WO2005071493A1 - Toner and process for producing toner - Google Patents

Toner and process for producing toner Download PDF

Info

Publication number
WO2005071493A1
WO2005071493A1 PCT/JP2004/018438 JP2004018438W WO2005071493A1 WO 2005071493 A1 WO2005071493 A1 WO 2005071493A1 JP 2004018438 W JP2004018438 W JP 2004018438W WO 2005071493 A1 WO2005071493 A1 WO 2005071493A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
wax
measured
scan
particles
Prior art date
Application number
PCT/JP2004/018438
Other languages
French (fr)
Japanese (ja)
Inventor
Yasukazu Ayaki
Koji Abe
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to JP2005517200A priority Critical patent/JP4721429B2/en
Priority to EP20040801658 priority patent/EP1693711B1/en
Priority to US11/122,031 priority patent/US7250241B2/en
Publication of WO2005071493A1 publication Critical patent/WO2005071493A1/en
Priority to US11/688,704 priority patent/US7300737B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08775Natural macromolecular compounds or derivatives thereof
    • G03G9/08782Waxes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0804Preparation methods whereby the components are brought together in a liquid dispersing medium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0804Preparation methods whereby the components are brought together in a liquid dispersing medium
    • G03G9/0806Preparation methods whereby the components are brought together in a liquid dispersing medium whereby chemical synthesis of at least one of the toner components takes place
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature

Definitions

  • the present invention relates to a toner used in an electrophotographic method, an electrostatic recording method, a magnetic recording method, and a toner jet method, and a method for producing the toner.
  • an electrostatic image is formed on a photoreceptor by various means, and then the electrostatic image is developed using toner to form a toner image on the photoreceptor.
  • the toner image is fixed to the transfer material by a fixing method such as heating, pressure, heating pressure, or solvent vapor to obtain an image (for example, Non-Patent Document 1).
  • toners used for these purposes are generally prepared by melt-mixing a colorant comprising a dye and / or a pigment in a thermoplastic resin, producing a uniformly dispersed colorant-dispersed resin composition, and then dispersing the colorant.
  • the resin composition has been manufactured to have a desired particle size by a fine milling device and a classifier.
  • the colorant-dispersed resin composition must be sufficiently brittle and capable of being pulverized in an economically feasible manufacturing equipment.
  • the particle size range of the particles formed when the material is actually pulverized at high speed tends to be widened, and in particular, there is a problem that relatively large particles are included.
  • the colorant-dispersed resin composition is made brittle, the particle size range of the particles formed when the material is actually pulverized at high speed tends to be widened, and in particular, there is a problem that relatively large particles are included. Sometimes.
  • a method for producing a toner by a suspension polymerization method has been proposed.
  • a polymerizable monomer, a colorant, a polymerization initiator, and, if necessary, a crosslinking agent, a charge control agent, and other additives are uniformly dissolved or dispersed, and the polymerizable monomer is dissolved.
  • the polymerizable monomer composition is dispersed in an aqueous dispersion medium containing a dispersion stabilizer using a suitable stirrer, and the polymerizable monomer is polymerized to obtain a desired particle size.
  • this method does not include a pulverizing step, the toner particles do not need to be brittle and a soft material can be used. It has excellent triboelectricity. Since the classifying process can be omitted, cost saving effects such as energy saving, shortening of manufacturing time, and improvement of process yield are great.
  • a pressure heating method using a heat roller hereinafter, referred to as a heat roller fixing method
  • a heat fixing method hereinafter, referred to as a heat roller fixing method
  • a fixing method such as a film fixing method has been developed.
  • fixing is performed by allowing a toner image on a sheet to be fixed to pass through the surface of a heat roller or a fixing film under pressure by a contacting pressure member.
  • the heat roller or the surface of the fixing film and the toner image of the sheet to be fixed come into contact with each other under pressure. Good fixation can be performed ,.
  • a toner containing a box having a high affinity for a binder resin shows good offset resistance performance and low-temperature fixing performance under specific fixing conditions (for example, Patent Documents 4 and 5).
  • the toner containing two or more types of waxes having different affinities with the binding resin can improve the anti-offset performance while exhibiting a good low-temperature fixing property under specific fixing conditions. (See, for example, Patent Documents 6, 7, 8, and 9).
  • the glass transition point of the toner decreases as the wax becomes compatible with the binder resin, so if the low-temperature fixing performance is to be further improved, the storage stability, fluidity, and chargeability Is easily damaged, and particularly when continuous printing is performed, a remarkable decrease in density and image defects are likely to occur. For this reason, a toner that satisfies storage stability performance and development stability performance and has further low-temperature fixing performance has been desired.
  • Patent Document 1 Japanese Patent Publication No. 36-10-023 1
  • Patent Document 2 Japanese Patent Publication No. Sho 42-10779
  • Patent Document 3 Japanese Patent Publication No. 51-148985
  • Patent Literature 4 Japanese Patent Application Laid-Open No. H8-503703
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2001-318484
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2001-324834 ''
  • Non-Patent Document 1 "The Basics and Applications of Electrophotographic Technology", edited by the Society of Electrophotography Koguchina Co., Ltd., June 15, 1988, p. 46-79.
  • An object of the present invention is to provide a toner that can solve the above-mentioned problems.
  • the object of the present invention is to provide an excellent offset resistance as well as low-temperature fixing performance, and excellent storage stability, fluidity, chargeability, and development durability in a developing device without impairing those performances. This is to provide a toner.
  • An object of the present invention is to provide a toner which is excellent in low-temperature fixing performance as well as in anti-offset performance, and is free from toner contamination and carrier contamination on the surface of a toner carrier or a photoreceptor in a developing machine due to durability.
  • Another object of the present invention is to provide a method for producing the toner suitably.
  • the glass transition point (T g1) measured in the first scan is from 50.0 to 70.0 ° C.
  • the temperature difference (Tg1-Tg2) between the glass transition point (Tgl) measured in the scan and the glass transition point (Tg2) measured in the second scan is 3.0 to 20.0 ° C Regarding a certain toner.
  • the present invention provides a method for dispersing a polymerizable monomer composition having at least a colorant, a wax, and a polymerizable monomer for synthesizing a binder resin in an aqueous dispersion medium.
  • a polymerizing step of polymerizing the polymerizable monomer in the polymerizable monomer composition to form toner particles, wherein the toner particles are formed at a temperature of 70.0 to 95.0 ° C to 0.01 ° C / min.
  • the glass transition point (Tg 1) measured in the first scan is 50.0 to 70.0 ° C.
  • the temperature difference (Tgl-Tg2) between the glass transition point (Tgl) measured in the scan and the glass transition point (Tg2) measured in the second scan is 3.0 to 20.0 ° C
  • the toner of the present invention has both low-temperature fixability and offset resistance, is excellent in storage stability and development durability, and forms a high-quality image for a long time without causing contamination in a developing machine. can do.
  • FIG. 1 is a graph of a heating mode of the DSC measuring device.
  • FIG. 2 is a DSC curve obtained by measuring the toner of Example 1 in the first scan.
  • FIG. 3 is a DSC curve obtained by measuring the value of Example 1 in the second scanning.
  • FIG. 4 is a chart showing the measured values of the deformation start point, the deformation end point, and the deformation coefficient defined in the present invention. This is an example.
  • FIGS. 5A, 5B, and 50 show the crystal state of the wax in the toner.
  • FIG. 6 and FIG. 6 are diagrams showing the dispersion state of the wax in the toner.
  • the glass transition point of the toner measured by the differential scanning calorimeter (DSC) is the glass transition point (Tgl) measured in the first scan and the glass transition point measured in the second scan.
  • the transition point (Tg 2) may be different, and the glass transition point (Tgl) measured in the first scan is in the range of 50.0 to 70.0 ° C and measured in the first scan
  • the difference (T g1-T g 2) between the measured glass transition point (Tg l) and the glass transition point (T g 2) measured in the second scan is 3.0 to 20.0 ° C. In some cases, they have found that the low-temperature fixing performance, the anti-offset performance, and the developing performance of the toner can be improved.
  • the toner performance before the fixing step such as the storage stability performance and the development stability performance of the toner depends on the glass transition point (Tgl) of the toner obtained by the measurement method of the present invention.
  • the low-temperature fixing performance in the process depends on the glass transition point (T g 2) of the toner.
  • Tg 2 glass transition point
  • the glass transition point of the toner is Tg1.
  • the fixing step when the toner on the transfer material is heated by contact with the fixing device, a part of the crystalline resin in the toner becomes compatible with the binder resin, and the apparent glass transition point of the toner is lowered.
  • the glass transition point of the toner becomes the value of Tg 2 as described above. This makes it possible to express low-temperature deposition ability, which could not be achieved in the past, without deteriorating storage stability performance and development stability ability.
  • the toner may contain a resin component having a molecular weight of 2,000 to 5,000 to 1.0 to 40.0% by mass based on the total mass of the toner. preferable.
  • a resin component having a molecular weight of 2,000 to 5,000 is within the above range, crystallization of a crystalline resin such as wax is promoted at the time of toner production, and most of the crystalline resin contained in the toner is crystallized.
  • the toner is heated to a high temperature such as the fixing temperature, It becomes possible to manufacture a toner in which the crystalline resin is compatible.
  • the ease of crystallization of the crystalline resin in the toner manufacturing process and the ease of compatibility of the crystalline resin with the binder resin in the fixing process depend on the content of the resin component having a molecular weight of 2,000 to 5,000 contained in the toner.
  • the degree of crystallization of the crystalline resin increases in the solid state as the molecular chain has more regular folded structures and overlapping structures. If the amount of the low-molecular-weight resin component having a molecular weight of 2,000 to 5,000 contained in the binder resin is too large, the crystalline resin and the low-molecular-weight component are easily mixed, and when the crystalline resin is solidified, a regular folding structure is formed. , The formation of the overlapping structure is easily inhibited. For this reason, the smaller the amount of the low molecular weight component, the higher the degree of crystallinity tends to be.
  • the content of the resin component having a molecular weight of 2,000 to 5,000 is less than 1.0% by mass, the crystal growth of the crystalline resin in the toner production process is promoted. The amount of compatible crystalline resin is reduced. For this reason, the crystalline resin does not exhibit the plasticizing effect due to its compatibility with the binding effect, and the fixing property of the toner may decrease.
  • the content of the resin component having a molecular weight of 2,000 to 5,000 exceeds 40.0% by mass, the amount of the crystalline resin compatible with the binder resin in the toner production process increases, and Tgl and Tg2 are reduced. Differences tend to be less than 3 ° C. In this case, the low-temperature fixing performance is good, but the storage stability performance and the development stability performance are likely to decrease.
  • the preferred content of the resin component having a molecular weight of 2,000 to 5,000 is 1.0 to 40.0% by mass relative to the total mass of the toner, and more preferably 1.5 to 20.0%. % By mass.
  • the temperature difference between Tg1 and Tg2 is 3.0
  • the temperature is from 20.0 ° C, preferably from 4.0 to 15.0 ° C, and more preferably from 5.0 to 12.0 ° C. If the temperature difference between Tg 1 and Tg 2 (Tg l—Tg 2) is less than 3.0 ° C, the storage stability and development stability will decrease if the low-temperature fixing performance is improved, and the storage If the stability performance and development stability performance are improved, sufficient storage stability performance cannot be obtained.
  • Tgl_Tg2 when the temperature difference (Tgl_Tg2) between Tg1 and Tg2 exceeds 20.0 ° C, low-temperature fixing performance and storage stability performance may be good, but in the fixing process, The melt viscosity of the toner decreases, and the toner penetrates into a transfer material such as plain paper, and a sufficient image density cannot be obtained.
  • Tgl_Tg2 values vary depending on the composition and molecular weight of the binder resin contained in the toner, the composition and amount of the crystalline resin, the production process of the toner, and the like. In the present invention, Tgl is from 50.0 to 70.0 ° C, preferably from 50.0 to 65.0 ° C, more preferably from 53.0 to 62.0 ° C. is there.
  • Tgl When the value of Tgl exceeds 70.0 ° C, the amount of the crystalline resin in the toner that becomes compatible with the binder resin during the production of the toner decreases, and the amount that the crystalline resin becomes compatible with the binder resin during fixing. Also tend to be small. For this reason, good low-temperature fixing performance cannot be obtained in order to exhibit sufficient storage stability performance.
  • Tgl is less than 50.0 ° C.
  • the amount of the crystalline resin compatible with the binder resin during the production of the toner increases, and the amount of the crystalline resin compatible with the binder resin during the fixing also increases. . As a result, good low-temperature fixing performance can be obtained, but sufficient storage stability and development stability cannot be obtained.
  • T g 2 is preferably 45.0 to 55.0 ° C.
  • Tg1 and Tg2 described above are measured using a differential scanning calorimeter (DSC) measuring device.
  • DSC differential scanning calorimeter
  • M-DSC manufactured by TA Instrument Co., Ltd. was used as the DSC measurement device.
  • the measurement method was as follows: 6 mg of the toner as a measurement sample was precisely weighed in an aluminum pan, and an empty aluminum pan was used as a reference pan. The measurement is performed at a modulation amplitude of 1.0 ° C and a frequency of 1 / min under an elementary atmosphere. After holding at 1 o ° c for 1 minute, the reversing heat flow curve obtained by scanning from 1 ⁇ ° C to 160 ° C at a heating rate of 1 ° C / min is defined as a DSC curve.
  • Tg1 is determined from the DSC curve by the midpoint method. After holding at 160 ° C for 10 minutes, cool from 160 ° C to 10 ° C at a cooling rate of 2 ° 0 minutes, and hold at 10 ° C for 10 minutes. After that, Tg2 is determined by the midpoint method from the repurging heat flow curve (DSC curve) obtained by running from 10 ° C to 160 ° C at a heating rate of 1 ° C / min.
  • Fig. 1 shows a graph of the temperature rise mode of the DSC measurement device at this time.
  • the glass transition point obtained by the midpoint method is defined as the glass transition having the intersection between the baseline before the endothermic peak and the baseline after the endothermic peak in the DSC curve at the time of temperature rise, and the rising curve. (See Figures 2 and 3).
  • the temperature at which the melting peak has a maximum value in the repurposing heat flow curve obtained by the same measurement as above is defined as the melting point.
  • the onset value and offset value of the melting point are defined as the temperature at the intersection of the tangent drawn at the point of maximum slope of the rising part of the peak and the outer base line before the peak, and the melting point onset.
  • the temperature at the intersection of the tangent drawn at the point of maximum slope before the end of the melting peak and the outer baseline after the peak shall be the melting point offset value.
  • the endothermic amount is a straight line connecting the point where the peak rises from the extrapolated baseline before the melting peak and the point where the peak comes into contact with the external baseline after the end of the melting peak in the reparsed heat flow curve obtained by the above measurement. Calculate from the area enclosed by the and the melting peak.
  • the molecular weight of the resin component contained in the toner and the content of the resin component having a molecular weight of 2,000 to 5,000 contained in the toner can be determined by using a gel permeation chromatography (GPC) apparatus (manufactured by Tosoh Corporation). It was measured.
  • GPC gel permeation chromatography
  • the GPC device will be described below.
  • THF tetrahydrofuran
  • 100 ⁇ l of a THF sample solution is injected to measure.
  • the molecular weight distribution of the sample is calculated from the relationship between the logarithmic value of a calibration curve created from several types of monodisperse polystyrene standard samples and the count number.
  • the standard polystyrene samples for preparing the calibration curve for example, Tosoh Co.
  • one company or the molecular weight of Showa Denko KK is used of about 10 2 to 10 7, using standard polystyrene emissions sample at least about 10 Is appropriate.
  • An RI (refractive index) detector is used as the detector.
  • the content of the resin component having a molecular weight of 2,000 to 5,000 is determined from the elution curve obtained by the above measurement.
  • the sample used for the GPC device is prepared as follows.
  • the toner sample is placed in tetrahydrofuran (THF), mixed well, and allowed to stand for 12-18 hours.
  • a sample processing filter pore size 0.45 to 0.5 ⁇ , for example, Myshori Disc ⁇ —25-5 manufactured by Tosoh I. Co., Ltd., and Exocolodisc 25 CR manufactured by Germanic Science Japan can be used.
  • the sample that has passed through is used as the GPC sample. Adjust the sample concentration so that the resin component concentration is 0.04 to 0.08% by mass.
  • any known binder resin can be used, for example, a styrene copolymer or a polyester resin such as a styrene-acrylate resin or a styrene-methacrylate resin.
  • a styrene copolymer or a polyester resin such as a styrene-acrylate resin or a styrene-methacrylate resin.
  • the toner of the present invention preferably has a tetrahydrofuran (THF) insoluble content of 5 to 90% by mass based on the total mass of the toner. More preferably, it is 5 to 70% by mass, and still more preferably 5 to 65% by mass. This is because the balance between storage stability, image stability and low-temperature fixing performance is further improved.
  • THF tetrahydrofuran
  • THF-insoluble component in the toner refers to the mass ratio of the ultrahigh molecular weight polymer component (substantially crosslinked polymer) that has become insoluble in the THF solvent.
  • the THF insoluble content of the toner is defined by a value measured as follows.
  • the toner lg is weighed (Wlg), placed in a thimble filter paper (for example, No. 86R manufactured by Toyo Roshi Kaisha), subjected to a Soxhlet extractor, extracted with 200 ml of THF as a solvent for 6 hours, and the soluble components extracted with the THF solvent are extracted After evaporation, vacuum-dry at 100 ° C for several hours and weigh the THF-soluble matter (W2 g).
  • the THF insoluble content of the toner is calculated from the following equation. .
  • THF-insoluble content of toner ⁇ (Wl-W2), / W1 ⁇ XI00
  • the toner of the present invention has a number average molecular weight (Mn) of 3000 to 100000, and a weight average It is preferable that the molecular weight (Mw) is 10,000 to 1,000,000 and the ratio of Mw to Mn (MwZMn) is 2.00 to 100: 00. This is because the balance between storage stability, development stability, and low-temperature fixing performance is improved.
  • the toner of the present invention preferably has a melting point (Tml) at 55.0 to 70.0 ° C in a DSC curve measured in the first scan.
  • Tml melting point
  • the ratio (Q 1 / Q2) of the heat absorption Q1 measured in the first scan to the heat absorption Q2 determined in the second scan is 2.00 to 50. 00 is preferred.
  • a toner having a melting point (Tml) at 55.0 to 70.0 ° C preferably has a balance between crystallization of a crystalline resin such as wax at the time of toner production and compatibility with a binder resin at the time of fixing. , Q 1 / Q 2 values between 2.00 and 50.00 It becomes.
  • the storage stability performance and the low-temperature fixing performance are further improved. If the value of Q1 / Q2 is more than 50.00, the melt viscosity of the toner may be too low and the fixing area on the high temperature side may be small. If the value of Q 1 / Q 2 is less than 2, the fixing area on the low temperature side may be small.
  • the toner of the present invention preferably has a melting point ( ⁇ 2) at 71.0 to 150.0 ° C. in a DSC curve measured in the second scan. Further, in the toner of the present invention, the ratio (Q3 / Q4) of the heat absorption Q3 determined in the first scan to the heat absorption Q4 measured in the second scan is 0.80 to 1.20. Is preferred. This is because when the value of Q 3 / Q 4 is within the above range, the fixing area on the high temperature side is further improved. Further, the above Q4 is preferably in the range of 1.5 to 20. O J / g. If Q4 is more than 20.0 JZg, toner may not be sufficiently transmitted from the fixing device, and the fixing area on the low temperature side may be reduced. If Q4 is less than 1.5 jZg, the fixing area on the high-temperature side may be small.
  • the toner according to the present invention has a deformation start point (pound 1) of 45.0 to 60.0 ° C., a deformation end point (T f 2) of 55.0 to 75.0 ° C., and a deformation coefficient (T—fr). ) Is preferably from 0.3 to 0.7.
  • the deformation start point (T f 1), deformation end point (T f 2), and deformation coefficient (T fr) in the present invention are indices indicating the thermodynamic properties of the toner, and are specifically measured by the following method. Value.
  • a load of 10 kgf was applied to the pressurized jig, and the temperature was raised at a rate of 1 ° CZ for 1 minute.
  • T ff 1 The temperature at the intersection (onset point) of the straight line that extends the low-temperature-side baseline to the high-temperature side and the tangent drawn at the point where the slope of the curve at the step change in deformation is maximized is defined as T ff 1
  • Hf1 the height of the pressurized jig at that time is Hf1
  • T fr the deformation coefficient
  • the above measurement can be performed, for example, by using a SUS — 316 plate with no holes in place of a die for placing a sample in a flow tester (CFT-500D, manufactured by Shimadzu Corporation).
  • Fig. 4 shows an example of the measurement chart.
  • T f r (H f 2-H f 1) / (T f f 2-T f f 1)
  • the deformation start point (T f1) obtained from the above measurement correlates with blocking resistance, low-temperature fixing performance and development stability performance, and the deformation end point (T f 2) is high-temperature offset resistance, deformation
  • the coefficient (T fr) correlates with the dalos performance.
  • T f 1 when the deformation starting point (T f 1) is less than 45.0 ° C., the low-temperature fixing performance is improved, but blocking occurs in the developing machine, and capri and image defects occur. On the other hand, if T f 1 exceeds 60.0 ° C., the development stability performance is improved. Sufficient low-temperature fixing performance cannot be obtained.
  • T f 2 If the deformation end point (T f 2) is less than 55.0 ° C, high-temperature offset is likely to occur, and the fixing area becomes extremely small. T f 2 is high-temperature offset performance in a range exceeding 75. 0 D C is improved, low-temperature fixing performance becomes low-temperature offset is liable to occur is reduced.
  • T fr deformation coefficient
  • the above physical properties of the toner are achieved by a balance between the glass transition point (T g) of the binder resin and the amount of the crystalline resin that plasticizes the binder resin such as wax to be compatible with the binder resin.
  • T g glass transition point
  • a toner having a low Tg determined by DSC tends to have small values of Tf1 and Tf2.
  • toner having a large amount of crystalline resin compatible with the binder resin, such as wax tends to have a T fr value exceeding 0.7, and toner having a small amount of crystalline resin compatibility has a T fr of fr is likely to be less than 0.3.
  • the amount of compatibility of these crystalline resins can be controlled by the composition and molecular weight distribution of the binder resin, the amount and amount of plasticizing component added, the method of producing the toner, and the like.
  • the smaller the Tg of the binder resin the larger the amount of compatibility of the crystalline resin becomes, and the smaller the molecular weight, the larger the amount of compatibility becomes.
  • the lower the melting point the greater the compatibility with the binder resin.
  • the smaller the carbon number of the alkyl group contained in the wax the greater the compatibility with the binder resin.
  • the greater the carbon number of the alkyl group contained in the wax the greater the crystallinity, and the greater the difference between the melting point and the offset value, the greater the crystallinity.
  • a polar wax such as an ester wax tends to have a higher compatibility with a binder resin
  • a low-polar wax such as a paraffin wax tends to have a lower compatibility.
  • these resins have an increased affinity for the binder resin at high temperatures, the toner produced by quenching from a high temperature state has a higher compatibility with the binder resin than the slowly cooled toner. It is easy to grow.
  • Examples of the crystalline resin such as wax used in the toner of the present invention include paraffin resin, polyolefin wax, microcrystalline wax, and fish.
  • Examples include polymethylene wax such as Jatrophish wax, amide wax, higher fatty acids, long-chain alcohols, ester waxes, ketone waxes and derivatives thereof such as graft compounds and block compounds, and these have a low molecular weight contained in the wax.
  • crystalline resin examples include waxes such as linear alkyl alcohols having 18 to 42 carbon atoms, fatty acids, fatty acid amides, fatty acid esters, and montan derivatives.
  • waxes such as linear alkyl alcohols having 18 to 42 carbon atoms, fatty acids, fatty acid amides, fatty acid esters, and montan derivatives.
  • crystals during toner production o such as linear alkyl alcohols having 18 to 42 carbon atoms, fatty acids, fatty acid amides, fatty acid esters, and montan derivatives.
  • an ester wax having an ester compound having 18 to 42 carbon atoms is preferable, and an ester compound having 30 to 42 carbon atoms is more preferable.
  • the ester wax used in the present invention preferably has a fatty acid ester conjugate having an alkyl group having 10 to 21 carbon atoms. Further, those from which impurities such as liquid fatty acids have been removed in advance from these waxes are also preferable.
  • ester wax examples include those formed from compounds represented by the following formulas (I) to (VI).
  • R 1 and R 2 are organic groups having 1 to 40 carbon atoms, and R 1 and R 2 are At least one has a carbon number of 10 to 21.
  • m and n are integers of 0 to 20, and m and n are not simultaneously 0.
  • R 1 and R 2 is an organic group having 1 to 40 carbon atoms, and at least one of R 1 and R 2 is an alkyl group having 10 to 21 carbon atoms.
  • R 3 is a hydrogen atom or an organic group having 1 to 20 or more carbon atoms.
  • m and n are integers from 0 to 20; m and n are never 0 at the same time.
  • R 1 and R 3 are organic groups having 1 to 40 carbon atoms, and at least one of R 1 and R 3 is an alkyl group having 10 to 21 carbon atoms.
  • R 2 represents an organic group having 1 to 20 carbon atoms.
  • R 1 and R 2 are organic groups having 1 to 40 carbon atoms, and at least one or more of R 1 and R 3 is an alkyl group having 10 to 21 carbon atoms.
  • N Represents an integer of 1 to 20.
  • a is an integer of 0 to 3
  • b is an integer of 1 to 4
  • a + b is 4.
  • R 1 is an alkyl group having 1 to 21 carbon atoms.
  • n is an integer from 0 to 20 and m and n cannot be 0 at the same time.
  • R 1 and R 2 are alkyl groups having 1 to 39 carbon atoms, and the total of the number of carbon atoms of R 1 and the number of carbon atoms of R 2 is 17 to 41.
  • polymethylene wax such as paraffin wax, polyolefin wax, microcrystalline wax, and fish tropic wax
  • polymethylene wax alkylene is Low molecular weight polymethylene wax polymerized by cal polymerization or low pressure using a Ziegler catalyst or other catalysts; a polymethylene wax obtained by subjecting a high molecular weight alkylene polymer to thermal decomposition.
  • Methylene wax polymethylene wax obtained by separating and purifying a low-molecular-weight alkylene polymer produced as a by-product when polymerizing alkylene; from the distillation residue of a hydrocarbon polymer obtained from a synthesis gas consisting of carbon monoxide and hydrogen by the Age method, Alternatively, a polymethylene wax obtained by extracting and separating a specific component from a synthetic hydrocarbon obtained by hydrogenating a distillation residue is included. These boxes may be supplemented with an antioxidant.
  • the crystalline resin such as wax used in the present invention has a melting point (temperature corresponding to the maximum endothermic peak of the DSC curve in the temperature range of 20.0 to 200.0 ° C) of 40.0 to 150.0 ° C.
  • the temperature is preferably 55.0 to 150.0 ° C, more preferably 55.0 to 110.0 ° C.
  • an ester wax as the crystalline resin in view of the relationship between the crystallinity during the production of the toner and the compatibility with the binder resin.
  • a wax in which the difference between the onset value of the melting point and the offset value is within 20.0 ° C is preferable, and more preferably, it is within 10. ° C.
  • the value of the difference between the onset value and the offset value of the melting point affects the compatibility of the wax with the binder resin. If the value exceeds 20 ° C., the developability may be reduced.
  • a wax having a difference between the melting point and the onset value within 10.0 ° C. is preferable, and more preferably within 5.0 ° C.
  • a wax having a difference between the melting point and the offset value within 10.0 ° C is preferable, and more preferably within 5.0 ° C.
  • the value of the difference between the melting point and the onset value and the value of the difference between the melting point and the offset value affect the compatibility of the wax with the binder resin, and if each value exceeds 10 ° C. Developability may decrease.
  • a solid wax which is solid at room temperature is preferable, and a low melting point wax having a melting point of 50.0 to 70.0 ° C and a low melting point wax having a melting point of 71.0 to 150.0 ° C. It is preferable to use a point wax in combination.
  • a wax having a difference between the onset value and the offset value of the melting point within 20.0 ° C is preferable, and more preferably within 10.0 ° C.
  • the high melting point wax preferably has a melting point of 71.0 to 150.0 ° C, more preferably 71.0 to 111.0 ° C! /.
  • the difference between the onset value and the offset value of the melting point of the high melting point wax is 5.0 to 80.0 ° C, preferably 8.0 to 50 ° C.
  • the temperature is preferably 0 ° C.
  • the ester wax has two or more ester compounds, and contains 50 to 95% by mass of the esterified compound having the same structure among the ester compounds, based on the total mass of the ester. Ester wax is preferred.
  • the content value as described above affects the onset value and offset value at the melting peak of the wax, and affects the compatibility of the wax with the binder resin.
  • the content of the ester compound having the same structure can be measured by a gas chromatography method (GC method) described below.
  • GC-17A (manufactured by Shimadzu Corporation) is used for the measurement of the content of the ester compound having the same structure by the GC method.
  • the column used is UltraAlloy-1 (HT) having a diameter of 0.511111 and a length of 1 Om.
  • the column is first heated from 40 ° C to 200 ° C at a rate of 40 ° C / min, then at 15 ° C / min to 350 ° C, then to 7 ° C / min. Raise the temperature to 450 ° C at the heating speed.
  • the carrier gas is The gas flows under the pressure condition of 501 ⁇ ? &.
  • the compound species is identified by separately injecting an alkane with a known carbon number and comparing the same effluent times, or by introducing gasification components into mass spectrometry.
  • the content of the ester compound is calculated by calculating the ratio of the peak area to the total peak area of the chromatogram.
  • a preferable content of the wax is 1 to 40 parts by mass (more preferably, 2 to 20 parts by mass) per 100 parts by mass of the binder resin.
  • the wax is preferably blended in an amount of 1 to 40 parts by mass (more preferably, 2 to 20 parts by mass) with respect to 100 parts by mass of the polymerizable monomer.
  • the wax may be contained in the toner in an amount of 1 to 10 parts by mass (more preferably 2 to 8 parts by mass) per 100 parts by mass of the binder resin. preferable.
  • the wax used in the present invention preferably has a solubility parameter (SP) value in the range of 7.6 to 10.5. Boxes having an SP value of less than 7.6 have poor compatibility with the polymerizable monomer or binder resin used, and as a result, it is difficult to obtain good dispersion in the binder resin. At the time of copying or printing a large number of sheets, the wax tends to adhere to the developing sleeve, and the charge amount of the toner changes and becomes more chewy. Furthermore, toner density fluctuations during pre-ground and toner replenishment are also likely to occur. When a wax having an SP value exceeding 10.5 is used, blocking between toners is likely to occur when the toner is stored for a long period of time. Furthermore, since the compatibility with the Pinda resin is too good, it is difficult to form a sufficient releasable layer between the fixing member and the toner at the time of fixing, thereby causing an offset phenomenon.
  • SP solubility parameter
  • the solubility parameter (SP) value can be calculated by using the method of Fedors using the additive nature of atomic groups (Polym. Eng. Sc14 (2) 147 (1974)).
  • the wax used in the present invention has a melt viscosity at 135 ° C of 1 to 300 c.
  • melt viscosity is lower than lc P s, sleep contamination is likely to occur due to mechanical slippage when a thin layer of a toner layer is coated on a developing sleeve by a coating blade using a non-magnetic one-component developing method.
  • the two-component developing method when developing an electrostatic charge image using carrier particles and toner, the toner is caused by the slip between toner particles and carrier particles. Toner is easily damaged, external additives are buried, and toner is easily crushed.
  • the viscosity of the polymerizable monomer composition increases when producing a toner using a polymerization method, and the particle size distribution has a sharp fine particle size. It is difficult to obtain toner.
  • the melt viscosity of the wax can be measured using a cone plate type rotor (PK-1) with VP-500 manufactured by HAAK E.
  • the penetration of the wax is desirably 14 or less, preferably 4 or less, and more preferably 3 or less. If the penetration exceeds 14, filming is likely to occur on the surface of the photosensitive drum.
  • the measurement of the penetration shall be in accordance with J13-22-3235. ⁇ If the wax needs to be extracted from the toner to obtain the above physical properties, the extraction method is not particularly limited, and any method can be used.
  • a predetermined amount of toner is subjected to Soxhlet extraction with toluene, the solvent is removed from the obtained toluene-soluble matter, and then a form-insoluble matter is obtained.
  • identification analysis is performed by the IR method or the like. .
  • the toner of the present invention may be added with a condensation resin in addition to the binder resin.
  • a condensation resin in the case of a polymerization toner, it is possible to improve the granulation property, the environmental stability of the charge amount, the developability and the transfer property.
  • the condensation resin preferably has a weight average molecular weight (Mw) of 6,000 to 100,000, more preferably 6,500 to 85,000, and still more preferably. Is from 6,500 to 45,000.
  • the weight average molecular weight of the condensation resin When the weight average molecular weight of the condensation resin is less than 6,000, the external additive on the toner surface is easily buried due to durability in continuous image output, and the transferability is likely to be lowered. Conversely, if the weight average molecular weight exceeds 100,000, It takes a lot of time to dissolve the condensation resin in the monomer. Further, the viscosity of the polymerizable monomer composition increases, and it is difficult to obtain a toner having a small particle size and a uniform particle size distribution.
  • the condensation resin preferably has a number average molecular weight (Mn) of from 3,000 to 80,000, more preferably from 3,500 to 60,000, even more preferably from 3,500 to 12,000. is there.
  • the condensation resin has a main peak value (Mp) of a molecular weight distribution in a gel permeation chromatogram (GPC), a region having a molecular weight of 4,500 to 40,000, and more preferably a region having a molecular weight of 6,000 to 30,000. Good to exist. More preferably, the molecular weight is in the range of 6,000 to 20,000. Outside the above range, the same tendency as in the case of the weight average molecular weight is exhibited.
  • the condensed resin preferably has MwZMn of 1.2 to 3.0, more preferably 1.5 to 2.5.
  • MwZMn 1.2 to 3.0
  • the durability of a large number of toner sheets and the offset resistance are deteriorated.
  • the MwZMn is more than 3.0, the low-temperature fixability is slightly higher than that in the range. Inferior.
  • the condensation resin has a glass transition point (Tg) force of 50.0 to 100.0 ° C, preferably 50.0 to 95.0 ° C. More preferably, the temperature is 55 to 90 ° C. When the glass transition point is less than 50 ° Q, the blocking resistance of the toner is reduced. C When the glass transition point exceeds 100 ° C, the low-temperature offset resistance of the toner is reduced.
  • Tg indicates a value obtained by the midpoint method.
  • the acid value (mgKOH / g) of the condensation resin is 0.1 to 35.0, preferably 3.0 to 35.0, more preferably 4.0 to 35.0, and further preferably 5.0 to 35.0. 30.0.
  • the acid value is less than 0.1, the rise of the charge amount of the toner is slow, and capri easily occurs.
  • the acid value exceeds 35.0 the frictional charging characteristics of the toner after being left under high temperature and humidity tend to fluctuate, and the image density tends to fluctuate in continuous image output.
  • the acid value of the condensation resin If it exceeds 35.0, the condensed resin has a high affinity between the polymers, so that the condensed resin is difficult to dissolve in the polymerizable monomer, and a uniform polymerizable monomer composition cannot be obtained. It takes time to prepare.
  • the condensation resin has a hydroxyl value (mgKOH / g) of 0.2 to 50.0, preferably 5.0 to 50.0, more preferably 7.0 to 45.0.
  • a hydroxyl value mgKOH / g
  • the extraction of the condensation resin is not particularly limited, and any method can be used.
  • the condensation resin is preferably used in an amount of 0.1 to 20.0 parts by mass, more preferably 1.0 to 15.0 parts by mass, based on 100 parts by mass of the binder resin.
  • the acid value of the luster is determined as follows. The basic operation is based on JIS-K00 7 (H.
  • the number of mg of potassium hydroxide required to neutralize free fatty acids, resin acids, etc. contained in 1 g of sample is called acid value and is measured by the following method.
  • the acid value is calculated according to the following equation.
  • the hydroxyl value of the resin is determined as follows.
  • the basic operation conforms to JIS-K0070.
  • the number of mg of potassium hydroxide required to neutralize the acetic acid bonded to the hydroxyl group is determined by the hydroxyl value, and the following method is used.
  • acetic anhydride put 25 ml of acetic anhydride in a 100 ml volumetric flask, add pyridine to make the total volume 100 ml, and shake thoroughly. (In some cases, pyridine may be added.) Keep the acetylating reagent away from moisture, carbon dioxide and acid vapors, and store in a brown bottle.
  • the flask was heated again in a glycerin bath for 10 minutes. Titrate with 1 liter of water-soluble alcohol. Perform a blank test in parallel with this test. In some cases, KOH-THF solution may be used as the indicator.
  • the hydroxyl value is calculated by the following equation.
  • A ⁇ (B— C) X f X 28. 05 / S ⁇ + D
  • condensation resin usable in the present invention resins such as polyester, polycarbonate, phenol resin, epoxy resin, polyamide, and cellulose can be used. More preferably, polyester is desired from the diversity of materials.
  • the method for producing the polyester used as the condensation resin and the ester wax used as the crystalline resin include, for example, a synthesis method by an oxidation reaction, a synthesis from cataphoric acid and its derivatives, and a reaction with Michael. It is produced by a method using an ester group introduction reaction, a dehydration condensation reaction from a carboxylic acid compound and an alcohol compound, a reaction from an acid halide and an alcohol compound, and a transesterification reaction.
  • the catalyst may be a common acidic or alkaline catalyst used for the esterification reaction, for example, zinc oxide, a titanium compound, or the like. Thereafter, it may be highly purified by a recrystallization method, a distillation method, or the like.
  • a particularly preferred production method is a dehydration-condensation reaction between a carboxy compound and an alcohol compound because of the variety of raw materials and the speed of the reaction.
  • composition of the polyester when the polyester is used as the condensation resin will be described below.
  • polyester 45-55 m 0% of all components are alcohol components, and 5% It is preferable that 5 to 45 mol% is an acid component.
  • alcohol components ethyl alcohol, propylene glycol, 1,
  • R ′ represents one CH 2 CH 2 —, one CH 2 —0H— or one CH 2 —C one.
  • diols such as diols represented by CH 3 .
  • divalent carboxylic acids examples include phthalic acid, terephthalic acid, isophthalic acid, phthalic anhydride, diphenyl-4,4'-dicarboxylic acid, naphthalene-1,2,7-dicarboxylic acid, naphthalene-1,2,6-dicarboxylic acid, Benzenedicarboxylic acids such as diphenylmethane 1,4'-dicarboxylic acid, benzophenone-1,4,4'-dicarboxylic acid, 1,2-diphenoxetane-1,4'-dicarboxylic acid or anhydrides; succinic acid, adipic acid, Alkyl dicarboxylic acids such as sebacic acid, azelaic acid, glutaric acid, cyclohexanedicanololeic acid, triethylene dicarboxylic acid and malonic acid or anhydrides thereof, and also alkyls having 6 to 18 carbon atoms And unsaturated anhydrides such as fuma
  • a particularly preferred alcohol component is a bisphenol derivative represented by the above formula (VII), and an acidic component is phthalic acid, terephthalic acid, isophthalic acid or an anhydride thereof, succinic acid, n-dodecyl-succinic acid, or a mixture thereof.
  • Examples include dicarboxylic acids such as anhydride, fumaric acid, maleic acid, and maleic anhydride.
  • the condensation resin can be obtained by synthesizing from a divalent dicarboxylic acid and a divalent diol.However, in some cases, a polycarboxylic acid or polyol having a valency of 3 or more does not adversely affect the present invention. It is good to use a small amount in the range.
  • Trivalent or higher polycarboxylic acids include trimellitic acid, pyromellitic acid, cyclohexanetricarboxylic acids, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-mononaphthalenetricarboxylic acid, 1,2,4 1-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methylene lipoxylpropane, 1,3-dicarboxyl-2-methyl-methylenecarboxylpropane, tetra (methylene Carboxyl) methane, 1,2,7,8-octanetetracarboxylic acid and their anhydrides.
  • Trihydric or higher polyols include sulitol, 1,2,3,61-hexanexetol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, sucrose, 1,2,4 Monomethantriol, glycerin, 2-methylpropanetriol, 2-methyl1-1,2,4-butanetriol, trimethyloloneethane, trimethylolpropane, 1,3,5-trimethyloxymethylbenzene .
  • the toner of the present invention may use a charge control agent.
  • Examples of the charge control agent for controlling the toner to be negatively charged include the following substances.
  • organometallic compounds, chelate compounds, monoazo metal compounds, acetyla examples include seton metal compounds, urea derivatives, metal-containing salicylic acid compounds, metal-containing naphthoic acid compounds, quaternary ammonium salts, calixarene, silicon compounds, non-metal carboxylic acid compounds, and derivatives thereof.
  • the following charge control agents are used to control the toner to be positively charged.
  • quaternary ammonium salts such as -denatured products of glycine and fatty acid metal salts, triptylbenzylammonium 1-hydroxy-14-naphthosulfonate, tetrabutylammonium tetrafluoroborate, and the like
  • Phosphorum salts such as phospho-pam salts, which are analogs thereof, their lake pigments, triphenyl methane dyes and their lakes (the lakes are made of phosphotungstic acid, phosphomolybdic acid, phosphotungsten) Molybdic acid, tannic acid, lauric acid, gallic acid, ferricyanide, ferrocyanide, etc.), metal salts of higher fatty acids; diorganotinos such as dibuty / resuzuoxide, dioctyltin oxide, dicyclohexynolesse Oxide: dibutylt
  • the charge control agent is preferably contained in an amount of 0.01 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, per 100 parts by mass of the binder resin in the toner.
  • the toner of the present invention contains a colorant.
  • the black colorant carbon black, a magnetic substance, or a black color tone using the following yellow magenta / cyan colorant is used.
  • the yellow colorant as a pigment, compounds represented by condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complex methine compounds, and arylamide compounds are used.
  • C.I. pigmentation yellow 3,7,10,12 to 15,17,23,24,60,62,74, 75, 83, 93-95, 99, L 00, 101, 104 108-: L 1] 117, 123, 128, 129 138, 1 39, 147 148, 150 166, 168-177, 179 180, 181, 183 185, 191 1, 191, 192, 193, 199 are preferably used.
  • Examples of the dye system include C. 1. Solvent Yellow 33, 56, 79, 82, 93, 112, 162, 163 and C. I. Disperse Yellow 42, 64, 201, 211.
  • magenta colorant examples include a condensed azo compound, a diketovirolopyrroylium compound, anthraquinone, a quinatalidone compound, a basic dye lake compound, a naphthol compound, a benzimidazolone compound, a thioindigo compound, and a perylene compound.
  • C.I. Pigment Red 2, 3, 5-7, 23, 48: 2, 48: 3, 48: 4, 57: 1, 81: 1, 122, 146, 166, 169 , 177, 184, 185, 202, 206, 220, 221, 254, CI Pigment Violet 19 are particularly preferred.
  • cyan coloring agent a copper phthalocyanine compound and its derivatives, an anthraquinone compound, a basic dye lake compound and the like can be used. Specifically, CI Pigment Blue 1, 7, 15, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, 66 is particularly preferably used.
  • colorants can be used alone or as a mixture or in the form of a solid solution.
  • the colorant of the present invention is selected from the viewpoints of hue angle, saturation, lightness, weather resistance, transparency of OHP, and dispersibility in toner.
  • the coloring agent is used in an amount of 0.5 to 20 parts by mass with respect to 100 parts by mass of the binder resin.
  • the toner of the present invention may contain a magnetic substance and be used as a magnetic toner.
  • the magnetic material can also serve as a colorant.
  • the magnetic substance contained in the magnetic toner may be oxidized iron such as magnetite, hematite, or ferrite; a metal such as iron, cobalt, or nickel; Alloys with metals such as aluminum / cobalt, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, force cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium and mixtures thereof.
  • the magnetic material used in the present invention is more preferably a surface-modified magnetic material.
  • the magnetic material When used in a polymerization method toner, it is subjected to a hydrophobic treatment with a surface modifier which is a substance having no polymerization inhibition. Is preferred.
  • a surface modifier include a silane coupling agent and a titanium coupling agent. .
  • These magnetic materials preferably have an average particle size of 2 ⁇ or less, preferably about 0.1 to 0.5 ⁇ .
  • the amount to be contained in the toner is preferably from 20 to 200 parts by mass, particularly preferably from 40 to 150 parts by mass, per 100 parts by mass of the binder resin.
  • the magnetic properties when applying 796 kA / m (10 k oersted) are coercive force (He) 1.59 ⁇ 23.9 k AZm (20 ⁇ 300 Oersted), Saturation magnetism ( ⁇ s) 50 ⁇ 200 emu / g
  • the magnetic material has a residual magnetism ( ⁇ ⁇ ) of 2 to 20 emu / g.
  • an external additive for improving various characteristics of the toner is used.
  • the external additive preferably has a particle diameter of 1 to 5 or less of the volume average diameter of the toner.
  • the particle size of the additive means the average particle size obtained by observing the surface of the toner with an electron microscope.
  • the external additives for imparting these properties for example, the following are used.
  • Examples thereof include silicon oxide, silicon oxide, aluminum oxide, titanium oxide, metal oxides such as hydrotalcite, carbon black, and carbon fluoride. It is more preferable that each is subjected to a water-phobic treatment.
  • abrasive examples include metal oxides such as strontium titanate, cerium oxide, aluminum oxide, magnesium oxide, and chromium oxide, and nitrides such as silicon nitride. And carbides such as silicon carbide, and metal salts such as calcium sulfate, barium sulfate, and calcium carbonate.
  • metal oxides such as strontium titanate, cerium oxide, aluminum oxide, magnesium oxide, and chromium oxide
  • nitrides such as silicon nitride.
  • carbides such as silicon carbide, and metal salts such as calcium sulfate, barium sulfate, and calcium carbonate.
  • lubricant examples include fluorine resin powders such as vinylidene fluoride and polytetrafluoroethylene, and fatty acid metal salts such as zinc stearate and calcium stearate.
  • Examples of the charge control particles include tin oxide, titanium oxide, zinc oxide, silicon oxide, metal oxides such as aluminum oxide, and carbon black.
  • These external additives are used in an amount of 0.1 to 10 parts by mass, preferably 0.1 to 5 parts by mass, based on 100 parts by mass of the toner particles. These external additives may be used alone or in combination of two or more.
  • the toner of the present invention preferably has a cohesion of 1 to 50%, more preferably 1 to 30%, furthermore preferably 4 to 30%, and particularly preferably 4 to 20% from the viewpoint of development.
  • the degree of aggregation of the toner is measured by the following method.
  • a vibrating sieve of a powder tester (manufactured by Hosokawa Micron), open a sieve of 33 ⁇ (400 ⁇ 63 ⁇ ), 77 ⁇ (20 Ome sh) and 154 ⁇ m (10 Ome sh) on the shaking table. From the bottom, a sieve with a mesh of 33 m, a sieve with a mesh of 77 ⁇ , and a sieve with a mesh of 1 54 ⁇ um are set in this order so that the sieve with an opening of 154 m is at the highest level. I do. Place the sample on the set sieve with the opening of 1 54 m, adjust the input voltage to the shaking table to 15 V, and adjust the amplitude of the shaking table to be in the range of 60 to 90 m.
  • Vibration is applied for about 25 seconds, then the weight of the sample remaining on each sieve is measured, and the degree of cohesion is obtained based on the following equation.
  • the sample size is 5 g, and the sample is allowed to stand in a normal temperature and normal humidity environment (20 ° C / 60% RH) for 7 days before measurement.
  • Cohesion (%) (Mass of sample on sieve with opening of 1 54 ⁇ 111 (g) / 5 g)
  • the toner according to the present invention has a circle-equivalent number average diameter D 1 ( ⁇ ) of 2 in a circle-equivalent-diameter circularity scattergram based on the number of toners measured by a flow-type particle image measuring apparatus described later.
  • the average circularity of the toner is preferably from 0.920 to 0.995, and the standard deviation of the circularity is preferably less than 0.040. More preferably, the average circularity is 0.950 to 0.995, and the circularity standard deviation value is less than 0.035. More preferably, the average circularity is from 0.970 to 0.995, and the standard deviation of the circularity is from 0.015 to less than 0.035.
  • the content of the toner having a circularity of less than 0.950 is preferably 15% by number or less. Further, the number variation coefficient obtained by dividing the standard deviation of the circle-equivalent number average diameter by the circle-equivalent number average diameter is preferably 0.35 or less, particularly preferably 0.30 or less.
  • Toner having an average number of equivalent circles of 2 to 7 ⁇ has excellent reproducibility in the development of the outline portion of an image, especially a character image or a line pattern.
  • reducing the particle size of the toner necessarily increases the abundance of the fine particle toner, making it difficult to uniformly charge the toner.
  • Adhesion to the surface of the image carrier and the developer carrier increases, resulting in a decrease in development characteristics.
  • the average circularity of the circularity frequency distribution of the toner is 0.920 to 0.995, preferably 0.950 to 0.995, more preferably 0.970 to 0.9.
  • the toner of the present invention has a circularity standard deviation of less than 0.040, preferably less than 0.035, so that the problem relating to developability can be significantly improved.
  • the toner having the above-mentioned shape is very effective for developing a digital minute spot latent image or for forming a full-color image in which an intermediate transfer member is used for multiple transfer operations. It will be good.
  • the average circularity is used as a simple method for quantitatively expressing the shape of a particle.
  • the average circularity is 1.0000, and the toner shape is complicated. Indeed, the circularity has a small value. Specifically, for example, it can be measured using a flow-type particle image analyzer FPI-210 (manufactured by Toa Medical Electronics Co., Ltd.).
  • the circularity is determined by the following equation, and the value obtained by dividing the total circularity of all the particles measured by the following equation by the total number of particles is defined as the average circularity.
  • the average circularity of the toner is measured using a flow-type particle image measurement system "FPIA-210"
  • particle projection area is the area of the binarized toner particle image
  • perimeter of the particle projection image is the outline of the contour line obtained by connecting the edge points of the toner particle image. Defined as length.
  • the measurement uses the perimeter of a particle image when image processing is performed at an image processing resolution of 512 ⁇ 512 (pixels of 0.3 ⁇ m ⁇ 0.3 ⁇ ).
  • the circularity in the present invention is an index indicating the degree of unevenness of the toner.
  • the circularity is 1.0000.
  • the average circularity c which means the average value of the circularity frequency distribution, is calculated from the following equation, where ci is the circularity (center value) at the dividing point i of the particle size distribution and m is the number of particles measured. .
  • Average circularity C ⁇ ci / m
  • the circularity standard deviation SD is calculated from the following equation, where the average circularity C, the circularity c i of each particle, and the number of measured particles are m.
  • the measuring device used in the present invention calculates the circularity of each particle, and then calculates the average circularity and the standard deviation of the circularity. Based on the obtained circularity, the particles are divided into classes in which the circularity of 0.4 to 1.0 is equally divided every 0.01, and the average circularity and the number of measured particles are calculated using the center value of the division point and the number of measured particles. Calculate the circularity standard deviation.
  • 1 Oml of ion-exchanged water from which impurity solids and the like have been removed in advance is prepared in a container, and a surfactant, preferably an alkylbenzenesulfonate, is added as a dispersant thereto. Add 0.02 g of the measurement sample and disperse it evenly.
  • Dispersion treatment is performed for 2 minutes using an ultrasonic disperser “Tetora 150 type” (manufactured by Nikkaki Bios) to obtain a dispersion for measurement. At this time, the dispersion is appropriately cooled so that the temperature of the dispersion does not exceed 40 ° C.
  • the installation environment of the flow type particle image analyzer FP IA-2100 was controlled to 23 ° 0 ° C and 0.5 ° C so that the temperature inside the device was 26 to 27 ° C. Automatic focusing is performed at regular intervals, preferably every 2 hours, using 2 ⁇ latex particles.
  • the dispersion liquid concentration was readjusted so that the toner concentration at the time of the measurement was 3 to 1 in 10,000 using the above-mentioned flow type particle image measuring apparatus, and the toner was measured. Measure 1000 or more. After measurement, use this data to cut data with a circle-equivalent diameter of less than 2 ⁇ to determine the average circularity of the toner.
  • the measuring device “FP IA-2100” used in the present invention has a smaller magnification of the processed particle image than “FP IA-1000” which has been conventionally used for calculating the shape of the toner.
  • the accuracy of toner shape measurement has been improved by improving the processing resolution of the captured image (256X256 ⁇ 512X512), thereby achieving a more reliable capture of fine particles. Therefore, when it is necessary to measure the shape more accurately as in the present invention, the FPI A2100 which can obtain information on the shape more accurately is more useful.
  • a method for producing the toner of the present invention will be described.
  • a suspension polymerization method described in JP-B-36-10231, JP-A-59-53856, and JP-A-59-61842 is directly used.
  • Tonerization by a method of forming a toner Toner by an emulsion polymerization method represented by a soap-free polymerization method in which a monomer is soluble and is directly polymerized in the presence of a water-soluble polymerization initiator to form a toner; Tonerization by an interfacial polymerization method such as a production method or an insite polymerization method; Tonerization by a coacervation method; as disclosed in JP-A-62-106473 and JP-A-63-186253.
  • the toner is formed by an association polymerization method.
  • the toner is formed by a dispersion polymerization method characterized by monodispersion.
  • the necessary resins are dissolved in a water-insoluble organic solvent.
  • the toner components are kneaded using a pressure kneader extruder or a media disperser, and then uniformly dispersed. After cooling, the kneaded product is targeted mechanically or under a jet stream. And pulverize to the desired toner particle size. And a method in which the toner obtained by the pulverization method is subjected to spheroidizing treatment by heating or the like in a solvent to obtain a toner.
  • a preferred method for producing the toner of the present invention is to disperse a polymerizable monomer composition having at least a colorant, a wax, and a polymerizable monomer for synthesizing a binder resin in an aqueous dispersion medium. Granulating to form particles of the polymerizable monomer composition, wherein the particles of the polymerizable monomer composition in the aqueous dispersion medium at 70.0 to 95.0 ° C. A polymerization step of heating to polymerize the polymerizable monomer in the polymerizable monomer composition to form toner particles, and the toner particles are heated from 70 ° to 95.0 to 0.01 ° C.
  • a toner production method having at least a cooling step of cooling to 45.0 ° C or less at a cooling rate of 2.00 ° CZ or less, wherein the toner produced by the toner production method is a differential scanning calorimeter.
  • the glass transition point (Tgl) measured in the first scan 50.0 to 70.0 ° C
  • the temperature difference (Tg) between the glass transition point (Tgl) measured in the first scan and the glass transition point (Tg2) measured in the second scan This is a method for producing a toner having l—T g 2) of 3.0 to 20.0 ° C.
  • the cooling step reduces the toner particles from 70.0 to 95.0 ° C to 0.01 ° C.
  • the cooling step is a cooling step of cooling the toner particles to 45.0 ° C or less at a cooling rate of not less than 0.50 ° C / minute and more preferably not more than 70.
  • This is a cooling step of cooling from 0 ° C to 45.0 ° C or less at a cooling rate of 0.01 ° C / minute or more and less than 0.25 ° C / minute.
  • the cooling step includes cooling the toner particles in an aqueous dispersion medium, and the cooling step includes removing the toner particles from the aqueous dispersion medium and cooling the toner particles. Any of the cooling steps may be used.
  • the heating step at a temperature of 70.0 ° C. or higher includes a suspension polymerization method, an associative polymerization method, an emulsion dispersion method, and a dispersion polymerization method.
  • toner particles prepared by a known method may be redispersed in an aqueous dispersion medium and heated to 70.0 ° C. or more.
  • aqueous dispersion medium a medium that does not substantially dissolve the toner, such as water and alcohol, can be suitably used.
  • a suspension polymerization method in which a toner having a small particle size can be easily obtained is desired.
  • a seed polymerization method in which a monomer is further adsorbed on the obtained polymer particles, and then a polymerization initiator is used and polymerization is performed can also be suitably used in the present invention. At this time, it is also possible to disperse or dissolve a polar compound in the monomer to be adsorbed before use.
  • the toner can be directly produced by the following production method.
  • a polymerizable monomer composition in which at least a polymerizable monomer for synthesizing a binder resin, a wax, and a colorant are uniformly dissolved or dispersed with a homogenizer and a stirrer such as an ultrasonic disperser is formed. I do.
  • a crosslinking agent and other additives may be contained in the polymerizable monomer composition. It is dispersed in an aqueous dispersion medium having a dispersion stabilizer containing magnesium, calcium, barium, zinc, aluminum or phosphorus by using a conventional stirrer, homomixer, or homogenizer.
  • the polymerization initiator may be contained in at least one of the polymerizable monomer composition and the aqueous dispersion medium.
  • the stirring speed and time are adjusted so that the droplets of the polymerizable monomer composition have a desired toner size, and granulation is performed. Thereafter, stirring may be performed to such an extent that the particle state is maintained and the precipitation of the particles is prevented by the action of the dispersion stabilizer.
  • the polymerization is carried out at a polymerization temperature of 40.0 ° C or higher, usually 50.0 to 95.0 ° C (preferably 55.0 to 85.0 ° C). The temperature may be raised in the latter half of the polymerization reaction, and the pH may be changed if necessary.
  • the polymerizable monomer composition includes a step of forming a colorant composition having a polymerizable monomer and a colorant, and a step of dispersing the colorant composition. It is preferably formed by adding an additive. For the purpose of improving the dispersibility of the colorant, a charge control agent, a known pigment dispersant, and other resins may be added.
  • the polymerizable monomer composition is prepared by preparing a dispersion A in which at least polymethylene wax is dispersed, and then mixing the dispersion A with a dispersion B containing at least an ester wax.
  • a dispersion A in which at least polymethylene wax is dispersed
  • a dispersion B containing at least an ester wax.
  • it is a monomer composition.
  • the wax dispersion state in the toner tends to be polynuclear and needle-like. This further improves development stability and high-temperature offset resistance.
  • the pH in the aqueous dispersion medium during granulation is not particularly limited, but is preferably pH 4.5 to 13.0, more preferably 4.5 to 12.0, and particularly preferably 4.5 to 15.0. 11.0, most preferably 4.5-7.5. If the pH is less than 4.5, dissolution may occur in a part of the dispersion stabilizer, making it difficult to stabilize the dispersion and making granulation impossible. If the pH exceeds 13.0, components added to the toner may be decomposed, and sufficient charging ability may not be exhibited. When the granulation is performed in the acidic region, the content of the metal derived from the dispersion stabilizer in the toner can be suppressed from being excessive, and a toner satisfying the requirements of the present invention can be easily obtained. Become.
  • the toner particles it is preferable to wash the toner particles with an acid having a pH of 3.0 or less, more preferably an acid of pH 1.5 or less.
  • an acid having a pH of 3.0 or less, more preferably an acid of pH 1.5 or less.
  • the acid used for washing is not particularly limited, and an inorganic acid such as hydrochloric acid or sulfuric acid is used. be able to.
  • Examples of the dispersion stabilizer used in the present invention include magnesium phosphate, triphosphate calcium, aluminum phosphate, zinc phosphate, magnesium carbonate, calcium carbonate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, and metal hydroxide.
  • Examples include calcium silicate, calcium sulfate, barium sulfate, and hydroxypatide.
  • one containing at least one of magnesium, calcium, parium, zinc, aluminum, and phosphorus is used, and preferably, one of magnesium, calcium, aluminum, and phosphorus is used. It is hoped that it is rare.
  • An organic compound such as polyvinyl alcohol, gelatin, methinoresenorelose, methinolehydroxypropinoresenorelose, etinoresenorelose, a sodium salt of carboxymethylcellulose, and starch may be used in combination with the dispersion stabilizer. It is preferable to use 0.01 to 2.0 parts by mass of these dispersion stabilizers with respect to 100 parts by mass of the polymerizable monomer.
  • a surfactant may be used in combination for making these dispersion stabilizers finer.
  • commercially available nonionic, ionic and cationic surfactants can be used.
  • a vinyl polymerizable monomer capable of radical polymerization may be used as the polymerizable monomer used for producing the toner of the present invention by a polymerization method.
  • Monofunctional polymerizable monomers include styrene ⁇ -methylstyrene, ⁇ -methinolestyrene, ⁇ -methylstyrene, m-methynolestyrene, p-methylstyrene, 2,4-dimethylstyrene, p-n-butylinolestyrene, p-tert-butylstyrene , P-n-hexynolestyrene, p-n-octylstyrene, p-n-nonylstyrene, p-n-decylstyrene, p-n-dodecinolestyrene, p-methoxystyrene, p-pheny / restile Styrene derivatives such as
  • Polyfunctional biopolymerizable monomers include diethylene glycol diacrylate, Polyethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diatalylate, 1, 6-hexanediol diatalylate, neopentyl glycol diatalylate, tripropylene glycol cornoresialate, polypropylene Glyconoresacrylate, 2,2,1-bis [4-1 (ataryloxy 'diethoxy) phenyl] propane, trimethylolpropanetriatalylate, tetramethylolmethanetetraacrylate ethylene glycol dimethacrylate, diethyleneglyconoresimethacrylate Relay, triethyleneglyconoresin methacrylate, tetraethyleneglyconoresin methacrylate, polyethylene glycol dimethacrylate, 1,3-butylene glycoldi Methacrylate, 1,6-hexanediol dimethacrylate, neopentyl
  • the above-mentioned monofunctional polymerizable monomers are used alone or in combination of two or more kinds, or the above-mentioned monofunctional polymerizable monomers and polyfunctional polymerizable monomers are used in combination. I do.
  • the polyfunctional polymerizable monomer can be used as a crosslinking agent.
  • oil-soluble initiator and / or a water-soluble initiator are used as the polymerization initiator used in the polymerization of the polymerizable monomer.
  • oil-soluble initiators include 2,2, azobisisobutyronitrile, 2,2'azobis-1,2,4-dimethylvaleronitrile, 1,1'azobis (cyclohexane-11- Azo compounds such as 2,2,1-azobis-1-methoxy-1,2,4-dimethylpaleronitrile; acetylsilyl hexylsulfonyl-peroxyside.
  • Disopropyl peroxycarbonate decanoyl peroxide, lauperyl peroxide, stearoyl peroxide, propionyl peroxide, aceti'norepoxide, tert-butyl peroxy 2- Ethylhexanox: p-to-, benzoylperoxide, tert-butylperoxyisobutylate, cyclohexanone peroxide, methylethylketone peroxide, dicumyl peroxide, tert —Peroxide-based opening agents such as butyl hydroperoxide, g-tert-butyl peroxide and cumene hydroperoxide.
  • water-soluble initiator examples include ammonium persulfate, potassium persulfate, 2,2'-azobis ( ⁇ , ⁇ , dimethyleneisobutyroamidine) hydrochloride, 2,2, -azobis (2- Aminodinopropane) hydrochloride, azobis (isobutylamidine) hydrochloride, sodium 2,2'-azobisisobutyronitrile sulfonate, ferrous sulfate or hydrogen peroxide.
  • a chain transfer agent, a polymerization inhibitor and the like in order to control the degree of polymerization of the polymerizable monomer, a chain transfer agent, a polymerization inhibitor and the like can be further added and used.
  • a resin having cross-linking can be obtained by using a cross-linking agent.
  • a cross-linking agent a compound having two or more polymerizable double bonds can be used.
  • aromatic divinyl compounds such as dibutylbenzene and diburnaphthalene; a force having two double bonds such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, and 1,3-butanediol dimethacrylate.
  • Nolevonic acid esters divinyl compounds such as divininorea diphosphine, divinyl ether, divinyl sulfide and divinyl sulfone; and compounds having three or more vinyl groups. These are used alone or as a mixture.
  • the toner of the present invention can be used as a toner for a one-component developer, and can also be used as a toner for a two-component developer having carrier particles.
  • a magnetic toner When a magnetic toner is used as a one-component developer and a magnetic material is contained in the toner, there is a method in which the magnetic toner is transported and charged using a magnet built in a developing sleeve.
  • a non-magnetic toner containing no magnetic material there is a method in which a blade or a roller is used to forcibly triboelectrically charge the toner with a developing sleeve and adhere the toner onto the sleeve to convey the toner.
  • the magnetic carrier is composed of iron, copper, zinc, nickel, cobalt, manganese, and chromium elements alone or in a composite ferrite state.
  • the shape of the magnetic carrier is spherical, flat or irregular, and any of them can be used.
  • a method has been used in which magnetic carrier core particles are formed in advance by baking and granulating the above inorganic oxidized product, and then coating the resin.
  • the method of kneading the inorganic oxide and the resin, pulverizing and classifying to obtain a low-density dispersed carrier, and further, directly mixing the inorganic oxide and the monomer It is also possible to utilize a method of subjecting a kneaded product of the above to suspension polymerization in an aqueous medium to obtain a true spherical 'magnetic carrier.
  • a coated carrier obtained by coating the surface of the above-mentioned carrier particles with a resin is particularly preferable.
  • a method in which a resin is dissolved or suspended in a solvent and the solution or suspension is applied to and adhered to a carrier, or a method in which a resin powder and carrier particles are simply mixed and adhered can be applied. .
  • the coating material on the surface of the carrier particles varies depending on the toner material, but, for example, polytetrafluoroethylene, mono-oral trifluoroethylene polymer, polyvinylidene fluoride, silicone resin, polyester resin, styrene resin, and acrylic resin Resin, polyamide, polyvinyl butyral, amino acrylate resin No. These may be used alone or in combination.
  • the magnetic properties of the carrier are preferably as follows.
  • the magnetization intensity ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ) at 79.6 kA / m (lk Oersted) after magnetic saturation is preferably 30 to 300 emu / cm 3 .
  • To further achieve high image quality I spoon preferably has 1 0 0 to 2 5 0 emuZcm 3. When it is larger than 300 emu / cm 3, it is difficult to obtain a bulky toner image. On the other hand, when it is less than 30 emu / cm 3 , the magnetic binding force is reduced, so that the carrier is easily attached.
  • SF-1 indicating the degree of roundness is 180 or less
  • SF-2 indicating the degree of unevenness is 250 or less.
  • S F—1 S F—2 is defined by the following equation, and is measured by Luze XII I manufactured by Nireco.
  • the toner of the present invention preferably contains a wax having a needle-like or rod-like shape when observing the tomographic plane of the toner using a transmission electron microscope ( ⁇ ). Representative examples are shown in Figures 5 5, 5 ⁇ , and 5C. By having these shapes, heat in the fixing step is easily transmitted, and the low-temperature fixing performance is further improved.
  • the dispersion state may be a mononuclear or polynuclear dispersion state, but is more preferably a polynuclear state. Heat in the fixing process is easily transmitted, and the low-temperature fixing performance is further improved. Representative examples are shown in Figures 6 and 6.
  • the difference in the fine structure of the crystalline phase and the amorphous phase between the wax component used and the binder resin constituting the outer shell is used to determine the electron component of one component by the heavy metal. It is preferable to use an electronic dyeing method in which the density is increased to give a contrast between materials.
  • the toner is contained in a cold-setting epoxy resin. After one particle is sufficiently dispersed, it is cured at an ambient temperature of 40 ° C.
  • the mixing ratio is 2 to 15% by mass, preferably 4 to 13% by mass as a small toner concentration in the developer. Then usually good results are obtained.
  • Dimroth reflux condenser De an- S Tark water separator benzene 1 900 parts by a four-necked flask equipped with, myristic acid (C 14 H 28 0 2) , palmitic acid (C 16 H 32 0 2) , stearic acid (C 18 H 36 0 2) , Arakin acid (C 20 H 40 O 2) , behenic acid (C 2 .H 4 .0 2) a mixture consisting of (carboxylic acid component) 1400 parts by weight, heptyl alcohol Honoré (C 4 H 10 O), myristyl alcohol (C 14 H 30 O), palmityl alcohol (C 16 H 34 0), stearyl alcohol (C 18 H 38 0), a mixture consisting ⁇ La kill alcohol (C 20 H 42 O) (Alcohol component) 1300 parts by mass and 130 parts by mass of p-toluenesulfonic acid were added, and the mixture was subjected to dry distillation with stirring for 6 hours, and then
  • Ester waxes 2 to 4 were prepared in the same manner as in Preparation Example 1 for ester wax, except that the types and amounts of the carboxylic acid component and the alcohol component were changed. table 1
  • Esterex 1 and polymethylene wax 1 were used as a crystalline resin in combination as follows.
  • 'Wax Dispersion B consisting of 19 parts by weight of ester wax is kept at 65 ° C for 5 minutes with stirring, and 2 parts by weight of 2,2,2-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator
  • the polymerizable monomer composition to which the part was added was charged into the aqueous dispersion medium, and granulated for 15 minutes while maintaining a rotation speed of 12000 rpm. After that, the high-speed stirrer was changed to a normal propeller stirrer, the rotation speed of the stirrer was maintained at 150 rpm, polymerization was performed at an internal temperature of 70.0 ° C for 6 hours, and the temperature was raised to 80.
  • the temperature was raised to 0 ° C, and polymerization was performed for 4 hours. After completion of the polymerization, the internal temperature was cooled to 24.'0 ° C at a cooling rate of 0.40 ° CZ while maintaining the rotation. While maintaining the inner temperature at 20.0 to 25.0 ° C, dilute hydrochloric acid was added to the aqueous dispersion medium to dissolve the poorly water-soluble dispersant. Further washing and drying were performed to obtain toner particles.
  • dry silica (BET specific surface area) having a primary particle diameter of 12 nm treated with silicone oil and hexamethyldisilazane was used.
  • Toner 1 having a weight average particle size of 6.3 ⁇ .
  • This toner 1 was evaluated according to the test method described below.
  • Tables 3 to 6 show the physical properties and evaluation results of Toner 1.
  • the toner is measured by the first scan of toner 1.
  • the DSC curve obtained is shown in Fig. 2, and the DSC curve obtained by measuring the toner in the second scan is shown in Fig. 3.
  • Both low-temperature fixing performance and anti-offset performance were excellent.
  • the development stability performance the image density was high in both the initial image and the durable image, and the image was clear and high in image quality without any capri.
  • the charge amount of the toner after the endurance did not decrease compared to the initial state. Furthermore, the storage stability was excellent.
  • Toner 1 0.2 g is weighed into a pressure molding machine, and molded under a normal temperature and normal pressure environment with a load of 200 kgf for 2 minutes to produce a cylindrical sample having a diameter of about 8 mm and a height of about 2 mm. It was adjusted.
  • a flow tester manufactured by Shimadzu Corporation
  • the columnar sample was set in a device modified to a SUS-316 plate without holes instead of a die for placing the sample. After holding this at 35.0 ° C for 5 minutes, apply a load of 10 kgf to the pressurized jig, heat the columnar sample to 120.0 ° C in 1.0 ° CZ minutes, and heat the sample. The displacement of the pressing jig in contact with was measured.
  • Toner 1 and a ferrite carrier (average particle size 42 ⁇ ) surface-coated with a silicone resin were mixed so that the toner concentration became 6% by mass, to prepare a two-component developer.
  • An unfixed toner image (0.6 mg / cm 2 ) was formed on a receiving paper (80 g / m 2 ) using a commercially available full-color digital copying machine (CLC 700, manufactured by Canon Inc.).
  • a commercially available full-color digital copier (CLC 700, manufactured by Canon Inc.) was modified so that the fixing unit could be removed from the fixing unit, and used to perform a fixing test on unfixed images.
  • the process speed was set to 200 mm / s, and the toner image was fixed at each temperature while changing the set temperature from 130 ° C to 230 ° C every 5 ° C. .
  • the temperature at which the low-temperature offset is no longer observed is defined as the low-temperature starting point of the offset resistance, which is 5 times lower than the temperature at which the high-temperature offset is visually observed or the temperature at which the receiving paper wraps around the fuser.
  • the temperature lower by ° C was taken as the hot end point.
  • the fixed image obtained by the above test was rubbed with lens-cleaning paper under a load of 50 g / cm 2, density reduction rate before and after the rubbing is below 5% and comprising fixing temperature low-temperature fixability of the low-temperature side start point
  • the point at which the maximum value of Daros was reached was taken as the high-temperature end point.
  • the temperature at which the high temperature offset was visually observed or the temperature at which the receiving paper was wound around the fixing device by 5 ° C was set as the high temperature side end point.
  • the development stability performance was evaluated based on the following criteria.
  • the image density was measured using a “Macbeth reflection densitometer RD 918” (manufactured by Macbeth Co., Ltd.) to measure the relative density of the white background portion of the original with a density of 0.000 to the printout image.
  • toner particles were obtained in the same manner as in Example 1 except that ester wax 2 was used instead of beauty / rewax 1 and polymethylene wax 2 was used instead of polymethylene wax 1. Weight average particles in the same manner as in Example 1. Toner 2 having a diameter of 6.5 ⁇ was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 2. Compared with Example 1, the anti-offset performance and the low-temperature fixing performance were slightly reduced, but other than that, there was no problem at all and good.
  • Example 2 After completion of the polymerization, the internal temperature was cooled to 24.0 ° C at a cooling rate of 0.40 ° C / min while maintaining the rotation. While maintaining the internal temperature at 20.0 to 25.0 ° C, dilute hydrochloric acid was added to the aqueous dispersion medium to dissolve the poorly water-soluble dispersant. After further washing and drying, toner particles were obtained.
  • Toner 3 having a weight average particle diameter of 6.4 ⁇ was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 3. Compared with Example 1, the low-temperature fixing performance was slightly lowered, but other than that, there was no problem at all and good. .
  • Toner particles were obtained in the same manner as in Example 3, except that polymethylene wax 3 was not used and the amount of ester wax 3 was changed to 18 parts by mass.
  • Example 2 In the same manner as in Example 1, a toner 4 having a weight average particle diameter of 6.3 ⁇ was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 4. Compared with Example 1, the anti-offset performance and the low-temperature fixing performance were slightly lowered, but other than that, there was no problem at all, and it was good.
  • Toner particles were obtained in the same manner as in Example 1 except that Esterex 4 was used instead of Esterex 1 and the amount of the polymerization initiator was changed to 7 parts by mass.
  • Toner 5 having a weight average particle diameter of 5.9 ⁇ was prepared and evaluated.
  • Tables 3 to 6 show the physical properties and evaluation results of Toner 5.
  • the low-temperature fixing performance was good, the maximum gloss value was reached at 195 ° C.
  • the toner was soaked into the paper and the image quality deteriorated.
  • images with 5,000 sheets A decrease in the image density was observed, and the charge amount of the toner was lower than the initial value.
  • the storage stability performance was poor.
  • Toner particles were obtained in the same manner as in Example 4, except that Esterex 5 was used instead of Esterex 3 and the amount of the polymerization initiator was changed to 7 parts by mass.
  • Example 2 In the same manner as in Example 1, a toner 6 having a weight average particle size of 6.8 zm was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 6. The storage stability performance was almost good, but the low-temperature fixing performance was poor. In addition, the end point of the fixing performance on the high temperature side decreased. Further, a decrease in image density was observed in the image after 500 sheets of durability, and the toner charge amount was also lower than the initial value.
  • Toner particles were obtained in the same manner as in Example 4, except that Esterex 4 was used instead of Esterex 3, and the amount of the polymerization initiator was changed to 0.8 parts by mass.
  • a toner 7 having a weight average particle diameter of 6.5 ⁇ m was prepared and evaluated.
  • Tables 3 to 6 show the physical properties and evaluation results of Toner 7. Although the storage stability performance and the low-temperature fixing performance were good, winding of the receiving paper occurred at '185 ° C. Further, in the image after 50,000 sheets of durability, the image density was reduced, and the toner charge amount was lower than the initial value.
  • Example 2 Same as Example 1 except that ester wax 4 was used instead of ester wax 1, the amount of the polymerization initiator added was 7 parts by mass, and the cooling rate after the completion of the polymerization was 10.0 ° C.Z. Thus, toner particles were obtained.
  • Example 2 In the same manner as in Example 1, a toner 8 having a weight average particle diameter of 6.0 m was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 8. Although the low-temperature fixing performance was good, the maximum gloss value was reached at 195 ° C, and at temperatures higher than that, toner was soaked into the paper and the image quality was degraded. In the initial image density, the density is slightly Although the degree was low, a clear decrease in image density was observed in the image after 50,000 sheets of durability, and the charge amount of the toner was significantly lower than the initial level. Furthermore, the storage stability performance was poor.
  • Example 4 Same as Example 4 except that Ester Pex 4 was used instead of Ester I. Tas 3, the amount of the polymerization initiator added was 7 parts by mass, and the cooling rate after the completion of the heavy duty was 10.0 ° C CZ minutes. Thus, toner particles were obtained.
  • Example 2 In the same manner as in Example 1, a toner 9 having a weight average particle diameter of 6.4 ⁇ was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 9. Although the low-temperature fixing performance was good, the image receiving paper was wrapped at 185 ° C. In addition, although the initial image density was slightly lower, the image density after the endurance of 500 sheets clearly decreased, and the toner charge amount was significantly lower than the initial level. Furthermore, the storage stability performance was poor. .
  • Esterox 5 was used in place of Esterox 3, the amount of the polymerization initiator was 0.8 parts by mass, and the cooling rate after the completion of the polymerization was 10.0 ° CZ. Thus, toner particles were obtained.
  • Example 2 In the same manner as in Example 1, a toner 10 having a weight average particle diameter of 6.6 ⁇ was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 10. The storage stability performance was almost good, but the low-temperature fixing performance was clearly inferior. Also, the end point of the fixing performance on the high temperature side decreased. Further, a decrease in image density was observed in the image after 50,000 sheets of durability, and the toner charge amount was also lower than the initial value.
  • Toner particles were obtained in the same manner as in Example 1 except that the cooling rate after the completion of the polymerization was 0.10 ° C./min. ''
  • Example 2 In the same manner as in Example 1, a toner 11 having a weight average particle diameter of 6.3 m was prepared. Evaluation was performed. Tables 3 to 6 show the physical properties and evaluation results of Toner 11.
  • Toner particles were obtained in the same manner as in Example 3, except that the addition amount of the polymerization initiator was changed to 3.5 parts by mass.
  • Toner particles were obtained in the same manner as in Example 3, except that the addition amount of the polymerization initiator was 4.5 parts by mass.
  • Example 3 In the same manner as in Example 3, a toner 13 having a weight average particle diameter of 6.4 ⁇ was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 13.
  • Wax wax wax shape
  • Example 1 1 1 1 0.40 6.3 5.2 0.15 0.978 21800 198000 23200 8.5 27.8 (C) Needle-like (b) Polynuclear Example 2 2 2 2 0.40 6.5 5.4 0.16 0.977 21500 197000 22900 8.6 27.9) Needle-like (b) Polynuclear Example 3 3 3 3 0.40 6.4 5.3 0.19 0.975 21700 204000 23100 8.8 27.6 (b) Rod (a) mononuclear Example 4 4 3-0.40 6.3 5.3 0.18 0.971 21200 201000 22800 8.8 26.9 (a) Spherical (b) polynuclear Comparative Example 1 5 4 1 0.40 5.9 4.5 0.22 0.970 12800 169000 15300 1 1.0 27.7 (C) Acicular (b) Polynuclear Comparative Example 2 6 5 One 0.40 6.8 4.9 0.23 0.971 13500 72000 15600 UO 28.1 (a) Spherical (a) Mononuclear Comparative Example 3 7
  • Example 1 56.7 46.1 10.6 3.2 59.6 / 87.3 87.4 10.7 1.3 8.23 6.8 6.6 1.03
  • Example 2 59.2 49.7 9.5 3.2 68.8 / 93.5 68.9 / 98.4 9.3 3.2 2.91 F.3 6.8 1.07
  • Example 3 58.3 50.2 8.1 3.1 63.8 / 73.9 63.9 / 73.6 16.3 6.2 2.63 5.6 5.2 1.08
  • Example 4 56.8 50.4 6.4 3.3 63.6 63.3 18.2 8.9 2.04----Comparative example 1 52.1 49.4 2.7 42.8 54.2 / 88.1 54.5 / 88.3 3.8 2.1 1.81 6.9 6.6 1.05
  • Comparative example 2 65.8 65.1 0.7 41.9.
  • Example 1 50.2 61.1 54.6 0.06 59.4 2.00 0.40
  • Example 2 52.6 63.2 56.3 0.06 61.3 2.01 0.39
  • Example 3 51.7 63.4 56.1 0.05 61.4 1.99 0.37
  • Example 4 48.8 61.3 54.0 0.07 59.5 2.01 0.35
  • Comparative 3 49.0 68.8 55.4 0.05 67.1 1.99 0.17
  • Comparative example 5 43.5 51.7 48.8 0.06 51.2 2,00 0.81 Comparative example 6 55.4 65.9 62.4 0.06 65.1 2.01 0.72
  • Example 5 51.3 61.0 55.4 0.05 59.4
  • Example 4 135 230 135 220 A 1.54 32.8 1.46 31.9 Compare Example 1 130 220 135 195 C 1.49 34.8 1.37 29.2 Comparative Example 2 150 230 150 210 B 1.48 33.6 1.38 29.1 Comparative Example 3 130 185 135 185 A 1.47 31.7 1.28 22.3 Comparative Example 4 130 220 135 195 D, 1.41 29.3 1.19 19.3 Comparative Example 5 130 185 135 185 D 1.38 28.6 1.14 18.8 Comparative Example 6 155 230 160 220 A 1,51 33.1 1.39 28.7

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

A toner that excels in low-temperature fixability and anti-offsetting property and further in storability in a developing processor. There is provided a toner which in a DSC curve obtained by measuring the toner by means of a differential scanning calorimeter, exhibits a glass transition temperature (Tg1) determined by the first scanning of 50.0 to 70.0˚C and exhibits a temperature difference (Tg1-Tg2) between glass transition temperature (Tg1) determined by the first scanning and glass transition temperature (Tg2) determined by the second scanning of 3.0 to 20.0˚C.

Description

明 細 書 トナー及びトナーの製造方法  Description Toner and method for producing toner
技術分野 Technical field
本発明は、 電子写真法、 静電記録法、 磁気記録法、 及びトナージェット法に 用いられるトナー及ぴ該トナーの製造方法に関する。 背景技術  The present invention relates to a toner used in an electrophotographic method, an electrostatic recording method, a magnetic recording method, and a toner jet method, and a method for producing the toner. Background art
従来、 電子写真法は、 種々の手段により感光体上に静電荷像を形成し、 次い で、 該静電荷像をトナーを用いて現像して感光体上にトナー画像を形成し、 必 要に応じて紙の如き転写材にトナー画像を転写した後、加熱、圧力、加熱圧力、 或いは溶剤蒸気の如き定着方法により トナー画像を転写材に定着し、 画像を得 るものである (例えば、 非特許文献 1参照)。  Conventionally, in electrophotography, an electrostatic image is formed on a photoreceptor by various means, and then the electrostatic image is developed using toner to form a toner image on the photoreceptor. After transferring the toner image to a transfer material such as paper according to the above, the toner image is fixed to the transfer material by a fixing method such as heating, pressure, heating pressure, or solvent vapor to obtain an image (for example, Non-Patent Document 1).
トナーを用いて現像する方法、 或いはトナー画像を定着する方法としては、 従来各種の方法が提案され、 それぞれの画像形成プロセスに適した方法が採用 されている。 従来、 これらの目的に用いるトナーは、 一般に熱可塑性樹脂中に 染料及び/または顔料からなる着色剤を溶融混合し、 均一に分散した着色剤分 散樹脂組成物を製造した後、 該着色剤分散樹脂組成物を微粉砕装置'、 分級機に より所望の粒径を有するように製造されてきた。  Conventionally, various methods have been proposed as a method of developing using toner or a method of fixing a toner image, and a method suitable for each image forming process has been adopted. Conventionally, toners used for these purposes are generally prepared by melt-mixing a colorant comprising a dye and / or a pigment in a thermoplastic resin, producing a uniformly dispersed colorant-dispersed resin composition, and then dispersing the colorant. The resin composition has been manufactured to have a desired particle size by a fine milling device and a classifier.
これらの製造方法では、 力なり優れたトナーを製造し得るが、 ある種の制限 がある。 例えば、 着色剤分散樹脂組成物が十分に脆く、 経済的に可能な製造装 置で微粉砕し得るものでなければならない。 ところが、 着色剤分散樹脂組成物 を脆くすると、 実際に高速で微粉砕した場合に形成された粒子の粒径範囲が広 くなり易く、 特に、 比較的大きな粒子が含まれてしまうという問題が生じるこ とがある。  These methods can produce excellent toners, but have certain limitations. For example, the colorant-dispersed resin composition must be sufficiently brittle and capable of being pulverized in an economically feasible manufacturing equipment. However, when the colorant-dispersed resin composition is made brittle, the particle size range of the particles formed when the material is actually pulverized at high speed tends to be widened, and in particular, there is a problem that relatively large particles are included. Sometimes.
さらに、 このように脆性の高い材料は、 現像用のトナーとして使用する際、 さらなる微粉砕または粉化を受け易い。 この方法では、 '着色剤の如き固体微粒 子を樹脂中へ均一に良好に分散することは困難であり、 その分散の度合いによ つては、 カプリの増大、 画像濃度の低下、 トナーの混色性、 或いは透明性の低 下の原因となることがある。 また、 トナー粒子の破断面に着色剤が露出するこ とにより、 トナーの現像特性の変動を引き起こす場合もある。 Furthermore, when such a brittle material is used as a toner for development, Susceptible to further milling or pulverization. With this method, it is difficult to uniformly disperse solid fine particles such as a colorant in a resin, and depending on the degree of dispersion, an increase in capri, a decrease in image density, and a color mixing property of toner may occur. Or may cause a decrease in transparency. In addition, exposure of the colorant to the fracture surface of the toner particles may cause fluctuations in the developing characteristics of the toner.
—方、 これら粉砕法により生成されたトナーの問題点を克服するために、 懸 濁重合法によるトナーの製造方法が提案されている。 懸濁重合法においては、 重合性単量体、着色剤、重合開始剤、 さらに必要に応じて架橋剤、荷電制御剤、 その他添加剤を、 均一に溶解または分散せしめて、 重合性単量体組成物とした 後,、 この重合性単量体組成物を分散安定剤を含有する水系分散媒体へ適当な撹 拌機を用いて分散し、 重合性単量体を重合し、 所望の粒径を有するトナー粒子 を得る (例えば、 特許文献 1、 2、 及び 3参照)。  On the other hand, in order to overcome the problems of the toner produced by these pulverization methods, a method for producing a toner by a suspension polymerization method has been proposed. In the suspension polymerization method, a polymerizable monomer, a colorant, a polymerization initiator, and, if necessary, a crosslinking agent, a charge control agent, and other additives are uniformly dissolved or dispersed, and the polymerizable monomer is dissolved. After forming the composition, the polymerizable monomer composition is dispersed in an aqueous dispersion medium containing a dispersion stabilizer using a suitable stirrer, and the polymerizable monomer is polymerized to obtain a desired particle size. (See, for example, Patent Documents 1, 2, and 3).
この方法は、 粉砕工程が含まれていないために、 トナー粒子に脆性が必要で はなく、 軟質の材料を使用することができ、 また、 トナー粒子表面への着色剤 の露出が生じず、 均一な摩擦帯電性を有する。 分級工程の省略も可能になるた めに、 エネルギーの節約、 製造時間の短縮、 及び工程収率の向上の如きコスト 削減効果が大きい。  Since this method does not include a pulverizing step, the toner particles do not need to be brittle and a soft material can be used. It has excellent triboelectricity. Since the classifying process can be omitted, cost saving effects such as energy saving, shortening of manufacturing time, and improvement of process yield are great.
トナー画像を定着する方法としては、 熱ローラーによる圧着加熱法 (以下、 熱ローラー定着法と言う) や、 定着フィルムを介して加熱体に被定着シートを 密着させながら定着する加熱定着法 (以下、 フィルム定着法と言う) 如き定 着方法が開発されている。  As a method for fixing a toner image, a pressure heating method using a heat roller (hereinafter, referred to as a heat roller fixing method) or a heat fixing method (hereinafter, referred to as a heat roller fixing method) in which a sheet to be fixed is fixed to a heating member through a fixing film. A fixing method such as a film fixing method has been developed.
熱ローラー定着法やフィルム定着法では、 熱ローラー或いは定着フィルムの 表面に被定着シート上のトナー画像を、 当接する加圧部材により加圧下で接触 しながら通過せしめることにより定着を行うものである。 該定着法では熱ロー ラーや定着フィルムの表面と被定着シートのトナー画像とが加圧下で接触す るため、 該シート上にトナー画像を融着する際の熱効率が極めて高く、 迅速で 良好な定着を行うことができる,。 In the heat roller fixing method or the film fixing method, fixing is performed by allowing a toner image on a sheet to be fixed to pass through the surface of a heat roller or a fixing film under pressure by a contacting pressure member. In this fixing method, the heat roller or the surface of the fixing film and the toner image of the sheet to be fixed come into contact with each other under pressure. Good fixation can be performed ,.
近年の電子写真装置は、 高画質化、 小型軽量化、 高速高生産性化、 省エネル ギー化、 高信頼性化、 低価格化、 及び、 メンテナンスフリー化といった様々の 要請を受けており、 その中でも特に定着工程においてはさらに一層の高速化、 省エネルギー化、 及び、 高信頼性化を達成できるシステムや材料の開発が重要 な技術課題となっている。 し力 し、 熱ローラー定着法やフィルム定着法でこれ らの課題を解決するためには、 特に材料であるトナーの定着特性能を大幅に改 善することが必須であり、 より低い温度で充分に被定着シートに定着できる性 能 (以下、 低温定着性能と称する) の向上と、 加熱ローラーやフィルム表面上 に付着したトナー汚れによって次の定着シートを汚す現象であるオフセット を防止できる性能 (以下、 耐オフセッ ト性能と称する) の向上が必要である。 加熱加圧定着に用いられるトナーにおいて、 結着樹脂との親和性が大きいヮ ックスを含有せしめたトナーは、 特定の定着条件下では良好な耐オフセット性 能と低温定着性能とを示す (例えば、 特許文献 4及び 5参照)。 また、 結着樹 脂との親和性が異なる 2種類以上のワックスを含有せしめたトナ一は、 特定の 定着条件下において良好な低温定着性館を示しつつ耐オフセット性能を向上 することが可能となる (例えば、 特許文献 6、 ' 7、 8、 及ぴ 9参照)。 しかし ながら、 これらのトナーはワックスが結着樹脂に相溶することに伴いトナーの ガラス転移点が低下するため、 さらなる低温定着性能の向上を目指した場合に は、 保存性、 流動性、 帯電性が損なわれ易く、 特に連続印字した場合に著しい 濃度低下や画像欠陥を生じやすい。 このため、 保存安定性能、 現像安定性能を 満足し、 更なる低温定着性能を有するトナーが待望されている。  In recent years, electrophotographic devices have received various requests for higher image quality, smaller size, lighter weight, higher speed, higher productivity, energy saving, higher reliability, lower price, and maintenance-free. In particular, the development of systems and materials that can achieve even higher speeds, energy savings, and higher reliability in the fixing process has become an important technical issue. In order to solve these problems with the heat roller fixing method and the film fixing method, it is especially necessary to significantly improve the fixing characteristics of the toner, which is the material. (Hereinafter referred to as low-temperature fixing performance), and the ability to prevent offset, which is the phenomenon of fouling the next fixing sheet due to toner contamination on the heating roller or film surface (hereinafter referred to as low-temperature fixing performance). , Called offset performance). Among toners used for fixing under heat and pressure, a toner containing a box having a high affinity for a binder resin shows good offset resistance performance and low-temperature fixing performance under specific fixing conditions (for example, Patent Documents 4 and 5). In addition, the toner containing two or more types of waxes having different affinities with the binding resin can improve the anti-offset performance while exhibiting a good low-temperature fixing property under specific fixing conditions. (See, for example, Patent Documents 6, 7, 8, and 9). However, in these toners, the glass transition point of the toner decreases as the wax becomes compatible with the binder resin, so if the low-temperature fixing performance is to be further improved, the storage stability, fluidity, and chargeability Is easily damaged, and particularly when continuous printing is performed, a remarkable decrease in density and image defects are likely to occur. For this reason, a toner that satisfies storage stability performance and development stability performance and has further low-temperature fixing performance has been desired.
【特許文献 1】 特公昭 3 6 - 1 0 2 3 1号公報  [Patent Document 1] Japanese Patent Publication No. 36-10-023 1
【特許文献 2】 特公昭 4 2— 1 0 7 9 9号公報  [Patent Document 2] Japanese Patent Publication No. Sho 42-10779
【特許文献 3】 特公昭 5 1 - 1 4 8 9 5号公報  [Patent Document 3] Japanese Patent Publication No. 51-148985
【特許文献 4】 特開平 8— 5 0 3 6 7号公報 【特許文献 5】 特開 2001— 318484号公報 [Patent Literature 4] Japanese Patent Application Laid-Open No. H8-503703 [Patent Document 5] Japanese Patent Application Laid-Open No. 2001-318484
【特許文献 6】 特開昭 60— 252361号公報  [Patent Document 6] JP-A-60-252361
【特許文献 7】 特開平 8— 50367号公報  [Patent Document 7] JP-A-8-50367
【特許文献 8】 特開 2001— 324834号公報 '  [Patent Document 8] Japanese Patent Application Laid-Open No. 2001-324834 ''
【特許文献 9】 特開 2002— 72534号公報  [Patent Document 9] JP-A-2002-72534
【非特許文献 1】 電子写真学会編 「電子写真技術の基礎と応用」 株式会社 コ口ナ社、 昭和 63年 6月 15日、 p 46— 79 発明の開示'  [Non-Patent Document 1] "The Basics and Applications of Electrophotographic Technology", edited by the Society of Electrophotography Koguchina Co., Ltd., June 15, 1988, p. 46-79.
本発明の目的は、 前述の如き問題点を解決し得るトナーを提供することにあ る。  An object of the present invention is to provide a toner that can solve the above-mentioned problems.
即ち、 本発明の目的'は、 低温定着性能と同時に耐オフセット性に優れ、 それ らの性能を損なわずに現像器内での保存性、 流動性、 帯電性、 ならびに現像耐 久性に優れたトナーを提供するものである。  That is, the object of the present invention is to provide an excellent offset resistance as well as low-temperature fixing performance, and excellent storage stability, fluidity, chargeability, and development durability in a developing device without impairing those performances. This is to provide a toner.
本発明の目的は、 低温定着性能と同時に耐オフセット性能に優れ、 耐久によ る現像機内のトナー担持体や感光体表面へのトナー汚染、 キヤリァ汚染のない トナーを提供するものである。  SUMMARY OF THE INVENTION An object of the present invention is to provide a toner which is excellent in low-temperature fixing performance as well as in anti-offset performance, and is free from toner contamination and carrier contamination on the surface of a toner carrier or a photoreceptor in a developing machine due to durability.
また、 本発明の目的は、 上記トナーを好適に生成し得る製造方法を提供する ことにある。  Another object of the present invention is to provide a method for producing the toner suitably.
本発明は、 示差走査熱量計でトナーを測定した DSC曲線において、 1回目 の走査で測定されるガラス転移点(T g 1 )が 50. 0乃至 70. 0°Cであり、 該 1回目の走査で測定されるガラス転移点 (Tg l) と 2回目の走査で測定さ れるガラス転移点(Tg 2) との温度差(Tg 1— Tg 2)が 3. 0乃至 20. 0°Cであるトナーに関する。  According to the present invention, in a DSC curve obtained by measuring a toner with a differential scanning calorimeter, the glass transition point (T g1) measured in the first scan is from 50.0 to 70.0 ° C. When the temperature difference (Tg1-Tg2) between the glass transition point (Tgl) measured in the scan and the glass transition point (Tg2) measured in the second scan is 3.0 to 20.0 ° C Regarding a certain toner.
また、 本発明は、 少なくとも着色剤、 ワックス、 及び、 結着樹脂を合成する ための重合性単量体を有する重合性単量体組成物を水系分散媒体中に分散し て造粒し、 該重合性単量体組成物の粒子を生成する造粒工程、 該水系分散媒体 中で該重合性単量体組成物の粒子を 70· 0乃至95. 0°Cで加熱し、 該重合 性単量体組成物中の重合性単量体を重合してトナー粒子を生成する重合工程、 該トナー粒子を 70. 0乃至 95. 0°Cから 0. 01°C/分以上 2. 00°C/ 分以下の冷却速度で 45. 0 °C以下に冷却する冷却工程を少なくとも有するト ナ一の製造方法であつて、 該トナ一の製造方法によつて製造されたトナ一は、 示差走査熱量計で該トナーを測定した D S C曲線において、 1回目の走査で測 定されるガラス転移点 (Tg 1) が 50. 0乃至 70. 0°Cであり、 該 1回目 の走査で測定されるガラス転移点 (Tg l) と 2回目の走査で測定されるガラ ス転移点 (Tg 2) との温度差 (Tg l—Tg 2) が 3. 0乃至 20. 0°Cで あるトナーの製造方法に関する。 Further, the present invention provides a method for dispersing a polymerizable monomer composition having at least a colorant, a wax, and a polymerizable monomer for synthesizing a binder resin in an aqueous dispersion medium. A granulation step of producing particles of the polymerizable monomer composition, and heating the particles of the polymerizable monomer composition in the aqueous dispersion medium at 70 to 95.0 ° C. A polymerizing step of polymerizing the polymerizable monomer in the polymerizable monomer composition to form toner particles, wherein the toner particles are formed at a temperature of 70.0 to 95.0 ° C to 0.01 ° C / min. A method for producing a toner having at least a cooling step of cooling to 45.0 ° C or less at a cooling rate of 2.00 ° C / min or less, wherein the toner produced by the method for producing a toner is provided. First, in a DSC curve obtained by measuring the toner with a differential scanning calorimeter, the glass transition point (Tg 1) measured in the first scan is 50.0 to 70.0 ° C. The temperature difference (Tgl-Tg2) between the glass transition point (Tgl) measured in the scan and the glass transition point (Tg2) measured in the second scan is 3.0 to 20.0 ° C The method of manufacturing toner To.
本発明のトナーは、 低温定着性と耐オフセット性とをともに有し、 保存安定 性及び現像耐久性にも優れ、 長期にわたって、 現像機内における汚染を引き起 こすことなく、 高画質な画像を形成することができる。  The toner of the present invention has both low-temperature fixability and offset resistance, is excellent in storage stability and development durability, and forms a high-quality image for a long time without causing contamination in a developing machine. can do.
また、 本発明のトナーの製造方法は、 上記トナーを好適に生成し得ることが できる。 . 図面の簡単な説明  Further, the method for producing a toner of the present invention can suitably produce the above-mentioned toner. Brief description of the drawings
図 1は、 DSC測定装置の昇温モードのグラフである。  FIG. 1 is a graph of a heating mode of the DSC measuring device.
図 2は、 1回目走査で実施例 1のトナーを測定した DSC曲線である。 図 3は、 2回目走査で実施例 1のト ί "一を測定した DS C曲線である。 図 4は、 本発明で規定する変形開始点、 変形終了点、 変形係数を測定した チヤ一トの一例である。  FIG. 2 is a DSC curve obtained by measuring the toner of Example 1 in the first scan. FIG. 3 is a DSC curve obtained by measuring the value of Example 1 in the second scanning. FIG. 4 is a chart showing the measured values of the deformation start point, the deformation end point, and the deformation coefficient defined in the present invention. This is an example.
図 5Α, 58及び50は、 トナー中のワックスの結晶状態を示す図である。 図 6 Α及ぴ 6 Βは、 トナー中のワックスの分散状態を示す図である。 発明を実施するための最良の形態 FIGS. 5A, 5B, and 50 show the crystal state of the wax in the toner. FIG. 6 and FIG. 6 are diagrams showing the dispersion state of the wax in the toner. BEST MODE FOR CARRYING OUT THE INVENTION
本発明によると、 示唆走査熱量計 (DSC) により測定されるトナーのガラ ス転移点は、 1回目の走査で測定されるガラス転移点 (Tg l) と 2回目の走 查で測定されるガラス転移点 (Tg 2) とが異なる場合があり、 該 1回目の走 查で測定されるガラス転移点 (Tg l) が 50. 0乃至 70. 0°Cにあり、 該 1回目の走査で測定されるガラス転移点 (Tg l) と該 2回目の走査で測定さ れるガラス転移点 (T g 2) との差(T g 1— T g 2) が 3. 0乃至 20. 0°C である場合に、 トナーの低温定着性能、 耐オフセット性能及び現像性能を高め ることができることを見出した。  According to the present invention, the glass transition point of the toner measured by the differential scanning calorimeter (DSC) is the glass transition point (Tgl) measured in the first scan and the glass transition point measured in the second scan. The transition point (Tg 2) may be different, and the glass transition point (Tgl) measured in the first scan is in the range of 50.0 to 70.0 ° C and measured in the first scan The difference (T g1-T g 2) between the measured glass transition point (Tg l) and the glass transition point (T g 2) measured in the second scan is 3.0 to 20.0 ° C. In some cases, they have found that the low-temperature fixing performance, the anti-offset performance, and the developing performance of the toner can be improved.
本発明によると、 トナーの保存安定性能や現像安定性能の如き定着工程に至 る以前のトナー性能は、 本発明の測定方法により求められるトナーのガラス転 移点 (Tg l) に依存し、 定着工程での低温定着性能はトナーのガラス転移点 (T g 2) に依存する。 本発明のトナーは、 定着工程に至る以前はワックスの 如き可塑性を有する結晶性樹脂の大半が結晶状態でトナー中に存在しており、 トナーのガラス転移点は Tg 1の値となる。 しかし定着工程において、 転写材 上のトナーが定着装置と接触して加熱されると、 トナー中の前記結晶性樹脂の 一部が結着樹脂に相溶することでトナーの見かけのガラス転移点が低下し、 上 記のようにトナーのガラス転移点は Tg 2の値となる。 これにより、 保存安定 性能や現像安定^能を低下させることなく、 従来では達成し得なかった低温定 着^能を発現することが可能となる。  According to the present invention, the toner performance before the fixing step such as the storage stability performance and the development stability performance of the toner depends on the glass transition point (Tgl) of the toner obtained by the measurement method of the present invention. The low-temperature fixing performance in the process depends on the glass transition point (T g 2) of the toner. In the toner of the present invention, most of the crystalline resin having plasticity such as wax is present in the toner in a crystalline state before the fixing step, and the glass transition point of the toner is Tg1. However, in the fixing step, when the toner on the transfer material is heated by contact with the fixing device, a part of the crystalline resin in the toner becomes compatible with the binder resin, and the apparent glass transition point of the toner is lowered. The glass transition point of the toner becomes the value of Tg 2 as described above. This makes it possible to express low-temperature deposition ability, which could not be achieved in the past, without deteriorating storage stability performance and development stability ability.
上記 T g 1と T g 2との関係を達成する手段としては、 トナーは、 分子量 2 000〜5000の樹脂成分をトナー全質量に対して 1. 0乃至 40. 0質 量%含有することが好ましい。 分子量 2000〜 5000の如き低分子量榭脂 成分の含有量が上記範囲にあることで、 トナー製造時にはワックスの如き結晶 性樹脂の結晶化を促進し、 トナーに含有される結晶性樹脂の多くが結晶状態で 存在するが、 定着温度の如き高温にトナーが加熱された場合には、 結着樹脂に 結晶性樹脂が相溶するトナーを製造することが可能となる。 As a means for achieving the above relationship between T g1 and T g2, the toner may contain a resin component having a molecular weight of 2,000 to 5,000 to 1.0 to 40.0% by mass based on the total mass of the toner. preferable. When the content of the low-molecular-weight resin component having a molecular weight of 2,000 to 5,000 is within the above range, crystallization of a crystalline resin such as wax is promoted at the time of toner production, and most of the crystalline resin contained in the toner is crystallized. Exists in a state, but if the toner is heated to a high temperature such as the fixing temperature, It becomes possible to manufacture a toner in which the crystalline resin is compatible.
トナー製造工程における結晶性樹脂の結晶化のし易さと、 定着工程における 結着樹脂への結晶性樹脂の相溶し易さは、 トナーに含有される分子量 2000 〜5000の樹脂成分の含有量とに関連している。  The ease of crystallization of the crystalline resin in the toner manufacturing process and the ease of compatibility of the crystalline resin with the binder resin in the fixing process depend on the content of the resin component having a molecular weight of 2,000 to 5,000 contained in the toner. Related to
結晶性樹脂は、 固体状態において、 分子鎖が規則的な折り畳み構造、 重なり 構造の部分が多いほど、 結晶性樹脂の結晶化の度 いが大きくなる。 結着樹脂 に含有される前記分子量 2000〜5000の低分子量樹脂成分の量が多す ぎると、 結晶性樹脂と低分子量成分とが混ざりやすく、 結晶性樹脂が固化する 際に、規則的な折り畳み構造、重なり構造の形成が阻害されやすい。このため、 前記低分子量成分の量が少ない程、 結晶性の度合いが大きくなりやすい。  In a crystalline resin, the degree of crystallization of the crystalline resin increases in the solid state as the molecular chain has more regular folded structures and overlapping structures. If the amount of the low-molecular-weight resin component having a molecular weight of 2,000 to 5,000 contained in the binder resin is too large, the crystalline resin and the low-molecular-weight component are easily mixed, and when the crystalline resin is solidified, a regular folding structure is formed. , The formation of the overlapping structure is easily inhibited. For this reason, the smaller the amount of the low molecular weight component, the higher the degree of crystallinity tends to be.
し力 し、 分子量 2000〜 5000の樹脂成分の含有量が 1. 0質量%未満 であると、 トナー製造工程における結晶性樹脂の結晶成長は促進されるが、 定 着工程において、 結着樹脂に相溶する結晶性樹脂の量は減少する。 このため、 結晶性榭脂が結着榭月旨に相溶することで発現される可塑効果が得られず、 トナ 一の定着性が低下する場合がある。  When the content of the resin component having a molecular weight of 2,000 to 5,000 is less than 1.0% by mass, the crystal growth of the crystalline resin in the toner production process is promoted. The amount of compatible crystalline resin is reduced. For this reason, the crystalline resin does not exhibit the plasticizing effect due to its compatibility with the binding effect, and the fixing property of the toner may decrease.
また、 多量の結晶性樹脂が固体状態でトナー中に存在するため、 その一部が トナー表面に露出したり遊離したりしゃすくなり、 現像安定性能が低下するこ とがある。  In addition, since a large amount of crystalline resin is present in the toner in a solid state, a part of the resin is exposed to the toner surface, is released, or becomes chewy, and the development stability performance may be reduced.
一方、 分子量 2000〜 5000の榭脂成分の含有量が 40. 0質量%を超 えると、 トナー製造工程において結着樹脂に相溶する結晶性樹脂の量が増大し、 Tg lと Tg 2との差は 3 °C未満となりやすくなる。 この場合、 低温定着性能 は良好となるが、 保存安定性能、 現像安定性能が低下しやすい。  On the other hand, if the content of the resin component having a molecular weight of 2,000 to 5,000 exceeds 40.0% by mass, the amount of the crystalline resin compatible with the binder resin in the toner production process increases, and Tgl and Tg2 are reduced. Differences tend to be less than 3 ° C. In this case, the low-temperature fixing performance is good, but the storage stability performance and the development stability performance are likely to decrease.
また、 本発明において、 分子量 2000〜5000の樹脂成分の好ましい含 有量はトナー全質量に対して 1. 0乃至 40. 0質量%であるが、 より好まし くは 1. 5乃至 20. 0質量%である。  In the present invention, the preferred content of the resin component having a molecular weight of 2,000 to 5,000 is 1.0 to 40.0% by mass relative to the total mass of the toner, and more preferably 1.5 to 20.0%. % By mass.
本発明において、 Tg 1と Tg 2との温度差 (Tg 1-Tg 2) は 3. 0乃 至 20. 0°Cであるが、 4. 0乃至 15. 0°Cであることが好ましく、 より好 ましくは 5. 0乃至 12. 0°Cである。 Tg 1と Tg 2との温度差 (Tg l— Tg 2) が 3. 0°C未満であると、 低温定着性能を向上させた場合には、 保存 安定性能及び現像安定性能が低下し、 保存安定性能及び現像安定性能を向上さ せた場合には十分な保存安定性能が得られない。 一方、 T g 1と T g 2との温 度差 (Tg l_Tg 2) が 20. 0°Cを越える場合には、 低温定着性能及び保 存安定性能が良好な場合もあるが、 定着工程においてトナーの溶融粘度が低下 し、 普通紙の如き転写材にトナーが染み込んで十分な画像濃度が得られない。 これら (Tg l_Tg 2) の値は、 トナーに含有される結着樹脂の組成や分子 · 量、 結晶性樹脂の組成や添加量、 トナーの製造工程などに依存して変化する。 また、 本発明において、 Tg lは 50. 0乃至 70. 0°Cであるが、 50. 0乃至65. 0°Cであることが好ましく、 より好ましくは 53. 0乃至62. o°cである。 In the present invention, the temperature difference between Tg1 and Tg2 (Tg1-Tg2) is 3.0 The temperature is from 20.0 ° C, preferably from 4.0 to 15.0 ° C, and more preferably from 5.0 to 12.0 ° C. If the temperature difference between Tg 1 and Tg 2 (Tg l—Tg 2) is less than 3.0 ° C, the storage stability and development stability will decrease if the low-temperature fixing performance is improved, and the storage If the stability performance and development stability performance are improved, sufficient storage stability performance cannot be obtained. On the other hand, when the temperature difference (Tgl_Tg2) between Tg1 and Tg2 exceeds 20.0 ° C, low-temperature fixing performance and storage stability performance may be good, but in the fixing process, The melt viscosity of the toner decreases, and the toner penetrates into a transfer material such as plain paper, and a sufficient image density cannot be obtained. These (Tgl_Tg2) values vary depending on the composition and molecular weight of the binder resin contained in the toner, the composition and amount of the crystalline resin, the production process of the toner, and the like. In the present invention, Tgl is from 50.0 to 70.0 ° C, preferably from 50.0 to 65.0 ° C, more preferably from 53.0 to 62.0 ° C. is there.
Tg lの値が 70. 0°Cを超える場合には、 トナー中の結晶性樹脂がトナー 製造時に結着樹脂に相溶する量は小さくなり、 また定着時に結着樹脂に相溶す る量も小さくなりやすい。 このため、 十分な保存安定性能を発現させるために は、 良好な低温定着性能が得られない。 一方、 Tg lが 50. 0°C未満の場合 には、 前記結晶性樹脂がトナー製造時に結着樹脂に相溶する量は大きくなり、 また定着時に結着樹脂に相溶する量も大きくなる。 このため、 良好な低温定着 性能は得られるが、 十分な保存安定性能、 現像安定性能が得られない。  When the value of Tgl exceeds 70.0 ° C, the amount of the crystalline resin in the toner that becomes compatible with the binder resin during the production of the toner decreases, and the amount that the crystalline resin becomes compatible with the binder resin during fixing. Also tend to be small. For this reason, good low-temperature fixing performance cannot be obtained in order to exhibit sufficient storage stability performance. On the other hand, when Tgl is less than 50.0 ° C., the amount of the crystalline resin compatible with the binder resin during the production of the toner increases, and the amount of the crystalline resin compatible with the binder resin during the fixing also increases. . As a result, good low-temperature fixing performance can be obtained, but sufficient storage stability and development stability cannot be obtained.
また、 本発明において、 T g 2は 45. 0乃至 55. 0°Cであることが好ま しい。  In the present invention, T g 2 is preferably 45.0 to 55.0 ° C.
本発明において、 前述の Tg 1及び Tg 2は、 示差走查熱量 (DSC) 測定 装置を用いて測定する。 DSC測定装置として、 本発明では、 TAインストル メンッ社製の M— DS Cを利用した。 測定方法は、 アルミパンに測定試料であ るトナーを 6mg精秤し、 リファレンスパンとして空のアルミパンを用い、 窒 素雰囲気下、モジユレーション振幅 1. 0°C、周波数 1/分で測定する。 1 o°c で 1分間保持した後、 昇温速度 1 °C /分で 1 Ό °Cから 160 °Cまで走査して得 られたリパーシングヒートフロー (Reversing Heat Flow) 曲線を DSC曲線 とし、 該 DSC曲線から中点法により Tg 1を求める。 さらに 160°Cで 10 分間保持した後、 冷却速度 2 °0 分で 160 °Cから 10 °Cまで冷却し、 10 °C で 10分間保持する。 その後、 昇温速度 1°C/分で 10°Cから 160°Cまで走 查して得られたリパーシングヒートフロー曲線 (DSC曲線) から中点法によ り Tg 2を求める。 図 1はこのときの DSC測定装置の昇温モードのグラフを 示す。 なお、 中点法によって求められたガラス転移点とは、 昇温時の DSC曲 線において吸熱ピーク前の基線と吸熱ピーク後の基線の中線と、 立ち上がり曲 線での交点をもつてガラス転移点とするものである (図 2及ぴ 3参照)。 In the present invention, Tg1 and Tg2 described above are measured using a differential scanning calorimeter (DSC) measuring device. In the present invention, M-DSC manufactured by TA Instrument Co., Ltd. was used as the DSC measurement device. The measurement method was as follows: 6 mg of the toner as a measurement sample was precisely weighed in an aluminum pan, and an empty aluminum pan was used as a reference pan. The measurement is performed at a modulation amplitude of 1.0 ° C and a frequency of 1 / min under an elementary atmosphere. After holding at 1 o ° c for 1 minute, the reversing heat flow curve obtained by scanning from 1 Ό ° C to 160 ° C at a heating rate of 1 ° C / min is defined as a DSC curve. Tg1 is determined from the DSC curve by the midpoint method. After holding at 160 ° C for 10 minutes, cool from 160 ° C to 10 ° C at a cooling rate of 2 ° 0 minutes, and hold at 10 ° C for 10 minutes. After that, Tg2 is determined by the midpoint method from the repurging heat flow curve (DSC curve) obtained by running from 10 ° C to 160 ° C at a heating rate of 1 ° C / min. Fig. 1 shows a graph of the temperature rise mode of the DSC measurement device at this time. The glass transition point obtained by the midpoint method is defined as the glass transition having the intersection between the baseline before the endothermic peak and the baseline after the endothermic peak in the DSC curve at the time of temperature rise, and the rising curve. (See Figures 2 and 3).
トナーの融点の測定は、 上記と同様に測定して得られたリパーシングヒート フロー曲線において、 融解ピークの極大値となる温度を融点とする。 また、 融 点のオンセット値とオフセット値は、 前記融解ピークにおいて、 ピークの立ち 上がり部分の最大傾斜の点で引いた接線とピーク前の外揷基線との交点の温 度を、 融点のオンセット値とし、 融解ピーク終了前の最大傾斜の点で引いた接 線とピーク後の外揷基線との交点の温度を、 融点のオフセット値とする。 吸熱量は、 上記測定で得られたリパーシングヒートフロー曲線において、 融 解ピーク前の外挿基線からピークが立ち上がる点と、 融解ピーク終了後の外揷 基線とピークが接する点とを結んだ直線と融解ピークとで囲まれる面積より 求める。  In the measurement of the melting point of the toner, the temperature at which the melting peak has a maximum value in the repurposing heat flow curve obtained by the same measurement as above is defined as the melting point. The onset value and offset value of the melting point are defined as the temperature at the intersection of the tangent drawn at the point of maximum slope of the rising part of the peak and the outer base line before the peak, and the melting point onset. The temperature at the intersection of the tangent drawn at the point of maximum slope before the end of the melting peak and the outer baseline after the peak shall be the melting point offset value. The endothermic amount is a straight line connecting the point where the peak rises from the extrapolated baseline before the melting peak and the point where the peak comes into contact with the external baseline after the end of the melting peak in the reparsed heat flow curve obtained by the above measurement. Calculate from the area enclosed by the and the melting peak.
本発明においてトナーに含有される樹脂成分の分子量、 該トナーに含有され る分子量 2000〜 5000の樹脂成分の含有量は、 ゲルパーミッションクロ マトグラフィー (GPC) 装置 (東ソ一社製) を用いて測定した。  In the present invention, the molecular weight of the resin component contained in the toner and the content of the resin component having a molecular weight of 2,000 to 5,000 contained in the toner can be determined by using a gel permeation chromatography (GPC) apparatus (manufactured by Tosoh Corporation). It was measured.
以下に G PC装置について説明する。  The GPC device will be described below.
40°Cのヒートチャンバ中でカラムを安定化させ、 この温度におけるカラム に、 溶媒として THF (テトラヒドロフラン) を毎分 lm 1の流速で流し、 T HF試料溶液を 100 μ 1注入して測定する。 試料の分子量測定にあたっては、 試料の有する分子量分布を、 数種の単分散ポリスチレン標準試料により作成さ れた検量線の対数値とカウント数との関係から算出する。 検量線作成用の標準 ポリスチレン試料としては、 例えば、 東ソ一社製或いは、 昭和電工社製の分子 量が 102〜107程度のものを用い、 少なくとも 10点程度の標準ポリスチレ ン試料を用いるのが適当である。 検出器には R I (屈折率) 検出器を用いる。 カラムとしては、 市販のポリスチレンジエルカラムを複数本組み合わせるのが 良く、 例えば昭和電工社製の s h o d e X GPC KF— 801, 802, 803, 804, 805, 806, 807, 800 Pの組み合わせや、 東ソー 社製の TSKg e 1 G 100 OH (HXL), G200 OH (HXL), G30 0 OH (HXL), G4000H (HXL), G 500 OH (HXL), G 60 0 OH (HXL), G 700 OH (HXL), T S K g u a r d c o 1 u mnの 組み合わせが挙げられる。 Stabilize the column in a heat chamber at 40 ° C. Then, THF (tetrahydrofuran) is flown at a flow rate of lm 1 per minute as a solvent, and 100 μl of a THF sample solution is injected to measure. In measuring the molecular weight of a sample, the molecular weight distribution of the sample is calculated from the relationship between the logarithmic value of a calibration curve created from several types of monodisperse polystyrene standard samples and the count number. As the standard polystyrene samples for preparing the calibration curve, for example, Tosoh Co. one company or the molecular weight of Showa Denko KK is used of about 10 2 to 10 7, using standard polystyrene emissions sample at least about 10 Is appropriate. An RI (refractive index) detector is used as the detector. As the column, it is preferable to combine a plurality of commercially available polystyrene diel columns. For example, a combination of Showa Denko's shode X GPC KF-801, 802, 803, 804, 805, 806, 807, 800P and Tosoh Corporation TSKg e 1 G 100 OH (HXL), G200 OH (HXL), G300 OH (HXL), G4000H (HXL), G 500 OH (HXL), G 600 OH (HXL), G 700 OH (HXL ), TSK guardco 1 u mn.
分子量 2000〜 5000の樹脂成分の含有量は、 上記測定で得られた溶出 曲線より求める。  The content of the resin component having a molecular weight of 2,000 to 5,000 is determined from the elution curve obtained by the above measurement.
G P C装置に用いる試料は以下のようにして作製する。  The sample used for the GPC device is prepared as follows.
トナー試料をテトラヒドロフラン (THF) 中に入れて十分に混合し、 12 〜18時間静置する。 その後、 サンプル処理フィルター (ポアサイズ 0. 45 〜0. 5 μπι、 例えば、 マイショリディスク Η— 25-5 東ソ一社製、 ェキ クロディスク 25 CR ゲルマン ·サイエンス · ジャパン社製などが利用でき る) を通過させたものを、 G PCの試料とする。 試料濃度は、 樹脂成分の濃度 が 0. 04〜0. 08質量%となるように調整する。  The toner sample is placed in tetrahydrofuran (THF), mixed well, and allowed to stand for 12-18 hours. After that, a sample processing filter (pore size 0.45 to 0.5 μπι, for example, Myshori Disc Η—25-5 manufactured by Tosoh I. Co., Ltd., and Exocolodisc 25 CR manufactured by Germanic Science Japan can be used. The sample that has passed through is used as the GPC sample. Adjust the sample concentration so that the resin component concentration is 0.04 to 0.08% by mass.
本発明に用いられる結着樹脂としては公知の結着樹脂のいずれも用いるこ とができ、 例えばスチレン一アクリル酸エステル樹脂、 スチレンーメタクリル 酸エステル樹脂の如きスチレン系共重合体またはポリエステル樹脂が挙げら れる。 As the binder resin used in the present invention, any known binder resin can be used, for example, a styrene copolymer or a polyester resin such as a styrene-acrylate resin or a styrene-methacrylate resin. La It is.
本発明のトナーは、 テトラヒドロフラン (THF) 不溶分をトナーの全質量 に対して 5乃至 90質量%有することが好ましい。 より好ましくは 5乃至 70' 質量%であり、 さらに好ましくは 5乃至 65質量%である。 保存安定性能、 現 像安定性能と低温定着性能のパランスがさらに向上するためである。  The toner of the present invention preferably has a tetrahydrofuran (THF) insoluble content of 5 to 90% by mass based on the total mass of the toner. More preferably, it is 5 to 70% by mass, and still more preferably 5 to 65% by mass. This is because the balance between storage stability, image stability and low-temperature fixing performance is further improved.
トナーの T H F不溶分とは、 T H F溶媒に対して不溶性となつた超高分子ポ リマー成分 (実質的に架橋ポリマー) の質量割合を示す。 トナーの THF不溶 分とは、 以下のように測定された値をもって定義する。  The term “THF-insoluble component” in the toner refers to the mass ratio of the ultrahigh molecular weight polymer component (substantially crosslinked polymer) that has become insoluble in the THF solvent. The THF insoluble content of the toner is defined by a value measured as follows.
トナー l gを秤量し (Wl g)、 円筒濾紙 (例えば東洋濾紙製 No. 86R) に入れてソックスレー抽出器にかけ、 溶媒として THF 200mlを用いて 6 時間抽出し THF溶媒によって抽出された可溶成分をエバポレートした後、 1 00°Cで数時間真空乾燥し THF可溶分量を秤量する (W2 g)。 トナーの T HF不溶分は下記式から算出される。 .  The toner lg is weighed (Wlg), placed in a thimble filter paper (for example, No. 86R manufactured by Toyo Roshi Kaisha), subjected to a Soxhlet extractor, extracted with 200 ml of THF as a solvent for 6 hours, and the soluble components extracted with the THF solvent are extracted After evaporation, vacuum-dry at 100 ° C for several hours and weigh the THF-soluble matter (W2 g). The THF insoluble content of the toner is calculated from the following equation. .
トナーの THF不溶分 (質量%) = {(Wl -W2),/W1 } X I 00 本発明のトナーは、 上述の THF可溶分の数平均分子量 (Mn) が 3000 乃至 100000であり、 重量平均分子量 (Mw) が 10000乃至 1000 000であり、 Mwと Mnとの比 (MwZMn) が 2. 00乃至 100: 00 であることが好ましい。 保存安定性能、 現像安定性能と低温定着性能のパラン スが向上するためである。  THF-insoluble content of toner (mass%) = {(Wl-W2), / W1} XI00 The toner of the present invention has a number average molecular weight (Mn) of 3000 to 100000, and a weight average It is preferable that the molecular weight (Mw) is 10,000 to 1,000,000 and the ratio of Mw to Mn (MwZMn) is 2.00 to 100: 00. This is because the balance between storage stability, development stability, and low-temperature fixing performance is improved.
本発明のトナーは、 1回目の走査で測定される DSC曲線において 55. 0 乃至 70. 0°Cに融点 (Tml) を有することが好ましい。 また、 本発明のト ナ一は、 1回目の走査で測定される吸熱量 Q 1と、 2回目の走査で求められる 吸熱量 Q2との比 (Q 1/Q2) が 2. 00乃至 50. 00であることが好ま しい。 55. 0乃至 70. 0°Cに融点 (Tml) を有するトナーは、 トナー製 造時におけるワックスの如き結晶性樹脂の結晶化と定着時における結着樹脂 への相溶ィヒのバランスが好ましく、 Q 1/Q 2の値が 2. 00乃至 50. 00 となる。 Ql/Q 2の値が上記範囲にあることで、 保存安定性能と低温定着性 能がさらに良好になる。 Q1/Q2の値が 50. 00を超える範囲であると、 トナーの溶融粘度が低下しすぎて高温側の定着領域が小さくなる場合がある。 また、 Q 1 /Q 2の値 2未満であると、 低温側の定着領域が小さくなる場合 がある。 The toner of the present invention preferably has a melting point (Tml) at 55.0 to 70.0 ° C in a DSC curve measured in the first scan. In the toner of the present invention, the ratio (Q 1 / Q2) of the heat absorption Q1 measured in the first scan to the heat absorption Q2 determined in the second scan is 2.00 to 50. 00 is preferred. A toner having a melting point (Tml) at 55.0 to 70.0 ° C preferably has a balance between crystallization of a crystalline resin such as wax at the time of toner production and compatibility with a binder resin at the time of fixing. , Q 1 / Q 2 values between 2.00 and 50.00 It becomes. When the value of Ql / Q2 is in the above range, the storage stability performance and the low-temperature fixing performance are further improved. If the value of Q1 / Q2 is more than 50.00, the melt viscosity of the toner may be too low and the fixing area on the high temperature side may be small. If the value of Q 1 / Q 2 is less than 2, the fixing area on the low temperature side may be small.
本発明のトナーは、 2回目の走査で測定される DSC曲線において、 71. 0乃至 150. 0°Cに融点 (Τπι2) を有することが好ましい。 また、 本発明 のトナーは、 1回目の走査求められる吸熱量 Q 3と、 2回目の走査で測定され る吸熱量 Q4との比 (Q3/Q4) が 0. 80乃至 1. 20にあることが好ま しい。 Q 3 /Q 4の値が上記範囲にあることで、 高温側の定着領域がさらに良 好になるためである。 さらに、 上記 Q4は 1. 5乃至 20. O J/gの範囲に あることが好ましい。 Q4が 20. 0 J Zgを超える範囲であると定着装置よ り トナーが十分に伝達されず、 低温側の定着領域が小さくなる場合がある。 ま た、 Q4が 1. 5 jZg未満であると、 高温側の定着領域が小さくなる場合が ある。  The toner of the present invention preferably has a melting point (Τπι2) at 71.0 to 150.0 ° C. in a DSC curve measured in the second scan. Further, in the toner of the present invention, the ratio (Q3 / Q4) of the heat absorption Q3 determined in the first scan to the heat absorption Q4 measured in the second scan is 0.80 to 1.20. Is preferred. This is because when the value of Q 3 / Q 4 is within the above range, the fixing area on the high temperature side is further improved. Further, the above Q4 is preferably in the range of 1.5 to 20. O J / g. If Q4 is more than 20.0 JZg, toner may not be sufficiently transmitted from the fixing device, and the fixing area on the low temperature side may be reduced. If Q4 is less than 1.5 jZg, the fixing area on the high-temperature side may be small.
本発明のトナーは、 変形開始点 (丁 £ 1) が45. 0乃至 60. 0°C、 変形 終了点 (T f 2) が 55. 0乃至75. 0°C、 変形係数 (T— f r) が 0. 3乃 至 0. 7であることが好ましい。 本発明における変形開始点 (T f 1)、 変形 終了点 (T f 2)、 変形係数 (T f r) とはトナーの熱力学特性を示す指標で あり、 具体的には以下に示す方法によって測定される値である。  The toner according to the present invention has a deformation start point (pound 1) of 45.0 to 60.0 ° C., a deformation end point (T f 2) of 55.0 to 75.0 ° C., and a deformation coefficient (T—fr). ) Is preferably from 0.3 to 0.7. The deformation start point (T f 1), deformation end point (T f 2), and deformation coefficient (T fr) in the present invention are indices indicating the thermodynamic properties of the toner, and are specifically measured by the following method. Value.
トナー 0. 2 gを加圧成型器にはかりとり、 常温常圧環境下において 200 k g f の荷重で 2分間加圧成型し、 直径約 8 mms 高さ 1〜 4 mmの円柱状試 料を調整する。 内径約 10mm、 内壁の高さが 20 mm以上、 研磨された底面 を有する筒状容器の中央に前記円柱状試料を載せ、さらに、外形約 9. 9mm、 厚さ 10 mm以上の加圧ジグを前記サンプルに接触させる。 これを 35°Cで 5 分間保持した後、 加圧ジグに 10 k g f の荷重を与え、 昇温速度 1°CZ分で 1 20°Cまで円柱状試料を昇温し、 試料に接する加圧ジグの変位量を計測する。 得られたチャートから、試料が変形し始める温度 (°C)を変形開始点( T f 1 )、 変形が終了する温度 (°C) を変形終了点 (T f 2) と定義する。 また、 低温側 のベースラインを高温側に延長した直線と、 変形の階段状変化部分の曲線の勾 配が最大になるような点で引いた接線との交点 (オンセット点) の温度を T f f 1、 その時の加圧ジグの高さを H f 1とし、 高温側のベースラインを低温側 に延長した直線と、 変形の階段状変化部分の曲線の勾配が最大になるような点 で引いた接線との交点 (オフセット点) の温度を T f f 2、 その時の加圧ジグ の高さを Hf 2とし、 下記式から求められる値を変形係数 (T f r) と定義す る。 上記測定は、 例えば、 フローテスター (CFT—500D、 島津製作所社 製) において、 サンプルを载せるダイの代わりに穴が開いていない S US _ 3 16プレートを使用することで測定することができる。 測定チャートの一例を 図 4に示す。 Toner 0. and weighed 2 g to pressure molding machine, pressure-molded for 2 minutes at a load of 200 kgf at normal temperature and normal pressure environment, adjusting a cylindrical specimen having a diameter of about 8 mm s height. 1 to 4 mm I do. Place the cylindrical sample in the center of a cylindrical container with an inner diameter of about 10 mm, an inner wall height of at least 20 mm, and a polished bottom, and a pressure jig with an outer diameter of about 9.9 mm and a thickness of 10 mm or more. Contact the sample. After holding this at 35 ° C for 5 minutes, a load of 10 kgf was applied to the pressurized jig, and the temperature was raised at a rate of 1 ° CZ for 1 minute. Raise the temperature of the cylindrical sample to 20 ° C and measure the amount of displacement of the pressing jig in contact with the sample. From the obtained chart, the temperature at which the sample starts to deform (° C) is defined as the deformation start point (T f 1), and the temperature at which the deformation ends (° C) is defined as the deformation end point (T f 2). The temperature at the intersection (onset point) of the straight line that extends the low-temperature-side baseline to the high-temperature side and the tangent drawn at the point where the slope of the curve at the step change in deformation is maximized is defined as T ff 1, the height of the pressurized jig at that time is Hf1, and it is drawn at the point where the gradient of the curved line at the part where the high-temperature side base line extends to the low-temperature side and the step change part of deformation becomes maximum. Let the temperature at the intersection (offset point) with the tangent be T ff 2 and the height of the pressing jig at that time be Hf 2, and define the value obtained from the following equation as the deformation coefficient (T fr). The above measurement can be performed, for example, by using a SUS — 316 plate with no holes in place of a die for placing a sample in a flow tester (CFT-500D, manufactured by Shimadzu Corporation). Fig. 4 shows an example of the measurement chart.
T f r = (H f 2-H f 1) / (T f f 2-T f f 1)  T f r = (H f 2-H f 1) / (T f f 2-T f f 1)
本発明によると、 上記測定から得られる変形開始点 (T f 1) は耐ブロッキ ング性能、 低温定着性能及び現像安定性能に相関し、 変形終了点 (T f 2) は 耐高温オフセット性能、 変形係数 (T f r) はダロス性能に相関する。  According to the present invention, the deformation start point (T f1) obtained from the above measurement correlates with blocking resistance, low-temperature fixing performance and development stability performance, and the deformation end point (T f 2) is high-temperature offset resistance, deformation The coefficient (T fr) correlates with the dalos performance.
即ち、 変形開始点 (T f 1) が 45. 0°C未満である場合、 低温定着性能は 向上するが、 現像機内でブロッキングが発生し、 また、 カプリや画像不良が発 生する。 一方、 T f 1が 60. 0°Cを超える範囲では現像安定性能は向上する ヽ 十分な低温定着性能が得られない。  That is, when the deformation starting point (T f 1) is less than 45.0 ° C., the low-temperature fixing performance is improved, but blocking occurs in the developing machine, and capri and image defects occur. On the other hand, if T f 1 exceeds 60.0 ° C., the development stability performance is improved. Sufficient low-temperature fixing performance cannot be obtained.
また、 変形終了点 (T f 2) が 55. 0°C未満であると高温オフセッ小が発 生しやすくなり、 定着領域が著しく小さくなる。 T f 2が 75. 0DCを超える 範囲では耐高温オフセット性能は向上するが、 低温オフセットが発生しやすく なり低温定着性能が低下する。 If the deformation end point (T f 2) is less than 55.0 ° C, high-temperature offset is likely to occur, and the fixing area becomes extremely small. T f 2 is high-temperature offset performance in a range exceeding 75. 0 D C is improved, low-temperature fixing performance becomes low-temperature offset is liable to occur is reduced.
変形係数 (T f r) が 0. 3未満であると十分なダロスが得られず、 T f r が 0 . 7を超える範囲では、 定着時にトナーが転写紙に染み込みすぎることに よるダロス低下が発生する。 If the deformation coefficient (T fr) is less than 0.3, sufficient dalos cannot be obtained and T fr If the ratio is more than 0.7, the toner is soaked into the transfer paper at the time of fixing, resulting in a reduction in daro loss.
上記のトナー物性値は、 結着樹脂のガラス転移点 (T g ) と、 ワックスの如 き結着樹脂を可塑化する結晶性樹脂が結着樹脂に相溶する量とのパランスに より達成される。 例えば、 D S Cで求められる T gが低いトナーは T f 1及ぴ T f 2の値が小さくなりやすい。 また、 ワックスの如き結晶性樹脂が結着樹脂 に相溶している量が多いトナーは、 T f rが 0 . 7を超える値となりやすく、 結晶性樹脂の相溶量が少ないトナ一は、 T f rが 0 . 3未満の値となりやすレ、。 これら結晶性樹脂の相溶量は、 結着樹脂の組成や分子量分布、 可塑化成分の 糸且成及び添加量、 トナーの製造方法等により制御することが可能である。 一般 に、 結着樹脂の T gが小さいほど結晶性樹脂の相溶量は大きくなりやすく、 分 子量が小さいほど相溶量は大きくなりやすレ、。  The above physical properties of the toner are achieved by a balance between the glass transition point (T g) of the binder resin and the amount of the crystalline resin that plasticizes the binder resin such as wax to be compatible with the binder resin. You. For example, a toner having a low Tg determined by DSC tends to have small values of Tf1 and Tf2. In addition, toner having a large amount of crystalline resin compatible with the binder resin, such as wax, tends to have a T fr value exceeding 0.7, and toner having a small amount of crystalline resin compatibility has a T fr of fr is likely to be less than 0.3. The amount of compatibility of these crystalline resins can be controlled by the composition and molecular weight distribution of the binder resin, the amount and amount of plasticizing component added, the method of producing the toner, and the like. In general, the smaller the Tg of the binder resin, the larger the amount of compatibility of the crystalline resin becomes, and the smaller the molecular weight, the larger the amount of compatibility becomes.
結晶性樹脂の組成として、 融点が小さいほど結着樹脂との相溶量は大きくな りやすい。 また、 ワックスに含有されるアルキル基の炭素数が小さいほど結着 樹脂との相溶量は大きくなりやすく、 融点のオンセット値とオフセット値との 温度幅が大きいほど、 また融点とォンセット値との差の値が大きレヽほど相溶量 は大きくなりやすい。 一方、 ワックスに含有されるアルキル基の炭素数が大き いほど結晶性が大きくなり、 融点とオフセット値との差の値が大きいほど結晶 性が大きくなりやすい。 ワックスの種類としては、 エステルワックスの如き極 性ワックスの方が結着樹脂との相溶量は大きくなりやすく、 パラフィンヮック スの如き低極性ワックスは相溶量が小さくなりやすい。 さらに、 これらのヮッ クスは高温で結着樹脂との親和性が増大するため、 高温の状態から急冷して製 造されたトナーは、 徐冷されたトナーよりも結着樹脂と 相溶量は大きくなり やすい。  As the composition of the crystalline resin, the lower the melting point, the greater the compatibility with the binder resin. Also, the smaller the carbon number of the alkyl group contained in the wax, the greater the compatibility with the binder resin.The larger the temperature range between the onset value and the offset value of the melting point, and the difference between the melting point and the onset value. The larger the value of the difference is, the more the amount of compatibility tends to increase. On the other hand, the greater the carbon number of the alkyl group contained in the wax, the greater the crystallinity, and the greater the difference between the melting point and the offset value, the greater the crystallinity. As for the type of wax, a polar wax such as an ester wax tends to have a higher compatibility with a binder resin, and a low-polar wax such as a paraffin wax tends to have a lower compatibility. Furthermore, since these resins have an increased affinity for the binder resin at high temperatures, the toner produced by quenching from a high temperature state has a higher compatibility with the binder resin than the slowly cooled toner. It is easy to grow.
本発明のトナーに用いるワックスの如き結晶性樹脂としては、 パラフィンヮ ッタス、 ポリオレフインワックス、 マイクロクリスタリンワックス、 フイツシ ヤートロビッシュワックスの如きポリメチレンワックス、 アミ ドワックス、 高 級脂肪酸、 長鎖アルコール、 エステルワックス、 ケトンワックス及びこれらの グラフト化合物、 ブロック化合物の如き誘導体が挙げられ、 これらはワックス 中に含まれる低分子量成分が除去された D S C曲線の最大吸熱ピークがシャ 、 Examples of the crystalline resin such as wax used in the toner of the present invention include paraffin resin, polyolefin wax, microcrystalline wax, and fish. Examples include polymethylene wax such as Jatrophish wax, amide wax, higher fatty acids, long-chain alcohols, ester waxes, ketone waxes and derivatives thereof such as graft compounds and block compounds, and these have a low molecular weight contained in the wax. The maximum endothermic peak of the DSC curve from which the component was removed
ープなものが好ましい。 Rc l Soup is preferable. Rc l
k  k
中でも、 好ましく用いられる結晶性樹脂としては、 炭素数 1 8〜4 2の直鎖 状のアルキルアルコール、 脂肪酸、 脂肪酸アミ ド、 脂肪酸エステル或いは、 モ ンタン系誘導体等のワックスが挙げられる。 その中でも、 トナー製造時の結晶 o =  Among them, preferred examples of the crystalline resin include waxes such as linear alkyl alcohols having 18 to 42 carbon atoms, fatty acids, fatty acid amides, fatty acid esters, and montan derivatives. Among them, crystals during toner production o =
化の促進と定着時の結着樹脂への相溶とのパランスから、 炭素数 1 8〜4 2の ェステル化合物を有するエステルワックスが好ましく、 より好ましくは炭素数 が 3 0〜4 2のエステル化合物を有するエステルワックスである。 また、 本発 明で用いるエステルワックスは、 炭素数 1 0乃至 2 1のアルキル基を有する脂 肪酸エステルイ匕合物を有することが好ましい。 さらに、 これらワックスから液 状脂肪酸の如き不純物を予め除去してあるものも好ましい。 In view of the balance between the promotion of conversion and compatibility with the binder resin at the time of fixing, an ester wax having an ester compound having 18 to 42 carbon atoms is preferable, and an ester compound having 30 to 42 carbon atoms is more preferable. Is an ester wax having the formula: The ester wax used in the present invention preferably has a fatty acid ester conjugate having an alkyl group having 10 to 21 carbon atoms. Further, those from which impurities such as liquid fatty acids have been removed in advance from these waxes are also preferable.
エステルワックスとしては、 下記式 (I ) 乃至 (V I ) で示される化合物 から形成されているものが挙げられる。  Examples of the ester wax include those formed from compounds represented by the following formulas (I) to (VI).
R1-C-O-(CH2)njr-c (CH2)m-0-C-R5 ( I )R 1 -CO- (CH 2 ) n j r -c (CH 2 ) m -0-CR 5 (I)
0 0
(式中、 a及び bは 0〜4の整数であり、 a + bは 4である。 R1及ぴ R2は炭 素数が 1〜 4 0の有機基であり、 R1と R2との少なくとも一つ以上が炭素数 1 0〜2 1である。 m及ぴ nは 0〜2 0の整数であり、 mと nは同時に 0になる ことはない。) 1 ' (Where a and b are integers from 0 to 4, a + b is 4. R 1 and R 2 are organic groups having 1 to 40 carbon atoms, and R 1 and R 2 are At least one has a carbon number of 10 to 21. m and n are integers of 0 to 20, and m and n are not simultaneously 0.) 1
R1- C— 0— iCH2)n '(CH2)m- 0— C— R2 R 1 -C— 0— iCH 2 ) n '(CH 2 ) m -0— C— R 2
0 0 (式中、 a及び bは 0〜 3の整数であり、 a + bは 1乃至 3である。 R1及ぴ R2は炭素数が 1〜4 0の有機基であり、 R 1と R2との少なくとも一つ以上が炭 素数 1 0〜2 1のアルキル基である。 R3は水素原子または炭素数が 1〜2 0以 上の有機基である。 kは 1〜3の整数であり、 a + b + k = 4である。 m及び nは 0〜2 0の整数であり、 mと nが同時に 0になることはない。) 0 0 (where a and b are integers of 0 to 3, and a + b is 1 to 3. R 1 and R 2 is an organic group having 1 to 40 carbon atoms, and at least one of R 1 and R 2 is an alkyl group having 10 to 21 carbon atoms. R 3 is a hydrogen atom or an organic group having 1 to 20 or more carbon atoms. k is an integer of 1 to 3, and a + b + k = 4. m and n are integers from 0 to 20; m and n are never 0 at the same time. )
R '-O— C— R2— C— O—R3 (m) O 0 R '-O— C— R 2 — C— O—R 3 ( m ) O 0
(式中、 R1及ぴ R3は炭素数 1〜4 0を有する有機基であり、 R1と R3の少な くとも一つ以上は炭素数 1 0〜2 1のアルキル基である。 R2は炭素数 1〜2 0 を有する有機基を示す。) (Wherein, R 1 and R 3 are organic groups having 1 to 40 carbon atoms, and at least one of R 1 and R 3 is an alkyl group having 10 to 21 carbon atoms.) R 2 represents an organic group having 1 to 20 carbon atoms.)
R1-C-0-(CH2)n-0-C-R2 (w) 0 O R 1 -C-0- (CH 2 ) n -0-CR 2 (w) 0 O
(式中、 R1及び R2は炭素数 1〜4 0を有する有機基であり、 R1と R3の少な くとも一つ以上は炭素数 1 0 ~ 2 1のアルキル基である。 nは 1〜2 0の整数 を示す。)
Figure imgf000017_0001
(Wherein, R 1 and R 2 are organic groups having 1 to 40 carbon atoms, and at least one or more of R 1 and R 3 is an alkyl group having 10 to 21 carbon atoms. N Represents an integer of 1 to 20.)
Figure imgf000017_0001
(式中、 aは 0〜3の整数であり、 bは 1〜4の整数であり、 a + bは 4であ る。 R1は炭素数が 1〜2 1のアルキル基である。 m及ぴ nは 0〜2 0の整数で あり、 mと nが同時に 0になることはなレ、。) (In the formula, a is an integer of 0 to 3, b is an integer of 1 to 4, and a + b is 4. R 1 is an alkyl group having 1 to 21 carbon atoms. And n is an integer from 0 to 20 and m and n cannot be 0 at the same time.)
R 1— C O O— R2 (V I )R 1 — COO— R 2 (VI)
(式中、 R1及び R2は炭素数 1〜3 9を有するアルキル基であり、 R 1の炭素数 と R2の炭素数との合計が 1 7〜4 1である。) (In the formula, R 1 and R 2 are alkyl groups having 1 to 39 carbon atoms, and the total of the number of carbon atoms of R 1 and the number of carbon atoms of R 2 is 17 to 41.)
さらに、 上記エステルヮックスと組み合わせて好ましく用いられる結晶性樹 脂として、 パラフィンワックス、 ポリオレフインワックス、 マイクロクリスタ リンワックス、 フィッシヤートロピッシュワックスの如きポリメチレンヮック スが挙げられる。 ポリメチレンワックスとしては、 アルキレンを高圧下でラジ カル重合或いは低圧下でチーグラー触媒または、 その他の触媒を用いて重合し た低分子量のポリメチレンワックス;高分子量のアルキレンポリマーを熱分角军 して得られるポ! メチレンワックス ;アルキレンを重合する際に副生する低分 子量アルキレンポリマーを分離精製したポリメチレンワックス、 ;一酸化炭素 及び水素からなる合成ガスからァーゲ法により得られる炭化水素ポリマーの 蒸留残分から、 或いは、 蒸留残分を水素添カ卩して得られる合成炭化水素から、 特定の成分を抽出分別したポリメチレンワックスが挙げられる。 これらヮック スには酸化防止剤が添カ卩されていてもよい。 Further, as a crystalline resin preferably used in combination with the above esterx, polymethylene wax such as paraffin wax, polyolefin wax, microcrystalline wax, and fish tropic wax can be mentioned. As polymethylene wax, alkylene is Low molecular weight polymethylene wax polymerized by cal polymerization or low pressure using a Ziegler catalyst or other catalysts; a polymethylene wax obtained by subjecting a high molecular weight alkylene polymer to thermal decomposition. Methylene wax; polymethylene wax obtained by separating and purifying a low-molecular-weight alkylene polymer produced as a by-product when polymerizing alkylene; from the distillation residue of a hydrocarbon polymer obtained from a synthesis gas consisting of carbon monoxide and hydrogen by the Age method, Alternatively, a polymethylene wax obtained by extracting and separating a specific component from a synthetic hydrocarbon obtained by hydrogenating a distillation residue is included. These boxes may be supplemented with an antioxidant.
本発明に用いるワックスの如き結晶性樹脂は、 融点 (温度 20. 0乃至 20 0. 0°Cの範囲における DSC曲線の最大吸熱ピークに対応する温度)が 40. 0乃至 150. 0°Cであることが好ましく、 より好ましくは 55. 0乃至 15 0. 0°C、 さらに好ましくは 55. 0°C乃至 110. 0°Cである。  The crystalline resin such as wax used in the present invention has a melting point (temperature corresponding to the maximum endothermic peak of the DSC curve in the temperature range of 20.0 to 200.0 ° C) of 40.0 to 150.0 ° C. The temperature is preferably 55.0 to 150.0 ° C, more preferably 55.0 to 110.0 ° C.
本発明では、 トナー製造時の結晶性と結着樹脂への相溶性との関係から、 結 晶性榭脂としてエステルワックスを用いることが好ましい。 融点のオンセット 値とオフセット値との差が 20. 0°C以内であるワックスが好ましく、 より好 ましくは 10. o°c以内である。 融点のオンセット値とオフセット値との差の 値は、 該ワックスの結着樹脂への相溶性に影響し、 20°C. 0を超える値であ ると現像性が低下する場合がある。  In the present invention, it is preferable to use an ester wax as the crystalline resin in view of the relationship between the crystallinity during the production of the toner and the compatibility with the binder resin. A wax in which the difference between the onset value of the melting point and the offset value is within 20.0 ° C is preferable, and more preferably, it is within 10. ° C. The value of the difference between the onset value and the offset value of the melting point affects the compatibility of the wax with the binder resin. If the value exceeds 20 ° C., the developability may be reduced.
また、 融点とオンセット値との差が 10. 0°C以内であるワックスが好まし く、 より好ましくは 5. 0°C以内である。 さらに、 融点とオフセット値との差 が 10. 0°C以内であるワックスが好ましく、 より好ましくは 5. 0°C以内で ある。 これら融点とオンセット値との差の値、 融点とオフセット値との差の値 は、 該ワックスの結着樹脂への相溶性に影響し、 各値が 10°Cを超える値であ ると現像性が低下する場合がある。  Further, a wax having a difference between the melting point and the onset value within 10.0 ° C. is preferable, and more preferably within 5.0 ° C. Further, a wax having a difference between the melting point and the offset value within 10.0 ° C is preferable, and more preferably within 5.0 ° C. The value of the difference between the melting point and the onset value and the value of the difference between the melting point and the offset value affect the compatibility of the wax with the binder resin, and if each value exceeds 10 ° C. Developability may decrease.
また、 室温で固体の固体ワックスが好ましく、 50. 0乃至 70. 0°Cに融 点を有する低融点ワックスと、 71. 0乃至 150. 0°Cに融点を有する髙融 点ワックスとを併せて用いることが好ましい。 低融点ワックスとしては、 融点 のオンセット値とオフセット値との差が 20. 0°C以内であるワックスが好ま しく、 より好ましくは 10. 0°C以内である。 高融点ワックスとしては 71. 0乃至 150. 0°Cに融点を有することが好ましいが、 より好ましくは 71. 0乃至 110. 0°Cであることが好まし!/、。 高融点ワックスを低融点ワックス と組み合わせて用いる場合、 該高融点ワックスは、 融点のオンセット値とオフ セット値との差が 5. 0乃至 80. 0°C、 好ましくは 8.· 0乃至 50. 0°Cで あることが好ましい。 ' さらには、 前記エステルワックスは、 2種以上のエステル化合物を有し、 該 エステル化合物のうち、 同一の構造を有するエステルイ匕合物を、 エステルヮッ タス全質量に対して 50〜95質量%含有しているエステルワックスが好ま しい。 上記のような含有量の値は、 前記ワックスの融解ピークにおけるオンセ ット値とオフセット値に影響を及ぼし、 結着樹脂への該ワックスの相溶性に影 響を及 す。 同一の構造を有するエステル化合物の含有量は、 下記に説明する ガスクロマトグラフィー法 (GC法) によって測定することができる。 Further, a solid wax which is solid at room temperature is preferable, and a low melting point wax having a melting point of 50.0 to 70.0 ° C and a low melting point wax having a melting point of 71.0 to 150.0 ° C. It is preferable to use a point wax in combination. As the low melting point wax, a wax having a difference between the onset value and the offset value of the melting point within 20.0 ° C is preferable, and more preferably within 10.0 ° C. The high melting point wax preferably has a melting point of 71.0 to 150.0 ° C, more preferably 71.0 to 111.0 ° C! /. When the high melting point wax is used in combination with the low melting point wax, the difference between the onset value and the offset value of the melting point of the high melting point wax is 5.0 to 80.0 ° C, preferably 8.0 to 50 ° C. The temperature is preferably 0 ° C. Further, the ester wax has two or more ester compounds, and contains 50 to 95% by mass of the esterified compound having the same structure among the ester compounds, based on the total mass of the ester. Ester wax is preferred. The content value as described above affects the onset value and offset value at the melting peak of the wax, and affects the compatibility of the wax with the binder resin. The content of the ester compound having the same structure can be measured by a gas chromatography method (GC method) described below.
G C法による同一の構造を有するエステルィヒ合物の含有量の測定には、 G C —17 A (島津製作所製) が用いられる。 試料は、 予めトルエンに 1質量%濃 度で溶解させた溶液 1 μ 1をオンカラムインジェクターを備えた GC装置に 注入する。カラムは、 0. 5111111径 1 Om長の U l t r aAl l o y— 1 (H T) を用いる。 カラムは初め 40°Cから 40°C/分の昇温スピードで 200°C 迄昇温させ、 さらに 15°C/分で、 350°C迄昇温させ、 次に 7°C/分の昇温 スピードで 450°C迄昇温させる。 キャリアガスは、
Figure imgf000019_0001
ガスを501^? &の 圧力条件で流す。 化合物種の同定は、 別途炭素数が既知のアルカンを注入し同 一の流出時間同士を比較したり、 ガス化成分をマススぺクトマトグラフィ一に 導入することで構造を同定する。 エステル化合物の含有量はクロマトグラムの 総ピーク面積に対するピーク面積の比を求めることで算出する。 本発明において前記ワックスの好ましい含有量は、 結着樹脂 100質量部当 りワックス 1乃至 40質量部 (より好ましくは、 2〜20質量部) である。 重 合法により トナーを生成する場合には、 前記ワックスは、 重合性単量体 100 質量部に対して 1乃至 40質量部 (より好ましくは、 2〜20質量部) 配合す ることが好ま.しく、 また、 溶融混練粉碎法により トナーを生成する場合には、 ワックスはトナー中に結着樹脂 100質量部当り 1乃至 10質量部 (より好ま しくは 2〜8質量部) 含有されていることが好ましい。
GC-17A (manufactured by Shimadzu Corporation) is used for the measurement of the content of the ester compound having the same structure by the GC method. For the sample, inject 1 μl of a solution previously dissolved at 1% by mass in toluene into a GC device equipped with an on-column injector. The column used is UltraAlloy-1 (HT) having a diameter of 0.511111 and a length of 1 Om. The column is first heated from 40 ° C to 200 ° C at a rate of 40 ° C / min, then at 15 ° C / min to 350 ° C, then to 7 ° C / min. Raise the temperature to 450 ° C at the heating speed. The carrier gas is
Figure imgf000019_0001
The gas flows under the pressure condition of 501 ^? &. The compound species is identified by separately injecting an alkane with a known carbon number and comparing the same effluent times, or by introducing gasification components into mass spectrometry. The content of the ester compound is calculated by calculating the ratio of the peak area to the total peak area of the chromatogram. In the present invention, a preferable content of the wax is 1 to 40 parts by mass (more preferably, 2 to 20 parts by mass) per 100 parts by mass of the binder resin. When the toner is produced by a polymerization method, the wax is preferably blended in an amount of 1 to 40 parts by mass (more preferably, 2 to 20 parts by mass) with respect to 100 parts by mass of the polymerizable monomer. When the toner is produced by the melt-kneading and pulverization method, the wax may be contained in the toner in an amount of 1 to 10 parts by mass (more preferably 2 to 8 parts by mass) per 100 parts by mass of the binder resin. preferable.
本発明に使用されるワックスは溶解度パラメーター (SP) 値が、 7. 6〜 10. 5の範囲であることが好ましい。 SP値が、 7. 6未満の値を示すヮッ クスは、 用いる重合性単量体または結着樹脂との相溶性が乏しく、 結果的に結 着樹脂中への良好な分散が得られにくく、 多数枚複写時またはプリント時にお いて該ワックスの現像スリーブへの付着が生じやすく、 トナーの帯電量が変化 しゃすくなる。 さらに地力プリ、 トナー補給時のトナーの濃度変動も起こしや すい。 S P値が 10. 5を超えるワックスを用いる場合には、 トナーを長期保 存した際にトナー同士のブロッキングが発生しやすい。 さらに、 パインダ一樹 脂との相溶性が良すぎるため定着時において定着部材とトナー間に十分な離 型性層が形成しにくく、 オフセット現象を起こしゃすい。  The wax used in the present invention preferably has a solubility parameter (SP) value in the range of 7.6 to 10.5. Boxes having an SP value of less than 7.6 have poor compatibility with the polymerizable monomer or binder resin used, and as a result, it is difficult to obtain good dispersion in the binder resin. At the time of copying or printing a large number of sheets, the wax tends to adhere to the developing sleeve, and the charge amount of the toner changes and becomes more chewy. Furthermore, toner density fluctuations during pre-ground and toner replenishment are also likely to occur. When a wax having an SP value exceeding 10.5 is used, blocking between toners is likely to occur when the toner is stored for a long period of time. Furthermore, since the compatibility with the Pinda resin is too good, it is difficult to form a sufficient releasable layer between the fixing member and the toner at the time of fixing, thereby causing an offset phenomenon.
溶解度パラメーター (S P) 値は、 原子団の加成性を利用した F e d o r s の方法 (P o l ym. En g. S c i 14 (2) 147 (1974)) を用 いて算出することができる。  The solubility parameter (SP) value can be calculated by using the method of Fedors using the additive nature of atomic groups (Polym. Eng. Sc14 (2) 147 (1974)).
本発明に使用されるワックスは、 135°Cにおける溶融粘度が 1〜300 c The wax used in the present invention has a melt viscosity at 135 ° C of 1 to 300 c.
P sであることが好ましく、 さらに好ましくは 3〜50 c P sである。 l c P sより低い溶融粘度を有する場合は、 非磁性一成分現像方式で塗布ブレードに より現像スリーブにトナー層を薄層コーティングする際、 機械的なズリカによ りスリープ汚染を招きやすい。 二成分現像方法においてはキヤリァ粒子とトナ 一とを用いて静電荷像を現像する際に、 トナーとキャリア粒子間のズリカによ り トナーがダメージを生じやすく、外添剤の埋没、 トナーの破砕も生じやすい。 3 0 0 c P sを超える溶融粘度を有する場合には、 重合法を用いてトナーを製 造する際、 重合性単量体組成物の粘度が高くなり、 粒度分布のシャープな微小 粒径のトナーを得ることが困難となる。 It is preferably Ps, and more preferably 3 to 50 cPs. If the melt viscosity is lower than lc P s, sleep contamination is likely to occur due to mechanical slippage when a thin layer of a toner layer is coated on a developing sleeve by a coating blade using a non-magnetic one-component developing method. In the two-component developing method, when developing an electrostatic charge image using carrier particles and toner, the toner is caused by the slip between toner particles and carrier particles. Toner is easily damaged, external additives are buried, and toner is easily crushed. If it has a melt viscosity exceeding 300 cPs, the viscosity of the polymerizable monomer composition increases when producing a toner using a polymerization method, and the particle size distribution has a sharp fine particle size. It is difficult to obtain toner.
ワックスの溶融粘度は、 HAAK E社製 V P— 5 0 0にてコーンプレート型 ローター (P K— 1 ) を用いて測定することができる。  The melt viscosity of the wax can be measured using a cone plate type rotor (PK-1) with VP-500 manufactured by HAAK E.
また、 ワックスの針入度は、 1 4以下、 好ましくは 4以下、 さらに好ましく は 3以下が望ましい。 針入度が 1 4を超える場合には、 感光ドラム表面上にフ イルミングを発生し易くなる。 尚、 針入度の測定は、 J 1 3— 2 2 3 5に準 ずる。 ■ 尚、 上記の如き物性を求めるにあたって、 ワックスのトナーからの抽出を必 要とする場合には、 抽出方法は特に制限されるものではなく、 任意の方法が扱 える。  The penetration of the wax is desirably 14 or less, preferably 4 or less, and more preferably 3 or less. If the penetration exceeds 14, filming is likely to occur on the surface of the photosensitive drum. In addition, the measurement of the penetration shall be in accordance with J13-22-3235. ■ If the wax needs to be extracted from the toner to obtain the above physical properties, the extraction method is not particularly limited, and any method can be used.
—例を挙げると、 所定量のトナーをトルエンにてソックスレー抽出し、 得ら れたトルエン可溶分から溶剤を除去した後、 クロ口ホルム不溶分を得る。  — To give an example, a predetermined amount of toner is subjected to Soxhlet extraction with toluene, the solvent is removed from the obtained toluene-soluble matter, and then a form-insoluble matter is obtained.
その後、 I R法などにより同定分析をする。 .  Thereafter, identification analysis is performed by the IR method or the like. .
また、 定量に関しては、 D S Cにより定量分析を行う。  Regarding quantification, quantitative analysis will be performed by DSC.
本発明のトナーは、 結着樹脂の他に、 縮合系樹脂を添カ卩しても良い。 縮合系 樹脂を添加することで、 重合法トナーの場合、 造粒性、 帯電量の環境安定性、 現像性及び転写性を向上させることが可能である。 該縮合系樹脂は、 重量平均 分子量 (Mw) が 6, 0 0 0乃至 1 0 0 , 0 0 0であることが好ましく、 より 好ましくは 6 , 5 0 0乃至 8 5, 0 0 0、 さらに好ましくは 6 , 5 0 0乃至 4 5, 0 0 0である。  The toner of the present invention may be added with a condensation resin in addition to the binder resin. By adding a condensation resin, in the case of a polymerization toner, it is possible to improve the granulation property, the environmental stability of the charge amount, the developability and the transfer property. The condensation resin preferably has a weight average molecular weight (Mw) of 6,000 to 100,000, more preferably 6,500 to 85,000, and still more preferably. Is from 6,500 to 45,000.
縮合系樹脂の重量平均分子量が 6, 0 0 0未満の場合、 連続画像出力におい てトナー表面の外添剤が耐久によって埋没しやすく、 転写性の低下を招きやす くなる。 逆に、 重量平均分子量が 1 0 0, 0 0 0を超える場合には、 重合性単 量体に縮合系樹脂を溶解するのに時間を多く費やしてしまう。 さらに、 重合性 単量体組成物の粘度が上昇し、 粒径が小さくかつ、 粒度分布の揃ったトナーが 得にくくなる。 When the weight average molecular weight of the condensation resin is less than 6,000, the external additive on the toner surface is easily buried due to durability in continuous image output, and the transferability is likely to be lowered. Conversely, if the weight average molecular weight exceeds 100,000, It takes a lot of time to dissolve the condensation resin in the monomer. Further, the viscosity of the polymerizable monomer composition increases, and it is difficult to obtain a toner having a small particle size and a uniform particle size distribution.
該縮合系樹脂は、 数平均分子量 (Mn) が 3, 000乃至 80, 000であ ることが好ましく、 より好ましくは 3, 500乃至 60, 000、 さらに好ま しくは 3, 500乃至 12, 000である。 該縮合系樹脂は、 ゲルパーミエ一 シヨンクロマトグラム (GPC)における分子量分布のメインピーク値(Mp) 力 分子量 4, 500乃至 40, 000の領域、 より好ましくは分子量 6, 0 00乃至 30, 000の領域に存在することが良い。 より好ましくは分子量 6, 000乃至 20, 000の領域である。 上記範囲外であると重量平均分子量の 場合と同様の傾向を示す。  The condensation resin preferably has a number average molecular weight (Mn) of from 3,000 to 80,000, more preferably from 3,500 to 60,000, even more preferably from 3,500 to 12,000. is there. The condensation resin has a main peak value (Mp) of a molecular weight distribution in a gel permeation chromatogram (GPC), a region having a molecular weight of 4,500 to 40,000, and more preferably a region having a molecular weight of 6,000 to 30,000. Good to exist. More preferably, the molecular weight is in the range of 6,000 to 20,000. Outside the above range, the same tendency as in the case of the weight average molecular weight is exhibited.
該縮合系樹脂は MwZMnが 1. 2乃至 3. 0、 より好ましくは 1. 5乃至 2. 5が良い。 MwZMnが 1. 2未満の場合には、 トナーの多数枚耐久性及 ぴ耐オフセット性が低下し、 3. 0を超える場合には、 低温定着性の面で、 範 囲内のものよりも、 若干劣ってしまう。  The condensed resin preferably has MwZMn of 1.2 to 3.0, more preferably 1.5 to 2.5. When the MwZMn is less than 1.2, the durability of a large number of toner sheets and the offset resistance are deteriorated. When the MwZMn is more than 3.0, the low-temperature fixability is slightly higher than that in the range. Inferior.
該縮合系樹脂はガラス転移点 (Tg) 力 50. 0乃至 100. 0°C、 好ま しくは 50. 0乃至 95. 0°Cが良い。より好ましくは 55乃至 90°Cが良い。 ガラス転移点が 50°Q未満の場合には、 トナーの耐ブロッキング性が低下する c ガラス転移点が 100°Cを'超える場合には、 トナーの耐低温オフセット性が低 下する。 尚、 Tgは中点法により求められる値を示す。 The condensation resin has a glass transition point (Tg) force of 50.0 to 100.0 ° C, preferably 50.0 to 95.0 ° C. More preferably, the temperature is 55 to 90 ° C. When the glass transition point is less than 50 ° Q, the blocking resistance of the toner is reduced. C When the glass transition point exceeds 100 ° C, the low-temperature offset resistance of the toner is reduced. Here, Tg indicates a value obtained by the midpoint method.
該縮合系樹脂の酸価 (mgKOH/g) は、 0. 1乃至35. 0、 好ましく は 3. 0乃至 35. 0、 より好ましくは 4. 0乃至 35. 0、 さらに好ましく は 5. 0乃至 30. 0である。 酸価が 0. 1未満の場合には、 トナーの帯電量 の立ち上がりが遅く、 カプリが生じやすくなる。 酸価が 35. 0を超える場合 には、 高温髙湿下に放置した後のトナーの摩擦帯電特性が変動しやすく、 連続 画像出力において画像濃度が変動しやすくなる。 さらに、 縮合系樹脂の酸価が 3 5. 0を超える場合には、 縮合系樹脂のポリマー相互間の親和力が強くなる ために縮合系樹脂が重合性単量体に溶解しにくくなり、 均一な重合性単量体組 成物を調製するのに時間がかかるようになる。 The acid value (mgKOH / g) of the condensation resin is 0.1 to 35.0, preferably 3.0 to 35.0, more preferably 4.0 to 35.0, and further preferably 5.0 to 35.0. 30.0. When the acid value is less than 0.1, the rise of the charge amount of the toner is slow, and capri easily occurs. When the acid value exceeds 35.0, the frictional charging characteristics of the toner after being left under high temperature and humidity tend to fluctuate, and the image density tends to fluctuate in continuous image output. Furthermore, the acid value of the condensation resin If it exceeds 35.0, the condensed resin has a high affinity between the polymers, so that the condensed resin is difficult to dissolve in the polymerizable monomer, and a uniform polymerizable monomer composition cannot be obtained. It takes time to prepare.
該縮合系樹脂の水酸基価 (mgKOH/g) は 0. 2乃至 50. 0、 好まし くは 5. 0乃至 50. 0、 より好ましくは 7. 0乃至 45. 0であるのが良い。 水酸基価が 0. 2未満の場合には、 水系媒体中の重合性単量体組成物の粒子の 表面に縮合系樹脂の局在化が起こりにくくなる。 水酸基価が 50. 0を超える 場合、 最適範囲内のものと比較すると、 高温高湿下において放置した後のトナ 一の帯電量特性が若干低くなる傾向が見られ、 連続画像出力において画像濃度 が変動しやすい。 尚、 該縮合系樹脂の抽出は特に制限されるものではなく、 任 意の方法が扱える。  The condensation resin has a hydroxyl value (mgKOH / g) of 0.2 to 50.0, preferably 5.0 to 50.0, more preferably 7.0 to 45.0. When the hydroxyl value is less than 0.2, localization of the condensation resin on the surface of the particles of the polymerizable monomer composition in the aqueous medium is less likely to occur. When the hydroxyl value exceeds 50.0, the charge amount characteristic of the toner after being left under high temperature and high humidity tends to be slightly lower than that in the optimum range, and the image density in continuous image output is lower. Easy to fluctuate. The extraction of the condensation resin is not particularly limited, and any method can be used.
該縮合系樹脂は、 結着樹脂 1 00質量部に対して 0. 1〜 20. 0質量部用 いられることが好ましく、 より好ましくは 1. 0〜1 5. 0質量部である。 樹月旨の酸価は以下のように求められる。 基本操作は、 J I S—K00 7 (H 準ずる。  The condensation resin is preferably used in an amount of 0.1 to 20.0 parts by mass, more preferably 1.0 to 15.0 parts by mass, based on 100 parts by mass of the binder resin. The acid value of the luster is determined as follows. The basic operation is based on JIS-K00 7 (H.
試料 1 g中に含有されている遊離脂肪酸、 樹脂酸などを中和するのに要する 水酸化カリウムの mg数を酸価といい、 以下の方法によって測定される。  The number of mg of potassium hydroxide required to neutralize free fatty acids, resin acids, etc. contained in 1 g of sample is called acid value and is measured by the following method.
(1) 試薬  (1) Reagent
(a) 溶剤の調製  (a) Preparation of solvent
.トナー試料の溶剤としては、 ェチルエーテル—エチルアルコール混液 (1 + .Ethyl ether-ethyl alcohol mixture (1 +
1または 2+ 1) またはベンゼン一エチルアルコール混液 (1 + 1または 2 + 1) を用いる。 これらの溶液は使用直前にフエノールフタレインを指示薬とし て 0. 1モル/リットルの水酸化力リゥムェチルアルコール溶液で中和しておUse 1 or 2 + 1) or a mixture of benzene and ethyl alcohol (1 + 1 or 2 + 1). Immediately before use, these solutions are neutralized with phenolphthalein as an indicator using a 0.1 mol / L hydroxylated solution of dimethyl alcohol.
<。 <.
(b) フエノールフタレイン溶液の調製  (b) Preparation of phenolphthalein solution
フエノールフタレイン 1 gをエチルアルコール (95体積%) 1 00m lに 溶かす。 1 g of phenolphthalein to 100 ml of ethyl alcohol (95% by volume) Melt it.
(c) 0. 1モル/リットルの水酸化カリウム一エチルアルコール溶液の調製 水酸化力リウム 7. 0 gをできるだけ少量の水に溶かし、 エチルアルコール (95体積%) を加えて 1リットルとし、 2〜3日放置後ろ過する。 標定は J I S— K8006 (試薬の含量試験中滴定に関する基本事項) に準じて行う。  (c) Preparation of 0.1 mol / l potassium hydroxide monoethyl alcohol solution Dissolve 7.0 g of potassium hydroxide in water as little as possible and add ethyl alcohol (95% by volume) to make 1 liter. After leaving for ~ 3 days, filter. Standardization shall be performed according to JIS-K8006 (Basic matters concerning titration during reagent content test).
(2) 操作  (2) Operation
トナー試料 3 gを正しくはかりとり、 これに溶剤 10 Oml及び指示薬とし てフ nノールフタレイン溶液数滴を加え、 試料が完全に溶けるまで十分に振る。 固体試料の場合は水浴上で加温して溶かす。 冷却後これを 0. 1モル Zリット ルの水酸化力リゥムーエチルアルコール溶液で滴定し、 指示薬の微紅色が 30 秒間続いたときを中和の終点とする。  Weigh 3 g of the toner sample correctly, add 10 Oml of solvent and a few drops of phenolphthalein solution as an indicator, and shake thoroughly until the sample is completely dissolved. In the case of a solid sample, dissolve by heating on a water bath. After cooling, titrate the mixture with a 0.1 mol Z liter of hydroxylamine-reactive ethyl alcohol solution. The end point of neutralization is defined as the time when the indicator remains red for 30 seconds.
(3) 計算式  (3) Formula
次の式によって酸価を算出する。  The acid value is calculated according to the following equation.
A=B X f X 5. 61 1/S  A = B X f X 5.61 1 / S
A:酸価 (mgKOH/g)  A: Acid value (mgKOH / g)
B : 0. 1モルノリ ッ トル—水酸化力リゥムエチルアルコール溶液の 使用量 (ml)  B: 0.1 mol-noliter—hydrational use of aqueous solution of ethyl alcohol (ml)
f : 0. 1モル/リ ツトルー水酸化カリウムエチルアルコール溶液の ファクター  f: Factor of 0.1 mol / liter potassium hydroxide ethyl alcohol solution
S : トナー試料 (g)  S: Toner sample (g)
樹脂の水酸基価は以下のように求められる。 基本操作は、 J I S-K007 0に準ずる。  The hydroxyl value of the resin is determined as follows. The basic operation conforms to JIS-K0070.
試料 1 gを規定の方法によってァセチル化するとき水酸基と結合した酢酸 を中和するのに要する水酸化カリゥムの mg数を水酸基価とレ、い、 以下の方法 によって測定される。  When 1 g of a sample is acetylated by the prescribed method, the number of mg of potassium hydroxide required to neutralize the acetic acid bonded to the hydroxyl group is determined by the hydroxyl value, and the following method is used.
(1) 試薬 (a) ァセチル化試薬の調製 (1) Reagent (a) Preparation of acetylation reagent
無水酢酸 25mlをメスフラスコ 100m lに入れ、 ピリジンを加えて全量 を 100m lにし、 十分に振りまぜる。 (場合によっては、 ピリジンを追加し ても良い)。 ァセチル化試薬は、 湿気、 炭酸ガス及び酸の蒸気に触れないよう にし、 褐色びんに保存する。  Put 25 ml of acetic anhydride in a 100 ml volumetric flask, add pyridine to make the total volume 100 ml, and shake thoroughly. (In some cases, pyridine may be added.) Keep the acetylating reagent away from moisture, carbon dioxide and acid vapors, and store in a brown bottle.
(b) フエノールフタレイン溶液の調製  (b) Preparation of phenolphthalein solution
フエノールフタレイン 1 gをエチルアルコール (95体積%) 100 m 1に 溶かす。 Dissolve 1 g of phenolphthalein in 100 ml of ethyl alcohol (95% by volume).
(c) 0. 2モル/リットルの水酸化力リゥムーエチルアルコール溶液の調製 水酸化カリゥム 35 gをできるだけ少量の水に溶かし、 エチルアルコール (c) Preparation of a 0.2 mol / L hydroxylating solution of ethyl alcohol Dissolve 35 g of potassium hydroxide in as little water as possible and add ethyl alcohol
( 95体積%) を加えて 1リットルとし、 2〜 3日放置後ろ過する。 標定は J I S-K8006によって行う。 (95% by volume) to make 1 liter, leave for 2-3 days and filter. Orientation is performed by JIS-K8006.
(2) 操作 '  (2) Operation ''
トナー試料 1 gを丸底フラスコに正しくはかりとり、 これにァセチル化試薬 5mlを正しく加える。 フラスコの口に小さな漏斗をかけ、 95〜100°Cの グリセリン浴中に底部約 1 cmを浸して加熱する。 このときフラスコの首が浴 の熱を受けて温度が上がるのを防ぐために、 中に丸い穴をあけた厚紙の円盤を フラスコの首の付け根にかぶせる。 1時間後フラスコを浴から取り出し、 放冷 後漏斗から水 lmlを加えて振り動かして無水酢酸を分解する。 さらに分解を 完全にするため、 再びフラスコをグリセリン浴中で 10分間加熱し、 放冷後、 エチルアルコール 5m 1で漏斗及びフラスコの壁を洗い、 フエノールフタレイ ン溶液を指示薬として 0. 2モル/リットルの水酸化力リゥムェチルアルコー ル溶液で滴定する。 尚、 本試験と並行して空試験を行う。 場合によっては、 指 示薬として KOH— THF溶液にしても構わない。  Transfer 1 g of the toner sample to a round-bottom flask, and add 5 ml of the acetylating reagent to the flask. Place a small funnel over the mouth of the flask and immerse the bottom about 1 cm in a glycerin bath at 95-100 ° C and heat. At this time, in order to prevent the temperature of the flask neck from rising due to the heat of the bath, place a cardboard disk with a round hole inside over the base of the flask neck. After 1 hour, remove the flask from the bath, allow it to cool, add 1 ml of water from the funnel and shake to decompose acetic anhydride. To complete the decomposition, the flask was heated again in a glycerin bath for 10 minutes. Titrate with 1 liter of water-soluble alcohol. Perform a blank test in parallel with this test. In some cases, KOH-THF solution may be used as the indicator.
(3) 計算式  (3) Formula
次の式によって水酸基価を算出する。 A= {(B— C) X f X 28. 05/S} +D The hydroxyl value is calculated by the following equation. A = {(B— C) X f X 28. 05 / S} + D
A:水酸基価 (mgKOH/g)  A: hydroxyl value (mgKOH / g)
B :空試験の 0. 5モル/リットルー水酸化力リゥムェチルアルコー ル溶液の使用量 (ml)  B: 0.5 mol / L of blank test-Amount of water used for hydremetyl alcohol solution (ml)
C :本試験の 0. 5モルノリッ トルー水酸化力リ ゥムェチルアルコー ル溶液の使用量 (ml)  C: The amount of 0.5 mol no-litre hydroxylating water used in this test
f : 0. 5モル/リットル—水酸化力リゥムエチルアルコール溶液の ファクター  f: 0.5 mol / l—the factor of the hydrating power of ethyl alcohol
S : トナー試科 (g)  S: Toner trial (g)
D :酸価 (mgKOH/g)  D: Acid value (mgKOH / g)
本発明に用いうる縮合系樹脂としては、 ポリエステル、 ポリカーボネート、 フエノール樹脂、 エポキシ樹脂、 ポリアミ ド、 及びセルロースの如き樹脂を用 いることができる。 より好ましくは材料の多様性からポリエステルが望まれる。 該縮合系榭脂として用いられるポリエステル及び該結晶性樹脂として用い られるエステルワックスの製造方法としては、例えば、酸化反応による合成法、 力ルポン酸及ぴその誘導体からの合成、 マイケル付可反応に代表されるエステ ル基導入反応、 カルボン酸化合物とアルコール化合物からの脱水縮合反応を利 用する方法、 酸ハロゲン化物とアルコールィヒ合物からの反応、 エステル交換反 応で製造される。 触媒としては、 エステル化反応に使う一般の酸性、 アルカリ 性触媒、 例えば齚酸亜鉛、 チタン化合物などでよい。 その後、 再結晶法、 蒸留 法などにより高純度化させてもよい。  As the condensation resin usable in the present invention, resins such as polyester, polycarbonate, phenol resin, epoxy resin, polyamide, and cellulose can be used. More preferably, polyester is desired from the diversity of materials. Examples of the method for producing the polyester used as the condensation resin and the ester wax used as the crystalline resin include, for example, a synthesis method by an oxidation reaction, a synthesis from cataphoric acid and its derivatives, and a reaction with Michael. It is produced by a method using an ester group introduction reaction, a dehydration condensation reaction from a carboxylic acid compound and an alcohol compound, a reaction from an acid halide and an alcohol compound, and a transesterification reaction. The catalyst may be a common acidic or alkaline catalyst used for the esterification reaction, for example, zinc oxide, a titanium compound, or the like. Thereafter, it may be highly purified by a recrystallization method, a distillation method, or the like.
特に好ましい製造方法は、 原料の多様性、 反応のしゃすさからカルボン酸化 合物とアルコール化合物からの脱水縮合反応である。  A particularly preferred production method is a dehydration-condensation reaction between a carboxy compound and an alcohol compound because of the variety of raw materials and the speed of the reaction.
縮合系樹脂としてポリエステルを用いる際のポリエステルの組成について 以下に説明する。  The composition of the polyester when the polyester is used as the condensation resin will be described below.
ポリエステルは、 全成分中 45〜 55 m 0 1 %がアルコール成分であり、 5 5〜45mo 1 %が酸成分であることが好ましい。 In polyester, 45-55 m 0% of all components are alcohol components, and 5% It is preferable that 5 to 45 mol% is an acid component.
アルコール成分としては、 ェチルダリコール、 プロピレングリコール、 1 ,  As alcohol components, ethyl alcohol, propylene glycol, 1,
3—ブタンジォーノレ、 1, 4一ブタンジォーノレ、 2, 3—ブタンジォーノレ、 ジ エチレングリコール、 トリエチレングリコール、 1, 5—ペンタンジオール、 1 , 6 _へキサンジ才ーノレ、 ネオペンチノレグリコーノレ、 2—ェチルー 1 , 3一 へキサンジオール、 水素化ビスフヱノール A、 下記式 (V I I) 3-butanediole, 1,4-butanediole, 2,3-butanediole, diethylene glycol, triethylene glycol, 1,5-pentanediol, 1,6_hexanediene, neopentinole glycolone, 2-ethylylone , 3-1-hexanediol, hydrogenated bisphenol A, the following formula (VII)
Figure imgf000027_0001
Figure imgf000027_0001
(式中、 Rはエチレンまたはプロピレン基を示し、 X , yはそれぞれ 1以上の 整数を示し、 且つ x + yの平均値は 2〜10を示す。) で示されるビスフエノ 一誘導体、 または下記式 (V I I I)
Figure imgf000027_0002
(Wherein, R represents an ethylene or propylene group, X and y each represent an integer of 1 or more, and the average value of x + y represents 2 to 10.) A bispheno monoderivative represented by the following formula: (VIII)
Figure imgf000027_0002
CH 1,3 CH3 CH 1,3 CH 3
式中、 R' は一 CH2CH2—、一 CH2— 0H— 又は 一 CH2— C一を示す。 In the formula, R ′ represents one CH 2 CH 2 —, one CH 2 —0H— or one CH 2 —C one.
CH3 で示されるジオールの如きジオール類が挙げられる。 And diols such as diols represented by CH 3 .
2価のカルボン酸としてはフタル酸、 テレフタル酸、 イソフタル酸、 無水フ タル酸、 ジフエ-ルー 4, 4 ' ージカルボン酸、 ナフタレン一 2, 7—ジカル ボン酸、 ナフタレン一 2, 6—ジカルボン酸, ジフエニルメタン一 4, 4 ' 一 ジカルボン酸、 ベンゾフエノン一 4, 4 ' ージカルボン酸、 1, 2—ジフエノ キシェタン一 4, 4 ' —ジカルボン酸の如きベンゼンジカルボン酸類またはそ の無水物; こはく酸、 アジピン酸、 セバシン酸、 ァゼライン酸、 グリタル酸、 シクロへキサンジカノレボン酸、 トリエチレンジカルボン酸、 マロン酸の如きァ ルキルジカルボン酸類またはその無水物、 またさらに炭素数 6〜18のアルキ ル基またはアルケニル基で置換されたこはく酸もしくはその無水物;フマル酸、 マレイン酸、 シトラコン酸、 ィタコン酸の如き不飽和ジカルボン酸またはその 無水物が挙げられる。 Examples of divalent carboxylic acids include phthalic acid, terephthalic acid, isophthalic acid, phthalic anhydride, diphenyl-4,4'-dicarboxylic acid, naphthalene-1,2,7-dicarboxylic acid, naphthalene-1,2,6-dicarboxylic acid, Benzenedicarboxylic acids such as diphenylmethane 1,4'-dicarboxylic acid, benzophenone-1,4,4'-dicarboxylic acid, 1,2-diphenoxetane-1,4'-dicarboxylic acid or anhydrides; succinic acid, adipic acid, Alkyl dicarboxylic acids such as sebacic acid, azelaic acid, glutaric acid, cyclohexanedicanololeic acid, triethylene dicarboxylic acid and malonic acid or anhydrides thereof, and also alkyls having 6 to 18 carbon atoms And unsaturated anhydrides such as fumaric acid, maleic acid, citraconic acid, and itaconic acid, and anhydrides thereof.
特に好ましいアルコール成分としては前記式 (V I I ) で示されるビスフエ ノール誘導体であり、 酸成分としては、 フタル酸、 テレフタル酸、 イソフタル 酸またはその無水物、こはく酸、 n—ドデセ -ルコハク酸、またはその無水物、 フマル酸、 マレイン酸、 無水マレイン酸の如きジカルボン酸が挙げられる。 該縮合系樹脂は、 2価のジカルボン酸及び 2価のジオールから合成すること により得ることが可能であるが、 場合により、 3価以上のポリカルボン酸また はポリオールを本発明に悪影響を与えない範囲で少量使用しても良レ、。  A particularly preferred alcohol component is a bisphenol derivative represented by the above formula (VII), and an acidic component is phthalic acid, terephthalic acid, isophthalic acid or an anhydride thereof, succinic acid, n-dodecyl-succinic acid, or a mixture thereof. Examples include dicarboxylic acids such as anhydride, fumaric acid, maleic acid, and maleic anhydride. The condensation resin can be obtained by synthesizing from a divalent dicarboxylic acid and a divalent diol.However, in some cases, a polycarboxylic acid or polyol having a valency of 3 or more does not adversely affect the present invention. It is good to use a small amount in the range.
3価以上のポリカルボン酸としては、 トリメリット酸、 ピロメリット酸、 シ クロへキサントリカルボン酸類、 2 , 5, 7—ナフタレントリカルボン酸、 1 , 2 , 4一ナフタレントリカルボン酸、 1 , 2, 4一ブタントリカルボン酸、 1 , 2, 5一へキサントリカルボン酸、 1 , 3—ジカルボキシル一 2—メチレン力 ルポキシルプロパン、 1, 3—ジカルボキシルー 2—メチルーメチレンカルボ キシルプロパン、 テトラ (メチレンカルボキシル) メタン、 1, 2 , 7 , 8一 オクタンテトラカルボン酸及ぴそれらの無水物が挙げられる。  Trivalent or higher polycarboxylic acids include trimellitic acid, pyromellitic acid, cyclohexanetricarboxylic acids, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-mononaphthalenetricarboxylic acid, 1,2,4 1-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methylene lipoxylpropane, 1,3-dicarboxyl-2-methyl-methylenecarboxylpropane, tetra (methylene Carboxyl) methane, 1,2,7,8-octanetetracarboxylic acid and their anhydrides.
3価以上のポリオールとしては、 スルビトール、 1, 2, 3, 6一へキサン テトール、 1, 4—ソルビタン、 ペンタエリスリ トール、 ジペンタエリスリ ト ール、 トリペンタエリスリ トール、 ショ糖、 1 , 2 , 4一メタントリオール、 グリセリン、 2—メチルプロパントリオール、 2—メチル一 1 , 2, 4ーブタ ントリオ一ノレ、 トリメチローノレエタン、 トリメチロールプロパン、 1 , 3 , 5 一トリヒ ド口キシメチルベンゼンが挙げられる。  Trihydric or higher polyols include sulitol, 1,2,3,61-hexanexetol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, sucrose, 1,2,4 Monomethantriol, glycerin, 2-methylpropanetriol, 2-methyl1-1,2,4-butanetriol, trimethyloloneethane, trimethylolpropane, 1,3,5-trimethyloxymethylbenzene .
本発明のトナーは、 荷電制御剤を使用しても良い。  The toner of the present invention may use a charge control agent.
トナーを負荷電性に制御する荷電制御剤としては、 下記の物質が挙げられる。 例えば、 有機金属化合物、 キレート化合物、 モノァゾ金属化合物、 ァセチルァ セトン金属化合物、 尿素誘導体、 含金属サリチル酸系化合物、 含金属ナフトェ 酸系化合物、 4級アンモユウム塩、 カリックスァレーン、 けい素化合物、 ノン メタルカルボン酸系化合物及びその誘導体が挙げられる。 Examples of the charge control agent for controlling the toner to be negatively charged include the following substances. For example, organometallic compounds, chelate compounds, monoazo metal compounds, acetyla Examples include seton metal compounds, urea derivatives, metal-containing salicylic acid compounds, metal-containing naphthoic acid compounds, quaternary ammonium salts, calixarene, silicon compounds, non-metal carboxylic acid compounds, and derivatives thereof.
また、 トナーを正荷電性に制御する荷電制御剤としては、下記の物質がある。 例えば、 -グロシン及ぴ脂肪酸金属塩による変性物、 トリプチルベンジルアン モニゥムー 1ーヒ ドロキシ一 4一ナフトスルホン酸塩、 テトラプチルアンモニ ゥムテトラフルォロボレ一ト等の 4級アンモニゥム塩、 及びこれらの類似体で あるホスホ-ゥム塩等のォ-ゥム塩及びこれらのレーキ顏料、 トリフエニルメ タン染料及びこれらのレーキ顔科(レーキ化剤としては、 りんタングステン酸、 りんモリブデン酸、りんタングステンモリブデン酸、タンニン酸、ラウリン酸、 没食子酸、 フェリシアン化物、 フエロシアン化物等)、 高級脂肪酸の金属塩; ジブチ/レスズオキサイド、 ジォクチルスズオキサイド、 ジシクロへキシノレスズ 才キサイド等のジオルガノスズォキサイド;ジブチルスズボレート、 ジォクチ ルスズボレート、 ジシク口へキシルスズボレート等のジオルガノスズボレート 類; これらを単独或いは 2種類以上組み合わせて用いることができる。 これら の中でも、 ニグ口シン系、 4級アンモニゥム塩の如き荷電制御剤が特に好まし く用いられる。  The following charge control agents are used to control the toner to be positively charged. For example, quaternary ammonium salts such as -denatured products of glycine and fatty acid metal salts, triptylbenzylammonium 1-hydroxy-14-naphthosulfonate, tetrabutylammonium tetrafluoroborate, and the like, and Phosphorum salts such as phospho-pam salts, which are analogs thereof, their lake pigments, triphenyl methane dyes and their lakes (the lakes are made of phosphotungstic acid, phosphomolybdic acid, phosphotungsten) Molybdic acid, tannic acid, lauric acid, gallic acid, ferricyanide, ferrocyanide, etc.), metal salts of higher fatty acids; diorganotinos such as dibuty / resuzuoxide, dioctyltin oxide, dicyclohexynolesse Oxide: dibutyltin borate, dioctyltin borate, disilicide Diorgano tin borate such as hexyl tin borate to the mouth; can be used in combination singly or two or more kinds. Among these, a charge control agent such as a Nigguchi syn system or a quaternary ammonium salt is particularly preferably used.
荷電制御剤は、 トナー中の結着樹脂 1 0 0質量部当り、 0 . 0 1乃至 2 0質 量部、 より好ましくは 0 . 5乃至 1 0質量部となる様に含有させるのが良い。 本発明のトナーは、 着色剤を含有している。 黒色着色剤としては、 カーボン ブラック、 磁性体、 以下に示すイェロー マゼンタ /シアン着色剤を用い黒色 に調色されたものが利用される。  The charge control agent is preferably contained in an amount of 0.01 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, per 100 parts by mass of the binder resin in the toner. The toner of the present invention contains a colorant. As the black colorant, carbon black, a magnetic substance, or a black color tone using the following yellow magenta / cyan colorant is used.
イェロー着色剤としては、 顔料系としては、 縮合ァゾ化合物、 イソインドリ ノン化合物、 アンスラキノン化合物、 ァゾ金属錯体メチン化合物、 ァリルアミ ド化合物に代表される化合物が用いられる。 具体的には、 C . I . ビグメント イェロー 3 , 7 , 1 0 , 1 2〜1 5, 1 7, 2 3 , 2 4 , 6 0 , 6 2 , 7 4 , 75, 83, 93〜95, 99, L 00, 101, 104 108〜: L 1 ] 1 1 7, 123, 128, 129 138, 1 39, 147 148, 1 50 166, 168〜177, 179 180, 181, 183 185, 1 91 1, 1 91, 1 92, 193, 199が好適に用いられる。 染料系としては、 例えば、 C. 1. ソルベントイエロー 33, 56, 79, 82, 93, 1 12, 162, 163、 C. I . デイスパースィエロー 42, 64, 201, 21 1 が挙げられる。 As the yellow colorant, as a pigment, compounds represented by condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complex methine compounds, and arylamide compounds are used. Specifically, C.I. pigmentation yellow 3,7,10,12 to 15,17,23,24,60,62,74, 75, 83, 93-95, 99, L 00, 101, 104 108-: L 1] 117, 123, 128, 129 138, 1 39, 147 148, 150 166, 168-177, 179 180, 181, 183 185, 191 1, 191, 192, 193, 199 are preferably used. Examples of the dye system include C. 1. Solvent Yellow 33, 56, 79, 82, 93, 112, 162, 163 and C. I. Disperse Yellow 42, 64, 201, 211.
マゼンタ着色剤としては、 縮合ァゾ化合物、 ジケトビロロピロ一ルイヒ合物、 アントラキノン、 キナタリ ドン化合物、 塩基染料レーキ化合物、 ナフトール化 合物、 ベンズイミダゾロン化合物、 チォインジゴ化合物、 ペリ レン化合物が用 いられる。 具体的には、 C. I . ビグメントレッド 2、 3、 5〜7、 23、 4 8 : 2、 48 : 3、 48 : 4、 57 : 1、 81 : 1、 122、 146、 166、 169、 177、 184、 185、 202、 206、 220、 221、 254、 C. I . ビグメントバイオレッド 19が特に好ましい。  Examples of the magenta colorant include a condensed azo compound, a diketovirolopyrroylium compound, anthraquinone, a quinatalidone compound, a basic dye lake compound, a naphthol compound, a benzimidazolone compound, a thioindigo compound, and a perylene compound. Specifically, C.I. Pigment Red 2, 3, 5-7, 23, 48: 2, 48: 3, 48: 4, 57: 1, 81: 1, 122, 146, 166, 169 , 177, 184, 185, 202, 206, 220, 221, 254, CI Pigment Violet 19 are particularly preferred.
シアン着色剤としては、 銅フタロシアニン化合物及ぴその誘導体、 アントラ キノン化合物、 塩基染料レーキ化合物等が利用できる。 具体的には、 C. I . ピグメントブルー 1、 7、 1 5、 1 5 : 1、 1 5 : 2、 15 : 3、 1 5 : 4、 60、 62、 66が特に好適に利用される。  As the cyan coloring agent, a copper phthalocyanine compound and its derivatives, an anthraquinone compound, a basic dye lake compound and the like can be used. Specifically, CI Pigment Blue 1, 7, 15, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, 66 is particularly preferably used.
これらの着色剤は、 単独または混合しさらには固溶体の状態で用いることが できる。 本発明の着色剤は、 色相角、'彩度、 明度、 耐候性、 OHP透明性、 ト ナ一中への分散性の点から選択される。 該着色剤の添加量は結着樹脂 100質 量部に対し 0. 5乃至 20質量部となる様に添加して用いられる。  These colorants can be used alone or as a mixture or in the form of a solid solution. The colorant of the present invention is selected from the viewpoints of hue angle, saturation, lightness, weather resistance, transparency of OHP, and dispersibility in toner. The coloring agent is used in an amount of 0.5 to 20 parts by mass with respect to 100 parts by mass of the binder resin.
さらに本発明のトナーは磁性体を含有させ磁性トナーとしても使用しうる。 この場合、 磁性体は着色剤の役割をかねることもできる。 本発明において、 磁 性トナー中に含まれる磁性体としては、 マグネタイト、 へマタイト、 フェライ トの如き酸ィ匕鉄;鉄、 コバルト、 ニッケルの如き金属、 或いはこれらの金属と ア^/ミニゥム、 コバルト、 銅、 鉛、 マグネシウム、 スズ、 亜鉛、 アンチモン、 ベリリゥム、 ビスマス、力ドミゥム、 カルシウム、 マンガン、 セレン、 チタン、 タングステン、 バナジウムの如き金属との合金及ぴその混合物が挙げられる。 本発明に用いられる磁性体は、 より好ましくは、 表面改質された磁性体が好 ましく、 重合法トナーに用いる場合には、 重合阻害のない物質である表面改質 剤により、 疎水化処理を施したものが好ましい。 このような表面改質剤として は、 例えばシラン力ップリング剤、 チタン力ップリング剤を挙げることができ る。 . Further, the toner of the present invention may contain a magnetic substance and be used as a magnetic toner. In this case, the magnetic material can also serve as a colorant. In the present invention, the magnetic substance contained in the magnetic toner may be oxidized iron such as magnetite, hematite, or ferrite; a metal such as iron, cobalt, or nickel; Alloys with metals such as aluminum / cobalt, copper, lead, magnesium, tin, zinc, antimony, beryllium, bismuth, force cadmium, calcium, manganese, selenium, titanium, tungsten, vanadium and mixtures thereof. . The magnetic material used in the present invention is more preferably a surface-modified magnetic material. When the magnetic material is used in a polymerization method toner, it is subjected to a hydrophobic treatment with a surface modifier which is a substance having no polymerization inhibition. Is preferred. Examples of such a surface modifier include a silane coupling agent and a titanium coupling agent. .
これらの磁性体は平均粒子が 2 μπι以下、 好ましくは 0. 1〜0. 5 πι程 度のものが好ましい。 トナー中に含有させる量としては結着樹脂 100質量部 に対し 20〜200.質量部、 特に好ましくは 40〜150質量部となる様に含 有させるのが良い。  These magnetic materials preferably have an average particle size of 2 μπι or less, preferably about 0.1 to 0.5 πι. The amount to be contained in the toner is preferably from 20 to 200 parts by mass, particularly preferably from 40 to 150 parts by mass, per 100 parts by mass of the binder resin.
796 kA/m (10 kェルステツド) 印加での磁気特性が保磁力 (He) 1. 59〜23. 9 k AZm (20〜300エルステッド)、 飽和磁ィ匕 (σ s ) 50〜200 emu/g、 残留磁ィ匕 (σ Γ) 2〜20 emu/gの磁性体が好 ましい。  The magnetic properties when applying 796 kA / m (10 k oersted) are coercive force (He) 1.59 ~ 23.9 k AZm (20 ~ 300 Oersted), Saturation magnetism (σ s) 50 ~ 200 emu / g Preferably, the magnetic material has a residual magnetism (σ Γ) of 2 to 20 emu / g.
本発明においては、 トナーにおける各種の特性向上を目的とした外添剤が用 いられる。 外添剤としては、 耐久性の点から、 トナーの体積平均径の 1ノ5以 下の粒径であるものが好ましい。 添加剤の粒径とは、 電子顕微鏡におけるトナ 一の表面観察により求めたその平均粒径を意味する。 これら特性付与を目的と した外添剤としては、 たとえば、 以下のようなものが用いられる。  In the present invention, an external additive for improving various characteristics of the toner is used. From the viewpoint of durability, the external additive preferably has a particle diameter of 1 to 5 or less of the volume average diameter of the toner. The particle size of the additive means the average particle size obtained by observing the surface of the toner with an electron microscope. As the external additives for imparting these properties, for example, the following are used.
は、 酸ィ匕ケィ素、 酸ィ匕アルミニウム、 酸化チタン、 ハイドロタルサイ トの如き 金属酸化物、 カーボンブラック、 フッ化カーボンが挙げられる。 それぞれ、 疎 水化処理を行ったものが、 より好ましい。 Examples thereof include silicon oxide, silicon oxide, aluminum oxide, titanium oxide, metal oxides such as hydrotalcite, carbon black, and carbon fluoride. It is more preferable that each is subjected to a water-phobic treatment.
研磨剤としては、 チタン酸ストロンチウム、 酸化セリウム、 酸ィ匕アルミユウ ム、 酸化マグネシウム、 酸化クロムの如き金属酸ィヒ物、 窒化ケィ素の如き窒化 物、 炭化ケィ素の如き炭化物、 硫酸カルシウム、 硫酸バリウム、 炭酸カルシゥ ムの如き金属塩が挙げられる。 Examples of the abrasive include metal oxides such as strontium titanate, cerium oxide, aluminum oxide, magnesium oxide, and chromium oxide, and nitrides such as silicon nitride. And carbides such as silicon carbide, and metal salts such as calcium sulfate, barium sulfate, and calcium carbonate.
滑剤としては、 フッ化ビニリデン、 ポリテトラフルォロエチレンの如きフッ 素系樹脂粉末、 ステアリン酸亜鉛、 ステアリン酸カルシウムの如き脂肪酸金属 塩が挙げられる。  Examples of the lubricant include fluorine resin powders such as vinylidene fluoride and polytetrafluoroethylene, and fatty acid metal salts such as zinc stearate and calcium stearate.
荷電制御性粒子としては、 酸化錫、 酸化チタン、 酸化亜鉛、 酸化ケィ素、 酸 • 化アルミニウムの如き金属酸ィ匕物、 'カーボンブラックが挙げられる。  Examples of the charge control particles include tin oxide, titanium oxide, zinc oxide, silicon oxide, metal oxides such as aluminum oxide, and carbon black.
これら外添剤は、 トナー粒子 100質量部に対し、 0. 1〜 10質量部が用 いられ、 好ましくは、 0. 1〜 5質量部が用いられる。 これら外添剤は、 単独 で用いても良く、 また複数を併用しても良い。  These external additives are used in an amount of 0.1 to 10 parts by mass, preferably 0.1 to 5 parts by mass, based on 100 parts by mass of the toner particles. These external additives may be used alone or in combination of two or more.
本発明のトナ一は、 凝集度が 1〜 50 %、 より好ましくは 1〜 30 %、 さら には 4〜 30 %、 特には 4〜 20 %であることが現像生の点で好ましい。 トナ 一の凝集度は、 値が小さい場合にはトナーの流動性が高く、 値が大きい場合に • はトナーの流動性が低いと判断される。 トナーの凝集度は、 以下の方法で測定 される。  The toner of the present invention preferably has a cohesion of 1 to 50%, more preferably 1 to 30%, furthermore preferably 4 to 30%, and particularly preferably 4 to 20% from the viewpoint of development. When the toner has a small degree of cohesion, the fluidity of the toner is high, and when the value is large, the fluidity of the toner is low. The degree of aggregation of the toner is measured by the following method.
パウダーテスター (ホソカワミクロン社製) の振動篩機を用い、 振動台に目 開き 33 μπι (400ηΐ6 3 ΐι)、 77 μηι (20 Ome s h), 154 ^ m ( 1 0 Ome s h) の篩を目開の狭い順に重なる様に、 即ち、 目開き 154 mの 篩が最上位となる様に、 下から目開き 33 mの篩、 目開き 77μηιの篩、 目 開き 1 54 ^umの篩の順に重ねてセットする。 このセットした目開き 1 54 mの篩上に試料を乗せ、 振動台への入力電圧が 15 Vになる様にし、 その際の 振動台の振幅が 60〜90 mの範囲に入る様に調整し、 約 25秒間振動を加 え、その後、各篩上に残った試料の重量を測定し、下式に基づき凝集度を得る。 凝集度の値が小さい程、 トナーの流動性は高い。 尚、 サンプル量は 5 gとし、 常温常湿環境 ( 20 °C/ 60 % R H) 下に 7日間放置させたものを測定する。 凝集度 (%) = (目開き 1 54 ^ 111の篩上の試料質量 (g) /5 g) Using a vibrating sieve of a powder tester (manufactured by Hosokawa Micron), open a sieve of 33 μπι (400ηΐ63ΐ), 77 μηι (20 Ome sh) and 154 ^ m (10 Ome sh) on the shaking table. From the bottom, a sieve with a mesh of 33 m, a sieve with a mesh of 77 μηι, and a sieve with a mesh of 1 54 ^ um are set in this order so that the sieve with an opening of 154 m is at the highest level. I do. Place the sample on the set sieve with the opening of 1 54 m, adjust the input voltage to the shaking table to 15 V, and adjust the amplitude of the shaking table to be in the range of 60 to 90 m. Vibration is applied for about 25 seconds, then the weight of the sample remaining on each sieve is measured, and the degree of cohesion is obtained based on the following equation. The smaller the value of the degree of aggregation, the higher the fluidity of the toner. The sample size is 5 g, and the sample is allowed to stand in a normal temperature and normal humidity environment (20 ° C / 60% RH) for 7 days before measurement. Cohesion (%) = (Mass of sample on sieve with opening of 1 54 ^ 111 (g) / 5 g)
X 1 00 X 1 00
+ (目開き 7 7 μπιの篩上の試料質量 (g) /5 g) X 1 00 + (Sample mass on sieve with mesh 7 7 μπι (g) / 5 g) X 100
X 0. 6 X 0.6
+ (目開き 33 の篩上の試料質量 (g) /5 g) X 1 00 + (Sample mass (g) / 5 g on sieve with mesh size 33) X 100
X 0. 2 本発明のトナーは、 後述するフロー式粒子像測定装置で計測されるトナーの 個数基準の円相当径一円形度スキヤッタグラムにおいて、 円相当個数平均径 D 1 (μπι) が 2乃至 1 0 μπιであることが好ましく、 且つ、 該トナーの平均円 形度が 0. 920乃至 0. 9 95で、 円形度標準偏差が 0. 040未満である ことが好ましい。 より好ましくは平均円形度が 0. 9 50乃至 0. 9 9 5で、 円形度標準偏差値が 0. 035未満であることが良い。 さらに好ましくは平均 円形度が 0. 9 70乃至 0. 995で、 円形度標準偏差が 0. 0 1 5乃至0. 03 5未満であることが望まれる。 また、 円形度 0. 950未満のトナーの含 有量が 1 5個数%以下であることが好ましい。 さらに、 円相当個数平均径の標 準偏差を円相当個数平均径で割った個数変動係数は、 0. 35以下、特には 0. 30以下が好ましい。 X 0.2 The toner according to the present invention has a circle-equivalent number average diameter D 1 (μπι) of 2 in a circle-equivalent-diameter circularity scattergram based on the number of toners measured by a flow-type particle image measuring apparatus described later. The average circularity of the toner is preferably from 0.920 to 0.995, and the standard deviation of the circularity is preferably less than 0.040. More preferably, the average circularity is 0.950 to 0.995, and the circularity standard deviation value is less than 0.035. More preferably, the average circularity is from 0.970 to 0.995, and the standard deviation of the circularity is from 0.015 to less than 0.035. The content of the toner having a circularity of less than 0.950 is preferably 15% by number or less. Further, the number variation coefficient obtained by dividing the standard deviation of the circle-equivalent number average diameter by the circle-equivalent number average diameter is preferably 0.35 or less, particularly preferably 0.30 or less.
円相当個数平均径が 2乃至 7 μπιであるトナーは、 画像の輪郭部分、 特に文 字画像やラインパターンの現像での再現性に優れたものである。 し力、し、 一般 にトナーを小粒径化すると必然的に微小粒子のトナーの存在率が高くなるた め、 トナーを均一に帯電させることが困難となり画像カプリを生じるばかり力 \ 静電潜像担持体表面や現像剤担持体への付着力が高くなり、 結果として現像特 性の低下が生じてしまレ、やす!/、。  Toner having an average number of equivalent circles of 2 to 7 μπι has excellent reproducibility in the development of the outline portion of an image, especially a character image or a line pattern. In general, reducing the particle size of the toner necessarily increases the abundance of the fine particle toner, making it difficult to uniformly charge the toner. Adhesion to the surface of the image carrier and the developer carrier increases, resulting in a decrease in development characteristics.
し力 し、 トナーの円形度頻度分布の平均円形度を 0. 9 20乃至 0. 9 9 5、 好ましくは 0. 9 50乃至 0. 99 5、 より好ましくは 0. 9 70乃至 0. 9 9 5とすることにより、 従来では困難であった小粒径を呈するトナーの転写性 が大幅に改善されると共に現像能力も格段に向上する。 The average circularity of the circularity frequency distribution of the toner is 0.920 to 0.995, preferably 0.950 to 0.995, more preferably 0.970 to 0.9. By setting the ratio to 95, the transferability of toner having a small particle diameter, which has been difficult in the past, is greatly improved, and the developing ability is also significantly improved.
また、本発明のトナーは、円形度標準偏差が 0 . 0 4 0未満、好ましくは 0 . 0 3 5未満とすることにより、 現像性に関する問題を大幅に改善することがで さる。  Further, the toner of the present invention has a circularity standard deviation of less than 0.040, preferably less than 0.035, so that the problem relating to developability can be significantly improved.
上記の如き形状を有するトナーは、 デジタル方式の微小スポット潜像を現像 する場合や、 中間転写体を用い多数回の転写を行うフルカラー画像形成の際に 非常に有効で、 画像形成装置とマッチングも良好なものとなる。  The toner having the above-mentioned shape is very effective for developing a digital minute spot latent image or for forming a full-color image in which an intermediate transfer member is used for multiple transfer operations. It will be good.
本発明において平均円形度とは、 粒子の形状を定量的に表現する簡便な方法 として用いたものであり、 全てのトナーが真球の場合 1 . 0 0 0を示し、 トナ 一形状が複雑になるほど円形度は小さな値となる。 具体的には、 例えばフロー 式粒子像分析装置 F P I A- 2 1 0 0 (東亜医用電子社製) を用いて測定する ことができる。 下式により円形度を求め、 さらに下式で示すように測定された 全粒子の円形度の総和を全粒子数で除した値を平均円形度と定義する。  In the present invention, the average circularity is used as a simple method for quantitatively expressing the shape of a particle. When all the toners are spherical, the average circularity is 1.0000, and the toner shape is complicated. Indeed, the circularity has a small value. Specifically, for example, it can be measured using a flow-type particle image analyzer FPI-210 (manufactured by Toa Medical Electronics Co., Ltd.). The circularity is determined by the following equation, and the value obtained by dividing the total circularity of all the particles measured by the following equation by the total number of particles is defined as the average circularity.
トナーの平均円形度は、 フロー式粒子像測定装置 「F P I A— 2 1 0 0型」 The average circularity of the toner is measured using a flow-type particle image measurement system "FPIA-210"
(シスメックス社製) を用いて測定を行い、 下式を用いて算出する。 円相当径= (粒子投影面積/ π ) X 2 (Manufactured by Sysmex Corporation), and calculated using the following equation. Equivalent circle diameter = (projected area of particle / π) X 2
^ 粒子投影面積と同じ面積の円の周囲長  ^ Perimeter of a circle with the same area as the projected area
粒子投影像の周囲長  Perimeter of particle projection image
ここで、 ,「粒子投影面積」 とは二値化されたトナーの粒子像の面積であり、 「粒子投影像の周囲長」 とは該トナー粒子像のェッジ点を結んで得られる輪郭 線の長さと定義する。 測定は、 5 1 2 X 5 1 2の画像処理解像度 (0 · 3 μ m X 0 . 3 μ ιηの画素) で画像処理した時の粒子像の周囲長を用いる。 Here,, “particle projection area” is the area of the binarized toner particle image, and “perimeter of the particle projection image” is the outline of the contour line obtained by connecting the edge points of the toner particle image. Defined as length. The measurement uses the perimeter of a particle image when image processing is performed at an image processing resolution of 512 × 512 (pixels of 0.3 μm × 0.3 μιη).
本発'明における円形度はトナーの凹凸の度合いを示す指標であり、 トナー粒 子が完全な球形の場合に 1 . 0 0 0を示し、 表面形状が複雑になる程、 円形度 は小さな値となる。 - また、 円形度頻度分布の平均値を意味する平均円形度 cは、 粒度分布の分割 点 iでの円形度 (中心値) を c i、 測定粒子数を mとすると、 次式から算出さ れる。 平均円形度 C=∑c i/m The circularity in the present invention is an index indicating the degree of unevenness of the toner. When the toner particles are perfectly spherical, the circularity is 1.0000. As the surface shape becomes more complicated, the circularity increases. Is a small value. -The average circularity c, which means the average value of the circularity frequency distribution, is calculated from the following equation, where ci is the circularity (center value) at the dividing point i of the particle size distribution and m is the number of particles measured. . Average circularity C = ∑ci / m
i = 1 また、 円形度標準偏差 SDは、 平均円形度 C、 各粒子における円形度 c i、 測定粒子数を mとすると次式から算出される。  i = 1 The circularity standard deviation SD is calculated from the following equation, where the average circularity C, the circularity c i of each particle, and the number of measured particles are m.
{'m ' " 1/2  {'m' "1/2
∑ (C~c i) /m なお、 本発明で用いている測定装置である 「FP I A— 2100」 は、 各粒 子の円形度を算出後、 平均円形度及び円形度標準偏差の算出に当たって、 得ら れた円形度によって、 粒子を円形度 0. 4〜1. 0を 0. 01ごとに等分割し たクラスに分け、 その分割点の中心値と測定粒子数を用いて平均円形度及び円 形度標準偏差の算出を行う。  ∑ (C ~ ci) / m The measuring device used in the present invention, “FP IA-2100”, calculates the circularity of each particle, and then calculates the average circularity and the standard deviation of the circularity. Based on the obtained circularity, the particles are divided into classes in which the circularity of 0.4 to 1.0 is equally divided every 0.01, and the average circularity and the number of measured particles are calculated using the center value of the division point and the number of measured particles. Calculate the circularity standard deviation.
具体的な測定方法としては、 容器中に予め不純固形物などを除去したイオン 交換水 1 Omlを用意し、 その中に分散剤として界面活性剤、 好ましくはアル キルベンゼンスルホン酸塩を加えた後、 更に測定試料を 0. 02 g加え、 均一 に分散させる。 分散させる手段としては; 超音波分散機 「T e t o r a 150 型」 (日科機バイオス社製) を用い、 2分間分散処理を行い、 測定用の分散液 とする。 その際、 該分散液の温度が 40°C以上とならない様に適宜冷却する。 また、 円形度のバラツキを抑えるため、 フロー式粒子像分析装置 FP I A— 2 100の機内温度が 26〜27 °Cになるよう装置の設置環境を 23°0士0. 5°Cにコントロールし、 一定時間おきに、 好ましくは 2時間おきに 2 μιηラテ Vクス粒子を用いて自動焦点調整を行う。 トナーの円形'度測定には、 前記フロー式粒子像測定装置を用い、 測定時のト ナー濃度が 3ひ 00〜1万個 1となる様に該分散液濃度を再調整し、 トナ 一を 1000個以上計測する。 計測後、 このデータを用いて、 円相当径 2 μπι 未満のデータをカットして、 トナーの平均円形度を求める。 As a specific measuring method, 1 Oml of ion-exchanged water from which impurity solids and the like have been removed in advance is prepared in a container, and a surfactant, preferably an alkylbenzenesulfonate, is added as a dispersant thereto. Add 0.02 g of the measurement sample and disperse it evenly. As a means for dispersing: Dispersion treatment is performed for 2 minutes using an ultrasonic disperser “Tetora 150 type” (manufactured by Nikkaki Bios) to obtain a dispersion for measurement. At this time, the dispersion is appropriately cooled so that the temperature of the dispersion does not exceed 40 ° C. In addition, in order to suppress the variation in circularity, the installation environment of the flow type particle image analyzer FP IA-2100 was controlled to 23 ° 0 ° C and 0.5 ° C so that the temperature inside the device was 26 to 27 ° C. Automatic focusing is performed at regular intervals, preferably every 2 hours, using 2 μιη latex particles. To measure the degree of circularity of the toner, the dispersion liquid concentration was readjusted so that the toner concentration at the time of the measurement was 3 to 1 in 10,000 using the above-mentioned flow type particle image measuring apparatus, and the toner was measured. Measure 1000 or more. After measurement, use this data to cut data with a circle-equivalent diameter of less than 2 μπι to determine the average circularity of the toner.
さらに本発明で用いている測定装置である 「FP I A— 2100」 は、 従来 より トナーの形状を算出するために用いられていた 「FP I A— 1000」 と 比較して、 処理粒子画像の倍率の向上、 さらに取り込んだ画像の処理解像度の 向上 (256X256→512X512) により トナーの形状測定の精度が上 がっており、 それにより微粒子のより確実な補足を達成している装置である。 従って、 本発明のように、 より正確に形状を測定する必要がある場合には、 よ り正確に形状に関する情報が得られる F P I A2100の方が有用である。 次に、 本発明のトナーの製造方法について説明する。  Furthermore, the measuring device “FP IA-2100” used in the present invention has a smaller magnification of the processed particle image than “FP IA-1000” which has been conventionally used for calculating the shape of the toner. The accuracy of toner shape measurement has been improved by improving the processing resolution of the captured image (256X256 → 512X512), thereby achieving a more reliable capture of fine particles. Therefore, when it is necessary to measure the shape more accurately as in the present invention, the FPI A2100 which can obtain information on the shape more accurately is more useful. Next, a method for producing the toner of the present invention will be described.
本発明のトナーを製造する方法としては、 特公昭 36— 1023 1号公報、 特開昭 59— 53856号公報、 特開昭 59— 61842号公報に記載されて いる懸濁重合法を用いて直接トナーを生成する方法によるトナー化;単量体に は可溶で水溶性重合開始剤の存在下で直接重合させてトナーを生成するソー プフリー重合法に代表される乳化重合法によるトナーィヒ;マイクロカプセル製 法のような界面重合法、 i n s i t e重合法によるトナー化;コアセルべ一 シヨン法によるトナー化;特開昭 62- 106473号公報や特開昭 ·63—1 86253号公報に開示されている様な少なくとも 1種以上の微粒子を凝集 させ所望の粒径のものを得る会合重合法によるトナー化;単分散を特徴とする 分散重合法によるトナー化;非水溶性有機溶媒に必要な樹脂類を溶解させた後 水中でトナー化する乳化分散法によるトナー化;さらに加圧ニーダーゃェクス トルーダー、 或いはメディア分散機等を用いてトナー成分を混練、 均一に分散 せしめた後、 冷却し、 混練物を機械的またはジェット気流下でターゲットに衝 突させて所望のトナー粒径に微粉砕し、 さらに分級工程を経て粒度分布をシャ ープにせしめてトナーを製造する粉砕法、 さらに粉砕法で得られたトナーを溶 媒中で加熱等により球形化処理しトナーを得る方法が挙げられる。 As a method for producing the toner of the present invention, a suspension polymerization method described in JP-B-36-10231, JP-A-59-53856, and JP-A-59-61842 is directly used. Tonerization by a method of forming a toner; Toner by an emulsion polymerization method represented by a soap-free polymerization method in which a monomer is soluble and is directly polymerized in the presence of a water-soluble polymerization initiator to form a toner; Tonerization by an interfacial polymerization method such as a production method or an insite polymerization method; Tonerization by a coacervation method; as disclosed in JP-A-62-106473 and JP-A-63-186253. At least one kind of fine particles are aggregated to obtain a particle having a desired particle size. The toner is formed by an association polymerization method. The toner is formed by a dispersion polymerization method characterized by monodispersion. The necessary resins are dissolved in a water-insoluble organic solvent. After being converted to toner in water The toner components are kneaded using a pressure kneader extruder or a media disperser, and then uniformly dispersed. After cooling, the kneaded product is targeted mechanically or under a jet stream. And pulverize to the desired toner particle size. And a method in which the toner obtained by the pulverization method is subjected to spheroidizing treatment by heating or the like in a solvent to obtain a toner.
中でも、 本発明のトナーの好ましい製造方法としては、 少なくとも着色剤、 ワックス、 及び、 結着樹脂を合成するための重合性単量体を有する重合性単量 体組成物を水系分散媒体中に分散して造粒し、 該重合性単量体組成物の粒子を 生成する造粒工程、 該水系分散媒体中で該重合性単量体組成物の粒子を 70. 0乃至95. 0°Cで加熱し、 該重合性単量体組成物中の簞合性単量体を重合し てトナー粒子を生成する重合工程、 該トナー粒子を 70. ◦乃至 95. 0 か ら 0. 01 °CZ分以上 2. 00 °CZ分以下の冷却速度で 45. 0 °C以下に冷却 する冷却工程を少なくとも有するトナーの製造方法であって、 該トナーの製造 方法によって製造されたトナーは、 示唆走査熱量計で該トナーを測定した D S C曲線において、 1回目の走査で測定されるガラス転移点 (Tg l) が 50. 0乃至 70. 0°Cであり、該 1回目の走査で測定されるガラス転移点(Tg l) と 2回目の走査で測定されるガラス転移点 (Tg 2) との温度差 (Tg l— T g 2) が 3. 0乃至 20. 0°Cであるトナーの製造方法である。 70. 0乃至 95. 0°C (好ましくは 75. 0乃至 85. 0°C) に加熱してワックス成分と 結着樹脂成分の相溶性を増大させ、 次いで 0. 01乃至 2. 00 °CZ分の冷却 速度でゆつくりと冷却することにより、 ワックス成分の結晶化を促進させるこ とができる。  Among them, a preferred method for producing the toner of the present invention is to disperse a polymerizable monomer composition having at least a colorant, a wax, and a polymerizable monomer for synthesizing a binder resin in an aqueous dispersion medium. Granulating to form particles of the polymerizable monomer composition, wherein the particles of the polymerizable monomer composition in the aqueous dispersion medium at 70.0 to 95.0 ° C. A polymerization step of heating to polymerize the polymerizable monomer in the polymerizable monomer composition to form toner particles, and the toner particles are heated from 70 ° to 95.0 to 0.01 ° C. A toner production method having at least a cooling step of cooling to 45.0 ° C or less at a cooling rate of 2.00 ° CZ or less, wherein the toner produced by the toner production method is a differential scanning calorimeter. In the DSC curve obtained by measuring the toner in the above, the glass transition point (Tgl) measured in the first scan 50.0 to 70.0 ° C, and the temperature difference (Tg) between the glass transition point (Tgl) measured in the first scan and the glass transition point (Tg2) measured in the second scan. This is a method for producing a toner having l—T g 2) of 3.0 to 20.0 ° C. Heat to 70.0 to 95.0 ° C (preferably 75.0 to 85.0 ° C) to increase the compatibility between the wax component and the binder resin component, and then increase to 0.01 to 2.00 ° C By slow cooling at a minute cooling rate, crystallization of the wax component can be promoted.
また、上記冷却工程が、 トナー粒子を 70. 0乃至95. 0°Cから 0. 01 °C Further, the cooling step reduces the toner particles from 70.0 to 95.0 ° C to 0.01 ° C.
/分以上 0. 50 °C/分以下の冷却速度で 45. 0 °C以下に冷却する冷却工程 であることが好ましく、より好ましくは、上記冷却工程が、 トナー粒子を 70. 0乃至 95. 0 °Cから 0. 01 °C /分以上 0. 25 °C/分未満の冷却速度で 4 5. 0°C以下に冷却する冷却工程である。 Preferably, the cooling step is a cooling step of cooling the toner particles to 45.0 ° C or less at a cooling rate of not less than 0.50 ° C / minute and more preferably not more than 70. This is a cooling step of cooling from 0 ° C to 45.0 ° C or less at a cooling rate of 0.01 ° C / minute or more and less than 0.25 ° C / minute.
また、 上記冷却工程は、 水系分散媒体中でトナー粒子を冷却する冷却工程、 及び、 冷却工程は、 トナー粒子を水系分散媒体から取り出し、 トナー粒子を冷 却する冷却工程のいずれであってもよい。 The cooling step includes cooling the toner particles in an aqueous dispersion medium, and the cooling step includes removing the toner particles from the aqueous dispersion medium and cooling the toner particles. Any of the cooling steps may be used.
前記 7 0 . 0 °C以上の加熱工程としては、 懸濁重合法、 会合重合法、 乳化分 散法、 分散重合法により、 トナー粒子を形成しつつ 7 0 . 0 °C以上に加熱して もよいし、 公知の方法により作成されたトナー粒子を水系分散媒体に再分散し て 7 0. 0 °C以上に加熱してもよい。 水系分散媒体としては水、 アルコールな ど、 実質的にトナーを溶解しない媒体を好適に用いることができる。  The heating step at a temperature of 70.0 ° C. or higher includes a suspension polymerization method, an associative polymerization method, an emulsion dispersion method, and a dispersion polymerization method. Alternatively, toner particles prepared by a known method may be redispersed in an aqueous dispersion medium and heated to 70.0 ° C. or more. As the aqueous dispersion medium, a medium that does not substantially dissolve the toner, such as water and alcohol, can be suitably used.
さらに好ましくは小粒径のトナーが容易に得られる懸濁重合方法が望まれ る。 さらに一旦得られた重合粒子にさらに単量体を吸着せしめた後、 重合開始 剤を用レ、重合せしめるシード重合方法も本発明に好適に利用することができ る。 このとき、 吸着せしめる単量体中に、 極性を有する化合物を分散或いは溶 解させて使用することも可能である。  More preferably, a suspension polymerization method in which a toner having a small particle size can be easily obtained is desired. Further, a seed polymerization method in which a monomer is further adsorbed on the obtained polymer particles, and then a polymerization initiator is used and polymerization is performed can also be suitably used in the present invention. At this time, it is also possible to disperse or dissolve a polar compound in the monomer to be adsorbed before use.
トナーの製造方法として懸濁重合を利用する場合には、 以下の如き製造方法 によって直接的にトナーを製造することが可能である。 少なくとも結着榭脂を 合成するための重合性単量体、 ワックス、 及び着色剤、 をホモジナイザー及ぴ 超音波分散機の如き攪拌機によって均一に溶解または分散せしめた重合性単 量体組成物を形成する。 このとき、 必要に応じて、 架橋剤やその他の添加剤を 重合性単量体組成物中に含有させても良い。 マグネシウム、 カルシウム、 バリ ゥム、 亜鉛、 アルミニウムまたはリンを含有する分散安定剤を有する水系分散 媒体中に通常の攪拌機またはホモミキサー、 ホモジナイザーにより分散せしめ る。 このとき、 重合開始剤は、 重合性単量体組成物及び水系分散媒体の少なく ともいずれか一方に含有されていればよい。 好ましくは重合性単量体組成物の 液滴が所望のトナーのサイズを有するように攪拌速度 ·時間を調整し、 造粒す る。 その後は、 分散安定剤の作用により、 粒子状態が維持され、 且つ粒子の沈 降が防止される程度の攪拌を行えば良い。 重合温度は 4 0 . 0 °C以上、 通常 5 0 . 0〜9 5 . 0 °C (好ましくは 5 5 . 0〜8 5 . 0 °C) の温度に設定して重 合を行う。重合反応後半に昇温しても良く、必要に応じ p Hを変更しても良い。 重合反応終了時に 70. 0乃至 95. 0 °Cの温度で 3分以上保持した後、 0. 01乃至 2. 00°Cノ分の冷却速度で 45. 0°C以下 (好ましくは 5. 0〜3 5. 0°C) に冷却し、 トナー粒子を洗浄し、 乾燥する。 When suspension polymerization is used as the toner production method, the toner can be directly produced by the following production method. A polymerizable monomer composition in which at least a polymerizable monomer for synthesizing a binder resin, a wax, and a colorant are uniformly dissolved or dispersed with a homogenizer and a stirrer such as an ultrasonic disperser is formed. I do. At this time, if necessary, a crosslinking agent and other additives may be contained in the polymerizable monomer composition. It is dispersed in an aqueous dispersion medium having a dispersion stabilizer containing magnesium, calcium, barium, zinc, aluminum or phosphorus by using a conventional stirrer, homomixer, or homogenizer. At this time, the polymerization initiator may be contained in at least one of the polymerizable monomer composition and the aqueous dispersion medium. Preferably, the stirring speed and time are adjusted so that the droplets of the polymerizable monomer composition have a desired toner size, and granulation is performed. Thereafter, stirring may be performed to such an extent that the particle state is maintained and the precipitation of the particles is prevented by the action of the dispersion stabilizer. The polymerization is carried out at a polymerization temperature of 40.0 ° C or higher, usually 50.0 to 95.0 ° C (preferably 55.0 to 85.0 ° C). The temperature may be raised in the latter half of the polymerization reaction, and the pH may be changed if necessary. At the end of the polymerization reaction, after maintaining at a temperature of 70.0 to 95.0 ° C for 3 minutes or more, at a cooling rate of 0.01 to 2.00 ° C, 45.0 ° C or less (preferably 5.0 To 35.0 ° C) to wash and dry the toner particles.
前記重合性単量体組成物は、 重合性単量体と着色剤とを有する着色剤組成物 を形成する工程、 該着色剤組成物を分散する工程を経た後、 必要に応じてその 他の添加剤を加えて形成されることが好ましい。 着色剤の分散性を向上させる 目的で、 荷電制御剤や公知の顔料分散剤、 その他樹脂を添加してもよい。  The polymerizable monomer composition includes a step of forming a colorant composition having a polymerizable monomer and a colorant, and a step of dispersing the colorant composition. It is preferably formed by adding an additive. For the purpose of improving the dispersibility of the colorant, a charge control agent, a known pigment dispersant, and other resins may be added.
また、 重合性単量体組成物は、 少なくともポリメチレンワックスを分散させ た分散液 Aを調製した後に、 該分散液 Aを少なくともエステルワックスを含有 する分散液 Bに混合することで得られる重合性単量体組成物であることが好 ましい。 トナー製造工程において、 良好な結晶構造を形成しやすくなり、 トナ 一中におけるワックスの分散状態が多核となりやすく、 また針状となりやすレ、。 これにより、 現像安定性と耐高温オフセットがさらに良好になる。  The polymerizable monomer composition is prepared by preparing a dispersion A in which at least polymethylene wax is dispersed, and then mixing the dispersion A with a dispersion B containing at least an ester wax. Preferably, it is a monomer composition. In the toner manufacturing process, it is easy to form a good crystal structure, and the wax dispersion state in the toner tends to be polynuclear and needle-like. This further improves development stability and high-temperature offset resistance.
造粒中の水系分散媒体中の p Hは特に制約は受けないが、 好ましくは、 p H 4. 5〜13. 0、 さらに好ましくは 4. 5〜12. 0、 特に好ましくは 4. 5〜11. 0、 最も好ましくは 4. 5〜7. 5である。 pHが 4. 5未満の場 合は分散安定剤の一部に溶解がおこり、 分散安定化が困難になり、 造粒できな くなることがある。 また pHが 13. 0を超える場合はトナー中に添加されて いる成分が分解されてしまうことがあり、 十分な帯電能力が発揮できなくなる ことがある。 造粒を酸性領域で行った場合には、 分散安定剤に由来する金属の トナー中における含有量が過剰となるのを抑制することができ、 本発明の規定 を満たすようなトナーが得られやすくなる。  The pH in the aqueous dispersion medium during granulation is not particularly limited, but is preferably pH 4.5 to 13.0, more preferably 4.5 to 12.0, and particularly preferably 4.5 to 15.0. 11.0, most preferably 4.5-7.5. If the pH is less than 4.5, dissolution may occur in a part of the dispersion stabilizer, making it difficult to stabilize the dispersion and making granulation impossible. If the pH exceeds 13.0, components added to the toner may be decomposed, and sufficient charging ability may not be exhibited. When the granulation is performed in the acidic region, the content of the metal derived from the dispersion stabilizer in the toner can be suppressed from being excessive, and a toner satisfying the requirements of the present invention can be easily obtained. Become.
また、 トナー粒子の洗浄を pH3. 0以下、 より好ましくは、 pHl. 5以 下の酸を用いて行うことが好ましい。 トナー粒子の洗浄を酸で行うことにより、 トナー粒子表面に存在する分散安定剤を低減することができる。 洗浄に用いる 酸としては、 特に限定されるものではなく、 塩酸、 硫酸の如き無機酸を用いる ことができる。 Further, it is preferable to wash the toner particles with an acid having a pH of 3.0 or less, more preferably an acid of pH 1.5 or less. By washing the toner particles with an acid, the amount of the dispersion stabilizer present on the surface of the toner particles can be reduced. The acid used for washing is not particularly limited, and an inorganic acid such as hydrochloric acid or sulfuric acid is used. be able to.
本発明に用いられる分散安定剤としては、 リン酸マグネシウム、 リン酸三力 ルシゥム、 リン酸アルミニウム、 リン酸亜鉛、 炭酸マグネシウム、 炭酸カルシ ゥム、 水酸化マグネシウム、 水酸化カルシウム、 水酸化アルミニウム、 メタケ ィ酸カルシウム、 硫酸カルシウム、 硫酸バリウム、 ヒ ドロキシァパタイドが挙 げられる。  Examples of the dispersion stabilizer used in the present invention include magnesium phosphate, triphosphate calcium, aluminum phosphate, zinc phosphate, magnesium carbonate, calcium carbonate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, and metal hydroxide. Examples include calcium silicate, calcium sulfate, barium sulfate, and hydroxypatide.
また、 分散安定剤としては、 少なくともマグネシウム、 カルシウム、 パリウ ム、亜鉛、アルミニウム、リンのいずれかが含まれているものが用いられるが、 好ましくは、 マグネシウム、 カルシウム、 アルミニウム、 リンのいずれかが含 まれていることが望まれる。  As the dispersion stabilizer, one containing at least one of magnesium, calcium, parium, zinc, aluminum, and phosphorus is used, and preferably, one of magnesium, calcium, aluminum, and phosphorus is used. It is hoped that it is rare.
上記分散安定剤に有機系化合物、 例えばポリビュルアルコール、 ゼラチン、 メチノレセノレロース、 メチノレヒ ドロキシプロピノレセノレロース、ェチノレセノレロース、 カルボキシメチルセルロースのナトリゥム塩、 デンプンを併用しても構わない。 これら分散安定剤は、 重合性単量体 1 0 0質量部に対して 0 . 0 1〜2 . 0 0質量部を使用することが好ましい。  An organic compound such as polyvinyl alcohol, gelatin, methinoresenorelose, methinolehydroxypropinoresenorelose, etinoresenorelose, a sodium salt of carboxymethylcellulose, and starch may be used in combination with the dispersion stabilizer. It is preferable to use 0.01 to 2.0 parts by mass of these dispersion stabilizers with respect to 100 parts by mass of the polymerizable monomer.
さらに、 これら分散安定剤の微細化のため 0 . 0 0 1〜0 . 1質量%の界面 活性剤を併用しても良い。 具体的には市販のノニオン、 ァ-オン、 カチオン型 の界面活性剤が利用できる。 例えばドデシル硫酸ナトリウム、 テトラデシル硫 酸ナトリウム、 ペンタデシル硫酸ナトリウム.、 ォクチル硫酸ナトリウム、 テト ラデシル硫酸ナトリゥム、 ペンタデシル硫酸ナトリゥム、 ォクチル硫酸ナトリ ゥム、ォレイン酸ナトリゥム、ラウリル酸ナトリゥム、ステアリン酸力リゥム、 ォレイン酸カルシウムが好ましく用いられる。  Further, 0.01 to 0.1% by mass of a surfactant may be used in combination for making these dispersion stabilizers finer. Specifically, commercially available nonionic, ionic and cationic surfactants can be used. For example, sodium dodecyl sulfate, sodium tetradecyl sulfate, sodium pentadecyl sulfate, sodium octyl sulfate, sodium tetradecyl sulfate, sodium pentadecyl sulfate, sodium octyl sulfate, sodium oleate, sodium laurate, sodium stearate, calcium oleate Is preferably used.
本発明のトナーを重合法で製造する際に用いられる重合性単量体としては、 ラジカル重合が可能なビニル系重合性単量体が用レ、られる。  As the polymerizable monomer used for producing the toner of the present invention by a polymerization method, a vinyl polymerizable monomer capable of radical polymerization may be used.
該ビニル系重合性単量体としては、 単官能性重合性単量体或いは多官能性重 合性単量体を使用することができる。 単官能性重合性単量体としては、 スチレ ン; α—メチルスチレン、 βーメチノレスチレン、 ο—メチルスチレン、 m—メ チノレスチレン、 p—メチルスチレン、 2, 4一ジメチルスチレン, p— n—プ チノレスチレン、 p— t e r t—ブチルスチレン、 p— n—へキシノレスチレン、 p— n—ォクチルスチレン、 p— n—ノニルスチレン、 p— n—デシルスチレ ン、 p— n—ドデシノレスチレン、 p—メ トキシスチレン、 p—フエ二/レスチレ ンの如きスチレン誘導体; メチルァクリ レート、 ェチルァクリ レート、 n—プ 口ピルァクリレート、 i s o—プロピルアタリレート、 n—ブチルァクリ レー ト、 i s o—プチルァクリ レート、 t e r t—ブチルアタリレート、 n—アミ ルァクリ レート、 n _へキシルァクリレート、 2—ェチルへキシルァクリ レー ト、 n—ォクチノレアタリ レート、 n—ノニノレアクリレート、 シクロへキシノレア タリ レート、 ベンジルアタリ レート、 ジメチルフォスフエ一トェチノレアクリレ ート、 ジェチルフォスフユ-一トェチルァクリレート、 ジブチノレフォスフェート ェチルァクリ レート、 2一べンゾィルォキシェチルァクリレートの如きァクリ ル系重合性単量体; メチルメタクリレート、 ェチルメタクリ レート、 n—プロ ピルメタタリレート、 i s o一プロピルメタクリ レート、 n—ブチルメタクリ レート、 i s o一ブチメタクリ レート、 t e r tーブチノレメタクリレート、 n 一アミノレメタクリ レート、 n—へキシルメタクリ レート、 2—ェチルへキシル メタクリ レート、 n—ォクチルメタクリ レート、 n—ノニルメタクリ レート、 ジェチノレフォスフエ一トェチノレメタクリ レート、 ジブチノレフォスフエ一トェチ ルメタタリ レートの如きメタクリル系重合性単量体; メチレン脂肪族モノカル ボン酸エステル;酢酸ビュル、 プロピオン酸ビュル、 酪酸ビニル、 安息香酸ビ ニル、 ギ酸ビュルの如きビュルエステル; ビエルメチルエーテル、 ビュルェチ ルエーテル、 ビニルイソブチルエーテルの如きビニルエーテノレ; ビュルメチノレ ケトン、 ビニルへキシルケトン、 ビュルィソプロピルケトンの如きビニルケト ンが挙げられる。 As the vinyl polymerizable monomer, a monofunctional polymerizable monomer or a polyfunctional polymerizable monomer can be used. Monofunctional polymerizable monomers include styrene Α-methylstyrene, β-methinolestyrene, ο-methylstyrene, m-methynolestyrene, p-methylstyrene, 2,4-dimethylstyrene, p-n-butylinolestyrene, p-tert-butylstyrene , P-n-hexynolestyrene, p-n-octylstyrene, p-n-nonylstyrene, p-n-decylstyrene, p-n-dodecinolestyrene, p-methoxystyrene, p-pheny / restile Styrene derivatives such as styrene; methyl acrylate, ethyl acrylate, n-propyl pyracrylate, iso-propyl acrylate, n-butyl acrylate, iso-butyl acrylate, tert-butyl acrylate, n-amyl acrylate, n_ Xyl acrylate, 2-ethylhexyl acrylate, n-octinoleate acrylate, n-noninoreact Rate, cyclohexinolea tarylate, benzyl atalilate, dimethylphosphoethyl acrylate, getylphospho-1-ethyl acrylate, dibutyltin phosphate ethyl acrylate, 21-benzoyloxy Acrylic polymerizable monomers such as tyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, iso-propyl methacrylate, n-butyl methacrylate, iso-butyl methacrylate, tert-butynole Methacrylate, n-amino remethacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, n-nonyl methacrylate, getinolefosfeetetinole methacrylate, dibutinolefosfe Methacrylic polymerizable monomers such as methylmetharylate; methylene aliphatic monocarbonates; butyl acetate, butyl propionate, vinyl butyrate, vinyl benzoate, and butyl esters such as butyl formate; bier methyl ether, butyl ether, Vinyl ethers such as vinyl isobutyl ether; vinyl ketones such as burmethinole ketone, vinylhexyl ketone and bulisopropyl ketone.
多官能†生重合性単量体としては、 ジエチレングリコールジァクリレート、 ト リエチレングリコールジァクリレート、 テトラエチレングリコールジァクリレ ート、 ポリエチレングリコールジアタリ レート、 1 , 6 —へキサンジオールジ アタリ レート、 ネオペンチルグリコールジアタリ レート、 トリプロピレングリ コーノレジアタリ レート、 ポリプロピレングリコーノレジァクリレート、 2, 2, 一ビス [ 4一 (アタリロキシ ' ジエトキシ) フエニル] プロパン、 トリメチロ ールプロパントリアタリ レート、 テトラメチロールメタンテトラァクリレート エチレングリコールジメタクリレート、 ジエチレングリコーノレジメタクリレー ト、 トリエチレングリコーノレジメタクリ レート、 テトラエチレングリコーノレジ メタタリ レート、 ポリエチレングリコールジメタタリレート、 1 , 3—ブチレ ングリコールジメタクリ レート、 1 , 6—へキサンジオールジメタタリレート、 ネオペンチルグリコールジメタクリ レート、 ポリプロピレングリコールジメタ タリ レート、 2 , 2 ' —ビス [ 4一 (メタクリロキシ'ジエトキシ) フエ二ノレ] プロパン、 2, 2, 一ビス [ 4— (メタクリロキシ'ポリエトキシ) フエニル] プロパン、 トリメチロールプロパントリメタタリレート、 テトラメチロールメ タンテトラメタタリレート、 ジビュルベンゼン、 ジビニノレナフタリン、 ジビニ ルエーテルが挙げられる。 Polyfunctional biopolymerizable monomers include diethylene glycol diacrylate, Polyethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diatalylate, 1, 6-hexanediol diatalylate, neopentyl glycol diatalylate, tripropylene glycol cornoresialate, polypropylene Glyconoresacrylate, 2,2,1-bis [4-1 (ataryloxy 'diethoxy) phenyl] propane, trimethylolpropanetriatalylate, tetramethylolmethanetetraacrylate ethylene glycol dimethacrylate, diethyleneglyconoresimethacrylate Relay, triethyleneglyconoresin methacrylate, tetraethyleneglyconoresin methacrylate, polyethylene glycol dimethacrylate, 1,3-butylene glycoldi Methacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, polypropylene glycol dimethacrylate, 2,2'-bis [4-1 (methacryloxy'diethoxy) pheninole] propane, 2, 2,1-bis [4- (methacryloxy'polyethoxy) phenyl] propane, trimethylolpropanetrimethatalate, tetramethylolmethanetetramethatalate, dibutylbenzene, divininolenaphthalene, divinyl ether.
本発明においては、 上記した単官能性重合性単量体を単独或いは、 2種以上 組み合わせて、 または、 上記した単官能性重合性単量体と多官能性重合性単量 体を組み合わせて使用する。 多官能性重合性単量体は架橋剤として使用するこ とも可能である。  In the present invention, the above-mentioned monofunctional polymerizable monomers are used alone or in combination of two or more kinds, or the above-mentioned monofunctional polymerizable monomers and polyfunctional polymerizable monomers are used in combination. I do. The polyfunctional polymerizable monomer can be used as a crosslinking agent.
上記した重合性単量体の重合の際に用いられる重合開始剤としては、 油溶性 開始剤及び/または水溶性開始剤が用いられる。 例えば、 油溶性開始剤として は、 2, 2, ーァゾビスイソブチロニトリル、 2 , 2 ' ーァゾビス一 2, 4一 ジメチルバレロニトリル、 1 , 1 ' ーァゾビス (シクロへキサン一 1一カルボ 二トリル)、 2, 2, 一ァゾビス一 4ーメ トキシ一 2, 4ージメチルパレロニ トリルの如きァゾ化合物;ァセチルシク口へキシルスルホ -ルパーォキサイ ド. ジィソプロピルパーォキシカーボネート、 デカノニルパーォキサイド、 ラウ口 ィルパーォキサイド、 ステアロイルパーォキサイ ド、 プロピオニルパーォキサ ィド、 ァセチ 'ノレパーォキサイド、 t e r t—プチルパーォキシ一 2—ェチルへ キサノ: p ト、 ベンゾィルパーォキサイ ド、 t e r t—プチルパーォキシィソ プチレート、 シクロへキサノンパーォキサイ ド、 メチルェチルケトンパーォキ サイド、 ジクミルパーォキサイド、 t e r t—ブチルヒドロパーォキサイ ド、 ジー t e r t一プチルパーォキサイド、 クメンヒドロパーォキサイドの如きパ ーォキサイド系開台剤が挙げられる。 An oil-soluble initiator and / or a water-soluble initiator are used as the polymerization initiator used in the polymerization of the polymerizable monomer. For example, oil-soluble initiators include 2,2, azobisisobutyronitrile, 2,2'azobis-1,2,4-dimethylvaleronitrile, 1,1'azobis (cyclohexane-11- Azo compounds such as 2,2,1-azobis-1-methoxy-1,2,4-dimethylpaleronitrile; acetylsilyl hexylsulfonyl-peroxyside. Disopropyl peroxycarbonate, decanoyl peroxide, lauperyl peroxide, stearoyl peroxide, propionyl peroxide, aceti'norepoxide, tert-butyl peroxy 2- Ethylhexanox: p-to-, benzoylperoxide, tert-butylperoxyisobutylate, cyclohexanone peroxide, methylethylketone peroxide, dicumyl peroxide, tert —Peroxide-based opening agents such as butyl hydroperoxide, g-tert-butyl peroxide and cumene hydroperoxide.
水溶性開始剤としては、 過硫酸アンモ-ゥム、 過硫酸カリウム、 2, 2 ' — ァゾビス (Ν, Ν, 一ジメチレンイソブチロアミジン) 塩酸塩、 2, 2, ーァ ゾビス (2—アミノジノプロパン) 塩酸塩、 ァゾビス (イソブチルアミジン) 塩酸塩、 2, 2 ' —ァゾビスイソブチロニトリルスルホン酸ナトリウム、 硫酸 第一鉄または過酸化水素が挙げられる。  Examples of the water-soluble initiator include ammonium persulfate, potassium persulfate, 2,2'-azobis (Ν, Ν, dimethyleneisobutyroamidine) hydrochloride, 2,2, -azobis (2- Aminodinopropane) hydrochloride, azobis (isobutylamidine) hydrochloride, sodium 2,2'-azobisisobutyronitrile sulfonate, ferrous sulfate or hydrogen peroxide.
本発明においては、 重合性単量体の重合度を制御するために、 連鎖移動剤、 重合禁止剤等をさらに添加し用いることも可能である。  In the present invention, in order to control the degree of polymerization of the polymerizable monomer, a chain transfer agent, a polymerization inhibitor and the like can be further added and used.
また本発明においては、 架橋剤を用いて架橋を有する榭脂とすることもでき、 架橋剤として、 2個以上の重合可能な二重結合を有する化合物を用いることが できる。 例えば、 ジビュルベンゼン、 ジビュルナフタレンのような芳香族ジビ ニル化合物;エチレングリコールジァクリレート、 エチレングリコールジメタ タリレート、 1, 3—ブタンジオールジメタクリレートのような二重結合を 2 個有する力ノレボン酸エステル; ジビニノレア二リン、 ジビュルエーテル、 ジビニ ルスルフィ ド、 ジビニルスルホンの如きジビュル化合物;及ぴ 3個以上のビニ ル基を有する化合物が挙げられる。 これらは単独もしくは混合物として用いら れる。  In the present invention, a resin having cross-linking can be obtained by using a cross-linking agent. As the cross-linking agent, a compound having two or more polymerizable double bonds can be used. For example, aromatic divinyl compounds such as dibutylbenzene and diburnaphthalene; a force having two double bonds such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, and 1,3-butanediol dimethacrylate. Nolevonic acid esters; divinyl compounds such as divininorea diphosphine, divinyl ether, divinyl sulfide and divinyl sulfone; and compounds having three or more vinyl groups. These are used alone or as a mixture.
本発明のトナーは、 一成分系現像剤用のトナーとして使用することも可能で あり、 キヤリァ粒子を有する二成分系現像剤用のトナーとしても使用可能であ る。 ' The toner of the present invention can be used as a toner for a one-component developer, and can also be used as a toner for a two-component developer having carrier particles. The '
一成分系現像剤として用い、 磁性体をトナー中に含有せしめた磁性トナーの 場合には、 現像スリーブ中に内蔵せしめたマグネットを利用し、 磁性トナーを 搬送及び帯電せしめる方法がある。 磁性体を含有しない非磁性トナーを用いる 場合には、 ブレードまたはローラを用い、 現像スリーブにて強制的に摩擦帯電 しスリーブ上にトナーを付着せしめることで搬送せしめる方法がある。  When a magnetic toner is used as a one-component developer and a magnetic material is contained in the toner, there is a method in which the magnetic toner is transported and charged using a magnet built in a developing sleeve. When a non-magnetic toner containing no magnetic material is used, there is a method in which a blade or a roller is used to forcibly triboelectrically charge the toner with a developing sleeve and adhere the toner onto the sleeve to convey the toner.
二^分系現像剤として用いる場合には、 本発明のトナーとキャリアとを混合 した現像剤として使用する。磁性キヤリアとしては、鉄、銅、亜鉛、二ッケル、 コバルト、 マンガン、 及ぴ、 クロム元素からなる元素単独または複合フェライ ト状態で構成される。 磁性キャリアの形状として、 球状、 扁平または不定形が あり、 そのいずれのものも用いることができる。 さらに磁性キャリア粒子表面 状態の微細構造(たとえば表面凹凸性)をもコント口ールすることが好ましい。 ' 一般的には、 上記無機酸ィ匕物を焼成、 造粒することにより、 あらかじめ、 磁性 キヤリァコア粒子を生成した後、 樹脂にコーティングする方法が用いられてい る。 磁性キャリアのトナ■ ~^■の負荷を軽減する意味合いから、 無機酸化物と樹 脂を混練後、 粉碎、 分級して低密度分散キャリアを得る方法や、 さらには、 直 接無機酸化物とモノマーとの混練物を水系媒体中にて懸濁重合せしめ真球状 'の磁性キヤリァを得る方法も利用することが可能である。  When used as a two-component developer, it is used as a mixture of the toner of the present invention and a carrier. The magnetic carrier is composed of iron, copper, zinc, nickel, cobalt, manganese, and chromium elements alone or in a composite ferrite state. The shape of the magnetic carrier is spherical, flat or irregular, and any of them can be used. Furthermore, it is preferable to control the fine structure (for example, surface unevenness) of the surface state of the magnetic carrier particles. Generally, a method has been used in which magnetic carrier core particles are formed in advance by baking and granulating the above inorganic oxidized product, and then coating the resin. In order to reduce the load on the magnetic carrier, the method of kneading the inorganic oxide and the resin, pulverizing and classifying to obtain a low-density dispersed carrier, and further, directly mixing the inorganic oxide and the monomer It is also possible to utilize a method of subjecting a kneaded product of the above to suspension polymerization in an aqueous medium to obtain a true spherical 'magnetic carrier.
上記キヤリァ粒子の表面を樹脂で被覆した被覆キヤリァは、 特に好ましい。 その方法としては、 樹脂を溶剤中に溶解もしくは懸濁せしめて、 該溶液または 懸濁液をキャリアに塗布し付着せしめる方法、 単に樹脂粉体とキヤリァ粒子と を混合して付着させる方法が適用できる。  A coated carrier obtained by coating the surface of the above-mentioned carrier particles with a resin is particularly preferable. As the method, a method in which a resin is dissolved or suspended in a solvent and the solution or suspension is applied to and adhered to a carrier, or a method in which a resin powder and carrier particles are simply mixed and adhered can be applied. .
キヤリァ粒子表面の被覆物質としてはトナー材料により異なるが、 例えばポ リテトラフルォロエチレン、 モノクロ口トリフルォロエチレン重合体、 ポリフ ッ化ビユリデン、 シリコーン樹脂、 ポリエステル樹脂、 スチレン系樹脂、 ァク リル系樹脂、 ポリアミ ド、 ポリビニルプチラール、 アミノアクリレート榭脂が 挙げられる。 これらは単独或は複数で用いられる。 The coating material on the surface of the carrier particles varies depending on the toner material, but, for example, polytetrafluoroethylene, mono-oral trifluoroethylene polymer, polyvinylidene fluoride, silicone resin, polyester resin, styrene resin, and acrylic resin Resin, polyamide, polyvinyl butyral, amino acrylate resin No. These may be used alone or in combination.
キャリアの磁性特性は以下のものが良い。 磁気的に飽和させた後の 7 9. 6 k A/m (l kエルステッド) における磁化の強さ (σ Ι Ο Ο Ο) は 3 0乃至 3 0 0 e mu/ c m3であることが好ましい。さらに高画質ィ匕を達成するために、 好ましくは 1 0 0乃至 2 5 0 emuZcm3であることがよい。 3 0 0 emu/ c m3より大きい場合には、嵩画質なトナー画像が得られにくくなる。 逆に、 3 0 e m uノ c m3未満であると、磁気的な拘束力も減少するためにキャリア付着 を生じやすい。 The magnetic properties of the carrier are preferably as follows. The magnetization intensity (σ 強 Ο Ο に お け る) at 79.6 kA / m (lk Oersted) after magnetic saturation is preferably 30 to 300 emu / cm 3 . To further achieve high image quality I spoon, preferably has 1 0 0 to 2 5 0 emuZcm 3. When it is larger than 300 emu / cm 3, it is difficult to obtain a bulky toner image. On the other hand, when it is less than 30 emu / cm 3 , the magnetic binding force is reduced, so that the carrier is easily attached.
キャリア形状は丸さの度合いを示す S F— 1が 1 80以下、 凹凸の度合いを 示す S F— 2が 2 5 0以下であることが好ましい。 S F— 1 S F— 2は以下 の式にて定義され、 二レコ社製の L u z e X I I Iにて測定される。  As for the carrier shape, it is preferable that SF-1 indicating the degree of roundness is 180 or less, and SF-2 indicating the degree of unevenness is 250 or less. S F—1 S F—2 is defined by the following equation, and is measured by Luze XII I manufactured by Nireco.
(キャリアの最大長)2 π (Maximum length of carrier) 2 π
S F— 1 = ~~ X—— X 1 0 0  S F— 1 = ~~ X—— X 1 0 0
キャリアの投影面積 4  Projected area of carrier 4
へ 一 一 (キャリアの周辺長)2 1 To 1 1 (perimeter of carrier) 2 1
I - = - ノ ^ z~"~ズ X 1 00 I- = -ノ ^ z ~ "~ zu X 1 00
キヤリァの投影面積 4 π  Carrier projected area 4 π
本発明のトナーは、 透過電子顕微鏡 (ΤΕΜ) を用いたトナーの断層面観察 において、 針状、 または、 棒状の形状を有するワックスを含有していることが 好ましい。 代表的な例を図 5 Α, 5 Β及び 5 Cに示す。 これらの形状を有する ことにより、 定着工程における熱が伝達されやすく、 低温定着性能がさらに良' 好となる。  The toner of the present invention preferably contains a wax having a needle-like or rod-like shape when observing the tomographic plane of the toner using a transmission electron microscope (ΤΕΜ). Representative examples are shown in Figures 5 5, 5Β, and 5C. By having these shapes, heat in the fixing step is easily transmitted, and the low-temperature fixing performance is further improved.
分散状態としては、 単核、 多核の分散状態をとり得るが、 多核の状態である ことがより好ましい。 定着工程における熱が伝達されやすく、 低温定着性能が さらに良好となる。 代表的な例を図 6 Α及ぴ 6 Βに示す。  The dispersion state may be a mononuclear or polynuclear dispersion state, but is more preferably a polynuclear state. Heat in the fixing process is easily transmitted, and the low-temperature fixing performance is further improved. Representative examples are shown in Figures 6 and 6.
トナー粒子の断層面を観察する方法としては、 用いるワックス成分と外殻を 構成する結着樹脂との結晶相と非晶相の微細構造の相違を利用して、 重金属に より一方の成分の電子密度を高めて材料間のコントラストを付ける電子染色 法を用いることが好ましい。 具体的には、 常温硬化性のエポキシ樹脂中にトナ 一粒子を十分に分散させた後、 40°Cの雰囲気温度の中で 2日間硬化させ、 得 られた硬化物を四酸化ルテェゥム (Ru〇4)、 また、 必要により四酸化ォスミ ゥム (O s〇4) を併用して電子染色を施した後、 ダイヤモンドナイフを備えた ウルトラミクロトームを用いて薄片状のサンプルを切り出し、 透過型電子顕微 鏡 (TEM) を用いてトナーの断面層形態を観察する。 As a method of observing the tomographic plane of the toner particles, the difference in the fine structure of the crystalline phase and the amorphous phase between the wax component used and the binder resin constituting the outer shell is used to determine the electron component of one component by the heavy metal. It is preferable to use an electronic dyeing method in which the density is increased to give a contrast between materials. Specifically, the toner is contained in a cold-setting epoxy resin. After one particle is sufficiently dispersed, it is cured at an ambient temperature of 40 ° C. for 2 days, and the obtained cured product is treated with ruthenium tetroxide (Ru 4 ) and, if necessary, osmium tetroxide (O 4 ) After electron staining with s 併 用4 ), a flake-shaped sample is cut out using an ultramicrotome equipped with a diamond knife, and the cross-sectional layer morphology of the toner is observed using a transmission electron microscope (TEM). I do.
本発明のトナーと磁性キャリアとを混合して二成分系現像剤を調製する場 合、 その混合比率は現像剤中の小ナー濃度として、 2〜15質量%、 好ましく は 4〜13質量%にすると通常良好な結果が得られる。  When a two-component developer is prepared by mixing the toner of the present invention and a magnetic carrier, the mixing ratio is 2 to 15% by mass, preferably 4 to 13% by mass as a small toner concentration in the developer. Then usually good results are obtained.
【実施例】  【Example】
以下、 本発明を実施例により具体的に説明するが、 これは、 本発明に何ら限 定するものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the Examples.
(エステルワックスの調整例 1 )  (Example 1 of adjustment of ester wax)
ジムロート還流器、 De a n— S t a r k水分離器を備えた 4つ口フラスコ にベンゼン 1 900質量部、 ミリスチン酸 (C14H2802)、 パルミチン酸 (C16 H3202)、 ステアリン酸 (C18H3602)、 ァラキン酸 (C20H40O2)、 ベヘン酸 (C 2。H4。02) からなる混合物(カルボン酸成分) 1400質量部、 プチルアルコー ノレ (C4H10O)、 ミリスチルアルコール (C14H30O)、パルミチルアルコール (C 16H340)、 ステアリルアルコール (C18H380)、 ァラキルアルコール (C20H42 O) からなる混合物 (アルコール成分) 1300質量部、 p—トルエンスルホ ン酸 130質量部を加え、 撹拌下 6時間乾留した後、 水分離器より共沸留去を 行った。 炭酸水素ナトリウムで十分に洗浄した後、 乾燥してベンゼンを留去し た。 生成物をベンゼンで再結晶、 洗浄、 精製してエステルワックス.1を得た。 Dimroth reflux condenser, De an- S Tark water separator benzene 1 900 parts by a four-necked flask equipped with, myristic acid (C 14 H 28 0 2) , palmitic acid (C 16 H 32 0 2) , stearic acid (C 18 H 36 0 2) , Arakin acid (C 20 H 40 O 2) , behenic acid (C 2 .H 4 .0 2) a mixture consisting of (carboxylic acid component) 1400 parts by weight, heptyl alcohol Honoré (C 4 H 10 O), myristyl alcohol (C 14 H 30 O), palmityl alcohol (C 16 H 34 0), stearyl alcohol (C 18 H 38 0), a mixture consisting § La kill alcohol (C 20 H 42 O) (Alcohol component) 1300 parts by mass and 130 parts by mass of p-toluenesulfonic acid were added, and the mixture was subjected to dry distillation with stirring for 6 hours, and then azeotropically distilled from a water separator. After sufficiently washing with sodium hydrogen carbonate, it was dried and benzene was distilled off. The product was recrystallized from benzene, washed and purified to obtain ester wax.1.
(エステルヮックスの調整例 2〜 4 )  (Esterox adjustment examples 2 to 4)
カルボン酸成分及ぴアルコール成分の種類と量とを変化させる以外はエス テルワックスの調整例 1と同様にしてエステルワックス 2〜4を調整した。 表 1 Ester waxes 2 to 4 were prepared in the same manner as in Preparation Example 1 for ester wax, except that the types and amounts of the carboxylic acid component and the alcohol component were changed. table 1
Figure imgf000047_0001
表 2
Figure imgf000047_0001
Table 2
Figure imgf000047_0002
Figure imgf000047_0002
(実施例 1 ) (Example 1)
結晶性樹脂としてエステルヮックス 1とポリメチレンワックス 1を以下の ように組み合わせて使用した。  Esterex 1 and polymethylene wax 1 were used as a crystalline resin in combination as follows.
'スチレン 100質量部'' 100 parts by mass of styrene
•ポリメチレンワックス 1 8質量部• 18 parts by mass of polymethylene wax
• C. I . ピグメントブルー 15 : 3 12質量部• C.I.Pigment Blue 15: 3 12 parts by mass
•俞電制御剤 6質量部6 parts by weight of antistatic agent
(ジー t e r t一ブチルサリチル酸のアルミニゥム化合物) (Gee t ert Aluminum compound of monobutyl salicylic acid)
からなる混合物を、 アトライター (三井金属社製) を用いて 3時間分散し、 ヮ ックス分散液 Aを調整した。 Was dispersed using an attritor (manufactured by Mitsui Kinzoku Co., Ltd.) for 3 hours to prepare a Pix dispersion A.
高速撹拌装置 TK一ホモミキサーを備えた 2リットルの四つ口フラスコ中 に、 イオン交換水 350質量部と、 0. 1モル/リツトルー Na3P〇4水溶液 225質量部を添加して、 ホモミキサ一の回転数を 12000 r p mに調整し、 65. 0 °Cに加温せしめた。 ここに 1. 0モル/リットル一 C a C 12水溶液 3 4質量部を徐々に添カ卩し、 微小な難水溶性分散剤 C a3 (P04) 2を含む水系分 散媒体を調製した。 In a four-necked 2 liter flask equipped with a high speed stirrer TK one homomixer, was added with ion-exchanged water 350 parts by mass, the 0.1 mol / Ritsutoru Na 3 P_〇 4 aqueous 225 parts by weight, homomixer one Was adjusted to 12000 rpm and heated to 65.0 ° C. Where 1.0 mol / liter 1 C a C 1 2 aqueous solution 3 4 parts by mass gradually添Ka卩, fine sparingly water-soluble dispersing agent C a 3 (P0 4) to prepare an aqueous component dispersion medium containing 2.
上記ワックス分散液 A 6 3質量部 スチレン 3 3質量部 n一プチルァタリレート 1 7質量部 ジビュルべンゼン 0. 2質量部 飽和ポリエステル樹脂 5質量部 Wax dispersion A 6 3 parts by mass Styrene 3 3 parts by mass n-butylyl acrylate 17 parts by mass Dibylbenzene 0.2 parts by mass Saturated polyester resin 5 parts by mass
(テレフタル酸一プロピレンォキサイ ド変性ビスフエノール A共重合体、 酸 価 1 SmgKOHZg) (Terephthalic acid-propylene oxide modified bisphenol A copolymer, acid value 1 SmgKOHZg)
'エステルワックス 1 9質量部 からなるワックス分散液 Bを、 撹拌下 6 5 °Cで 5分間保持し、 さらに重合開合 剤である 2, 2, ーァゾビス (2, 4ージメチルバレロニトリル) 2質量部を 添加した重合性単量体組成物を前記水系分散媒体中に投入し、 回転数 1 200 0 r pmを維持しつつ 1 5分間造粒した。 その後、 高速攪拌装置から通常のプ 口ペラ撹拌装置に変更し、 攪拌装置の回転数を 1 50 r pmに維持し、 内温 7 0. 0°Cで 6時間重合し、 內温を 80. 0°Cに昇温して 4時間重合を行った。 重合終了後、 回転を保持しつつ内温を 0. 40 °CZ分の冷却速度で 24. ' 0 °C まで冷却した。 内温を 20. 0〜25. 0°Cに保持しつつ、 水系分散媒体中に 希塩酸を添加し、 難水溶性分散剤を溶解した。 さらに洗浄、 乾燥を行ってトナ 一粒子を得た。  'Wax Dispersion B consisting of 19 parts by weight of ester wax is kept at 65 ° C for 5 minutes with stirring, and 2 parts by weight of 2,2,2-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator The polymerizable monomer composition to which the part was added was charged into the aqueous dispersion medium, and granulated for 15 minutes while maintaining a rotation speed of 12000 rpm. After that, the high-speed stirrer was changed to a normal propeller stirrer, the rotation speed of the stirrer was maintained at 150 rpm, polymerization was performed at an internal temperature of 70.0 ° C for 6 hours, and the temperature was raised to 80. The temperature was raised to 0 ° C, and polymerization was performed for 4 hours. After completion of the polymerization, the internal temperature was cooled to 24.'0 ° C at a cooling rate of 0.40 ° CZ while maintaining the rotation. While maintaining the inner temperature at 20.0 to 25.0 ° C, dilute hydrochloric acid was added to the aqueous dispersion medium to dissolve the poorly water-soluble dispersant. Further washing and drying were performed to obtain toner particles.
得られたトナー粒子 1 00質量部に、 シリコーンオイルとへキサメチルジシ ラザンで処理された一次粒径 1 2 nmの乾式シリカ (BET比表面積  To 100 parts by mass of the obtained toner particles, dry silica (BET specific surface area) having a primary particle diameter of 12 nm treated with silicone oil and hexamethyldisilazane was used.
1 20 mV g ) 2. 5質量部を外添して、 重量平均粒子径 6. 3 μιηのトナー 1を得た。  120 mV g) 2.5 parts by mass were externally added to obtain Toner 1 having a weight average particle size of 6.3 μιη.
このトナー 1を後述する試験方法に従って評価を行った。. トナー 1の物性及 び評価結果を表 3乃至 6に示す。 また、 トナー 1の 1回目走査でトナーを測定 した D S C曲線を図 2に、 2回目走査でトナーを測定した D S C曲線を図 3に 示した。 低温定着性能、 耐オフセット性能ともに優れたものであった。 また、 現像安定性能に関しても、 初期画像及び耐久画像共に画像濃度が高く、 カプリ も見られず鮮明で高画質なものであった。 耐久後のトナー帯電量も初期と比べ て低下することがなかった。 さらに、保存安定性能に関しても全く優れていた。 This toner 1 was evaluated according to the test method described below. Tables 3 to 6 show the physical properties and evaluation results of Toner 1. The toner is measured by the first scan of toner 1. The DSC curve obtained is shown in Fig. 2, and the DSC curve obtained by measuring the toner in the second scan is shown in Fig. 3. Both low-temperature fixing performance and anti-offset performance were excellent. Regarding the development stability performance, the image density was high in both the initial image and the durable image, and the image was clear and high in image quality without any capri. The charge amount of the toner after the endurance did not decrease compared to the initial state. Furthermore, the storage stability was excellent.
〔トナーの変形開始点、 変形終了点及び変形係数の測定方法〕  [Method of measuring toner deformation start point, deformation end point, and deformation coefficient]
トナー 1を加圧成型器に 0. 2 gはかりとり、 常温常圧環境下において 20 0 k g f の荷重で 2分間加圧成型し、 直径約 8 mm, 高さ約 2 mmの円柱状試 料を調整した。 フローテスター (島津製作所社製) において、 サンプルを载せ るダイの代わりに穴が開いていない SUS— 316プレートに改造した装置 に上記円柱状試料をセットした。 これを 35. 0°Cで 5分間保持した後、 加圧 ジグに 10 k g f の荷重を与え、 昇温速度 1. 0°CZ分で 120. 0°Cまで円 柱状試料を昇温し、 試料に接する加圧ジグの変位量を計測した。  0.2 g of Toner 1 is weighed into a pressure molding machine, and molded under a normal temperature and normal pressure environment with a load of 200 kgf for 2 minutes to produce a cylindrical sample having a diameter of about 8 mm and a height of about 2 mm. It was adjusted. In a flow tester (manufactured by Shimadzu Corporation), the columnar sample was set in a device modified to a SUS-316 plate without holes instead of a die for placing the sample. After holding this at 35.0 ° C for 5 minutes, apply a load of 10 kgf to the pressurized jig, heat the columnar sample to 120.0 ° C in 1.0 ° CZ minutes, and heat the sample. The displacement of the pressing jig in contact with was measured.
〔耐オフセット性能試験方法〕  [Offset performance test method]
トナー 1と、 シリコーン樹脂で表面コートしたフェライトキャリア (平均粒 径 42 μϊη) とを、 トナー濃度が 6質量%になるようにそれぞれ混合し、 二成 分現像剤を調製した。 市販のフルカラーデジタル複写機 (CLC 700, キヤ ノン製) を使用し、 受像紙 (80 g/m2) 上に未定着のトナー画像 (0. 6m g/cm2) を形成した。 市販のフルカラーデジタル複写機 (CLC 700, キ ヤノン製) 力 ら取り外した定着ユニットを定着温度が調節できるように改造し、 これを用いて未定着画像の定着試験を行った。 常温常湿下、 プロセススピード を 200 mm/ sに設定し、 1 30 °C〜 230 °Cの範囲で設定温度を 5 °Cおき に変化させながら、 各温度で上記トナー画像の定着を行った。 低温オフセッ ト が観察されなくなった温度を耐オフセット性の低温側開始点とし、 目視で高温 オフセッ トが観察された温度、 或いは、 定着器への受像紙の巻きつきが発生し た温度よりも 5 °C低い温度を高温側終了点とした。 〔低温定着性能試験方法〕 Toner 1 and a ferrite carrier (average particle size 42 μϊη) surface-coated with a silicone resin were mixed so that the toner concentration became 6% by mass, to prepare a two-component developer. An unfixed toner image (0.6 mg / cm 2 ) was formed on a receiving paper (80 g / m 2 ) using a commercially available full-color digital copying machine (CLC 700, manufactured by Canon Inc.). A commercially available full-color digital copier (CLC 700, manufactured by Canon Inc.) was modified so that the fixing unit could be removed from the fixing unit, and used to perform a fixing test on unfixed images. Under normal temperature and normal humidity, the process speed was set to 200 mm / s, and the toner image was fixed at each temperature while changing the set temperature from 130 ° C to 230 ° C every 5 ° C. . The temperature at which the low-temperature offset is no longer observed is defined as the low-temperature starting point of the offset resistance, which is 5 times lower than the temperature at which the high-temperature offset is visually observed or the temperature at which the receiving paper wraps around the fuser. The temperature lower by ° C was taken as the hot end point. (Low-temperature fixing performance test method)
上記試験により得られた定着画像を 50 g/cm2の荷重を欠けたシルボン 紙で摺擦し、 摺擦前後の濃度低下率が 5 %以下となる定着温度を低温定着性の 低温側開始点とし、 ダロス最大値となる点を高温側終了点とした。 目視で高温 オフセットが観察された温度、 或いは、 定着器への受像紙の巻きつきが発生し た温度よりも 5 °C低い温度を高温側終了点とした。 The fixed image obtained by the above test was rubbed with lens-cleaning paper under a load of 50 g / cm 2, density reduction rate before and after the rubbing is below 5% and comprising fixing temperature low-temperature fixability of the low-temperature side start point The point at which the maximum value of Daros was reached was taken as the high-temperature end point. The temperature at which the high temperature offset was visually observed or the temperature at which the receiving paper was wound around the fixing device by 5 ° C was set as the high temperature side end point.
〔保存安定性試験方法〕  (Storage stability test method)
トナー 10 gを 100 cm3のポリカツプに入れ、 50でで 7日間放置した後、 目視で評価した。 保存性安定性の評価基準を以下に示す。 10 g of the toner was placed in a 100 cm 3 polycup, allowed to stand at 50 at 7 days, and evaluated visually. Evaluation criteria for storage stability are shown below.
A:凝集物が全く見られない。 A: No aggregate is observed.
B : 集物がわずかに見られる。  B: Slight collections can be seen.
C :凝集物がやや多く見られるが容易に崩れる。 C: Aggregates are slightly seen, but easily collapse.
D:殆どが凝集し、 容易には崩れない。 D: Mostly aggregated and do not collapse easily.
〈画像濃度の測定方法〉  <Method of measuring image density>
現像安定性能は以下の基準で評価した。 画像濃度の測定は 「マクベス反射濃 度計 RD 918」 (マクベス社製) を用いて、 原稿濃度が 0. 00の白地部分 のプリントアウト画像に対する相対濃度を測定した。  The development stability performance was evaluated based on the following criteria. The image density was measured using a “Macbeth reflection densitometer RD 918” (manufactured by Macbeth Co., Ltd.) to measure the relative density of the white background portion of the original with a density of 0.000 to the printout image.
〔帯電量の測定方法〕  [Measurement method of charge amount]
定着性試験に使用した二成分現像剤を用い、 市販のフルカラーデジタル複写 機 (CLC 700, キャノン製) を使用し、 必要に応じて逐次トナーを補給し ながら、 常温常湿下、 5000枚の画出しを行い、 現像スリーブ上の現像剤を 一部回収し、 トナー帯電量を測^した。  Using the two-component developer used for the fixability test, a commercially available full-color digital copying machine (CLC 700, manufactured by Canon), while replenishing toner as needed, 5,000 images were printed at room temperature and normal humidity. Then, a part of the developer on the developing sleeve was collected, and the toner charge amount was measured.
(実施例 2)  (Example 2)
表 3に示すように、 エステ/レワックス 1の代わりにエステルワックス 2を、 ポリメチレンワックス 1の代わりにポリメチレンワックス 2を用いた以外は 実施例 1と同様にしてトナー粒子を得た。 実施例 1と同様にして重量平均粒子 径 6. 5μπιのトナー 2を作成し、 評価を行った。 トナー 2の物性及ぴ評価結 果を表 3乃至 6に示す。 実施例 1と比較して、 耐オフセット性能と低温定着性 能がやや低下するものの、 それ以外は全く問題がなく良好であった。 As shown in Table 3, toner particles were obtained in the same manner as in Example 1 except that ester wax 2 was used instead of beauty / rewax 1 and polymethylene wax 2 was used instead of polymethylene wax 1. Weight average particles in the same manner as in Example 1. Toner 2 having a diameter of 6.5 μπι was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 2. Compared with Example 1, the anti-offset performance and the low-temperature fixing performance were slightly reduced, but other than that, there was no problem at all and good.
(実施例 3)  (Example 3)
•スチレン 100質量部 • 100 parts by mass of styrene
• C. I. ビグメントブルー 15 : 3 12質量部• C.I. Pigment Blue 15: 3 12 parts by mass
-荷電制御剤 6質量部-6 parts by weight of charge control agent
(ジ— t e r t—プチルサリチル酸のアルミニウム化合物) (Di-tert-aluminum compound of butylsalicylic acid)
からなる混合物を、 アトライター (三井金属社製) を用いて 3時間分散し、 顔 料分散液を調整した。 Was dispersed using an attritor (manufactured by Mitsui Kinzoku Co., Ltd.) for 3 hours to prepare a pigment dispersion.
髙速撹拌装置 TK_ホモミキサーを備えた 2リ ッ トルの四つ口フラスコ中 に、 イオン交換水 350質量部と、 0. 1モル リッ トル一 N a3P04水溶液 225質量部を添加して、 ホモミキサーの回転数を 12000 r pmに調整し、 65. 0°Cに加温せしめた。 ここに 1. 0モル Zリットル一 C a C 12水溶液 3 4質量部を徐々に添カ卩し、 微小な難水溶性分散剤 C a 3 (P04) 2を含む水系分 散媒体を調製した。 , In a four-necked flask 2 liters equipped with a髙速stirrer TK_ homomixer, and ion-exchanged water 350 parts by mass, the 0.1 mole liter one N a 3 P0 4 aqueous solution 225 parts by mass of Then, the rotation speed of the homomixer was adjusted to 12000 rpm, and the mixture was heated to 65.0 ° C. Here gradually添Ka卩a 1.0 molar Z liter one C a C 1 2 solution 3 4 parts by weight, fine sparingly water-soluble dispersing agent C a 3 (P0 4) prepare an aqueous component dispersion medium containing 2 did. ,
上記顔料分散液 59質量部 スチレン 33質量部 n—ブチルァクリ レート  Pigment dispersion 59 parts by weight Styrene 33 parts by weight n-butyl acrylate
ジビニノレベンゼン 0. 2質量部 飽和ポリエステル樹脂  Dibininolebenzene 0.2 parts by mass Saturated polyester resin
(テレフタル酸一プロピレンォキサイド変性ビスフエノール A共重合体、 酸 価 15mg KOHZg)  (Terphthalic acid-propylene oxide-modified bisphenol A copolymer, acid value 15 mg KOHZg)
•エステルワックス 3 10質量部 • Ester wax 3 10 parts by mass
' ポリメチレンワックス 3 3質量部 からなる混合物を、 撹拌下 65 °Cで 5分間保持し、 重合開始剤である 2, 2' —ァゾビス (2, 4—ジメチルパレロニトリル) 2質量部を添加した重合性単 量体組成物を前記水系分散媒体中に投入し、 回転数 12000 r pmを維持し つつ 15分間造粒した。 その後、 高速攪拌装置から通常のプロペラ撹拌装置に 変更し、 攪拌装置の回転数を 150 r pmに維持し、 内温 70. 0°Cで 6時間 重合し、 内温を 80. 0°Cに昇温して 4時間時間重合を行った。 重合終了後、 回転を保持しつつ内温を 0. 40°C/分の冷却速度で 24. 0°Cまで冷却した。 内温を 20. 0〜25. 0°Cに保持しつつ、水系分散媒体中に希塩酸を添カロし、 難水溶性分散剤を溶解した。 さらに洗浄、 乾燥を行ってトナー粒子を得た。 実施例 1と同様にして、 重量平均粒子径 6. 4 μπιのトナー 3を作成し、 評 価を行つた。 トナー 3の物性及び評価結果を表 3乃至 6に示す。 実施例 1と比 較して、 低温定着性能がやや低下するものの、 それ以外は全く問題がなく良好 であった。 . 'A mixture consisting of 33 parts by mass of polymethylene wax is kept under stirring at 65 ° C for 5 minutes, and the polymerization initiator 2, 2' The polymerizable monomer composition to which 2 parts by mass of azobis (2,4-dimethylpareronitrile) was added was charged into the aqueous dispersion medium, and granulated for 15 minutes while maintaining the rotation speed at 12000 rpm. After that, the high-speed stirrer was changed to a normal propeller stirrer, the rotation speed of the stirrer was maintained at 150 rpm, polymerization was carried out at an internal temperature of 70.0 ° C for 6 hours, and the internal temperature was raised to 80.0 ° C. The temperature was raised and polymerization was carried out for 4 hours. After completion of the polymerization, the internal temperature was cooled to 24.0 ° C at a cooling rate of 0.40 ° C / min while maintaining the rotation. While maintaining the internal temperature at 20.0 to 25.0 ° C, dilute hydrochloric acid was added to the aqueous dispersion medium to dissolve the poorly water-soluble dispersant. After further washing and drying, toner particles were obtained. In the same manner as in Example 1, Toner 3 having a weight average particle diameter of 6.4 μπι was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 3. Compared with Example 1, the low-temperature fixing performance was slightly lowered, but other than that, there was no problem at all and good. .
(実施例 4)  (Example 4)
ポリメチレンワックス 3を使用せず、 エステルワックス 3の添加量を 18質 量部とした以外は実施例 3と同様にしてトナー粒子を得た。  Toner particles were obtained in the same manner as in Example 3, except that polymethylene wax 3 was not used and the amount of ester wax 3 was changed to 18 parts by mass.
実施例 1と同様にして、 重量平均粒子径 6. 3 μηιのトナー 4を作成し、 評 価を行つた。 トナー 4の物性及び評価結果を表 3乃至 6に示す。 実施例 1と比 較して、 耐オフセット性能と低温定着性能がやや低下するものの、 それ以外は 全く問題がなく良好であつた。  In the same manner as in Example 1, a toner 4 having a weight average particle diameter of 6.3 μηι was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 4. Compared with Example 1, the anti-offset performance and the low-temperature fixing performance were slightly lowered, but other than that, there was no problem at all, and it was good.
(比較例 1 )  (Comparative Example 1)
エステルヮックス 1の代わりにエステルヮックス 4を使用し、 重合開始剤の 添加量を 7質量部とした以外は実施例 1と同様にしてトナー粒子を得た。  Toner particles were obtained in the same manner as in Example 1 except that Esterex 4 was used instead of Esterex 1 and the amount of the polymerization initiator was changed to 7 parts by mass.
実施例 1と同様にして、 重量平均粒子径 5. 9 μηιのトナー 5を作成し、 評 価を行つた。 トナー 5の物性及び評価結果を表 3乃至 6に示す。 低温定着性能 は良好であつたが、 195°Cでグロス最大値となり、 それ以上の温度ではトナ 一が紙に染み込みすぎて画質が低下した。 また、 5000枚耐久後の画像で画 像濃度の低下が見られ、 トナー帯電量も初期に比べて低下していた。 さらに、 保存安定性能も劣っていた。 In the same manner as in Example 1, Toner 5 having a weight average particle diameter of 5.9 μηι was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 5. Although the low-temperature fixing performance was good, the maximum gloss value was reached at 195 ° C. At temperatures higher than 195 ° C, the toner was soaked into the paper and the image quality deteriorated. In addition, images with 5,000 sheets A decrease in the image density was observed, and the charge amount of the toner was lower than the initial value. Furthermore, the storage stability performance was poor.
(比較例 2 )  (Comparative Example 2)
エステルヮックス 3の代わりにエステルヮックス 5を使用し、 重合開始剤の 添加量を 7質量部とした以外は実施例 4と同様にしてトナー粒子を得た。  Toner particles were obtained in the same manner as in Example 4, except that Esterex 5 was used instead of Esterex 3 and the amount of the polymerization initiator was changed to 7 parts by mass.
実施例 1と同様にして、 重量平均粒子径 6 . 8 z mのトナー 6を作成し、 評 価を行った。 トナー 6の物性及び評価結果を表 3乃至 6に示す。 保存安定性能 はほぼ良好であつたが、 低温定着性能が劣っていた。 また、 定着性能の高温側 終点が低下した。さらに、 5 0 0 0枚耐久後の画像で画像濃度の低下が見られ、 トナー帯電量も初期に比べて低下していた。  In the same manner as in Example 1, a toner 6 having a weight average particle size of 6.8 zm was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 6. The storage stability performance was almost good, but the low-temperature fixing performance was poor. In addition, the end point of the fixing performance on the high temperature side decreased. Further, a decrease in image density was observed in the image after 500 sheets of durability, and the toner charge amount was also lower than the initial value.
(比較例 3 )  (Comparative Example 3)
エステルヮックス 3の代わりにエステルヮックス 4を使用し、 重合開始剤の 添加量を 0 . 8質量部とした以外は実施例 4と同様にしてトナー粒子を得た。 実施例 1と同様にして、 重量平均粒子径 6 . 5 μ mのトナー 7を作成し、 評 価を行った。 トナー 7の物性及び評価結果を表 3乃至 6に示す。保存安定性能、 低温定着性能は良好であったが、' 1 8 5 °Cで受像紙の卷きつきが発生した。 ま た、 5 0 0 0枚耐久後の画像では画像濃度の低下が見られ、 トナー帯電量も初 期に比べて低下していた。  Toner particles were obtained in the same manner as in Example 4, except that Esterex 4 was used instead of Esterex 3, and the amount of the polymerization initiator was changed to 0.8 parts by mass. In the same manner as in Example 1, a toner 7 having a weight average particle diameter of 6.5 μm was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 7. Although the storage stability performance and the low-temperature fixing performance were good, winding of the receiving paper occurred at '185 ° C. Further, in the image after 50,000 sheets of durability, the image density was reduced, and the toner charge amount was lower than the initial value.
(比較例 4 )  (Comparative Example 4)
エステルワックス 1の代わりにエステルワックス 4を使用し、 重合開始剤の 添加量を 7質量部とし、 重合終了後の冷却速度を 1 0 . 0 0 °CZ分とした以外 は実施例 1と同様にしてトナー粒子を得た。  Same as Example 1 except that ester wax 4 was used instead of ester wax 1, the amount of the polymerization initiator added was 7 parts by mass, and the cooling rate after the completion of the polymerization was 10.0 ° C.Z. Thus, toner particles were obtained.
実施例 1と同様にして、 重量平均粒子径 6 . 0 mのトナー 8を作成し、 評 価を行った。 トナー 8の物性及び評価結果を表 3乃至 6に示す。 低温定着性能 は良好であつたが、 1 9 5 °Cでグロス最大値となり、 それ以上の温度ではトナ 一が紙に染み込みすぎて画質が低下した。 また、 初期画像濃度では濃度がやや 低い程度であつたが、 5 0 0 0枚耐久後の画像では明らかな画像濃度の低下が 見られ、 トナー帯電量も初期に比べて大きく低下していた。 さらに、 保存安定 性能も劣っていた。 In the same manner as in Example 1, a toner 8 having a weight average particle diameter of 6.0 m was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 8. Although the low-temperature fixing performance was good, the maximum gloss value was reached at 195 ° C, and at temperatures higher than that, toner was soaked into the paper and the image quality was degraded. In the initial image density, the density is slightly Although the degree was low, a clear decrease in image density was observed in the image after 50,000 sheets of durability, and the charge amount of the toner was significantly lower than the initial level. Furthermore, the storage stability performance was poor.
(比較例 5 )  (Comparative Example 5)
エステルヮ.ッタス 3の代わりにエステルヮックス 4を使用し、 重合開始剤の 添加量を 7質量部とし、 重令終了後の冷却速度を 1 0 . 0 0°CZ分とした以外 は実施例 4と同様にしてトナー粒子を得た。  Same as Example 4 except that Ester Pex 4 was used instead of Ester I. Tas 3, the amount of the polymerization initiator added was 7 parts by mass, and the cooling rate after the completion of the heavy duty was 10.0 ° C CZ minutes. Thus, toner particles were obtained.
実施例 1と同様にして、 重量平均粒子径 6 . 4 μ ιηのトナー 9を作成し、 評 価を行つた。 トナー 9の物性及び評価結果を表 3乃至 6に示す。 低温定着性能 は良好であつたが、 1 8 5 °Cで受像紙の巻きつきが発生した。 また、 初期画像 濃度では濃度がやや低い程度であつたが、 5 0 0 0枚耐久後の画像では明らか な画像濃度の低下が見られ、 トナー帯電量も初期に比べて大きく低下していた。 さらに、 保存安定性能も劣っていた。 .  In the same manner as in Example 1, a toner 9 having a weight average particle diameter of 6.4 μιη was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 9. Although the low-temperature fixing performance was good, the image receiving paper was wrapped at 185 ° C. In addition, although the initial image density was slightly lower, the image density after the endurance of 500 sheets clearly decreased, and the toner charge amount was significantly lower than the initial level. Furthermore, the storage stability performance was poor. .
(比較例 6 )  (Comparative Example 6)
エステルヮックス 3の代わりにエステルヮックス 5を使用し、 重合開始剤の 添加量を 0 . 8質量部とし、 重合終了後の冷却速度を 1 0 . 0 0 °CZ分とした 以外は実施例 4と同様にしてトナー粒子を得た。  Esterox 5 was used in place of Esterox 3, the amount of the polymerization initiator was 0.8 parts by mass, and the cooling rate after the completion of the polymerization was 10.0 ° CZ. Thus, toner particles were obtained.
実施例 1ど同様にして、 重量平均粒子径 6 . 6 μ πιのトナー 1 0を作成し、 評価を行つた。 トナー 1 0の物性及び評価結果を表 3乃至 6に示す。 保存安定 性能はほぼ良好であつたが、 低温定着性能が明らかに劣っていた。 また、 定着 性能の高温側終点が低下した。 さらに、 5 0 0 0枚耐久後の画像で画像濃度の 低下が見られ、 トナー帯電量も初期に比べて低下していた。  In the same manner as in Example 1, a toner 10 having a weight average particle diameter of 6.6 μπι was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 10. The storage stability performance was almost good, but the low-temperature fixing performance was clearly inferior. Also, the end point of the fixing performance on the high temperature side decreased. Further, a decrease in image density was observed in the image after 50,000 sheets of durability, and the toner charge amount was also lower than the initial value.
(実施例 5 )  (Example 5)
重合終了後の冷却速度を 0 . 1 0 °C/分とした以外は実施例 1と同様に'して トナー粒子を得た。 ' '  Toner particles were obtained in the same manner as in Example 1 except that the cooling rate after the completion of the polymerization was 0.10 ° C./min. ''
実施例 1と同様にして、 重量平均粒子径 6 . 3 mのトナー 1 1を作成し、 評価を行った。 トナー 1 1の物性及び評価結果を表 3乃至 6に示す。 In the same manner as in Example 1, a toner 11 having a weight average particle diameter of 6.3 m was prepared. Evaluation was performed. Tables 3 to 6 show the physical properties and evaluation results of Toner 11.
(実施例 6 )  (Example 6)
重合開始剤の添加量を 3 . 5質量部とした以外は実施例 3と同様にしてトナ 一粒子を得た。  Toner particles were obtained in the same manner as in Example 3, except that the addition amount of the polymerization initiator was changed to 3.5 parts by mass.
実施例 3と同様にして、 重量平均粒子径 6 . 4 mのトナー 1 2を作成し、 評価を行つた。 トナー 1 2の物性及び評価結果を表 3乃至 6に示す。  In the same manner as in Example 3, a toner 12 having a weight average particle diameter of 6.4 m was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 12.
(実施例 7 )  (Example 7)
重合開始剤の添加量を 4 . 5質量部とした以外は実施例 3と同様にしてトナ 一粒子を得た。  Toner particles were obtained in the same manner as in Example 3, except that the addition amount of the polymerization initiator was 4.5 parts by mass.
実施例 3と同様にして、 重量平均粒子径 6 . 4 μ πχのトナー 1 3を作成し、 評価を行った。 トナー 1 3の物性及び評価結果を表 3乃至 6に示す。  In the same manner as in Example 3, a toner 13 having a weight average particle diameter of 6.4 μππ was prepared and evaluated. Tables 3 to 6 show the physical properties and evaluation results of Toner 13.
この出願は 2 0 0 3年 1 2月 5日に出願された日本国特許出願第 2 0 0 3 — 4 0 6 9 6 8からの優先権を主張するものであり、 その内容を引用してこの 出願の一部とするものである。 This application claims priority from Japanese Patent Application No. 2003 — 4006968 filed on February 5, 2003. It is part of this application.
表 3 Table 3
THF不溶  THF insoluble
エス ホ'リメチレン 重量平均 個数平均 分子!: 重量平均 数平均  S-ho-limethylene Weight average Number average Molecule! : Weight average Number average
け 冷却速度 分の ワックス 実施例 一 テル  Example of cooling rate
ワックス ワックス ワックス形状  Wax wax wax shape
No. 粒子径 粒子径 変動係数 円形度 分布の 分子量 Mw/ n  No. Particle size Particle size Coefficient of variation Circularity Molecular weight of distribution Mw / n
(¾ノ分) 分子  (¾ ノ 分) molecule
No. No. 含有量 分散状態  No. No. Content Dispersion state
( i m) ピーク ( w) (Mn)  (i m) Peak (w) (Mn)
実施例 1 1 1 1 0.40 6.3 5.2 0.15 0.978 21800 198000 23200 8.5 27.8 (C)針状 (b)多核 実施例 2 2 2 2 0.40 6.5 5.4 0.16 0.977 21500 197000 22900 8.6 27.9 )針状 (b〉多核 実施例 3 3 3 3 0.40 6.4 5.3 0.19 0.975 21700 204000 23100 8.8 27.6 (b)棒状 (a)単核 実施例 4 4 3 - 0.40 6.3 5.3 0.18 0.971 21200 201000 22800 8.8 26.9 (a)球状 (b)多核 比較例 1 5 4 1 0.40 5.9 4.5 0.22 0.970 12800 169000 15300 1 1.0 27.7 (C)針状 (b)多核 比較例 2 6 5 一 0.40 6.8 4.9 0.23 0.971 13500 72000 15600 U.O 28.1 (a)球状 (a)単核 比較例 3 7 4 - 0.40 6.5 4.4 0.28 0.970 76800 489000 108700 4.5 30.4 (a〉球状 (a)単核 比較例 4 8 4 1 10.00 6.0 4.7 0.23 0.967 12900 169000 15400 1 1.0 27.7 〈c)針状 (b)多核 比較例 5 9 4 - 10.00 6.4 5.2 0.24 0.968 13600 176000 15900 1 1.1 27.3 (a)球状 (a)単核 比較例 6 10 5 ― 10.00 6.6 4.7 0.27 0.966 77400 493000 1 10200 4.5 30.5 (a)球状 (a)単核 実施例 5 1 1 1 1 0.10 6.3 5.2 0.14 0.985 21800 198000 23300 8.5 27.7 (C)針状 (W多核 実施例 6 12 3 3 0.40 6.4 5.1 0.21 0.972 18700 186000 21800 8.5 27.4 (b)棒状 (a)単核 実施例 7 13 3 3 0.40 6.3 5.0 0.22 0.970 16400 181000 19300 9.4 27.3 (b)棒状 (a)単核 Example 1 1 1 1 0.40 6.3 5.2 0.15 0.978 21800 198000 23200 8.5 27.8 (C) Needle-like (b) Polynuclear Example 2 2 2 2 0.40 6.5 5.4 0.16 0.977 21500 197000 22900 8.6 27.9) Needle-like (b) Polynuclear Example 3 3 3 3 0.40 6.4 5.3 0.19 0.975 21700 204000 23100 8.8 27.6 (b) Rod (a) mononuclear Example 4 4 3-0.40 6.3 5.3 0.18 0.971 21200 201000 22800 8.8 26.9 (a) Spherical (b) polynuclear Comparative Example 1 5 4 1 0.40 5.9 4.5 0.22 0.970 12800 169000 15300 1 1.0 27.7 (C) Acicular (b) Polynuclear Comparative Example 2 6 5 One 0.40 6.8 4.9 0.23 0.971 13500 72000 15600 UO 28.1 (a) Spherical (a) Mononuclear Comparative Example 3 7 4-0.40 6.5 4.4 0.28 0.970 76 800 489000 108 700 4.5 30.4 (a) Spherical (a) Mononuclear Comparative Example 4 8 4 1 10.00 6.0 4.7 0.23 0.967 12900 169000 15400 1 1.0 27.7 <c) Needle-like (b) Polynuclear Comparison Example 5 9 4-10.00 6.4 5.2 0.24 0.968 13600 176000 15900 1 1.1 27.3 (a) Spherical (a) mononuclear Comparative Example 6 10 5 ― 10.00 6.6 4.7 0.27 0.966 77400 493000 1 10 200 4.5 30.5 (a) Spherical (a) single Nuclear Example 5 1 1 1 1 0.10 6.3 5.2 0.14 0.985 21800 198000 23300 8.5 27.7 (C) Needle (W polynuclear Example 6 12 3 3 0.40 6.4 5.1 0.21 0.972 18700 186000 21800 8.5 27.4 (b) Rod (a) Mononuclear Example 7 13 3 3 0.40 6.3 5.0 0.22 0.970 16400 181000 19300 9.4 27.3 (b) Rod (a ) Mononuclear
表 4 Table 4
分子量 2000 1回目の走 2回目の走  Molecular weight 2000 First run Second run
査 査  Inspection
Tg1 Tg2 Tg1-Tg2 Q1 Q2 Q3 Q4 実施例 5000の含有 でみられる でみられる Q1 /Q2 Q3/Q4  Tg1 Tg2 Tg1-Tg2 Q1 Q2 Q3 Q4 Q1 / Q2 Q3 / Q4
(。C) (。C) (。c) (J/g) (J/g) (J/g) (J/g) 吸熱ピ-ク 吸熱ピーク  (.C) (.C) (.c) (J / g) (J / g) (J / g) (J / g) Endothermic peak Endothermic peak
(質量%) (°C) (。C)  (% By mass) (° C) (.C)
実施例 1 56.7 46.1 10.6 3.2 59.6/87.3 87.4 10.7 1.3 8.23 6.8 6.6 1.03 実施例 2 59.2 49.7 9.5 3.2 68.8/93.5 68.9/98.4 9.3 3.2 2.91 フ.3 6.8 1.07 実施例 3 58.3 50.2 8.1 3.1 63.8/73.9 63.9/73.6 16.3 6.2 2.63 5.6 5.2 1.08 実施例 4 56.8 50.4 6.4 3.3 63.6 63.3 18.2 8.9 2.04 ― •― ― 比較例 1 52.1 49.4 2.7 42.8 54.2/88.1 54.5/88.3 3.8 2.1 1.81 6.9 6.6 1.05 比較例 2 65.8 65.1 0.7 41.9 . 77.9 77.7 19.1 18.6 1.03 ― ― ― 比較例 3 65.7 44.6 21.1 0.7 54.9 55.0 19.4 1.8 10.78 ― ― 1 ― 比較例 4 49.5 49.4 0.1 42.3 88.3 88.2 0.3 0.2 1.35 7.0 6.8 1.03 比較例 5 49.6 49.3 0.3 0.8 55.1 55.2 7.8 7.9 0.99 ― ― ― 比較例 6 63.8 62.5 1.3 43.0 71.2 70.6 13.3 1 1.7 1.14 ― ― ― 実施例 5 58.3 46.0 12.3 3.2 59.8/87.5 87.4 12.1 1.3 9.31 7.0 6.6 1.06 実施例 6 56.2 50.3 5.9 12.1 63.1 /73.6 63.2/73.5 3.8 6.1 2.26 5.5 5.1 1.08 実施例 7 54.8 50.2 4.6 22.7 62.9/73.3 63.0/73.4 12.1 6.0 2.02 5.4 5.0 1.08 Example 1 56.7 46.1 10.6 3.2 59.6 / 87.3 87.4 10.7 1.3 8.23 6.8 6.6 1.03 Example 2 59.2 49.7 9.5 3.2 68.8 / 93.5 68.9 / 98.4 9.3 3.2 2.91 F.3 6.8 1.07 Example 3 58.3 50.2 8.1 3.1 63.8 / 73.9 63.9 / 73.6 16.3 6.2 2.63 5.6 5.2 1.08 Example 4 56.8 50.4 6.4 3.3 63.6 63.3 18.2 8.9 2.04----Comparative example 1 52.1 49.4 2.7 42.8 54.2 / 88.1 54.5 / 88.3 3.8 2.1 1.81 6.9 6.6 1.05 Comparative example 2 65.8 65.1 0.7 41.9. 77.9 77.7 19.1 18.6 1.03 ― ― ― Comparative Example 3 65.7 44.6 21.1 0.7 54.9 55.0 19.4 1.8 10.78 ― ― 1 ― Comparative Example 4 49.5 49.4 0.1 42.3 88.3 88.2 0.3 0.2 1.35 7.0 6.8 1.03 Comparative Example 5 49.6 49.3 0.3 0.8 55.1 55.2 7.8 7.9 0.99---Comparative example 6 63.8 62.5 1.3 43.0 71.2 70.6 13.3 1 1.7 1.14---Example 5 58.3 46.0 12.3 3.2 59.8 / 87.5 87.4 12.1 1.3 9.31 7.0 6.6 1.06 Example 6 56.2 50.3 5.9 12.1 63.1 /73.6 63.2 / 73.5 3.8 6.1 2.26 5.5 5.1 1.08 Example 7 54.8 50.2 4.6 22.7 62.9 / 73.3 63.0 / 73.4 12.1 6.0 2.02 5.4 5.0 1.08
表 5 Table 5
実施例 Tf1 (°C) Tf2 (°C) Tff1 (°C) HfKmm) Tff2 (°C) Hf2(mm) Tfr 実施例 1 50.2 61.1 54.6 0.06 59.4 2.00 0.40 実施例 2 52.6 63.2 56.3 0.06 61.3 2.01 0.39 実施例 3 51.7 63.4 56.1 0.05 61.4 1.99 0.37 実施例 4 48.8 61.3 54.0 0.07 59.5 2.01 0.35 比較例 1 47.1 54.2 51.1 0.06 53.6 2.00 0.78 比較例 2 47.7 67.3 63.9 0.07 66.6 2.02 0.72 比較例 3 49.0 68.8 55.4 0.05 67.1 1.99 0.17 比較例 4 44.3 61.6 46.7 0.06 59.0 2.00 0.16 比較例 5 43.5 51.7 48.8 0.06 51.2 2,00 0.81 比較例 6 55.4 65.9 62.4 0.06 65.1 2.01 0.72 実施例 5 51.3 61.0 55.4 0.05 59.4 1.99 0.49 実施例 6 49.8 63.4 55.7 0.06 61.4 2.00 0.34 実施例 7 48.6 64.1 53.2 0.06 59.3 2.00 0.32 Example Tf1 (° C) Tf2 (° C) Tff1 (° C) HfKmm) Tff2 (° C) Hf2 (mm) Tfr Example 1 50.2 61.1 54.6 0.06 59.4 2.00 0.40 Example 2 52.6 63.2 56.3 0.06 61.3 2.01 0.39 Example 3 51.7 63.4 56.1 0.05 61.4 1.99 0.37 Example 4 48.8 61.3 54.0 0.07 59.5 2.01 0.35 Comparative 1 47.1 54.2 51.1 0.06 53.6 2.00 0.78 Comparative 2 47.7 67.3 63.9 0.07 66.6 2.02 0.72 Comparative 3 49.0 68.8 55.4 0.05 67.1 1.99 0.17 Comparative Example 4 44.3 61.6 46.7 0.06 59.0 2.00 0.16 Comparative example 5 43.5 51.7 48.8 0.06 51.2 2,00 0.81 Comparative example 6 55.4 65.9 62.4 0.06 65.1 2.01 0.72 Example 5 51.3 61.0 55.4 0.05 59.4 1.99 0.49 Example 6 49.8 63.4 55.7 0.06 61.4 2.00 0.34 Example 7 48.6 64.1 53.2 0.06 59.3 2.00 0.32
表 6 Table 6
耐ゎセット性 低温定着性 保存安定性 初期 5000枚後 実施例 低温側 側 定着 问皿側  Set resistance Low-temperature fixing property Storage stability Initially after 5000 sheets Example Low-temperature side Fixing Dish side
帯電量 帯電量 開始点 終了点 開始点 終了点 画像濃度 画像濃度  Charge amount Charge amount Start point End point Start point End point Image density Image density
(mC/kg) (mC/kg) (mC / kg) (mC / kg)
(。c) (。c) (°C) (°c) (.C) (.c) (° C) (° c)
実施例 1 130 230 130 230 A 1.53 34.7 1.48 34.2 実施例 2 135 230 135 230 A 1.52 34.1 . 1.49 33.8 実施例 3 130 230 135 230 A 1.53 33.2 1.50 33.3 実施例 4 135 230 135 220 A 1.54 32.8 1.46 31.9 比較例 1 130 220 135 195 C 1.49 34.8 1.37 29.2 比較例 2 150 230 150 210 B 1.48 33.6 1.38 29.1 比較例 3 130 185 135 185 A 1.47 31.7 1.28 22.3 比較例 4 130 220 135 195 D 、 1.41 29.3 1.19 19.3 比較例 5 130 185 135 185 D 1.38 28.6 1.14 18.8 比較例 6 155 230 160 220 A 1 ,51 33.1 1.39 28.7 実施例 5 130 230 130 230 A 1.56 34.6 1.54 34.4 実施例 6 130 230 135 220 A 1.53 33.1 1.47 32.3 実施例 7 130 220 130 210 A 1.50 32.7 1.42 30.6 Example 1 130 230 130 230 A 1.53 34.7 1.48 34.2 Example 2 135 230 135 230 A 1.52 34.1. 1.49 33.8 Example 3 130 230 135 230 A 1.53 33.2 1.50 33.3 Example 4 135 230 135 220 A 1.54 32.8 1.46 31.9 Compare Example 1 130 220 135 195 C 1.49 34.8 1.37 29.2 Comparative Example 2 150 230 150 210 B 1.48 33.6 1.38 29.1 Comparative Example 3 130 185 135 185 A 1.47 31.7 1.28 22.3 Comparative Example 4 130 220 135 195 D, 1.41 29.3 1.19 19.3 Comparative Example 5 130 185 135 185 D 1.38 28.6 1.14 18.8 Comparative Example 6 155 230 160 220 A 1,51 33.1 1.39 28.7 Example 5 130 230 130 230 A 1.56 34.6 1.54 34.4 Example 6 130 230 135 220 A 1.53 33.1 1.47 32.3 Example 7 130 220 130 210 A 1.50 32.7 1.42 30.6

Claims

請求の範囲 The scope of the claims
1. 示差走査熱量計でトナーを測定した D S C曲線において、1. In the DSC curve obtained by measuring the toner with a differential scanning calorimeter,
1回目の走査で測定されるガラス転移点(Tg 1)が 50. 0乃至 70. 0°C 5 であり、 The glass transition point (Tg 1) measured in the first scan is 50.0 to 70.0 ° C 5,
該 1回目の走査で測定されるガラス転移点 (T g 1 ) と 2回目の走査で測定 されるガラス転移点 (Tg 2) との温度差 (T g 1— T g 2) が 3. 0乃至 2 0. 0°Cであるトナー。  The temperature difference (Tg1-Tg2) between the glass transition point (Tg1) measured in the first scan and the glass transition point (Tg2) measured in the second scan is 3.0. To 20.0 ° C.
2. 該 2回目の走査で測定されるガラス転移点 (Tg 2) 力 45.0 0乃至55. 0°Cである請求項 1に記載のトナー。  2. The toner according to claim 1, wherein the glass transition point (Tg 2) force measured in the second scan is from 45.0 to 55.0 ° C.
' 3. 該トナーは、 分子量 2000乃至 5000の榭脂成分をトナー 全質量に対して 1. 0乃至 40. 0質量。 /0含有することを特徴とする請求項 1 に記載のトナー。 '3. The toner contains a resin component having a molecular weight of 2,000 to 5,000 in a mass of 1.0 to 40.0 mass based on the total mass of the toner. / 0 toner according to claim 1, characterized in that it contains.
4. 該トナーは、 1回目の走査で測定されるトナーの DS C曲線に5 おいて 55. 0乃至 70. 0°〇に融点 (丁1111 ) を有する請求項 1に記載のト ナー。 .  4. The toner according to claim 1, wherein the toner has a melting point (1111) at 55.0 to 70.0 ° in a DSC curve of the toner measured in the first scan. .
5. 該トナーは、 該融点 (Tml) を有する融解ピークにおいて、 1回目の走査で測定される吸熱量 Q1と、 2回目の走査で測定される吸熱量 Q 2との比 (Q 1/Q 2) が 2. 00乃至 50. 00である請求項 4に記載のト0 ナー。  5. In the melting peak having the melting point (Tml), the toner has a ratio (Q 1 / Q) between the endothermic amount Q1 measured in the first scan and the endothermic amount Q2 measured in the second scan. 5. The toner according to claim 4, wherein 2) is 2.00 to 50.00.
6. 該トナーは、 エステルワックスを有し、  6. the toner has an ester wax;
該エステルワックスは、 炭素数 18乃至 42のエステル化合物を有する請求 項 1に記載のトナー。  The toner according to claim 1, wherein the ester wax has an ester compound having 18 to 42 carbon atoms.
7. 該トナーは、 エステルワックスを有し、 7. The toner has an ester wax,
5 該エステルワックスは、 炭素数 10乃至 21のアルキル基を有する脂肪酸ェ ステル化合物を有する請求項 1に記載のトナー。 5. The toner according to claim 1, wherein the ester wax has a fatty acid ester compound having an alkyl group having 10 to 21 carbon atoms.
8. 該エステルワックスは、 2種以上のエステル化合物を有し、 該エステル化合物のうち、 同一の構造を有するエステルイ匕合物を、 エステル ワックスの全質量に対して 50乃至 95質量%有する請求項 6又は 7に記載 のトナー。 8. The ester wax has two or more ester compounds, and the ester compound has 50 to 95% by mass of an esterified compound having the same structure, based on the total mass of the ester wax. 6. The toner according to 6 or 7.
9. 該トナーは、 さらにポリメチレンワックスを含有する請求項 6 又は 7に記載のトナー。  9. The toner according to claim 6, wherein the toner further contains a polymethylene wax.
10. 該トナーは、 2回目の走査で測定されるトナーの DS C曲線 において 71. 0乃至 150. 0°Cに融点 (Tm2) を有する請求項 1に記载 のトナー。  10. The toner according to claim 1, wherein the toner has a melting point (Tm2) at 71.0 to 155.0 ° C in a DSC curve of the toner measured in the second scan.
11. 該トナーは、該融点(Tm2) を有する融解ピークにおいて、 11. The toner has a melting peak having the melting point (Tm2)
1回目の走査で測定される吸熱量 Q 3と、 2回目の走査で測定される吸熱量 Q , 4との比 (Q 3/Q4)'が 0. 80乃至 1. 20である請求項 10に記載のト ナー。 The ratio (Q 3 / Q 4) ′ between the endothermic quantity Q 3 measured in the first scan and the endothermic quantities Q and 4 measured in the second scan is 0.80 to 1.20. The toner described in.
12. 該トナーは、 該 2回目の走査で測定される吸熱量 Q4が 1. 5乃至 20. 0 J /gである請求項 11に記載のトナー。  12. The toner according to claim 11, wherein the toner has an endothermic quantity Q4 measured in the second scan of 1.5 to 20.0 J / g.
13. 該融点 (Tm2) に起因するワックス成分がポリメチレンヮ ックスである請求項 10に記載のトナー。  13. The toner according to claim 10, wherein the wax component due to the melting point (Tm2) is polymethylene.
14. 該トナーは、 テトラヒドロフラン不溶分をトナー全質量に対 して 5乃至 90質量%有する請求項 1に記載のトナー。  14. The toner according to claim 1, wherein the toner has a tetrahydrofuran-insoluble content of 5 to 90% by mass based on the total mass of the toner.
15. 該トナ一は、 テトラヒドロフラン可溶分の数平均分子量 (M n).が 3000乃至 100000であり、 重量平均分子量 (Mw) が 1000 0乃至 1000000であり、 Mwと Mnとの比 (Mw/Mn) が 2. 00乃 至 100. 00である請求項 1に記載のトナー。  15. The toner has a number average molecular weight (Mn) of 3,000 to 100,000, a weight average molecular weight (Mw) of 10,000 to 100,000, and a ratio of Mw to Mn (Mw / 2. The toner according to claim 1, wherein Mn) is 2.00 to 100.00.
16. 該トナ一は、変形開始点(T f 1 )が 45. 0乃至 60. 0 °C、 変形終了点 (T f 2) が 55. 0乃至 75. 0°C、 変形係数 (T f r ) が 0. 3乃至 0. 7である請求項 1に記載のトナー。 16. The toner has a deformation start point (T f 1) of 45.0 to 60.0 ° C, a deformation end point (T f 2) of 55.0 to 75.0 ° C, and a deformation coefficient (T fr 2) is 0.3 to 0.7.
17. 少なくとも着色剤、 ワックス、 及び、 結着樹脂を合成するた ' めの重合性単量体を有する重合性単量体組成物を水系分散媒体中に分散して 造粒し、 該重合性単量体組成物の粒子を生成する造粒工程、 17. A polymerizable monomer composition having at least a colorant, a wax, and a polymerizable monomer for synthesizing a binder resin is dispersed in an aqueous dispersion medium and granulated. A granulation step of producing particles of the monomer composition,
該水系分散媒体中で該重合性単量体組成物の粒子を 70. 0乃至 95. 0 °C で加熱し、 該重合性単量体組成物中の重合性単量体を重合してトナー粒子を生 成する重合工程、  The particles of the polymerizable monomer composition are heated at 70.0 to 95.0 ° C. in the aqueous dispersion medium to polymerize the polymerizable monomer in the polymerizable monomer composition to form a toner. A polymerization process to produce particles,
該ト ^ ^一粒子を 70. 0乃至95. 0°Cから 0. 01°C/分以上 2. 00°C ノ分以下の冷却速度で 45. 0°C以下に冷却する冷却工程を少なくとも有する トナーの製造方法であって、  At least a cooling step of cooling the particles from 70.0 to 95.0 ° C to 45.0 ° C or less at a cooling rate of 0.01 ° C / minute or more and 2.00 ° C / minute or less. A method for producing a toner, comprising:
該トナーの製造方法によって製造されたトナーは、  The toner produced by the method for producing the toner,
示差走查熱量計で該トナーを測定した D S C曲線において、  In a DSC curve obtained by measuring the toner with a differential scanning calorimeter,
1回目の走査で測定されるガラス転移点(T g 1)が 50. 0乃至 70. 0°C であり、  The glass transition point (T g 1) measured in the first scan is 50.0 to 70.0 ° C,
該 1回目の走査で測定されるガラス転移点 (T g 1 ) と 2回目の走査で測定 されるガラス転移点 (Tg 2) との温度差 (Tg l—Tg 2) が 3. 0乃至 2 0. 0°Cであるトナーの製造方法。  The temperature difference (Tgl-Tg2) between the glass transition point (Tg1) measured in the first scan and the glass transition point (Tg2) measured in the second scan is 3.0 to 2 A method for producing a toner at 0.0 ° C.
18. 該トナーが、 請求項 1乃至 16のいずれかに記載のトナーで ある請求項 17に記載のトナーの製造方法。  18. The method for producing a toner according to claim 17, wherein the toner is the toner according to any one of claims 1 to 16.
19. 該冷却工程が、 該トナー粒子を 70. 0乃至95. 0°Cから 0. 01 °CZ分以上 0. 50 °C /分以下の冷却速度で 45. 0 °C以下に冷却す る冷却工程である請求項 17に記載のトナーの製造方法。  19. The cooling step cools the toner particles from 70.0 to 95.0 ° C to 45.0 ° C or less at a cooling rate of 0.01 ° C / min to 0.50 ° C / min or less. 18. The method for producing a toner according to claim 17, which is a cooling step.
20. 該冷却工程が、 該トナー粒子を 70. 0乃至 95. 0°Cから 0. 01 °C /分以上 0. 25 °C /分未満の冷却速度で 45. 0 °C以下に冷却す る冷却工程である請求項 17に記載のトナーの製造方法。  20. The cooling step cools the toner particles from 70.0 to 95.0 ° C to 45.0 ° C or less at a cooling rate of 0.01 ° C / min or more and less than 0.25 ° C / min. 18. The method for producing a toner according to claim 17, which is a cooling step.
21. 該重合性単量体組成物は、 少なくともポリメチレンワックス を分散させたワックス分散液 Aを調製した後に、 少なくとも該分散液 Aとエス テルワックスを混合したヮックス分散液 Bを調製することで得られる重合性 単量体組成物である請求項 1 7に記載のトナーの製造方法。 21. The polymerizable monomer composition is prepared by preparing a wax dispersion A in which at least polymethylene wax is dispersed, and then mixing the dispersion A with at least the dispersion A. The method for producing a toner according to claim 17, which is a polymerizable monomer composition obtained by preparing a wax dispersion B mixed with terwax.
2 2 . 重合開始剤が、 該重合性単量体組成物及ぴ該水系分散媒体の 少なくともいずれか一方に含有される請求項 1 7に記載のトナーの製造方法。  22. The method for producing a toner according to claim 17, wherein a polymerization initiator is contained in at least one of the polymerizable monomer composition and the aqueous dispersion medium.
2 3 . 該冷却工程は、 水系分散媒体中で該トナー粒子を冷却する冷 却工程である請求項 1 7に記載のトナーの製造方法。  23. The method for producing a toner according to claim 17, wherein the cooling step is a cooling step of cooling the toner particles in an aqueous dispersion medium.
2 4 . 該冷却工程は、 該トナー粒子を水系分散媒体から取り出し、 該トナー粒子を冷却する冷却工程である請求項 1 7に記載のトナーの製造方  24. The method for producing a toner according to claim 17, wherein the cooling step is a cooling step of removing the toner particles from an aqueous dispersion medium and cooling the toner particles.
PCT/JP2004/018438 2003-12-05 2004-12-03 Toner and process for producing toner WO2005071493A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005517200A JP4721429B2 (en) 2003-12-05 2004-12-03 Toner and toner production method
EP20040801658 EP1693711B1 (en) 2003-12-05 2004-12-03 Toner and process for producing toner
US11/122,031 US7250241B2 (en) 2003-12-05 2005-05-05 Toner and process for producing toner
US11/688,704 US7300737B2 (en) 2003-12-05 2007-03-20 Process for producing toner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-406968 2003-12-05
JP2003406968 2003-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/122,031 Continuation US7250241B2 (en) 2003-12-05 2005-05-05 Toner and process for producing toner

Publications (1)

Publication Number Publication Date
WO2005071493A1 true WO2005071493A1 (en) 2005-08-04

Family

ID=34805267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018438 WO2005071493A1 (en) 2003-12-05 2004-12-03 Toner and process for producing toner

Country Status (4)

Country Link
EP (1) EP1693711B1 (en)
JP (1) JP4721429B2 (en)
CN (1) CN1886700A (en)
WO (1) WO2005071493A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047522A (en) * 2005-08-11 2007-02-22 Canon Inc Toner for full-color single-component development, and single-component development method
JP2007058138A (en) * 2005-08-26 2007-03-08 Fuji Xerox Co Ltd Electrostatic charge image developing toner and method for manufacturing the same, electrostatic latent image developer, and image forming method
JP2007072333A (en) * 2005-09-09 2007-03-22 Ricoh Co Ltd Image forming toner, and method for manufacturing the same and developer, and image forming method and image forming apparatus
JP2007193253A (en) * 2006-01-23 2007-08-02 Canon Inc Emulsion aggregation toner
JP2011028162A (en) * 2009-07-29 2011-02-10 Canon Inc Toner
JP2011133753A (en) * 2009-12-25 2011-07-07 Kyocera Mita Corp Toner wax, electrophotographic toner, and developer
JP2011144358A (en) * 2009-12-17 2011-07-28 Sanyo Chem Ind Ltd Resin particle
JP2011197659A (en) * 2010-02-26 2011-10-06 Konica Minolta Business Technologies Inc Toner for developing electrostatic latent image and method for producing the toner
JP2012008528A (en) * 2010-05-26 2012-01-12 Ricoh Co Ltd Toner
JP2012022331A (en) * 2011-09-13 2012-02-02 Ricoh Co Ltd Toner and image forming method using the same
JP2012063559A (en) * 2010-09-15 2012-03-29 Ricoh Co Ltd Toner and production method of the same
JP2014112205A (en) * 2012-10-29 2014-06-19 Mitsubishi Chemicals Corp Toner for electrostatic charge image development
JP2015028616A (en) * 2013-06-27 2015-02-12 キヤノン株式会社 Toner and manufacturing method of toner
CN105182706A (en) * 2014-06-19 2015-12-23 柯尼卡美能达株式会社 Toner For Developing Electrostatic Image
JP2017142404A (en) * 2016-02-10 2017-08-17 日油株式会社 Wax composition for toner
JP2017156472A (en) * 2016-02-29 2017-09-07 キヤノン株式会社 Manufacturing method of toner
JP2018005257A (en) * 2017-10-13 2018-01-11 三洋化成工業株式会社 Method for manufacturing toner
JP2019139218A (en) * 2018-02-08 2019-08-22 ゼロックス コーポレイションXerox Corporation Toners exhibiting reduced machine ultrafine particle (ufp) emissions and related methods
JP7423470B2 (en) 2020-08-05 2024-01-29 東芝テック株式会社 Toner, toner cartridge, image forming device
JP7490450B2 (en) 2020-05-18 2024-05-27 キヤノン株式会社 toner
JP7495827B2 (en) 2020-06-19 2024-06-05 東芝テック株式会社 Toner, toner cartridge, image forming apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560587B2 (en) * 2008-02-25 2010-10-13 キヤノン株式会社 toner
CN102047186B (en) * 2008-05-28 2013-07-31 佳能株式会社 Toner
JP4565054B2 (en) * 2009-02-27 2010-10-20 キヤノン株式会社 Black toner
JP2012008530A (en) * 2010-05-28 2012-01-12 Ricoh Co Ltd Toner and production method of the same
JP5956124B2 (en) * 2010-08-31 2016-07-27 株式会社リコー Toner, toner manufacturing method, and image forming method
JP2013148862A (en) * 2011-12-20 2013-08-01 Ricoh Co Ltd Toner, developer and image forming apparatus
KR20150097760A (en) * 2012-12-28 2015-08-26 캐논 가부시끼가이샤 Toner
JP5751266B2 (en) * 2013-02-08 2015-07-22 コニカミノルタ株式会社 Toner for electrostatic image development
KR20160007537A (en) * 2013-05-03 2016-01-20 버디아, 인크. Methods for preparing thermally stable lignin fractions
JP6666936B2 (en) * 2017-03-10 2020-03-18 三洋化成工業株式会社 Toner binder and toner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227171A (en) * 1994-12-05 1996-09-03 Canon Inc Toner for developing electrostatic charge image
JPH0943896A (en) * 1995-05-19 1997-02-14 Canon Inc Toner for developing electrostatic charge image and its production
US5863697A (en) 1995-05-19 1999-01-26 Canon Kabushiki Kaisha Toner for developing electrostatic image and process for production thereof
EP1096324A1 (en) 1999-10-26 2001-05-02 Canon Kabushiki Kaisha Dry toner, dry toner production process, and image forming method
JP2002108019A (en) * 2000-07-28 2002-04-10 Canon Inc Toner, method for producing the same and image forming method
JP2003140379A (en) * 2001-10-31 2003-05-14 Konica Corp Electrostatic latent image developing toner and its manufacturing method, developer, image forming method and image forming device
US20030104296A1 (en) 2001-12-04 2003-06-05 Fuji Xerox Co., Ltd. Electrophotographic toner, manufacture of the same, electrostatic latent image developer, and image forming method
JP2003215842A (en) * 2002-01-18 2003-07-30 Fuji Xerox Co Ltd Image forming method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475685B2 (en) * 2000-02-28 2002-11-05 Konica Corporation Electrostatically charged image developing toner, production method of the same, and an image forming method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227171A (en) * 1994-12-05 1996-09-03 Canon Inc Toner for developing electrostatic charge image
JPH0943896A (en) * 1995-05-19 1997-02-14 Canon Inc Toner for developing electrostatic charge image and its production
US5863697A (en) 1995-05-19 1999-01-26 Canon Kabushiki Kaisha Toner for developing electrostatic image and process for production thereof
EP1096324A1 (en) 1999-10-26 2001-05-02 Canon Kabushiki Kaisha Dry toner, dry toner production process, and image forming method
JP2002108019A (en) * 2000-07-28 2002-04-10 Canon Inc Toner, method for producing the same and image forming method
JP2003140379A (en) * 2001-10-31 2003-05-14 Konica Corp Electrostatic latent image developing toner and its manufacturing method, developer, image forming method and image forming device
US20030104296A1 (en) 2001-12-04 2003-06-05 Fuji Xerox Co., Ltd. Electrophotographic toner, manufacture of the same, electrostatic latent image developer, and image forming method
JP2003215842A (en) * 2002-01-18 2003-07-30 Fuji Xerox Co Ltd Image forming method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1693711A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546354B2 (en) * 2005-08-11 2010-09-15 キヤノン株式会社 Full-color one-component developing toner and one-component developing method
JP2007047522A (en) * 2005-08-11 2007-02-22 Canon Inc Toner for full-color single-component development, and single-component development method
JP2007058138A (en) * 2005-08-26 2007-03-08 Fuji Xerox Co Ltd Electrostatic charge image developing toner and method for manufacturing the same, electrostatic latent image developer, and image forming method
JP4517982B2 (en) * 2005-08-26 2010-08-04 富士ゼロックス株式会社 Toner for electrostatic image development, electrostatic latent image developer, and image forming method
JP4708129B2 (en) * 2005-09-09 2011-06-22 株式会社リコー Image forming toner, method for producing the same, developer, and image forming method and image forming apparatus using the same
JP2007072333A (en) * 2005-09-09 2007-03-22 Ricoh Co Ltd Image forming toner, and method for manufacturing the same and developer, and image forming method and image forming apparatus
JP2007193253A (en) * 2006-01-23 2007-08-02 Canon Inc Emulsion aggregation toner
JP2011028162A (en) * 2009-07-29 2011-02-10 Canon Inc Toner
JP2011144358A (en) * 2009-12-17 2011-07-28 Sanyo Chem Ind Ltd Resin particle
JP2011133753A (en) * 2009-12-25 2011-07-07 Kyocera Mita Corp Toner wax, electrophotographic toner, and developer
JP2011197659A (en) * 2010-02-26 2011-10-06 Konica Minolta Business Technologies Inc Toner for developing electrostatic latent image and method for producing the toner
JP2012008528A (en) * 2010-05-26 2012-01-12 Ricoh Co Ltd Toner
JP2012063559A (en) * 2010-09-15 2012-03-29 Ricoh Co Ltd Toner and production method of the same
JP2012022331A (en) * 2011-09-13 2012-02-02 Ricoh Co Ltd Toner and image forming method using the same
JP2014112205A (en) * 2012-10-29 2014-06-19 Mitsubishi Chemicals Corp Toner for electrostatic charge image development
JP2015028616A (en) * 2013-06-27 2015-02-12 キヤノン株式会社 Toner and manufacturing method of toner
JP2018088001A (en) * 2013-06-27 2018-06-07 キヤノン株式会社 Toner and toner manufacturing method
CN105182706A (en) * 2014-06-19 2015-12-23 柯尼卡美能达株式会社 Toner For Developing Electrostatic Image
JP2016004228A (en) * 2014-06-19 2016-01-12 コニカミノルタ株式会社 Toner for electrostatic charge image development
JP2017142404A (en) * 2016-02-10 2017-08-17 日油株式会社 Wax composition for toner
JP2017156472A (en) * 2016-02-29 2017-09-07 キヤノン株式会社 Manufacturing method of toner
JP2018005257A (en) * 2017-10-13 2018-01-11 三洋化成工業株式会社 Method for manufacturing toner
JP2019139218A (en) * 2018-02-08 2019-08-22 ゼロックス コーポレイションXerox Corporation Toners exhibiting reduced machine ultrafine particle (ufp) emissions and related methods
JP7490450B2 (en) 2020-05-18 2024-05-27 キヤノン株式会社 toner
JP7495827B2 (en) 2020-06-19 2024-06-05 東芝テック株式会社 Toner, toner cartridge, image forming apparatus
JP7423470B2 (en) 2020-08-05 2024-01-29 東芝テック株式会社 Toner, toner cartridge, image forming device

Also Published As

Publication number Publication date
EP1693711A1 (en) 2006-08-23
CN1886700A (en) 2006-12-27
JPWO2005071493A1 (en) 2007-07-26
EP1693711B1 (en) 2015-05-13
EP1693711A4 (en) 2011-03-09
JP4721429B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
WO2005071493A1 (en) Toner and process for producing toner
US10216108B2 (en) Toner production method and polymer
US7250241B2 (en) Toner and process for producing toner
JP5617446B2 (en) Electrophotographic toner and image forming apparatus
JP2016218441A (en) Toner and toner manufacturing method
JP2016224420A (en) toner
JP2007279666A (en) Toner and method for producing toner
JP3893258B2 (en) Toner, toner manufacturing method and image forming method
KR20080098689A (en) Toner
US20200103776A1 (en) Magnetic toner
JP2008015230A (en) Toner
JP4564892B2 (en) Color toner
JP6424981B2 (en) Toner for developing electrostatic latent image
JP2019020690A (en) toner
JP6398882B2 (en) Toner for developing electrostatic latent image and method for producing the same
JP4498078B2 (en) Color toner and full color image forming method using the color toner
JP4739029B2 (en) Toner and toner production method
JP6775999B2 (en) toner
JP6439708B2 (en) Magnetic toner
JP4250515B2 (en) Non-magnetic one-component toner
JP6497485B2 (en) Toner for developing electrostatic latent image
JP2017167206A (en) Toner for electrostatic latent image development
JP7471842B2 (en) toner
JPH10133411A (en) Electrostatic charge image developing toner
JP6011354B2 (en) Toner set, developer, and image forming apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035126.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11122031

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517200

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004801658

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004801658

Country of ref document: EP