WO2005051541A1 - Zirconia-doped titania photocatalyst powder and process for producing the same - Google Patents

Zirconia-doped titania photocatalyst powder and process for producing the same Download PDF

Info

Publication number
WO2005051541A1
WO2005051541A1 PCT/JP2004/017423 JP2004017423W WO2005051541A1 WO 2005051541 A1 WO2005051541 A1 WO 2005051541A1 JP 2004017423 W JP2004017423 W JP 2004017423W WO 2005051541 A1 WO2005051541 A1 WO 2005051541A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
photocatalyst
zirconia
added
titer
Prior art date
Application number
PCT/JP2004/017423
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Taoda
Hiroyoshi Takagi
Mitsuharu Fukaya
Eiji Watanabe
Mayu Iimi
Yoko Fujishita
Mikaru Ikedo
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2005051541A1 publication Critical patent/WO2005051541A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions

Definitions

  • the present invention relates to a zirconia-added titer photocatalyst and a method for producing the same, and more particularly, to increasing the amount of nitrogen introduced and the like to significantly increase the photocatalytic action in a visible light castle.
  • the present invention relates to a new type of nitrogen-introduced titanium photocatalyst that has made it possible, a method for producing the same, and a product thereof.
  • nitrogen-introduced titer photocatalyst in which nitrogen is introduced into a titanium crystal lattice, conventionally, for example, it has been extremely difficult to uniformly introduce nitrogen into titer crystals.
  • the present invention is useful for providing a novel zirconia-added titania photocatalyst capable of increasing the amount of nitrogen to be introduced, its production technology, and its applied products.
  • the zirconia-added titanium photocatalyst of the present invention can be made into a member of an appropriate form carrying the same, for example, to decompose and detoxify chemical substances in the air such as malodorous substances, to have antibacterial and antifungal properties. It can be applied as a product with functions such as antifouling, decomposition of harmful substances in water, etc. Background art
  • Non-Patent Documents 2 and 3 In the above-mentioned prior art documents (Non-Patent Documents 2 and 3), in both cases, the introduction of nitrogen produced yellow titanium powder, and the introduced nitrogen was located near the top of the valence band. Create level It has been reported that the band gap is narrowed. In other prior art documents, nitrogen is introduced into the titer crystal by heating the titer in the presence of ammonia gas or a derivative thereof (see Patent Document 1 and Non-Patent Document 3). Proposed. In addition, according to other prior art documents, it is reported that the higher the yellow color, the higher the visible activity, and that heating at 400 ° C or higher causes the yellow color to decline and the visible activity to decrease (Non-Patent Document 2). Have been.
  • Patent Document 1 Japanese Patent No. 3215698
  • Non-Patent Document l Chem. Phys. Lett., 123, 126 (1986)
  • Non-Patent Document 2 Industrial Materials, vol. 50, No. 7, 33-35 (2002)
  • Non-Patent Document 3 Industrial Materials, vol. 50, No. 7, 36-39 (2002)
  • Non-Patent Document 4 Photocatalytic Performance Evaluation Test Method IIa (2001 edition), Photocatalyst Product Technology Council, Rules, Regulations and Test Methods, 49-52 (2004)
  • the present invention provides a novel zirconia-doped titer photocatalyst having zirconium uniformly dissolved in a titanium crystal lattice, having a large absorption in a visible light region, and having a significantly enhanced visible light response. It is intended to provide a manufacturing method and a product thereof.
  • the present invention for solving the above-mentioned problems is a zirconia-added titer photocatalyst in which zirconium is dissolved in titaure in a nitrogen-substituted titer.
  • This photocatalyst is characterized in that (1) zirconium is added to titanium oxide lattice in a solid solution by adding 0.5-10% by weight of zirconium oxide to titanium oxide and (2) The amount of nitrogen introduced was increased by dissolving zirconium in the titanium crystal lattice. (3) The introduced nitrogen was stabilized by dissolving zirconium in the titanium crystal lattice. (4) Zirconium oxide is uniformly added to anatase-type titania, and the amount thereof is 0.5 to 10% by weight based on titanium oxide.
  • the spectral reflectance measurement of the body there is an absorption power S from 400 nm to 400 nm, and the absorption is 40% or more near 410 nm (however, the reflectance for light with a wavelength of 600 nm is 100%). Is a preferred embodiment.
  • the present invention provides a method in which a solution obtained by dissolving a water-soluble zirconium salt in an aqueous solution of titanium chloride or titanium sulfate is subjected to a neutralization reaction with ammonia, and then the reaction product is dried, calcined, and pulverized to obtain powder.
  • a method for producing a zirconia-added titer photocatalyst is also known as aqueous solution of titanium chloride or titanium sulfate.
  • the method uses (1) water-soluble zirconium salt zirconium chloride, zirconyl nitrate dihydrate, zirconium carbonate hydrate, or zirconium sulfate hydrate, and (2) ammonia The aqueous ammonia, aqueous ammonia ammonium carbonate aqueous ammonium carbonate solution, aqueous ammonium alkaline hydrogen carbonate aqueous solution, or urea aqueous solution, and (3) at room temperature to 100 ° C Reacting in a preferred state I'm trying.
  • the present invention includes a zirconia-added titer photocatalyst according to any one of the above as a constituent element, and imparts a high visible light responsive photocatalyst having enhanced absorption in a visible light castle.
  • the present invention is characterized in that the zirconia-added titer photocatalyst according to any one of the above is provided as a constituent element, and a high visible light responsive photocatalyst action is provided in which absorption in a visible light castle is enhanced.
  • Environmental purification products are provided.
  • the present invention includes a zirconia-added titer photocatalyst according to any one of the above as a constituent element, and imparts a high visible light responsive photocatalyst with enhanced absorption in a visible light castle. Photocatalyst products.
  • the present invention relates to a zirconium-added titer photocatalyst in which zirconium is dissolved in a titer crystal lattice in a process of producing a nitrogen-substituted titaure, a method for producing the same, and the like.
  • a method for introducing nitrogen for example, nitrogen in ammonia is combined with titanium in the course of neutralization reaction of titaure with aqueous ammonia, and nitrogen is introduced.
  • a method of dissolving zirconium in the titer crystal lattice for example, a method of dissolving zirconium in titaure by an alkoxide method is exemplified.
  • the present invention relates to an anatase-type titania obtained by uniformly adding zirconium oxynitride in an amount of 0.5 to 10% by weight with respect to titanium oxyride, and the spectral reflectance of the powder. In the measurement, there is absorption from around 600 nm to 400 nm, and the absorption shows absorption of 40% or more at around 410 nm (however, the reflectance for light with a wavelength of 600 nm is 100%).
  • the force of using an anatase-type titania powder is not limited to this, but may be the same as or similar to this. If so, they can be used as well.
  • the reaction product is dried, calcined, and pulverized to obtain powder.
  • the water-soluble zirconium salt for example, oxysalt zirconium, zirconyl nitrate dihydrate, zirconium carbonate hydrate, or zirconium sulfate
  • the force at which hydrate is used The same hydrate can be used as long as it has the same effect.
  • ammonia for example, aqueous ammonia, aqueous ammonia-alkali ammonium carbonate aqueous solution, aqueous ammonia-alkali hydrogen carbonate aqueous solution, or urea aqueous solution can be used. Can be used.
  • the above reaction is preferably performed at a temperature of room temperature to 100 ° C.
  • the amount of zirconium oxide added to the titanium is 0.5-10% by weight, preferably 115% by weight.
  • Figure 1 shows the measurement results of the spectral reflectance of the zirconium-cured titanium powder and the powder without the addition of the zirconium powder at 450 ° C for 2 hours.
  • the reason why the titer prepared by adding zirconium showed a larger absorption than that obtained by adding no zirconium is a powerful one. It is. After heating the yellow-colored powder at 600 ° C to completely oxidize it, its weight was measured, and the weight increase was greater for those with zirconium solid solution than those without zirconium solid solution. I got it. From the above, it can be considered that the reason for the above is that the amount of nitrogen introduced was higher when the solid solution of zirconium was dissolved than when the solid solution was not dissolved.
  • the melting point of zirconium oxide is 2700 ° C and the melting point of titanium oxide is 1800 ° C, it is considered that the bond between zirconium and anions is stronger than the bond between titanium and anions. In connection with this, it is considered that the nitrogen introduction amount was increased.
  • the reason for this phenomenon is considered as follows.
  • the melting point of zirconium oxidized is 2700 ° C, and the melting point of titanium oxidized is 1800 ° C. Therefore, zirconium contained in the titanium crystal lattice reduces the diffusion rate of all the ions constituting the crystal lattice, and binds anions around it more strongly than titanium.
  • the reaction between the oxygen in the outside air and the introduced nitrogen due to heating, because zirconium hinders the diffusion of anions, the reaction in which zirconium forms a solid solution is easier than that in which zirconium does not form a solid solution. It is thought that he did not wake up.
  • the solid solution of zirconium according to the present invention makes the absorbance large and vivid as compared with the case where zirconium does not form a solid solution. It is considered that one factor is that the bond with the anion is stronger than the bond between titanium and the anion. Compared with those with and without zirconium in the titanium crystal lattice, the reason that the introduced nitrogen was more stably retained in the titanium crystal lattice in the presence of zirconium was that zirconium and anions It is probable that the bond speed of the reaction with the ambient oxygen by heating decreased because the diffusion rate of all the ions was reduced due to the stronger bond between titanium and the anion.
  • the nitrogen-introduced titer powder was colored yellow, and a large absorption was observed at a force of about 600 nm and a force of about 400 nm. Comparing the absorption spectra of the zirconium-added and the non-added, the addition of zirconium showed a larger absorption. The reason is thought to be based on the difference in the amount of nitrogen introduced due to zirconium. Further, a comparison of the stable retention of the introduced nitrogen by decolorization by heating showed that titania added with zirconium was larger than that without addition of titania.
  • the zirconium-added titanium photocatalyst produced by the method of the present invention is supported on any structural member to decompose a chemical substance in the air such as an odorous substance.
  • a chemical substance in the air such as an odorous substance.
  • 'It can be effectively used as a product with functions such as detoxification, antibacterial, antifungal, antifouling, and decomposition of harmful substances in water.
  • photocatalyst product means a member and a product which carry the zirconium-added titer photocatalyst of the present invention by an appropriate method and means.
  • the environmental purification product, structural member and photocatalyst product of the present invention include: , Textile products, plastics products, paper products, ceramic products, metal products, glass products, concrete products, leather products, paints, inks, wood and bamboo products, artificial flowers, artificial houseplants, interior products, accessories, electrical products, sheets, etc. , Nogs, etc. and their members and those equivalent or similar thereto.
  • the types and forms of those products and members can be arbitrarily designed.
  • a photocatalyst having a remarkably large absorption in the visible light region can be produced and provided as compared with conventional nitrogen-substituted titania, and (2) the amount of nitrogen introduced can be increased.
  • the addition of zirconium to titaure according to the present invention has the effect of making the yellow coloration of titer crystal particles more vivid by nitrogen introduction, and more stably retaining the introduced nitrogen in the lattice.
  • a colored powder can be produced more easily and more uniformly than conventional production methods and at a lower cost with improved reproducibility.
  • Visible light responsive titer In particular, it is possible to provide structural members, environmental purification products, and photocatalyst products that can significantly enhance the photocatalytic action in the visible light castle.
  • a solution was prepared by adding 4% by weight of zirconium oxychloride to zirconium oxide in an aqueous solution of titanium tetrachloride in an amount of 2% by weight with respect to titanium oxide.
  • concentrated aqueous ammonia diluted with an equal volume of water was heated to the neutralization point using methyl red as an indicator, the precipitate was completed and the liquid was allowed to stand, and the supernatant was removed.
  • the reaction product was dried by heating, loosened and pulverized, heated to 100 ° C./hour, kept at 450 ° C. for 2 hours, and cooled naturally to obtain a titania powder colored yellow.
  • Example 1 a sample to which zirconium was not added was subjected to the same operation for comparison. Produced.
  • Example 1 a yellow powder was obtained by the same operation as in Example 1 except that the amount of zirconium was adjusted by adjusting the amount of zirconium.
  • Example 1 urea was used instead of aqueous ammonia. In this case, urea in excess of the required amount was added to a solution containing titanium and zirconium, and the mixture was sufficiently reacted by heating. Then, a yellow powder was obtained in the same manner as in Example 1.
  • Example 1 an ammonia-alkali hydrogen carbonate ammonium was used instead of the ammonia water. In this case, an aqueous solution in which twice the amount of ammonia-alkali ammonium hydrogencarbonate was dissolved was prepared, heated to around 50 ° C, and reacted. Other than that, a yellow powder was obtained in the same manner as in Example 1.
  • Ammonia-alkali ammonium carbonate was used instead of the ammonia-alkali hydrogencarbonate ammonium in Example 3. In this case, after the supernatant was removed three times, pure water was added so that the amount was about the same as that during precipitation, and the solution containing the precipitate was dried by spray drying. Otherwise, the procedure of Example 1 was repeated to obtain a yellow powder.
  • Example 2 Each of the samples of Comparative Example and Example 2 (added as zirconium oxidized so as to have an arbitrary weight% with respect to titanium oxidized) prepared by the same operation as in Example 1 was subjected to EDX. Further analysis was performed, and the relationship between the nitrogen content and the zirconium oxide content contained therein was examined for its power to change the weight concentration. As a result, it was found that the nitrogen content increased as the zirconium oxide content in the titanium powder increased. From this, it became clear that the amount of nitrogen introduced into the titer powder can be increased by adding zirconium oxide to a certain amount or more during the synthesis of titania.
  • Example 7 For each of the samples of Comparative Example and Example 2 (added as zirconium oxidized so as to have an arbitrary weight% with respect to titanium oxidized) prepared by the same operation as in Example 1, The gas-back A method (Non-patent Document 4) was used to examine the decomposition performance of acetoaldehyde, a standard gas, under ultraviolet irradiation. Figure 3 shows the results. As a result, it was confirmed that the acetoaldehyde decomposition performance was comparable to that of the comparative example.
  • the present invention has a high performance of decomposing chemical substances under both ultraviolet irradiation and visible light, and for example, decomposes chemical substances in the air such as odorous substances. It provides a new photocatalyst with high functionality that can be applied to components and products with the added function of decomposing harmful substances in water, and is useful as a contributor to the creation of new industries in these technical fields.
  • FIG. 1 shows the measurement results of the spectral reflectance of a nitrogen-substituted titer powder to which zirconia was added and a heat-treated (450 ° C., 2 hours) powder to which the powder was added.
  • P ZrO pear
  • Z 2wt%
  • FIG. 5 shows the results of a resolution test (gas bag A method) of acetaldehyde (standard gas) under an ultraviolet cut fluorescent lamp (visible light).

Abstract

Photocatalyst powder having titanium oxide micrograins homogeneously doped with zirconium oxide and having nitrogen introduced in its crystal lattice; a process for producing the same; and a product thereof. There is provided a zirconia-doped titania photocatalyst comprising anatase titania homogeneously doped with zirconium oxide amounting to 0.5 to 10 wt.% based on titanium oxide, which zirconia-doped titania photocatalyst in spectral reflectance measurement of powder thereof, has an absorption in a region from about 600 nm to 400 nm, the absorption exhibiting 40% or more absorption (providing that the reflectance of light of 600 nm wavelength is 100%) in the vicinity of 410 nm. Further, there are provided a process for producing the zirconia-doped titania photocatalyst and a product thereof.

Description

明 細 書  Specification
ジルコニァ添加チタニア光触媒粉体及びその製造方法  Zirconia-added titania photocatalyst powder and method for producing the same
技術分野  Technical field
[0001] 本発明は、ジルコユア添加チタ-ァ光触媒及びその製造方法等に関するものであ り、更に詳しくは、窒素導入量等を大きくして可視光城での光触媒作用を格段に大き くすることを可能とした新しいタイプの窒素導入型チタ-ァ光触媒、その製造方法及 びその製品に関するものである。本発明は、窒素をチタ-ァ結晶格子中に導入した、 窒素導入型チタ-ァ光触媒の技術分野において、従来、例えば、チタ-ァ結晶に均 一に窒素を導入することは極めて難しいことから、窒素導入型チタ-ァ光触媒を再現 性よく製造し得る有効な方法がな力つたことを踏まえ、それらの問題を確実に解決す ると共に、導入された窒素をより安定に格子中に保持させること、しかも窒素導入量を 増加させること、等を可能とする新規ジルコニァ添加チタニア光触媒、その製造技術 及びその応用製品を提供するものとして有用である。本発明のジルコユア添加チタ ニァ光触媒は、例えば、これを担持させた適宜の形態の部材とすることにより、例え ば、悪臭物質のような空気中の化学物質の分解,無害化、抗菌、抗かび、防汚、水中 の有害物質の分解等の機能を付与した製品として応用可能である。 背景技術  The present invention relates to a zirconia-added titer photocatalyst and a method for producing the same, and more particularly, to increasing the amount of nitrogen introduced and the like to significantly increase the photocatalytic action in a visible light castle. The present invention relates to a new type of nitrogen-introduced titanium photocatalyst that has made it possible, a method for producing the same, and a product thereof. In the technical field of nitrogen-introduced titer photocatalyst in which nitrogen is introduced into a titanium crystal lattice, conventionally, for example, it has been extremely difficult to uniformly introduce nitrogen into titer crystals. Based on the fact that an effective method for producing a nitrogen-introduced titanium photocatalyst with good reproducibility has been developed, these problems are surely solved and the introduced nitrogen is more stably retained in the lattice. In addition, the present invention is useful for providing a novel zirconia-added titania photocatalyst capable of increasing the amount of nitrogen to be introduced, its production technology, and its applied products. The zirconia-added titanium photocatalyst of the present invention can be made into a member of an appropriate form carrying the same, for example, to decompose and detoxify chemical substances in the air such as malodorous substances, to have antibacterial and antifungal properties. It can be applied as a product with functions such as antifouling, decomposition of harmful substances in water, etc. Background art
[0002] 従来のチタ-ァ粉体は、例えば、抗菌性タイル、セルフクリーニング建材、脱臭、消 臭材料、等への用途開発が行われている力 純粋のチタ-ァでは、励起光は 400η m以下の紫外線であるため、太陽光だけの励起では光触媒としての用途が限定され る。そこで、励起光の範囲を 400nm以上に拡大するために、色々の工夫がなされ、 近年では、窒素をチタ-ァ結晶格子中に導入すること、それにより励起光の範囲を拡 大し、可視光応答性のあるチタニア粒子ができること、が発表されている。例えば、元 北大の佐藤真理氏の発表 (非特許文献 1)、ェコデバイス社の発表 (非特許文献 2)、 及びトヨタ中央研究所の発表 (非特許文献 3参照)、等がある。  [0002] Conventional titer powders are used for applications such as antibacterial tiles, self-cleaning building materials, deodorizing and deodorizing materials, etc. In the case of pure titers, excitation light is 400η. Since it is ultraviolet light of m or less, its application as a photocatalyst is limited by excitation with sunlight alone. Therefore, various measures have been taken to extend the range of the excitation light to 400 nm or more.In recent years, nitrogen has been introduced into the titanium crystal lattice, thereby expanding the range of the excitation light and increasing the visible light. It has been announced that responsive titania particles can be produced. For example, there are announcements by Mari Sato of former Hokkaido University (Non-Patent Document 1), announcements by Eco Devices (Non-Patent Document 2), and announcements by Toyota Central Research Laboratory (Non-Patent Document 3).
[0003] 上記先行技術文献 (非特許文献 2、 3)では、何れも窒素の導入により黄色のチタ二 ァ粉体が生成したこと、また、導入された窒素が荷電子帯の最上部近傍に準位を作 り、バンドギャップが狭められること、等が報告されている。また、他の先行技術文献 では、チタ-ァをアンモニアガス又はその誘導体の存在下で加熱することにより窒素 をチタ-ァ結晶中に導入すること (特許文献 1、非特許文献 3参照)、が提案されてい る。また、他の先行技術文献によると、黄色が強いほど高い可視活性を示すこと、更 に、 400°C以上の加熱では黄色が衰退して可視活性が低下すること (非特許文献 2) が報告されている。 [0003] In the above-mentioned prior art documents (Non-Patent Documents 2 and 3), in both cases, the introduction of nitrogen produced yellow titanium powder, and the introduced nitrogen was located near the top of the valence band. Create level It has been reported that the band gap is narrowed. In other prior art documents, nitrogen is introduced into the titer crystal by heating the titer in the presence of ammonia gas or a derivative thereof (see Patent Document 1 and Non-Patent Document 3). Proposed. In addition, according to other prior art documents, it is reported that the higher the yellow color, the higher the visible activity, and that heating at 400 ° C or higher causes the yellow color to decline and the visible activity to decrease (Non-Patent Document 2). Have been.
[0004] 可視光の広い範囲に亘つて光触媒としての活性を発現させるには、チタ-ァ粉体 1S 400nm以上の波長の光を大きく吸収することが重要である。そこで、如何に大き な吸収を発現させ、且つ、導入された窒素をより安定に保持させるには、どのように すればよいかが課題となる。光触媒の製造に際しては、より簡単に作れる方法があれ ばよ!/、ことは当然であるが、全てのチタ-ァ粉体微粒子中に均一に窒素を導入でき る方法であって、し力も再現性よくそれを製造できる方法を確立することが大きな課 題である。  [0004] In order to exhibit the activity as a photocatalyst over a wide range of visible light, it is important to absorb light having a wavelength of 400 nm or more of titanium powder 1S. Therefore, how to achieve large absorption and maintain the introduced nitrogen more stably is an issue. In the production of photocatalysts, there must be a method that can be made easier! / Naturally, it is a method that can uniformly introduce nitrogen into all the titanium powder particles and reproduces the force. The challenge is to establish a method that can produce it efficiently.
[0005] 前記の文献の方法のように、チタ-ァ粉体を炉中に置いて力 アンモニアガスを送 つて反応させる方法は、腐食性の高いアンモニアガスに耐えられる炉体、及び材料 を使用する必要がある。そして、ガスをチタ-ァ粉体微粒子全体に均一に反応させる ことは非常に困難なことである。更に、ガスとの反応は、粒子表面力も反応していくた め、上記方法では、全ての粉体微粒子の結晶格子中に均一に窒素を導入することは 不可能に近いという問題がある。また、ガスとチタ-ァ粉体との反応は、本来不均一 反応であるため、再現性のよいものを作ることも至難のことである。  [0005] As in the method described in the above-mentioned literature, a method in which titanium powder is placed in a furnace to react by sending ammonia gas uses a furnace body and materials capable of withstanding highly corrosive ammonia gas. There is a need to. It is very difficult to make the gas react uniformly with the entirety of the titanium powder particles. Further, since the reaction with the gas also reacts with the particle surface force, the above method has a problem that it is almost impossible to uniformly introduce nitrogen into the crystal lattice of all the fine powder particles. In addition, since the reaction between the gas and the titanium powder is a heterogeneous reaction by nature, it is very difficult to produce a product with good reproducibility.
[0006] 特許文献 1 :特許第 3215698号明細書  Patent Document 1: Japanese Patent No. 3215698
非特許文献 l : Chem. Phys. Lett., 123, 126 (1986)  Non-Patent Document l: Chem. Phys. Lett., 123, 126 (1986)
非特許文献 2 :工業材料, vol. 50, No. 7, 33-35 (2002)  Non-Patent Document 2: Industrial Materials, vol. 50, No. 7, 33-35 (2002)
非特許文献 3 :工業材料, vol. 50, No. 7, 36-39 (2002)  Non-Patent Document 3: Industrial Materials, vol. 50, No. 7, 36-39 (2002)
非特許文献 4:光触媒性能評価試験法 IIa (2001年度版)、光触媒製品技術協議会 会則'諸規定及び試験法、 49-52 (2004)  Non-Patent Document 4: Photocatalytic Performance Evaluation Test Method IIa (2001 edition), Photocatalyst Product Technology Council, Rules, Regulations and Test Methods, 49-52 (2004)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0007] このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術に おける諸問題を抜本的に解決することが可能な新しい光触媒の製造技術及びその 製品を開発することを目標として鋭意研究を重ねた結果、ジルコニウムを均一にチタ ユア結晶格子に固溶させることにより、大きな吸収を広い範囲で発現させる、という前 記の課題を解決できることを見出し、更に研究を重ねて、本発明を完成するに至った 。本発明は、ジルコニウムを均一にチタ-ァ結晶格子に固溶させた、可視光城で大き な吸収を有し、格段に増強された可視光応答性を持つ新規ジルコユア添加チタ-ァ 光触媒、その製造方法及びその製品を提供することを目的とするものである。 Problems the invention is trying to solve [0007] Under such circumstances, the present inventors have considered a new photocatalyst manufacturing technology and a product thereof that can drastically solve the problems in the conventional technology in view of the conventional technology. As a result of intensive research with the aim of developing it, we found that by uniformly dissolving zirconium in the titania crystal lattice, it was possible to solve the above-mentioned problem of expressing large absorption over a wide range, and to conduct further research. And completed the present invention. The present invention provides a novel zirconia-doped titer photocatalyst having zirconium uniformly dissolved in a titanium crystal lattice, having a large absorption in a visible light region, and having a significantly enhanced visible light response. It is intended to provide a manufacturing method and a product thereof.
課題を解決するための手段  Means for solving the problem
[0008] 上記課題を解決するための本発明は、窒素置換型チタ-ァにおいて、チタユアに ジルコニウムを固溶させたことを特徴とする、ジルコユア添加チタ-ァ光触媒、である[0008] The present invention for solving the above-mentioned problems is a zirconia-added titer photocatalyst in which zirconium is dissolved in titaure in a nitrogen-substituted titer.
。本光触媒は、(1)酸ィ匕チタンに対して、酸ィ匕ジルコニウムを 0. 5— 10重量%添カロし て、チタ-ァ結晶格子中にジルコニウムを固溶させたこと、(2)チタ-ァ結晶格子中 にジルコニウムを固溶させることにより、窒素導入量を増加させたこと、(3)チタ-ァ結 晶格子中にジルコニウムを固溶させることにより、導入された窒素を安定に格子中に 保持させたこと、(4)アナターゼ型チタニアに均一に酸ィ匕ジルコニウムを添加したもの であって、その量は、酸化チタンに対して 0. 5— 10重量%であり、その粉体の分光 反射率測定では 600nm付近力ら 400nmに力けて吸収力 Sあり、その吸収が 410nm 付近で 40%以上 (但し、 600nmの波長の光に対する反射率を 100%とする)の吸収 を示すこと、を好ましい態様としている。 . This photocatalyst is characterized in that (1) zirconium is added to titanium oxide lattice in a solid solution by adding 0.5-10% by weight of zirconium oxide to titanium oxide and (2) The amount of nitrogen introduced was increased by dissolving zirconium in the titanium crystal lattice. (3) The introduced nitrogen was stabilized by dissolving zirconium in the titanium crystal lattice. (4) Zirconium oxide is uniformly added to anatase-type titania, and the amount thereof is 0.5 to 10% by weight based on titanium oxide. In the spectral reflectance measurement of the body, there is an absorption power S from 400 nm to 400 nm, and the absorption is 40% or more near 410 nm (however, the reflectance for light with a wavelength of 600 nm is 100%). Is a preferred embodiment.
[0009] また、本発明は、塩化チタン又は硫酸チタン水溶液に水溶性ジルコニウム塩を溶解 させた溶液とアンモニア類を中和反応させた後、反応物を乾燥、焼成、粉砕すること により粉体とすることを特徴とするジルコユア添加チタ-ァ光触媒の製造方法、である 。本方法は、(1)水溶性ジルコニウム塩力 ォキシ塩化ジルコニウム、硝酸ジルコ二 ル 2水和物、炭酸ジルコニウム水和物、又は硫酸ジルコニウム水和物のいずれ力 1種 であること、(2)アンモニア類が、アンモニア水、アンモニアァノレカリ'性炭酸アンモニゥ ム水溶液、アンモニアアルカリ性炭酸水素アンモ-ゥム水溶液、又は尿素水溶液の いずれか 1種であること、(3)室温から 100°Cの温度で反応させること、を好ましい態 様としている。 [0009] Further, the present invention provides a method in which a solution obtained by dissolving a water-soluble zirconium salt in an aqueous solution of titanium chloride or titanium sulfate is subjected to a neutralization reaction with ammonia, and then the reaction product is dried, calcined, and pulverized to obtain powder. A method for producing a zirconia-added titer photocatalyst. The method uses (1) water-soluble zirconium salt zirconium chloride, zirconyl nitrate dihydrate, zirconium carbonate hydrate, or zirconium sulfate hydrate, and (2) ammonia The aqueous ammonia, aqueous ammonia ammonium carbonate aqueous ammonium carbonate solution, aqueous ammonium alkaline hydrogen carbonate aqueous solution, or urea aqueous solution, and (3) at room temperature to 100 ° C Reacting in a preferred state I'm trying.
[0010] また、本発明は、上記のいずれかに記載のジルコユア添加チタ-ァ光触媒を構成 要素として含み、可視光城での吸収を増強させた高可視光応答型光触媒作用を付 与したことを特徴とする構造部材、である。また、本発明は、上記のいずれかに記載 のジルコユア添加チタ-ァ光触媒を構成要素として含み、可視光城での吸収を増強 させた高可視光応答型光触媒作用を付与したことを特徴とする環境浄化製品、であ る。更に、本発明は、上記のいずれかに記載のジルコユア添加チタ-ァ光触媒を構 成要素として含み、可視光城での吸収を増強させた高可視光応答型光触媒作用を 付与したことを特徴とする光触媒製品、である。  [0010] Further, the present invention includes a zirconia-added titer photocatalyst according to any one of the above as a constituent element, and imparts a high visible light responsive photocatalyst having enhanced absorption in a visible light castle. A structural member characterized by the following. Further, the present invention is characterized in that the zirconia-added titer photocatalyst according to any one of the above is provided as a constituent element, and a high visible light responsive photocatalyst action is provided in which absorption in a visible light castle is enhanced. Environmental purification products. Further, the present invention includes a zirconia-added titer photocatalyst according to any one of the above as a constituent element, and imparts a high visible light responsive photocatalyst with enhanced absorption in a visible light castle. Photocatalyst products.
[0011] 次に、本発明について更に詳細に説明する。  Next, the present invention will be described in more detail.
本発明は、窒素置換型チタユアの製造過程で、チタ-ァ結晶格子中へジルコユウ ムを固溶させた、ジルコユア添加チタ-ァ光触媒、及びその製造方法等に係るもの である。窒素導入方法としては、例えば、チタユアへのアンモニア水による中和反応 過程で、アンモニア中の窒素がチタンと結合し、窒素導入が行われる。この過程で、 チタ-ァ結晶格子中へジルコニウムを固溶させる方法としては、例えば、アルコキシド 法でジルコニウムをチタユアに固溶させる方法等が例示される。 Tiと Zrは水溶液中に 溶けて原子単位で完全均一になるので Zrはチタ-ァ結晶格子中に完全に固溶する 。本発明は、アナターゼ型チタニアに均一に酸ィ匕ジルコニウムを添加したものであつ て、その量は、酸ィ匕チタンに対して 0. 5— 10重量%であり、その粉体の分光反射率 測定では 600nm付近から 400nmにかけて吸収があり、その吸収が 410nm付近で 4 0%以上 (但し、 600nmの波長の光に対する反射率を 100%とする)の吸収を示すこ とを特徴とする。本発明で用いられる酸ィ匕チタンとしては、好適には、例えば、アナタ 一ゼ型チタニア粉体が用いられる力 これに制限されるものではなぐこれと同効のも の、もしくは類似のものであれば同様に使用することができる。  The present invention relates to a zirconium-added titer photocatalyst in which zirconium is dissolved in a titer crystal lattice in a process of producing a nitrogen-substituted titaure, a method for producing the same, and the like. As a method for introducing nitrogen, for example, nitrogen in ammonia is combined with titanium in the course of neutralization reaction of titaure with aqueous ammonia, and nitrogen is introduced. In this process, as a method of dissolving zirconium in the titer crystal lattice, for example, a method of dissolving zirconium in titaure by an alkoxide method is exemplified. Since Ti and Zr dissolve in the aqueous solution and become completely uniform in atomic units, Zr completely dissolves in the titanium crystal lattice. The present invention relates to an anatase-type titania obtained by uniformly adding zirconium oxynitride in an amount of 0.5 to 10% by weight with respect to titanium oxyride, and the spectral reflectance of the powder. In the measurement, there is absorption from around 600 nm to 400 nm, and the absorption shows absorption of 40% or more at around 410 nm (however, the reflectance for light with a wavelength of 600 nm is 100%). As the titanium oxide used in the present invention, preferably, for example, the force of using an anatase-type titania powder is not limited to this, but may be the same as or similar to this. If so, they can be used as well.
[0012] 本発明では、塩化チタン又は硫酸チタン水溶液に水溶性ジルコニウム塩を溶解さ せた溶液とアンモニア類を中和反応させた後、反応物を乾燥、焼成、粉砕することに より粉体とする。この場合、水溶性ジルコニウム塩としては、例えば、ォキシ塩ィ匕ジル コニゥム、硝酸ジルコニル 2水和物、炭酸ジルコニウム水和物、又は硫酸ジルコニゥ ム水和物が用いられる力 これらと同効のものであれば同様に使用することができる。 また、アンモニア類として、例えば、アンモニア水、アンモニアアルカリ性炭酸アンモ -ゥム水溶液、アンモニアアルカリ性炭酸水素アンモ-ゥム水溶性、又は尿素水溶 液が用いられる力 これらと同効のものであれば同様に使用することができる。また、 上記反応は、好適には、室温から 100°Cの温度で行われる。本発明において、チタ -ァに加える酸化ジルコニウムの量としては、 0. 5— 10重量%、好ましくは 1一 5重量 %である。ジルコニウムをカ卩えたチタ-ァ粉体とこれを加えてない粉体の 450°C、 2時 間加熱処理物の分光反射率の測定結果を図 1に示す。測定は、 日立色彩分析装置 (C 2000S)により波長力 S380— 780nmの範囲で行った。図 1は、図から明らかなよ うに、 410nmから 450nmにかけてジルコニウムを加えたものとこれをカ卩えてないもの との吸収の差が大きいことを示している。この差は肉眼でも判別できるものであり、ジ ルコ -ゥムをカ卩えたものの方がその黄色が鮮やかである。この吸収は、前記の先行技 術文献にある従来製品の吸収に比べて格段に大きい。このことは、本発明の光触媒 は、可視光域で格段に大き ヽ光触媒作用を有して ヽることを示して!/ヽる。 [0012] In the present invention, after a solution obtained by dissolving a water-soluble zirconium salt in an aqueous solution of titanium chloride or titanium sulfate is subjected to a neutralization reaction with ammonia, the reaction product is dried, calcined, and pulverized to obtain powder. I do. In this case, as the water-soluble zirconium salt, for example, oxysalt zirconium, zirconyl nitrate dihydrate, zirconium carbonate hydrate, or zirconium sulfate The force at which hydrate is used The same hydrate can be used as long as it has the same effect. As the ammonia, for example, aqueous ammonia, aqueous ammonia-alkali ammonium carbonate aqueous solution, aqueous ammonia-alkali hydrogen carbonate aqueous solution, or urea aqueous solution can be used. Can be used. The above reaction is preferably performed at a temperature of room temperature to 100 ° C. In the present invention, the amount of zirconium oxide added to the titanium is 0.5-10% by weight, preferably 115% by weight. Figure 1 shows the measurement results of the spectral reflectance of the zirconium-cured titanium powder and the powder without the addition of the zirconium powder at 450 ° C for 2 hours. The measurement was performed using a Hitachi color analyzer (C2000S) in the wavelength range of S380 to 780 nm. Figure 1 clearly shows that the difference in absorption between zirconium added and non-zirconized from 410 nm to 450 nm is large from the figure. This difference can be discerned by the naked eye, and the yellow color of the jirko-pum is more vivid. This absorption is much larger than that of the conventional product described in the prior art literature. This indicates that the photocatalyst of the present invention has a remarkably large photocatalytic action in the visible light region! / Puru.
[0013] ジルコニウムをカ卩えたチタ-ァがジルコニウムを加えてないものに比べて大きい吸 収を示した理由はわ力 な 、部分があるが、窒素導入量の差が一つの原因と考えら れる。黄色着色した粉体を 600°Cで加熱して完全に酸化させた後、その重量を測定 したところ、重量増加がジルコニウムを固溶させたものがジルコニウムを固溶させてな いものより大き力つた。このことから推察して、上記理由として、窒素導入量がジルコ -ゥムを固溶させたものの方が固溶させてないものより多力つたことが考えられる。ま た、酸化ジルコニウムの融点は 2700°Cであり、酸化チタニウムの融点は 1800°Cであ ることから、ジルコニウムと陰イオンとの結合はチタンと陰イオンとの結合より強 、こと が考えられ、このことが関係して、窒素導入量を大きくしたとも考えられる。  [0013] The reason why the titer prepared by adding zirconium showed a larger absorption than that obtained by adding no zirconium is a powerful one. It is. After heating the yellow-colored powder at 600 ° C to completely oxidize it, its weight was measured, and the weight increase was greater for those with zirconium solid solution than those without zirconium solid solution. I got it. From the above, it can be considered that the reason for the above is that the amount of nitrogen introduced was higher when the solid solution of zirconium was dissolved than when the solid solution was not dissolved. Also, since the melting point of zirconium oxide is 2700 ° C and the melting point of titanium oxide is 1800 ° C, it is considered that the bond between zirconium and anions is stronger than the bond between titanium and anions. In connection with this, it is considered that the nitrogen introduction amount was increased.
[0014] 更に、加熱試験の結果、ジルコニウムが固溶されていないものに比べて、ジルコ- ゥムが固溶されたものは、導入された窒素が、安定に保持されることを見出した。ジル コ-ゥムを固溶させたチタ-ァ粉体とこれを固溶させな力つたチタ-ァ粉体を並べて 、 500°C、 2時間加熱して黄色の脱色の程度を比較試験した結果を図 2に示す。加 熱により導入された窒素が抜けて白さを増す力 図 2から明らかなように、ジルコユウ ムを固溶させた粉体の黄色は、ジルコニウムをカ卩えてな 、粉体の黄色よりも強 、こと が分かるが、これは、肉眼でも明らかである。 [0014] Further, as a result of a heating test, it was found that nitrogen introduced therein was more stably retained in the case where zirconium was dissolved in solid solution than in the case where zirconium was not dissolved. A titanium powder in which zirconium was dissolved and a titanium powder in which the zirconium was dissolved were arranged side by side, and heated at 500 ° C for 2 hours, and the degree of yellow discoloration was compared and tested. The result is shown in figure 2. Nitrogen introduced by heating is released to increase whiteness As can be seen from Fig. 2, Zirco Yu It can be seen that the yellow color of the powder in which the solid solution is dissolved is stronger than that of the powder without zirconium, but this is also evident to the naked eye.
[0015] このことは、ジルコニウムをカ卩えたものは、導入された窒素を強く保持したことを示し ている。この現象の理由は、以下のように考えられる。酸ィ匕ジルコニウムの融点は 27 00°Cであり、酸ィ匕チタニウムの融点は 1800°Cである。従って、チタ-ァ結晶格子中 に入ったジルコニウムは、結晶格子を構成する全てのイオンの拡散速度を低下させ、 また、その周辺の陰イオンをチタニウムよりも強く結合している。加熱による外気の酸 素と導入さている窒素との反応は、ジルコニウムが陰イオンの拡散を妨害するため、 ジルコニウムを固溶させたものはこれを固溶させてないものよりも反応を容易には起こ させな力つたものと考えられる。  [0015] This indicates that the zirconium mashed strongly retained the introduced nitrogen. The reason for this phenomenon is considered as follows. The melting point of zirconium oxidized is 2700 ° C, and the melting point of titanium oxidized is 1800 ° C. Therefore, zirconium contained in the titanium crystal lattice reduces the diffusion rate of all the ions constituting the crystal lattice, and binds anions around it more strongly than titanium. The reaction between the oxygen in the outside air and the introduced nitrogen due to heating, because zirconium hinders the diffusion of anions, the reaction in which zirconium forms a solid solution is easier than that in which zirconium does not form a solid solution. It is thought that he did not wake up.
[0016] 本発明によるジルコニウムの固溶によりチタ-ァの黄色力 ジルコニウムを固溶して いないものに比べて、吸光度が大きく鮮やかになった理由は、明らかではないが、ジ ルコ-ゥムと陰イオンとの結合がチタンと陰イオンとの結合より強いことが一つの要因 であると考えられる。チタ-ァ結晶格子中にジルコニウムが存在するものと存在しない ものとの比較で、導入された窒素がジルコニウムの存在でチタ-ァ結晶格子中により 安定に保持されたのは、ジルコニウムと陰イオンとの結合がチタンと陰イオンとの結合 より強ぐまた、全てのイオンの拡散速度が低下したために、加熱による外気酸素との 反応速度が低下したためと考えられる。 [0016] It is not clear why the solid solution of zirconium according to the present invention makes the absorbance large and vivid as compared with the case where zirconium does not form a solid solution. It is considered that one factor is that the bond with the anion is stronger than the bond between titanium and the anion. Compared with those with and without zirconium in the titanium crystal lattice, the reason that the introduced nitrogen was more stably retained in the titanium crystal lattice in the presence of zirconium was that zirconium and anions It is probable that the bond speed of the reaction with the ambient oxygen by heating decreased because the diffusion rate of all the ions was reduced due to the stronger bond between titanium and the anion.
[0017] 以上のように、窒素を導入したチタ-ァ粉体は、黄色に着色し、 600nm付近力 4 OOnm付近にかけて大きな吸収がみられた。ジルコニウムを添カ卩したものと添カ卩して ないものの吸収スペクトルを比較すると、添カ卩したものの方が大きな吸収を示した。そ の理由は、ジルコニウムに起因する窒素導入量の差に基くと考えられる。また、導入 された窒素の安定保持に関して加熱による脱色で比較したところ、ジルコニウムを添 カロされたチタニアの方が添加されてな 、ものよりも大き 、ことが分力つた。  [0017] As described above, the nitrogen-introduced titer powder was colored yellow, and a large absorption was observed at a force of about 600 nm and a force of about 400 nm. Comparing the absorption spectra of the zirconium-added and the non-added, the addition of zirconium showed a larger absorption. The reason is thought to be based on the difference in the amount of nitrogen introduced due to zirconium. Further, a comparison of the stable retention of the introduced nitrogen by decolorization by heating showed that titania added with zirconium was larger than that without addition of titania.
[0018] 本発明の方法で作製されたジルコニウム添加チタ-ァ光触媒は、そのまま、ある!/ヽ は任意の構造部材に担持させて、例えば、悪臭物質のような空気中の化学物質の分 解'無害化、抗菌、抗かび、防汚、水中の有害物質の分解等の機能を付与した製品 として効果的に使用することができる。本発明において、構造部材、環境浄化製品及 び光触媒製品とは、本発明のジルコニウム添加チタ-ァ光触媒を適宜の方法及び手 段で担持した部材及び製品を意味するものであり、本発明の環境浄化製品、構造部 材及び光触媒製品としては、繊維製品、プラスチックス製品、紙製品、陶磁器製品、 金属製品、ガラス製品、コンクリート製品、革製品、塗料、インク、木'竹製品、造花、 人工観葉植物、インテリア製品、アクセサリー、電気製品、シート類、ノッグ類などの 製品やその部材及びこれらと同等又は類似のものが挙げられ、本発明では、それら の製品や部材の種類、形態等は、任意に設計することができる。 [0018] The zirconium-added titanium photocatalyst produced by the method of the present invention, as it is, is supported on any structural member to decompose a chemical substance in the air such as an odorous substance. 'It can be effectively used as a product with functions such as detoxification, antibacterial, antifungal, antifouling, and decomposition of harmful substances in water. In the present invention, structural members, environmental purification products and The term "photocatalyst product" means a member and a product which carry the zirconium-added titer photocatalyst of the present invention by an appropriate method and means. The environmental purification product, structural member and photocatalyst product of the present invention include: , Textile products, plastics products, paper products, ceramic products, metal products, glass products, concrete products, leather products, paints, inks, wood and bamboo products, artificial flowers, artificial houseplants, interior products, accessories, electrical products, sheets, etc. , Nogs, etc. and their members and those equivalent or similar thereto. In the present invention, the types and forms of those products and members can be arbitrarily designed.
発明の効果  The invention's effect
[0019] 本発明により、(1)従来の窒素置換型チタニアと比べて可視光域での吸収の格段 に大きい光触媒を製造し、提供できる、(2)窒素導入量を多くすることができる、 (3) 本発明によるチタユアへのジルコニウムの添カ卩は、窒素導入によるチタ-ァ結晶粒子 の黄色着色をより鮮やかにし、導入された窒素をより安定に格子中に保持する効果 がある、(4)本発明の方法では、従来報告されている製造法より、簡単に、しかも均 一に、着色した粉体を再現性よぐより安価に製造できる、(5)可視光応答型チタ- ァの可視光城での光触媒作用を格段に増強できる構造部材、環境浄化製品及び光 触媒製品を提供できる、という格別の効果が奏される。  According to the present invention, (1) a photocatalyst having a remarkably large absorption in the visible light region can be produced and provided as compared with conventional nitrogen-substituted titania, and (2) the amount of nitrogen introduced can be increased. (3) The addition of zirconium to titaure according to the present invention has the effect of making the yellow coloration of titer crystal particles more vivid by nitrogen introduction, and more stably retaining the introduced nitrogen in the lattice. 4) According to the method of the present invention, a colored powder can be produced more easily and more uniformly than conventional production methods and at a lower cost with improved reproducibility. (5) Visible light responsive titer In particular, it is possible to provide structural members, environmental purification products, and photocatalyst products that can significantly enhance the photocatalytic action in the visible light castle.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 次に、本発明を実施例に基づいて具体的に説明する力 本発明は、以下の実施例 によって何ら限定されるものではな 、。 [0020] Next, the present invention will be specifically described based on examples. The present invention is not limited by the following examples.
実施例 1  Example 1
[0021] 4塩ィ匕チタン水溶液に、ォキシ塩ィ匕ジルコニウムを酸ィ匕ジルコニウムとして酸ィ匕チタ ンに対して 2重量%になるように加えた溶液を準備した。この溶液に、濃厚アンモニア 水を等量の水で希釈したアンモニア水を、メチルレッドを指示薬として中和点までカロ えて、沈殿を完成させてカも静置し、上澄液を除去した後、反応物を加熱乾燥し、塊 をほぐし、粉砕した後、毎時 100°Cで昇温し、 450°Cで 2時間保持した後、自然冷却 して、黄色に着色したチタニア粉体を得た。  [0021] A solution was prepared by adding 4% by weight of zirconium oxychloride to zirconium oxide in an aqueous solution of titanium tetrachloride in an amount of 2% by weight with respect to titanium oxide. In this solution, concentrated aqueous ammonia diluted with an equal volume of water was heated to the neutralization point using methyl red as an indicator, the precipitate was completed and the liquid was allowed to stand, and the supernatant was removed. The reaction product was dried by heating, loosened and pulverized, heated to 100 ° C./hour, kept at 450 ° C. for 2 hours, and cooled naturally to obtain a titania powder colored yellow.
[0022] 比較例 [0022] Comparative example
実施例 1において、ジルコニウムを加えないものを、比較のために、同様の操作で 作製した。 In Example 1, a sample to which zirconium was not added was subjected to the same operation for comparison. Produced.
実施例 2  Example 2
[0023] 実施例 1にお!/、て、ォキシ塩ィ匕ジルコニウムの量を加減して、その添加量を調節し た他は、実施例 1と同様の操作で黄色粉体を得た。  In Example 1, a yellow powder was obtained by the same operation as in Example 1 except that the amount of zirconium was adjusted by adjusting the amount of zirconium.
実施例 3  Example 3
[0024] 実施例 1において、アンモニア水の替わりに尿素を用いた。この場合は、必要量より 過剰の尿素をチタンとジルコニウムを含む溶液にカ卩えてから、加熱により充分に反応 させた後、実施例 1と同様の操作で黄色粉体を得た。  [0024] In Example 1, urea was used instead of aqueous ammonia. In this case, urea in excess of the required amount was added to a solution containing titanium and zirconium, and the mixture was sufficiently reacted by heating. Then, a yellow powder was obtained in the same manner as in Example 1.
実施例 4  Example 4
[0025] 実施例 1において、アンモニア水の替わりにアンモニアアルカリ性の炭酸水素アン モ-ゥムを用いた。この場合は、必要量の倍のアンモニアアルカリ性炭酸水素アンモ ユウムを溶解した水溶液を作り、 50°C付近に加温した後、反応させた。それ以外は、 実施例 1と同様の操作で黄色粉体を得た。  [0025] In Example 1, an ammonia-alkali hydrogen carbonate ammonium was used instead of the ammonia water. In this case, an aqueous solution in which twice the amount of ammonia-alkali ammonium hydrogencarbonate was dissolved was prepared, heated to around 50 ° C, and reacted. Other than that, a yellow powder was obtained in the same manner as in Example 1.
実施例 5  Example 5
[0026] 実施例 3におけるアンモニアアルカリ性炭酸水素アンモ-ゥムの替わりにアンモ- ァアルカリ性炭酸アンモ-ゥムを用いた。この場合は、上澄液を 3回除去した後、沈 殿時と同量程度になるように純水を加えた後、この沈殿を含む溶液を噴霧乾燥により 乾燥した。それ以外は、実施例 1と同様の操作で黄色粉体を得た。  [0026] Ammonia-alkali ammonium carbonate was used instead of the ammonia-alkali hydrogencarbonate ammonium in Example 3. In this case, after the supernatant was removed three times, pure water was added so that the amount was about the same as that during precipitation, and the solution containing the precipitate was dried by spray drying. Otherwise, the procedure of Example 1 was repeated to obtain a yellow powder.
実施例 6  Example 6
[0027] 実施例 1と同様の操作により作製した比較例及び実施例 2 (酸ィ匕ジルコニウムとして 酸ィ匕チタンに対して任意の重量%になるように添加した)の試料それぞれを、 EDXに より分析し、その中に含まれる窒素含有量と酸化ジルコニウム含有量との関係につい てその重量濃度変化力 調べた。その結果、チタ-ァ粉末中に酸ィ匕ジルコニウム含 有量が増すに従って、窒素含有量が増加することが明らかになった。このことから、チ タニア合成時に酸ィ匕ジルコニウムを一定量以上に添加することにより、チタ-ァ粉末 中への窒素の導入量が増すことができることが明らかになった。 実施例 7 [0028] 実施例 1と同様の操作により作製した比較例及び実施例 2 (酸ィ匕ジルコニウムとして 酸ィ匕チタンに対して任意の重量%になるように添加した)の試料それぞれにつ 、て、 ガスバック A法 (非特許文献 4)により、紫外線照射下において、標準ガスであるァセト アルデヒドの分解性能を調べた。図 3に、その結果を示す。その結果、比較例とも遜 色のないァセトアルデヒド分解性能が確認できた。 [0027] Each of the samples of Comparative Example and Example 2 (added as zirconium oxidized so as to have an arbitrary weight% with respect to titanium oxidized) prepared by the same operation as in Example 1 was subjected to EDX. Further analysis was performed, and the relationship between the nitrogen content and the zirconium oxide content contained therein was examined for its power to change the weight concentration. As a result, it was found that the nitrogen content increased as the zirconium oxide content in the titanium powder increased. From this, it became clear that the amount of nitrogen introduced into the titer powder can be increased by adding zirconium oxide to a certain amount or more during the synthesis of titania. Example 7 [0028] For each of the samples of Comparative Example and Example 2 (added as zirconium oxidized so as to have an arbitrary weight% with respect to titanium oxidized) prepared by the same operation as in Example 1, The gas-back A method (Non-patent Document 4) was used to examine the decomposition performance of acetoaldehyde, a standard gas, under ultraviolet irradiation. Figure 3 shows the results. As a result, it was confirmed that the acetoaldehyde decomposition performance was comparable to that of the comparative example.
実施例 8  Example 8
[0029] 実施例 1と同様の操作により作製した比較例及び実施例 2 (酸ィ匕ジルコニウムとして 酸ィ匕チタンに対して任意の重量%になるように添加した)の試料それぞれにつ 、て、 ガスバック A法 (非特許文献 4)により、紫外線カット蛍光灯照射下において、標準ガ スであるァセトアルデヒドの分解性能を調べた。図 4に、その結果を示す。その結果、 紫外線をカットした可視光下にお 、て、本発明の材料はァセトアルデヒドの高 、分解 性能を有することが明らかになった。  [0029] For each of the samples of Comparative Example and Example 2 (added as zirconium oxidized so as to have an arbitrary weight% with respect to titanium oxidized) prepared by the same operation as in Example 1, In addition, the gas-back A method (Non-patent Document 4) was used to examine the degradation performance of acetoaldehyde, which is a standard gas, under irradiation of an ultraviolet cut fluorescent lamp. Figure 4 shows the results. As a result, it was revealed that the material of the present invention had a high performance of decomposing acetoaldehyde under visible light in which ultraviolet rays were cut.
産業上の利用可能性  Industrial applicability
[0030] 以上詳述したように、本発明は、ジルコユア添加チタ-ァ光触媒及びその製造方法 等に係るものであり、本発明により、チタユアに導入された窒素をより安定に格子中に 保持できる。本発明は、窒素導入によるチタ-タ結晶粒子の黄色着色をより鮮やかに する。本発明により、チタユアへの窒素導入量を多くすることができる。チタ-ァ結晶 格子中に入ったジルコニウムは、結晶格子を構成するイオンの拡散速度を低下させ る。チタ-ァにジルコニウムをカ卩えることにより、特に、分光反射率が 410nmから 450 nmにかけて増加する。本発明は、紫外線照射下においても可視光下においても化 学物質の高い分解性能を有し、例えば、悪臭物質のような空気中の化学物質の分解 •無害化、抗菌、抗かび、防汚、水中の有害物質の分解等の機能を付加した部材及 び製品への応用を可能とする高機能性の新しい光触媒を提供し、これらの技術分野 における新産業創出に資するものとして有用である。 As described in detail above, the present invention relates to a zirconia-added titer photocatalyst, a method for producing the same, and the like. According to the present invention, nitrogen introduced into titaure can be more stably retained in a lattice. . The present invention makes the yellow color of the titer crystal particles more vivid by nitrogen introduction. According to the present invention, the amount of nitrogen introduced into titaure can be increased. Zirconium in the titanium crystal lattice reduces the diffusion rate of the ions that make up the crystal lattice. By adding zirconium to the titer, in particular, the spectral reflectance increases from 410 nm to 450 nm. INDUSTRIAL APPLICABILITY The present invention has a high performance of decomposing chemical substances under both ultraviolet irradiation and visible light, and for example, decomposes chemical substances in the air such as odorous substances. It provides a new photocatalyst with high functionality that can be applied to components and products with the added function of decomposing harmful substances in water, and is useful as a contributor to the creation of new industries in these technical fields.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]ジルコユアを加えた窒素置換型チタ-ァ粉体とそれを加えてな 、粉体の加熱( 450°C、 2時間)処理物の分光反射率の測定結果を示す。 P :ZrOナシ、 Z : 2wt%Z  FIG. 1 shows the measurement results of the spectral reflectance of a nitrogen-substituted titer powder to which zirconia was added and a heat-treated (450 ° C., 2 hours) powder to which the powder was added. P: ZrO pear, Z: 2wt% Z
2  2
rO添加物。 [図 2]ジルコユアを固溶させたチタ-ァ粉体と固溶させな力つたチタ-ァ粉体の加熱( 500°C、 2時間)による黄色の脱色の程度を比較試験した結果 (N→0置換による黄 色脱色を調べたもの)を示す。 P :ZrOナシ、 Z : 2wt%ZrO添加物。 rO additive. [Figure 2] Results of a comparison test of the degree of decolorization of yellow by heating (500 ° C, 2 hours) between titanium powder in which zirconia was dissolved and solid titanium powder in which solid solution was not dissolved (N → Yellow discoloration due to 0 substitution). P: ZrO pear, Z: 2wt% ZrO additive.
2 2  twenty two
[図 3]チタ-ァ粉体試料の中に含まれる窒素とジルコニウムとの関係にっ 、て EDXに より分析し、その重量%変化を調べた結果 (チタ-ァ粉体中に添加した酸ィ匕ジルコ- ゥムと酸化窒素含有量の関係)を示す。  [Figure 3] Analysis of the relationship between nitrogen and zirconium contained in the titer powder sample by EDX, and the change in weight% was examined (the acid added to the titer powder). The relationship between the Zirconium film and the nitric oxide content is shown.
圆 4]紫外線照射下におけるァセトアルデヒド (標準ガス)の分解能試験 (ガスバック A 法)の結果を示す。 [4] Shows the results of a resolution test (gas bag A method) of acetoaldehyde (standard gas) under ultraviolet irradiation.
[図 5]紫外線カット蛍光灯 (可視光)下におけるァセトアルデヒド (標準ガス)の分解能 試験 (ガスバック A法)の結果を示す。  FIG. 5 shows the results of a resolution test (gas bag A method) of acetaldehyde (standard gas) under an ultraviolet cut fluorescent lamp (visible light).

Claims

請求の範囲 The scope of the claims
[1] 窒素置換型チタ-ァにおいて、チタユアにジルコニウムを固溶させたことを特徴とす る、ジルコユア添加チタ-ァ光触媒。  [1] A zirconium-added titer photocatalyst, wherein zirconium is dissolved in titaure in a nitrogen-substituted titer.
[2] 酸ィ匕チタンに対して、酸ィ匕ジルコニウムを 0. 5— 10重量%添加して、チタ-ァ結晶 格子中にジルコニウムを固溶させた、請求項 1に記載のジルコユア添加チタ-ァ光触 媒。  [2] The zirconia-added titanium according to claim 1, wherein 0.5 to 10% by weight of zirconium oxide is added to titanium oxide and zirconium is dissolved in the titanium crystal lattice. -A light catalyst.
[3] チタ-ァ結晶格子中にジルコニウムを固溶させることにより、窒素導入量を増加させ た、請求項 1に記載のジルコユア添加チタ-ァ光触媒。  [3] The zirconia-added titer photocatalyst according to claim 1, wherein the amount of nitrogen introduced is increased by dissolving zirconium in the titer crystal lattice.
[4] チタ-ァ結晶格子中にジルコニウムを固溶させることにより、導入された窒素を安定 に格子中に保持させた、請求項 1に記載のジルコユア添加チタ-ァ光触媒。 [4] The zirconia-added titer photocatalyst according to claim 1, wherein the introduced nitrogen is stably retained in the lattice by dissolving zirconium in the titer crystal lattice.
[5] アナターゼ型チタニアに均一に酸化ジルコニウムを添カ卩したものであって、その量 は、酸化チタンに対して 0. 5— 10重量%であり、その粉体の分光反射率測定では 6[5] Anatase-type titania uniformly added with zirconium oxide, the amount of which is 0.5 to 10% by weight with respect to titanium oxide.
OOnm付近力ら 400nmに力、けて吸収力 Sあり、その吸収力 S410nm付近で 40%以上( 但し、 600nmの波長の光に対する反射率を 100%とする)の吸収を示す、請求項 1 に記載のジルコユア添加チタ-ァ光触媒。 Claim 1 shows that the absorption near the OOnm has an absorption power S at 400nm, and the absorption power S is 40% or more near the absorption power S410nm (however, the reflectance for light with a wavelength of 600nm is 100%). The zirconia-added titer photocatalyst according to the above.
[6] 塩化チタン又は硫酸チタン水溶液に水溶性ジルコニウム塩を溶解させた溶液とァ ンモニァ類を中和反応させた後、反応物を乾燥、焼成、粉砕することにより粉体とす ることを特徴とするジルコユア添加チタ-ァ光触媒の製造方法。 [6] A solution obtained by dissolving a water-soluble zirconium salt in an aqueous solution of titanium chloride or titanium sulfate and ammonia, and then drying, baking and pulverizing the reaction product to form a powder. For producing a zirconia-added titanium photocatalyst.
[7] 水溶性ジルコニウム塩が、ォキシ塩化ジルコニウム、硝酸ジルコ-ル 2水和物、炭 酸ジルコニウム水和物、又は硫酸ジルコニウム水和物のいずれ力 1種である、請求項[7] The water-soluble zirconium salt is any one of zirconium oxychloride, zirconium nitrate dihydrate, zirconium carbonate hydrate, and zirconium sulfate hydrate.
6に記載のジルコユア添加チタ-ァ光触媒の製造方法。 7. The method for producing a zirconia-added titer photocatalyst according to 6.
[8] アンモニア類が、アンモニア水、アンモニアァノレカリ'性炭酸アンモニゥム水溶液、ァ ンモユアアルカリ性炭酸水素アンモ-ゥム水溶液、又は尿素水溶液の 、ずれか 1種 である、請求項 6に記載のジルコユア添加チタ-ァ光触媒の製造方法。 [8] The method according to claim 6, wherein the ammonia is at least one of aqueous ammonia, aqueous ammonia aqueous solution of ammonium carbonate, aqueous ammonium hydrogen carbonate aqueous solution, and aqueous urea solution. A method for producing a zirconia-added titanium photocatalyst.
[9] 室温から 100°Cの温度で反応させる、請求項 5に記載のジルコユア添加チタ-ァ光 触媒の製造方法。 [9] The method for producing a zirconia-added titer photocatalyst according to claim 5, wherein the reaction is performed at a temperature from room temperature to 100 ° C.
[10] 請求項 1から 5の 、ずれ力 1項に記載のジルコユア添加チタ-ァ光触媒を構成要素 として含み、可視光城での吸収を増強させた高可視光応答型光触媒作用を付与し たことを特徴とする構造部材。 [10] A zirconia-added titer photocatalyst according to claim 1 as a component of claim 1 as a component, and a high visible light responsive photocatalyst having enhanced absorption at a visible light castle is provided. A structural member characterized in that:
[11] 請求項 1から 5のいずれ力 1項に記載のジルコユア添加チタ-ァ光触媒を構成要素 として含み、可視光城での吸収を増強させた高可視光応答型光触媒作用を付与し たことを特徴とする環境浄ィ匕製品。  [11] A zirconia-added titer photocatalyst according to any one of claims 1 to 5 is provided as a constituent element, and a high visible light responsive photocatalyst with enhanced absorption at a visible light castle is provided. An environmentally clean product.
[12] 請求項 1から 5の 、ずれ力 1項に記載のジルコユア添加チタ-ァ光触媒を構成要素 として含み、可視光城での吸収を増強させた高可視光応答型光触媒作用を付与し たことを特徴とする光触媒製品。 [12] The zirconia-added titer photocatalyst according to claim 1 as a component of claim 1 is provided as a constituent element, and a high visible light responsive photocatalyst with enhanced absorption at a visible light castle is provided. A photocatalyst product characterized by that:
PCT/JP2004/017423 2003-11-25 2004-11-24 Zirconia-doped titania photocatalyst powder and process for producing the same WO2005051541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-393226 2003-11-25
JP2003393226 2003-11-25

Publications (1)

Publication Number Publication Date
WO2005051541A1 true WO2005051541A1 (en) 2005-06-09

Family

ID=34631420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017423 WO2005051541A1 (en) 2003-11-25 2004-11-24 Zirconia-doped titania photocatalyst powder and process for producing the same

Country Status (1)

Country Link
WO (1) WO2005051541A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888825A (en) * 2015-02-02 2015-09-09 渤海大学 Preparation method for CZTON type visible photocatalytic overall water splitting catalyst
CN104888824A (en) * 2015-02-02 2015-09-09 渤海大学 Preparation method for CLSTON type visible photocatalytic overall water splitting catalyst
CN106000373A (en) * 2016-05-31 2016-10-12 浙江大学 Preparation method of high-efficiency Zr-doped titanium dioxide photocatalyst
US11045791B2 (en) * 2016-03-08 2021-06-29 Japan Science And Technology Agency Catalyst and use of same
WO2022140681A1 (en) * 2020-12-23 2022-06-30 Nitto Denko Corporation Ultraviolet activated photocatalytic materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262944A (en) * 1988-04-11 1989-10-19 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorization catalyst
JP2000169147A (en) * 1998-12-01 2000-06-20 Agency Of Ind Science & Technol Titania powder
JP2002255554A (en) * 2000-01-31 2002-09-11 Kankyo Device Kenkyusho:Kk Visible light responsive material and method for producing the same
JP2004043282A (en) * 2002-05-20 2004-02-12 Sumitomo Chem Co Ltd Method of manufacturing titanium oxide
JP2004082088A (en) * 2001-10-15 2004-03-18 Jfe Steel Kk Photocatalyst and photocatalyst material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262944A (en) * 1988-04-11 1989-10-19 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorization catalyst
JP2000169147A (en) * 1998-12-01 2000-06-20 Agency Of Ind Science & Technol Titania powder
JP2002255554A (en) * 2000-01-31 2002-09-11 Kankyo Device Kenkyusho:Kk Visible light responsive material and method for producing the same
JP2004082088A (en) * 2001-10-15 2004-03-18 Jfe Steel Kk Photocatalyst and photocatalyst material
JP2004043282A (en) * 2002-05-20 2004-02-12 Sumitomo Chem Co Ltd Method of manufacturing titanium oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUGIHARA S. ET AL: "Sanso Kekkangata no Kashiko Otogata Sanka Titanium Hikari Shokubai", INDUSTRIAL SCIENCE AND TECHNOLOGY, vol. 50, no. 7, 2002, pages 33 - 35, XP002988175 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888825A (en) * 2015-02-02 2015-09-09 渤海大学 Preparation method for CZTON type visible photocatalytic overall water splitting catalyst
CN104888824A (en) * 2015-02-02 2015-09-09 渤海大学 Preparation method for CLSTON type visible photocatalytic overall water splitting catalyst
US11045791B2 (en) * 2016-03-08 2021-06-29 Japan Science And Technology Agency Catalyst and use of same
CN106000373A (en) * 2016-05-31 2016-10-12 浙江大学 Preparation method of high-efficiency Zr-doped titanium dioxide photocatalyst
CN106000373B (en) * 2016-05-31 2019-02-01 浙江大学 A kind of preparation method for the high efficiency photocatalyst that Zr is titania-doped
WO2022140681A1 (en) * 2020-12-23 2022-06-30 Nitto Denko Corporation Ultraviolet activated photocatalytic materials

Similar Documents

Publication Publication Date Title
Wetchakun et al. Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites
de Moraes et al. Methylene blue photodegradation employing hexagonal prism-shaped niobium oxide as heterogeneous catalyst: Effect of catalyst dosage, dye concentration, and radiation source
KR100642973B1 (en) Titanium oxide, photocatalyst comprising same and photocatalytic coating agent
Zaleska Doped-TiO2: a review
Pan et al. Preparation of visible-light-driven silver vanadates by a microwave-assisted hydrothermal method for the photodegradation of volatile organic vapors
EP2519348B1 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
Tobaldi et al. Photocatalytic activity for exposed building materials
KR20000067090A (en) manufacturing method of titanium dioxide powder for photocatalyst
Ohno et al. Dependence of photocatalytic activity on aspect ratio of a brookite TiO2 nanorod and drastic improvement in visible light responsibility of a brookite TiO2 nanorod by site-selective modification of Fe3+ on exposed faces
Gaikwad et al. Photocatalytic performance of magnetically separable Fe, N co-doped TiO2-cobalt ferrite nanocomposite
Tarasov et al. Facile preparation of nitrogen-doped nanostructured titania microspheres by a new method of Thermally Assisted Reactions in Aqueous Sprays
JP2005047787A (en) Titanium dioxide microparticle and method for producing the same
KR101548296B1 (en) Manufacturing method of bimetallic transition metal doped titanium dioxide
Gambhire et al. Degradation of methylene blue via photocatalysis of transition metal-loaded sulfated TiO2
JP2002126517A (en) Photocatalyst, method for producing the same, and photocatalytic coating agent containing the same
WO2005051541A1 (en) Zirconia-doped titania photocatalyst powder and process for producing the same
Szołdra et al. Effect of brookite on the photocatalytic properties of mixed-phase TiO2 obtained at a higher temperature
US20060034752A1 (en) Visible-light-activated photocatalyst and method for producing the same
Silvestri et al. Doped and undoped anatase-based plates obtained from paper templates for photocatalytic oxidation of NOX
JP2005177745A (en) Zirconia-doped titania photocatalyst powder and process for producing the same
Channei et al. Domestic microwave-assisted synthesis of Pd doped-BiVO4 photocatalysts
JP2004283790A (en) Visible light-active photocatalyst particle
JP4265685B2 (en) Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP2004161592A (en) Anatase type titania-silica composite and its production method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase