WO2005061870A1 - Brennkraftmaschine mit abgasturbolader und abgasrückführung - Google Patents

Brennkraftmaschine mit abgasturbolader und abgasrückführung Download PDF

Info

Publication number
WO2005061870A1
WO2005061870A1 PCT/EP2004/012833 EP2004012833W WO2005061870A1 WO 2005061870 A1 WO2005061870 A1 WO 2005061870A1 EP 2004012833 W EP2004012833 W EP 2004012833W WO 2005061870 A1 WO2005061870 A1 WO 2005061870A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
combustion engine
internal combustion
control element
flow
Prior art date
Application number
PCT/EP2004/012833
Other languages
English (en)
French (fr)
Inventor
Alfred KÜSPERT
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2005061870A1 publication Critical patent/WO2005061870A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine with an exhaust gas turbocharger and exhaust gas recirculation according to the preamble of claim 1.
  • An exhaust gas turbocharger is already known (DE 199 24 228 C2), the turbine housing of which has a double flow.
  • the regulation of the exhaust gas supply to a turbine wheel of the exhaust gas turbine takes place via an axial slide, which can completely cover one of the floods, so that the exhaust gas supply takes place via an upstream flood connection via a single flood to the turbine wheel.
  • Such control of the amount of exhaust gas is common in the non-fired operating range of the internal combustion engine, in which the internal combustion engine is intended to act as an engine brake (turbobrake).
  • the relatively small amount of exhaust gas in the engine braking mode is fed to the turbine wheel via the smaller flood, which is dimensioned correspondingly to the lower exhaust gas flow with its inlet cross section, so that a relatively high speed of the turbine wheel and a compressor connected to the turbine wheel via a shaft can be maintained.
  • the relatively high speed of the compressor wheel also results in engine braking Compression of the intake air and thus the corresponding engine braking power.
  • variable turbine geometry instead of the aforementioned slide valve solution, for example in the form of an adjustable, radial guide vane, which then blocks off a flood if necessary. It is also possible to provide the slide with a rigid guide grille, which is then introduced into the exhaust gas flood.
  • the provision of the variable turbine geometry and a slider is complex and also requires installation space.
  • the internal combustion engine according to the invention with exhaust gas turbocharger and exhaust gas recirculation with the characterizing features of claim 1 has the advantage that the turbocharger can be easily adapted to the various operating states of the internal combustion engine, in particular in exhaust gas recirculation operation and in engine braking operation, with the use of variable or rigid Guide vanes in front of the turbine or a slide in the turbine housing can be dispensed with.
  • good regulation of the flow to the turbine is possible, in which the build-up behavior on the exhaust gas turbine can be better adapted to the respective operating point.
  • the exhaust gas recirculation is provided for returning exhaust gas from the exhaust system into the intake tract, in which, depending on the state variables and operating parameters of the internal combustion engine, the amount of the recirculated exhaust gas mass flow can be set in a simple manner. It is advantageous that a first control element and a second control element can be used to very variably achieve a desired back pressure on the turbine, as a result of which the exhaust gas recirculation rate can be adjusted well in addition to the engine braking power.
  • the drawing shows a schematically simplified representation of an internal combustion engine 1, which is a diesel engine with an engine brake, in particular for use in commercial vehicles. In principle, however, the invention can also be applied to gasoline engines.
  • the internal combustion engine 1 has an exhaust gas turbocharger 2 with a turbine 3 in the exhaust line 4.
  • the turbine 3 has a turbine wheel 5, which is designed as a radial turbine and transmits the movement of the turbine wheel 5 via a shaft 7 to a compressor wheel 8 of a compressor 9.
  • the turbine 3 has a turbine housing which is designed with two passages 14, 15 or inflow channels 16, 17.
  • the two floods 14, 15 and inflow channels 16, 17 are separated from one another by a partition 18 of the turbine housing which is fixed to the housing.
  • the exhaust gas can be fed separately to the turbine wheel 5 via each flood 14, 15 or inflow channel 16, 17.
  • the exhaust gas supply takes place via the exhaust line 4, which is divided into two exhaust gas lines which are formed independently of one another, a first exhaust gas line 20 and a second exhaust gas line 21.
  • the first exhaust line 20 is assigned to the first flood 14 and the second exhaust line 21 is assigned to the second flood 15.
  • Each exhaust line 20, 21 is assigned to a defined number of cylinder outlets of the internal combustion engine.
  • the internal combustion engine 1 has six cylinders, a first cylinder bank 23, three cylinders and a second cylinder bank 24, likewise having three cylinders. In addition to the uniform division of the cylinder banks, a non-uniform one is also conceivable.
  • the first exhaust pipe 20 leads from the cylinder bank 23 assigned here to the first inflow duct 16 of the first flood 14.
  • the second Exhaust line 21 leads from the assigned second cylinder bank 24 to the second inflow channel 17 of the second flood 15.
  • a bypass line 25 connecting both exhaust gas lines 20, 21 is provided between the two exhaust gas lines 20, 21 upstream of the turbine 3.
  • a first control element 30, which can control the exhaust gas flow in the bypass line 25, is accommodated in the bypass line 25.
  • the first control element 30 is designed, for example, as a valve controlling the flow or as an adjustable throttle element or flap.
  • a second control element 31 is accommodated in the second exhaust gas line 21 upstream of the turbine 3 and downstream of an inlet point 26 to the bypass line 25, which also acts as a flow controlling valve or as a throttle element or Flap is formed.
  • an exhaust gas flow from the second cylinder bank 24 to the second flood 15 is possible.
  • the charge air cooler 37 Downstream of the compressor 9, the charge air cooler 37, through which the compressed air flows, is arranged in the intake tract 6. After leaving the charge air cooler 37, the air has the boost pressure p2S, with which it is optionally introduced with mixed exhaust gas from the bypass line 25 into the cylinder inlet of the internal combustion engine 1.
  • the exhaust gas back pressure p31 prevails from the cylinder outlet in the first exhaust line 20, which is assigned to the first cylinder bank 23; Exhaust gas back pressure p32 is present in second exhaust line 21, which is assigned to second cylinder bank 24. In the turbine 3, the exhaust gas is expanded to the low pressure p4 and finally blown off into the environment in the further course.
  • the second, larger flood 15 is dimensioned or designed so that a desired boost pressure can be achieved in fired operation.
  • the first, smaller flood 14 is dimensioned or designed in such a way that a required exhaust gas recirculation rate can be achieved, a certain engine braking power being guaranteed in engine braking operation.
  • the ratio of the inlet cross-section or Haisqueriteses of the first flood 14 per 1 1 stroke volume of the internal combustion engine 1 should be in a range of
  • the third control element 32 of the exhaust gas recirculation is set to an open position so that exhaust gas can primarily flow from the first exhaust line 20 into the intake tract 6.
  • the second control element 31 of the second exhaust gas line 21 is also set to an open position.
  • the pressure in the first exhaust line 20 p31 is greater than the pressure in the second exhaust line 21 p32.
  • the first control element 30 can therefore be used to vary the recirculation rate for the exhaust gas recirculation.
  • a maximum exhaust gas recirculation rate can thus be achieved in the closed position of the first control element 30 since p31 then has its maximum value.
  • a corresponding exhaust gas recirculation rate can be set by correspondingly varying the position of the first control element 30 or the flow in the bypass line 25.
  • the first control element 30 is brought permanently into an open position, so that a flow can take place in the bypass line 25.
  • the second control 31 in the second Exhaust line 21 is provided in order to be able to variably change its position or the flow in the second exhaust line 21.
  • the third control element 32 is permanently in its closed position during engine braking, so that there is no exhaust gas recirculation.
  • variable second control element 31 In the closed position of the variable second control element 31, no exhaust gas can reach the turbine wheel 5 through the second flood 15. The total amount of exhaust gas must therefore flow through the small tide 14 to the turbine wheel 5, which results in a high speed of the turbine wheel 5 or the connected compressor wheel 8 due to the maximum exhaust gas pressure p31, which results in a maximum boost pressure of the compressor 9 and thus maximum braking power in engine braking mode.
  • the braking power can be varied or adjusted accordingly in a simple manner.
  • the closed position of the second control element 31 it is thus possible to achieve very high engine braking powers by greatly increasing the exhaust gas back pressure p31 without exceeding the critical speed limit of the exhaust gas turbocharger 2. It is advantageous here that the first control element 30 and the second control element 31 can be used to very variably achieve a desired back pressure p31 on the feed turbine 3, as a result of which the engine braking power can be adjusted well.
  • first control valve 30 and the second control valve 31 and, if appropriate, also the third control valve 32 can be in a common housing for further optimization of the installation space be housed.
  • a corresponding constructive solution in the form of a multifunctional valve or throttle element is also conceivable.
  • All control elements 30, 31, 32 can be adjusted to their desired position by means of control signals that can be generated in a regulating and control device (not shown), for example an electronic engine control unit, in order to enable the flow rate to be controlled.
  • a regulating and control device for example an electronic engine control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Zur vereinfachten Bauweise und verbesserten Steuerung wird eine Brennkraftmaschine (1) mit Abgasturbolader (2) vorgeschlagen, welcher eine Abgasturbine (3) umfasst, die zwei separate Strömungsfluten (14, 15) mit unterschiedlichem Querschnitt aufweist, welche jeweils mit einer Abgasleitung (20; 21) verbunden sind, wobei zur Abgasrückführung eine Abgasrückführleitung (35) von der kleineren Strömungsflut (14) zu einem Ansaugtrakt (6) der Brennkraftmaschine (1) führt. In einer beide Abgasleitungen (20, 21) stromauf der Strömungsfluten (14, 15) verbindenden Überbrückungsleitung (25) ist ein erstes, den Durchfluss steuerndes Steuerelement (30) und in der der grösseren Strömungsflut (15) zugeordneten zweiten Abgasleitung (21) ein zweites, den Durchfluss steuerndes Steuerelement (31) vorgesehen, wobei mittels beider Steuerelemente (30, 31) eine entsprechende Beaufschlagung der einzelnen Fluten (14, 15) mit Abgas zur Anpassung an verschiedene Betriebszustände der Brennkraftmaschine (1) erfolgt.

Description

Brennkraftmaschine mit Abgasturbolader und Abgasrückführung
Stand der Technik
Die Erfindung geht aus von einer Brennkraftmaschine mit Abgasturbolader und Abgasrückführung nach der Gattung des Anspruchs 1.
Es ist bereits ein Abgasturbolader bekannt (DE 199 24 228 C2 ) , dessen Turbinengehäuse zweiflutig ausgebildet ist. Die Regelung der AbgasZuführung auf ein Turbinenrad der Abgasturbine erfolgt über einen Axialschieber, welcher eine der Fluten vollständig überdecken kann, so dass die AbgasZuführung über eine stromaufwärts befindliche Flutverbindung über eine einzige Flut auf das Turbinenrad erfolgt. Eine derartige Steuerung der Abgasmenge ist im nichtbefeuerten Betriebsbereich der Brennkraftmaschine üblich, in welchem die Brennkraftmaschine als Motorbremse (Turbobrake) wirken soll . Die im Motorbremsbetrieb relativ geringe Abgasmenge wird über die kleinere Flut dem Turbinenrad zugeführt, die dem geringeren Abgasstrom mit ihrem Eintrittsquerschnitt entsprechend dimensioniert ist, so dass eine relativ hohe Drehzahl des Turbinenrades und eines über eine Welle mit dem Turbinenrad verbundenen Verdichters aufrecht erhalten werden kann. Durch die relativ hohe Drehzahl des Verdichterrades ergibt sich auch im Motorbremsbetrieb eine Verdichtung der angesaugten Luft und damit entsprechende Motorbremsleistung .
Ferner ist es bekannt, anstelle der erwähnten Schieberlösung, Abgasturbolader mit einer variablen Turbinengeometrie auszustatten, zum Beispiel in Form eines verstellbaren, radialen Leitgitters, welches dann bedarfsweise eine Absperrung einer Flut vornimmt . Möglich ist auch, den Schieber mit starrem Leitgitter zu versehen, welches dann in die Abgasflut eingebracht wird. Das Vorsehen der variablen Turbinengeometrie sowie eines Schiebers ist aber aufwendig und benötigt zudem Bauraum.
Vorteile der Erfindung
Die erfindungsgemäße Brennkraftmaschine mit Abgasturbolader und Abgasrückführung mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, dass eine einfache Anpassung des Turboladers an die verschiedenen Betriebszustände der Brennkraftmaschine, insbesondere im Abgasrückführungsbetrieb und im Motorbremsbetrieb, erfolgen kann, wobei auf den Einsatz von variablen oder starren Leitschaufeln vor der Turbine bzw. eines Schiebers im Turbinengehäuse verzichtet werden kann. Vorteilhafterweise ist dabei eine gute Regelung der Strömung auf die Turbine möglich, bei welcher das Aufstauverhalten an der Abgasturbine besser an den jeweiligen Betriebspunkt angepasst werden kann.
Vorteilhafterweise ergibt sich durch den Entfall des Schiebers bzw. von zusätzlichen Leitschaufeln an der Turbine ein vereinfachter, kostengünstiger Aufbau des Abgasturboladers .
Durch die in Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Brennkraftmaschine mit Abgasturbolader und Abgasrückführung möglich.
Zur Verbesserung des Abgasverhaltens der
Brennkraftmaschine, insbesondere zur NOx-Reduktion, ist die Abgasrückführung zur Rückführung von Abgas aus dem Abgasstrang in den Ansaugtrakt vorgesehen, bei der in Abhängigkeit von Zustandsgroßen und Betriebsparametern der Brennkraftmaschine sich in einfacher Art und Weise die Höhe des rückgeführten Abgasmassenstroms einstellen lässt. Vorteilhaft ist dabei, dass durch ein erstes Steuerelement und ein zweites Steuerelement sich sehr variabel eine Einstellung eines gewünschten AufStaudrucks an der Turbine erzielen lässt, wodurch sich neben der Motorbremsleistung auch die Abgasrückführrate gut einstellen lässt.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert .
Beschreibung des Ausführungsbeispiels Die Zeichnung zeigt in schematisch vereinfachter Darstellungsweise eine Brennkraf maschine 1, bei der es sich um einen Dieselmotor mit Motorbremse, insbesondere zum Einsatz für Nutzfahrzeuge, handelt. Die Erfindung ist prinzipiell aber auch auf Ottomotoren übertragbar. Die Brennkraftmaschine 1 weist einen Abgasturbolader 2 mit einer Turbine 3 im Abgasstrang 4 auf. Die Turbine 3 besitzt ein Turbinenrad 5, welches als Radialturbine ausgebildet ist und die Bewegung des Turbinenrades 5 über eine Welle 7 auf ein Verdichterrad 8 eines Verdichters 9 überträgt . Die Turbine 3 weist ein Turbinengehäuse auf, welches zweiflutig mit zwei Fluten 14, 15 bzw. Einströmkanälen 16, 17 ausgebildet ist. Die beiden Fluten 14, 15 bzw. Einströmkanäle 16, 17 sind durch eine gehäusefeste Trennwand 18 des Turbinengehäuses voneinander getrennt.
Über jede Flut 14, 15 bzw. Einströmkanal 16, 17 ist das Abgas separat zu dem Turbinenrad 5 zuführbar. Die AbgasZuführung erfolgt über den Abgasstrang 4, der in zwei unabhängig voneinander ausgebildete Abgasleitungen, eine erste Abgasleitung 20 und eine zweite Abgasleitung 21, aufgeteilt ist. Die erste Abgasleitung 20 ist der ersten Flut 14 und die zweite Abgasleitung 21 ist der zweiten Flut 15 zugeordnet. Jede Abgasleitung 20, 21 ist einer definierten Anzahl von Zylinderauslässen der Brennkraftmaschine zugeordnet. Im Ausführungsbeispiel weist die Brennkraftmaschine 1 sechs Zylinder auf, wobei eine erste Zylinderbank 23, drei Zylinder und eine zweite Zylinderbank 24, ebenfalls drei Zylinder aufweist. Denkbar ist neben der gleichförmigen Aufteilung der Zylinderbänke auch eine ungleichförmige. Die erste Abgasleitung 20 führt von der hier zugeordneten Zylinderbank 23 zum ersten Einströmkanal 16 der ersten Flut 14. Die zweite Abgasleitung 21 führt von der ihr zugeordneten zweiten Zylinderbank 24 zum zweiten Einströmkanal 17 der zweiten Flut 15.
Zwischen den beiden Abgasleitungen 20, 21 ist stromauf der Turbine 3 eine beide Abgasleitungen 20, 21 verbindende Überbrückungsleitung 25 vorgesehen. In der Überbrückungsleitung 25 ist ein erstes Steuerelement 30 untergebracht, welches den Abgasstrom in der Überbrückungsleitung 25 steuern kann. Das erste Steuerelement 30 ist zum Beispiel als den Durchfluss steuerndes Ventil oder als einstellbares Drosselorgan bzw. Klappe ausgebildet. In Offenstellung des ersten Steuerelements 30 ist ein Überströmen mit Druckausgleich zwischen den Abgasleitungen 20, 21 möglich. Hingegen erfolgt in einer Schließstellung kein Druckausgleich zwischen den Abgasleitungen 20, 21. Weiterhin ist in der zweiten Abgasleitung 21 stromauf zur Turbine 3 und stromab einer Einleitstelle 26 zur Überbrückungsleitung 25 ein zweites Steuerelement 31 untergebracht, welches ebenfalls als den Durchfluss steuerndes Ventil oder als Drosselorgan bzw. Klappe ausgebildet ist. In Offenstellung des zweiten Steuerelements 31 ist ein Abgasstrom von der zweiten Zylinderbank 24 zur zweiten Flut 15 möglich. In Schließstellung des zweiten Steuerelements 31 erfolgt keine AbgasZuführung zur zweiten Flut 15.
Außerdem weist die Brennkraftmaschine 1 eine Abgasrückführung auf, die eine Rückführleitung 35, gegebenenfalls einen Abgaskühler 36 und ein drittes Steuerelement 32 umfasst . Das dritte Steuerelement 32 kann als ein den Durchfluss steuerndes Ventil oder als Drosselorgan bzw. Klappe ausgebildet sein und ist stromauf der ersten Flut 14 und zum Beispiel stromauf des Abgaskühlers 36 in der Rückführleitung 35 angeordnet. Vorzugsweise ist eine Ausbildung des dritten Steuerelements 32 als Schaltventil vorgesehen, das keine Zwischenstellung, sondern nur eine Offen- und eine Schließstellung einnehmen kann. Die Rückführleitung 35 mündet in einen Ansaugtrakt 6 der Brennkraftmaschine 1 stromab eines Ladeluftkühlers 37 für die Ansaugluft . Der Ansaugtrakt 6 umfasst den Verdichter 9 mit dem Verdichterrad 8, der Umgebungsluft mit dem Druck pl ansaugt und auf ein erhöhten Druck p2 verdichtet. Stromab des Verdichters 9 ist im Ansaugtrakt 6 der Ladeluftkühler 37 angeordnet, der von der verdichteten Luft durchströmt wird. Nach dem Verlassen des Ladeluftkühlers 37 weist die Luft den Ladedruck p2S auf, mit dem sie gegebenenfalls mit vermischtem Abgas aus der Überbrückungsleitung 25 in den Zylindereinlass der Brennkraftmaschine 1 eingeleitet wird.
Vom Zylinderauslass herrscht in der ersten Abgasleitung 20, die der ersten Zylinderbank 23 zugeordnet ist, der Abgasgegendruck p31; in der zweiten Abgasleitung 21, die der zweiten Zylinderbank 24 zugeordnet ist, liegt der Abgasgegendruck p32 an. In der Turbine 3 wird das Abgas auf den niedrigen Druck p4 entspannt und im weiteren Verlauf schließlich in die Umgebung abgeblasen.
Die zweite, größere Flut 15 wird so dimensioniert bzw. ausgelegt, dass ein gewünschter Ladedruck im befeuerten Betrieb erzielt werden kann. Die erste, kleinere Flut 14 wird so dimensioniert bzw. ausgelegt, dass eine geforderte Abgasrückführrate erzielt werden kann, wobei eine bestimmte Motorbremsleistung im Motorbremsbetrieb gewährleistet wird. Das Verhältnis des Eintrittsquerschnittes bzw. Haisquerschnittes von erster Flut 14 pro 1 1 Hubvolumen der Brennkraftmaschine 1 sollte dabei in einem Bereich von
0.15 cm /l bis 0.40 cm2/l liegen.
Im Abgasrückführungsbetrieb in der befeuerten Betriebsweise der Brennkraftmaschine 1 wird das dritte Steuerelement 32 der Abgasrückführung in eine Offenstellung versetzt, damit Abgas vornehmlich aus der ersten Abgasleitung 20 in den Ansaugtrakt 6 überströmen kann. Um ein die Abgasrückführung ermöglichendes Druckgefälle mit einem den Ladedruck p2S übersteigenden Abgasgegendruck p31 in der ersten Abgasleitung 20 zu gewährleisten, wird das zweite Steuerelement 31 der zweiten Abgasleitung 21 ebenfalls in eine Offenstellung versetzt. Der Druck in der ersten Abgasleitung 20 p31 ist größer als der Druck der zweiten Abgasleitung 21 p32. Das erste Steuerelement 30 kann daher zur Variation der Rückführrate für die Abgasrückführung eingesetzt werden. So lässt sich in Schließstellung des ersten Steuerelements 30 eine maximale Abgasrückführrate erzielen, da p31 dann seinen maximalen Wert hat. In Offenstellung des ersten Steuerelements 30 ergibt sich hingegen eine minimale Abgasrückführrate aufgrund des stattfindenden Druckausgleichs zur zweiten Abgasleitung 21. Durch entsprechende Variation der Stellung des ersten Steuerelements 30 bzw. des Durchflusses in der Überbrückungsleitung 25 kann eine entsprechende Abgasrückführrate eingestellt werden.
Im Motorbremsbetrieb hingegen wird das erste Steuerelement 30 dauerhaft in eine Offenstellung gebracht, so dass ein Durchfluss in der Überbrückungsleitung 25 erfolgen kann. Das zweite Steuerelement 31 in der zweiten Abgasleitung 21 ist vorgesehen, um variabel seine Stellung bzw. den Durchfluss in der zweiten Abgasleitung 21 verändern zu können. Das dritte Steuerelement 32 befindet sich während des Motorbremsbetriebs dauerhaft in seiner Schließstellung, so dass keine Abgasrückführung erfolgt.
In der Schließstellung des variablen zweiten Steuerelements 31 kann kein Abgas durch die zweite Flut 15 auf das Turbinenrad 5 gelangen. Die gesamte Abgasmenge muss daher durch die kleine Flut 14 zum Turbinenrad 5 strömen, wodurch sich durch den sich dann einstellenden maximalen Abgasdruck p31 eine hohe Drehzahl des Turbinenrades 5 bzw. des verbundenen Verdichterrades 8 ergibt, was zu einem maximalen Ladedruck des Verdichters 9 und damit zur maximalen Bremsleistung im Motorbremsbetrieb führt . Durch entsprechende Variation der Stellung des zweiten Steuerelements 31 bzw. der Durchflussmenge in der zweiten Abgasleitung 21 lässt sich die Bremsleistung in einfacher Art und Weise entsprechend variieren bzw. einstellen. In Schließstellung des zweiten Steuerelements 31 ist es somit möglich, sehr hohe Motorbremsleistungen durch eine starke Anhebung des Abgasgegendrucks p31 zu erzielen, ohne dabei die kritische Drehzahlgrenze des Abgasturboladers 2 zu überschreiten. Vorteilhaft ist dabei, dass durch das erste Steuerelement 30 und das zweite Steuerelement 31 sich sehr variabel eine Einstellung eines gewünschten AufStaudrucks p31 an der Förderturbine 3 erzielen lässt, wodurch sich die Motorbremsleistung gut einstellen lässt.
In einer nicht näher dargestellten Ausführungsweise können zur weiteren Bauraumoptimierung das erste Steuerventil 30 und das zweite Steuerventil 31 und gegebenenfalls auch das dritte Steuerventil 32 in einem gemeinsamen Gehäuse untergebracht sein. Denkbar ist auch eine entsprechende konstruktive Lösung in Form eines mehrfunktionalen Ventils oder Drosselorgans.
Sämtliche Steuerelemente 30, 31, 32 können über Stellsignale, die in einer nicht näher dargestellten Regel- und Steuereinrichtung, zum Beispiel einem elektronischen Motorsteuergerät, erzeugbar sind, in ihre gewünschte Position verstellt werden, um so eine Steuerung der Durchflussmenge zu ermöglichen.

Claims

Patentansprüche
1. Brennkraftmaschine mit Abgasturbolader und Abgasrückführung, wobei der Abgasturbolader eine Abgasturbine umfasst, die zwei separate, einem Turbinenrad der Abgasturbine vorgelagerte Strömungsfluten mit unterschiedlichem Querschnitt aufweist und jede Strömungsflut mit jeweils einer Abgasleitung zur Versorgung mit Abgas verbunden ist, wobei zur Abgasrückführung eine Abgasrückführleitung von der kleineren Strömungsflut zu einem Ansaugtrakt der Brennkraftmaschine führt, dadurch gekennzeichnet, dass in einer beide Abgasleitungen (20, 21) stromauf der Strömungsfluten (14, 15) verbindenden Überbrückungsleitung (25) ein erstes, den Durchfluss steuerndes Steuerelement (30) und in der der größeren Strömungsflut (15) zugeordneten zweiten Abgasleitung (21) ein zweites, den Durchfluss steuerndes Steuerelement (31) vorgesehen ist, wobei mittels beider Steuerelemente (30, 31) eine entsprechende Beaufschlagung der einzelnen Fluten (14, 15) mit Abgas zur Anpassung an verschiedene Betriebszustände der Brennkraftmaschine (1) erfolgt.
2. Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Steuerelemente (30, 31) als den Durchfluss steuernde Ventile oder als einstellbare Drosselorgane bzw. Klappen ausgebildet sind.
3. Brennkraftmaschine nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass das Verhältnis des Eintrittsquerschnittes bzw. Haisquerschnittes von erster Flut (14) pro 1 1 Hubvolumen der Brennkraftmaschine (1) in einem Bereich von 0.15 cm2/l bis 0.40 cm2/l liegt.
4. Brennkraftmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass in der Abgasrückführleitung (35) ein drittes Steuerventil (32) vorgesehen ist.
5. Brennkraftmaschine nach Anspruch 4, dadurch gekennzeichnet, dass das dritte Steuerelement (32) als ein den Durchfluss steuerndes Ventil oder als einstellbares Drosselorgan bzw. Klappe ausgebildet ist.
6. Brennkraftmaschine nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das dritte Steuerelement (32) als Schaltventil ausgebildet ist.
7. Brennkraftmaschine nach Anspruch 4 , dadurch gekennzeichnet, dass im Abgasrückführungsbetrieb das zweite und das dritte Steuerelement (31, 32) eine Offenstellung einnimmt, wobei das erste Steuerelement (30) eine variable Stellung einnehmen kann.
Brennkraftmaschine nach Anspruch 4, dadurch gekennzeichnet, dass im Motorbremsbetrieb der Brennkraftmaschine (1) das erste Steuerelement (30) eine Offen- und das dritte
Steuerelement (32) eine Schließstellung einnimmt, wobei das zweite Steuerelement (31) eine variable Stellung einnehmen kann.
PCT/EP2004/012833 2003-12-11 2004-11-12 Brennkraftmaschine mit abgasturbolader und abgasrückführung WO2005061870A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10357925.7 2003-12-11
DE10357925A DE10357925A1 (de) 2003-12-11 2003-12-11 Brennkraftmaschine mit Abgasturbolader und Abgasrückführung

Publications (1)

Publication Number Publication Date
WO2005061870A1 true WO2005061870A1 (de) 2005-07-07

Family

ID=34706276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/012833 WO2005061870A1 (de) 2003-12-11 2004-11-12 Brennkraftmaschine mit abgasturbolader und abgasrückführung

Country Status (2)

Country Link
DE (1) DE10357925A1 (de)
WO (1) WO2005061870A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009018887A1 (de) * 2007-08-04 2009-02-12 Daimler Ag Abgasturbolader für eine hubkolben-brennkraftmaschine
WO2009037120A2 (de) * 2007-09-13 2009-03-26 Avl List Gmbh Brennkraftmaschine mit mehrflutigen abgasturbolader
FR2945579A1 (fr) * 2009-05-15 2010-11-19 Inst Francais Du Petrole Procede et dispositif de controle de la quantite de gaz d'echappement recircules a l'admission d'un moteur a combustion interne suralimente
EP2295769A1 (de) * 2009-08-14 2011-03-16 International Engine Intellectual Property Company, LLC. Abluftsystem für Motorbremsen
EP2154352A3 (de) * 2008-08-12 2014-03-19 MAN Truck & Bus AG Verfahren und Vorrichtung zum Betreiben einer mehrzylindrischen Brennkraftmaschine
DE102013005885A1 (de) 2013-04-06 2014-10-09 Daimler Ag Turbine für einen Abgasturbolader
WO2018073608A1 (en) * 2016-10-21 2018-04-26 Cummins Ltd Method of design of a turbine
CN108869109A (zh) * 2018-07-27 2018-11-23 湖南天雁机械有限责任公司 调节废气流量的集成控制阀
CN108894871A (zh) * 2018-06-26 2018-11-27 清华大学 一种带有双egr通道的非对称涡轮增压内燃机***
US10215136B2 (en) 2014-08-26 2019-02-26 Borgwarner Inc. Adjustable, low loss valve for providing high pressure loop exhaust gas recirculation
US10301952B2 (en) 2014-05-19 2019-05-28 Borgwarner Inc. Dual volute turbocharger to optimize pulse energy separation for fuel economy and EGR utilization via asymmetric dual volutes
AT523038B1 (de) * 2019-12-06 2021-05-15 Avl List Gmbh Brennkraftmaschine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009298A1 (de) 2006-03-01 2007-09-06 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader
DE112007001400A5 (de) * 2006-06-21 2009-05-20 Daimler Ag Abgaskrümmer
DE102007025437A1 (de) 2007-05-31 2008-12-04 Daimler Ag Verfahren für eine Brennkraftmaschine mit einem Abgasturbolader
AT503869B1 (de) * 2007-09-27 2009-06-15 Avl List Gmbh Brennkraftmaschine mit einem mehrflutigen abgasturbolader
DE102007053778B4 (de) * 2007-11-12 2017-12-07 Ford Global Technologies, Llc Abgasrückführung bei einem Verbrennungsmotor mit zwei Turboladern
DE102009004418A1 (de) 2009-01-13 2010-07-15 Man Nutzfahrzeuge Ag Verfahren zur Nachbehandlung eines Abgasstroms einer mehrzylindrigen Brennkraftmaschine eines Fahrzeuges sowie Abgasnachbehandlungsvorrichtung
DE102009004417A1 (de) 2009-01-13 2010-07-15 Man Nutzfahrzeuge Aktiengesellschaft Verfahren zur Nachbehandlung eines Abgasstroms einer mehrzylindrigen Brennkraftmaschine eines Fahrzeuges sowie Abgasnachbehandlungsvorrichtung
DE102011115206A1 (de) * 2011-09-28 2013-03-28 Daimler Ag Abgasturbolader für eine Brennkraftmaschine
DE102012014189A1 (de) 2012-07-18 2014-01-23 Mtu Friedrichshafen Gmbh Brennkraftmaschine mit Abgasturbolader
DE102013020448A1 (de) * 2013-12-07 2015-06-11 Daimler Ag Verfahren zum Betreiben eines Kraftwagens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173315A (ja) * 1984-02-20 1985-09-06 Yoichi Yamazaki タ−ボチヤ−ジヤ付エンジン
DE19924228C2 (de) 1999-05-27 2002-01-10 3K Warner Turbosystems Gmbh Mehrflutiger, regelbarer Abgasturbolader
DE10048237A1 (de) * 2000-09-29 2002-04-11 Daimler Chrysler Ag Abgasturbolader, aufgeladene Brennkraftmaschine und Verfahren hierzu
US20030154717A1 (en) * 2001-10-25 2003-08-21 Daimlerchrysler Ag Internal combustion engine with an exhaust turbocharger and an exhaust-gas recirculation device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19857234C2 (de) * 1998-12-11 2000-09-28 Daimler Chrysler Ag Vorrichtung zur Abgasrückführung
JP4298972B2 (ja) * 2002-08-02 2009-07-22 富士重工業株式会社 エンジン排気システム及びエンジン排気システムの制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173315A (ja) * 1984-02-20 1985-09-06 Yoichi Yamazaki タ−ボチヤ−ジヤ付エンジン
DE19924228C2 (de) 1999-05-27 2002-01-10 3K Warner Turbosystems Gmbh Mehrflutiger, regelbarer Abgasturbolader
DE10048237A1 (de) * 2000-09-29 2002-04-11 Daimler Chrysler Ag Abgasturbolader, aufgeladene Brennkraftmaschine und Verfahren hierzu
US20030154717A1 (en) * 2001-10-25 2003-08-21 Daimlerchrysler Ag Internal combustion engine with an exhaust turbocharger and an exhaust-gas recirculation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 010 (M - 446) 16 January 1986 (1986-01-16) *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009018887A1 (de) * 2007-08-04 2009-02-12 Daimler Ag Abgasturbolader für eine hubkolben-brennkraftmaschine
WO2009037120A2 (de) * 2007-09-13 2009-03-26 Avl List Gmbh Brennkraftmaschine mit mehrflutigen abgasturbolader
WO2009037120A3 (de) * 2007-09-13 2009-05-07 Avl List Gmbh Brennkraftmaschine mit mehrflutigen abgasturbolader
EP2154352A3 (de) * 2008-08-12 2014-03-19 MAN Truck & Bus AG Verfahren und Vorrichtung zum Betreiben einer mehrzylindrischen Brennkraftmaschine
FR2945579A1 (fr) * 2009-05-15 2010-11-19 Inst Francais Du Petrole Procede et dispositif de controle de la quantite de gaz d'echappement recircules a l'admission d'un moteur a combustion interne suralimente
EP2295769A1 (de) * 2009-08-14 2011-03-16 International Engine Intellectual Property Company, LLC. Abluftsystem für Motorbremsen
DE102013005885A1 (de) 2013-04-06 2014-10-09 Daimler Ag Turbine für einen Abgasturbolader
US10301952B2 (en) 2014-05-19 2019-05-28 Borgwarner Inc. Dual volute turbocharger to optimize pulse energy separation for fuel economy and EGR utilization via asymmetric dual volutes
US10215136B2 (en) 2014-08-26 2019-02-26 Borgwarner Inc. Adjustable, low loss valve for providing high pressure loop exhaust gas recirculation
WO2018073608A1 (en) * 2016-10-21 2018-04-26 Cummins Ltd Method of design of a turbine
CN110100084A (zh) * 2016-10-21 2019-08-06 康明斯有限公司 设计涡轮机的方法
GB2571653A (en) * 2016-10-21 2019-09-04 Cummins Ltd Method of design of a turbine
CN110100084B (zh) * 2016-10-21 2021-06-08 康明斯有限公司 设计涡轮机的方法
GB2571653B (en) * 2016-10-21 2022-01-26 Cummins Ltd Method of design of a turbine
CN108894871A (zh) * 2018-06-26 2018-11-27 清华大学 一种带有双egr通道的非对称涡轮增压内燃机***
CN108869109A (zh) * 2018-07-27 2018-11-23 湖南天雁机械有限责任公司 调节废气流量的集成控制阀
CN108869109B (zh) * 2018-07-27 2023-04-07 湖南天雁机械有限责任公司 调节废气流量的集成控制阀
AT523038B1 (de) * 2019-12-06 2021-05-15 Avl List Gmbh Brennkraftmaschine
AT523038A4 (de) * 2019-12-06 2021-05-15 Avl List Gmbh Brennkraftmaschine
EP3832085A1 (de) * 2019-12-06 2021-06-09 AVL List GmbH Brennkraftmaschine

Also Published As

Publication number Publication date
DE10357925A1 (de) 2005-07-28

Similar Documents

Publication Publication Date Title
WO2005061870A1 (de) Brennkraftmaschine mit abgasturbolader und abgasrückführung
WO2006119866A1 (de) Brennkraftmaschine mit abgasturbolader und abgasrückführung
DE10152804B4 (de) Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung
DE69815882T2 (de) Anlage einer brennkraftmaschine
EP2412955B1 (de) Verfahren zur Motorbremsung
DE69801891T2 (de) Steuervorrichtung für abgasrückführungssystem in einer brennkraftmaschine
DE60202327T2 (de) Brennkraftmaschine und Turboladereinheit mit Turbinenleistungssteuerung
WO2002027164A1 (de) Abgasturbolader, aufgeladene brennkraftmaschine und verfahren hierzu
EP1375868A1 (de) Motorbremseinrichtung für eine turboaufgeladene Brennkraftmaschine
DE102007035966A1 (de) Radialverdichter für einen Turbolader
DE102008044382A1 (de) Motor mit sequentieller geteilter Reihenturboaufladung
DE10229116A1 (de) Verbrennungsmotor und Verfahren zum Betreiben eines solchen
DE102011010744A1 (de) Turbine für einen Abgasturbolader sowie Abgasturbolader mit einer solchen Turbine
WO2010121684A1 (de) Verbrennungskraftmaschine sowie verfahren zum betreiben einer verbrennungskraftmaschine
DE10352467A1 (de) Verfahren zur Steuerung mindestens eines Stellgliedes in einer Massenstromleitung
EP1387058A2 (de) Verfahren zur Ladedruckregelung eines Verbrennungsmotors
DE102007034235A1 (de) Strömungsgehäuse eines Turboladers
DE102006037934A1 (de) Brennkraftmaschine
DE102006022181A1 (de) Brennkraftmaschine mit Abgasturbolader und Abgasrückführung
DE102006022182A1 (de) Brennkraftmaschine mit einem Abgasturbolader und Abgasrückführung
DE102009058609A1 (de) Einrichtung zur Abgasrückführung sowie Verfahren zur Erwärmung eines Kühlmediums einer Brennkraftmaschine und Verwendung der Einrichtung zur Abgasrückführung
DE102009006013A1 (de) Abgasklappenvorrichtung und Abgaswärmerückgewinnungssystem einer Verbrennungskraftmaschine
DE10132672A1 (de) Abgasturbolader für eine Brennkraftmaschine
DE4235794C1 (de) Abgasrückführung für eine Brennkraftmaschine
DE3439999C1 (de) Viertakt-Brennkraftmaschine mit zwei Abgasturboladern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase