半導体開閉器 3 0 0 よ り、 高電圧で定格電 流の小さい半導体開閉器 3 0 0の製作が容易である場合、 直列変圧器 2 0 0 を省略して、 実施の形態 4のような構成を採用することができ る o 実施の形態 5.
実施の形態 1では、 多重変圧器 4 1 0〜 4 4 0の一次卷線 4 1 1〜 4 4 1 を系統から切り離す開閉器 3 1 1〜 3 4 1 と 3 1 2〜 3 4 2、 および電流バイパス機器 3 1 0〜 3 4 0を、 多重変圧器 1台毎に 1セ ッ トずつ構成したが、 第 6図で示すように実施の形態 5では、 多重変 圧器 8 0 1が直列接続された複数の変圧器 8 1 0 と 8 2 0で構成され ている。 同様に、 多重変圧器 8 0 2が直列接続された複数の変圧器 8 3 0 と 8 4 0で構成されている。 複数の変圧器 8 1 0 と 8 2 0の一次 巻線 8 1 1 と 8 2 1の直列体の両端に直列に常閉形の開閉器 3 1 1 と 3 2 2を接続している。 同様に、 複数の変圧器 8 3 0 と 8 4 0の一次 巻線 8 3 1 と 8 4 1の直列体の両端に直列に常閉形の開閉器 3 3 1 と 3 4 2を接続している。 複数の変圧器 8 1 0 と 8 2 0 と両端の開閉器 3 1 1 と 3 2 2 との直列体に並列に 1台の常開形の電流バイパス機器 3 1 0を接続している。 同様に、 複数の変圧器 8 3 0 と 8 4 0 と両端 の開閉器 3 3 1 と 3 4 2 との直列体に並列に 1台の常閧形の電流バイ パス機器 3 3 0を接続している。 さらに、 各変圧器 8 1 0〜 8 4 0の 各二次卷線 8 1 2 , 8 2 2 , 8 3 2, 8 4 2には、 それそれ交直変換 器ュニヅ ト 5 1 0〜 5 4 0が接続されている。第 6図の構成によって、 コス 卜を低減することができる。
これは、 多重変圧器と交直変換器ュニツ トの冗長を損なう ことにな るが、 電力変換器としての冗長性が問題なければ、 採用できる構成で あ O o
実施の形態 1から実施の形態 5への構成の変更方法は、 実施の形態 2、 実施の形態 3、 又は実施の形態 4についても適用可能である。 実施の形態 6 .
実施の形態 1では、 交直変換器ユニッ トの直流回路毎に、 コンデン サ (Capacitor) だけでなく、 他のエネルギー貯蔵装置を接続すること によ り、 電力変換器の出力する挿入電圧も有効成分の電圧と無効成分 の電圧を 3 6 0度のどの位相でも出力することが可能になる。
エネルギー貯蔵装置の例としては、 バッテリ一を始めとした二次電 池、 大容量キャパシ夕等のエネルギー貯蔵装置、 フライホイールのよ うな機械的エネルギー源をモ一夕一兼発電機を媒介して接続する別の 交直変換器ュニッ 卜がある。
第 Ί図に示す実施の形態 6は、 D V R (Dynamic Voltage Restorer), U P F C (Unified Power Flow Controller) として知られる構成であ る。 交直変換器ュニヅ ト 5 1 0〜 5 4 0の直流回路 5 1 1〜 5 4 1 を 介して別の交直変換器 5 1 3 ~ 5 4 3 を独立して接続し、 交直変換器 5 1 3〜 5 4 3から変圧器 6 1 0〜 6 4 0、 遮断器 6 1 1〜 6 4 1、 変圧器 7 0 0、 遮断器 7 0 1 を介して別々に系統に接続することによ り、 独立したエネルギー源を得ることができる。 - 産業上の利用可能性
以上のように、 この発明に係わる電力変換器は、 部分故障に対して も運転継続が可能な系統の電力潮流制御装置に適用して好適である。

Claims

請求の範囲
1 . 一次巻線が系統に直列に接続される直列変圧器と、 この直列変圧 器の二次巻線に直列に接続された多重変圧器と、 上記多重変圧器の各 一次巻線の両端にそれそれ直列に接続された常閉形の開閉器と、 上記 多重変圧器の各一次卷線とその両端の開閉器との直列体に並列に接続 された常開形の電流バイパス機器と、 上記多重変圧器の各二次卷線の それそれに交流側が接続された交直変換器ュニッ トと、 上記各交直変 換器ュ二ッ トのそれそれの直流側に接続され互いに独立した直流回路 とを備え、 特定の上記多重変圧器の一次巻線の上記電流バイパス機器 を閉じ、 その一次卷線の両端の上記開閉器を開いて、 上記特定の多重 変圧器とそれに接続された上記交直変換器ュニッ トを切り離し得るよ うにした電力変換器。
2 . 上記多重変圧器の各二次卷線のそれぞれに交流側が接続された交 直変換器ユニッ トは、 複数台であり、 上記各多重変圧器の二次巻線の 複数の交直変換器ュニッ トの直流側には共通の直流回路が設けられ、 上記共通の直流回路は、 他の上記多重変圧器の各二次卷線の複数の交 直変換器ュニッ 卜の直流側に設けられた共通の直流回路と独立してい る請求の範囲第 1項記載の電力変換器。 '
3 . 上記多重変圧器のそれそれは、 直列接続された複数の変圧器で構 成されている請求の範囲第 1項記載の電力変換器。
4 . 一次巻線が系統に直列に接続される多重変圧器と、 上記多重変圧 器の各一次卷線の両端にそれそれ直列に接続された常閉形の開閉器と、 上記多重変圧器の各一次卷線とその両端の開閉器との直列体に並列に 接続された常閧形の第 1の電流バイパス機器と、 上記多重変圧器の各 二次卷線のそれそれに交流側が接続された交直変換器ュニッ トと、 上 記各交直変換器ュニッ 卜のそれそれの直流側に接続され互いに独立し た直流回路と、 直列接続された全ての上記多重変圧器に並列に接続さ れる常開形の第 2の電流バイパス機器を備え、 特定の上記多重変圧器 の一次巻線の上記第 1の電流バイパス機器を閉じ、 その一次巻線の両 端の上記開閉器を開いて、 上記特定の多重変圧器とそれに接続された 上記交直変換器ュニッ トを切り離し得るようにした電力変換器。
5 . 上記多重変圧器の各二次巻線のそれそれに交流側が接続された交 直変換器ユニッ トは、 複数台であり、 上記各多重変圧器の二次卷線の 複数の交直変換器ュニッ 卜の直流側には共通の直流回路が設けられ、 上記共通の直流回路は、 他の上記多重変圧器の各二次卷線の複数の交 直変換器ュニッ トの直流側に設けられた共通の直流回路と独立してい る請求の範囲第 4項記載の電力変換器。
6 . 上記多重変圧器のそれそれは、 直列接続された複数の変圧器で構 成されている請求の範囲第 4項記載の電力変換器。
PCT/JP2004/001461 2004-02-12 2004-02-12 電力変換器 WO2005078889A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
MXPA05010785A MXPA05010785A (es) 2004-02-12 2004-02-12 Convertidor de energia.
DE200460032576 DE602004032576D1 (de) 2004-02-12 2004-02-12 Stromumsetzer
US10/544,126 US7365451B2 (en) 2004-02-12 2004-02-12 Power converter
AT04710513T ATE508524T1 (de) 2004-02-12 2004-02-12 Stromumsetzer
PCT/JP2004/001461 WO2005078889A1 (ja) 2004-02-12 2004-02-12 電力変換器
CA 2519394 CA2519394C (en) 2004-02-12 2004-02-12 Power converter
CNB2004800072714A CN100364200C (zh) 2004-02-12 2004-02-12 功率变换器
EP20040710513 EP1715557B1 (en) 2004-02-12 2004-02-12 Power converter
JP2005517841A JP4272208B2 (ja) 2004-02-12 2004-02-12 電力変換器
ES04710513T ES2365917T3 (es) 2004-02-12 2004-02-12 Convertidor de potencia.
AU2004314118A AU2004314118B8 (en) 2004-02-12 2004-02-12 Power converter
HK06107208A HK1087251A1 (en) 2004-02-12 2006-06-26 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/001461 WO2005078889A1 (ja) 2004-02-12 2004-02-12 電力変換器

Publications (1)

Publication Number Publication Date
WO2005078889A1 true WO2005078889A1 (ja) 2005-08-25

Family

ID=34857512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001461 WO2005078889A1 (ja) 2004-02-12 2004-02-12 電力変換器

Country Status (12)

Country Link
US (1) US7365451B2 (ja)
EP (1) EP1715557B1 (ja)
JP (1) JP4272208B2 (ja)
CN (1) CN100364200C (ja)
AT (1) ATE508524T1 (ja)
AU (1) AU2004314118B8 (ja)
CA (1) CA2519394C (ja)
DE (1) DE602004032576D1 (ja)
ES (1) ES2365917T3 (ja)
HK (1) HK1087251A1 (ja)
MX (1) MXPA05010785A (ja)
WO (1) WO2005078889A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008002226A1 (en) * 2006-06-28 2008-01-03 Abb Technology Ltd. Modular hvdc converter
WO2008126592A1 (ja) * 2007-04-04 2008-10-23 Meidensha Corporation 瞬時電圧低下補償装置
JP2016214030A (ja) * 2015-05-13 2016-12-15 東芝三菱電機産業システム株式会社 電力変換装置
US11430598B2 (en) 2017-10-12 2022-08-30 Mitsubishi Electric Corporation Power converter

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1860838B1 (de) * 2006-05-24 2013-08-14 Infineon Technologies AG Datenübertragung durch Phasenmodulation über zwei Signalpfaden
US7663268B2 (en) * 2006-08-30 2010-02-16 The Regents of the University of Cailfornia Converters for high power applications
US20080174182A1 (en) * 2006-09-28 2008-07-24 Siemens Energy And Automation, Inc. Method for operating a multi-cell power supply having an integrated power cell bypass assembly
EP2128440A4 (en) * 2006-12-28 2012-03-14 Wind To Power System S L ASYNCHRONOUS GENERATOR WITH CONTROL OF THE VOLTAGE PLACED ON THE STATOR
US8537580B2 (en) * 2008-01-18 2013-09-17 Mitsubishi Electric Corporation Controller of power converter
US8154891B1 (en) * 2008-05-19 2012-04-10 Raytheon Company Methods and apparatus for selectable output DC/DC converter
CN102308461B (zh) * 2009-02-06 2015-03-11 Abb研究有限公司 具有ac和dc功率能力的混合配电变压器
US9130462B2 (en) 2012-02-03 2015-09-08 University Of Central Florida Research Foundation, Inc. Resonant power converter having switched series transformer
CN102638043B (zh) * 2012-04-12 2014-06-18 浙江大学 一种apf并联***及其控制方法
WO2014091088A1 (fr) * 2012-12-11 2014-06-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique
JP2015156740A (ja) * 2014-02-20 2015-08-27 東芝三菱電機産業システム株式会社 電力変換装置
JP6363391B2 (ja) 2014-05-16 2018-07-25 株式会社東芝 電圧調整装置
US10305387B2 (en) 2014-07-30 2019-05-28 Abb Schweiz Ag Systems and methods for single active bridge converters
US9520798B2 (en) * 2014-08-26 2016-12-13 General Electric Company Multi-level DC-DC converter with galvanic isolation and adaptive conversion ratio
ITUB20169852A1 (it) * 2016-01-07 2017-07-07 Massimo Veggian Apparecchiatura e metodo di trasformazione di energia elettrica alternata
CN106208396B (zh) * 2016-08-01 2019-05-31 浙江大学 一种基于mmc拓扑的分散式混合储能与电力补偿***
CN110829435B (zh) * 2019-10-09 2022-09-13 西南交通大学 一种电气化铁路储能式牵引供电***及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130750A (ja) * 1991-09-13 1993-05-25 Nissin Electric Co Ltd 直列式電圧補償装置の保護装置
JPH09168232A (ja) * 1995-12-13 1997-06-24 Mitsubishi Electric Corp 電力変換器用保護装置
US5646511A (en) * 1995-05-29 1997-07-08 Mitsubishi Denki Kabushiki Kaisha Power system compensator apparatus and power converter apparatus
JPH1028319A (ja) * 1996-07-08 1998-01-27 Tohoku Electric Power Co Inc 直列補償システムの保護装置
JPH11299105A (ja) * 1998-04-15 1999-10-29 Mitsubishi Electric Corp 電力調相装置及び送電システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2394126A (en) * 1943-11-24 1946-02-05 Gen Electric Switching arrangement for electric systems
SE460323B (sv) * 1988-02-15 1989-09-25 Asea Brown Boveri Seriekondensatorutrustning
US5206775A (en) * 1991-05-23 1993-04-27 Space Systems/Loral, Inc. Circuit bypass device
JP3237983B2 (ja) * 1994-01-28 2001-12-10 隆夫 川畑 多重インバータ装置
DE19800105A1 (de) * 1998-01-05 1999-07-15 Reinhard Kalfhaus Strom-Spannungswandler und zugehöriger Regelkreis
US5986909A (en) * 1998-05-21 1999-11-16 Robicon Corporation Multiphase power supply with plural series connected cells and failed cell bypass
US7154722B1 (en) * 2001-09-05 2006-12-26 Abb Technology Ag Loop control for distribution systems
DE10218456A1 (de) * 2002-04-25 2003-11-06 Abb Patent Gmbh Schaltnetzteilanordnung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130750A (ja) * 1991-09-13 1993-05-25 Nissin Electric Co Ltd 直列式電圧補償装置の保護装置
US5646511A (en) * 1995-05-29 1997-07-08 Mitsubishi Denki Kabushiki Kaisha Power system compensator apparatus and power converter apparatus
JPH09168232A (ja) * 1995-12-13 1997-06-24 Mitsubishi Electric Corp 電力変換器用保護装置
JPH1028319A (ja) * 1996-07-08 1998-01-27 Tohoku Electric Power Co Inc 直列補償システムの保護装置
JPH11299105A (ja) * 1998-04-15 1999-10-29 Mitsubishi Electric Corp 電力調相装置及び送電システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008002226A1 (en) * 2006-06-28 2008-01-03 Abb Technology Ltd. Modular hvdc converter
US8044537B2 (en) 2006-06-28 2011-10-25 Abb Technology Ltd. Modular HVDC converter
WO2008126592A1 (ja) * 2007-04-04 2008-10-23 Meidensha Corporation 瞬時電圧低下補償装置
JP2016214030A (ja) * 2015-05-13 2016-12-15 東芝三菱電機産業システム株式会社 電力変換装置
US11430598B2 (en) 2017-10-12 2022-08-30 Mitsubishi Electric Corporation Power converter

Also Published As

Publication number Publication date
AU2004314118B8 (en) 2008-10-02
EP1715557A4 (en) 2010-01-13
EP1715557B1 (en) 2011-05-04
US7365451B2 (en) 2008-04-29
CN100364200C (zh) 2008-01-23
AU2004314118A1 (en) 2005-09-29
CA2519394C (en) 2009-02-10
DE602004032576D1 (de) 2011-06-16
AU2004314118A8 (en) 2008-10-02
AU2004314118B2 (en) 2007-01-11
CN1762081A (zh) 2006-04-19
MXPA05010785A (es) 2005-12-12
ATE508524T1 (de) 2011-05-15
JPWO2005078889A1 (ja) 2007-08-30
CA2519394A1 (en) 2005-08-25
EP1715557A1 (en) 2006-10-25
US20060131960A1 (en) 2006-06-22
JP4272208B2 (ja) 2009-06-03
HK1087251A1 (en) 2006-10-06
ES2365917T3 (es) 2011-10-13

Similar Documents

Publication Publication Date Title
JP4272208B2 (ja) 電力変換器
US10554148B2 (en) Device and method for premagnetization of a power transformer in a converter system
CN107112923B (zh) 具有晶闸管阀的模块化多电平变换器
WO2010116806A1 (ja) 電力変換装置
US8314602B2 (en) Converter cell module, voltage source converter system comprising such a module and a method for controlling such a system
CN110352553B (zh) 用于隔离型逆变器组块的冗余的保护
CN112383229A (zh) 多端口电力电子变压器拓扑结构及其交直流微电网***
JP2003333862A (ja) 電力変換装置
CN213585598U (zh) 多端口电力电子变压器拓扑结构及其交直流微电网***
US11791628B2 (en) SST system with multiple LVDC outputs
JP2022515275A (ja) フレキシブルアクセス変電所および制御方法
CN115622220A (zh) 供电单元和环路供电***
KR100678762B1 (ko) 전력 변환기
Sano A concept of multi-circuit HVDC transmission system for selective fault clearing without DC circuit breakers
Jambrich et al. MVDC ring-cable approach for new DC distribution and restructured AC grids
Bipu et al. Hierarchical Failure Mode Effect Analysis for the Protection Design of a MV AC-DC Solid State Transformer based EV Extreme Fast Charging Station
Al-khafaf Coupled-Inductor Solid-State Circuit Breaker-Based Protection Scheme for MVDC Micro-Grids
JP2023163277A (ja) マルチポート充電器、充電方法
Ma et al. Hierarchical control and experimental verification of a novel DC substation
CN111416337A (zh) 供电***、供电方法及数据中心
MOVAHHED et al. Optimal Utilization of the Delta Conversion UPS
JPS61221577A (ja) 電力変換装置の運転方法
JP2003219646A (ja) 電気回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005517841

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006131960

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10544126

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020057016276

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004314118

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004710513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2519394

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20048072714

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2004314118

Country of ref document: AU

Date of ref document: 20040212

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004314118

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/010785

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020057016276

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10544126

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004710513

Country of ref document: EP