WO2005064632A1 - Electric double layer capacitor and method for manufacturing same - Google Patents

Electric double layer capacitor and method for manufacturing same Download PDF

Info

Publication number
WO2005064632A1
WO2005064632A1 PCT/JP2004/018926 JP2004018926W WO2005064632A1 WO 2005064632 A1 WO2005064632 A1 WO 2005064632A1 JP 2004018926 W JP2004018926 W JP 2004018926W WO 2005064632 A1 WO2005064632 A1 WO 2005064632A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
electric double
active material
sheet
double layer
Prior art date
Application number
PCT/JP2004/018926
Other languages
French (fr)
Japanese (ja)
Inventor
Kunio Miyabara
Tetsuya Takahashi
Masayuki Ohtsuka
Saburou Tuchida
Mitsuyoshi Harano
Tsutomu Kobayashi
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003429090A external-priority patent/JP2007080844A/en
Priority claimed from JP2004002690A external-priority patent/JP2007080845A/en
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2005064632A1 publication Critical patent/WO2005064632A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electric double layer capacitor, and more particularly, to a small and thin electric double layer capacitor suitable for use as a backup of a memory power supply of a portable device and a method for manufacturing the same.
  • An electric double layer capacitor performs charging and discharging by absorbing and desorbing ions and does not involve a chemical reaction unlike a secondary battery, and therefore has a very long life with little deterioration of an electrolytic solution.
  • the adsorption and desorption of ions is due to the movement of ions and is physical. Since the internal resistance is lower than that of a secondary battery, which is faster than a chemical reaction, instantaneous charging and large current Discharge is possible.
  • Such electric double-layer capacitors are used for power supply backup of portable devices, power supply backup of memories and clock functions of printers, "remote controllers,” “memory cards,” game machines, etc., and instantaneous voltage drop compensation devices. It is also expected to be used as an auxiliary power source for hybrid vehicles and for electric output adjustment in cogeneration.
  • the structure of an electric double layer capacitor is a cross-sectional structure in which a separator is sandwiched by electrodes in which a sheet of activated carbon is adhered to a current collector of an anolememi foil, as shown in, for example, JP-A-2002-313679.
  • the electric double layer capacitor has a structure in which layers are stacked in the thickness direction.
  • the electrodes of the electric double layer capacitor are formed by bonding an aluminum foil and a sheet of activated carbon with a conductive resin, or by mixing activated carbon, a binder and a solvent as disclosed in JP-A-2001-244156. Paint, and apply it to both sides of an aluminum foil current collector.
  • An electric double layer capacitor having a rectangular structure using the metal can as an outer package is excellent in strength and reliability, but increases the manufacturing cost, and has an electric property using an aluminum laminate outer package.
  • the double-layer capacitor is excellent in cost, but has a problem in that the strength is weak and the sealing property of the heat seal portion is low (particularly, the lead wire lead portion).
  • the exterior body of the aluminum laminate has a three-layer structure in which a resin film is adhered to both sides of an aluminum foil, and nylon or polyethylene terephthalate (PET) is used as the film on the front side of the bag of the exterior body.
  • PET polyethylene terephthalate
  • the inner film polypropylene (PP) or polyethylene (PE) is used.
  • a pressure reducing method for moving a gas generated by decomposition of an electrolytic solution to greatly suppress a decrease in capacitance As described in JP-A-2001-284176, the contact between the electrode and the separator is generated by applying a pressure to the cell by generating a pressing force by an external device such as bonole spring or the like.
  • the proposed method of improving the power S has a problem that these methods cannot be applied when trying to make the electric double layer capacitor smaller and thinner because the pressurizing mechanism takes up space. .
  • the present invention provides an electric double layer capacitor that uses a coating type electrode, does not use an external mechanism such as a bolt or a spring, and has a small and small internal resistance even if it has a complicated shape. And a method for producing the same.
  • a pair of coating type electrodes composed of a pair of planar current collector layers and an active material layer formed on the opposite surface of these current collector layers, and the active material in these coating type electrodes
  • a cell including a separator sandwiched between layers, the pair of coating-type electrodes and an electrolyte filled between the separators, and sandwiching the cell along both outer surfaces in the thickness direction of the cell.
  • a sealing member that seals over the entire periphery along the outer periphery.
  • the electric double layer capacitor wherein the active material layer is a coated film formed by applying a coating solution containing an active material.
  • the plurality of cells are arranged so as to overlap in the thickness direction, and between the cells adjacent in the thickness direction, one conductor also serves as the conductor of the cells on both sides.
  • the electric double layer capacitor according to (1) is arranged so as to overlap in the thickness direction, and between the cells adjacent in the thickness direction, one conductor also serves as the conductor of the cells on both sides.
  • the outermost pair of conductors in the capacitor thickness direction has a convex portion that is convex inward in the capacitor thickness direction.
  • the pair of coating-type electrodes in the cell and the separator therebetween are formed in a continuous sheet shape, and the sheet is folded in a zigzag shape (1).
  • the width of the sealing member in a direction perpendicular to the outer peripheral direction and the thickness direction of the cell is 1.5 mm or more, and is any one of (1) to (6). 3.
  • the cell on both outer sides of the thickness direction Arranging the outer conductor so as to sandwich the stacked cells in the thickness direction outside the outer conductor, and sealing between the outer periphery of the outer conductor and the intermediate conductor that protrude from the outer periphery of the cell. Attaching a member and sealing the cell over the entire periphery.
  • the step of sealing the cell is performed in a reduced pressure environment, wherein (8) to (8).
  • FIG. 1 is an enlarged cross-sectional view of an electric double layer capacitor according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a manufacturing process of the electric double layer capacitor.
  • FIG. 3 is a schematic cross-sectional view showing a manufacturing process of the cell of the electric double layer capacitor.
  • FIG. 4 is a schematic cross-sectional view showing a process of manufacturing an electric double-layer capacitor from the cell.
  • FIG. 5 is an enlarged cross-sectional view showing an electric double layer capacitor according to a second embodiment of the present invention.
  • FIG. 6 is an enlarged sectional view of an electric double layer capacitor according to a third embodiment of the present invention.
  • FIG. 7 is an enlarged sectional view showing a fourth example of the embodiment.
  • FIG. 8 is an enlarged sectional view showing a fifth example of the embodiment.
  • the electric double layer capacitor 10 is of a square and flat type, and the cell 12 includes a pair of coated electrodes 14, 16 and a separator 18 sandwiched between the coated electrodes 14, 16. And an electrolytic solution 20 filled between the coating type electrodes 14, 16 and the separator 18.
  • the coating type electrodes 14 and 16 each have an active material layer made of a coating film formed by applying a coating solution containing an active material to opposing surfaces of the planar current collector layers 14 A and 16 A. 14B and 16B are provided respectively.
  • the electric double layer capacitor 10 has a shape larger than the cell 12 and is disposed along the thickness of the cell 12 with both sides of the cell 12 so as to sandwich the cell 12.
  • each of the active material layers of the coating type electrodes 14 and 16 is set to 290 ⁇ m, which is thinner than an electrode to which a sheet of activated carbon is bonded.
  • the width of the seal member 26 in the direction perpendicular to the outer peripheral direction and the thickness direction of the cell 12 (the left-right direction in FIG. 1) is set to 1.5 mm to 5 mm.
  • the minimum value of 1.5 mm which is the minimum value, does not necessarily mean that moisture enters if the width is smaller than 1.5 mm. This is a value that can be prevented.
  • the maximum width of 5 mm ensures that the width This is a limit value that prevents the infiltration of moisture into the portion and does not increase the size of the capacitor unnecessarily.
  • the sealing function of the sealing member 26 is related to its cross-sectional area and width, and the sealing function increases as the width increases, and the sealing function decreases as the cross-sectional area increases.
  • the thickness of the sealing member 26 is equal to the sum of the thicknesses of the coating type electrodes 14, 16 and the separator 18.
  • the coating electrodes 14 and 16 are formed by coating a coating solution on the current collector layers 14A and 16A made of, for example, aluminum foil.
  • the coating solution is made of, for example, activated carbon (particle size 5-10 zm). It is prepared by kneading an active material, a binder such as fluororubber, and a conductive additive such as acetylene black.
  • the thickness of the current collector layer is about 50 ⁇ m.
  • the separator 18 is made of, for example, a regenerated cellulose nonwoven fabric or the like.
  • the electrolytic solution is made of, for example, propylene carbonate as a solvent and polyethylmethylammonium'tetrafluoroborate as an electrolyte.
  • aluminum and the sealing member 26 are made of, for example, modified polypropylene (PP).
  • a coating liquid 32 is applied to one surface (the upper surface in FIG. 3) of a current collector sheet 31 made of, for example, an aluminum foil by, for example, a horn 33 I do.
  • this coating liquid 32 contains activated carbon as an active material.
  • step 102 the coating liquid applied on the current collector sheet 31 is dried to form the active material layer 34 as shown in FIG. 3 (B).
  • the current collector sheet 31 is rolled together with the active material layer 34 to obtain a coated electrode sheet 35 as shown in Fig. 3 (C).
  • step 102 the solvent component contained in the coating liquid 32 is volatilized and removed.
  • step 103 the active material layer 34 is pressed on the current collector sheet 31.
  • step 104 the coating type electrode 14 (16) as shown in FIG. 3D is formed from the coating type electrode sheet 35 by means such as punching or cutting.
  • step 105 as shown in Fig. 3 (E), the two coated electrodes 14, 16 are laminated with a separator 18 interposed therebetween.
  • step 107 as shown in FIG. 4 (A), the sensor 12 is sandwiched between the coating type electrodes 14 and 16 and the conductors 22 and 24 which are larger than the separator 18.
  • a sealing member 26 is attached between the outer peripheral portions 22A and 24A of the conductors 22 and 24 where the outer peripheral force of the cell 12 has also protruded, and as shown in FIG. Seal the cell over a period of time.
  • reference numeral 36 denotes a sealing jig for applying pressure while heating the sealing member 26 from both sides of the outer peripheral portions 22A and 24A.
  • step 109 the outer peripheral portions 22A and 24A of the conductors 22 and 24 are trimmed, and the process proceeds to step 110, where the completed electric double layer capacitor 10 is packaged.
  • the coating type electrodes 14, 16 are formed by applying the active material layers 14B, 16B to only one surface of the current collector layers 14A, 16A. , The coating operation is easy and there is no need for masking. Even when the coated electrodes 14 and 16 have a shape other than a rectangle or an irregular shape, as shown in FIG. The ability to cope with various shapes.
  • the inside of the electric double layer capacitor 10 is formed at a negative pressure, and therefore, in the atmosphere, By being strongly pressed by the atmospheric pressure, the conductors 22, 24, the coated electrodes 14, 16 and the separator 18 are pressed against each other to reduce the internal resistance and maintain the function as a capacitor. .
  • the electric double layer capacitor 40 is formed by stacking two cells 42 and 44 in the thickness direction. In the electric double layer capacitor 40, between the cells 42 and 44 adjacent in the thickness direction, one conductor 43 is configured to also serve as the conductor of the cells 42 and 44 on both sides. ing.
  • the other configuration is the same as the configuration of the electric double layer capacitor 10 shown in FIG. 1, and the description of the same components will be omitted by retaining the same reference numerals.
  • this electric double layer capacitor 40 In the manufacturing process of this electric double layer capacitor 40, two sets of cells shown in FIG. 3 (F) are stacked with the intermediate conductor 43 interposed therebetween, and conductors 22 and 24 are further provided from both sides thereof. What is necessary is just to pinch it.
  • the conductor 43 In the electric double layer capacitor 40 according to the second example of this embodiment, the conductor 43 can be sandwiched in the middle, and the cells 42 and 44 can be completely independently sealed. Can be improved.
  • the electric double-layer capacitor 50 has two coated electrode sheets 35 shown in FIG. 3 (C), each active material layer 34 facing each other, and a sheet-like separator 52 interposed therebetween. These are folded into a zigzag shape. The description of the other components is omitted by assigning the same reference numerals to the same components as those of the electric double layer capacitor 10 shown in FIG.
  • the electric double-layer capacitor 50 has a structure in which a sheet-like electrode is folded in a zigzag shape with a sheet-like separator in between as described above, thereby increasing the electrode area with the same storage area. The capacity can be improved.
  • the electric double layer capacitors 10, 40, 50 shown in FIGS. 1, 5 and 6 have negative pressure chambers when the outer peripheral portions 22 A, 24 A are sealed by the seal member 26 in the manufacturing process. With decompression
  • the present invention is not limited to this.
  • the cell 12 is An electric double layer capacitor 60 sandwiched between a pair of conductors 62 and 64 having a seal and sealed under a normal pressure environment.
  • the cell 12 is pressed by the convex portions 62A and 64A that protrude inward in the thickness direction of the capacitor. , 64, the coating type electrodes 14, 16 and the separator 18 are brought into close contact with each other.
  • FIG. 8 shows a cell having a two-layer structure in which a pair of cells 12 and an intermediate conductor 72 are interposed between a pair of conductors 62 and 64 having the convex portions 62A and 64A as described above.
  • FIG 5 shows an electric double layer capacitor 70 according to five examples.
  • the intermediate conductor 72 has convex portions 72A and 72B on both surfaces, and the sensor 12 is formed between these and the convex portions 62A and 64A. It can be pressed.
  • the electric double layer capacitor has a force S that is obtained by stacking one or two cells or having a folded structure
  • the present invention is not limited to this.
  • a configuration in which three or more cells are stacked or a configuration in which a plurality of cells having a meandering structure are stacked may be used.
  • the manufacturing method of the electric double layer capacitor is roughly divided into manufacturing an electrode and manufacturing a capacitor.
  • the electrode serving as the polarizable electrode is manufactured by the following procedure.
  • the activated carbon material (particle diameter: 5-10 ⁇ m) subjected to the activation treatment, the binder (fluororubber), and the conductive additive (acetylene black) are mixed in a mass ratio of activated carbon material: binder: conductive additive.
  • Mixing agent 80: 10: 10 and mix it into solvent MIBK (methyl isobutyl ketone) so that (activated carbon, binder, conductive additive): (MIBK) becomes 100: 270
  • MIBK methyl isobutyl ketone
  • this coating solution is uniformly applied onto one surface of a current collector layer (thickness: 50 ⁇ m) made of aluminum foil.
  • MIBK is removed from the coating by a drying process,
  • a calender roll to increase density and adhesion, an electron-conductive porous layer (thickness: 37 / m) was formed as an active material layer on one side of the current collector layer Make electrodes.
  • the electrode sheet used for the electric double layer capacitor is manufactured. This electrode sheet is punched out with a press to form an electrode having a desired shape.
  • a shape such as a round shape or an irregular shape can be manufactured, and the degree of freedom of the manufactured shape is extremely high.
  • small electronic devices have a small space.When storing components such as rechargeable batteries and capacitors, it is necessary to store them in a small space. Often, however, the present invention satisfies these needs.
  • the prepared electrodes are opposed to each other so that the coating films as active material layers face each other, and a separator made of regenerated cellulose nonwoven fabric (thickness: 0.03 mm, Tsutsubon Advanced Paper Industry, trade name: "TF4030”) ) Is arranged and thermocompression bonded to form a cell (elementary body).
  • the cell is pressed into a substantially planar shape.
  • this cell was used as an electrolyte (solvent: propylene carbonate, electrolyte: triethylmethylammonium.tetrafluoroborate, 1.2-1.8 mol / liter per liter of electrolyte, using Fuji Yakuhin Kogyo Co., Ltd.) ), Soak the electrolyte in the electrodes and separator, take out the cell, and wipe off the electrolyte adhering to the aluminum current collector.
  • solvent propylene carbonate
  • electrolyte triethylmethylammonium.tetrafluoroborate, 1.2-1.8 mol / liter per liter of electrolyte, using Fuji Yakuhin Kogyo Co., Ltd.
  • a conductor having a shape larger than that of the cell for example, a conductor made of an anode (A1) is disposed on both the upper surface and the lower surface of the cell treated as described above, and the opposing surface of the conductor protruding from the cell is formed.
  • a double-sided cylindrical sealing member made of, for example, modified polypropylene (PP) is sandwiched between them, and is thermally bonded to the conductor layer and sealed over the entire circumference to produce the electric double layer capacitor of the present invention. .
  • a thin, small, and complicated electric double layer is formed by using a coating type electrode that can use a can such as a metal can or an outer bag such as an aluminum laminate. Ki Capacitors can be made.
  • the electric double-layer capacitor using the coated electrode according to the present invention can be manufactured even if the shape of the electrode and the cell is a round shape other than a rectangular shape or a deformed shape. This is extremely convenient for small electronic devices that require a small space for accommodating components.

Abstract

An electric double layer capacitor (10) comprises a cell (12), a pair of generally planar conductors (22, 24) and a sealing member (26). The cell (12) comprises a pair of coated electrodes (14, 16) which are composed of a pair of plate-like collector layers (14A, 16A) and active material layers (14B, 16B) formed by applying a coating liquid containing an active material to surfaces of the collector layers (14A, 16A) opposing to each other, a separator (18) interposed between the active material layers (14B, 16B) of the coated electrodes (14, 16), and an electrolyte solution (20) filled between the coated electrodes (14, 16) and the separator (18). The conductors (22, 24) are larger than the cell (12) and respectively arranged on the outer sides of the cell (12) in the thickness direction so that the cell (12) is sandwiched between the conductors (22, 24), and the sealing member (26) is arranged between peripheral portions (22A, 24A) of the conductors (22, 24) which are located around the cell (12) for hermetically sealing the cell (12) along the periphery thereof.

Description

明 細 書  Specification
電気二重層キャパシタ及びその製造方法  Electric double layer capacitor and method of manufacturing the same
技術分野  Technical field
[0001] この発明は、電気二重層キャパシタに係り、特に、携帯機器のメモリ電源のバックァ ップ等に用いられて好適な小型、薄型の電気二重層キャパシタ及びその製造方法に 関する。  The present invention relates to an electric double layer capacitor, and more particularly, to a small and thin electric double layer capacitor suitable for use as a backup of a memory power supply of a portable device and a method for manufacturing the same.
背景技術  Background art
[0002] 電気二重層キャパシタは、イオンの吸脱着により充放電を行ない、二次電池と異な り化学反応を伴わないので、電解液の劣化が少なく非常に長寿命である。  An electric double layer capacitor performs charging and discharging by absorbing and desorbing ions and does not involve a chemical reaction unlike a secondary battery, and therefore has a very long life with little deterioration of an electrolytic solution.
[0003] 又、イオンの吸脱着はイオンの移動によるものであって物理的であり、化学反応より も速ぐ更に二次電池に比べて内部抵抗が低いので、瞬間的な充電ゃ大電流の放 電が可能である。  [0003] In addition, the adsorption and desorption of ions is due to the movement of ions and is physical. Since the internal resistance is lower than that of a secondary battery, which is faster than a chemical reaction, instantaneous charging and large current Discharge is possible.
[0004] このような電気二重層キャパシタは、携帯機器電源のバックアップ、プリンタ'リモコ ン 'メモリカード 'ゲーム機等のメモリ ·時計機能の電源バックアップ、瞬時電圧低下補 償装置等に用いられ、又、ハイブリッド車用の補助電源ゃコジェネレーション等にお ける電気出力調整用としても期待が持たれてレ、る。  [0004] Such electric double-layer capacitors are used for power supply backup of portable devices, power supply backup of memories and clock functions of printers, "remote controllers," "memory cards," game machines, etc., and instantaneous voltage drop compensation devices. It is also expected to be used as an auxiliary power source for hybrid vehicles and for electric output adjustment in cogeneration.
[0005] 電気二重層キャパシタの構造は、例えば特開 2002—313679に示されるように、ァ ノレミ箔の集電体上に活性炭のシートを密着させた電極によりセパレータを挟持する 断面構造であり、一般的な角型構造の電気二重層キャパシタの場合は厚さ方向に積 層する構造となっている。他に、円筒形に卷回する構造の電気二重層キャパシタもあ る。  [0005] The structure of an electric double layer capacitor is a cross-sectional structure in which a separator is sandwiched by electrodes in which a sheet of activated carbon is adhered to a current collector of an anolememi foil, as shown in, for example, JP-A-2002-313679. In the case of a general rectangular electric double layer capacitor, the electric double layer capacitor has a structure in which layers are stacked in the thickness direction. In addition, there is an electric double layer capacitor having a structure wound in a cylindrical shape.
[0006] 又、電気二重層キャパシタにおける電極は、アルミ箔と活性炭のシートを導電性樹 脂で貼り合わせたり、特開 2001—244156に示されるように、活性炭とバインダと溶 剤とを混合して塗料を作成し、これをアルミ箔の集電体の両面に塗布して作成するも の等がある。  [0006] Further, the electrodes of the electric double layer capacitor are formed by bonding an aluminum foil and a sheet of activated carbon with a conductive resin, or by mixing activated carbon, a binder and a solvent as disclosed in JP-A-2001-244156. Paint, and apply it to both sides of an aluminum foil current collector.
[0007] 上記の円筒型構造の電気二重層キャパシタの場合には、全体を薄く構成すること が困難であり、又電子機器に組み込んだ場合は無駄なスペースが発生し、小型の携 帯機器などに装着することができないという問題点がある。又、前記特開 2002-313 679に記載の電気二重層キャパシタを塗布方式で作成する場合には、塗膜の大きさ とアルミ箔の集電体との大きさが異なるため、マスキングを施してから塗布する等の、 製造工程に制限が生じるという問題点がある。 [0007] In the case of the above-mentioned electric double layer capacitor having a cylindrical structure, it is difficult to make the entire structure thin. There is a problem that it cannot be attached to a band device or the like. Further, when the electric double layer capacitor described in JP-A-2002-313 679 is prepared by a coating method, since the size of the coating film and the size of the aluminum foil current collector are different, masking is performed. There is a problem that the manufacturing process such as application from the beginning is limited.
[0008] 上記のような角型構造の電気二重層キャパシタの場合には、セパレータを挟んだ 一対の電極を 1セットとし、 1セット以上を積層して電解液と共に金属缶やアルミラミネ ートの外装体に収納してセルを構成してレ、る。  [0008] In the case of an electric double layer capacitor having a rectangular structure as described above, a pair of electrodes sandwiching a separator is made into one set, and one or more sets are laminated, and an electrolytic solution and a metal can or aluminum laminate are packaged together. It is stored in the body to form a cell.
[0009] 前記金属缶を外装体として用いた角型構造の電気二重層キャパシタは、強度や信 頼性では優れているが、製造コストが増大し、又、アルミラミネートの外装体を用いた 電気二重層キャパシタの場合には、コスト面では優れているが、強度的に弱ぐ且つ 、熱シール部の密封性が低い(特にリード線引出し部)という問題点がある。これらの 問題点を解決する方法は、例えば特開 2003— 157810、特開 2001—148234にお いて提案されている。  [0009] An electric double layer capacitor having a rectangular structure using the metal can as an outer package is excellent in strength and reliability, but increases the manufacturing cost, and has an electric property using an aluminum laminate outer package. The double-layer capacitor is excellent in cost, but has a problem in that the strength is weak and the sealing property of the heat seal portion is low (particularly, the lead wire lead portion). Methods for solving these problems are proposed in, for example, JP-A-2003-157810 and JP-A-2001-148234.
[0010] なお、前記アルミラミネートの外装体は、アルミ箔の両面に樹脂フィルムを接着した 三層構造であって、外装体の袋の表側のフィルムとしてはナイロン又はポリエチレン テレフタレート(PET)が用いられ、内側のフィルムとしては、ポリプロピレン(PP)又は ポリエチレン(PE)が用いられてレ、る。  [0010] The exterior body of the aluminum laminate has a three-layer structure in which a resin film is adhered to both sides of an aluminum foil, and nylon or polyethylene terephthalate (PET) is used as the film on the front side of the bag of the exterior body. As the inner film, polypropylene (PP) or polyethylene (PE) is used.
[0011] 例えば、特開 2000— 58014に示されるように、外装体に積層体を組み込んで封止 したままの形状の薄型電池は、薄く形成する点で優れているが、袋の外周部のスぺ ースが大きくなつてしまうという問題点がある。  [0011] For example, as shown in Japanese Patent Application Laid-Open No. 2000-58014, a thin battery having a shape in which a laminate is incorporated in an outer package and sealed is excellent in that it is formed thin, There is a problem that the space becomes large.
[0012] この問題点を解消するために、例えば特開 2000-138040に示されるように、袋の 外周部を折り曲げる構造のものが提案されているが、この構造の場合、折り曲げ時に 、アルミラミネートの袋に応力が掛かり、袋にピンホールが発生することがある。このよ うに袋にピンホールが発生すると、大気中の水分が内部に侵入し、電池やキャパシタ としての機能が低下してしまうという問題点がある。  [0012] In order to solve this problem, for example, as shown in Japanese Patent Application Laid-Open No. 2000-138040, a structure in which the outer peripheral portion of a bag is bent has been proposed. Stress may be applied to the bag, and pinholes may be generated in the bag. When pinholes are generated in the bag in this way, there is a problem that moisture in the air enters the inside and the function as a battery or a capacitor is deteriorated.
[0013] そこで、例えば前述の特開 2002—313679に示されるように、アルミラミネートの袋 も使わずに、薄く且つ小型化できるキャパシタが提案されている。この構造のキャパ シタは、集電体であるアルミ箔と活性炭のシートを導電性樹脂によって貼り合わせて いるので、キャパシタの薄さ及び小型化には限界があり、更に、作成できる形状にも、 複雑な形状を作成することが困難であるという限界がある。 [0013] Therefore, for example, as shown in the above-mentioned Japanese Patent Application Laid-Open No. 2002-313679, there has been proposed a capacitor which can be made thinner and smaller without using an aluminum laminate bag. The capacitor with this structure is made by laminating an aluminum foil that is a current collector and a sheet of activated carbon with conductive resin. Therefore, there is a limit to the thickness and miniaturization of the capacitor, and further, there is a limit to the shape that can be created, in that it is difficult to create a complicated shape.
[0014] 更に又、前記特開 2001-244156に記載された電気二重層キャパシタの場合、電 極に電解液を含浸してからシールするので、シール面に電解液が付着しないような 対策も必要となり、製造工程が全体として複雑になるという問題点がある。  Further, in the case of the electric double layer capacitor described in the above-mentioned JP-A-2001-244156, since the electrodes are sealed after impregnating the electrolyte, it is necessary to take measures to prevent the electrolyte from adhering to the sealing surface. Therefore, there is a problem that the manufacturing process becomes complicated as a whole.
[0015] 一方、電気二重層キャパシタにおける活物質層、セパレータ及び集電体の密着が 弱いと内部抵抗が高くなることが知られている。又、キャパシタ容器内部にガスが発 生し、容器が膨らんでくると、電極同士の密着性が悪化し、内部抵抗が増大するとい う問題がある。  [0015] On the other hand, it is known that the internal resistance increases when the adhesion between the active material layer, the separator and the current collector in the electric double layer capacitor is weak. In addition, when gas is generated inside the capacitor container and the container expands, there is a problem that the adhesion between the electrodes deteriorates and the internal resistance increases.
[0016] この問題を解決する方法として、例えば特開平 9—162082に記載のように、電解液 の分解により生じるガスを移動させ、静電容量の低下を大幅に抑制する減圧方法や 、特開 2002—289485あるレ、は特開 2001—284176に記載されるように、ボノレトゃス プリング等の外部装置によって加圧力を発生させて、セルに圧力を加えることにより、 電極相互ゃセパレータとの密着性を向上させる方法が提案されている力 S、これらの 方法は、加圧機構がスペースを取るために、電気二重層キャパシタを小型及び薄型 化しようとする場合には適用できないという問題点がある。  As a method for solving this problem, for example, as described in Japanese Patent Application Laid-Open No. 9-162082, a pressure reducing method for moving a gas generated by decomposition of an electrolytic solution to greatly suppress a decrease in capacitance, As described in JP-A-2001-284176, the contact between the electrode and the separator is generated by applying a pressure to the cell by generating a pressing force by an external device such as bonole spring or the like. The proposed method of improving the power S has a problem that these methods cannot be applied when trying to make the electric double layer capacitor smaller and thinner because the pressurizing mechanism takes up space. .
発明の開示  Disclosure of the invention
[0017] この発明は、塗布型電極を使用して、ボルトやスプリング等の外部機構を用いること なぐ又、複雑な形状であっても、薄く且つ小型で、内部抵抗の小さい電気二重層キ ャパシタ及びその製造方法を提供することを目的とする。  [0017] The present invention provides an electric double layer capacitor that uses a coating type electrode, does not use an external mechanism such as a bolt or a spring, and has a small and small internal resistance even if it has a complicated shape. And a method for producing the same.
[0018] 即ち、以下の本発明により上記目的を達成することができる。 That is, the above object can be achieved by the present invention described below.
[0019] (1)平面状の一対の集電体層及びこれらの集電体層の対向する面に形成された 活物質層からなる一対の塗布型電極、これらの塗布型電極における前記活物質層 の間に挟持されたセパレータ、前記一対の塗布型電極及びセパレータ間に充填され た電解液を含んでなるセルと、このセルの厚さ方向両外側面に沿って、該セルを挟 持するように配置された、セルよりも形状の大きい略平面状の一対の導電体と、これ らの導電体の、前記セルからはみ出している外周部の間に設けられ、これらの外周 部をセルの外周に沿って、全周にわたって密封するシール部材と、を有してなり、前 記活物質層は、活物質を含有する塗布液を塗布して形成された塗布被膜であること を特徴とする電気二重層キャパシタ。 (1) A pair of coating type electrodes composed of a pair of planar current collector layers and an active material layer formed on the opposite surface of these current collector layers, and the active material in these coating type electrodes A cell including a separator sandwiched between layers, the pair of coating-type electrodes and an electrolyte filled between the separators, and sandwiching the cell along both outer surfaces in the thickness direction of the cell. Are provided between a pair of substantially planar conductors larger in shape than the cell and outer peripheral portions of these conductors protruding from the cell, and these outer peripheral portions are connected to the cell. A sealing member that seals over the entire periphery along the outer periphery. The electric double layer capacitor, wherein the active material layer is a coated film formed by applying a coating solution containing an active material.
[0020] (2)前記セルは厚さ方向に複数重ねて配置され、厚さ方向に隣接するセル間にお いては、一枚の導電体が、両側のセルの導電体を兼ねることを特徴とする(1)に記載 の電気二重層キャパシタ。  (2) The plurality of cells are arranged so as to overlap in the thickness direction, and between the cells adjacent in the thickness direction, one conductor also serves as the conductor of the cells on both sides. The electric double layer capacitor according to (1).
[0021] (3)前記導電体のうち、キャパシタ厚さ方向の最も外側の一対の導電体は、キャパ シタ厚さ方向内側に凸となる凸形状部を有し、これらの一対の導電体における凸形 状部がセルを押圧する構成であることを特徴とする(1)又は(2)に記載の電気二重 層キャパシタ。  (3) Among the conductors, the outermost pair of conductors in the capacitor thickness direction has a convex portion that is convex inward in the capacitor thickness direction. The electric double layer capacitor according to (1) or (2), wherein the convex portion presses the cell.
[0022] (4)前記セルにおける一対の塗布型電極、これらの間のセパレータは連続したシー ト状とされ、且つ、このシートをつづら状に折り畳んだ構造であることを特徴とする(1) 乃至(3)のレ、ずれかに記載の電気二重層キャパシタ。 (4) The pair of coating-type electrodes in the cell and the separator therebetween are formed in a continuous sheet shape, and the sheet is folded in a zigzag shape (1). The electric double layer capacitor according to any one of ( 3 ) to ( 3 ).
[0023] (5)前記セルは、その内部が大気圧により圧縮され得る程度に減圧されていること を特徴とする(1)乃至 (4)のいずれかに記載の電気二重層キャパシタ。  (5) The electric double layer capacitor according to any one of (1) to (4), wherein the inside of the cell is decompressed to such an extent that the inside of the cell can be compressed by atmospheric pressure.
[0024] (6)前記塗布型電極の活物質層の厚さが、 2— 90 μ mであることを特徴とする(1) 乃至(5)のレ、ずれかに記載の電気二重層キャパシタ。 (6) The electric double layer capacitor according to any one of (1) to (5), wherein the thickness of the active material layer of the coating-type electrode is 2 to 90 μm. .
[0025] (7)前記シール部材の、セルの外周方向及び厚さ方向に対して直交する方向の幅 は、 1. 5mm以上であることを特徴とする(1)乃至(6)のいずれかに記載の電気二重 層キャパシタ。 (7) The width of the sealing member in a direction perpendicular to the outer peripheral direction and the thickness direction of the cell is 1.5 mm or more, and is any one of (1) to (6). 3. The electric double layer capacitor according to claim 1.
[0026] (8)シート状の導電性金属からなる集電体シートの一方の面に、活物質を含む塗 布液を塗布する工程と、塗布液を乾燥して活物質層とする工程と、この活物質層と共 に集電体シートを圧延して塗布型電極シートを形成する工程と、この塗布型電極シ ートを所定の大きさ、形状に打ち抜いて集電体層及び活物質層からなる塗布型電極 を形成する工程と、予め、前記塗布型電極と同一形状に形成されたシート状のセパ レータを、 2枚の塗布型電極により挟み込んで積層する工程と、前記積層された 2枚 の電極及びセパレータ間に電解液を充填してセルを形成する工程と、予め、塗布型 電極及びセパレータよりも大きい形状に形成されたシート状の一対の導電体により、 前記セルを厚さ方向両側から挟み込む工程と、前記一対の導電体の、前記セルの 外周からはみ出した外周部の間にシール部材を取り付けて、全周にわたってセルを 密封する工程と、を有してなる電気二重層キャパシタの製造方法。 (8) A step of applying a coating liquid containing an active material to one surface of a current collector sheet made of a sheet-shaped conductive metal, and a step of drying the coating liquid to form an active material layer. Rolling the current collector sheet together with the active material layer to form a coated electrode sheet; and punching the coated electrode sheet into a predetermined size and shape to form the current collector layer and the active material layer. A step of forming a coating type electrode composed of layers, a step of sandwiching and laminating a sheet-shaped separator previously formed in the same shape as the coating type electrode between two coating type electrodes, and A step of forming a cell by filling an electrolytic solution between two electrodes and a separator; and forming the cell by a pair of sheet-shaped conductors formed in advance in a shape larger than the coating-type electrode and the separator. And a step of sandwiching the pair of conductors from both sides in the direction. Of the cell Attaching a seal member between the outer peripheral portions protruding from the outer periphery to seal the cell over the entire periphery.
[0027] (9)シート状の導電性金属からなる集電体シートの一方の面に、活物質を含む塗 布液を塗布する工程と、塗布液を乾燥して活物質層とする工程と、この活物質層と共 に集電体シートを圧延して塗布型電極シートを形成する工程と、この塗布型電極シ ートを所定の大きさ、形状に打ち抜いて集電体層及び活物質層からなる塗布型電極 を形成する工程と、予め、前記塗布型電極と同一形状に形成されたシート状のセパ レータを 2枚の塗布型電極により挟み込んで積層する工程と、前記積層された 2枚の 電極及びセパレータ間に電解液を充填してセルを形成する工程と、複数のセルを、 各々、予め、塗布型電極及びセパレータよりも大きい形状に形成されたシート状の中 間導電体を間にして厚さ方向に重ねると共に、厚さ方向の両外側のセルの外側に、 重ねられたセルを厚さ方向に挟み込むように、外側導電体を配置する工程と、前記 外側導電体及び中間導電体の、前記セルの外周からはみ出した外周部の間にシー ル部材を取り付けて、全周にわたってセルを密封する工程と、を有してなる電気二重 層キャパシタの製造方法。  (9) A step of applying a coating liquid containing an active material to one surface of a current collector sheet made of a sheet-shaped conductive metal, and a step of drying the coating liquid to form an active material layer. Rolling the current collector sheet together with the active material layer to form a coated electrode sheet; and punching the coated electrode sheet into a predetermined size and shape to form the current collector layer and the active material layer. A step of forming a coating type electrode composed of layers, a step of sandwiching a sheet-like separator formed in the same shape as the coating type electrode in advance between two coating type electrodes, and laminating, A step of forming a cell by filling an electrolytic solution between a single electrode and a separator; and forming a plurality of cells using a sheet-shaped intermediate conductor formed in advance in a shape larger than the coating type electrode and the separator. The cell on both outer sides of the thickness direction Arranging the outer conductor so as to sandwich the stacked cells in the thickness direction outside the outer conductor, and sealing between the outer periphery of the outer conductor and the intermediate conductor that protrude from the outer periphery of the cell. Attaching a member and sealing the cell over the entire periphery. A method for manufacturing an electric double layer capacitor.
[0028] (10)前記セルを形成する工程における電解液の充填前に、前記積層された 2枚の 電極及びセパレータを、積層状態でつづら状に折り畳むことを特徴とする(8)又は(9[0028] (10) The two electrodes and the separator thus laminated are folded in a zigzag manner in a laminated state before filling with the electrolytic solution in the step of forming the cell (8) or (9).
)に記載の電気二重層キャパシタの製造方法。 ).
[0029] (11)前記セルを密封する工程を、減圧環境で実行することを特徴とする(8)乃至((11) The step of sealing the cell is performed in a reduced pressure environment, wherein (8) to (8).
10)のいずれかに記載の電気二重層キャパシタの製造方法。 The method for producing an electric double layer capacitor according to any one of 10) to 10).
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明の実施の形態の例に係る電気二重層キャパシタを拡大して示す断面図 [図 2]同電気二重層キャパシタの製造過程を示すフローチャート  FIG. 1 is an enlarged cross-sectional view of an electric double layer capacitor according to an embodiment of the present invention. FIG. 2 is a flowchart showing a manufacturing process of the electric double layer capacitor.
[図 3]同電気二重層キャパシタのセルの製造過程を示す略示断面図  FIG. 3 is a schematic cross-sectional view showing a manufacturing process of the cell of the electric double layer capacitor.
[図 4]同セルから電気二重層キャパシタを製造する過程を示す略示断面図  FIG. 4 is a schematic cross-sectional view showing a process of manufacturing an electric double-layer capacitor from the cell.
[図 5]本発明の実施の形態の第 2例に係る電気二重層キャパシタを拡大して示す断 面図  FIG. 5 is an enlarged cross-sectional view showing an electric double layer capacitor according to a second embodiment of the present invention.
[図 6]本発明の実施の形態の第 3例に係る電気二重層キャパシタを拡大して示す断 面図 FIG. 6 is an enlarged sectional view of an electric double layer capacitor according to a third embodiment of the present invention. Front view
[図 7]同実施の形態の第 4例を拡大して示す断面図  FIG. 7 is an enlarged sectional view showing a fourth example of the embodiment.
[図 8]同実施の形態の第 5例を拡大して示す断面図  FIG. 8 is an enlarged sectional view showing a fifth example of the embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 次に、図 1を参照して、本発明の実施のための最良の形態に係る電気二重層キヤ パシタ 10について、詳細に説明する。 Next, with reference to FIG. 1, the electric double layer capacitor 10 according to the best mode for carrying out the present invention will be described in detail.
[0032] この電気二重層キャパシタ 10は、角型且つ平板型のものであり、セル 12は一対の 塗布型電極 14、 16と、これらの塗布型電極 14、 16の間に挟持されたセパレータ 18 と、これら塗布型電極 14、 16及びセパレータ 18間に充填された電解液 20とを含ん で構成されている。 The electric double layer capacitor 10 is of a square and flat type, and the cell 12 includes a pair of coated electrodes 14, 16 and a separator 18 sandwiched between the coated electrodes 14, 16. And an electrolytic solution 20 filled between the coating type electrodes 14, 16 and the separator 18.
[0033] 前記塗布型電極 14、 16には、平面状の集電体層 14A、 16Aの、対向する面に活 物質を含有する塗布液を塗布して形成された塗布被膜からなる活物質層 14B、 16B がそれぞれ設けられている。  The coating type electrodes 14 and 16 each have an active material layer made of a coating film formed by applying a coating solution containing an active material to opposing surfaces of the planar current collector layers 14 A and 16 A. 14B and 16B are provided respectively.
[0034] 前記電気二重層キャパシタ 10は、前記セノレ 12と、このセル 12の厚さ方向両外側面 に沿って、該セル 12を挟持するように配置された、セル 12よりも形状の大きい略平面 状の一対の導電体 22、 24と、これらの導電体 22、 24の、前記セル 12からはみ出し ている外周部 22A、 24Aに沿って、全周にわたってセル 12を密閉するシール部材 2 6と、力 構成されている。  [0034] The electric double layer capacitor 10 has a shape larger than the cell 12 and is disposed along the thickness of the cell 12 with both sides of the cell 12 so as to sandwich the cell 12. A pair of planar conductors 22, 24, and a sealing member 26 that seals the cell 12 over the entire periphery along the outer peripheral portions 22A, 24A of the conductors 22, 24 protruding from the cell 12. , Power is composed.
[0035] 又、この電気二重層キャパシタ 10内は、外周部 22A、 24Aを、前記シール部材 26 によってキャパシタ全周にわたって接着、密封する際に、これを減圧環境で行なうこ とによって、大気圧よりも低くなるように設定されている。  Further, in the electric double layer capacitor 10, when the outer peripheral portions 22A and 24A are adhered and sealed over the entire periphery of the capacitor by the seal member 26, this is performed in a reduced pressure environment, so that the atmospheric pressure becomes lower. Is also set to be low.
[0036] 前記塗布型電極 14、 16のそれぞれの活物質層の厚さは、 2 90 μ mとされ、活性 炭のシートを貼り合わせた電極と比較すると薄く構成されている。  The thickness of each of the active material layers of the coating type electrodes 14 and 16 is set to 290 μm, which is thinner than an electrode to which a sheet of activated carbon is bonded.
[0037] 又、前記シール部材 26の、セル 12の外周方向及び厚さ方向に対して直交する方 向の幅(図 1において左右方向)は、 1. 5mm— 5mmとされている。  The width of the seal member 26 in the direction perpendicular to the outer peripheral direction and the thickness direction of the cell 12 (the left-right direction in FIG. 1) is set to 1.5 mm to 5 mm.
[0038] ここで、前記幅の最小値である 1. 5mmは、これよりも幅が狭い場合は必ず水分が 浸入することを意味するものではなぐ 1. 5mm以上あれば確実に水分の浸入を防 止できる数値である。又、幅の最大値 5mmは、この幅があれば、確実にキャパシタ内 部への水分の浸入を防止でき、且つ、キャパシタの寸法を無駄に大きくしないという 限界値である。 [0038] Here, the minimum value of 1.5 mm, which is the minimum value, does not necessarily mean that moisture enters if the width is smaller than 1.5 mm. This is a value that can be prevented. In addition, the maximum width of 5 mm ensures that the width This is a limit value that prevents the infiltration of moisture into the portion and does not increase the size of the capacitor unnecessarily.
[0039] なお、前記シール部材 26によるシール機能は、その断面積と幅に関係し、幅が大 きいほどシール機能が増大し、又断面積が大きいほどシール機能は低下する。この 実施の形態の例においては、シール部材 26の厚さは、前記塗布型電極 14、 16及び セパレータ 18の厚さの和と等しくなる。  [0039] The sealing function of the sealing member 26 is related to its cross-sectional area and width, and the sealing function increases as the width increases, and the sealing function decreases as the cross-sectional area increases. In the example of this embodiment, the thickness of the sealing member 26 is equal to the sum of the thicknesses of the coating type electrodes 14, 16 and the separator 18.
[0040] 前記塗布型電極 14、 16は、例えばアルミ箔からなる集電体層 14A、 16Aに塗布液 を塗布したものであり、この塗布液は、例えば活性炭(粒径 5— 10 z m)からなる活物 質と、フッ素ゴム等のバインダと、アセチレンブラック等の導電助剤とを混練して調整 されたものである。前記集電体層の厚さは 50 μ m程度である。  [0040] The coating electrodes 14 and 16 are formed by coating a coating solution on the current collector layers 14A and 16A made of, for example, aluminum foil. The coating solution is made of, for example, activated carbon (particle size 5-10 zm). It is prepared by kneading an active material, a binder such as fluororubber, and a conductive additive such as acetylene black. The thickness of the current collector layer is about 50 μm.
[0041] 前記セパレータ 18は、例えば再生セルロース不織布等から構成され、電解液は、 例えば溶媒をプロピレンカーボネート、電解質をポリェチルメチルアンモニゥム 'テトラ フルォロボレートから構成し、導電体 22、 24は、例えばアルミニウム、シール部材 26 は例えば変性ポリプロピレン(PP)から構成されてレ、る。 [0041] The separator 18 is made of, for example, a regenerated cellulose nonwoven fabric or the like. The electrolytic solution is made of, for example, propylene carbonate as a solvent and polyethylmethylammonium'tetrafluoroborate as an electrolyte. For example, aluminum and the sealing member 26 are made of, for example, modified polypropylene (PP).
[0042] 次に、図 2、 3を参照して、前記電気二重層キャパシタ 10の製造過程について説明 する。 Next, a manufacturing process of the electric double layer capacitor 10 will be described with reference to FIGS.
[0043] まず、ステップ 101において、図 3 (A)に示されるように、例えばアルミ箔からなる集 電体シート 31の一方の面(図 3において上面)に塗布液 32を例えばノズノレ 33により 塗布する。この塗布液 32は、前述のように、活物質である活性炭を含有している。  First, in step 101, as shown in FIG. 3A, a coating liquid 32 is applied to one surface (the upper surface in FIG. 3) of a current collector sheet 31 made of, for example, an aluminum foil by, for example, a horn 33 I do. As described above, this coating liquid 32 contains activated carbon as an active material.
[0044] 次に、ステップ 102に進み、前記集電体シート 31上に塗布された塗布液を乾燥し て、図 3 (B)に示されるように、活物質層 34とする。  Next, proceeding to step 102, the coating liquid applied on the current collector sheet 31 is dried to form the active material layer 34 as shown in FIG. 3 (B).
[0045] 次のステップ 103では、前記活物質層 34と共に集電体シート 31を圧延して、図 3 ( C)に示されるような塗布型電極シート 35とする。  [0045] In the next step 103, the current collector sheet 31 is rolled together with the active material layer 34 to obtain a coated electrode sheet 35 as shown in Fig. 3 (C).
[0046] 前記ステップ 102で示される乾燥工程では、塗布液 32に含まれる溶媒成分が揮発 除去され、ステップ 103の圧延工程では、活物質層 34が集電体シート 31に圧着され る。  In the drying step shown in step 102, the solvent component contained in the coating liquid 32 is volatilized and removed. In the rolling step in step 103, the active material layer 34 is pressed on the current collector sheet 31.
[0047] 次に、ステップ 104に進み、打抜きや切断等の手段によって、前記塗布型電極シー ト 35から、図 3 (D)に示されるような塗布型電極 14 (16)を形成する。 [0048] ステップ 105においては、図 3 (E)に示されるように、 2枚の塗布型電極 14、 16の間 にセパレータ 18を挟んで積層させる。 Next, proceeding to step 104, the coating type electrode 14 (16) as shown in FIG. 3D is formed from the coating type electrode sheet 35 by means such as punching or cutting. [0048] In step 105, as shown in Fig. 3 (E), the two coated electrodes 14, 16 are laminated with a separator 18 interposed therebetween.
[0049] 次のステップ 106においては、前記積層された塗布型電極 14、 16とセノ レータ 18 間に電解液を充填して図 3 (F)に示されるようにセル 12を形成する。  [0049] In the next step 106, an electrolytic solution is filled between the stacked coating type electrodes 14, 16 and the separator 18, to form the cell 12 as shown in Fig. 3 (F).
[0050] ステップ 107では、前記セノレ 12を、図 4 (A)に示されるように、塗布型電極 14、 16 及びセパレータ: 18よりも大きい導電体 22、 24により挟み込む。  In step 107, as shown in FIG. 4 (A), the sensor 12 is sandwiched between the coating type electrodes 14 and 16 and the conductors 22 and 24 which are larger than the separator 18.
[0051] 次のステップ 108では、セル 12の外周力もはみ出した導電体 22、 24の外周部 22 A、 24Aの間にシール部材 26を取り付けて、図 4 (B)に示されるように全周にわたつ てセルを密封する。図 4 (B)において、符号 36は前記外周部 22A、 24Aの両側から シール部材 26を加熱しつつ圧力を加えるためのシール治具を示す。  [0051] In the next step 108, a sealing member 26 is attached between the outer peripheral portions 22A and 24A of the conductors 22 and 24 where the outer peripheral force of the cell 12 has also protruded, and as shown in FIG. Seal the cell over a period of time. In FIG. 4B, reference numeral 36 denotes a sealing jig for applying pressure while heating the sealing member 26 from both sides of the outer peripheral portions 22A and 24A.
[0052] このとき、図 4 (B)において一点鎖線で示されるように、負圧室 36内において、減圧 環境で前記シール部材 26による密封作業をすると、電気二重層キャパシタ 10内は 負圧となる。この負圧は、一 40. Okpa以下であれば、大気圧によって電気二重層キヤ パシタ 10は、内部の塗布型電極 14、 16、セパレータ 18、導電体 22、 24が充分に圧 着するまで圧縮されるが、 -30. Okpa一- 40. Okpaでもある程度圧縮される。  At this time, as shown by a dashed line in FIG. 4 (B), when the sealing operation is performed by the sealing member 26 in the negative pressure chamber 36 in a reduced pressure environment, the inside of the electric double layer capacitor 10 becomes negative pressure. Become. If this negative pressure is less than 40. Okpa, the electric double layer capacitor 10 is compressed by atmospheric pressure until the inner coating type electrodes 14, 16, separator 18, and conductors 22, 24 are sufficiently pressed. -30. Okpa-40. Okpa is compressed to some extent.
[0053] ステップ 109では、導電体 22、 24の外周部 22A、 24Aをトリミングして、ステップ 11 0に進み、ここで完成した電気二重層キャパシタ 10を包装する。  In step 109, the outer peripheral portions 22A and 24A of the conductors 22 and 24 are trimmed, and the process proceeds to step 110, where the completed electric double layer capacitor 10 is packaged.
[0054] この実施の形態の例に係る電気二重層キャパシタ 10は、塗布型電極 14、 16が、 活物質層 14B、 16Bを、集電体層 14A、 16Aの一方の面のみに塗布することにより 形成されているので、塗布作業が容易であり、マスキングをしたりする必要が無い。塗 布型電極 14、 16を矩形以外の形状や、異形形状とする場合であっても、図 3 (B)に 示されるように、集電体シート 31を所定の型で打ち抜くことによって、複雑な形状に 対応すること力 Sできる。  [0054] In the electric double layer capacitor 10 according to the example of this embodiment, the coating type electrodes 14, 16 are formed by applying the active material layers 14B, 16B to only one surface of the current collector layers 14A, 16A. , The coating operation is easy and there is no need for masking. Even when the coated electrodes 14 and 16 have a shape other than a rectangle or an irregular shape, as shown in FIG. The ability to cope with various shapes.
[0055] 又、導電体 22、 24の外周部 22A、 24Aが、一定の幅で全周にわたってシール部 材 26によってシールされているので、内部に水分が侵入して、機能を低下させること が無い。  [0055] Further, since the outer peripheral portions 22A, 24A of the conductors 22, 24 are sealed with a fixed width over the entire circumference by the sealing member 26, moisture may enter the inside and deteriorate the function. There is no.
[0056] 更に、この負圧室 35内で、前記外周部 22A、 24Aをシール部材 26によって密封し ているので、電気二重層キャパシタ 10内部は負圧に形成され、従って、大気中では 、大気圧によって強く押圧されることにより、導電体 22、 24、塗布型電極 14、 16及び セパレータ 18が相互に圧着されて、内部抵抗を小さくし、キャパシタとしての機能を 維持すること力 Sできる。 Further, since the outer peripheral portions 22A and 24A are sealed by the sealing member 26 in the negative pressure chamber 35, the inside of the electric double layer capacitor 10 is formed at a negative pressure, and therefore, in the atmosphere, By being strongly pressed by the atmospheric pressure, the conductors 22, 24, the coated electrodes 14, 16 and the separator 18 are pressed against each other to reduce the internal resistance and maintain the function as a capacitor. .
[0057] 次に、図 5に示される、本発明の実施の形態の第 2例に係る電気二重層キャパシタ 40について説明する。  Next, an electric double layer capacitor 40 according to a second example of the embodiment of the present invention shown in FIG. 5 will be described.
[0058] この電気二重層キャパシタ 40は、 2つのセル 42、 44を厚さ方向に重ねたものであ る。この電気二重層キャパシタ 40での、前記厚さ方向に隣接するセル 42、 44の間に おいては、 1枚の導電体 43が、両側のセル 42、 44の導電体を兼ねるように構成され ている。  [0058] The electric double layer capacitor 40 is formed by stacking two cells 42 and 44 in the thickness direction. In the electric double layer capacitor 40, between the cells 42 and 44 adjacent in the thickness direction, one conductor 43 is configured to also serve as the conductor of the cells 42 and 44 on both sides. ing.
[0059] 他の構成は、前記図 1に示される電気二重層キャパシタ 10における構成と同一で あり、同一構成部分には同一の符号を付することにより説明を省略するものとする。  The other configuration is the same as the configuration of the electric double layer capacitor 10 shown in FIG. 1, and the description of the same components will be omitted by retaining the same reference numerals.
[0060] この電気二重層キャパシタ 40の製造過程については、図 3 (F)で示されるセルを、 2組、前記中間の導電体 43を間にして重ねその両側から更に導電体 22、 24により 挟み込むようにすればよい。この実施の形態の第 2例に係る電気二重層キャパシタ 4 0では、導電体 43を真ん中に挟み、各セル 42、 44を完全に独立させてシールするこ とができ、これによつてシール性を向上させることができる。  In the manufacturing process of this electric double layer capacitor 40, two sets of cells shown in FIG. 3 (F) are stacked with the intermediate conductor 43 interposed therebetween, and conductors 22 and 24 are further provided from both sides thereof. What is necessary is just to pinch it. In the electric double layer capacitor 40 according to the second example of this embodiment, the conductor 43 can be sandwiched in the middle, and the cells 42 and 44 can be completely independently sealed. Can be improved.
[0061] 次に、図 6に示される本発明の実施の形態の第 3例に係る電気二重層キャパシタ 5 0について説明する。  Next, an electric double layer capacitor 50 according to a third embodiment of the present invention shown in FIG. 6 will be described.
[0062] この電気二重層キャパシタ 50は、前記図 3 (C)に示される塗布型電極シート 35を 2 枚、各々の活物質層 34を対向させて、その間にシート状セパレータ 52を挟み込んで 、これらをつづら状に折り畳んだ構造としたものである。他の構成は、図 1に示される 電気二重層キャパシタ 10の構成部分と同一部分に同一符号を付することにより説明 を省略する。  The electric double-layer capacitor 50 has two coated electrode sheets 35 shown in FIG. 3 (C), each active material layer 34 facing each other, and a sheet-like separator 52 interposed therebetween. These are folded into a zigzag shape. The description of the other components is omitted by assigning the same reference numerals to the same components as those of the electric double layer capacitor 10 shown in FIG.
[0063] この電気二重層キャパシタ 50は、上記のようにシート状セパレータを間にしてシート 状の電極をつづら状に折り畳んだ構造とすることによって、同じ収納面積で電極面積 を増大して、キャパシタ容量を向上させることができる。  [0063] The electric double-layer capacitor 50 has a structure in which a sheet-like electrode is folded in a zigzag shape with a sheet-like separator in between as described above, thereby increasing the electrode area with the same storage area. The capacity can be improved.
[0064] 前記図 1、図 5及び図 6に示される電気二重層キャパシタ 10、 40、 50は、その製造 工程で、シール部材 26により外周部 22A、 24A間をシールする際に、負圧室で減圧 環境としている力 本発明はこれに限定されるものでなぐ例えば、図 7に示される実 施の形態の第 4例のように、セル 12を、キャパシタ厚さ方向内側に凸となる凸形状部 を有する一対の導電体 62、 64により挟み込み、常圧環境でシールするようにした電 気二重層キャパシタ 60としてもよレ、。 The electric double layer capacitors 10, 40, 50 shown in FIGS. 1, 5 and 6 have negative pressure chambers when the outer peripheral portions 22 A, 24 A are sealed by the seal member 26 in the manufacturing process. With decompression The present invention is not limited to this. For example, as shown in a fourth embodiment of the embodiment shown in FIG. 7, the cell 12 is An electric double layer capacitor 60 sandwiched between a pair of conductors 62 and 64 having a seal and sealed under a normal pressure environment.
[0065] この電気二重層キャパシタ 60においては、キャパシタ厚さ方向内側に凸となる凸形 状部 62A、 64Aによって、セル 12が押圧されるので、内部を負圧としなくても、導電 体 62、 64と、塗布型電極 14、 16及びセパレータ 18が密着される。 In this electric double-layer capacitor 60, the cell 12 is pressed by the convex portions 62A and 64A that protrude inward in the thickness direction of the capacitor. , 64, the coating type electrodes 14, 16 and the separator 18 are brought into close contact with each other.
[0066] 図 8は、上記のような凸形状部 62A、 64Aを有する一対の導電体 62、 64の間に、 一対のセル 12と中間の導電体 72を間にしてセルを二層構造にした実施の形態の第FIG. 8 shows a cell having a two-layer structure in which a pair of cells 12 and an intermediate conductor 72 are interposed between a pair of conductors 62 and 64 having the convex portions 62A and 64A as described above. Of the preferred embodiment
5例に係る電気二重層キャパシタ 70を示す。 5 shows an electric double layer capacitor 70 according to five examples.
[0067] この電気二重層キャパシタ 70において、中間の前記導電体 72は、両面に凸形状 部 72A、 72Bを有していて、これらと前記凸形状部 62A、 64Aとの間で、セノレ 12を押 圧できるようにされている。 In this electric double-layer capacitor 70, the intermediate conductor 72 has convex portions 72A and 72B on both surfaces, and the sensor 12 is formed between these and the convex portions 62A and 64A. It can be pressed.
[0068] なお、上記実施の形態の例において、電気二重層キャパシタは、セルを 1枚又は 2 枚重ね、又はつづら折り構造としたものである力 S、本発明はこれに限定されるもので なぐセルを 3層以上積層した構成あるいはつづら折り構造のセルを複数積層した構 成であっても良い。 In the example of the above-described embodiment, the electric double layer capacitor has a force S that is obtained by stacking one or two cells or having a folded structure, and the present invention is not limited to this. A configuration in which three or more cells are stacked or a configuration in which a plurality of cells having a meandering structure are stacked may be used.
[0069] 次に、本発明の電気二重層キャパシタの作成例について説明する。電気二重層キ ャパシタの製造方法は、大別して、電極の作製及びキャパシタの作製とに分かれる。  Next, a description will be given of a production example of the electric double layer capacitor of the present invention. The manufacturing method of the electric double layer capacitor is roughly divided into manufacturing an electrode and manufacturing a capacitor.
[0070] (1)電極の作製 (1) Production of Electrode
分極性電極となる電極は以下の手順により作製する。賦活処理を施した活性炭素 材料 (粒径: 5— 10 μ m)と、バインダ(フッ素ゴム)と、導電助剤(アセチレンブラック) とを、これらの質量比が活性炭素材料:バインダ:導電助剤 = 80 : 10 : 10となるように 配合し、これを溶媒である MIBK (メチルイソブチルケトン)中に、(活性炭、バインダ、 導電助剤): (MIBK)が 100 : 270となるように投入し混練することにより、電極形成用 の塗布液を調製する(粘度: 3000— 5000cps)。  The electrode serving as the polarizable electrode is manufactured by the following procedure. The activated carbon material (particle diameter: 5-10 μm) subjected to the activation treatment, the binder (fluororubber), and the conductive additive (acetylene black) are mixed in a mass ratio of activated carbon material: binder: conductive additive. Mixing agent = 80: 10: 10 and mix it into solvent MIBK (methyl isobutyl ketone) so that (activated carbon, binder, conductive additive): (MIBK) becomes 100: 270 By mixing and kneading, a coating solution for electrode formation is prepared (viscosity: 3000-5000 cps).
[0071] 次に、この塗布液をアルミニウム箔からなる集電体層(厚さ: 50 μ m)の一方の面上 に均一に塗布する。その後、乾燥処理により、塗膜から MIBKを除去し、更に塗膜の 密度と接着性を高めるためカレンダーロールを用いて圧延し、集電体層の一方の面 上に、活物質層としての電子伝導性の多孔体層(厚さ: 37 / m)が形成された電極を 作製する。 Next, this coating solution is uniformly applied onto one surface of a current collector layer (thickness: 50 μm) made of aluminum foil. After that, MIBK is removed from the coating by a drying process, Rolled using a calender roll to increase density and adhesion, an electron-conductive porous layer (thickness: 37 / m) was formed as an active material layer on one side of the current collector layer Make electrodes.
[0072] 次に、この電極に対して 150°C 175°Cの温度で真空乾燥を 12時間以上行なうこ とにより、電子伝導性の多孔体層の表面及び内部に吸着した水分を除去し、電気二 重層キャパシタに使用する電極シートを作製する。この電極シートをプレスで打ち抜 いて、所望の形状の電極にする。  Next, by performing vacuum drying on the electrode at a temperature of 150 ° C. and 175 ° C. for 12 hours or more, water adsorbed on the surface and inside of the electron conductive porous layer was removed, The electrode sheet used for the electric double layer capacitor is manufactured. This electrode sheet is punched out with a press to form an electrode having a desired shape.
[0073] 本発明の場合、電極及びセルの形状として、矩形形状以外にも丸形や異形形状の ようなものでも作製可能であり、製作形状の自由度が極めて高い。近年の小型電子 機器はスペースが小さぐ二次電池やキャパシタ等の部品を収納する場合、わずか な空間に収納することが要求され、し力、もその空間は矩形ではなぐ異形形状が要求 されることが多いが、本発明はこのような要求を満足する。  In the case of the present invention, in addition to a rectangular shape, a shape such as a round shape or an irregular shape can be manufactured, and the degree of freedom of the manufactured shape is extremely high. In recent years, small electronic devices have a small space.When storing components such as rechargeable batteries and capacitors, it is necessary to store them in a small space. Often, however, the present invention satisfies these needs.
[0074] (2)キャパシタの作製  (2) Production of Capacitor
先ず、作製した電極を活物質層としての塗膜が向かい合うように互いに対向させ、 その間に再生セルロース不織布からなるセパレータ(厚さ: 0. 03mm,二ツボン高度 紙工業製、商品名:「TF4030」)を配置し、熱圧着してセル (素体)を形成する。この セルをプレスして略平面形状とする。  First, the prepared electrodes are opposed to each other so that the coating films as active material layers face each other, and a separator made of regenerated cellulose nonwoven fabric (thickness: 0.03 mm, Tsutsubon Advanced Paper Industry, trade name: "TF4030") ) Is arranged and thermocompression bonded to form a cell (elementary body). The cell is pressed into a substantially planar shape.
[0075] 次に、このセルを電解液(溶媒:プロピレンカーボネート、電解質:トリェチルメチル アンモニゥム.テトラフルォロボレート、電解液 1リットル当たり 1 · 2—1. 8mol/リット ノレ使用、富士薬品工業社製)中に浸漬して電極及びセパレータに電解液をしみ込ま せ、セルを取り出してアルミニウム集電体部に付着した電解液を拭き取る。  Next, this cell was used as an electrolyte (solvent: propylene carbonate, electrolyte: triethylmethylammonium.tetrafluoroborate, 1.2-1.8 mol / liter per liter of electrolyte, using Fuji Yakuhin Kogyo Co., Ltd.) ), Soak the electrolyte in the electrodes and separator, take out the cell, and wipe off the electrolyte adhering to the aluminum current collector.
[0076] このように処理したセルの上面と下面の両面にセルよりも形状の大きレ、、例えばァ ノレミニゥム (A1)からなる導電体を配置し、セルからはみ出している導電体の対向面の 間に、例えば変性ポリプロピレン (PP)からなる、両端面開放の筒状のシール部材を 挟み、全周にわたって導電体層へ熱接着させ封止して、本発明の電気二重層キャパ シタを作製する。  [0076] A conductor having a shape larger than that of the cell, for example, a conductor made of an anode (A1) is disposed on both the upper surface and the lower surface of the cell treated as described above, and the opposing surface of the conductor protruding from the cell is formed. A double-sided cylindrical sealing member made of, for example, modified polypropylene (PP) is sandwiched between them, and is thermally bonded to the conductor layer and sealed over the entire circumference to produce the electric double layer capacitor of the present invention. .
[0077] 以上述べたように、本発明では、金属缶等の缶やアルミラミネート等の外装袋を用 いることなぐ塗布型電極を使用して、薄ぐ且つ小型で複雑な形状の電気二重層キ ャパシタを作製することができる。 [0077] As described above, in the present invention, a thin, small, and complicated electric double layer is formed by using a coating type electrode that can use a can such as a metal can or an outer bag such as an aluminum laminate. Ki Capacitors can be made.
産業上の利用の可能性 Industrial potential
本発明に係る塗布型電極を使用した電気二重層キャパシタは、電極及びセルの形 状が矩形形状以外の丸形、異形形状のようなものでも作製が可能であり、二次電池 やキャパシタ等の部品を収容するスペースも狭小化が要求される小型電子機器に用 いて極めて好都合である。  The electric double-layer capacitor using the coated electrode according to the present invention can be manufactured even if the shape of the electrode and the cell is a round shape other than a rectangular shape or a deformed shape. This is extremely convenient for small electronic devices that require a small space for accommodating components.

Claims

請求の範囲 The scope of the claims
[1] 平面状の一対の集電体層及びこれらの集電体層の対向する面に形成された活物 質層からなる一対の塗布型電極、これらの塗布型電極における前記活物質層の間 に挟持されたセパレータ、前記一対の塗布型電極及びセパレータ間に充填された電 解液を含んでなるセルと、  [1] A pair of coating type electrodes composed of a pair of planar current collector layers and an active material layer formed on opposite surfaces of these current collector layers, and the active material layer in these coating type electrodes. A cell comprising a separator sandwiched therebetween, an electrolyte filled between the pair of coating electrodes and the separator,
このセルの厚さ方向両外側面に沿って、該セルを挟持するように配置された、セル よりも形状の大きい略平面状の一対の導電体と、  A pair of substantially planar conductors having a larger shape than the cell, arranged to sandwich the cell along both outer surfaces in the thickness direction of the cell,
これらの導電体の、前記セルからはみ出している外周部の間に設けられ、これらの 外周部をセルの外周に沿って、全周にわたって密封するシール部材と、を有してなり 前記活物質層は、活物質を含有する塗布液を塗布して形成された塗布被膜である ことを特徴とする電気二重層キャパシタ。  A seal member provided between outer peripheral portions of these conductors protruding from the cell, and sealing these outer peripheral portions along the outer periphery of the cell over the entire periphery. Is an applied film formed by applying a coating solution containing an active material.
[2] 請求項 1において、  [2] In claim 1,
前記セルは厚さ方向に複数重ねて配置され、厚さ方向に隣接するセル間において は、一枚の導電体が、両側のセルの導電体を兼ねることを特徴とする電気二重層キ ャパシタ。  The electric double layer capacitor according to claim 1, wherein a plurality of the cells are arranged in the thickness direction so as to overlap with each other, and between the cells adjacent in the thickness direction, one conductor also serves as the conductor of the cells on both sides.
[3] 請求項 1又は 2において、 [3] In claim 1 or 2,
前記導電体のうち、キャパシタ厚さ方向の最も外側の一対の導電体は、キャパシタ 厚さ方向内側に凸となる凸形状部を有し、これらの一対の導電体における凸形状部 がセルを押圧する構成であることを特徴とする電気二重層キャパシタ。  Of the conductors, the outermost pair of conductors in the capacitor thickness direction has a convex portion that is convex inward in the capacitor thickness direction, and the convex portion of the pair of conductors presses the cell. An electric double layer capacitor characterized in that:
[4] 請求項 1乃至 3のいずれかにおいて、 [4] In any one of claims 1 to 3,
前記セルにおける一対の塗布型電極、これらの間のセパレータは連続したシート状 とされ、且つ、このシートをつづら状に折り畳んだ構造であることを特徴とする電気二 重層キャパシタ。  An electric double layer capacitor, wherein a pair of coated electrodes in the cell and a separator therebetween are formed in a continuous sheet, and the sheet is folded in a zigzag shape.
[5] 請求項 1乃至 4のいずれかにおいて、  [5] In any one of claims 1 to 4,
前記セルは、大気圧により圧縮され得る程度に、その内部が減圧されていることを 特徴とする電気二重層キャパシタ。  An electric double layer capacitor, wherein the inside of the cell is decompressed to the extent that it can be compressed by atmospheric pressure.
[6] 請求項 1乃至 5のいずれかにおいて、 前記塗布型電極の活物質層の厚さが、 2— 90 μ mであることを特徴とする電気二 重層キャパシタ。 [6] In any one of claims 1 to 5, An electric double layer capacitor, wherein the thickness of the active material layer of the coating type electrode is 2 to 90 μm.
[7] 請求項 1乃至 6のいずれかにおいて、 [7] In any one of claims 1 to 6,
前記シール部材の、セルの外周方向及び厚さ方向に対して直交する方向の幅は、 1. 5mm以上であることを特徴とする電気二重層キャパシタ。  An electric double layer capacitor, wherein a width of the sealing member in a direction orthogonal to a cell outer peripheral direction and a thickness direction is 1.5 mm or more.
[8] シート状の導電性金属からなる集電体シートの一方の面に、活物質を含む塗布液 を塗布する工程と、 [8] a step of applying a coating liquid containing an active material to one surface of a current collector sheet made of a sheet-shaped conductive metal;
塗布液を乾燥して活物質層とする工程と、  Drying the coating liquid to form an active material layer;
この活物質層と共に集電体シートを圧延して塗布型電極シートを形成する工程と、 この塗布型電極シートを所定の大きさ、形状に打ち抜いて集電体層及び活物質層 からなる塗布型電極を形成する工程と、  Rolling a current collector sheet together with the active material layer to form a coating type electrode sheet; and punching the coating type electrode sheet into a predetermined size and shape to form a coating type electrode layer comprising a current collector layer and an active material layer. Forming an electrode;
予め、前記塗布型電極と同一形状に形成されたシート状のセパレータを、 2枚の塗 布型電極により挟み込んで積層する工程と、  A step in which a sheet-like separator formed in advance in the same shape as the coating type electrode is sandwiched between two coating type electrodes and laminated;
前記積層された 2枚の電極及びセパレータ間に電解液を充填してセルを形成する 工程と、  Filling an electrolytic solution between the two stacked electrodes and the separator to form a cell;
予め、塗布型電極及びセパレータよりも大きい形状に形成されたシート状の一対の 導電体により、前記セルを厚さ方向両側から挟み込む工程と、  A step of sandwiching the cell from both sides in the thickness direction with a pair of sheet-shaped conductors formed in advance in a shape larger than the coating type electrode and the separator;
前記一対の導電体の、前記セルの外周からはみ出した外周部の間にシール部材 を取り付けて、全周にわたつてセルを密封する工程と、  Attaching a sealing member between outer peripheral portions of the pair of conductors protruding from the outer periphery of the cell, and sealing the cell over the entire periphery;
を有してなる電気二重層キャパシタの製造方法。  A method for producing an electric double layer capacitor comprising:
[9] シート状の導電性金属からなる集電体シートの一方の面に、活物質を含む塗布液 を塗布する工程と、 [9] a step of applying a coating liquid containing an active material to one surface of a current collector sheet made of a sheet-shaped conductive metal;
塗布液を乾燥して活物質層とする工程と、  Drying the coating liquid to form an active material layer;
この活物質層と共に集電体シートを圧延して塗布型電極シートを形成する工程と、 この塗布型電極シートを所定の大きさ、形状に打ち抜いて集電体層及び活物質層 からなる塗布型電極を形成する工程と、  Rolling a current collector sheet together with the active material layer to form a coating type electrode sheet; and punching the coating type electrode sheet into a predetermined size and shape to form a coating type electrode layer comprising a current collector layer and an active material layer. Forming an electrode;
予め、前記塗布型電極と同一形状に形成されたシート状のセパレータを 2枚の塗 布型電極により挟み込んで積層する工程と、 前記積層された 2枚の電極及びセパレータ間に電解液を充填してセルを形成する 工程と、 A step in which a sheet-like separator formed in advance in the same shape as the coating-type electrode is sandwiched between two coating-type electrodes and laminated; Filling an electrolytic solution between the two stacked electrodes and the separator to form a cell;
複数のセルを、各々、予め、塗布型電極及びセパレータよりも大きい形状に形成さ れたシート状の中間導電体を間にして厚さ方向に重ねると共に、厚さ方向の両外側 のセルの外側に、重ねられたセルを厚さ方向に挟み込むように、外側導電体を配置 する工程と、  A plurality of cells are stacked in the thickness direction with a sheet-shaped intermediate conductor formed in advance in a shape larger than the coating type electrode and the separator, and the outside of the cells on both outer sides in the thickness direction. Arranging the outer conductor so as to sandwich the stacked cells in the thickness direction;
前記外側導電体及び中間導電体の、前記セルの外周からはみ出した外周部の間 にシール部材を取り付けて、全周にわたってセルを密封する工程と、  A step of attaching a seal member between the outer conductor and the intermediate conductor between the outer peripheral portions protruding from the outer periphery of the cell, and sealing the cell over the entire periphery;
を有してなる電気二重層キャパシタの製造方法。  A method for producing an electric double layer capacitor comprising:
[10] 請求項 8又は 9において、 [10] In claim 8 or 9,
前記セルを形成する工程における電解液の充填前に、前記積層された 2枚の電極 及びセパレータを、積層状態でつづら状に折り畳むことを特徴とする電気二重層キヤ パシタの製造方法。  A method for manufacturing an electric double layer capacitor, wherein the two stacked electrodes and the separator are folded in a zigzag manner in a laminated state before filling with an electrolytic solution in the step of forming the cell.
[11] 請求項 8乃至 10のいずれかにおいて、  [11] In any one of claims 8 to 10,
前記セルを密封する工程を、減圧環境で実行することを特徴とする電気二重層キヤ パシタの製造方法。  A method for manufacturing an electric double layer capacitor, wherein the step of sealing the cell is performed in a reduced pressure environment.
PCT/JP2004/018926 2003-12-25 2004-12-17 Electric double layer capacitor and method for manufacturing same WO2005064632A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-429090 2003-12-25
JP2003429090A JP2007080844A (en) 2003-12-25 2003-12-25 Electric double layer capacitor
JP2004-002690 2004-01-08
JP2004002690A JP2007080845A (en) 2004-01-08 2004-01-08 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
WO2005064632A1 true WO2005064632A1 (en) 2005-07-14

Family

ID=34742107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018926 WO2005064632A1 (en) 2003-12-25 2004-12-17 Electric double layer capacitor and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2005064632A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114986119A (en) * 2022-06-23 2022-09-02 江苏星凯新能源科技有限公司 Automatic assembling machine for capacitor body
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166373A (en) * 1984-09-07 1986-04-05 Matsushita Electric Ind Co Ltd Manufacture of polarized electrode
JPH03116707A (en) * 1989-09-28 1991-05-17 Isuzu Motors Ltd Electric double-layer capacitor
JPH03283519A (en) * 1990-03-30 1991-12-13 Isuzu Motors Ltd Manufacture of electric double layer capacitor
JPH05326329A (en) * 1992-05-20 1993-12-10 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JPH11135368A (en) * 1997-10-29 1999-05-21 Asahi Glass Co Ltd Collector for electric double layer capacitor and the electric double layer capacitor
JP2001338848A (en) * 2000-05-26 2001-12-07 Matsuo Electric Co Ltd Electric double layer capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166373A (en) * 1984-09-07 1986-04-05 Matsushita Electric Ind Co Ltd Manufacture of polarized electrode
JPH03116707A (en) * 1989-09-28 1991-05-17 Isuzu Motors Ltd Electric double-layer capacitor
JPH03283519A (en) * 1990-03-30 1991-12-13 Isuzu Motors Ltd Manufacture of electric double layer capacitor
JPH05326329A (en) * 1992-05-20 1993-12-10 Matsushita Electric Ind Co Ltd Electric double layer capacitor
JPH11135368A (en) * 1997-10-29 1999-05-21 Asahi Glass Co Ltd Collector for electric double layer capacitor and the electric double layer capacitor
JP2001338848A (en) * 2000-05-26 2001-12-07 Matsuo Electric Co Ltd Electric double layer capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
CN114986119A (en) * 2022-06-23 2022-09-02 江苏星凯新能源科技有限公司 Automatic assembling machine for capacitor body
CN114986119B (en) * 2022-06-23 2023-08-15 江苏星凯新能源科技有限公司 Automatic assembly machine for capacitor body

Similar Documents

Publication Publication Date Title
JP4825344B2 (en) Battery / capacitor composite element
JP4670430B2 (en) Electrochemical devices
JP6521323B2 (en) Secondary battery and method of manufacturing the same
CN112602229B (en) Hybrid lithium ion capacitor battery with carbon-coated separator and method of making same
WO2007063857A1 (en) Lithium ion secondary battery
JP2008097991A (en) Electric storage device
JP2011086760A (en) Energy storage element
US7704635B2 (en) Electrochemical device and method of manufacturing electrochemical device
JP4359809B2 (en) Storage element module and manufacturing method thereof
JP2004349306A (en) Electric double layer capacitor and electric double layer capacitor laminate
JP2004288571A (en) Water-based metal-air cell and electronic apparatus using the same
JP3877968B2 (en) Electric double layer capacitor
JP2006196235A (en) Battery-capacitor composite element
WO2005064632A1 (en) Electric double layer capacitor and method for manufacturing same
JP4895028B2 (en) Electric double layer capacitor
JP7359023B2 (en) Energy storage module
JP2007080844A (en) Electric double layer capacitor
JP2002280059A (en) Battery, electric double layer capacitor and their manufacturing method
JP2007019211A (en) Electric double layer capacitor and its manufacturing method
JP5213024B2 (en) Stacked sealed battery
JP2004234987A (en) Battery pack
JP5216292B2 (en) Electricity storage element
JP2005216659A (en) Lithium secondary battery
JP4988153B2 (en) Manufacturing method of electric double layer capacitor
JP2007080845A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP