WO2005047330A1 - Endotoxin shock medicine for tlr4-md-2 composite as target - Google Patents

Endotoxin shock medicine for tlr4-md-2 composite as target Download PDF

Info

Publication number
WO2005047330A1
WO2005047330A1 PCT/JP2004/014194 JP2004014194W WO2005047330A1 WO 2005047330 A1 WO2005047330 A1 WO 2005047330A1 JP 2004014194 W JP2004014194 W JP 2004014194W WO 2005047330 A1 WO2005047330 A1 WO 2005047330A1
Authority
WO
WIPO (PCT)
Prior art keywords
tlr4
monoclonal antibody
mouse
lps
complex
Prior art date
Application number
PCT/JP2004/014194
Other languages
French (fr)
Japanese (ja)
Inventor
Kensuke Miyake
Sachiko Takamura
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2005515401A priority Critical patent/JPWO2005047330A1/en
Publication of WO2005047330A1 publication Critical patent/WO2005047330A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies

Definitions

  • the present invention relates to an anti-TLR4-MD- 2 monoclonal antibody that specifically recognizes a TLR4-MD-2 complex, and an anti-TLR4-MD- 2 monoclonal antibody targeting a TLR4-MD-2 complex.
  • the present invention relates to a therapeutic agent for endotoxin shock comprising a clonal antibody, and a method for treating endotoxin shock with an anti-TLR4-MD-2 monoclonal antibody targeting a TLR4-MD-2 complex.
  • Lipopolysaccharide is a major component of the outer lobe of the cell wall of Gram-negative bacteria and induces the activation of various cells such as vascular endothelial cells and fibroblasts as well as immunocompetent cells.
  • living organisms recognize the invasion of Gram-negative bacteria by recognizing LPS at the molecular or cellular level. Molecules that recognize and transmit signals to LPS have only recently been identified after a long search. The C3H / HeJ mouse, which was discovered about 30 years ago, is a mutant mouse showing low LPS responsiveness.
  • C57BLZlOScCr has also been reported as a mouse showing a similar low LPS response, but the causative gene of these mice was identified to be TLR4 (Toll-like receptor 4) by positional closing (for example, , Poltrak, A. et al., Science, 282,
  • TLR4 is a human and mouse homolog of the molecule Toll that recognizes fungi and induces protection in Drosophila (see, for example, Medzhitov R, et al., Nature, 388, 394-397, 1997).
  • the LPS recognition molecule that has been sought for a long time has been identified as one of the pathogen recognition molecules conserved in flies.
  • LPS recognition is a process involving many molecules and cannot be explained by TLR4 alone.
  • the present inventors have reported RP105, MD-1, MD-2 and the like as molecules that regulate LPS recognition of TLR4.
  • LPS LPS recognition mechanism
  • TLRs TolHike receptors
  • LP The active center of S
  • LPS is composed of lipid A, a core antigen, and a saccharide called O antigen.
  • O antigen a saccharide
  • LPS induces the activation of a wide variety of cells such as macrophages, B cells, dendritic cells, neutrophils, vascular endothelial cells, and fibroblasts. That is, these cells can recognize LPS.
  • the LPS recognition mechanism is a complex process involving many molecules (see, for example, Experimental Medicine Vol. 19 (2001) No. 5, P81).
  • LPS on cells is first released from the outer membrane by LPS-binding protein (LBP) in serum and transferred in a single form to another LPS-binding protein, CD14.
  • LBP LPS-binding protein
  • CD14 another LPS-binding protein
  • CD14 is present in blood as a serum protein or on monocytes and macaque phages as cell surface proteins.
  • the CD14ZLPS complex induces cell activation at a concentration 100--10,000 times lower than that of LPS alone (for example, Wright, SD, J. Immunol, 155, 6-8, 1995).
  • CD14 has no cytoplasmic domain, it cannot transmit LPS signals into cells by itself. Therefore, the existence of a new receptor molecule for transmitting an LPS signal into cells was pointed out, and the search was continued. Recently, the identity of the LPS receptor has been identified as TLR4.
  • the fly Toll receptor was discovered as a receptor molecule that transmits a differentiation induction signal to the abdomen during ontogeny, but subsequently has a role in detecting fungal infection and inducing protective response. (See, eg, Lemaitre, B. et al, Cell, 86, 973-983, 1996). Furthermore, it was revealed in 1997 that mice and humans had a molecule similar to Toll, TLR (TolHike receptor), and one of them, TLR4, was an LPSZ endotoxin recognition molecule that has long been a mystery. However, in experiments using cell lines, it was reported that TLR4 alone could not recognize LPS.
  • TLR TolHike receptor
  • the mouse IL3-dependent cell line BaZF3 ⁇ human kidney-derived 293 cell line does not respond to LPS itself, and transfectants that express human TLR4 in these cells also show responsiveness to LPS. What, The possible reason is that LPS response may require other molecules in addition to TLR4.
  • the present inventor noted that the LRR (leucine-rich repeat) of the extracellular domain of Radioprotective 105 (RP105) is very similar to that of TLR4! / Since MD-1, one of the v-myb regulated genes, associates with RP105, we thought that TLR4 might also associate with MD-1.
  • This molecule has a strength of 160 amino acids, and is named MD-2 because it is about 23% identical to MD-1.
  • Human MD-2 alone is not detected on the cell surface when expressed alone in the mouse IL-3-dependent cell line BaZF3, but when co-expressed with TLR4, it is detected on the cell surface, and its power is increased. When the distributions were compared with a confocal laser microscope, they were almost identical. Furthermore, when TLR4 was immunoprecipitated with an anti-human TLR4 monoclonal antibody (HTA125), MD-2 was coprecipitated. From the results of these experiments, it was confirmed that the TLR4-MD-2 complex was also expressed on the cell surface as in the case of RP105-MD-1.
  • HTA125 anti-human TLR4 monoclonal antibody
  • TLR4-MD-2 tumor necrosis factor
  • TLR4-MD-2 complex increased the expression of the TLR4-MD-2 complex on the cell surface. This decrease was seen with LPS stimulation as low as ngZml, but not with stimulation from other pathogens such as peptide glycans. Similar decrease in expression was not observed in other cell surface molecules such as CD14, which was specific to TLR4-MD-2 (eg, Nomura, F. et al., J. Immunol., 164, 3476). -3479, 2000).
  • TLR4-MD-2 is also expressed on the surface of normal macrophages and is responsible for LPS recognition and signal transduction! Both TLR4 and MD-2 are widely expressed, and the TLR4-MD-2 complex is capable of recognizing SLPS even in nonimmune cells such as fibroblasts and vascular endothelial cells, which can be driven by macrophages. May be concerned.
  • TLR4 and its associated molecule, MD- have been identified in a mechanism that recognizes LPS, a component of the outer lobe of the cell wall of Gram-negative bacteria, detects and responds to the entry of Gram-negative bacteria.
  • the role of (2) has been gradually elucidated.
  • the present inventors constructed a mouse deficient in the MD-2 gene and confirmed that MD-2 is an essential molecule for the LPS response even at the biological level since the mouse does not respond to LPS at all (for example, JP-A-2003-319734).
  • TLR4 associated molecule MD-2.
  • studies using LPS-MD-2 complex for the first time to achieve LPS responsiveness have been shown in studies using independently produced monoclonal antibodies.
  • TLR4-a MD-2 specifically recognizes a complex anti-TLR4-a MD-2 monoclonal antibodies and were targeted to the TLR4-MD-2 complex, anti-TLR4-a MD-
  • An object of the present invention is to provide a therapeutic agent for endotoxin shock comprising a monoclonal antibody, and a method for treating endotoxin shock using an anti-TLR4-MD-2 monoclonal antibody targeting a TLR4-MD-2 complex.
  • the present inventors have produced two types of monoclonal antibodies against mouse TLR4-MD-2, MTS510 and Sal5-21. These monoclonal antibodies recognize different epitopes.
  • the effect of suppressing B cell proliferation and macrophage cytoin production by LPS stimulation is the strongest when both monoclonal antibodies are added simultaneously. S is the strongest and MTS510 is the strongest.
  • the inhibitory effect of Sal5-21 is the weakest. Helped.
  • the effect of the monoclonal antibodies against the two monoclonal antibodies, CD14 was examined.
  • the present invention is characterized by (1) exhibiting no B cell growth inhibitory effect and no TNF production inhibitory effect on macrophages by LPS stimulation in vitro, and having an inhibitory effect on endotoxin shock.
  • a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex and (2) the TLR4-MD-2 complex according to (1), which enhances TNF production in response to endotoxin shock. It relates to a monoclonal antibody that specifically recognizes the body.
  • the present invention also provides (3) a TLR4-MD-2 complex comprising a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex according to (1) or (2).
  • a TLR4-MD-2 complex comprising a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex according to (1) or (2).
  • Prevention of endotoxin shock targeting TLR4-MD characterized by using a therapeutic agent or a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex described in (4) (1) or (2)
  • the present invention relates to a method for the prevention and treatment of endotoxin shock targeting the -2 complex.
  • the present invention further provides (5) an anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21 which specifically recognizes a mouse TLR4-MD-2 complex, and (6) an endotoxin shock in mice.
  • an anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21 which specifically recognizes the mouse TLR4-MD-2 complex, and a test substance, and the degree of endotoxin shock in the mice was evaluated.
  • the present invention relates to a method for screening a substance promoting or suppressing an endotoxin shock, which comprises administering a test substance to a mouse and evaluating the degree of endotoxin shock in the mouse.
  • FIG. 1 shows that the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention is an antibody specific to a mouse TLR4-MD-2 complex.
  • FIG. 2 is a cross-blocking diagram showing that the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention and the anti-TLR4MD-2 monoclonal antibody MTS510 recognize different antigenic determinants. It is a figure showing the result of.
  • FIG. 3 is a graph showing the results of the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention showing no LPS-stimulated growth inhibitory effect on mouse spleen cells.
  • FIG. 4 is a graph showing the results of the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention showing no effect of LPS stimulation on suppressing TNF production in mouse macrophages.
  • FIG. 5 is a diagram showing the rescue effect of the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention on mouse endotoxin shock.
  • Fig. 6 is a view showing the results of the anti-CD14 monoclonal antibody showing no rescue effect on mouse endotoxin shock.
  • FIG. 7 shows that the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention increased TNF production almost 10-fold 1 hour after administration of LPS and galactosamine.
  • FIG. 8 shows that the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention recognizes the N-terminal antigenic determinant of mouse TLR4 in the mouse TLR4-MD-2 complex
  • FIG. 2 shows that the anti-TLR4-MD-2 monoclonal antibody TF904 of the present invention recognizes an antigenic determinant on the N-terminal side of human TLR4 in a human TLR4-MD-2 complex.
  • the monoclonal antibody specifically recognizing the TLR4-MD-2 complex of the present invention does not exhibit the effect of suppressing LPS proliferation in vitro and the effect of suppressing TNF production in macrophages by LPS stimulation in vitro, and A monoclonal antibody having an inhibitory effect on endotoxin shock, preferably a monoclonal antibody that enhances TNF production against endotoxin shock, more preferably antigen determination on the N-terminal side of TLR4 in the TLR4-MD-2 complex
  • the monoclonal antibody is not particularly limited as long as it recognizes a group.
  • Such a monoclonal antibody may be a hybridoma method (Nature 256, 495-497, 1975), a trioma method, or a human B cell hybridoma method (Immunology Today). 4, 72, 1983), EBV-Nody Bridoma Method (MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp.77-96, Alan R.Liss, Inc., 1985) It can be produced using the methods.
  • TLR4-MD-2 derived from human, mouse, or the like is treated on the cell surface.
  • a cell or its cell membrane fragment expressed as a sensitizing antigen is used as a sensitizing antigen, and a mammal, such as a mouse or a rat, different from the derived antigen is immunized with a known antigen by a known immunization method, and the immunized animal is obtained.
  • Immune cells such as spleen cells and myeloma cells such as mice are fused by a known cell fusion method, the desired monoclonal antibody-producing hybridoma is cloned by a known cloning technique, and the hybridoma is cultured. It can be produced by The above-mentioned cells expressing TLR4-MD-2 derived from humans, mice, etc. on the cell surface or cell membrane fragments thereof include, for example, LPS stimulation or gene transfer Thus, a cell line co-expressing TLR4 and MD-2 derived from humans and mice, and cell membrane fragments thereof can be exemplified. Examples of the mouse myeloma cells include an 8-azaguanine-resistant cell line.
  • the above cell fusion is performed in the presence of a fusion promoter such as polyethylene glycol (PEG) and Sendai virus (HVJ).
  • a fusion promoter such as polyethylene glycol (PEG) and Sendai virus (HVJ).
  • an auxiliary agent such as dimethyl sulfoxide is used. You can also.
  • the ratio of the use of the immune cells to the myeloma cells is preferably, for example, about 110 to 10 times the number of the immune cells to the myeloma cells.
  • a medium used for cell fusion for example, an ordinary medium used for this type of cell culture, such as an RPMI-1640 medium and a MEM medium suitable for growing a myeloma cell line, can be used.
  • a predetermined amount of an immune cell and a myeloma cell are mixed well in the medium, and a PEG solution preliminarily heated to about 37 ° C., for example, PEG having an average molecular weight of about 1,000 to 6,000, Usually, it is added to the medium at a concentration of about 30-60% (WZV) and mixed. Subsequently, by repeatedly adding an appropriate medium and centrifuging to remove the supernatant, a hybridoma producing the desired monoclonal antibody can be produced.
  • a PEG solution preliminarily heated to about 37 ° C. for example, PEG having an average molecular weight of about 1,000 to 6,000, Usually, it is added to the medium at a concentration of about 30-60% (WZV) and mixed.
  • a method of culturing the hybridoma or hybridoma according to a conventional method to obtain the culture supernatant power, or a method of hybridizing the hybridoma or hybridoma is used.
  • the method include a method of administering the compound to a compatible mammal, proliferating the compound, and obtaining ascites power.
  • the monoclonal antibody thus obtained can be purified to a high degree of purity by using ordinary purification means such as affinity chromatography, salting out, and gel filtration.
  • the monoclonal antibody that specifically recognizes the TLR4-MD-2 complex of the present invention includes the Fab fragment or F (ab ') of the anti-TLR4-MD-2 monoclonal antibody of the present invention for convenience.
  • Fab fragments are obtained by treating an antibody with papain or the like.
  • the F (ab ') fragment can be prepared by treating with pepsin or the like.
  • the anti-TLR4-MD-2 monoclonal antibody may be added to a fluorescent substance such as FITC (fluorescein isocyanate) or tetramethylrhodamine isocyanate, 125 i, 32 P,
  • an enzyme such as alkaline phosphatase, peroxidase, j8-galactosidase or phycoerythrin
  • a fluorescent protein such as green fluorescent protein (GFP).
  • GFP green fluorescent protein
  • the monoclonal antibody of the present invention specifically recognizing the TLR4-MD-2 complex, specifically, an antigenic determinant on the N-terminal side of mouse TLR4 in the mouse TLR4-MD-2 complex is specified.
  • Monoclonal antibody Sal5-21 was immunized in rat leg pads with normal rat kidney cells expressing the TLR4-MD-2 complex of mice, which had been predominantly stimulated with LPS (lipid A).
  • the monoclonal antibody Sal5-21 can be obtained by, for example, administering the selected hybridoma to the abdominal cavity of a nude mouse and purifying the obtained ascites power using force prillic acid.
  • the monoclonal antibody TF904 was injected three times into the mouse peritoneal cavity using the mouse IL-3-dependent cell line Ba ZF3 expressing the human TLR4-MD-2 complex, which had been stimulated with LPS (lipid A).
  • a monoclonal antibody TF904 can be obtained by selecting a hybridoma and, for example, administering the selected hybridoma and / or hybridoma to the abdominal cavity of a nude mouse and purifying the resulting ascites power using force prillic acid.
  • the monoclonal anti-human hybridoma TF904 producing monoclonal antibody TF904 was received on September 7, 2004, with the receipt number FERM VIII? — International deposit as 10118 It is entrusted to the bureau, the National Institute of Advanced Industrial Science and Technology (AIST) Patentable Material Depositary Center.
  • TLR4-MD-2 monoclonal antibody Sal5-21 An epitope similar to the above-mentioned anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21, that is, a humanized monoclonal antibody that specifically recognizes the N-terminal antigenic determinant of TLR4 in the TLR4-MD-2 complex, such as an anti-human Using TLR4 monoclonal antibody TF904 enables a completely new type of endotoxin shock prevention and treatment
  • the therapeutic agent for preventing or preventing endotoxin shock targeting the TLR4-MD-2 complex of the present invention is a human anti-human TLR4 monoclonal antibody of the present invention, for example, an anti-human TLR4 monoclonal antibody.
  • the method for preventing endotoxin shock of the present invention, which contains TF904 and targets the TLR4-MD-2 complex is a powerful anti-human TLR4 monoclonal antibody of the present invention, for example, an anti-human TLR4 monoclonal antibody. It is characterized by using TF904.
  • a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex of the present invention for example, an anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21 or an anti-human TLR4 monoclonal antibody TF904, It is possible to advantageously screen for substances that promote or suppress endotoxin shock.
  • the monoclonal antibody Sal5-21 was administered intraperitoneally to mice, and two hours later, extra-galactosamine and LPS were administered intraperitoneally to induce endotoxin shock. Mice were given an intraperitoneal injection of the monoclonal antibody Sal 5-21, 2 hours later, were given ip with extragalamine and LPS, and 1 hour after LPS and extragalamine administration.
  • Escherichia coli-derived lipopolysaccharide (LPS) and Salmonella's Minnesota-derived lipid A, D galactosamine were purchased from Sigma (St. Louis, MO).
  • Mice purchased BALB / c mice (5-10 weeks old) from Japan SLC.
  • ICR nude mice (CD-1 (ICR) -nu) for hybridoma propagation were purchased from Charles River Japan.
  • Monoclonal antibodies against mouse TLR4-MD-2, human TLR4-MD-2 and CD14 were constructed.
  • the literature describes the normal rat kidney cells co-expressing mouse TLR4, mouse MD-2 and mouse CD14 and the mouse IL3-dependent cell line BaZF3 co-expressing human TLR4 and human MD-2, which are used as immunogens. Protocols in Molecular Biology, 9.3.1). Normal rat kidney cells expressing mouse CD14 and mouse TLR4-MD-2, which had been stimulated with 1 ⁇ g / ml lipid ⁇ , were immunized in the leg pad.
  • the monoclonal antibody TF904 was stimulated with LPS (lipid A) in advance! And the mouse peritoneal cavity was immunized three times with the mouse IL-3-dependent cell line BaZF3 expressing the human TLR4-MD-2 complex.
  • the immune cells that also obtained spleen strength were fused with SP2Z0 myeloma cells, and the culture supernatant of the hybridoma that specifically reacted with the mouse IL3-dependent cell line BaZF3 expressing human TLR4-MD-2
  • Mouse anti-human hybridoma TF904; FERM ABP-10118 was selected to obtain an anti-human TLR4 monoclonal antibody TF904.
  • these monoclonal antibodies were used to administer the selected hybridomas to the peritoneal cavity of ICR nude mice (CD-1 (ICR) -nu, purchased from Charles River Japan), and to use the ascites hydropurilic acid obtained. Purified.
  • mice were given 25 mg of D-galactosamine and 500 ng of LPS intraperitoneally and their survival was monitored over time. Each monoclonal antibody was administered intraperitoneally 2 hours before co-administration of D-galactosamine and LPS. [0036] (B cell purification, activation)
  • Mouse spleen B cells were purified by removing T cells using Dyna beads (DYNAL) with anti-CD43 antibody S7.
  • the purified B cells were seeded at 2 ⁇ 10 5 / ⁇ in a 96-well plate and stimulated with LPS.
  • tritium-labeled thymidine was added, and after culturing in a dish for 6 hours, the DNA was collected on a glass filter, and the count of the incorporated tritium was measured to measure the proliferation reaction.
  • Cytoin production was measured by ELIS A (Enzyme-linked lmmunoadsoroent assay) using a kit from Biosource International.
  • the cells were stained with an antibody and analyzed using a flow cytometer (Betaton Dickinson, FACScan).
  • the specificity of the newly established antibody Sa15-21 antigen against mouse TLR4-MD-2 was examined.
  • the cell lines BaZF3 expressing TLR4-MD-2 and TLR4-MD-2 respectively were stained with the monoclonal antibody Sal5-21, and analyzed using a flow cytometer. The results are shown in Figure la.
  • the white histogram shows the results of samples obtained by slicing Sal5-21.
  • staining with Sal5-21 antibody was not observed.
  • Only the surface of the cell line expressing TLR4-MD-2 (lower) was detected. Staining with the Sal5-21 antibody confirmed that the monoclonal antibody Sa15-21 was an antibody specific to the TLR4-MD-2 complex.
  • the cell line BaZF3 expressing TLR4, TLR4-MD-2, CD14 and TLR4, and CD14 and TLR4-MD-2, respectively, was used as an antibody against the flag (upper panel) or Sal5-21 (lower panel).
  • the precipitated TLR4 was detected with a polyclonal antibody against TLR4.
  • the results are shown in FIG. The results of these immunoprecipitations indicate that the monoclonal antibody Sal5-21 is an antibody specific for the TLR4-MD-2 complex.
  • FIG. 2 the open histogram shows the result of the sample to which no biotinylated antibody was added. Both monoclonal antibodies could not block the binding of each other by pretreatment V, indicating that they recognized different antigenic determinants.
  • B cells were cultured in the presence or absence of lipid A (100ngZml), and the proliferation was measured by measuring the count of tritium incorporated into the B cells. The results are shown in Figure 3.
  • lipid A 100ngZml
  • FIG. 3 When cultured in the absence of lipid A, proliferation of spleen B cells was not induced.
  • the suppression of B cell proliferation by LPS stimulation was not observed with Sal5-21 alone, but a weak inhibitory effect was observed with MTS510 alone.
  • the combination of MTS510 and Sal5-21 showed the strongest and inhibitory effect.
  • TNF in blood was measured 1 hour after LPS and galactosamine administration.
  • Sal5-21 was intraperitoneally administered to mice, galactosamine and LPS were administered intraperitoneally 2 hours later, and TNF in the blood 1 hour after LPS and galactosamine administration was measured by ELISA.
  • FIG. 7 shows the results. In vitro, LPS-stimulated suppression of TNF production in mouse macrophage cells was scarcely observed with either Sal5-21 or other antibodies (Fig. 4). In vivo, only Sal5-21 increased TNF production by nearly 10-fold. It was found to be exacerbated.
  • Fig. 8 shows the results of staining the 293T cell line (human kidney cell-line with T-antigen) with cells using TLR4 and MD-2 transiently transfected with lipofectamine using lipofectamine. .
  • the top row shows (1) mouse TLR4 full length and mouse MD-2
  • the second row shows (2) mouse TLR4N-terminal / human TLR4C-terminal chimeric cDNA (Cytoplasmic deleted) and mouse MD-2.
  • the third row transfects (3) human TLR4 N-terminal and mouse TLR4 C-terminal chimeric cDNA (Cytoplasmic deleted) and mouse MD-2, and the fourth row transfects (4) human TLR4 full length and human MD-2, respectively.
  • the white histogram shows the results of the sample with the addition of the monoclonal nano antibody Sal5-21, MTS510, and TF904! / !.
  • the anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21 reacts with the above (1) and (2) but does not react with (3) and (4). It can be seen that it recognizes the antigenic determinant on the N-terminal side of mouse TLR4 in the body.
  • the anti-mouse TLR4-MD-2 monoclonal antibody MTS510 reacts with the above (1) and (3) but does not react with (2) and (4). It can be seen that the two complexes recognize the antigenic determinant on the C-terminal side of mouse TLR4.
  • the anti-human TLR4 monoclonal antibody TF904 reacts with the above (3) and (4) but does not react with (1) and (2), it must recognize the antigenic determinant on the N-terminal side of human TLR4. ⁇ ⁇
  • endotoxin shock due to LPS can be avoided if the monoclonal antibody against TLR4-MD-2 is administered as much as possible.
  • the finding that a monoclonal antibody against LPS receptor can avoid endotoxin shock is a therapeutic method with antibodies
  • analysis of the mechanism of endotoxin shock avoidance by antibodies is expected to lead to the identification of new target molecules for endotoxin shock therapy that were not considered before.
  • the analysis of the recognition and defense mechanism of LPS which is an immunostimulant, is directly linked to the elucidation of the immune activation mechanism in vivo, it is possible to contribute to the base of immune surveillance, its maintenance and control, and research in this area.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

There are provided an anti-TLR4-MD-2 monoclonal antibody capable of specifically recognizing TLR4-MD-2 composite; an endotoxin shock medicine for TLR4-MD-2 composite as target, comprising the anti-TLR4-MD-2 monoclonal antibody; and a method of treating endotoxin shock medicine with the use of the anti-TLR4-MD-2 monoclonal antibody against TLR4-MD-2 composite as target. The anti-TLR4-MD-2 monoclonal antibody having an effect of suppressing endotoxin shock is produced by increasing the production of TNF against endotoxin shock, while not exerting an effect of B-cell proliferation inhibition and an effect of TNF production inhibition in macrophages, through in vitro LPS stimulation.

Description

明 細 書  Specification
TLR4-MD-2複合体を標的としたエンドトキシンショック治療剤 技術分野  Endotoxin shock therapeutic targeting TLR4-MD-2 complex
[0001] 本発明は、 TLR4— MD— 2複合体を特異的に認識する抗 TLR4— MD—2モノクロ ーナル抗体や、 TLR4— MD— 2複合体を標的とした、抗 TLR4— MD— 2モノクローナ ル抗体カゝらなるエンドトキシンショックの治療剤や、 TLR4— MD— 2複合体を標的とし た、抗 TLR4— MD— 2モノクローナル抗体によるエンドトキシンショックの治療方法に 関する。 [0001] The present invention relates to an anti-TLR4-MD- 2 monoclonal antibody that specifically recognizes a TLR4-MD-2 complex, and an anti-TLR4-MD- 2 monoclonal antibody targeting a TLR4-MD-2 complex. The present invention relates to a therapeutic agent for endotoxin shock comprising a clonal antibody, and a method for treating endotoxin shock with an anti-TLR4-MD-2 monoclonal antibody targeting a TLR4-MD-2 complex.
背景技術  Background art
[0002] リポポリサッカライド(LPS ;lipopolysaccharide)はグラム陰性菌細胞壁外葉の主たる 構成成分で、免疫担当細胞ばかりでなぐ血管内皮細胞、線維芽細胞など様々な細 胞の活性化を誘導する。つまり、生体は分子或いは細胞レベルで LPSを認識するこ とによって、グラム陰性菌の侵入を察知している。 LPSを認識しシグナルを伝達する 分子は、長い間検索されてきた結果、最近になってようやく明らかにされた。 30年程 前に見つ力つた C3H/HeJマウスは LPS低応答性を示すミュータントマウスである。 同様な LPS低応答性を示すマウスとして C57BLZlOScCrも報告されて!、たが、こ れらのマウスの原因遺伝子がポジショナルクロー-ングによって TLR4 (Toll-like receptor 4)であると同定された(例えば、 Poltrak, A. et al., Science, 282,  [0002] Lipopolysaccharide (LPS; lipopolysaccharide) is a major component of the outer lobe of the cell wall of Gram-negative bacteria and induces the activation of various cells such as vascular endothelial cells and fibroblasts as well as immunocompetent cells. In other words, living organisms recognize the invasion of Gram-negative bacteria by recognizing LPS at the molecular or cellular level. Molecules that recognize and transmit signals to LPS have only recently been identified after a long search. The C3H / HeJ mouse, which was discovered about 30 years ago, is a mutant mouse showing low LPS responsiveness. C57BLZlOScCr has also been reported as a mouse showing a similar low LPS response, but the causative gene of these mice was identified to be TLR4 (Toll-like receptor 4) by positional closing (for example, , Poltrak, A. et al., Science, 282,
2085-2088, 1998、 Qureshi, S. et al, J. Exp. Med., 189, 615-625, 1999参照)。  2085-2088, 1998, see Qureshi, S. et al, J. Exp. Med., 189, 615-625, 1999).
[0003] TLR4は、ショウジヨウバエにおいて真菌を認識し感染防御を誘導する分子 Tollの ヒト及びマウスホモローグである(例えば、 Medzhitov R, et al., Nature, 388, 394-397, 1997参照)。長い間探し求められてきた LPS認識分子は、ハエ力 ヒトにま で保存されている病原体認識分子の 1つであることが確認された。し力しながら、 LP S認識は多くの分子が関与するプロセスで、 TLR4単独では説明できないことが明ら 力にされている。本発明者は TLR4の LPS認識を制御する分子として、 RP105、 M D— 1、 MD— 2などを報告してきた。  [0003] TLR4 is a human and mouse homolog of the molecule Toll that recognizes fungi and induces protection in Drosophila (see, for example, Medzhitov R, et al., Nature, 388, 394-397, 1997). The LPS recognition molecule that has been sought for a long time has been identified as one of the pathogen recognition molecules conserved in flies. However, it has been shown that LPS recognition is a process involving many molecules and cannot be explained by TLR4 alone. The present inventors have reported RP105, MD-1, MD-2 and the like as molecules that regulate LPS recognition of TLR4.
[0004] LPS認識機構と TLRs (TolHike receptors)の関係につ!ヽても解明されてきた。 LP Sの活性中心はリピド Aと呼ばれ、 Nァセチルダルコサミン 2分子に脂肪酸が結合した ものである。リピド Aにコア抗原、さらに O抗原とよばれる糖類がつながったものが LP Sである。 LPSは低い濃度でもマクロファージ、 B細胞、榭状細胞、好中球、血管内皮 細胞、線維芽細胞など実に様々な細胞の活性ィ匕を誘導する。つまりこれらの細胞は LPSを認識することができる。 LPS認識機構は多くの分子が関わる複雑なプロセスで ある(例えば、実験医学 Vol.l9(2001)No.5, P81参照)。菌体上にある LPSはまず、血 清中の LPS結合タンパク質 (LBP)によって外膜から遊離され、もう一つの LPS結合 タンパク質である CD14へ単体の形で転送される。(例えば、 Wright, S. D. et al., Science, 249, 1431-1433, 1990、 Pugen, J. et al, Immunity, 1, 509-516, 1994参照)。 [0004] The relationship between the LPS recognition mechanism and TLRs (TolHike receptors) has also been elucidated. LP The active center of S is called lipid A and is composed of two molecules of Nacetyldarcosamine and a fatty acid. LPS is composed of lipid A, a core antigen, and a saccharide called O antigen. Even at low concentrations, LPS induces the activation of a wide variety of cells such as macrophages, B cells, dendritic cells, neutrophils, vascular endothelial cells, and fibroblasts. That is, these cells can recognize LPS. The LPS recognition mechanism is a complex process involving many molecules (see, for example, Experimental Medicine Vol. 19 (2001) No. 5, P81). LPS on cells is first released from the outer membrane by LPS-binding protein (LBP) in serum and transferred in a single form to another LPS-binding protein, CD14. (See, for example, Wright, SD et al., Science, 249, 1431-1433, 1990; Pugen, J. et al, Immunity, 1, 509-516, 1994).
[0005] CD14は血清タンパク質として血中に、或いは細胞表面タンパク質として単球、マク 口ファージ上に存在している。 CD14ZLPS複合体は LPS単独の場合に比べて、 10 0— 10, 000分の 1の低い濃度で細胞の活性ィ匕を誘導する(例えば、 Wright, S. D., J. Immunol, 155, 6-8, 1995参照)。し力し、 CD14は細胞質内ドメインをもたないため に LPSシグナルを細胞内へそれ自身では伝達することができな 、。そこで LPSシグ ナルを細胞内へ伝達するための新たなレセプター分子の存在が指摘され、検索が続 けられていた。最近ようやくその LPSレセプターの実体が TLR4であると同定された。  [0005] CD14 is present in blood as a serum protein or on monocytes and macaque phages as cell surface proteins. The CD14ZLPS complex induces cell activation at a concentration 100--10,000 times lower than that of LPS alone (for example, Wright, SD, J. Immunol, 155, 6-8, 1995). However, because CD14 has no cytoplasmic domain, it cannot transmit LPS signals into cells by itself. Therefore, the existence of a new receptor molecule for transmitting an LPS signal into cells was pointed out, and the search was continued. Recently, the identity of the LPS receptor has been identified as TLR4.
[0006] ハエの Tollレセプターは、個体発生の際に腹側への分化誘導シグナルを伝達する レセプター分子として発見されたが、その後真菌感染を察知して感染防御反応を誘 導する役割をもっていることが報告された(例えば、 Lemaitre, B. et al, Cell, 86, 973-983, 1996参照)。更に、 Tollによく似た分子 TLR(TolHike receptor)をマウスや ヒトももっていることが 1997年に明らかにされ、その 1つである TLR4が長い間謎であ つた LPSZエンドトキシン認識分子であった。ところが、細胞株を用いた実験で、 TL R4単独では LPSを認識できな 、と 、う結果が報告された。  [0006] The fly Toll receptor was discovered as a receptor molecule that transmits a differentiation induction signal to the abdomen during ontogeny, but subsequently has a role in detecting fungal infection and inducing protective response. (See, eg, Lemaitre, B. et al, Cell, 86, 973-983, 1996). Furthermore, it was revealed in 1997 that mice and humans had a molecule similar to Toll, TLR (TolHike receptor), and one of them, TLR4, was an LPSZ endotoxin recognition molecule that has long been a mystery. However, in experiments using cell lines, it was reported that TLR4 alone could not recognize LPS.
[0007] マウス IL 3依存性細胞株 BaZF3ゃヒト腎臓由来 293細胞株はそれ自身 LPSに 応答しないし、これらの細胞にヒト TLR4を発現させたトランスフエクタントも LPSに対 する応答性は認められな 、。その理由として LPS応答には TLR4にカ卩えて他の分子 が必要である可能性が考えられた。本発明者は, Radioprotective 105 (RP105)の細胞 外ドメインの LRR (leucine-rich repeat)が TLR4のそれとよく似て!/、ることに注目し、 v-myb regulated geneの 1つである MD— 1が RP105と会合するところから、 TLR4も MD— 1と会合するのではないかと考えた。し力しながら両方の遺伝子を細胞株に発 現させ、免疫沈降で共沈降できるかどうかを調べたが有意な会合は検出できなかつ た。そこで、 TLR4に会合する MD— 1類似分子の存在を想定し、データベースで検 索を行い、ヒト妊娠子宫由来の遺伝子を得ることに成功した (例えば、 Shimazu, R. et al., J. Exo. Med., 189, 1777-1782, 1999及び特開 2000— 262290号公報参照)。 [0007] The mouse IL3-dependent cell line BaZF3 ゃ human kidney-derived 293 cell line does not respond to LPS itself, and transfectants that express human TLR4 in these cells also show responsiveness to LPS. What, The possible reason is that LPS response may require other molecules in addition to TLR4. The present inventor noted that the LRR (leucine-rich repeat) of the extracellular domain of Radioprotective 105 (RP105) is very similar to that of TLR4! / Since MD-1, one of the v-myb regulated genes, associates with RP105, we thought that TLR4 might also associate with MD-1. By vigorously expressing both genes in cell lines, we examined whether co-precipitation by immunoprecipitation was possible, but no significant association could be detected. Therefore, assuming the existence of MD-1 analogs associated with TLR4, we conducted a database search and succeeded in obtaining genes from human pregnant 宫 (for example, Shimazu, R. et al., J. Exo Med., 189, 1777-1782, 1999 and JP-A-2000-262290).
[0008] この分子はアミノ酸 160個力もなり、 MD—1とアミノ酸で約 23%—致していることか ら、 MD— 2という名前をつけた。ヒト MD— 2をマウス IL— 3依存性細胞株 BaZF3に単 独で発現させても細胞表面には検出されな 、が、 TLR4と共発現させると細胞表面 で検出されるようになり、し力もその分布を共焦点レーザー顕微鏡で比較したところほ ぼ一致していた。さらに、抗ヒト TLR4モノクローナル抗体(HTA125)で TLR4を免 疫沈降すると、 MD— 2が共沈された。これらの実験結果から、 RP105— MD— 1と同 様に TLR4— MD— 2複合体も細胞表面上に発現していることが確認された。  [0008] This molecule has a strength of 160 amino acids, and is named MD-2 because it is about 23% identical to MD-1. Human MD-2 alone is not detected on the cell surface when expressed alone in the mouse IL-3-dependent cell line BaZF3, but when co-expressed with TLR4, it is detected on the cell surface, and its power is increased. When the distributions were compared with a confocal laser microscope, they were almost identical. Furthermore, when TLR4 was immunoprecipitated with an anti-human TLR4 monoclonal antibody (HTA125), MD-2 was coprecipitated. From the results of these experiments, it was confirmed that the TLR4-MD-2 complex was also expressed on the cell surface as in the case of RP105-MD-1.
[0009] TLR4— MD— 2複合体による LPS認識、シグナル伝達の機構を明らかにするため に、 TLR4の LPS認識における MD— 2会合の役割が検討された。  [0009] To clarify the mechanism of LPS recognition and signal transduction by the TLR4-MD-2 complex, the role of MD-2 association in TLR4 LPS recognition was examined.
[0010] マウス IL 3依存性細胞株 BaZF3にヒト TLR4単独、或いは TLR4— MD— 2複合 体を発現させ、 LPS刺激による NF— κ B活性ィ匕を、予め BaZF3細胞株に導入して おいた NF—κ Bレポーター遺伝子を用いたルシフェラーゼアツセィで調べた結果、 T LR4単独では LPS刺激による NF—κ Bの活性化は検出されなかった力 TLR4— M D— 2複合体を発現した細胞株は LPS応答性を示した。そこで、 MD— 2を共発現させ ることによって、獲得された LPS応答が TLR4を介しているかどうかを確認するために 、 TLR4に対するモノクローナル抗体 (HTA125)をカ卩えたところ、 LPS刺激による N F— κ B活性ィ匕が特異的に阻害された。(例えば、実験医学 Vol.l9(2001)、 No.5、 P83 参照)。したがって、 TLR4— MD— 2複合体力 SLPSを認識し、シグナルを伝達してい ることが明らかになった。  [0010] Human TLR4 alone or TLR4-MD-2 complex was expressed in the mouse IL3-dependent cell line BaZF3, and LPS-stimulated NF-κB activity was previously introduced into the BaZF3 cell line. The cell line that expressed the TLR4-MD-2 complex did not detect LPS-stimulated activation of NF-κB by T LR4 alone, as determined by luciferase assay using the NF-κ B reporter gene. It showed LPS responsiveness. Therefore, in order to confirm whether or not the acquired LPS response was mediated by TLR4 by co-expressing MD-2, a monoclonal antibody against TLR4 (HTA125) was added. B activity was specifically inhibited. (See, for example, Experimental Medicine Vol. 19 (2001), No. 5, p. 83). Therefore, it was revealed that the TLR4-MD-2 complex recognizes SLPS and transmits signals.
[0011] 上記するようなこれまでの結果は、全て細胞株を用いた実験であり、正常細胞にお V、て TLR4— MD— 2の発現やその LPS認識にっ 、て検討する必要があった。本発 明者は新たに、マウス TLR4— MD— 2複合体を特異的に認識するモノクローナル抗 体(MTS510)の確立に成功した(例えば、 Akashi, S. et al., J. Immunol, 164, 3471-3475, 2000参照)。この抗体を用いて腹腔マクロファージを染色したところ、 TL R4— MD— 2複合体の発現が確認された。また、 LPS刺激で誘導される腫瘍壊死因 子(tumor necrosis factor :TNF)の産生をこの抗体は特異的に抑制した。更に、 LPS で腹腔マクロファージを刺激すると、細胞表面上の TLR4 - MD - 2複合体の発現が 低下した。この発現低下は ngZmlという低濃度の LPS刺激でもみられるが、ぺプチ ドグリカンなど他の病原体由来の物質による刺激では認められな力つた。また CD14 など他の細胞表面分子では同様な発現低下は認められず、 TLR4— MD— 2に特異 的な現象であった(例えば、 Nomura, F. et al., J. Immunol., 164, 3476-3479, 2000参 照)。 [0011] The above results described above are all experiments using cell lines, and it is necessary to examine the expression of TLR4-MD-2 in normal cells and its recognition of LPS in normal cells. Was. The present inventors have newly developed a monoclonal antibody that specifically recognizes the mouse TLR4-MD-2 complex. The body (MTS510) was successfully established (see, for example, Akashi, S. et al., J. Immunol, 164, 3471-3475, 2000). When this antibody was used to stain peritoneal macrophages, expression of the TL R4-MD-2 complex was confirmed. In addition, this antibody specifically suppressed the production of tumor necrosis factor (TNF) induced by LPS stimulation. Furthermore, stimulation of peritoneal macrophages with LPS reduced the expression of the TLR4-MD-2 complex on the cell surface. This decrease was seen with LPS stimulation as low as ngZml, but not with stimulation from other pathogens such as peptide glycans. Similar decrease in expression was not observed in other cell surface molecules such as CD14, which was specific to TLR4-MD-2 (eg, Nomura, F. et al., J. Immunol., 164, 3476). -3479, 2000).
[0012] これらの結果から、 TLR4—MD— 2は正常マクロファージ表面上にも発現しており、 LPSの認識やシグナル伝達を司って!/、ることが明ら力となった。 TLR4や MD— 2はと もに広範に発現されており、マクロファージば力りでなぐ線維芽細胞や血管内皮細 胞など、非免疫担当細胞にぉ ヽても TLR4— MD— 2複合体力 SLPS認識にかかわつ ている可能性がある。  [0012] These results clearly show that TLR4-MD-2 is also expressed on the surface of normal macrophages and is responsible for LPS recognition and signal transduction! Both TLR4 and MD-2 are widely expressed, and the TLR4-MD-2 complex is capable of recognizing SLPS even in nonimmune cells such as fibroblasts and vascular endothelial cells, which can be driven by macrophages. May be concerned.
[0013] 以上のとおり、近年、グラム陰性菌細胞壁外葉の構成成分である LPSを認識してグ ラム陰性菌の進入を察知し、応答する機構における、 TLR4及びその会合分子であ る MD— 2の役割については、徐々にその解明が進んできた。し力し、これまでの結果 は、遺伝子や細胞レベルの実験を主とするものであり、今後は解析の方向として、 TL R4の病原体認識機構を更に分子レベルで明らかにするとともに、生体レベルの更な る解明が期待されていた。本発明者は、 MD— 2遺伝子を欠損したマウスを構築し、そ のマウスが LPSに全く応答しないことから MD— 2が生体レベルでも LPS応答に必須 の分子であることを確認した (例えば、特開 2003— 319734号公報参照)。  [0013] As described above, in recent years, TLR4 and its associated molecule, MD-, have been identified in a mechanism that recognizes LPS, a component of the outer lobe of the cell wall of Gram-negative bacteria, detects and responds to the entry of Gram-negative bacteria. The role of (2) has been gradually elucidated. However, the results so far mainly focus on experiments at the gene and cell levels.In the future, we will further clarify the mechanism of TLR4 pathogen recognition at the molecular level, Further elucidation was expected. The present inventors constructed a mouse deficient in the MD-2 gene and confirmed that MD-2 is an essential molecule for the LPS response even at the biological level since the mouse does not respond to LPS at all (for example, JP-A-2003-319734).
[0014] 抗生物質を中心とした今日までの感染症治療は、感染の現場である宿主自身の侵 入細菌に対する免疫防御反応や、加えられた抗生物質および死滅した細菌に対す る宿主の反応性に関しては全く考慮されて 、なかった。このような宿主自身の免疫力 を考慮しない一律的な投与は多くの耐性菌ゃ菌交代現象を生み出し、病院内での 敗血症による死亡へとつながって!/ヽつた。このことから宿主の免疫監視機能に基づ!/、 た治療法への変換が求められてきて 、る。 [0014] Treatment of infectious diseases to date, centered on antibiotics, involves the host's immune defense response to the invading bacteria at the site of infection, and the host's reactivity to added antibiotics and dead bacteria. Was not considered at all. Such uniform administration without regard to the host's own immunity has resulted in a number of resistant bacteria-replacement phenomena, leading to sepsis death in hospitals! / ヽ. From this, based on the immune monitoring function of the host! /, There is a need to convert to a new treatment.
[0015] 近年ハエの Tollのヒトホモログである TLRが発見されてから、 Tollは種を越えて存 在する病原体監視システムであることがわ力つてきた。この免疫システムは生体にと つて最大の危険である LPS (エンドトキシン)をはじめとする病原体由来の糖脂質をい ち早く察知し排除するために専門化された自然免疫システムであるだけでなぐさら に獲得免疫発動へとつなげて 、く掛け橋の役目も果たすと!、うまったく新 、認識分 子群であった。病原体侵入により体内に入り込んできた LPSをどうやって生体が認識 し危険であると 、うシグナルを伝えるのかに関してこれまでほとんど分かって 、なかつ た力 本発明者らは TLR4の会合分子 MD— 2を発見し、 TLR4— MD— 2複合体とな つて初めて LPS応答性が獲得されることを、独自に作製したモノクローナル抗体を用 いた研究にて明らかにしてきた。 [0015] Since the discovery of the human homologue of the fly Toll, TLR, in recent years, Toll has been strongly implicated as a pathogen surveillance system that exists across species. This immune system is a specialized innate immune system that can quickly detect and eliminate glycolipids derived from pathogens such as LPS (endotoxin), which is the greatest danger to the living body. It was a completely new and recognizable molecular group that could be linked to the activation of acquired immunity and also serve as a bridge. So far we know very little about how the living body recognizes LPS that has entered the body due to the invasion of pathogens and signals that it is dangerous, and it has no power. The present inventors have discovered the TLR4 associated molecule MD-2. In addition, studies using LPS-MD-2 complex for the first time to achieve LPS responsiveness have been shown in studies using independently produced monoclonal antibodies.
[0016] 本発明の課題は、 TLR4— MD—2複合体を特異的に認識する抗 TLR4— MD—2モ ノクローナル抗体や、 TLR4— MD—2複合体を標的とした、抗 TLR4— MD—2モノクロ ーナル抗体カゝらなるエンドトキシンショック治療剤や、 TLR4— MD— 2複合体を標的と した、抗 TLR4— MD— 2モノクローナル抗体によるエンドトキシンショック治療方法を 提供することにある。 [0016] The object of the present invention, TLR4-a MD-2 specifically recognizes a complex anti-TLR4-a MD-2 monoclonal antibodies and were targeted to the TLR4-MD-2 complex, anti-TLR4-a MD- An object of the present invention is to provide a therapeutic agent for endotoxin shock comprising a monoclonal antibody, and a method for treating endotoxin shock using an anti-TLR4-MD-2 monoclonal antibody targeting a TLR4-MD-2 complex.
[0017] 本発明者らは、マウス TLR4— MD— 2に対する 2種類のモノクローナル抗体、 MTS 510と Sal 5— 21を作製した。これらのモノクローナル抗体は互 ヽに異なるェピトープ を認識する。 LPS刺激による B細胞増殖、マクロファージのサイト力イン産生を抑制す る効果は、両方のモノクローナル抗体を同時に加えたとき力 Sもっとも強ぐ次に MTS5 10が強ぐ Sal5— 21による抑制効果は最も弱力つた。次に、エンドトキシンショックの マウスモデルを用いて、この 2つのモノクローナル抗体、 CD14に対するモノクローナ ル抗体の効果を調べた。モノクローナル抗体投与 2時間後に LPSとガラクトサミンを 加えて、マウスの生存を調べたところ、モノクローナル抗体無投与、抗 CD14モノクロ ーナル抗体、 MTS510では全部 24時間以内に死亡したのに対して、 Sal5— 21を 投与したマウスは、全く死ななカゝつた。 LPSで誘導される血中の腫瘍壊死因子 (TNF , Tumor necrosis factor)や IL— 12を測定したが、 Sal5— 21では抑制効果は全く認 められな力つた。インビトロでの LPS応答で、最も抑制効果を示した MTS510と Sal 5— 21との同時投与も、 MTS510単独と同様にほとんどエンドトキシンショック抑制効 果はな力つた。これらの結果は、 TLR4— MD— 2複合体を特異的に認識するモノクロ ーナル抗体 Sal5— 21によるエンドトキシンショック抑制効果は、 LPSの作用を単独 に遮断して 、るわけではなぐまったく新たな作用機構でエンドトキシンショックを防 ヽ でいる可能性が考えられた。本発明は以上の知見に基づき完成するに至ったもので ある。 [0017] The present inventors have produced two types of monoclonal antibodies against mouse TLR4-MD-2, MTS510 and Sal5-21. These monoclonal antibodies recognize different epitopes. The effect of suppressing B cell proliferation and macrophage cytoin production by LPS stimulation is the strongest when both monoclonal antibodies are added simultaneously. S is the strongest and MTS510 is the strongest. The inhibitory effect of Sal5-21 is the weakest. Helped. Next, using a mouse model of endotoxin shock, the effect of the monoclonal antibodies against the two monoclonal antibodies, CD14, was examined. Two hours after the administration of the monoclonal antibody, LPS and galactosamine were added, and the survival of the mice was examined.The absence of the monoclonal antibody, the anti-CD14 monoclonal antibody, and MTS510 all died within 24 hours. The administered mice were dead. Tumor necrosis factor (TNF) and IL-12 in blood induced by LPS were measured, but Sal5-21 showed no inhibitory effect at all. MTS510 and Sal showed the most inhibitory effect on LPS response in vitro Co-administration with 5-21 also exerted almost no endotoxin shock inhibitory effect, similar to MTS510 alone. These results indicate that the monoclonal antibody Sal5-21, which specifically recognizes the TLR4-MD-2 complex, suppresses endotoxin shock by blocking the action of LPS alone, not by a completely new mechanism of action. Thus, it was considered possible to prevent endotoxin shock. The present invention has been completed based on the above findings.
発明の開示  Disclosure of the invention
[0018] すなわち本発明は、(1)インビトロでの LPS刺激による、 B細胞の増殖抑制効果及 びマクロファージにおける TNF産生抑制効果を示さず、かつ、エンドトキシンショック に対して抑制効果を有することを特徴とする TLR4— MD— 2複合体を特異的に認識 するモノクローナル抗体や、(2)エンドトキシンショックに対して、 TNF産生を亢進す ることを特徴とする(1)記載の TLR4— MD— 2複合体を特異的に認識するモノクロ一 ナル抗体に関する。  [0018] That is, the present invention is characterized by (1) exhibiting no B cell growth inhibitory effect and no TNF production inhibitory effect on macrophages by LPS stimulation in vitro, and having an inhibitory effect on endotoxin shock. A monoclonal antibody that specifically recognizes the TLR4-MD-2 complex; and (2) the TLR4-MD-2 complex according to (1), which enhances TNF production in response to endotoxin shock. It relates to a monoclonal antibody that specifically recognizes the body.
[0019] また本発明は、(3) (1)又は(2)記載の TLR4— MD— 2複合体を特異的に認識する モノクローナル抗体を含有することを特徴とする TLR4— MD— 2複合体を標的とした エンドトキシンショックの予防.治療剤や、(4) (1)又は(2)記載の TLR4— MD— 2複 合体を特異的に認識するモノクローナル抗体を用いることを特徴とする TLR4— MD —2複合体を標的としたエンドトキシンショックの予防'治療方法に関する。  [0019] The present invention also provides (3) a TLR4-MD-2 complex comprising a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex according to (1) or (2). Prevention of endotoxin shock targeting TLR4-MD characterized by using a therapeutic agent or a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex described in (4) (1) or (2) The present invention relates to a method for the prevention and treatment of endotoxin shock targeting the -2 complex.
[0020] さらに本発明は、(5)マウス TLR4— MD— 2複合体を特異的に認識する抗マウス T LR4— MD— 2モノクローナル抗体 Sal5— 21や、(6)マウスにエンドトキシンショックを 生起させる前後に、マウス TLR4 - MD - 2複合体を特異的に認識する抗マウス TLR 4— MD— 2モノクローナル抗体 Sal5— 21と被検物質とをマウスに投与し、マウスのェ ンドトキシンショックの程度を評価することを特徴とするエンドトキシンショック抑制作用 の促進物質又は抑制物質のスクリーニング方法や、(7) (1)—(5)のいずれか記載 の TLR4— MD— 2複合体を特異的に認識するモノクローナル抗体を含有することを 特徴とする TLR4— MD— 2複合体を標的としたエンドトキシンショックの予防 ·治療剤 や、(8) (1)一 (5)の 、ずれか記載の TLR4— MD— 2複合体を特異的に認識するモ ノクローナル抗体を用いることを特徴とする TLR4— MD— 2複合体を標的としたエンド トキシンショックの予防 ·治療方法や、(9)マウスにエンドトキシンショックを生起させる 前後に、マウス TLR4— MD— 2複合体を特異的に認識する抗マウス TLR4— MD— 2 モノクローナル抗体 Sal 5—21と被検物質とをマウスに投与し、マウスのエンドトキシン ショックの程度を評価することを特徴とするエンドトキシンショック抑制作用の促進物 質又は抑制物質のスクリーニング方法に関する。 The present invention further provides (5) an anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21 which specifically recognizes a mouse TLR4-MD-2 complex, and (6) an endotoxin shock in mice. Before and after, mice were administered an anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21, which specifically recognizes the mouse TLR4-MD-2 complex, and a test substance, and the degree of endotoxin shock in the mice was evaluated. (7) A method for screening a substance that promotes or suppresses endotoxin shock, and (7) a monoclonal that specifically recognizes the TLR4-MD-2 complex according to any one of (1) to (5). A prophylactic or therapeutic agent for endotoxin shock targeting the TLR4-MD-2 complex characterized by containing an antibody, or TLR4-MD-2 described in (8) (1)-(5) Monoc that specifically recognizes the complex Characterized by using the Naru antibody TLR4-a MD-2 End complexes targeted Prevention and treatment of toxin shock and (9) Anti-mouse TLR4-MD-2 monoclonal antibody Sal 5-21, which specifically recognizes the mouse TLR4-MD-2 complex before and after the endotoxin shock occurs in mice The present invention relates to a method for screening a substance promoting or suppressing an endotoxin shock, which comprises administering a test substance to a mouse and evaluating the degree of endotoxin shock in the mouse.
図面の簡単な説明 Brief Description of Drawings
[図 1]第 1図は、本発明の抗 TLR4— MD— 2モノクローナル抗体 Sal5— 21が、マウス TLR4— MD— 2複合体に特異的な抗体であることを示す図である。 FIG. 1 shows that the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention is an antibody specific to a mouse TLR4-MD-2 complex.
[図 2]第 2図は、本発明の抗 TLR4— MD— 2モノクローナル抗体 Sal5— 21と、抗 TLR 4 MD— 2モノクローナル抗体 MTS510とが異なる抗原決定基を認識することを示 す、クロスブロッキングの結果を示す図である。 [FIG. 2] FIG. 2 is a cross-blocking diagram showing that the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention and the anti-TLR4MD-2 monoclonal antibody MTS510 recognize different antigenic determinants. It is a figure showing the result of.
[図 3]第 3図は、本発明の抗 TLR4— MD— 2モノクローナル抗体 Sal5— 21が、 LPS 刺激によるマウス脾臓細胞における増殖抑制効果を示さない結果を示す図である。  FIG. 3 is a graph showing the results of the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention showing no LPS-stimulated growth inhibitory effect on mouse spleen cells.
[図 4]第 4図は、本発明の抗 TLR4— MD— 2モノクローナル抗体 Sal5— 21が、 LPS 刺激によるマウスマクロファージにおける TNF産生抑制効果を示さない結果を示す 図である。 FIG. 4 is a graph showing the results of the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention showing no effect of LPS stimulation on suppressing TNF production in mouse macrophages.
[図 5]第 5図は、本発明の抗 TLR4— MD— 2モノクローナル抗体 Sal5— 21が、マウス エンドトキシンショックに対して、レスキュー効果を示す図である。  FIG. 5 is a diagram showing the rescue effect of the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention on mouse endotoxin shock.
[図 6]第 6図は、マウスエンドトキシンショックに対して、抗 CD14モノクローナル抗体が 全くレスキュー効果を示さない結果の図である。 [Fig. 6] Fig. 6 is a view showing the results of the anti-CD14 monoclonal antibody showing no rescue effect on mouse endotoxin shock.
[図 7]第 7図は、本発明の抗 TLR4— MD— 2モノクローナル抗体 Sal5— 21が、 LPSと ガラクトサミン投与後 1時間にお 、て、 TNFの産生量を 10倍近く亢進して 、ることを 示す図である。  [FIG. 7] FIG. 7 shows that the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention increased TNF production almost 10-fold 1 hour after administration of LPS and galactosamine. FIG.
[図 8]第 8図は、本発明の抗 TLR4— MD— 2モノクローナル抗体 Sal5— 21が、マウス TLR4— MD— 2複合体におけるマウス TLR4の N末端側の抗原決定基を認識するこ と、及び本発明の抗 TLR4— MD— 2モノクローナル抗体 TF904が、ヒト TLR4— MD— 2複合体におけるヒト TLR4の N末端側の抗原決定基を認識することを示す図である 発明を実施するための最良の形態 FIG. 8 shows that the anti-TLR4-MD-2 monoclonal antibody Sal5-21 of the present invention recognizes the N-terminal antigenic determinant of mouse TLR4 in the mouse TLR4-MD-2 complex, FIG. 2 shows that the anti-TLR4-MD-2 monoclonal antibody TF904 of the present invention recognizes an antigenic determinant on the N-terminal side of human TLR4 in a human TLR4-MD-2 complex. BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明の TLR4— MD— 2複合体を特異的に認識するモノクローナル抗体としては、 インビトロでの LPS刺激による、 B細胞の増殖抑制効果及びマクロファージにおける TNF産生抑制効果を示さず、かつ、エンドトキシンショックに対して抑制効果を有す るモノクローナル抗体、好ましくはエンドトキシンショックに対して、 TNF産生を亢進す るモノクローナル抗体、より好ましくは TLR4— MD—2複合体における TLR4の N末端 側の抗原決定基を認識するモノクローナル抗体であれば特に制限されるものではな く、かかるモノクローナル抗体は、ハイプリドーマ法(Nature 256, 495-497, 1975)、トリ ォーマ法、ヒト B細胞ハイプリドーマ法(Immunology Today 4, 72, 1983)、 EBV—ノヽィ ブリドーマ法(MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp.77- 96, Alan R.Liss, Inc., 1985)など任意の方法を用いて作製することができる。  [0022] The monoclonal antibody specifically recognizing the TLR4-MD-2 complex of the present invention does not exhibit the effect of suppressing LPS proliferation in vitro and the effect of suppressing TNF production in macrophages by LPS stimulation in vitro, and A monoclonal antibody having an inhibitory effect on endotoxin shock, preferably a monoclonal antibody that enhances TNF production against endotoxin shock, more preferably antigen determination on the N-terminal side of TLR4 in the TLR4-MD-2 complex The monoclonal antibody is not particularly limited as long as it recognizes a group. Such a monoclonal antibody may be a hybridoma method (Nature 256, 495-497, 1975), a trioma method, or a human B cell hybridoma method (Immunology Today). 4, 72, 1983), EBV-Nody Bridoma Method (MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp.77-96, Alan R.Liss, Inc., 1985) It can be produced using the methods.
[0023] また、一本鎖抗体をつくるために、一本鎖抗体の調製法 (米国特許第 4, 946, 778 号、米国特許第 5, 260, 203号、米国特許第 5, 091, 513号、米国特許第 5, 455 , 030号)を用いることができ、ヒト化抗体をつくるために、ヒト化抗体の調製法 (米国 特許第 5, 585, 089号、 Nature, 321, 522-525, 1986、 Protein Engineering, 4, 773-783, 1991)を用いることができ、キメラ抗体をつくるために、キメラ抗体の調製法( 米国特許第 4, 816, 567号、 Science, 229, 1202-1207, 1985、 BioTechniques, 4, 214, 1986、 Nature, 312, 643-646, 1984、 Nature, 314, 268.270, 1985)を用いること ができる。  [0023] In order to prepare a single-chain antibody, a method for preparing a single-chain antibody (US Pat. No. 4,946,778, US Pat. No. 5,260,203, US Pat. No. 5,091,513) No. 5,455,030), and for preparing a humanized antibody, a method for preparing a humanized antibody (U.S. Pat.No.5,585,089, Nature, 321, 522-525) 1986, Protein Engineering, 4, 773-783, 1991), and a method for preparing chimeric antibodies (US Pat. No. 4,816,567, Science, 229, 1202-1207). , 1985, BioTechniques, 4, 214, 1986, Nature, 312, 643-646, 1984, Nature, 314, 268.270, 1985).
[0024] 例えば、ハイプリドーマ法により本発明の TLR4— MD— 2複合体を特異的に認識す るモノクローナル抗体を作製するには、ヒト、マウス等に由来する TLR4— MD— 2を細 胞表面に発現する細胞又はその細胞膜断片を感作抗原とし、カゝかる抗原を用いて、 由来抗原とは異種のマウス、ラット等の哺乳動物に公知の免疫法により免疫し、免疫 した動物力 得られる脾細胞等の免疫細胞とマウス等のミエローマ細胞とを公知の細 胞融合法により細胞融合させ、公知のクローユング技術により目的とするモノクローナ ル抗体産生ハイブリドーマをクローユングし、このハイプリドーマを培養することにより 作製することができる。上記ヒト、マウス等に由来する TLR4— MD— 2を細胞表面に発 現する細胞又はその細胞膜断片としては、例えば、 LPS刺激あるいは遺伝子導入に より、ヒト、マウス等に由来する TLR4及び MD— 2を共発現させた細胞株やその細胞 膜断片を例示することができ、また、上記マウスのミエローマ細胞としては、 8—ァザグ ァニン耐性株を用いるのが有利であり、公知のものとしては、 BALB/Cマウスの P3 X 65Ag8株、 P3— NS1/1— Ag4— 1株、 P3 X 63AgUl株、 SP2Z〇Agl4株、 P3 X 63Ag8. 6. 5. 3株、 MPC11— 45. 6. TG1. 7株、 SP— 1株等を伊示すること力 S できる。 [0024] For example, to produce a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex of the present invention by the hybridoma method, TLR4-MD-2 derived from human, mouse, or the like is treated on the cell surface. A cell or its cell membrane fragment expressed as a sensitizing antigen is used as a sensitizing antigen, and a mammal, such as a mouse or a rat, different from the derived antigen is immunized with a known antigen by a known immunization method, and the immunized animal is obtained. Immune cells such as spleen cells and myeloma cells such as mice are fused by a known cell fusion method, the desired monoclonal antibody-producing hybridoma is cloned by a known cloning technique, and the hybridoma is cultured. It can be produced by The above-mentioned cells expressing TLR4-MD-2 derived from humans, mice, etc. on the cell surface or cell membrane fragments thereof include, for example, LPS stimulation or gene transfer Thus, a cell line co-expressing TLR4 and MD-2 derived from humans and mice, and cell membrane fragments thereof can be exemplified. Examples of the mouse myeloma cells include an 8-azaguanine-resistant cell line. It is advantageous to use, and as known ones, P3 X65Ag8 strain, P3-NS1 / 1-Ag4-1 strain, P3X63AgUl strain, SP2Z〇Agl4 strain, P3X63Ag8.6 strain of BALB / C mouse 5. 3 shares, MPC11-45. 6. TG1.7 shares, SP-1 share, etc.
[0025] 上記細胞融合は、例えば、ポリエチレングリコール(PEG)、センダイウィルス (HVJ) 等の融合促進剤の存在下に行われるが、融合効率を高めるためにジメチルスルホキ シド等の補助剤を使用することもできる。免疫細胞とミエローマ細胞との使用割合は、 例えば、ミエローマ細胞に対して、免疫細胞を 1一 10倍程度とするのが好ましい。ま た、細胞融合に用いる培地としては、例えば、ミエローマ細胞株の増殖に好適な RP Ml— 1640培地、 MEM培地等のこの種の細胞培養に使用される通常の培地が使用 することができる。細胞融合は、免疫細胞とミエローマ細胞との所定量を前記培地内 でよく混合し、予め 37°C程度に加温した PEG溶液、例えば、平均分子量 1, 000— 6 , 000程度の PEGを、通常、培地に約 30— 60% (WZV)の濃度で添カ卩し、混合す ることによって行われる。続いて、適当な培地を逐次添加し、遠心して上清を除去す る操作を繰り返すことにより目的とするモノクローナル抗体を産生するハイプリドーマ を作出することができる。  [0025] The above cell fusion is performed in the presence of a fusion promoter such as polyethylene glycol (PEG) and Sendai virus (HVJ). In order to enhance the fusion efficiency, an auxiliary agent such as dimethyl sulfoxide is used. You can also. The ratio of the use of the immune cells to the myeloma cells is preferably, for example, about 110 to 10 times the number of the immune cells to the myeloma cells. In addition, as a medium used for cell fusion, for example, an ordinary medium used for this type of cell culture, such as an RPMI-1640 medium and a MEM medium suitable for growing a myeloma cell line, can be used. For cell fusion, a predetermined amount of an immune cell and a myeloma cell are mixed well in the medium, and a PEG solution preliminarily heated to about 37 ° C., for example, PEG having an average molecular weight of about 1,000 to 6,000, Usually, it is added to the medium at a concentration of about 30-60% (WZV) and mixed. Subsequently, by repeatedly adding an appropriate medium and centrifuging to remove the supernatant, a hybridoma producing the desired monoclonal antibody can be produced.
[0026] クローンィ匕されたノ、イブリドーマから、本発明のモノクローナル抗体を採取するには 、当該ノ、イブリドーマを常法に従って培養し、その培養上清力も得る方法や、あるい はハイブリドーマをこれと適合性のある哺乳動物に投与して増殖させその腹水力 得 る方法などを例示することができる。こうして得られたモノクローナル抗体は、了フィニ ティークロマトグラフィー、塩析、ゲル濾過等の通常の精製手段を用いることにより高 純度に精製することができる。 [0026] In order to collect the monoclonal antibody of the present invention from the cloned or hybridoma, a method of culturing the hybridoma or hybridoma according to a conventional method to obtain the culture supernatant power, or a method of hybridizing the hybridoma or hybridoma is used. Examples of the method include a method of administering the compound to a compatible mammal, proliferating the compound, and obtaining ascites power. The monoclonal antibody thus obtained can be purified to a high degree of purity by using ordinary purification means such as affinity chromatography, salting out, and gel filtration.
[0027] 本発明の TLR4— MD— 2複合体を特異的に認識するモノクローナル抗体には、本 発明の抗 TLR4— MD— 2モノクローナル抗体のほ力 便宜上当該抗体の Fab断片や F (ab')断片等も含まれ、例えば、 Fab断片は抗体をパパイン等で処理することにより[0027] The monoclonal antibody that specifically recognizes the TLR4-MD-2 complex of the present invention includes the Fab fragment or F (ab ') of the anti-TLR4-MD-2 monoclonal antibody of the present invention for convenience. For example, Fab fragments are obtained by treating an antibody with papain or the like.
2 2
、また F (ab')断片はペプシン等で処理することにより調製することができる。 [0028] また上記抗 TLR4—MD— 2モノクローナル抗体に、例えば、 FITC (フルォレセイン イソシァネート)又はテトラメチルローダミンイソシァネート等の蛍光物質や、 125i、 32P、The F (ab ') fragment can be prepared by treating with pepsin or the like. [0028] The anti-TLR4-MD-2 monoclonal antibody may be added to a fluorescent substance such as FITC (fluorescein isocyanate) or tetramethylrhodamine isocyanate, 125 i, 32 P,
"C、 35S又は3 H等のラジオアイソトープや、アルカリホスファターゼ、ペルォキシダー ゼ、 j8—ガラクトシダーゼ又はフィコエリトリン等の酵素で標識したものや、グリーン蛍 光タンパク質 (GFP)等の蛍光発光タンパク質などを融合させた融合タンパク質を用 いること〖こよって、上記 TLR4— MD— 2複合体の機能解析を行うことができる。また免 疫学的測定方法としては、 RIA法、 ELISA法、蛍光抗体法、プラーク法、スポット法 、血球凝集反応法、ォクタ口-一法等の方法を挙げることができる。 Fusing radioisotope such as C, 35 S or 3 H, labeled with an enzyme such as alkaline phosphatase, peroxidase, j8-galactosidase or phycoerythrin, or a fluorescent protein such as green fluorescent protein (GFP). By using the fusion protein, functional analysis of the TLR4-MD-2 complex can be performed, and immunological measurement methods include RIA, ELISA, fluorescent antibody, plaque, Examples of the method include a spot method, a hemagglutination method, and an Octa-mouth method.
[0029] 本発明の TLR4— MD— 2複合体を特異的に認識するモノクローナル抗体として、具 体的には、マウス TLR4— MD— 2複合体におけるマウス TLR4の N末端側の抗原決 定基を特異的に認識する抗マウス TLR4— MD— 2モノクローナル抗体 Sal5— 21や、 ヒト TLR4の N末端側の抗原決定基を特異的に認識する抗ヒト TLR4モノクローナル 抗体 TF904を挙げることができる。モノクローナル抗体 Sal5— 21は、 LPS (リピド A) であら力じめ刺激しておいたマウスの TLR4— MD— 2複合体を発現する正常ラット腎 臓細胞を用いて、ラットの脚パッドにおいて免疫し、 1週間後、リンパ節から得た免疫 細胞と SP2Z0ミエローマ細胞とを融合させ、その培養上清力 マウスの TLR4— MD 2を発現するマウス IL 3依存性細胞株 BaZF3と特異的に反応するハイブリドーマ を選択し、例えば、この選択したハイプリドーマをヌードマウスの腹腔に投与し、得ら れた腹水力も力プリル酸を用いて精製することにより、モノクローナル抗体 Sal5— 21 を得ることができる。またモノクローナル抗体 TF904は、 LPS (リピド A)であら力じめ 刺激しておいたヒト TLR4-MD-2複合体を発現するマウス IL-3依存性細胞株 Ba ZF3を用いてマウス腹腔に 3回免疫したのち脾臓力も得た免疫細胞と SP2Z0ミエ口 一マ細胞とを融合させ、その培養上清力 ヒトの TLR4— MD—2を発現するマウス IL 3依存性細胞株 BaZF3と特異的に反応するハイブリドーマを選択し、例えば、この 選択したノ、イブリドーマをヌードマウスの腹腔に投与し、得られた腹水力も力プリル酸 を用いて精製することにより、モノクローナル抗体 TF904を得ることができる。なお、 モノクローナノレ抗体 TF904産生ノヽイブリドーマ (Mouse anti-human hybridoma TF904)は、 2004年 9月 7日に受領番号 FERM 八 ?—10118として、国際寄託当 局である独立行政法人産業技術総合研究所 特許性物寄託センターに受託されて いる。 As the monoclonal antibody of the present invention specifically recognizing the TLR4-MD-2 complex, specifically, an antigenic determinant on the N-terminal side of mouse TLR4 in the mouse TLR4-MD-2 complex is specified. Anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21, which specifically recognizes, and anti-human TLR4 monoclonal antibody TF904, which specifically recognizes an antigenic determinant on the N-terminal side of human TLR4. Monoclonal antibody Sal5-21 was immunized in rat leg pads with normal rat kidney cells expressing the TLR4-MD-2 complex of mice, which had been predominantly stimulated with LPS (lipid A). One week later, the hybridoma that fuses SP2Z0 myeloma cells with immunocytes obtained from lymph nodes and reacts specifically with the mouse IL3-dependent cell line BaZF3 expressing the TLR4-MD2 mouse mouse The monoclonal antibody Sal5-21 can be obtained by, for example, administering the selected hybridoma to the abdominal cavity of a nude mouse and purifying the obtained ascites power using force prillic acid. In addition, the monoclonal antibody TF904 was injected three times into the mouse peritoneal cavity using the mouse IL-3-dependent cell line Ba ZF3 expressing the human TLR4-MD-2 complex, which had been stimulated with LPS (lipid A). Immunization of SP2Z0 myeloma cells after immunization with spleen strength and fusion with SP2Z0 myeloma cells Specific reaction with mouse IL3-dependent cell line BaZF3 expressing human TLR4-MD-2 A monoclonal antibody TF904 can be obtained by selecting a hybridoma and, for example, administering the selected hybridoma and / or hybridoma to the abdominal cavity of a nude mouse and purifying the resulting ascites power using force prillic acid. The monoclonal anti-human hybridoma TF904 producing monoclonal antibody TF904 was received on September 7, 2004, with the receipt number FERM VIII? — International deposit as 10118 It is entrusted to the bureau, the National Institute of Advanced Industrial Science and Technology (AIST) Patentable Material Depositary Center.
上記抗マウス TLR4— MD— 2モノクローナル抗体 Sal5— 21と同様なェピトープ、 すなわち TLR4— MD— 2複合体における TLR4の N末端側の抗原決定基を特異的 に認識するヒト型モノクローナル抗体、例えば抗ヒト TLR4モノクローナル抗体 TF90 4を用いると、全く新しいタイプのエンドトキシンショックの予防 ·治療方法が可能となる  An epitope similar to the above-mentioned anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21, that is, a humanized monoclonal antibody that specifically recognizes the N-terminal antigenic determinant of TLR4 in the TLR4-MD-2 complex, such as an anti-human Using TLR4 monoclonal antibody TF904 enables a completely new type of endotoxin shock prevention and treatment
[0030] すなわち、本発明の TLR4—MD— 2複合体を標的としたエンドトキシンショックの予 防'治療剤は、カゝかる本発明のヒト型抗ヒト TLR4モノクローナル抗体、例えば抗ヒト T LR4モノクローナル抗体 TF904を含有するものであり、本発明の TLR4—MD— 2複 合体を標的としたエンドトキシンショックの予防'治療方法は、力かる本発明のヒト型抗 ヒト TLR4モノクローナル抗体、例えば抗ヒト TLR4モノクローナル抗体 TF904を用い ることを特徴とする。 That is, the therapeutic agent for preventing or preventing endotoxin shock targeting the TLR4-MD-2 complex of the present invention is a human anti-human TLR4 monoclonal antibody of the present invention, for example, an anti-human TLR4 monoclonal antibody. The method for preventing endotoxin shock of the present invention, which contains TF904 and targets the TLR4-MD-2 complex, is a powerful anti-human TLR4 monoclonal antibody of the present invention, for example, an anti-human TLR4 monoclonal antibody. It is characterized by using TF904.
[0031] 上記本発明の TLR4— MD— 2複合体を特異的に認識するモノクローナル抗体、例 えば抗マウス TLR4— MD— 2モノクローナル抗体 Sal5— 21や抗ヒト TLR4モノクロ一 ナル抗体 TF904を用いると、エンドトキシンショック抑制作用の促進物質や抑制物質 を有利にスクリーニングすることが可能になる。例えば、マウスに、モノクローナル抗 体 Sal5— 21を腹腔内投与し、 2時間後にガラ外サミンと LPSを腹腔内投与してェン ドトキシンショックを誘導し、マウスの生存数をモノクローナル抗体 Sal5— 21未投与 の対照と比較することにより、あるいは、マウスに、モノクローナル抗体 Sal 5—21を腹 腔内投与し、 2時間後にガラ外サミンと LPSを腹腔内投与し、 LPSとガラ外サミン投 与後 1時間の血中の TNFを ELISAで測定し、血中 TNF濃度を Sa 15— 21未投与の 対照と比較することにより、エンドトキシンショック抑制作用の促進物質や抑制物質を 有利にスクリーニングすることができる。  [0031] Using a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex of the present invention, for example, an anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21 or an anti-human TLR4 monoclonal antibody TF904, It is possible to advantageously screen for substances that promote or suppress endotoxin shock. For example, the monoclonal antibody Sal5-21 was administered intraperitoneally to mice, and two hours later, extra-galactosamine and LPS were administered intraperitoneally to induce endotoxin shock. Mice were given an intraperitoneal injection of the monoclonal antibody Sal 5-21, 2 hours later, were given ip with extragalamine and LPS, and 1 hour after LPS and extragalamine administration. By measuring the TNF in the blood over time by ELISA and comparing the TNF concentration in the blood with a control not administered with Sa15-21, it is possible to advantageously screen for a substance that promotes or suppresses endotoxin shock.
[0032] 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこ れらの例示に限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples, but the technical scope of the present invention is not limited to these examples.
実施例 1  Example 1
[0033] (試薬、マウス) 大腸菌由来のリポ多糖 (LPS)、サルモネラ 'ミネソタ由来のリピド A、 D ガラクトサミ ンは Sigma (St. Louis, MO)から購入した。マウスは日本 SLCから BALB/cマウス(5 —10週齢で使用)を購入した。ハイプリドーマ増殖用の ICR ヌードマウス (CD— 1 (I CR) -nu)は、 日本チャールズリバ一より購入した。 [0033] (Reagent, mouse) Escherichia coli-derived lipopolysaccharide (LPS) and Salmonella's Minnesota-derived lipid A, D galactosamine were purchased from Sigma (St. Louis, MO). Mice purchased BALB / c mice (5-10 weeks old) from Japan SLC. ICR nude mice (CD-1 (ICR) -nu) for hybridoma propagation were purchased from Charles River Japan.
[0034] (モノクローナル抗体の構築) (Construction of monoclonal antibody)
マウス TLR4— MD— 2、ヒト TLR4—MD— 2及び CD 14に対するモノクローナル抗体 を構築した。免疫源として用いる、マウス TLR4とマウス MD— 2、並びにマウス CD14 を共発現する正常ラット腎臓細胞と、ヒト TLR4とヒト MD— 2を共発現するマウス IL 3 依存性細胞株 BaZF3とを文献(Current Protocols in Molecular Biology, 9.3.1)記載 の方法に準じてそれぞれ作製した。 1 μ g/mlのリピド Αであら力じめ刺激しておいた 、マウス CD14及びマウス TLR4— MD— 2を発現する正常ラット腎臓細胞ラットの脚パ ッドにおいて免疫し、 1週間後、リンパ節から得た免疫細胞と SP2Z0ミエローマ細胞 とを融合させ、その培養上清力 マウスの TLR4— MD— 2又は CD14を発現するマウ ス IL-3依存性細胞株 BaZF3と特異的に反応するハイプリドーマを選択し、抗マウス TLR4— MD— 2モノクローナル抗体 Sal5— 21及び抗マウス CD14モノクローナル抗 体 Sa2— 8 (ラット IgG2aZk)を得た。またモノクローナル抗体 TF904は、 LPS (リピド A)であらかじめ刺激してお!、たヒト TLR4—MD— 2複合体を発現するマウス IL—3依 存性細胞株 BaZF3を用いてマウス腹腔に 3回免疫したのち脾臓力も得た免疫細胞 と SP2Z0ミエローマ細胞とを融合させ、その培養上清力 ヒトの TLR4—MD— 2を発 現するマウス IL 3依存性細胞株 BaZF3と特異的に反応するハイプリドーマ (Mouse anti-human hybridoma TF904;FERM ABP— 10118)を選択し、抗ヒト TLR4モノ クローナル抗体 TF904を得た。また、これらモノクローナル抗体は、選択したハイブリ ドーマを ICRヌードマウス(CD— 1 (ICR)— nu、 日本チャールズリバ一より購入)の腹 腔に投与し、得られた腹水力 力プリル酸を用いて精製した。  Monoclonal antibodies against mouse TLR4-MD-2, human TLR4-MD-2 and CD14 were constructed. The literature describes the normal rat kidney cells co-expressing mouse TLR4, mouse MD-2 and mouse CD14 and the mouse IL3-dependent cell line BaZF3 co-expressing human TLR4 and human MD-2, which are used as immunogens. Protocols in Molecular Biology, 9.3.1). Normal rat kidney cells expressing mouse CD14 and mouse TLR4-MD-2, which had been stimulated with 1 μg / ml lipid ら, were immunized in the leg pad. A hybridoma that fuses SP2Z0 myeloma cells with the immune cells obtained from the nodule and specifically reacts with the mouse IL-3-dependent cell line BaZF3 expressing mouse TLR4-MD-2 or CD14 in the culture supernatant. Was selected to obtain an anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21 and an anti-mouse CD14 monoclonal antibody Sa2-8 (rat IgG2aZk). The monoclonal antibody TF904 was stimulated with LPS (lipid A) in advance! And the mouse peritoneal cavity was immunized three times with the mouse IL-3-dependent cell line BaZF3 expressing the human TLR4-MD-2 complex. After that, the immune cells that also obtained spleen strength were fused with SP2Z0 myeloma cells, and the culture supernatant of the hybridoma that specifically reacted with the mouse IL3-dependent cell line BaZF3 expressing human TLR4-MD-2 Mouse anti-human hybridoma TF904; FERM ABP-10118) was selected to obtain an anti-human TLR4 monoclonal antibody TF904. In addition, these monoclonal antibodies were used to administer the selected hybridomas to the peritoneal cavity of ICR nude mice (CD-1 (ICR) -nu, purchased from Charles River Japan), and to use the ascites hydropurilic acid obtained. Purified.
[0035] (エンドトキシンショックの誘導) (Induction of endotoxin shock)
マウスに D—ガラクトサミン 25mgと LPS500ngを腹腔に投与し、その生存を経時的 にモニターした。各モノクローナル抗体は D—ガラクトサミンと LPSの併投与の 2時間 前に腹腔に投与した。 [0036] (B細胞精製、活性化) Mice were given 25 mg of D-galactosamine and 500 ng of LPS intraperitoneally and their survival was monitored over time. Each monoclonal antibody was administered intraperitoneally 2 hours before co-administration of D-galactosamine and LPS. [0036] (B cell purification, activation)
マウス脾臓 B細胞は Dynaビーズ (DYNAL)に抗 CD43抗体 S7をつけたものを用 いて T細胞を除去することで精製した。精製した B細胞は 96穴プレートに 2 X 105/ゥ エルで蒔き、 LPSで刺激した。培養 3日目にトリチウム標識のサイミヂンを加え、 6時 間皿に培養した後にその DNAをグラスフィルターに回収し、取り込まれたトリチウム のカウントを測定することで、増殖反応を測定した。 Mouse spleen B cells were purified by removing T cells using Dyna beads (DYNAL) with anti-CD43 antibody S7. The purified B cells were seeded at 2 × 10 5 / で in a 96-well plate and stimulated with LPS. On the third day of the culture, tritium-labeled thymidine was added, and after culturing in a dish for 6 hours, the DNA was collected on a glass filter, and the count of the incorporated tritium was measured to measure the proliferation reaction.
[0037] (サイト力イン産生)  [0037] (Production of site force)
サイト ·イン産生を、 ELIS A (Enzyme- linked lmmunoadsoroent assay)は Biosource Internationalのキットを用いて測定した。  Cytoin production was measured by ELIS A (Enzyme-linked lmmunoadsoroent assay) using a kit from Biosource International.
[0038] (細胞の染色)  [0038] (Staining of cells)
細胞は抗体で染色した後にフローサイトメーター(ベタトンディッキンソン、 FACScan )を用いて解析した。  The cells were stained with an antibody and analyzed using a flow cytometer (Betaton Dickinson, FACScan).
[0039] (Sal5— 21はマウス TLR4— MD— 2複合体に特異的な抗体である)  [0039] (Sal5-21 is an antibody specific for the mouse TLR4-MD-2 complex)
マウス TLR4— MD— 2に対する新たに確立した抗体 Sa 15— 21抗原特異性を調べ た。 TLR4— MD— 2及び TLR4— MD— 2をそれぞれ発現した細胞株 BaZF3を、モノ クローナル抗体 Sal5— 21を用いて染色した後、フローサイトメーターを用いて解析し た。結果を図 laに示す。図 laにおいて、白抜きのヒストグラムは Sal5— 21をカ卩えて Vヽな 、サンプルの結果を示す。 TLR4 (上段)及び MD— 2 (中段)を発現する細胞に おいては、 Sal5— 21抗体による染色は認められなかった力 TLR4—MD—2 (下段) を発現させた細胞株の表面のみが Sal5— 21抗体で染色され、モノクローナル抗体 S a 15— 21が TLR4— MD— 2複合体に特異的な抗体であることを確認した。  The specificity of the newly established antibody Sa15-21 antigen against mouse TLR4-MD-2 was examined. The cell lines BaZF3 expressing TLR4-MD-2 and TLR4-MD-2 respectively were stained with the monoclonal antibody Sal5-21, and analyzed using a flow cytometer. The results are shown in Figure la. In FIG. La, the white histogram shows the results of samples obtained by slicing Sal5-21. In cells expressing TLR4 (upper) and MD-2 (middle), staining with Sal5-21 antibody was not observed. Only the surface of the cell line expressing TLR4-MD-2 (lower) was detected. Staining with the Sal5-21 antibody confirmed that the monoclonal antibody Sa15-21 was an antibody specific to the TLR4-MD-2 complex.
[0040] 次に、 TLR4、 TLR4— MD— 2、 CD14と TLR4、 CD14と TLR4— MD— 2をそれぞ れ発現する細胞株 BaZF3をフラッグに対する抗体 (上段)、あるいは Sal5— 21 (下 段)で免疫沈降し、電気泳動後、沈降した TLR4を TLR4に対するポリクローナル抗 体で検出した。結果を図 lbに示す。これら免疫沈降の結果は、モノクローナル抗体 S al5— 21が TLR4— MD— 2複合体に特異的な抗体であることを示している。  [0040] Next, the cell line BaZF3 expressing TLR4, TLR4-MD-2, CD14 and TLR4, and CD14 and TLR4-MD-2, respectively, was used as an antibody against the flag (upper panel) or Sal5-21 (lower panel). After immunoprecipitation and electrophoresis, the precipitated TLR4 was detected with a polyclonal antibody against TLR4. The results are shown in FIG. The results of these immunoprecipitations indicate that the monoclonal antibody Sal5-21 is an antibody specific for the TLR4-MD-2 complex.
[0041] (抗マウス TLR4— MD—2抗体、 MTS510と Sal5—21はそれぞれ異なる抗原決定 基に結合する) 本発明者らが、すでに確立して 、る抗マウス TLR4— MD—2モノクローナル抗体 M TS510と、今回新しく確立した抗マウス TLR4— MD— 2モノクローナル抗体 Sal5— 2 1とが、認識する抗原決定基の異同を、 TLR4— MD— 2を発現する細胞表面でのクロ スブロッキング(cross- blocking)〖こより調べた。前処理なし(上段)、あるいは MTS 51 0 (中段)か Sal5— 21 (下段)で前処理した、 TLR4-MD-2を発現する細胞株 BaZ F3を、ピオチン化した MTS510 (左)又は Sal5— 21 (右)で染色した。結果を図 2に 示す。図 2において、白抜きのヒストグラムはピオチン化抗体を加えていないサンプル の結果を示す。どちらのモノクローナル抗体も互 、の結合を前処理でブロックできな V、ことから、互いに異なる抗原決定基を認識して 、ることがわ力つた。 [0041] (Anti-mouse TLR4-MD-2 antibody, MTS510 and Sal5-21 bind to different antigenic determinants, respectively) The antigen determinants recognized by the anti-mouse TLR4-MD-2 monoclonal antibody MTS510, which has already been established by the present inventors, and the newly established anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21 The difference between the two was examined by cross- blocking on the surface of cells expressing TLR4-MD-2. MTS510 (left) or Sal5— in which TLR4-MD-2 expressing cell line BaZ F3 was pre-treated without pretreatment (top), or pretreated with MTS510 (middle) or Sal5—21 (bottom). Stained at 21 (right). The result is shown in figure 2. In FIG. 2, the open histogram shows the result of the sample to which no biotinylated antibody was added. Both monoclonal antibodies could not block the binding of each other by pretreatment V, indicating that they recognized different antigenic determinants.
[0042] (LPS刺激によるマウス脾臓細胞増殖に対する抗体の効果)  (Effect of Antibody on LPS-stimulated Mouse Spleen Cell Proliferation)
インビトロでの LPS応答に対する Sa 15-21の影響を調べるために、 LPS刺激によ る B細胞の増殖を調べた。 B細胞をリピド A(lOOngZml)存在下又は非存在下で培 養し、 B細胞に取り込まれたトリチウムのカウントを測定することで、その増殖を測定し た。結果を図 3に示す。リピド A非存在下で培養した場合、脾臓 B細胞の増殖は誘導 されなかった。 LPS刺激による B細胞増殖の抑制は、 Sal5— 21単独では認められな かったが、 MTS510単独では弱い抑制効果が認められた。また、 MTS510と Sal5 —21の併用で最も強 、抑制効果が認められた。  To examine the effect of Sa 15-21 on the LPS response in vitro, we examined the proliferation of B cells upon LPS stimulation. B cells were cultured in the presence or absence of lipid A (100ngZml), and the proliferation was measured by measuring the count of tritium incorporated into the B cells. The results are shown in Figure 3. When cultured in the absence of lipid A, proliferation of spleen B cells was not induced. The suppression of B cell proliferation by LPS stimulation was not observed with Sal5-21 alone, but a weak inhibitory effect was observed with MTS510 alone. In addition, the combination of MTS510 and Sal5-21 showed the strongest and inhibitory effect.
[0043] (LPS刺激による、マウスマクロファージ細胞の TNF産生に及ぼすモノクローナル抗 体の効果)  (Effect of monoclonal antibody on LPS-stimulated TNF production in mouse macrophage cells)
インビトロでの LPS応答に対する Sa 15-21の影響を調べるために、 LPS刺激によ るマウスマクロファージ細胞(RAW264. 7)における TNF産生量を調べた。リピド A( IngZml)でマクロファージ細胞を刺激し、又は刺激せず、その上清中の TNFを ELI SAで測定した。結果を図 4に示す。リピド Aで刺激しなカゝつた場合、マウスマクロファ ージによる TNF産生はほとんど認められなかった。 LPSでマウスマクロファージを刺 激した場合、 Sal5— 21や MTS510それぞれ単独ではそれほどの TNF産生抑制効 果は認められなかった力 MTS510と Sal5— 21の併用や MTS510と抗 CD14抗 体の併用で、マウスマクロファージによる TNF産生抑制効果が認められた。  To examine the effect of Sa 15-21 on the in vitro LPS response, the amount of TNF produced in LPS-stimulated mouse macrophage cells (RAW 264.7) was examined. Macrophage cells were stimulated with or without lipid A (IngZml), and TNF in the supernatant was measured by ELISA. Fig. 4 shows the results. In the absence of lipid A stimulation, little mouse macrophage TNF production was observed. When LPS-stimulated mouse macrophages, Sal5-21 and MTS510 alone did not have a significant TNF production inhibitory effect.The combined use of MTS510 and Sal5-21 or the combination of MTS510 and anti-CD14 The effect of suppressing TNF production by macrophages was observed.
[0044] (マウスエンドトキシンショックに対する抗体の効果 1) インビボにおける抗 TLR4—MD— 2モノクローナル抗体の効果を明らかにするため に、エンドトキシンショックをガラクトサミンと LPSで誘導し、抗体の効果を調べた。マウ ス一匹あたり抗体 100 gずつ腹腔内投与し、 2時間後にガラクトサミン 25mgと LPS 500ngを腹腔内投与してエンドトキシンショックを誘導し、マウスの生存数の経時変 化により、マウスエンドトキシンショックに対する抗体の効果を調べた。結果を図 5に示 す。 MTS510、 MTS510と Sal5— 21の併用など、 LPS抑制効果がインビトロで認 められた抗体ではわずかなレスキュー効果しか認められなかった。しかしながら LPS 抑制効果のない Sal 5—21単独投与で、すべてのマウスがエンドトキシンショックから 救われることがわかった。 (Effect of Antibody on Mouse Endotoxin Shock 1) To clarify the effect of the anti-TLR4-MD-2 monoclonal antibody in vivo, endotoxin shock was induced by galactosamine and LPS, and the effect of the antibody was examined. The mice were intraperitoneally administered with 100 g of antibody per mouse, and 2 hours later, 25 mg of galactosamine and 500 ng of LPS were intraperitoneally induced to induce endotoxin shock. The effect was investigated. Figure 5 shows the results. Antibodies with in vitro LPS suppression effects, such as MTS510 and a combination of MTS510 and Sal5-21, showed only a slight rescue effect. However, it was found that administration of Sal 5-21 alone, which had no LPS inhibitory effect, rescued all mice from endotoxin shock.
[0045] (マウスエンドトキシンショックに対する抗体の効果 2) (Effect of Antibody on Mouse Endotoxin Shock 2)
CD14に対する抑制効果もエンドトキシンショックを抑制する効果があることが報告 されている。そこでインビボにおける抗 CD14モノクローナル抗体の効果を明らかに するために、エンドトキシンショックをガラクトサミンと LPSで誘導し、抗体の効果を調 ベた。マウス一匹あたり抗体 100 /z gずつ腹腔内投与し、 2時間後にガラクトサミン 25 mgと LPS500ngを腹腔内投与してエンドトキシンショックを誘導し、マウスの生存数 の経時変化により、マウスエンドトキシンショックに対する抗体の効果を調べた。結果 を図 6に示す。その結果、抗 CD14モノクローナル抗体は、全くレスキュー効果を認 めなかった。  It has been reported that the inhibitory effect on CD14 also has the effect of suppressing endotoxin shock. Therefore, in order to clarify the effect of the anti-CD14 monoclonal antibody in vivo, endotoxin shock was induced by galactosamine and LPS, and the effect of the antibody was examined. Intraperitoneal injection of 100 / zg of antibody per mouse, and 2 hours later, intraperitoneal administration of 25 mg of galactosamine and 500 ng of LPS to induce endotoxin shock. Was examined. Figure 6 shows the results. As a result, the anti-CD14 monoclonal antibody did not show any rescue effect.
[0046] (ガラクトサミンと LPS投与一時間後のマウス血清中の TNF産生)  (Production of TNF in mouse serum one hour after administration of galactosamine and LPS)
抗 TLR4— MD— 2モノクローナル抗体によるエンドトキシンショック抑制効果の作用 機序を明らかにするために、 LPSとガラクトサミン投与後 1時間の血中の TNFを測定 した。マウスに、 Sal5— 21を腹腔内投与し、 2時間後にガラクトサミンと LPSを腹腔内 投与し、 LPSとガラクトサミン投与後 1時間の血中の TNFを ELISAで測定した結果 を図 7に示す。インビトロでの LPS刺激によるマウスマクロファージ細胞における TNF 産生の抑制は Sal5— 21でもほかの抗体でもほとんど認められなかった(図 4)力 ィ ンビボにおいては Sal5— 21のみが TNFの産生量を 10倍近く亢進していることがわ かった。  To clarify the mechanism of the effect of the anti-TLR4—MD—2 monoclonal antibody on the effect of suppressing endotoxin shock, TNF in blood was measured 1 hour after LPS and galactosamine administration. Sal5-21 was intraperitoneally administered to mice, galactosamine and LPS were administered intraperitoneally 2 hours later, and TNF in the blood 1 hour after LPS and galactosamine administration was measured by ELISA. FIG. 7 shows the results. In vitro, LPS-stimulated suppression of TNF production in mouse macrophage cells was scarcely observed with either Sal5-21 or other antibodies (Fig. 4). In vivo, only Sal5-21 increased TNF production by nearly 10-fold. It was found to be exacerbated.
[0047] これらの結果は、 TLR4— MD— 2に対する抗体 Sal 5—21がエンドトキシンショックを はじめ、 LPSが関与する疾患の治療に有効であることを示している。またその作用機 序は単なる LPS応答の抑制ではなぐまつたく新たな機序によることが予想される。 [0047] These results indicate that Sal 5-21, an antibody against TLR4-MD-2, caused endotoxin shock. Initially, it has been shown to be effective in treating diseases associated with LPS. In addition, the mechanism of action is expected to be due to a new mechanism that is not simply LPS response suppression.
[0048] (抗 TLR4— MD— 2モノクローナル抗体の抗原決定基) [0048] (antigenic determinant of anti-TLR4—MD-2 monoclonal antibody)
抗マウス TLR4— MD— 2抗体 Sa 15— 21及び MTS 510の抗原決定基、並びに抗ヒ ト TLR4— MD—2モノクローナル抗体 TF904の抗原決定基のロケーションについて 調べた。 293T細胞株(human kidney cell-line with T- antigen)に、リポフエクタミン( lipofectamine)により TLR4及び MD— 2を一過性にトランスフエクシヨンした細胞を用 いて各抗体で染色した結果を図 8に示す。図 8中、最上段は(1)マウス TLR4全長及 びマウス MD— 2を、 2段目は(2)マウス TLR4N末端側 ·ヒト TLR4C末端側キメラ cD NA (Cytoplasmic deleted)及びマウス MD— 2を、 3段目は(3)ヒト TLR4N末端側 ·マ ウス TLR4C末端側キメラ cDNA (Cytoplasmic deleted)及びマウス MD— 2を、 4段目 は(4)ヒト TLR4全長及びヒト MD— 2を、それぞれトランスフエタトした結果を示して!/ヽ る。 Sal5— 21及び MTS510はピオチン化抗体で、 TF904はハイブリドーマ上清を 用いて染色した。  The locations of the antigenic determinants of the anti-mouse TLR4-MD-2 antibody Sa 15-21 and MTS 510 and of the anti-human TLR4-MD-2 monoclonal antibody TF904 were examined. Fig. 8 shows the results of staining the 293T cell line (human kidney cell-line with T-antigen) with cells using TLR4 and MD-2 transiently transfected with lipofectamine using lipofectamine. . In FIG. 8, the top row shows (1) mouse TLR4 full length and mouse MD-2, and the second row shows (2) mouse TLR4N-terminal / human TLR4C-terminal chimeric cDNA (Cytoplasmic deleted) and mouse MD-2. The third row transfects (3) human TLR4 N-terminal and mouse TLR4 C-terminal chimeric cDNA (Cytoplasmic deleted) and mouse MD-2, and the fourth row transfects (4) human TLR4 full length and human MD-2, respectively. Show the result of fate! Sal5-21 and MTS510 were stained using a biotinylated antibody, and TF904 was stained using a hybridoma supernatant.
[0049] 図 8において、白抜きのヒストグラムは、モノクローナノレ抗体 Sal 5— 21、 MTS510、 T F904を加えて!/ヽな 、サンプルの結果を示す。抗マウス TLR4— MD— 2モノクローナ ル抗体 Sal5— 21は、上記(1)及び(2)と反応し、(3)及び (4)とは反応しないことか ら、マウス TLR4— MD— 2複合体におけるマウス TLR4の N末端側の抗原決定基を 認識することがわかる。これに対して、抗マウス TLR4—MD— 2モノクローナル抗体 M TS510は、上記(1)及び(3)と反応し、(2)及び (4)とは反応しないことから、マウス T LR4— MD— 2複合体におけるマウス TLR4の C末端側の抗原決定基を認識すること がわかる。また、抗ヒト TLR4モノクローナル抗体 TF904は、上記(3)及び (4)と反応 し、(1)及び(2)とは反応しないことから、ヒト TLR4の N末端側の抗原決定基を認識 することがゎカゝる。  [0049] In Fig. 8, the white histogram shows the results of the sample with the addition of the monoclonal nano antibody Sal5-21, MTS510, and TF904! / !. The anti-mouse TLR4-MD-2 monoclonal antibody Sal5-21 reacts with the above (1) and (2) but does not react with (3) and (4). It can be seen that it recognizes the antigenic determinant on the N-terminal side of mouse TLR4 in the body. On the other hand, the anti-mouse TLR4-MD-2 monoclonal antibody MTS510 reacts with the above (1) and (3) but does not react with (2) and (4). It can be seen that the two complexes recognize the antigenic determinant on the C-terminal side of mouse TLR4. In addition, since the anti-human TLR4 monoclonal antibody TF904 reacts with the above (3) and (4) but does not react with (1) and (2), it must recognize the antigenic determinant on the N-terminal side of human TLR4.ゎ ゎ
産業上の利用可能性  Industrial applicability
[0050] 本発明によると、 TLR4—MD— 2に対するモノクローナル抗体をあら力じめ投与して おくと、 LPSによるエンドトキシンショックを回避できる。 LPSレセプターに対するモノ クローナル抗体がエンドトキシンショックを回避できるという知見は抗体による治療法 となるとともに、抗体によるエンドトキシンショック回避機構を解析することで、従来考 慮されなかった新たなエンドトキシンショック治療の標的分子の同定につながることが 期待される。さらには免疫賦活剤である LPSの認識防御機構の解析が生体内免疫 賦活機構の解明に直結することから、免疫監視の基盤とその維持 ·制御と 、う当領域 の研究に資することができる。 According to the present invention, endotoxin shock due to LPS can be avoided if the monoclonal antibody against TLR4-MD-2 is administered as much as possible. The finding that a monoclonal antibody against LPS receptor can avoid endotoxin shock is a therapeutic method with antibodies In addition, analysis of the mechanism of endotoxin shock avoidance by antibodies is expected to lead to the identification of new target molecules for endotoxin shock therapy that were not considered before. Furthermore, since the analysis of the recognition and defense mechanism of LPS, which is an immunostimulant, is directly linked to the elucidation of the immune activation mechanism in vivo, it is possible to contribute to the base of immune surveillance, its maintenance and control, and research in this area.
18 18
A2U-05PCT A2U-05PCT
PCT  PCT
紙面による写し(注意:電子データが原本となります)  Copy on paper (Note: Electronic data will be the original)
[この用紙は、国際出願の一部を構成せず、国際出願の用紙の枚数に算入しない]  [This form does not form part of the international application and is not counted in the number of sheets for the international application]
Figure imgf000019_0001
Figure imgf000019_0001
1 下記の表示は癸明の詳細な説明中に記載  1 The following display is included in the detailed description
された微生物又は生物材料に関連している  Related to microorganisms or biological material
1-1 段落番号 0029  1-1 paragraph number 0029
寄託の表示  Indication of deposit
寄託機関の名称 I P0D 独立行政法人産業技術総合研究所特許生物寄 託センター(I P0D)  Depositary institution name I P0D Patent Organism Depositary Center, National Institute of Advanced Industrial Science and Technology (I P0D)
寄託機関のあて名 〒305-8566 日本国茨城県つくぱ市東 1丁目 1番地 1 中央第 6  Address of the depositary organization 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan 1 Chuo No. 6
寄託の B付 2004年 09月 07日 (07. 09. 2004)  With deposit B September 07, 2004 (07.09. 2004)
受託番号 I P0D FERM ABP-10118  Accession number I P0D FERM ABP-10118
1-5 この表示を行うための指定国 すべての指定国 受理官庁記入欄  1-5 Designated States for making this indication All Designated States Receiving Office entry
0-4 この用紙は国際出願とともに受理した  0-4 This form was received with the international application
(はい/いいえ)  (Yes, No)
0-4-1 権限のある職員 国際事務局記入欄  0-4-1 Authorized staff International Bureau entry
0-5 この用紙が国際事務局に受理された日  0-5 Date this form was accepted by the International Bureau
0-5-1 権限のある職員  0-5-1 Authorized staff
替え用 ¾ (幾則 26) Replacement ¾ (26)

Claims

請求の'範囲 The scope of the claims
[1] インビトロでの LPS刺激による、 B細胞の増殖抑制効果及びマクロファージにおける TNF産生抑制効果を示さず、かつ、エンドトキシンショックに対して抑制効果を有す ることを特徴とする TLR4—MD— 2複合体を特異的に認識するモノクローナル抗体  [1] TLR4-MD-2 characterized by not exhibiting the effect of suppressing B cell proliferation and TNF production in macrophages by LPS stimulation in vitro, and having the effect of suppressing endotoxin shock. Monoclonal antibody that specifically recognizes the complex
[2] エンドトキシンショックに対して、 TNF産生を亢進することを特徴とする請求項 1記載 の TLR4 -MD- 2複合体を特異的に認識するモノクローナル抗体。 [2] The monoclonal antibody specifically recognizing the TLR4-MD-2 complex according to claim 1, which enhances TNF production in response to endotoxin shock.
[3] TLR4 -MD- 2複合体における TLR4の N末端側の抗原決定基を認識する請求項[3] a claim recognizing an antigenic determinant on the N-terminal side of TLR4 in the TLR4-MD-2 complex
1又は 2記載の TLR4— MD— 2複合体を特異的に認識するモノクローナル抗体。 A monoclonal antibody that specifically recognizes the TLR4-MD-2 complex according to 1 or 2.
[4] マウス TLR4— MD— 2複合体におけるマウス TLR4の N末端側の抗原決定基を特 異的に認識する抗マウス TLR4 -MD- 2モノクローナル抗体 Sa 15— 21。 [4] An anti-mouse TLR4-MD-2 monoclonal antibody Sa15-21 that specifically recognizes the N-terminal antigenic determinant of mouse TLR4 in the mouse TLR4-MD-2 complex.
[5] ヒト TLR4の N末端側の抗原決定基を特異的に認識する抗ヒト TLR4モノクローナル 抗体 TF904。 [5] An anti-human TLR4 monoclonal antibody TF904 that specifically recognizes an antigenic determinant at the N-terminal side of human TLR4.
[6] ヒト TLR4の N末端側の抗原決定基を特異的に認識する抗ヒト TLR4モノクローナル 抗体 TF904を産生するハイプリドーマ(FERM ABP— 10118)。  [6] A hybridoma (FERM ABP-10118) that produces an anti-human TLR4 monoclonal antibody TF904 that specifically recognizes an antigenic determinant on the N-terminal side of human TLR4.
[7] 請求項:!〜 5の ヽずれか記載の TLR4— MD— 2複合体を特異的に認識するモノク ローナル抗体を含有することを特徴とする TLR4 -MD- 2複合体を標的としたェン ドトキシンショックの予防 ·治療剤。 [7] Claim: Targeting the TLR4-MD-2 complex, which contains a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex according to any one of! To 5 Prevention and treatment of endotoxin shock.
[8] 請求項:!〜 5のいずれか記載の TLR4—MD— 2複合体を特異的に認識するモノク ローナル抗体を用いることを特徴とする TLR4— MD— 2複合体を標的としたエンドト キシンショックの予防'治療方法。 [8] Claim: An endotoxin targeting a TLR4-MD-2 complex, which comprises using a monoclonal antibody that specifically recognizes the TLR4-MD-2 complex according to any one of! Prevention of 'shock' treatment.
[9] マウスにエンドトキシンショックを生起させる前後に、マウス TLR4— MD— 2複合体を 特異的に認識する抗マウス TLR4 -MD- 2モノクローナル抗体 S a 15— 21と被検 物質とをマウスに投与し、マウスのエンドトキシンショックの程度を評価することを特徴 とするエンドトキシンショック抑制作用の促進物質又は抑制物質のスクリーユング方法 [9] Before and after inducing endotoxin shock in mice, mice were administered an anti-mouse TLR4-MD-2 monoclonal antibody Sa15-21, which specifically recognizes the mouse TLR4-MD-2 complex, and a test substance And evaluating the extent of endotoxin shock in the mouse.
差替え甩 (規則 26) Substitution 甩 (Rule 26)
PCT/JP2004/014194 2003-11-17 2004-09-28 Endotoxin shock medicine for tlr4-md-2 composite as target WO2005047330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515401A JPWO2005047330A1 (en) 2003-11-17 2004-09-28 Endotoxin shock therapeutic agent targeting TLR4-MD-2 complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003387173 2003-11-17
JP2003-387173 2003-11-17

Publications (1)

Publication Number Publication Date
WO2005047330A1 true WO2005047330A1 (en) 2005-05-26

Family

ID=34587417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014194 WO2005047330A1 (en) 2003-11-17 2004-09-28 Endotoxin shock medicine for tlr4-md-2 composite as target

Country Status (2)

Country Link
JP (1) JPWO2005047330A1 (en)
WO (1) WO2005047330A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110678A2 (en) * 2004-12-10 2007-10-04 Novimmune S.A. Neutralizing antibodies and methods of use thereof
US7674884B2 (en) 2003-12-10 2010-03-09 Novimmune S.A. Neutralizing antibodies and methods of use thereof
US8029794B2 (en) 2004-12-10 2011-10-04 Novimmune S.A. Combining therapies targeting multiple toll-like receptors

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AKASHI, S. ET AL.: "Cutting Edge: Cell Surface Expression and Lipopolysaccharide Signaling Via the Toll-Like Receptor 4-MD-2 Complex on Mouse Peritoneal Macrophages", J.IMMUNOL., vol. 164, no. 7, 2000, pages 3471 - 3475, XP002984222 *
AKASHI, S. ET AL.: "Lipopolysaccharide Interaction with Cell Surface Toll-like Receptor 4-MD-2: Higher Affinity than That with MD-2 or CD14", J.EXP.MED., vol. 198, no. 7, October 2003 (2003-10-01), pages 1035 - 1042, XP002984220 *
KAWASAKI, K. ET AL.: "Identification of Mouse MD-2 Residues Important for Forming the Cell Surface TLR4-MD-2 Complex Recognized by Ant-TLR4-MD-2 Antobodies, and for Conferring LPS and Taxol Responsiveness on Mouse TLR4 by Alanine-Scanning Mutagenesis", J. IMMUNOL., vol. 170, no. 1, January 2003 (2003-01-01), pages 413 - 420, XP002984224 *
MIYAKE, K. ET AL.: "Innate recognition of lipopolysaccharide by CD14 and toll-like receptor 4-MD-2: unique roles for MD-2", INT. IMMUNOPHARMACOL., vol. 3, no. 1, January 2003 (2003-01-01), pages 119 - 128, XP002984221 *
OPITZ, B. ET AL.: "Toll-like Receptor-2 Mediates Treponema Glycolipid and Lipoteichoic Acid-induced NF-kappaB Translocation", J. BIOL. CHEM., vol. 276, no. 25, 2001, pages 22041 - 22047, XP002984223 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674884B2 (en) 2003-12-10 2010-03-09 Novimmune S.A. Neutralizing antibodies and methods of use thereof
US7744884B2 (en) 2003-12-10 2010-06-29 Novimmune S.A. Neutralizing antibodies and methods of use thereof
US8106018B2 (en) 2003-12-10 2012-01-31 Novimmune S.A. Chimeric toll-like receptor/MD-2 polypeptides and methods of use thereof
US8105595B2 (en) 2003-12-10 2012-01-31 Novimmune S.A. Methods of using neutralizing anti-TLR4/MD2 antibodies
US9534049B2 (en) 2003-12-10 2017-01-03 Novimmune S.A. Neutralizing antibodies and methods of use thereof
US9540444B2 (en) 2003-12-10 2017-01-10 Novimmune S.A. Neutralizing antibodies and methods of use thereof
US10023646B2 (en) 2003-12-10 2018-07-17 NovImmunie S.A. Neutralizing antibodies and methods of use thereof
US10844132B2 (en) 2003-12-10 2020-11-24 Novimmune Sa Neutralizing antibodies and methods of use thereof
WO2007110678A2 (en) * 2004-12-10 2007-10-04 Novimmune S.A. Neutralizing antibodies and methods of use thereof
WO2007110678A3 (en) * 2004-12-10 2008-02-28 Novimmune Sa Neutralizing antibodies and methods of use thereof
US8029794B2 (en) 2004-12-10 2011-10-04 Novimmune S.A. Combining therapies targeting multiple toll-like receptors
EP3511344A1 (en) * 2004-12-10 2019-07-17 NovImmune S.A. Neutralizing antibodies and methods of use thereof

Also Published As

Publication number Publication date
JPWO2005047330A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP3523650B2 (en) Novel protein and method for producing the same
US8883977B2 (en) MUC1 antibody
US8722856B2 (en) Anti-MUC1 antibody
KR101304243B1 (en) Cancer-Rejection Antigen Peptide Derived from Glypican-3(GPC-3) for Use in HAL-A2 Positive Patient and Pharmaceutical Comprising the Same
JP6476170B2 (en) Anti-MUC1 antibody or antigen-binding fragment thereof and use thereof
WO2018097951A1 (en) Anti-mage-a3/a6 antibodies
US8435530B2 (en) Methods for suppressing activity of activated interferon-producing cells
KR20020047288A (en) Antibody to human gastrointestinal epithelial tumor antigen related to alpha6beta4 integrin
WO2003048302A2 (en) Identifying anti-tumor targets or agents by lipid raft immunization and proteomics
JP4452839B2 (en) Pharmaceutical composition containing a CXCR3 inhibitor
WO2003106499A1 (en) Antibody and inhibitor and transformation method and transformation kit using the same
EP1536006A1 (en) Cancer antigens and utilization thereof
JP2010524475A (en) Functional epitope of osteopontin, monoclonal antibody that specifically binds to it, and uses
JP4651495B2 (en) Monoclonal antibody specifically reacting with ISG15 protein, hybridoma producing the same, and method for detecting cancer and virus infection
WO2005047330A1 (en) Endotoxin shock medicine for tlr4-md-2 composite as target
JP2006502409A (en) Monoclonal antibodies for bioconformic analysis
CN111378039B (en) Antibody for treating malignant tumor and application thereof
JP3920556B2 (en) Abbreviated midkine (tMK) protein-specific monoclonal antibody and use thereof
US20210199667A1 (en) Analysis of soluble tlr7 in human-derived sample
CN117510636B (en) GPRC5D antibody and application thereof
CN117025547B (en) Hybridoma cell strain for producing anti-B7H 3 monoclonal antibody and application thereof
JPH0693A (en) Monoclonal antibody
EP4257608A1 (en) Antibody specific for cd47 and use thereof
WO2005021792A1 (en) Preventive or remedy for inflammatory bowel diseases containing anti-cd81 antibody as the active ingredient
CN114516916A (en) Monoclonal antibody against GPR65, hybridoma cell strain secreting antibody and application

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515401

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase