WO2005059212A1 - Method for producing polyester fiber and spinning mouth piece for melt spinning - Google Patents

Method for producing polyester fiber and spinning mouth piece for melt spinning Download PDF

Info

Publication number
WO2005059212A1
WO2005059212A1 PCT/JP2004/018801 JP2004018801W WO2005059212A1 WO 2005059212 A1 WO2005059212 A1 WO 2005059212A1 JP 2004018801 W JP2004018801 W JP 2004018801W WO 2005059212 A1 WO2005059212 A1 WO 2005059212A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinneret
polyester fiber
spinning
hole
holes
Prior art date
Application number
PCT/JP2004/018801
Other languages
French (fr)
Japanese (ja)
Inventor
Masanao Kohashi
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2005059212A1 publication Critical patent/WO2005059212A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to a method for producing a polyester fiber used exclusively for reinforcing rubber, and a spinneret for melt spinning used at this time.
  • the polyester fiber obtained according to the present invention is suitably used for reinforcing industrial materials such as tire cords, V-belts, conveyor belts, hoses and the like.
  • Polyester fiber has excellent mechanical properties such as dimensional stability and durability, and is therefore used not only for clothing but also for industrial applications, especially tire cords, V-belts, and conveyor belts.
  • polyethylene terephthalate fiber which is a typical example of polyester fiber
  • polyester fiber has recently been widely used for rubber reinforcement. This is because, in addition to the above-mentioned properties such as mechanical properties, other properties such as polyamide, rayon, and aramide. Another reason is that the cost is lower than that of organic fibers.
  • Patent Document 6 discloses a technique for optimizing the hole length and the hole diameter at the discharge portion of the hole of the spinneret.
  • the hole length (L) is set to 1.5-7.5 mm
  • the hole diameter (D) is set to 0.5-0.75mm and the LZD to 3.010.0
  • the rectification effect of the molten polymer at the discharge part is enhanced to stabilize the discharge, and the ballistic effect at the discharge part (The effect of the viscous substance trying to expand beyond the diameter of the micropores due to stress relaxation when the viscous substance is extruded into the micropore force) is reduced to reduce the possibility of the molten polymer directly adhering to the vicinity of the discharge section.
  • Patent Document 1 JP-A-61-41320 (page 3, lower left column-page 4, upper right column)
  • Patent Document 2 JP-A-62-69819 (page 4)
  • Patent Document 3 JP-A-63-159518 (Page 4, upper left column, lower left column)
  • Patent Document 4 Japanese Patent No. 2569720 (Page 7, column 14, line 3741)
  • Patent Document 5 Patent No. 2753978 (paragraph [0027])
  • Patent Document 6 JP-A-2000-273714
  • FIG. 1 is a perspective view showing a spinneret for melt spinning according to the present invention.
  • FIG. 2 is a sectional view of individual holes provided in a spinneret.
  • FIG. 3 is a schematic view showing a melt spinning device (spinneret, heat retaining cylinder, cooling cylinder).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a rubber reinforcement.
  • An object of the present invention is to provide a method for producing a polyester fiber having high strength required for use and excellent in dimensional stability without impairing productivity, and a spinneret for melt spinning suitable for use in this method. Is to provide.
  • the method for producing a polyester fiber according to the present invention is a method for melt spinning a polyester fiber having an intrinsic viscosity of 0.85 dl / g or more using a spinneret having a plurality of holes.
  • the total number of the holes per spinneret is 250 or more discharge
  • the number of pores per spinneret area is not less 1.5 pieces / cm 2 or more
  • the hole is smaller opening area than the introduction and introduction
  • the discharge portion has a hole diameter (D) of 0.5 mm or more
  • the ratio (L / D) of the hole length (L) of the discharge portion to the hole diameter (D) of the discharge portion is 3.0 or less. It is characterized by the following.
  • the spinneret for melt spinning according to the present invention is a spinneret used for melt spinning a polyester fiber having an intrinsic viscosity of 0.85 dl / g or more, and the spinneret has a plurality of holes.
  • the holes have an introduction portion and a discharge portion having a smaller opening area than the introduction portion, and the total number of the holes per spinneret is 250 or more, and the number of holes per spinneret area is 1. 5 pieces or more Zcm 2 , the hole diameter (D) of the discharge portion is 0.5 mm or more, and the ratio (LZD) of the hole length (L) of the discharge portion to the hole diameter (D) of the discharge portion is 3.0. It is characterized as follows.
  • the introduction part is a part of the hole of the spinneret into which the molten polymer is introduced
  • the discharge part is a part that discharges the polymer introduced from the introduction part to the outside.
  • the hole diameter (D) refers to the maximum diameter of the discharge portion of the hole. When the discharge portion of the hole is circular, it means its diameter, and when it is elliptical, it means its major axis.
  • the hole length (U) is the length of the discharge portion of the hole.
  • the polymer discharged from the spinneret in melt spinning is cooled with cold air at about room temperature immediately after discharge, or is heated in a heating cylinder immediately after discharge to maintain a molten state, and then rapidly.
  • the cooling method has been adopted.
  • the polymer was solidified by rapid cooling.However, the present inventors gradually cooled the discharged polymer, that is, cooling and solidifying from the discharge of the molten polymer. By slowing the cooling process to completion It has been found that polyester fibers having good physical properties can be obtained with good operability.
  • the spinneret as described above has a total number of holes of 250 or more.
  • the number of holes per spinneret area (hereinafter, sometimes referred to as hole density) is not less than 1.5 holes / cm 2 (Requirement a-2), D) is 0.5 mm or more (Requirement b) (preferably, the hole diameter (D) is 0.7 mm or more), and the ratio (LZD) of the hole length (L) of the discharge portion to this hole diameter (D) is 3.
  • the present invention has been found that if the fiber is spun using a material having a value of 0 or less (requirement c), a certain amount of heat of the discharged polymer itself is left after discharging, and the amount of heat can be used to appropriately moderately cool the discharged polymer. It is what achieved.
  • the polymer discharge rate per spinneret is 700 gZmin or more (furthermore, 800 gZmin or more).
  • the polyester fiber for rubber reinforcement has an intrinsic viscosity of 0.85 dl / g or more as described above. If the intrinsic viscosity is less than 0.85 dl / g, there is a concern that basic properties such as strength and durability for rubber reinforcement cannot be satisfied. Further, such a polyester fiber is more preferably one in which 90 mol% or more of all repeating units of the molecular chain are made of polyethylene terephthalate. On the other hand, if the intrinsic viscosity is too high, there is a concern that the operability such as the spinnability may be impaired. Therefore, the intrinsic viscosity is preferably 1.20 dl / g or less, more preferably 1.00 dl / g or less.
  • the “intrinsic viscosity” refers to the intrinsic viscosity of a polyester fiber (original yarn) obtained by drawing after melt spinning.
  • the non-solidified polyester melted and discharged from the spinneret is provided with a heat insulating region having a length of 150 mm or less below the spinneret and a slow cooling region downstream of the spinneret.
  • the fiber bundle is cooled and solidified by cooling air having a temperature of 40 ° C. or more and a wind speed (V) satisfying the following expression (1) in the slow cooling region.
  • V Wind speed (m, sec)
  • H Number of the holes per spinneret area (pcs / cm 2 )
  • a polyester fiber bundle melt-discharged with a high pore density has a problem that fusion is likely to occur in a spinning cylinder, and it has been conventionally extremely difficult to stably spin.
  • the present inventors have achieved a very stable and good operability by passing through a heat retaining region in which active heating and cooling are not performed as described above, and then slowly cooling with a relatively high-temperature cooling air of 40 ° C or more. The inventors have found that spinning can be performed, and have made the present invention.
  • Vs spinning speed ratio
  • Vs / V spinning speed ratio
  • the discharge linear velocity (V) is the velocity of the discharge outlet in the hole of the spinneret (
  • the pore size of the discharge portion is specified to be relatively large as in the above requirement b, and when such a large pore size is drawn at a high draft ratio, the obtained undrawn yarn has the same birefringence index. A tendency to increase the crystallinity is recognized, and the fiber has excellent dimensional stability as a rubber reinforcing fiber such as a dip cord.
  • the draft ratio is more preferably 400 or more.
  • a polyester fiber for rubber reinforcement having low shrinkage, excellent dimensional stability, and excellent strength can be obtained with high productivity. Further, by using the spinneret according to the present invention, it is possible to obtain a rubber reinforcing polyester having excellent dimensional stability and excellent strength as described above. Tell fiber can be manufactured with high productivity.
  • FIG. 1 is a perspective view showing a spinneret 10 for melt spinning according to the present invention
  • FIG. 2 is a sectional view of individual holes 11 provided in the spinneret 10.
  • FIG. 3 is a schematic diagram showing a melt spinning apparatus (spinneret 10, heating cylinder 14, cooling cylinder 15).
  • the spinneret 10 is provided so as a pore density 1.5 / cm 2 or more (requirement a- 1, 2) (Fig. 1).
  • the hole 11 includes an introduction part 13 for introducing the molten polymer and a discharge part 12 for discharging the polymer introduced from the introduction part 13, and the introduction part 13 is formed in the discharge part 12.
  • the opening area decreases in a tapered shape (taper portion 13 a), and is connected to the discharge portion 12.
  • the discharge part 12 has a constant opening area, and the hole diameter (D) is 0.5 mm or more (requirement b), and the hole diameter (D)
  • the ratio of length (L) (L / D) is less than 3.0 (Requirement c).
  • a heat insulating cylinder 14 heat insulating area
  • a cooling cylinder 15 slow cooling area that can be cooled by cooling air that satisfies 1
  • the discharged air 16 can be cooled and solidified by this cooling air (Fig. 3).
  • V Wind speed (m, sec)
  • the number of holes 11 per unit area of the spinneret is determined to be 1.5 / cm 2 or more as in the above requirement a-2, and thus the hole density is extremely high.
  • the amount of heat carried in by the discharged polymer 16 itself is increased, thereby preventing the discharged polymer 16 from being rapidly cooled, that is, exerting a so-called self-cooling effect, so as to slow down the cooling process.
  • the degree is lower than 1.5 particles / cm 2 , the individual discharged polymers 16 will be largely separated from each other, so that it is easy to cool down.
  • the hole density is low, it is necessary to use a large die surface diameter in order to secure the hole density of the spinneret (the hole located on the front row side and the hole located on the back row side with respect to the cooling air). ) May increase the difference in cooling conditions, leading to an increase in cooling spots between single fibers. More preferably, the pore density is 2.0 pores / cm 2 or more.
  • the pore density is preferably 3.5 holes / cm 2 or less.
  • the total number of holes 11 per spinneret 10 needs to be 250 or more. If the total number of holes is too small, the discharge polymer 16 itself has a sufficient density even if the hole density is sufficiently high. This is because the self-slow cooling effect is less likely to be exhibited as the amount of heat sinking decreases.
  • hundreds of fibers are usually bundled and used for rubber reinforcement, and the number of fibers required for a rubber reinforcement cord can be spun from one spinneret to improve the efficiency of the manufacturing process. It is preferable from the viewpoint of chemical conversion.
  • the total number of holes is too small, one spinneret cannot obtain the desired rubber reinforcing cord thickness (e.g., lOOdtex, 2000dtex) in the case of the following single yarn fineness, so that multiple spinnerets are combined. In this case, a bundle of finished yarn is obtained, and in this case, productivity is significantly reduced.
  • the total number of holes in the spinneret 10 is adjusted so that the single yarn fineness of the finished yarn is 6.Odtex or less, preferably 5.Odtex or less, in response to the request for rubber reinforcement. It is good to set.
  • the spinneret surface diameter (W) is not particularly limited, but it is difficult to secure the required number of holes if the force is less than 100 mm, whereas if it is less than 100 mm, it is difficult to secure the required number of holes.
  • the difference in cooling conditions may increase, leading to an increase in cooling unevenness between the single fibers. Because there is.
  • the hole diameter (D ) Must be 0.5 mm or more. If the hole diameter (D) is too small, the pressure loss rises, causing excessive heat generation, and the amount of heat brought into the discharge polymer 16 becomes too large. In addition, if the pore diameter is small, the shearing rate of the discharge portion increases, which causes a marked bending phenomenon of the discharged polymer (spun yarn) 16 and discharges monomers, oligomers, and thermal decomposition products. This is because the monomer and the like are likely to adhere to the vicinity of the outlet 12a, and furthermore, these monomers and the like are denatured and deposited by heat and oxygen in the air, which may make long-term operation difficult.
  • the hole diameter (D) of the discharge portion 12 is preferably 0.7 mm or more.
  • the upper limit of the hole diameter (D) of the discharge portion 12 is desirably set to 2. Omm, if the hole diameter (D) is too large, the pressure loss at the discharge hole portion becomes too small, and the polymer becomes uniform. This is because there is a possibility that a problem may occur in the distribution.
  • the requirement c is that the ratio (LZD) of the hole length (L) of the discharge portion 12 to the hole diameter (D) is 3.0 or less as described above.
  • LZD the ratio of the hole length (L) of the discharge portion 12 to the hole diameter (D) is 3.0 or less as described above.
  • L / D is set to 3.0 or less as in the present invention, an increase in pressure loss is suppressed, and it becomes possible to discharge stably without impairing the distribution of the polymer.
  • L / D is less than 3.0, more preferably, 2.5 or less.
  • the lower limit of L / D is preferably 1.0 or more, in order to achieve uniform distribution and stabilization of the polymer.
  • the polyester fiber bundle (discharged polymer 16) discharged as described above is passed through a heat retaining area (heat retaining cylinder 14) below the spinneret, and then cooled and solidified in a slow cooling area (cooling cylinder 15).
  • a heat retaining area heat retaining cylinder 14
  • cooling cylinder 15 a slow cooling area
  • the above requirement d will be described. If the heat insulation area (heat insulation cylinder 14) is provided with a length of 150 mm or less below the spinneret, it is too long to extend the heat insulation area under high draft conditions. This is because flow becomes unstable and stable spinning becomes difficult, and crystallization of undrawn yarn is delayed, and there is a concern that good dimensional stability cannot be obtained in products such as dip cords. It is. On the other hand, if the heat retaining area is too short, the temperature of the spinneret tends to be uneven due to the influence of the cooling air.
  • the temperature of the cooling air is preferably set to 40 ° C. or higher (requirement e). This is because the temperature difference becomes large and the orientation distribution in the single fiber becomes non-uniform, which may cause a decrease in stretchability.
  • the temperature in the slow cooling region is more preferably 50 to 100 ° C, which is close to the glass transition temperature of the polymer, and still more preferably 60 ° C or more and 80 ° C or less.
  • the wind velocity (V) of the cooling air in the slow cooling region (cooling cylinder 15) preferably satisfies the above equation (1) as described above (requirement f), and is obtained by the right side of the equation (1). If the wind speed (V) is lower than the value obtained, the cooling air will have an insufficient fiber bundle penetration property, which will promote unevenness between single fibers and delay crystallization of the undrawn yarn, thereby deteriorating dimensional stability. This is because you will be invited.
  • the upper limit of the wind speed (V) it is desirable that an excessive radius is not given to the discharged polymer 16. Specifically, it is preferable to set 3 ⁇ 4V ⁇ 0.27 XH + 0.00000047 X Vs +0.5. Maseru.
  • the structure of the cooling device in the slow cooling region may be any of a cross-flow type, an internal-blowing circuit type, an external-blowing circuit type, and the like, which is a feature of the present invention.
  • the cross-flow type and the inner-blowing circuit type are easy to exhibit the self-cooling effect by the heat carried by the polymer itself.
  • the discharged polymer does not solidify rapidly, and the self-control by the heat of the discharged polymer which does not need to remain in a molten state.
  • the undrawn yarn is drawn at a spinning speed such that a birefringence of 0.075 or more is obtained.
  • the draft ratio is 200 or more (preferably 400 or more). This is because better dimensional stability can be obtained as a rubber reinforcing fiber such as a dipped cord.
  • the experiments by the present inventors have revealed that the raw yarn obtained under the high draft conditions as described above has a high strength utilization rate at the time of dipping such as impregnating the fiber with an adhesive.
  • the strength utilization rate during dip processing is defined as “dip strength / raw cord strength”.
  • the yarn obtained under high draft conditions has the same fiber strength but high dip strength (fiber after dip processing). Power) to gain S.
  • the synergistic effect of the high draft conditions due to the higher hole density and the larger hole diameter of the spinneret can further improve the three effects of productivity, strength, and dimensional stability.
  • the stretching step may be carried out continuously after the spinning, or may be carried out in a separate step after winding the undrawn yarn once.
  • the spinning force direct drawing method is preferable from the viewpoint of reduction of the production cost.
  • the stretching ratio is 1.5 to 2.5 times. If the stretching ratio is less than 1.5 times, there is a concern that high strength cannot be obtained. This is because it becomes difficult.
  • the load for measuring the intermediate elongation is the standard fineness of 4.OcN X sample when measuring the original yarn (that is, the load of 4.OcN per ldtex, For example, when the sample is 1440 dtex, apply a load of 57N), and when measuring the raw cord and the dipped treatment cord, use the reference fineness of the OcN X sample.
  • the standard fineness of the raw cord and the dip-treated cord is 2880 dtex when, for example, two 1440 dtex are twisted.
  • the measurement was performed by a Bellec compensator method using a deflection microscope.
  • the sum of the intermediate elongation and shrinkage of the dip cord was used as an index of dimensional stability.
  • a polyethylene terephthalate chip having an intrinsic viscosity of 0.95 is spun under the conditions shown in Table 1 below, and drawn at a spinning speed of 3200-3400 m / min so that the birefringence of the undrawn yarn is about 0.080. Was stretched about 1.68 times so that it became about 7. lcNZdtex, followed by 3.5% relaxation embedding and winding (raw yarn).
  • Table 2 The physical properties of this yarn are shown in Table 2 below.
  • the “intrinsic viscosity” defined as “a polyester fiber having an intrinsic viscosity of 0.85 dl / g or more” in the present invention is the intrinsic viscosity of this yarn.
  • Two raw yarns were twisted to obtain a raw cord.
  • the number of twists is determined according to the fineness of the original yarn. If two yarns with a fineness of the original yarn of 1670 dtex are twisted, the number of twists is 40 (bottom twist) X 40 (twisting) (t / lOcm), In the case where two yarns having a yarn fineness of 1440 dtex were twisted, the number of twists was set to 43 (primary twist) X 43 (upper twist) (t / lOcm). The physical properties of this raw code are shown in Table 3 below.
  • Resorcin-formalin-latex (hereinafter sometimes referred to as RFL) and trade name "Valka Bond E” (manufactured by Vanorenax Co., Ltd.) were mixed to form a first treatment liquid.
  • the cord was immersed and then dried in an oven at 120 ° C for 56 seconds and then subjected to a tension heat treatment in an oven at 240 ° C for 45 seconds with 4.0% elongation. Subsequently, the cord is immersed in a second treatment solution consisting of RFL, dried in an oven at 120 ° C for 56 seconds, and then, in an oven at 235 ° C while giving a relaxation rate of 2.0%. And heat treatment for 45 seconds to obtain a dip cord. Table 4 below shows the physical properties of this dip code.
  • sample Nos. 6 and 7 have a high hole density (H) but a small hole diameter (D) of the spinneret.
  • High In addition to the large L / D (Table 1), the yarn breakage index is poor (Table 2), and the dip cord strength and dimensional stability are considered to be low (Table 4).
  • the hole density (H) is high and the hole diameter (D) and L / D are appropriate, so the discharge hole shear rate is low (Table 1). It is considered that the yarn breakage index was good (Table 2), and that the dip cord strength and dimensional stability were good (Table 4).
  • sample No. 3-5 has a high hole density and high hole diameter (D) under the discharge conditions of 740 and 763 gZmin per spinneret. It is considered that the yarn breakage index was good (Table 1) and the dip cord strength and dimensional stability were good (Table 4).
  • the hole diameter was small and the L / D was large (Table 1), so the thread breakage index was poor (Table 2), and it is considered that the dip cord strength and dimensional stability were also low. (Table 4). It is probable that in Sample No. 10, the thread breakage index was poor (Table 2) due to the low hole density (Table 1), and the dip cord strength and dimensional stability were also low (Table 4).

Abstract

[PROBLEMS] To provide a method for producing a polyester fiber exhibiting the strength and the dimensional stability required for the application as a rubber reinforcing material, with improved productivity. [MEANS FOR SOLVING PROBLEMS] A method of melt-spinning a polyester fiber having an intrinsic viscosity of 0.85 dl/g or more, wherein the total number of holes (11) per a spinning mouth piece (10) is 250 or more and the number of holes (11) per the area of the spinning mouth piece is 1.5 /cm2 or more, the portion (12) of the hole (11) for the discharge from the inside has a hole diameter (D) of 0.5 mm or more, and the ratio (L/D) of the hole length (L) of the portion (12) of the hole for the discharge to the hole diameter (D) is 3.0 or less.

Description

明 細 書  Specification
ポリエステル繊維の製造方法、及び溶融紡糸用紡糸口金  Method for producing polyester fiber and spinneret for melt spinning
技術分野  Technical field
[0001] 本発明は、専らゴム補強用として利用されるポリエステル繊維の製造方法、及びこの 際に用いる溶融紡糸用の紡糸口金に関するものである。本発明により得られたポリエ ステル繊維は、例えばタイヤコード, Vベルト,コンベアベルト,ホース等の産業用資材 にその補強用として好適に使用される。  The present invention relates to a method for producing a polyester fiber used exclusively for reinforcing rubber, and a spinneret for melt spinning used at this time. The polyester fiber obtained according to the present invention is suitably used for reinforcing industrial materials such as tire cords, V-belts, conveyor belts, hoses and the like.
背景技術  Background art
[0002] ポリエステル繊維は寸法安定性等の機械的性質や耐久性に優れることから、衣料用 途だけでなく産業用途にも利用され、なかでもタイヤコードや Vベルト,コンベアベルト [0002] Polyester fiber has excellent mechanical properties such as dimensional stability and durability, and is therefore used not only for clothing but also for industrial applications, especially tire cords, V-belts, and conveyor belts.
,ホース等のゴム補強用として広く利用されている。特にポリエステル繊維の代表例で あるポリエチレンテレフタレート繊維は、昨今ゴム補強用として汎用されており、この 理由には、上述した如く機械的性質等の特性に加えて、ポリアミド,レーヨン,ァラミド 等の他の有機繊維に比べて低コストであることも挙げられる。 Widely used for reinforcing rubber for hoses and the like. In particular, polyethylene terephthalate fiber, which is a typical example of polyester fiber, has recently been widely used for rubber reinforcement. This is because, in addition to the above-mentioned properties such as mechanical properties, other properties such as polyamide, rayon, and aramide. Another reason is that the cost is lower than that of organic fibers.
[0003] ところでゴム補強用用途のうち例えばタイヤコードとして用いる場合には、近年進んで レ、る乗用車用タイヤのラジアル化に伴って、高速走行時の乗り心地や操縦安定性の 向上、また燃費節約の目的での軽量化の要請が高ぐ殊にタイヤの骨格形成の為の 補強部材であるカーカスプライに用いるディップコード (繊維を撚り合わせた生コード にディップ液 (接着剤)を付与して熱処理を施したコード)としては、高弾性率で且つ 低収縮性、し力、も高強度の繊維であることが強く求められている。  [0003] By the way, in the case of rubber reinforcement applications, for example, when used as tire cords, recent advances in the use of radial tires for passenger cars have led to improvements in ride comfort and steering stability during high-speed driving, as well as fuel efficiency. There is a growing demand for lighter weight for the purpose of saving, especially for carcass plies, which are reinforcing members for the formation of tire skeletons. (Dip liquid (adhesive is applied to raw cords in which fibers are twisted). The heat-treated cord) is strongly required to be a fiber having a high modulus of elasticity, low shrinkage, and high strength.
[0004] 斯様な要求に応えて従来では、部分配向糸を延伸し、これにより寸法安定性 (低収 縮性であること)の向上を図ったポリエステル繊維が提案された力 この様にして得ら れたポリエステル繊維であっても、古くからゴム補強用として利用されているレーヨン に比べると、寸法安定性が未だ不十分であった。そこで更に紡糸速度を速くする(例 えば 3000m/min以上、更には 7000m/min以上)ことによって当該未延伸糸を 高配向結晶化し、これにより寸法安定性を一層改善するという方法が提案されている (例えば特許文献 1一 3参照)。 [0005] し力しこれらの製造方法は、単に紡糸速度を高速化しただけであり、この高速化によ る糸揺れを原因として単繊維間に冷却斑を生じ、この冷却斑が原因でその後の延伸 工程の際に毛羽や糸切れが多発し、ゴム補強用として十分な高強力糸が得られない 虞がある。カロえて、十分な強力の繊維を得る為には高倍率延伸をするのが良い方法 であるが、上述の如く紡糸速度を高速化した場合は単繊維内外層の配向度差を非 常に大きくすることから、延伸時の単繊維内外層の分子配向が不均等になり、従って 上記高倍率延伸を行えないとレ、う問題もある。 [0004] In response to such a demand, conventionally, a partially oriented yarn has been stretched, and thereby a polyester fiber having improved dimensional stability (low shrinkage) has been proposed. Even with the obtained polyester fiber, the dimensional stability was still insufficient compared with rayon which has been used for rubber reinforcement for a long time. Therefore, a method has been proposed in which the undrawn yarn is highly oriented and crystallized by further increasing the spinning speed (for example, 3000 m / min or more, and even 7000 m / min or more), thereby further improving the dimensional stability. (For example, see Patent Documents 13). [0005] These production methods merely increase the spinning speed. Cooling spots occur between the single fibers due to the yarn sway caused by the speeding up. During the stretching step, fluff and yarn breakage occur frequently, and a high-strength yarn sufficient for rubber reinforcement may not be obtained. It is a good method to draw with high magnification to obtain fibers with sufficient strength, but if the spinning speed is increased as described above, the difference in the degree of orientation between the inner and outer layers of the single fiber will be very large. Therefore, there is a problem that the molecular orientation of the inner and outer layers of the single fiber at the time of drawing becomes uneven, so that the high-magnification drawing cannot be performed.
[0006] 他方、生産性を向上させてコストダウンを図ることは、工業的生産において極めて重 要な意味を持つ。ここで生産性の観点から生産能力の指標の一つである紡糸口金あ たりのポリマー吐出量に着目すると、従来では 403 626gZmin (孔径が 0. 60mm Φ、孔数が 240) (例えば特許文献 4参照)、 500— 600g/min (例えば特許文献 5 参照)といった高吐出量が採用され、生産性の向上が図られている。  [0006] On the other hand, improving productivity and reducing costs is extremely important in industrial production. Here, paying attention to the polymer discharge amount per spinneret, which is one of the indexes of production capacity from the viewpoint of productivity, conventionally, 403 626 gZmin (pore diameter 0.60 mm Φ, hole number 240) (for example, Patent Document 4 ) And 500-600 g / min (see, for example, Patent Document 5) to improve productivity.
[0007] し力しながら、高吐出量の紡糸を長時間連続的に実施すると、モノマーやオリゴマー または熱分解生成物等が紡糸口金の吐出口周辺に付着し易ぐこれらは更に熱や 空気中の酸素等により変質して堆積することとなる。そしてこの吐出口部分の堆積物 によって紡糸口金表面からの溶融ポリマーの離型性が悪くなり、その結果、製糸性が 不安定になって紡出糸の孔曲がりゃピクッキ、単糸流れ、ひいては断糸を生じ、甚だ しい場合には製糸ができなくなる事態も起こり得る。  [0007] If the spinning of a high discharge amount is continuously performed for a long time while the force is applied, monomers, oligomers, or thermal decomposition products, etc. are likely to adhere around the discharge port of the spinneret. Deteriorated by oxygen or the like and deposited. The sediment at the discharge port deteriorates the releasability of the molten polymer from the surface of the spinneret. As a result, the spinning properties become unstable, and the spun yarn bends. Yarn may be produced, and in severe cases, it may not be possible to spin.
[0008] こうした問題を避けるには、吐出口周辺の堆積物が多くなる前に、紡糸を中断して吐 出口周辺を清掃するか、もしくは紡糸口金を交換するといつた対策を施さなければな らないが、この際の生産の中断や清掃等の労力、加えて紡糸原料ポリマーのロスは、 製造コストを押し上げることになる。  [0008] In order to avoid such a problem, it is necessary to stop the spinning and clean the area around the discharge port or take measures such as replacing the spinneret before the amount of deposits around the discharge port increases. However, in this case, the interruption of production, labor such as cleaning, and the loss of spinning raw material polymer will increase the production cost.
[0009] そこでこの問題の改善策として特許文献 6では、紡糸口金の孔の吐出部分における 孔長と孔径を適正化する、具体的には孔長(L)を 1. 5-7. 5mm,孔直径(D)を 0. 5—0. 75mm, LZDを 3. 0 10. 0とすることによって、吐出部分での溶融ポリマー の整流効果を高めて吐出を安定させ、吐出部分でのバラス効果 (粘性物質を微細孔 力 押し出した際に、応力緩和によって粘性物質が微細孔の径よりも広がろうとする 作用)を低減させて溶融ポリマーが吐出部周辺に直接付着するのを低減させると共 に、溶融ポリマーのずり発熱を抑えて昇華物等の発生を抑制させるということが提案 されている。 [0009] To solve this problem, Patent Document 6 discloses a technique for optimizing the hole length and the hole diameter at the discharge portion of the hole of the spinneret. Specifically, the hole length (L) is set to 1.5-7.5 mm, By setting the hole diameter (D) to 0.5-0.75mm and the LZD to 3.010.0, the rectification effect of the molten polymer at the discharge part is enhanced to stabilize the discharge, and the ballistic effect at the discharge part (The effect of the viscous substance trying to expand beyond the diameter of the micropores due to stress relaxation when the viscous substance is extruded into the micropore force) is reduced to reduce the possibility of the molten polymer directly adhering to the vicinity of the discharge section. In addition, it has been proposed to suppress the generation of sublimates and the like by suppressing the shear heat generation of the molten polymer.
[0010] しかし、タイヤコード用途に適用される様な高粘度ポリマーを用いて溶融紡糸を行う 場合には、上記特許文献 6の提案であっても、ダイヤコードとして強力や寸法安定性 等の特性の満足できるものを得るには、紡糸口金あたりのポリマー吐出量を例えば 5 OOg/min程度に抑える必要があり、この様に生産性を犠牲にせざるを得ない。 特許文献 1 :特開昭 61 - 41320号公報 (第 3頁左下欄一第 4頁右上欄)  [0010] However, when melt spinning is performed using a high-viscosity polymer applicable to tire cord applications, even if proposed in Patent Document 6 above, the diamond cord has properties such as strength and dimensional stability. In order to obtain a satisfactory product, it is necessary to suppress the amount of polymer discharged per spinneret to, for example, about 5 OOg / min. Thus, productivity must be sacrificed in this way. Patent Document 1: JP-A-61-41320 (page 3, lower left column-page 4, upper right column)
特許文献 2 :特開昭 62 - 69819号公報 (第 4頁)  Patent Document 2: JP-A-62-69819 (page 4)
特許文献 3 :特開昭 63 - 159518号公報 (第 4頁左上欄一左下欄)  Patent Document 3: JP-A-63-159518 (Page 4, upper left column, lower left column)
特許文献 4:特許第 2569720号公報 (第 7頁第 14欄第 37 41行目)  Patent Document 4: Japanese Patent No. 2569720 (Page 7, column 14, line 3741)
特許文献 5:特許第 2753978号公報 (段落 [0027])  Patent Document 5: Patent No. 2753978 (paragraph [0027])
特許文献 6 :特開 2000— 273714号公報  Patent Document 6: JP-A-2000-273714
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明に係る溶融紡糸用紡糸口金を示す斜視図である。  FIG. 1 is a perspective view showing a spinneret for melt spinning according to the present invention.
[図 2]紡糸口金に設けられた個々の孔の断面図である。  FIG. 2 is a sectional view of individual holes provided in a spinneret.
[図 3]溶融紡糸装置 (紡糸口金,保温筒,冷却筒)を表す概略図である。  FIG. 3 is a schematic view showing a melt spinning device (spinneret, heat retaining cylinder, cooling cylinder).
符号の説明  Explanation of symbols
[0012] 10 紡糸口金 [0012] 10 Spinneret
11 孔  11 holes
12 吐出部分  12 Discharge part
13 導入部分  13 Introduction
14 保温筒  14 Insulated cylinder
15 冷却筒  15 Cooling cylinder
16 吐出ポリマー  16 Discharge polymer
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 本発明は上記の様な事情に鑑みてなされたものであって、その目的は、ゴム補強用 途として要求される強力を有し、寸法安定性に優れたポリエステル繊維を、生産性を 損なうことなく製造する方法を提供することにあり、またこの方法に用いるのに好適な 溶融紡糸用紡糸口金を提供することにある。 [0013] The present invention has been made in view of the above circumstances, and an object thereof is to provide a rubber reinforcement. An object of the present invention is to provide a method for producing a polyester fiber having high strength required for use and excellent in dimensional stability without impairing productivity, and a spinneret for melt spinning suitable for use in this method. Is to provide.
課題を解決するための手段  Means for solving the problem
[0014] 本発明に係るポリエステル繊維の製造方法は、複数の孔を傭えた紡糸口金を用いて 、固有粘度が 0. 85dl/g以上のポリエステル繊維を溶融紡糸する方法であって、前 記紡糸口金あたりの前記孔の総数が 250個以上で、紡糸口金面積あたりの該孔の 数が 1. 5個/ cm2以上であり、前記孔が、導入部分とこの導入部分より開口面積の 小さい吐出部分とを備え、該吐出部分の孔径 (D)が 0. 5mm以上で、該吐出部分の 孔径(D)に対する該吐出部分の孔長(L)の比(L/D)が 3· 0以下であることを特徴 とする。 [0014] The method for producing a polyester fiber according to the present invention is a method for melt spinning a polyester fiber having an intrinsic viscosity of 0.85 dl / g or more using a spinneret having a plurality of holes. the total number of the holes per spinneret is 250 or more discharge, the number of pores per spinneret area is not less 1.5 pieces / cm 2 or more, the hole is smaller opening area than the introduction and introduction The discharge portion has a hole diameter (D) of 0.5 mm or more, and the ratio (L / D) of the hole length (L) of the discharge portion to the hole diameter (D) of the discharge portion is 3.0 or less. It is characterized by the following.
[0015] また本発明に係る溶融紡糸用紡糸口金は、固有粘度が 0. 85dl/g以上のポリエス テル繊維を溶融紡糸する際に用いる紡糸口金であって、該紡糸口金が複数の孔を 有し、該孔が導入部分とこの導入部分より開口面積の小さい吐出部分とを備え、前 記紡糸口金あたりの前記孔の総数が 250個以上で、紡糸口金面積あたりの該孔の 数が 1. 5個 Zcm2以上であり、前記吐出部分の孔径(D)が 0. 5mm以上で、該吐出 部分の孔径 (D)に対する該吐出部分の孔長 (L)の比 (LZD)が 3. 0以下であること を特徴とする。 [0015] The spinneret for melt spinning according to the present invention is a spinneret used for melt spinning a polyester fiber having an intrinsic viscosity of 0.85 dl / g or more, and the spinneret has a plurality of holes. The holes have an introduction portion and a discharge portion having a smaller opening area than the introduction portion, and the total number of the holes per spinneret is 250 or more, and the number of holes per spinneret area is 1. 5 pieces or more Zcm 2 , the hole diameter (D) of the discharge portion is 0.5 mm or more, and the ratio (LZD) of the hole length (L) of the discharge portion to the hole diameter (D) of the discharge portion is 3.0. It is characterized as follows.
[0016] 尚上記導入部分とは、紡糸口金の孔における、溶融ポリマーを導入する部分であり、 上記吐出部分とは、導入部分から導入されたポリマーを外に吐出する部分である。ま た上記孔径(D)とは孔の吐出部分の最大径を指し、孔の吐出部分が円形の場合は その直径を、楕円の場合はその長軸を意味する。上記孔長(Uとは孔の吐出部分の 長さである。  The introduction part is a part of the hole of the spinneret into which the molten polymer is introduced, and the discharge part is a part that discharges the polymer introduced from the introduction part to the outside. The hole diameter (D) refers to the maximum diameter of the discharge portion of the hole. When the discharge portion of the hole is circular, it means its diameter, and when it is elliptical, it means its major axis. The hole length (U is the length of the discharge portion of the hole.
[0017] 従来では溶融紡糸において紡糸口金から吐出したポリマーを、吐出後直ぐに室温程 度の冷風で冷却するか、或いは吐出後直ぐは加熱筒内で加熱して溶融状態を維持 し、次いで急速に冷却するといつた方法がとられており、いずれにせよ急冷することで ポリマーを固化させていたが、本発明者らは吐出したポリマーを徐冷する、つまり溶 融ポリマーの吐出から冷却,固化が完了するまでの冷却過程を緩やかにすることによ り、良好な物性のポリエステル繊維を操業性良く得られることを見出したものである。 [0017] Conventionally, the polymer discharged from the spinneret in melt spinning is cooled with cold air at about room temperature immediately after discharge, or is heated in a heating cylinder immediately after discharge to maintain a molten state, and then rapidly. The cooling method has been adopted. In any case, the polymer was solidified by rapid cooling.However, the present inventors gradually cooled the discharged polymer, that is, cooling and solidifying from the discharge of the molten polymer. By slowing the cooling process to completion It has been found that polyester fibers having good physical properties can be obtained with good operability.
[0018] そしてこの徐冷の仕方として上記の如ぐ紡糸口金として、孔の総数が 250個以上で  [0018] As a method of the slow cooling, the spinneret as described above has a total number of holes of 250 or more.
(要件 a_l)、紡糸口金面積あたりの孔の数(以下、孔密度と称することがある)が 1· 5 個/ cm2以上であり(要件 a— 2)、この孔における吐出部分の孔径(D)が 0. 5mm以 上で(要件 b) (好ましくは孔径 (D)が 0. 7mm以上)、この孔径 (D)に対する吐出部 分の孔長 (L)の比 (LZD)が 3. 0以下である(要件 c)ものを用いて紡糸すれば、吐 出後に吐出ポリマー自身の熱量を或る程度残し、この熱量を利用して適度に徐冷す ることができることを見出して本発明を成したものである。上記の各要件が総合される ことにより、固有粘度が 0. 85dlZg以上のような高粘度ポリマーの溶融紡糸を行う場 合に、例えば紡糸口金あたりのポリマー吐出量が 700gZmin以上(更には 800gZ min以上)となるような高吐出量条件であっても、従来ではなし得なかった適度な徐 冷プロファイルを実現でき、その結果、ゴム補強用として要求される強力や寸法安定 性を満足し得る繊維を紡糸できる様になった。 (Requirement a_l), the number of holes per spinneret area (hereinafter, sometimes referred to as hole density) is not less than 1.5 holes / cm 2 (Requirement a-2), D) is 0.5 mm or more (Requirement b) (preferably, the hole diameter (D) is 0.7 mm or more), and the ratio (LZD) of the hole length (L) of the discharge portion to this hole diameter (D) is 3. The present invention has been found that if the fiber is spun using a material having a value of 0 or less (requirement c), a certain amount of heat of the discharged polymer itself is left after discharging, and the amount of heat can be used to appropriately moderately cool the discharged polymer. It is what achieved. When the above requirements are combined, when melt spinning a high-viscosity polymer having an intrinsic viscosity of 0.85 dlZg or more, for example, the polymer discharge rate per spinneret is 700 gZmin or more (furthermore, 800 gZmin or more). ), It is possible to achieve a moderate cooling profile that could not be achieved conventionally, and as a result, a fiber that can satisfy the strength and dimensional stability required for rubber reinforcement. It can be spun.
[0019] なお、ゴム補強用のポリエステル繊維としては上記の如く固有粘度が 0. 85dl/g以 上であることが望まれる。固有粘度 0. 85dl/g未満では強度や耐久性等のゴム補強 用としての基本的な特性を満足することができない懸念があるからである。更に斯様 なポリエステル繊維としては、分子鎖の全繰返し単位の 90モル%以上がポリエチレ ンテレフタレートからなるものがより好ましい。一方あまりに固有粘度が高すぎると、製 糸性等の操業性を損なう懸念があるので、固有粘度 1. 20dl/g以下が好ましぐより 好ましくは 1. 00dl/g以下である。尚上記「固有粘度」とは、溶融紡糸後、延伸して 得られたポリエステル繊維 (原糸)の固有粘度を指す。  It is desired that the polyester fiber for rubber reinforcement has an intrinsic viscosity of 0.85 dl / g or more as described above. If the intrinsic viscosity is less than 0.85 dl / g, there is a concern that basic properties such as strength and durability for rubber reinforcement cannot be satisfied. Further, such a polyester fiber is more preferably one in which 90 mol% or more of all repeating units of the molecular chain are made of polyethylene terephthalate. On the other hand, if the intrinsic viscosity is too high, there is a concern that the operability such as the spinnability may be impaired. Therefore, the intrinsic viscosity is preferably 1.20 dl / g or less, more preferably 1.00 dl / g or less. The “intrinsic viscosity” refers to the intrinsic viscosity of a polyester fiber (original yarn) obtained by drawing after melt spinning.
[0020] 更に本発明に係る製造方法においては、前記紡糸口金下に長さ 150mm以下の保 温領域と、この下流側に徐冷領域を備え、前記紡糸口金から溶融吐出された未固化 のポリエステル繊維束を、前記保温領域に通過させた後、前記徐冷領域において温 度が 40°C以上で風速 (V)が下式(1)を満足する冷却風によって冷却固化させること が好ましい。  [0020] Further, in the production method according to the present invention, the non-solidified polyester melted and discharged from the spinneret is provided with a heat insulating region having a length of 150 mm or less below the spinneret and a slow cooling region downstream of the spinneret. After passing the fiber bundle through the heat retaining region, it is preferable that the fiber bundle is cooled and solidified by cooling air having a temperature of 40 ° C. or more and a wind speed (V) satisfying the following expression (1) in the slow cooling region.
V≥0. 27 X H + 4. 7 X 10— 5 X Vs V≥0.27 XH + 4.7 X 10— 5 X Vs
V:風速 (m, sec) H:前記紡糸口金面積あたりの前記孔の数(個/ cm2) V: Wind speed (m, sec) H: Number of the holes per spinneret area (pcs / cm 2 )
Vs:糸方糸; ^度 (m/ min)  Vs: Yarn; ^ degree (m / min)
[0021] 高孔密度で溶融吐出されたポリエステル繊維束にあっては、紡糸筒内で融着が起こ り易いという問題があり、従来では安定に紡糸することが非常に困難であるとされてい た力 本発明者らは、上記の如く積極的な加熱や冷却を行わない保温領域を経て、 次いで 40°C以上という比較的温度の高い冷却風でゆっくり冷やすことにより、極めて 安定に操業性良く紡糸できることを見出し、本発明をなしたものである。  [0021] A polyester fiber bundle melt-discharged with a high pore density has a problem that fusion is likely to occur in a spinning cylinder, and it has been conventionally extremely difficult to stably spin. The present inventors have achieved a very stable and good operability by passing through a heat retaining region in which active heating and cooling are not performed as described above, and then slowly cooling with a relatively high-temperature cooling air of 40 ° C or more. The inventors have found that spinning can be performed, and have made the present invention.
[0022] 加えて本発明においては、前記紡糸口金からのポリマー吐出線速度 (V )に対する  In addition, in the present invention, the polymer discharge linear velocity (V) from the spinneret
0  0
紡糸速度 (Vs)の比 (Vs/V ) (以下、ドラフト比と称することがある)を、 200以上とす  Set the spinning speed (Vs) ratio (Vs / V) (hereinafter sometimes referred to as draft ratio) to 200 or more.
0  0
ることが好ましい。尚吐出線速度 (V )とは、紡糸口金の孔における吐出出口の速度(  Is preferred. The discharge linear velocity (V) is the velocity of the discharge outlet in the hole of the spinneret (
0  0
単位: mZmin)であり、紡糸速度(Vs)とは繊維の弓 |取速度(単位: mZmin)である  Unit: mZmin) and the spinning speed (Vs) is the fiber bow | take speed (unit: mZmin)
[0023] 本発明では上記要件 bの如く吐出部分の孔径を大きめに規定しており、この様な大 孔径の場合において高ドラフト比で引き取ると、得られた未延伸糸は同一複屈折率 において結晶化度が高くなる傾向が認められ、ディップコード等のゴム補強用繊維と して優れた寸法安定性のものとなる。ドラフト比としてより好ましくは 400以上である。 [0023] In the present invention, the pore size of the discharge portion is specified to be relatively large as in the above requirement b, and when such a large pore size is drawn at a high draft ratio, the obtained undrawn yarn has the same birefringence index. A tendency to increase the crystallinity is recognized, and the fiber has excellent dimensional stability as a rubber reinforcing fiber such as a dip cord. The draft ratio is more preferably 400 or more.
[0024] この様に未延伸糸の結品化度を高めると寸法安定性が向上することは従来より知ら れているが(例えば特許第 3190553号参照)、その反面、結晶化が進行すると、延 伸を行う為の分子の易動性が損なわれ、高倍率延伸ができなくなり、結果として高強 力糸を得ることができなくなるという問題があった。し力 本発明の様に高孔密度で紡 糸された未延伸糸は、高結晶化度でありながらも極めて優れた延伸性を示し、強力 が犠牲になることもなぐし力も操業性にも優れることが分かった。この理由について は定かではないが、高孔密度吐出により発現する自己徐冷効果が、単繊維内斑の 低減に寄与し、その結果として優れた延伸性が得られるものと考えられる。  [0024] It is conventionally known that the dimensional stability is improved by increasing the degree of consolidation of an undrawn yarn as described above (for example, see Japanese Patent No. 3190553). There is a problem that the mobility of molecules for elongation is impaired, and high-magnification elongation cannot be performed. As a result, a high-strength yarn cannot be obtained. Unstretched yarn spun with a high pore density as in the present invention exhibits extremely excellent stretchability while having a high degree of crystallinity, so that strength is not sacrificed, and soothing force and operability are not affected. It turned out to be excellent. The reason for this is not clear, but it is considered that the self-cooling effect developed by high-pore-density discharge contributes to the reduction of single-fiber spots, resulting in excellent stretchability.
発明の効果  The invention's effect
[0025] 本発明に係る製造方法によれば、低収縮で寸法安定性に優れ、また強力に優れた ゴム補強用ポリエステル繊維を生産性良く得ることができる。また本発明に係る紡糸 口金を用いることにより、上記の様な寸法安定性や強力に優れたゴム補強用ポリエス テル繊維を生産性良く製造し得る。 According to the production method of the present invention, a polyester fiber for rubber reinforcement having low shrinkage, excellent dimensional stability, and excellent strength can be obtained with high productivity. Further, by using the spinneret according to the present invention, it is possible to obtain a rubber reinforcing polyester having excellent dimensional stability and excellent strength as described above. Tell fiber can be manufactured with high productivity.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明について図面を用いてより詳しく説明するが、本発明はこれら図示例に 限定されるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に変更を加えたも のも本発明の技術的範囲に包含される。  Hereinafter, the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to the illustrated examples, but may be appropriately modified within a range that can conform to the purpose described above. Are also included in the technical scope of the present invention.
[0027] 図 1は本発明に係る溶融紡糸用紡糸口金 10を示す斜視図で、図 2は該紡糸口金 10 に設けられた個々の孔 1 1の断面図である。図 3は溶融紡糸装置 (紡糸口金 10と保 温筒 14,冷却筒 15)を表す概略図である。  FIG. 1 is a perspective view showing a spinneret 10 for melt spinning according to the present invention, and FIG. 2 is a sectional view of individual holes 11 provided in the spinneret 10. FIG. 3 is a schematic diagram showing a melt spinning apparatus (spinneret 10, heating cylinder 14, cooling cylinder 15).
[0028] 紡糸口金 10には 250個以上の孔 1 1が孔密度 1. 5個/ cm2以上となる様に設けられ ている(要件 a— 1 , 2) (図 1)。該孔 1 1は図 2に示す様に、溶融されたポリマーを導入 する導入部分 13と、導入部分 13から導入されたポリマーを吐出する吐出部分 12か らなり、導入部分 13は吐出部分 12に向かってテーパ状に開口面積が小さくなり(テ ーパ部 13a)、吐出部分 12に繋がっている。尚テーパ部 13aとの連接箇所 12bから 吐出口 12aまで、即ち吐出部分 12は開口面積が一定であり、その孔径(D)は 0. 5m m以上であり(要件 b)、孔径 (D)に対する長さ(L)の比(L/D)は 3· 0以下である( 要件 c)。紡糸口金 10の直下には保温筒 14 (保温領域)が設けられており(要件 d)、 更にその下流側には、温度が 40°C以上で(要件 e)風速 (V)が下式(1 )を満足する( 要件 f)冷却風によって冷却することのできる冷却筒 15 (徐冷領域)が設けられ、この 冷却風により吐出ポリマー 16を冷却固化できる様になつている(図 3)。この溶融紡糸 装置を用いて固有粘度 0. 85dl/g以上のポリエステル繊維を溶融紡糸する。 [0028] 250 or more holes 1 1 The spinneret 10 is provided so as a pore density 1.5 / cm 2 or more (requirement a- 1, 2) (Fig. 1). As shown in FIG. 2, the hole 11 includes an introduction part 13 for introducing the molten polymer and a discharge part 12 for discharging the polymer introduced from the introduction part 13, and the introduction part 13 is formed in the discharge part 12. The opening area decreases in a tapered shape (taper portion 13 a), and is connected to the discharge portion 12. In addition, from the connection point 12b with the tapered part 13a to the discharge port 12a, that is, the discharge part 12 has a constant opening area, and the hole diameter (D) is 0.5 mm or more (requirement b), and the hole diameter (D) The ratio of length (L) (L / D) is less than 3.0 (Requirement c). Immediately below the spinneret 10, a heat insulating cylinder 14 (heat insulating area) is provided (requirement d), and further downstream thereof, when the temperature is 40 ° C or more (requirement e) and the wind speed (V) is A cooling cylinder 15 (slow cooling area) that can be cooled by cooling air that satisfies 1) is provided, and the discharged air 16 can be cooled and solidified by this cooling air (Fig. 3). Using this melt spinning device, polyester fiber having an intrinsic viscosity of 0.85 dl / g or more is melt spun.
V≥0. 27 X H + 4. 7 X 10— 5 X Vs V≥0.27 XH + 4.7 X 10— 5 X Vs
V:風速 (m, sec)  V: Wind speed (m, sec)
H :孔密度 (個 /cm2) H: Pore density (pcs / cm 2 )
Vs:糸方糸 度 (m/ min)  Vs: Yarn degree (m / min)
[0029] 本発明では上記要件 a— 2の如く紡糸口金面積あたりの孔 1 1の数(孔密度)を 1. 5個 /cm2以上と定めており、この様に孔密度を非常に高くすることにより、吐出ポリマー 16自身の持ち込み熱量を多くし、これによつて吐出ポリマー 16が急速に冷却されな い様にする、いわば自己徐冷効果を発揮させて冷却過程を緩やかにする。仮に孔密 度が 1 · 5個/ cm2より低いと、個々の吐出ポリマー 16は大きく離れることになるので 冷え易ぐ上記の如く冷却過程における白己徐冷効果が発現し難くなる。加えて例え ばカーカスプライ用のディップコードとして用いる繊維を紡糸する場合には、 1つの紡 糸口金から 100 500本の繊維を紡糸することが一般に行われている力 この様な 孔数 (繊維数)を確保する為には、孔密度が低いと大きな口金面径のものが必要とな り、紡糸口金の孔の位置 (冷却風に対して前列側に位置する孔と後列側に位置する 孔)によって冷却条件の差が大きくなつて、単繊維間の冷却斑の増大を招く懸念もあ る。より好ましくは孔密度 2. 0個/ cm2以上である。 [0029] In the present invention, the number of holes 11 per unit area of the spinneret (hole density) is determined to be 1.5 / cm 2 or more as in the above requirement a-2, and thus the hole density is extremely high. By doing so, the amount of heat carried in by the discharged polymer 16 itself is increased, thereby preventing the discharged polymer 16 from being rapidly cooled, that is, exerting a so-called self-cooling effect, so as to slow down the cooling process. Temporarily If the degree is lower than 1.5 particles / cm 2 , the individual discharged polymers 16 will be largely separated from each other, so that it is easy to cool down. In addition, for example, when spinning a fiber used as a dip cord for a carcass ply, it is a common practice to spin 100 500 fibers from one spinneret. If the hole density is low, it is necessary to use a large die surface diameter in order to secure the hole density of the spinneret (the hole located on the front row side and the hole located on the back row side with respect to the cooling air). ) May increase the difference in cooling conditions, leading to an increase in cooling spots between single fibers. More preferably, the pore density is 2.0 pores / cm 2 or more.
[0030] 一方、孔密度が高レ、方が徐冷効果が発現されて良レ、とはレ、え、孔 11同士が近接し 過ぎると、 P 接する吐出ポリマー 16が融着する懸念があるから、孔密度 3. 5個 /cm2 以下とすることが好ましい。 [0030] On the other hand, the higher the hole density is, the better the gradual cooling effect is exhibited and the better. If the holes 11 are too close to each other, there is a concern that the discharged polymer 16 in P contact may fuse. Therefore, the pore density is preferably 3.5 holes / cm 2 or less.
[0031] 加えて要件 a_lの如く紡糸口金 10あたりの孔 11の総数を 250個以上とする必要が あり、孔総数が少なすぎると、上記孔密度が十分に高くても吐出ポリマー 16自身の持 ち込み熱量が少なくなつて、 自己徐冷効果が表れ難くなるからである。またゴム補強 用としては数百本の繊維を束にして用いるのが通常であり、ゴム補強用コードとして 要求される本数の繊維を、 1つの紡糸口金から紡出することが、製造工程の効率化 の観点から好ましい。孔総数が少なすぎると、 1つの紡糸口金では下記の単糸繊度 の場合に所望のゴム補強用コード太さ(例えば lOOOdtex, 2000dtex)のものが得ら れず、よって複数個の紡糸口金を合わせて、一束の完成糸を得ることとなり、この場 合には生産性が著しく低下する。なお紡糸口金 10の孔総数としては、ゴム補強用と しての要請に応えて、完成糸の単糸繊度が 6. Odtex以下、好ましくは 5. Odtex以下 になる様にし、総繊度に応じて設定すると良い。  [0031] In addition, as in requirement a_l, the total number of holes 11 per spinneret 10 needs to be 250 or more. If the total number of holes is too small, the discharge polymer 16 itself has a sufficient density even if the hole density is sufficiently high. This is because the self-slow cooling effect is less likely to be exhibited as the amount of heat sinking decreases. In addition, hundreds of fibers are usually bundled and used for rubber reinforcement, and the number of fibers required for a rubber reinforcement cord can be spun from one spinneret to improve the efficiency of the manufacturing process. It is preferable from the viewpoint of chemical conversion. If the total number of holes is too small, one spinneret cannot obtain the desired rubber reinforcing cord thickness (e.g., lOOdtex, 2000dtex) in the case of the following single yarn fineness, so that multiple spinnerets are combined. In this case, a bundle of finished yarn is obtained, and in this case, productivity is significantly reduced. The total number of holes in the spinneret 10 is adjusted so that the single yarn fineness of the finished yarn is 6.Odtex or less, preferably 5.Odtex or less, in response to the request for rubber reinforcement. It is good to set.
[0032] 紡糸口金面径(W)については特に限定されるものではなレ、が、 100 200mm力 S好 ましぐ 100mm未満では必要な孔数を確保することが困難になり、一方 200mm超 では、紡糸口金の孔の位置 (冷却風に対して前列側に位置する孔と後列側に位置 する孔)によって、冷却条件の差が大きくなる為に、単繊維間の冷却斑の増大を招く 懸念があるからである。  [0032] The spinneret surface diameter (W) is not particularly limited, but it is difficult to secure the required number of holes if the force is less than 100 mm, whereas if it is less than 100 mm, it is difficult to secure the required number of holes. Depending on the position of the holes in the spinneret (holes located on the front row side and holes located on the back row side with respect to the cooling air), the difference in cooling conditions may increase, leading to an increase in cooling unevenness between the single fibers. Because there is.
[0033] 次に上記要件 bについて述べると、上記の如く孔 11における吐出部分 12の孔径(D )を 0. 5mm以上とすることが必要であり、孔径 (D)が小さ過ぎると圧力損失の上昇に よって過度の発熱を招くことになり、吐出ポリマー 16の持ち込み熱量が多くなり過ぎ るからであり、加えて孔径が小さいと、吐出部分の剪断速度が上昇し、この為に吐出 ポリマー(紡出糸) 16の孔曲がり現象が顕著に現れて、モノマーやオリゴマー,熱分解 生成物等が吐出口 12a周辺に付着し易くなり、更にこれらモノマー等が熱や空気中 の酸素等により変性して堆積し、長期の操業が困難になる懸念があるからである。吐 出部分 12の孔径 (D)として好ましくは 0. 7mm以上である。 Next, the requirement b will be described. As described above, the hole diameter (D ) Must be 0.5 mm or more.If the hole diameter (D) is too small, the pressure loss rises, causing excessive heat generation, and the amount of heat brought into the discharge polymer 16 becomes too large. In addition, if the pore diameter is small, the shearing rate of the discharge portion increases, which causes a marked bending phenomenon of the discharged polymer (spun yarn) 16 and discharges monomers, oligomers, and thermal decomposition products. This is because the monomer and the like are likely to adhere to the vicinity of the outlet 12a, and furthermore, these monomers and the like are denatured and deposited by heat and oxygen in the air, which may make long-term operation difficult. The hole diameter (D) of the discharge portion 12 is preferably 0.7 mm or more.
[0034] 一方、吐出部分 12の孔径(D)の上限を 2. Ommとするのが望ましぐ孔径(D)が大 きすぎると、吐出孔部の圧力損失が小さくなり過ぎ、ポリマーの均一分配性に問題を 生じる虞がある為である。  On the other hand, if the upper limit of the hole diameter (D) of the discharge portion 12 is desirably set to 2. Omm, if the hole diameter (D) is too large, the pressure loss at the discharge hole portion becomes too small, and the polymer becomes uniform. This is because there is a possibility that a problem may occur in the distribution.
[0035] 要件 cは、上記の如く孔径 (D)に対する吐出部分 12の孔長(L)の比(LZD)を 3. 0 以下とすることである。本発明において対象とする高粘度ポリマーを高吐出量で吐出 する場合には、長期にわたる良好な操業性を実現する上で、紡糸口金 10でのポリマ 一発熱を抑制することが最大のポイントであるところ、仮に L/Dが 3· 0超であると、 高粘度ポリマーであるが故に圧力損失の上昇が生じて発熱し、ポリマーの熱劣化が 加速する為、長期操業が不安定となる虞がある。しかし上記本発明の如く L/Dを 3. 0以下とすれば、圧力損失の上昇が抑えられ、またポリマーの分配性が損なわれず に、安定して吐出することが可能となる。好ましくは L/Dが 3. 0未満であり、より好ま しくは 2. 5以下である。また L/Dの下限については 1. 0以上であることが好ましぐ ポリマーの均一分配性と安定化を図る為である。  The requirement c is that the ratio (LZD) of the hole length (L) of the discharge portion 12 to the hole diameter (D) is 3.0 or less as described above. When the high-viscosity polymer targeted in the present invention is discharged at a high discharge rate, the most important point is to suppress the heat generated by the polymer in the spinneret 10 in order to achieve long-term good operability. However, if the L / D is more than 3.0, a high-viscosity polymer causes an increase in pressure loss and generates heat, which accelerates the thermal degradation of the polymer, which may result in unstable long-term operation. is there. However, when the L / D is set to 3.0 or less as in the present invention, an increase in pressure loss is suppressed, and it becomes possible to discharge stably without impairing the distribution of the polymer. Preferably, L / D is less than 3.0, more preferably, 2.5 or less. The lower limit of L / D is preferably 1.0 or more, in order to achieve uniform distribution and stabilization of the polymer.
[0036] 本発明は以上の要件 a— 1, 2, b, cが兼ね合い纏まることによって、高粘度のポリマ 一を安定して吐出させつつ、ポリマー自身の持ち込み熱量により適度に徐冷させるこ とができ、その結果、未延伸糸の配向結晶化状態として好ましいものが得られ、その 後に延伸した繊維として強力や寸法安定性に優れたものが得られる。しかも高吐出 量で操業できるから生産性が良いとレ、う効果を奏する。  In the present invention, by combining the above requirements a-1, 2, b, and c, it is possible to discharge a high-viscosity polymer stably and to moderately cool it by the amount of heat brought in by the polymer itself. As a result, a preferable oriented crystallization state of the undrawn yarn is obtained, and subsequently, a drawn fiber excellent in strength and dimensional stability is obtained. In addition, since operation can be performed with a high discharge rate, good productivity is achieved.
[0037] そして更に上記の如ぐ吐出されたポリエステル繊維束(吐出ポリマー 16)を紡糸口 金下の保温領域 (保温筒 14)に通過させ、次いで徐冷領域 (冷却筒 15)において冷 却固化させることが好ましい。 [0038] まず上記要件 dについて説明すると、保温領域 (保温筒 14)は紡糸口金下に 150m m以下の長さで設けるのが良ぐ長すぎると、高ドラフト条件下においてこの保温領域 での伸長流動が不安定となり、安定な紡糸が困難となるからであり、また未延伸糸の 結晶化が遅延し、ディップコード等の製品において良好な寸法安定性を得ることがで きない懸念があるからである。一方保温領域が短すぎると、冷却風の影響により、紡 糸口金の温度斑が起こり易くなるから、 20mm以上とするのが好ましい。 [0037] Further, the polyester fiber bundle (discharged polymer 16) discharged as described above is passed through a heat retaining area (heat retaining cylinder 14) below the spinneret, and then cooled and solidified in a slow cooling area (cooling cylinder 15). Preferably. [0038] First, the above requirement d will be described. If the heat insulation area (heat insulation cylinder 14) is provided with a length of 150 mm or less below the spinneret, it is too long to extend the heat insulation area under high draft conditions. This is because flow becomes unstable and stable spinning becomes difficult, and crystallization of undrawn yarn is delayed, and there is a concern that good dimensional stability cannot be obtained in products such as dip cords. It is. On the other hand, if the heat retaining area is too short, the temperature of the spinneret tends to be uneven due to the influence of the cooling air.
[0039] またこの保温領域では積極的な加熱を行わず、例えば吐出ポリマー 16を囲う様な構 成の保温筒 14を設けることが好ましい。  [0039] In this heat retaining region, it is preferable not to perform active heating, and to provide a heat retaining cylinder 14 that surrounds the discharged polymer 16, for example.
[0040] 因みに従来では紡糸口金下に加熱筒を設け、 口金直下において加熱することにより ポリエステルを溶融状態のままとし、その後冷却固化させる方法が提案されている( 例えば、特許文献 4参照)。ところが、本発明の如く高孔密度条件下では、溶融状態 のままの吐出ポリエステルは紡糸張力が低いことから、繊維束の揺れが大きくなり、安 定な紡糸が実現できない懸念がある。この点において本発明の保温領域では、紡糸 口金直下のポリマーに積極的な加熱を与えないことで紡糸張力が高められ、繊維束 の揺れが抑えられる。  Conventionally, a method has been proposed in which a heating cylinder is provided below the spinneret, the polyester is kept in a molten state by heating directly below the spinneret, and then cooled and solidified (for example, see Patent Document 4). However, under the condition of high pore density as in the present invention, since the discharged polyester in a molten state has a low spinning tension, the fiber bundle shakes greatly, and there is a concern that stable spinning cannot be realized. In this regard, in the heat retaining region of the present invention, the spinning tension is increased by not actively heating the polymer immediately below the spinneret, and the sway of the fiber bundle is suppressed.
[0041] 次に徐冷領域 (冷却筒 15)について説明すると、上述の如く冷却風の温度を 40°C以 上とするのが良く(要件 e)、温度が低すぎると単繊維内外層の温度差が大きくなり、こ の為に単繊維内の配向分布が不均一となって、延伸性の低下をもたらす虞があるか らである。徐冷領域の温度として、より好ましくはポリマーのガラス転移温度に近い 50 一 100°Cであり、更に好ましくは 60°C以上、 80°C以下である。  Next, the slow cooling region (cooling cylinder 15) will be described. As described above, the temperature of the cooling air is preferably set to 40 ° C. or higher (requirement e). This is because the temperature difference becomes large and the orientation distribution in the single fiber becomes non-uniform, which may cause a decrease in stretchability. The temperature in the slow cooling region is more preferably 50 to 100 ° C, which is close to the glass transition temperature of the polymer, and still more preferably 60 ° C or more and 80 ° C or less.
[0042] 徐冷領域 (冷却筒 15)における冷却風の風速 (V)としては上記の様に上記式(1)を 満足することが好ましく(要件 f)、この式(1)の右辺で得られる値よりも風速 (V)が低 いと、該冷却風の繊維束貫通性が不十分となり、単繊維間斑を助長する上、未延伸 糸の結晶化が遅延して寸法安定性の悪化を招くことになるからである。一方風速 (V) の上限としては、吐出ポリマー 16に過度な橈みを与えない程度が望ましぐ具体的に ¾V≤0. 27 X H + 0. 000047 X Vs + 0. 5とするのカ好ましレヽ。  [0042] The wind velocity (V) of the cooling air in the slow cooling region (cooling cylinder 15) preferably satisfies the above equation (1) as described above (requirement f), and is obtained by the right side of the equation (1). If the wind speed (V) is lower than the value obtained, the cooling air will have an insufficient fiber bundle penetration property, which will promote unevenness between single fibers and delay crystallization of the undrawn yarn, thereby deteriorating dimensional stability. This is because you will be invited. On the other hand, as the upper limit of the wind speed (V), it is desirable that an excessive radius is not given to the discharged polymer 16. Specifically, it is preferable to set ¾V≤0.27 XH + 0.00000047 X Vs +0.5. Maseru.
[0043] 徐冷領域における冷却装置の構造としては、クロスフロー型,内吹きのサーキユラ一 型,外吹きのサーキユラ一型等、いずれのものを用いても良いが、本発明の特徴であ るポリマー自身の持ち込み熱量による自己徐冷効果を発現し易いのは、クロスフロー 型や内吹きのサーキユラ一型である。 [0043] The structure of the cooling device in the slow cooling region may be any of a cross-flow type, an internal-blowing circuit type, an external-blowing circuit type, and the like, which is a feature of the present invention. The cross-flow type and the inner-blowing circuit type are easy to exhibit the self-cooling effect by the heat carried by the polymer itself.
[0044] 上記要件 a— 1 , 2— c及び要件 d— fによって、吐出ポリマーは急速に固化することなく 、また溶融状態のままということもなぐ吐出ポリマーが有する熱によるセルフコント口 ールによって、適度な徐冷プロファイルを実現することができ、し力、も高孔密度で溶 融吐出されたポリエステル繊維束であっても、紡糸筒(保温筒 14及び冷却筒 15)内 で融着が生じ難ぐ安定して紡糸できる。  [0044] According to the above requirements a-1, 2-c and requirement df, the discharged polymer does not solidify rapidly, and the self-control by the heat of the discharged polymer which does not need to remain in a molten state. In addition, it is possible to achieve an appropriate slow cooling profile, and even in the case of a polyester fiber bundle that has been melt-discharged with a high pore density, fusion can be performed within the spinning cylinder (the heat retaining cylinder 14 and the cooling cylinder 15). Stable spinning that is difficult to occur.
[0045] なお上記の様にして冷却固化した繊維束の引き取りは、未延伸糸の複屈折率が 0.  [0045] The fiber bundle cooled and solidified as described above is taken off when the birefringence of the undrawn yarn is 0.1.
070以上を得ることのできる紡糸速度で行うのが良レ、。この理由は、未延伸糸の複屈 折率が低すぎると寸法安定性が不十分となるからである。好ましくは未延伸糸の複屈 折率 0. 075以上を得る様な紡糸速度で引き取る。  It is good to perform at a spinning speed that can obtain 070 or more. The reason for this is that if the birefringence of the undrawn yarn is too low, the dimensional stability will be insufficient. Preferably, the undrawn yarn is drawn at a spinning speed such that a birefringence of 0.075 or more is obtained.
[0046] このときドラフト比を 200以上 (好ましくは 400以上)とするのが良ぐこれによりデイツ プコード等のゴム補強用繊維としてより良好な寸法安定性が得られるからである。  At this time, it is preferable that the draft ratio is 200 or more (preferably 400 or more). This is because better dimensional stability can be obtained as a rubber reinforcing fiber such as a dipped cord.
[0047] 更に、上記の如く高ドラフト条件で得た原糸は、繊維に接着剤を含浸させるといった ディップ処理時における強力利用率が高いことが、本発明者らの実験により明らかと なった。つまりディップ処理時の強力利用率は「ディップ強力/生コード強力」で定義 されるところ、高ドラフト条件で得た原糸は、同一原糸強力でありながら、高いディップ 強力(ディップ処理後の繊維の強力)を得ること力 Sできる。  [0047] Further, the experiments by the present inventors have revealed that the raw yarn obtained under the high draft conditions as described above has a high strength utilization rate at the time of dipping such as impregnating the fiber with an adhesive. In other words, the strength utilization rate during dip processing is defined as “dip strength / raw cord strength”. The yarn obtained under high draft conditions has the same fiber strength but high dip strength (fiber after dip processing). Power) to gain S.
[0048] この様な紡糸口金の高孔密度化と大孔径化による高ドラフト条件の相乗効果により、 生産性,強力,寸法安定性という 3つの効果の一層の向上をもたらし得る。  [0048] The synergistic effect of the high draft conditions due to the higher hole density and the larger hole diameter of the spinneret can further improve the three effects of productivity, strength, and dimensional stability.
[0049] 尚本発明において延伸工程については、紡糸に引き続き連続して実施しても良いし 、或いは一旦未延伸糸を卷き取った後、延伸を別工程で実施しても良レ、。但し紡糸 力 直接延伸する方法の方が製造コストの低減の観点から好ましい。  [0049] In the present invention, the stretching step may be carried out continuously after the spinning, or may be carried out in a separate step after winding the undrawn yarn once. However, the spinning force direct drawing method is preferable from the viewpoint of reduction of the production cost.
[0050] 延伸倍率としては 1. 5-2. 5倍が望ましぐ 1. 5倍未満であると、高強力が得られな い懸念があり、一方 2. 5倍超では安定な延伸が困難となるからである。  [0050] It is desirable that the stretching ratio is 1.5 to 2.5 times. If the stretching ratio is less than 1.5 times, there is a concern that high strength cannot be obtained. This is because it becomes difficult.
実施例  Example
[0051] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施 例によつて制限を受けるものではなレ、。 [0052] なお各物性値は下記の方法により測定したものである。 Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following Examples. [0052] Each physical property value is measured by the following method.
[0053] <固有粘度 >  [0053] <Intrinsic viscosity>
試料のポリマーを 0. 4dl/gの濃度で、パラクロロフエノール:テトラクロロェタン = 3 : 1 の混合溶媒に溶解し、 30°Cにおける粘度をォスワルド粘度計により測定した。  The polymer of the sample was dissolved at a concentration of 0.4 dl / g in a mixed solvent of parachlorophenol: tetrachloroethane = 3: 1, and the viscosity at 30 ° C. was measured by an Oswald viscometer.
[0054] <繊度>  [0054] <Fineness>
JIS L1017 (化学繊維タイヤコード試験方法)に基づき、 20°C,65。/oRHに温湿度管 理された部屋で 24時間放置後、繊度を測定した。 Based on JIS L1017 (Test method for chemical fiber tire cord), 20 ° C, 65. After leaving for 24 hours in a room where the temperature and humidity were controlled at / o RH, the fineness was measured.
[0055] ぐ強伸度 > [0055] Strong elongation>
JIS L1017に基づき、 20°C,65%RHに温湿度管理された部屋で 24時間放置後、 引張試験機により、強力,破断伸度,中問伸度(中間伸度荷重を加えたときの伸度)を 測定した。尚、中間伸度の測定にあたっての荷重(中間伸度荷重)としては、原糸を 測定する場合には 4. OcN X試料の基準繊度とし (即ち ldtexあたり 4. OcNの荷重と なる様に、例えば試料が 1440dtexの場合は 57Nの荷重をかける)、生コード及びデ イッブ処理コードを測定する場合には 2. OcN X試料の基準繊度とする。尚生コード 及びディップ処理コードの基準繊度は、例えば 1440dtexを 2本撚り合わせたものの 場合は 2880dtexとなる。  After standing for 24 hours in a room controlled at a temperature and humidity of 20 ° C and 65% RH based on JIS L1017, a tensile tester is used to measure strength, elongation at break, elongation at medium Elongation) was measured. The load for measuring the intermediate elongation (intermediate elongation load) is the standard fineness of 4.OcN X sample when measuring the original yarn (that is, the load of 4.OcN per ldtex, For example, when the sample is 1440 dtex, apply a load of 57N), and when measuring the raw cord and the dipped treatment cord, use the reference fineness of the OcN X sample. The standard fineness of the raw cord and the dip-treated cord is 2880 dtex when, for example, two 1440 dtex are twisted.
[0056] <収縮率> [0056] <Shrinkage>
JIS L1017に基づき、 20°C,65%RHに温湿度管理された部屋で 24時間放置後、 乾燥器内において無荷重状態で 150°C, 30min熱処理を施し、この熱処理の前後 の試長差より求めた。  Based on JIS L1017, left in a room where the temperature and humidity are controlled at 20 ° C and 65% RH for 24 hours, heat-treated in a dryer at 150 ° C for 30 minutes under no load, and test length difference before and after this heat treatment I asked more.
[0057] <複屈折率 > [0057] <Birefringence index>
偏向顕微鏡を用い、ベレックコンペンセーター法によって測定した。  The measurement was performed by a Bellec compensator method using a deflection microscope.
[0058] ぐ寸法安定性 > [0058] Dimensional stability>
ディップコードの中間伸度と収縮率の和を、寸法安定性の指標とした。  The sum of the intermediate elongation and shrinkage of the dip cord was used as an index of dimensional stability.
[0059] <糸切れ指数 >  [0059] <Yarn break index>
ltonの完成糸を生産する間に発生した糸切れ頻度を、試料 No. 5を基準値 100とし 、この基準値に対する指数で表した。尚値が小さい方が操業性に優れていることを表 す。 [0060] [実施例] The frequency of yarn breakage that occurred during the production of finished yarns of lton was defined as an index with respect to this reference value, using sample No. 5 as a reference value of 100. A smaller value indicates better operability. [Example]
固有粘度 0. 95のポリエチレンテレフタレートチップを下記表 1に示す条件で紡糸し、 未延伸糸の複屈折率が約 0. 080を得る様に 3200— 3400m/minの紡糸速度で 引き取り、続いて強度が約 7. lcNZdtexとなる様に約 1. 68倍に延伸した後、 3. 5 %弛緩処埋を行って卷き取った(原糸)。この原糸の物性を下記表 2に示す。尚本発 明で「固有粘度が 0. 85dl/g以上のポリエステル繊維」と規定する「固有粘度」とは、 この原糸の固有粘度である。  A polyethylene terephthalate chip having an intrinsic viscosity of 0.95 is spun under the conditions shown in Table 1 below, and drawn at a spinning speed of 3200-3400 m / min so that the birefringence of the undrawn yarn is about 0.080. Was stretched about 1.68 times so that it became about 7. lcNZdtex, followed by 3.5% relaxation embedding and winding (raw yarn). The physical properties of this yarn are shown in Table 2 below. The “intrinsic viscosity” defined as “a polyester fiber having an intrinsic viscosity of 0.85 dl / g or more” in the present invention is the intrinsic viscosity of this yarn.
[0061] 上記原糸を 2本撚り合わせて生コードを得た。尚撚数は原糸の繊度に応じて決定し、 原糸繊度 1670dtexの原糸を 2本撚り合わせたもの場合は撚数 40 (下撚) X 40 (上 撚)(t/lOcm)とし、原糸繊度 1440dtexの原糸を 2本撚り合わせたもの場合は撚数 43 (下撚) X 43 (上撚)(t/lOcm)とした。この生コードの物性を下記表 3に示す。  [0061] Two raw yarns were twisted to obtain a raw cord. The number of twists is determined according to the fineness of the original yarn. If two yarns with a fineness of the original yarn of 1670 dtex are twisted, the number of twists is 40 (bottom twist) X 40 (twisting) (t / lOcm), In the case where two yarns having a yarn fineness of 1440 dtex were twisted, the number of twists was set to 43 (primary twist) X 43 (upper twist) (t / lOcm). The physical properties of this raw code are shown in Table 3 below.
[0062] レゾルシン一ホルマリン一ラテックス(以下、 RFLと称することがある)と商品名「バルカ ボンド E」(バノレナックス社製)を混合して第 1処理液とし、この第 1処理液中に上記生 コードを浸漬し、次に 120°Cのオーブン中で 56秒間乾燥させた後、 240°Cのオーブ ン中で 4. 0%の伸長率を与えながら 45秒間緊張熱処理を施した。続いて RFLから なる第 2処理液中にこのコードを浸漬させた後、 120°Cのオーブン中で 56秒間乾燥 させ、次に 2. 0%の弛緩率を与えながら、 235°Cのオーブン中で 45秒間弛緩熱処 理を施し、ディップコードを得た。このディップコードの物性を下記表 4に示す。  [0062] Resorcin-formalin-latex (hereinafter sometimes referred to as RFL) and trade name "Valka Bond E" (manufactured by Vanorenax Co., Ltd.) were mixed to form a first treatment liquid. The cord was immersed and then dried in an oven at 120 ° C for 56 seconds and then subjected to a tension heat treatment in an oven at 240 ° C for 45 seconds with 4.0% elongation. Subsequently, the cord is immersed in a second treatment solution consisting of RFL, dried in an oven at 120 ° C for 56 seconds, and then, in an oven at 235 ° C while giving a relaxation rate of 2.0%. And heat treatment for 45 seconds to obtain a dip cord. Table 4 below shows the physical properties of this dip code.
[0063] [表 1]  [0063] [Table 1]
Figure imgf000014_0001
Figure imgf000014_0001
Ϊ088請 OOZdf/ェ:) d VI OAV Ϊ088 contract OOZdf / e :) d VI OAV
Figure imgf000016_0001
Figure imgf000016_0001
[Z 900]  [Z 900]
Zdf/X3d 91- ZIi6S0/S00l ΟΛ\ Zdf / X3d 91- ZIi6S0 / S00l ΟΛ \
Figure imgf000017_0001
Figure imgf000017_0001
[S¾ [9900]  [S¾ [9900]
1df/13d 91· 表 4] 1df / 13d 91 [Table 4]
ップコード物性 Physical properties
Figure imgf000018_0001
Figure imgf000018_0001
繊度 1670dtexの試料 NO. 1, 2, 6, 7に着目すると、試料 NO. 6, 7では、孔密度( H)が高いものの、紡糸口金の孔径 (D)が小さぐ吐出孔部剪断速度が高 加えて L/Dが大きいので (表 1)、その結果、糸切れ指数が悪く(表 2)、ディップコード強力 や寸法安定性も低くなつたと考えられる(表 4)。これに対して試料 Ν0· 1, 2では、紡 糸口金あたり 885g/minの吐出量条件において孔密度(H)が高ぐ孔径 (D)や L /Dが適切であることから、吐出孔部剪断速度が低くなり(表 1)、その結果、良好な 糸切れ指数となり(表 2)、またディップコード強力や寸法安定性が良好であったと考 えられる(表 4)。 Focusing on sample Nos. 1, 2, 6, and 7 with a fineness of 1670 dtex, sample Nos. 6 and 7 have a high hole density (H) but a small hole diameter (D) of the spinneret. High In addition to the large L / D (Table 1), the yarn breakage index is poor (Table 2), and the dip cord strength and dimensional stability are considered to be low (Table 4). On the other hand, in samples Ν0 At a discharge rate of 885 g / min per thread cap, the hole density (H) is high and the hole diameter (D) and L / D are appropriate, so the discharge hole shear rate is low (Table 1). It is considered that the yarn breakage index was good (Table 2), and that the dip cord strength and dimensional stability were good (Table 4).
繊度 1440dtexの試料 NO. 3—5, 8 10に着目すると、試料 NO. 3— 5では、紡糸 口金あたり 740, 763gZminの吐出条件において孔密度が高ぐまた孔径(D)が高 レ、ことから (表 1)、糸切れ指数が良好で (表 2)、且つディップコード強力や寸法安定 性が良好であったと考えられる(表 4)。一方試料 No. 8, 9では、孔径が小さくまた L /Dも大きいことから (表 1)、糸切れ指数が悪く(表 2)、ディップコード強力や寸法安 定性も低くなつたものと考えられる(表 4)。試料 No. 10では、孔密度が低い為に(表 1)、糸切れ指数が悪く(表 2)、ディップコード強力や寸法安定性も低くなつたものと 考えられる(表 4)。 Focusing on sample Nos. 3-5 and 810 with a fineness of 1440 dtex, sample No. 3-5 has a high hole density and high hole diameter (D) under the discharge conditions of 740 and 763 gZmin per spinneret. It is considered that the yarn breakage index was good (Table 1) and the dip cord strength and dimensional stability were good (Table 4). On the other hand, in sample Nos. 8 and 9, the hole diameter was small and the L / D was large (Table 1), so the thread breakage index was poor (Table 2), and it is considered that the dip cord strength and dimensional stability were also low. (Table 4). It is probable that in Sample No. 10, the thread breakage index was poor (Table 2) due to the low hole density (Table 1), and the dip cord strength and dimensional stability were also low (Table 4).

Claims

請求の範囲 The scope of the claims
[1] 複数の孔を備えた紡糸口金を用レ、、固有粘度が 0. 85dl/g以上のポリエステル繊 維を溶融紡糸する方法であって、  [1] A method of melt-spinning a polyester fiber having an intrinsic viscosity of 0.85 dl / g or more using a spinneret having a plurality of holes,
前記紡糸口金あたりの前記孔の総数が 250個以上で、紡糸口金面積あたりの該孔 の数が 1. 5個/ cm2以上であり、 Wherein the total number of the holes per spinneret 250 or more, a number of pores per spinneret area 1.5 pieces / cm 2 or more,
前記孔が、導入部分と、この導入部分より開口面積の小さい吐出部分とを備え、該吐 出部分の孔径(D)が 0. 5mm以上で、  The hole has an introduction portion and a discharge portion having an opening area smaller than that of the introduction portion, and a diameter (D) of the discharge portion is 0.5 mm or more;
該吐出部分の孔径 (D)に対する該吐出部分の孔長 (L)の比 (L/D)が 3. 0以下で あることを特徴とするポリエステル繊維の製造方法。  A method for producing a polyester fiber, wherein the ratio (L / D) of the hole length (L) of the discharge portion to the hole diameter (D) of the discharge portion is 3.0 or less.
[2] 前記孔径(D)が 0. 7mm以上である請求項 1に記載のポリエステル繊維の製造方法 [2] The method for producing a polyester fiber according to [1], wherein the pore diameter (D) is 0.7 mm or more.
[3] 前記紡糸口金下に長さ 150mm以下の保温領域と、この下流側に徐冷領域を備え、 前記紡糸口金力 溶融吐出された未固化のポリエステル繊維束を、前記保温領域に 通過させた後、前記徐冷領域において温度が 40°C以上で風速 (V)が下式(1 )を満 足する冷却風によって冷却固化させる請求項 1または 2に記載のポリエステル繊維の 製造方法。 [3] A heat insulation region having a length of 150 mm or less below the spinneret and a slow cooling region downstream of the spinneret are provided, and the unfused polyester fiber bundle that has been melt-discharged is passed through the heat insulation region. 3. The method for producing a polyester fiber according to claim 1, wherein the polyester fiber is cooled and solidified by a cooling air having a temperature of 40 ° C. or more and a wind velocity (V) satisfying the following expression (1) in the slow cooling region.
V≥0. 27 X H + 4. 77 X 10— 5 X Vs V≥0. 27 XH + 4. 77 X 10- 5 X Vs
V:風速 (m, sec)  V: Wind speed (m, sec)
H:前記紡糸口金面積あたりの前記孔の数(個/ cm2) H: Number of the holes per spinneret area (pcs / cm 2 )
Vs:糸方糸 度 (m/ min)  Vs: Yarn degree (m / min)
[4] 前記紡糸口金からのポリマー吐出線速度 (V )に対する紡糸速度 (Vs)の比 (VsZV [4] The ratio of the spinning speed (Vs) to the linear speed (V) of the polymer discharged from the spinneret (VsZV
0  0
)力 200以上である請求項 1  Claim 1) The force is 200 or more.
0 一 3のいずれかに記載のポリエステル繊維の製造方 法。  The method for producing a polyester fiber according to any one of Items 1-3.
[5] 固有粘度が 0. 85dl/g以上のポリエステル繊維を溶融紡糸する際に用いる紡糸口 金であって、  [5] A spinneret used for melt-spinning a polyester fiber having an intrinsic viscosity of 0.85 dl / g or more,
該紡糸口金は複数の孔を有し、該孔が導入部分とこの導入部分より開口面積の小さ い吐出部分とを備え、  The spinneret has a plurality of holes, the holes including an introduction portion and a discharge portion having a smaller opening area than the introduction portion,
前記紡糸口金あたりの前記孔の総数が 250個以上で、紡糸口金面積あたりの該孔 の数が 1. 5個/ cm以上であり、 The total number of holes per spinneret is 250 or more, and the number of holes per spinneret area is Is more than 1.5 pieces / cm,
前記吐出部分の孔径(D)が 0. 5mm以上で、  When the hole diameter (D) of the discharge portion is 0.5 mm or more,
該吐出部分の孔径 (D)に対する該吐出部分の孔長 (L)の比 (L/D)が 3. 0以下で あることを特徴とする溶融紡糸用紡糸口金。  A spinneret for melt spinning, wherein a ratio (L / D) of a hole length (L) of the discharge portion to a hole diameter (D) of the discharge portion is 3.0 or less.
[6] 前記孔径(D)が 0. 7mm以上である請求項 5に記載の溶融紡糸用紡糸口金。 6. The spinneret for melt spinning according to claim 5, wherein the hole diameter (D) is 0.7 mm or more.
PCT/JP2004/018801 2003-12-19 2004-12-16 Method for producing polyester fiber and spinning mouth piece for melt spinning WO2005059212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-422058 2003-12-19
JP2003422058A JP4337539B2 (en) 2003-12-19 2003-12-19 Polyester fiber production method and spinneret for melt spinning

Publications (1)

Publication Number Publication Date
WO2005059212A1 true WO2005059212A1 (en) 2005-06-30

Family

ID=34697321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018801 WO2005059212A1 (en) 2003-12-19 2004-12-16 Method for producing polyester fiber and spinning mouth piece for melt spinning

Country Status (4)

Country Link
JP (1) JP4337539B2 (en)
KR (1) KR20060118538A (en)
CN (1) CN1898420A (en)
WO (1) WO2005059212A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002041A (en) * 2006-06-26 2008-01-10 Kaneka Corp Fiber for artificial hair and method for producing the same
US9005752B2 (en) * 2007-06-20 2015-04-14 Kolon Industries, Inc. Drawn poly(ethyleneterephthalate) fiber, poly(ethyleneterephthalate) tire-cord, their preparation method and tire comprising the same
JP4914794B2 (en) * 2007-09-28 2012-04-11 ダイワボウホールディングス株式会社 Method for producing core-sheath type composite fiber containing polycarbonate
JP5365376B2 (en) * 2009-06-30 2013-12-11 横浜ゴム株式会社 Pneumatic tire
IT1394886B1 (en) * 2009-07-17 2012-07-20 Sacmi INSPECTION SYSTEM AND WEIGHING OF OBJECTS, IN PARTICULAR PREFORMATIONS.
CN101619503B (en) * 2009-07-27 2011-04-27 神马实业股份有限公司 High-strength ultra-low thermal contraction nylon 66 fiber and production method thereof
KR101149810B1 (en) 2009-12-29 2012-05-24 주식회사 효성 Polyethyleneterephthalate Multi-filament for Seat Belt and Manufacturing Method Thereof
JP5542085B2 (en) * 2011-03-31 2014-07-09 帝人株式会社 Method for producing pretreated polyester fiber
JP5542084B2 (en) * 2011-03-31 2014-07-09 帝人株式会社 Polyester fiber for rubber reinforcement
CN107488878B (en) * 2013-02-26 2020-07-14 三菱化学株式会社 Fiber aggregate and paper
KR101559517B1 (en) * 2014-01-16 2015-10-19 주식회사 효성 Dimensionally stable polyester tire cord and method of manufacturing the same
JP2021504600A (en) 2017-11-22 2021-02-15 エクストルージョン グループ, エルエルシーExtrusion Group, Llc Melt blown die chip assembly and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263416A (en) * 1975-11-19 1977-05-25 Teijin Ltd Spinning process of synthetic
JPS63120109A (en) * 1986-11-06 1988-05-24 Teijin Ltd Melt spinning method for polyester
JPH01282306A (en) * 1988-05-09 1989-11-14 Toray Ind Inc Industrial polyester fiber
JPH05504383A (en) * 1991-01-14 1993-07-08 ローヌ―プーラン ヴィスコスイス ソシエテ アノニム Method for producing polyester filament system coated with pre-adhesive and tire cord produced from this polyester filament system
JP2000273714A (en) * 1999-03-29 2000-10-03 Toray Ind Inc Spinneret for melt spinning and melt spinning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263416A (en) * 1975-11-19 1977-05-25 Teijin Ltd Spinning process of synthetic
JPS63120109A (en) * 1986-11-06 1988-05-24 Teijin Ltd Melt spinning method for polyester
JPH01282306A (en) * 1988-05-09 1989-11-14 Toray Ind Inc Industrial polyester fiber
JPH05504383A (en) * 1991-01-14 1993-07-08 ローヌ―プーラン ヴィスコスイス ソシエテ アノニム Method for producing polyester filament system coated with pre-adhesive and tire cord produced from this polyester filament system
JP2000273714A (en) * 1999-03-29 2000-10-03 Toray Ind Inc Spinneret for melt spinning and melt spinning

Also Published As

Publication number Publication date
KR20060118538A (en) 2006-11-23
JP2005179823A (en) 2005-07-07
CN1898420A (en) 2007-01-17
JP4337539B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP2569720B2 (en) Industrial polyester fiber, method for producing the same, and processing cord for tire cord
JP3655577B2 (en) Method for producing polyethylene naphthalate fiber
CN103132162B (en) The preparation method of carbon fiber precursor
KR100909559B1 (en) High strength polyethylene fiber
WO2005059212A1 (en) Method for producing polyester fiber and spinning mouth piece for melt spinning
JP2014524992A (en) Polyethylene terephthalate drawn yarn manufacturing method, polyethylene terephthalate drawn yarn and tire cord
CN1727539B (en) Polyester multi-filament yarn for tire cord
WO2013100647A1 (en) Drawn polyethylene terephthalate fiber, polyethylene terephthalate tyre cord and method for producing same
WO2005108659A1 (en) Spinning poly(trimethylene terephthalate) yarns
KR102127495B1 (en) Poly(ethyleneterephthalate) Yarn, Method for Manufacturing The Same, and Tire Cord Manufactured Using The Same
WO2000043581A1 (en) Method for producing polyester-based combined filament yarn
US20050161854A1 (en) Dimensionally stable yarns
JP3238618B2 (en) Method of manufacturing polyester cord for reinforcing rubber hose
JP3130683B2 (en) Method for producing polyester fiber with improved dimensional stability
JP2002161433A (en) Polyester fiber and method for producing the same
KR101552697B1 (en) Method for manufacturing poly(ethyleneterephthalate) drawn fiber, poly(ethyleneterephthalate) drawn fiber and tire-cord
JP5758847B2 (en) High strength and high modulus polypropylene fiber and method for producing the same
US7263820B2 (en) High-DPF yarns with improved fatigue
KR100585248B1 (en) Rubber-reinforcing polyester fibers and dip cords
EP0452405A1 (en) Process for dimensionally stable polyester yarn.
JPH11350249A (en) Polyester fiber for v-belt reinforcement and its production and cord for v-belt reinforcement
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
JPH11229234A (en) Polyester yarn for thread used for producing tatami and its production
KR102241107B1 (en) Cap ply cord and manufacturing method of the same
CN103476976A (en) Method for manufacturing polyethylene terephthalate drawn fiber, polyethylene terephthalate drawn fiber, and tire cord

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038024.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067011302

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067011302

Country of ref document: KR

122 Ep: pct application non-entry in european phase