WO2005043708A1 - 環境的観点よりコロナ放電の発生を抑止する電力系統システム - Google Patents

環境的観点よりコロナ放電の発生を抑止する電力系統システム Download PDF

Info

Publication number
WO2005043708A1
WO2005043708A1 PCT/JP2004/016153 JP2004016153W WO2005043708A1 WO 2005043708 A1 WO2005043708 A1 WO 2005043708A1 JP 2004016153 W JP2004016153 W JP 2004016153W WO 2005043708 A1 WO2005043708 A1 WO 2005043708A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
corona discharge
transmission
power system
transmission line
Prior art date
Application number
PCT/JP2004/016153
Other languages
English (en)
French (fr)
Inventor
Takeo Sonobe
Original Assignee
Takeo Sonobe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeo Sonobe filed Critical Takeo Sonobe
Priority to EP04793254A priority Critical patent/EP1691461A4/en
Priority to JP2005515185A priority patent/JP3984631B2/ja
Priority to US10/578,604 priority patent/US7447567B2/en
Publication of WO2005043708A1 publication Critical patent/WO2005043708A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to a power system and a power system operation method, and relates to a power system that suppresses corona discharge from an environmental point of view and prevents ultraviolet rays harmful to the human body, and a system thereof. It is an object of the present invention to provide a computer program used for a computer, a computer-readable recording medium storing the computer program, a server storing the program, and a power system operation method.
  • FIG. 8 is a basic configuration diagram of a large-scale power system.
  • a large-scale power system basically consists of facilities that generate, transport, and distribute electricity.
  • the power system consists mainly of distribution facilities consisting of power plants and transmission lines, 'substation' distribution lines, etc., and power supply and communication equipment corresponding to the nervous system for maintaining normal operating conditions.
  • Equipped with a control device.
  • the power system includes power plants Gl, G2, ..., Gn, and transmission lines Hl, H2, ...,! 3 ⁇ 4, Substation Tl, ⁇ 2, ⁇ ⁇ ⁇ ,! 3 ⁇ 4 !, Linkage transmission lines Cl, C2, ..., Cj, distribution lines Dl, D2, ..., Dh, distribution system Ul, U2, ..., Ua I do.
  • Power plants Gl, G2, ..., Gn consist of nuclear power plants, hydroelectric power plants, thermal power plants, and so on. These power plants will be constructed far from the major urban area, which is a demand area due to difficulties in location.
  • the generated power is transformed into high voltage (50 OKV, 275KV, 220KV, 187KV, etc.) to reduce transmission loss, and transmitted to the suburbs of large cities by the power transmission lines Hl, H2,..., Hk.
  • the power transmitted to the suburbs of the big city is substation Tl, ⁇ 2, ⁇ ⁇ ⁇ 3 ⁇ 4 !, Linked with the transmission lines Cl, C2, ⁇ ⁇ ⁇ Cj of the link system. This is to eliminate the imbalance in supply and demand in each region and to supply economically stable power by integrating with various power sources in the grid.
  • the integrated power is transformed to low voltage via substations T1, T2, ⁇ ⁇ ⁇ , Tm (154KV-22KV) and transmitted to distribution lines Dl, D2, ⁇ ⁇ ⁇ Dh. Power is transmitted to Ul, U2, ..., Ua and supplied to each customer.
  • Electric power system systems have been studied for many years, and stable power supply has been made, which has become an important foundation of today's civilized society. Research has also been conducted on the corona discharge that occurs when power is transmitted and distributed at high voltage, and it has been put into practical use.In a power transmission and distribution system, the occurrence of corona discharge does not occur under normal weather conditions. Considered.
  • the risk for childhood leukemia with a high-voltage transmission line distance of 50 m or less showed a significant increase based on 100 m or more.
  • the adjusted odds ratio for the risk of childhood leukemia is 1.56 (95%) for the categories 50 to 100m and less than 50m, respectively, assuming that the distance to the nearest power line is more than 100m.
  • The% confidence intervals were 0.87-2.91) and 3.26 (95% confidence intervals: 1.39—7.54).
  • ALL alone it was 1.36 (95% CI: 0.70-2.65) and 3.68 (95% CI: 1.47-9.21), respectively. This suggests an increase in risk near high-voltage transmission lines.
  • Ultraviolet rays are generated by corona discharge. Corona discharge develops as corona discharge, brush corona, and hoss corona as voltage increases. Ultraviolet rays are generated by the generation of glow corona. In the daytime, it may not be visible even if it occurs due to the influence of sunlight. Collision between electrons and nitrogen molecules results in ionized molecules with an ionization voltage corresponding to a wavelength of 80 nm, which is excited to a resonance voltage corresponding to a wavelength of 202.3 nm. Therefore, from the Frank-Condon principle, it is thought that ultraviolet rays with a slightly longer wavelength than these are generated. If the kinetic energy of the accelerated electrons is large, the collision will excite the higher energy order and emit an electromagnetic wave with a shorter wavelength.
  • Non-Patent Document 11 ultraviolet rays of 315 nm, 337 nm, 357 nm, 391 nm, and 427 nm are emitted by a glow discharge, and ultraviolet rays of 315 nm, 337 nm, and 357 nm are emitted by a streamer corona discharge.
  • ultraviolet rays of 82.6 nm to 124.2 nm are emitted (Non-Patent Document 12).
  • Ozone, NO gas, and N02 gas are also generated by corona discharge.
  • ultraviolet rays of 230 nm and 240 nm are emitted due to NO gas.
  • nitrogen molecules and oxygen molecules are ionized, and electrons are attached.
  • the corona discharge voltage fluctuates greatly even if the weather environment, transmission lines are damaged or water droplets are formed.
  • Corona discharge which has been regarded as a problem in the past, produces corona noise that interferes with radio and television.
  • the problem is the power of corona noise that can be heard as a loud noise and the loss of corona that occurs at even higher voltages. Attention was not paid to the fact that ultraviolet light was generated during the gro-corona stage.
  • Corona discharge is characterized in that the electric field voltage is reduced by the start of the discharge, and is sustained for a long time. Therefore, those who are nearby are more likely to receive UV irradiation for a long time.
  • WHO Material 205 also considers noise, ozone and corona. However, it is probable that the discussion was carried out without the recognition that ultraviolet light would be generated by corona discharge. The text only states, "The noise level and ozone concentration have no effect on health.” There is no mention of ultraviolet light, which also generates corona discharge power. If not, we think that this factor should be discussed again. Ultra-low-frequency magnetic fields are also generated during power transmission from high-voltage transmission lines, but harmful ultraviolet rays are also generated when corona discharge occurs.
  • UV light had a reputation for being good for health at one time, and it was a power that was not generally considered a problem.
  • the effect of ultraviolet rays on health has become a problem, and has an effect on the skin, eyes, and immune system.
  • children are at risk for these risks due to exposure to ultraviolet light, and a WHO recommendation was issued in July 2001 as N-261.
  • N-261 a WHO recommendation was issued in July 2001 as N-261.
  • an electromagnetic wave of wavelength ⁇ has an energy of hcZ ⁇ .
  • h Planck's constant
  • c the speed of light.
  • Ultraviolet light has a very large energy due to its short wavelength, and has enough energy to destroy DNA in living organisms (Non-Patent Document 17).
  • UV rays include UV-A (400 nm to 315 nm), UV-B (315 nm to 280 nm), and UV-C (280 nm power to 100 nm) in order of longer wavelength.
  • UV-A and UV-B Ultraviolet light from sunlight is absorbed by oxygen and ozone in the atmosphere, and UV-A and UV-B, whose intensity is weakened, are not observed on the surface. Therefore, the health effects of UV radiation are usually reported! UV-A and UV-B that partially reached the surface! UV-B UV radiation is harmful and has been reported to damage DNA and reduce immune function.
  • the UV-C is used as a disinfectant and exposure of the human body to UV-C is extremely dangerous. As described above, UV-B and UV-C are also included in ultraviolet rays that also generate corona discharge power. UV-B is absorbed by ozone, and UV-C is absorbed by ozone and oxygen atoms.
  • UV-B leaves the area where corona discharge occurs, it reaches far away because its concentration in the atmosphere is low.
  • UV-C is rapidly absorbed by oxygen molecules that are quite abundant on the surface. And still reach 200-300m. Therefore, the residents are exposed to the ultraviolet rays (especially UV-B, UV-C) for a long time because corona discharge may continue for a long time. It is thought to have a significant effect.
  • UV rays are generated even in the vigorous corona stage, which has not been considered a problem in the past. They also contain UV-B and UV-C ultraviolet rays that are harmful to the human body. If residents live nearby, symptoms similar to harmful UV exposure are expected. Ultraviolet rays are also classified as "possibly carcinogenic to humans" according to WHO document No. 263.
  • the purpose of suppressing corona discharge is mainly to prevent damage to power equipment, prevent radio wave interference to broadcasting equipment, and suppress corona loss.
  • Patent Document 1 JP-A-11-038078
  • Patent Document 2 JP-A-10-038957
  • Non-Patent Document 1 The Institute of Electrical Engineers of Japan, "Electrical Engineering Handbook, 6th Edition", 485-486 pages, 1005-11023 pages, 1225-1226 pages.
  • Non-Patent Document 2 The Institute of Electrical Engineers of Japan, “Ionized Gas Theory”, pp. 28-51, 103-114.
  • Non-Patent Document 3 World Health Organization (WHO) Material N0.263 Electromagnetic Fields and Public Health Very Low Frequency and Cancer.
  • Non-Patent Document 4 World Health Organization (WHO) Material NO.205 Electromagnetic Fields and Public Health Very Low Frequency (ELF).
  • WHO World Health Organization
  • ELF Electromagnetic Fields and Public Health Very Low Frequency
  • Non-Patent Document 5 World Health Organization (WHO) Material N-261 Protecting Children from Ultraviolet Radiation
  • Non-Patent Document 6 National Institute for Environmental Studies "Study on Evaluation of Children's Health Risks by Electromagnetic Fields in Living Environment,” Masanori Kabu
  • Non-Patent Document 7 Central Research Institute of Electric Power Industry “Electric Power Research Institute Review No. 47”, page 56.
  • Non-Patent Document 8 Central Research Institute of Electric Power Industry “Corona noise of power transmission lines” T01 Mitsuo Fukushima.
  • Non-Patent Document 9 Central Research Institute of Electric Power Industry, "Corona characteristics of UHV AC transmission line” T04 Sasano et al.
  • Non-Patent Document 10 Maruzen Co., Ltd. “Molecular Biology”, Seiichi Tanuma, 81 pages.
  • Non-Patent Document 11 Muroran Institute of Technology "Decomposition of Benzene in Exhaust Gas by Corona Discharge Plasma” Takanori Sato and others
  • Non-patent literature 12 ⁇ TaDles of vacuum ultraviolet emission band systems of molecular nitorogen from 82.6 to 124.2nm '' J-- Y. Roncin and F. Launay A & A Supplement series, Vol. 128, march 1 1998, 361--36 2
  • Non-Patent Document 13 Texas Instruments ⁇ Use of Spectrograph—based OES for 3 ⁇ 4i Etch Selectivity and Endpoint Optimization jF.G. Celii and C. Huffman el.all
  • Non-patent document 14 UV health guidance manual, Ministry of the Environment website
  • Non-Patent Document 15 DHC Publication "Child, Skin and Sun” Masamitsu Takahashi
  • Non-Patent Document 16 http: ZZwww. Intl—light.com ⁇ Light Measurement Hand book j Alex Ryer
  • Non-Patent Document 17 Tokyo Chemical Doujinshi, "Atkins Physics Danigaku (2)", P.W.ATKINS, translated by Hideaki Chihara and others
  • the problem to be solved is to systematically suppress the generation of corona discharges that generate ultraviolet rays that cause human health problems (for example, cause childhood leukemia), while stabilizing the power supply.
  • the purpose of the present invention is to provide a power system that can be performed by using a power system.
  • the corona discharge starting voltage fluctuates depending on weather conditions, the degree of damage when the transmission line is connected, and weathering conditions. For this reason, it is not economical to transmit and distribute power at a low voltage in the entire system as in the case where no corona discharge occurs, because the power transmission capacity is significantly limited.
  • data of items related to the start of corona discharge is stored in advance in the storage means for each transmission line, and weather forecast data is input to the computer for each region at regular intervals,
  • a computer calculates a corona discharge start expected voltage for each transmission line. If the corona discharge start expected voltage is lower than the normal transmission voltage, the pre-stored countermeasure voltage is used as the set transmission voltage for that transmission line. For all power lines! Calculate and set the set transmission voltage, and input the set transmission voltage to the power system analysis means.
  • the power system analysis means analyzes the load on each device of the system based on the set transmission voltage. According to the result of analysis Direct specific measures to each device. As a result, power is supplied stably to consumers without corona discharge.
  • a detecting means for detecting the occurrence of corona discharge in a nearby power line such as a human residence, a work place, and the like, and a transmitting means for transmitting a detection result are provided.
  • the detection result is transmitted to the power system analysis means.
  • the power system analysis means analyzes the burden on each device and all transmission lines to supply stable power, based on the premise that measures should be taken to reduce the voltage of the transmission lines where corona discharge occurred or take measures to stop the transmission.
  • the analysis result is sent to each device. As a result, the generation of ultraviolet rays harmful to humans can be stopped in a short time and the power can be supplied stably.
  • weather data input means for inputting weather data such as temperature, pressure, and weather in the area where each transmission line is laid
  • storage means for storing data of each transmission line, calculation results, and each transmission line Calculation means to calculate the corona discharge starting voltage of each power line to determine the set transmission voltage for each power transmission
  • a device that can adjust the transmission voltage of each transmission line to the set transmission voltage, and power system analysis means.
  • the burden on each device belonging to the system is calculated by the power system analysis means, and commands are given to each device based on the analysis results, and power is transmitted at the set transmission voltage at which corona discharge is not expected to occur. The occurrence of corona discharge can be effectively suppressed.
  • weather data input means for inputting weather data such as temperature, pressure, and weather of each transmission line
  • storage means for storing data of each transmission line
  • calculation of a corona discharge starting voltage of each transmission line Calculating means to determine the transmittable voltage of each power transmission Means for inputting weather data, calculating the corona discharge start expected voltage of each transmission line based on the weather data, and the calculated corona. If the predicted discharge start voltage is lower than the normal transmission voltage, set the countermeasure voltage to low.If the calculated corona discharge start voltage exceeds the normal transmission voltage, set the normal transmission voltage.
  • a computer program is configured that includes a step of setting a set transmission voltage and a step of outputting or transmitting a set transmission voltage of all transmission lines. In the integrated power automation system in operation, the operation is performed under the condition that power is transmitted at the set transmission voltage that is expected not to cause corona discharge on all transmission lines determined by the computer program of the present invention. Economical ⁇ Corona discharge can be effectively suppressed.
  • a corona discharge occurrence detecting means is provided near a place where a person lives, a work place, or the like, and the detection result is transmitted to the power system analyzing means. It is characterized in that corona discharge is stopped in a short time by lowering the power or stopping power transmission, and stable power is supplied by recalculating the power transmission path in the power system and transmitting power.
  • the corona discharge detecting means is constituted by an element for detecting electromagnetic waves at the ultraviolet level. The device is configured to receive ultraviolet rays generated by corona discharge from the transmission line from which the element is to be detected.
  • FIG. 1 is a block diagram of a power system according to the embodiment of the present invention.
  • FIG. 2 is a flowchart showing the contents of the processing of the calculating means of the present invention.
  • Fig. 3 shows an example of weather forecast data
  • Fig. 4 shows an example of transmission line data
  • Fig. 5 shows an example of set transmission voltage of each transmission line.
  • the weather data input unit 7, the arithmetic unit 8, and the storage unit 9 are added to the basic configuration of the power system shown in FIG. 8 described in the background of the specification. Become. Furthermore, in the basic configuration, the power system analysis means 10 and the transmission voltage adjustment means 1 1 must be changed so that it can be operated at the set transmission voltage described later.
  • the weather data input means 7 is a means for inputting weather forecast data as shown in FIG. 3 to the calculation means 8 via a communication line, and connects a commercially available modem (for example, NEC Aterm IT21L) to a personal computer. This can be achieved by:
  • the arithmetic means 8 is an apparatus for performing the processing shown in FIG.
  • the power system analysis means 10 is composed of a high-speed computer corresponding to the size of the power system.However, as described above, the required transmission Or issue a control signal.
  • the transmission voltage adjusting means 11 has a function of transmitting power at the set transmission voltage, and can be configured by a load-time voltage adjustment transformer capable of switching taps without a power failure. The transmission voltage adjusting means 11 can be omitted from the system when two or more transmission lines are laid in parallel and power can be supplied even if power transmission on one of the transmission lines is stopped.
  • the processing contents of the arithmetic means 8 will be described with reference to FIG.
  • the arithmetic means 8 first sets n to 1 (S10).
  • the calculating means 8 reads the weather forecast data by the weather data input means 7 (S20).
  • the weather forecast data is temperature, pressure, and weather data for each transmission line installation area, and it is desirable to input and calculate it every two hours.
  • the data of the transmission line 21 recorded first is read by the storage means 9 (S30).
  • Figure 4 shows data examples of each transmission line.
  • the data of each transmission line includes whether or not to use corona discharge suppression, whether or not to use past data, the normal transmission voltage, the installation area, the power factor mO determined by the transmission line design, and the countermeasure voltage. It is remembered.
  • the data on whether or not corona discharge is to be suppressed was used as data because some transmission lines may be laid in the area of humans, or may be laid in areas, and it is not necessary to target the area for human health. is there. Deciding whether or not to use past data is important if you are actually observing corona discharge, it is better to include the conditions and data. Because it is. Since transmission lines can span long distances, the installation area may be more than one area.
  • the calculation means 8 makes a decision based on the read data as to whether or not to use past data. When the past data is used, the stored past data is used as the discharge starting voltage (S60).
  • the corona discharge starting voltage Vo of the transmission line is calculated by inputting weather forecast data′transmission line data into a calculation formula (S 70).
  • ml is a weather coefficient
  • 1.0 is taken for rain, snow, and fog at the time of clearing.
  • MO wire surface coefficient
  • k constant determined by the configuration of the transmission line
  • r radius of the conductor constituting the transmission line
  • b atmospheric pressure (hPa)
  • t temperature (C).
  • the corona discharge starting voltage Vo and the normal transmission voltage Vn are compared (S80). If the corona discharge starting voltage Vo is lower than the normal transmission voltage Vn by an equivalent amount, a countermeasure voltage lower than the previously stored corona discharge starting voltage Vo is set (S90). Otherwise, the normal transmission voltage Vn is set (S100) o, and the set transmission voltage of the first transmission line is stored in the storage means 9 (S110). Next, the power set for all the transmission lines is determined (S120). If the setting is made for all the transmission lines, if not, one is added to n (S130) and the data of the next transmission line is read (S30). ).
  • the transmission voltage of the transmission lines is set in order, and if the voltage of all transmission lines (phase voltage of 22 KV or more where corona discharge is expected) is set, all transmission lines are set. Is transmitted to the power system analysis means 10. [0039]
  • the power system analysis means 10 determines the load on each device in the system on the basis of the set voltage of all transmission lines. Based on the result, the load of each device is instructed, and the voltage of the transmission line is adjusted by the transmission voltage adjusting means 11. As a result, the occurrence of corona discharge is suppressed in advance. Therefore, generation of ultraviolet rays due to corona discharge harmful to the human body is suppressed. On the other hand, since the power system is analyzed in advance, stable power supply is provided.
  • the present invention is realized as a program having the same functions as those shown in FIG. 2 and operating on a computer having weather data input means, storage means, calculation means, and output means. You can do it. In this case, the same effect can be obtained by inputting the set transmission voltage of all transmission lines calculated using the program to the power system.
  • the present invention can also be realized by providing a computer readable recording medium storing the computer program or a server storing the program to an electric power company.
  • FIG. 6 is a block diagram of a power system showing another embodiment. This embodiment also has a configuration in which a corona discharge detection unit 12, a calculation unit 13, and a transmission unit 14 are added to the basic configuration of the power system shown in FIG. Furthermore, in the basic configuration, it is necessary to improve the power system analysis means 10-2 and the transmission voltage adjustment means 11-2 to operate as described later.
  • the corona discharge detecting means 12 is a means for detecting that corona discharge has occurred in the transmission line.
  • the corona discharge detecting means 12 is most preferably an ultraviolet detecting element installed near a place where a person lives, since it has little influence on a power system conventionally used. It is desirable for the UV detector to have a Solar-Blind Vacuum Photodiode at the moment, but it can also be realized by a semiconductor photodiode, photoelectron tube, photoconductive sensor, photovoltaic sensor, etc. be able to .
  • a special filter can be used to distinguish ultraviolet light from daytime solar power, so that ultraviolet light from the sun can be blocked and only ultraviolet light due to corona discharge can be detected.
  • the corona discharge detection means 12 detects 32 Onm (UV-C, UV-B) from a wavelength lOOnm which is particularly harmful to the human body among ultraviolet rays, and thereby more effectively generates harmful corona discharge. It can also detect whether or not there is. Further, the corona discharge detecting means 12 can be realized by means for detecting corona noise or means for detecting corona noise.
  • the calculating means 13 is means for converting the information detected by the corona discharge detecting means 12 into information required by the upper power system analyzing means 10-2.
  • the calculation means 13 can be realized by a circuit using a commercially available microphone computer and accompanying software.
  • the transmitting means 14 is means for transmitting the information converted by the calculating means 13 to the power system analyzing means 10-2.
  • the transmitting means 14 may be wired or wireless, or other alternative means.
  • the corona discharge detecting means 12 detects the occurrence of corona discharge in the transmission line to be monitored, the occurrence is converted by the arithmetic means 13 into information required by the power system analysis means 10-2. Is done.
  • the converted information is transmitted by transmission means 14 to power system analysis means 10-2.
  • the power system analysis means 10-2 analyzes other conditions necessary for the power system based on the transmitted information, determines the load on each device, and issues a command to each device. As part of this, a command is also issued to the transmission voltage adjustment means 11-2. Transmission voltage adjusting means 11-12 lowers the transmission voltage based on the command.
  • the information is transmitted to the power system analysis means 10-2 again from the information from the corona discharge detection means 12 and the information stored in the calculation means 13.
  • the power system analysis means 10-2 analyzes other conditions necessary for the power system based on the information sent again, determines the load on each device, and issues a command to each device.
  • the transmission voltage adjusting means 11-12 further reduces the transmission voltage based on the command. As a result, the transmission voltage drops and corona discharge stops. Therefore, generation of ultraviolet rays due to corona discharge harmful to the human body is stopped in a short time.
  • the power system is analyzed before the transmission voltage is reduced, so that stable power supply is performed.
  • weather condition detecting means 16 is added to the configuration of FIG.
  • the meteorological condition detecting means 12 is a means for detecting a meteorological condition such as temperature, pressure, humidity, etc., which affects the voltage at which corona discharge is generated. Further, it includes means for transmitting the detected information to the arithmetic means 13. Detection of temperature, pressure and humidity can be realized by selecting a small and suitable device from among known devices.
  • the weather condition when corona discharge occurs is detected by the weather condition detection device 16 by the corona discharge detection device 12, the information is converted by the calculation device 13, and the information is stored in the storage device 15.
  • the corona discharge is stopped according to the procedure described above, when the weather condition detected by the weather condition detection means 16 is different from the condition at the start of the corona discharge in which the weather condition is stored, if the corona discharge is not expected to occur, the transmission is performed. It can be restored to the original voltage.
  • the present invention may be embodied in other ways without departing from its spirit and essential characteristics.
  • the power system has been described as a large-scale example, but the present invention can be applied to a smaller system. It can also be realized by a method operated by some persons in the system.
  • FIG. 1 is a block diagram of a power system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the contents of processing by a calculating means of the present invention.
  • FIG. 3 is an example of weather forecast data.
  • FIG. 4 is an example of each transmission line data.
  • FIG. 5 is an example of a set transmission voltage of each transmission line.
  • FIG. 6 is a block diagram of a power system showing a third embodiment.
  • FIG. 7 is a block diagram of a power system showing another embodiment.
  • FIG. 8 is a basic configuration diagram of a large-scale power system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

高圧送電線に近い所で小児白血病のリスクが高まることが疫学調査結果、指摘されている。関系データ・資料を収集・分析して、高圧送電線においてコロナ放電が発生する場合の紫外線(特にUV−B、UV−C)が小児白血病のリスクが高まる主な要因であることを明らかにした。 人間の健康上問題となる紫外線を発生するコロナ放電を抑止し、一方で安定した電力供給を行うことのできる電力系統システムを提供する。  コロナ放電の発生が開始する電圧は天候により変わる。一定時間ごとに気象予報のデータを地域ごとに入力し、コンピュータにより送電線ごとにコロナ放電開始予想電圧を演算する。演算結果、通常の送電電圧ではコロナ放電の発生が予測される場合は、事前に電圧を下げるか、当該送電線での送電を止める。  別の解決法は、人が居住する近傍の送電線にコロナ放電検出手段を設置し、コロナ放電を検出時には送電電圧を下げるか、当該送電線での送電を止める。

Description

明 細 書
環境的観点よりコロナ放電の発生を抑止する電力系統システム 技術分野
[0001] 本発明は、電力系統システム並びに電力系統運用方法に関するものであり、環境的 観点よりコロナ放電の発生を抑止し、人体に有害な紫外線の放出を防止する電力系 統システム、並びにそのシステムに使用されるコンピュータプログラム、当該コンビュ ータプログラムを格納したコンピュータ読み取り可能な記録媒体、当該プログラムを格 納したサーバ及び電力系統運用方法を提供することを目的とする。
背景技術
[0002] 図 8は、大規模な電力系統システムの基本構成図である。図 8に示すように、大規模 な電力系統システムは、基本的には電力の発生、輸送と分配機能を持つ設備から構 成される。すなわち、電力系統システムは発電所と送電線 '変電所'配電線等から成 る流通設備を主構成要素として、それに正常な運転状態を維持するための神経系統 に相当する給電 ·通信装置、保護 ·制御装置などを備えて 、る。
[0003] 図 8に示すように、電力系統システムは発電所 Gl、 G2、 · · ·、 Gn、電源系統の送電 線 Hl、 H2、 · · ·、!¾、変電所 Tl、 Τ2、 · · ·、!¾!,連係系統の送電線 Cl、 C2、 · · · 、 Cj、配電系統への送電線 Dl、 D2、 · · ·、 Dh、配電系統 Ul、 U2、 · · ·、 Uaを主要 構成要素とする。発電所 Gl、 G2、 · · ·、 Gnは原子力発電所、水力発電所、火力発 電所等で構成される。これらの発電所は立地難のため需要地である大都市力 遠く なれたところに建設される。発電された電力は送電損失を少なくするため高電圧 (50 OKV, 275KV, 220KV, 187KV等)に変電され電源系統の送電線 Hl、 H2、 . . . 、 Hkによって大都市近郊まで送電される。大都市近郊まで送電された電力は変電所 Tl、 Τ2、 · · ·、!¾!,連係系統の送電線 Cl、 C2、 · · ·、 Cj、により一体的に連係され る。各地域の需給の不均衡を解消するとともに、系統内の各種電源と統合して経済 的に安定した電力を供給するためである。一体化された電力は変電所 T1、T2、 · · · 、 Tm,を経て低い電圧に変電されて(154KV— 22KV)配電系統への送電線 Dl、 D2、 · · ·、 Dhにて配電系統 Ul、 U2、 · · ·、 Uaに送電され各需要家に供給される。 [0004] 電力系統システムについては永年研究がなされ、安定した電力の供給がなされて、 今日の文明社会の重要な基盤となっている。高電圧で電力を送配電する場合に発 生するコロナ放電にっ 、ても研究がなされ、実用化されて 、る送配電システムではコ ロナ放電の発生は通常の気象条件では発生しな 、よう配慮されて 、る。
[0005] しかし、従来力 の電力系統システムにおけるコロナ放電に関しての研究は主にコロ ナ損失、コロナ雑音、コロナ騒音、機器の損傷に関するものであり、人体に及ぼす影 響についての研究はなされていなかった。ところが、 1979年ワートハイマーとリーバ 一は小児白血病と家までの配電線指標との関連を報告した。それ以来この重大な結 果を追跡するため、多くの研究が実施された。 1996年米国国立科学アカデミーによ るこれらの報告をまとめて分析した結果、電力線近くの住民では、小児白血病のリス クが上昇することが判明した。
[0006] この現象にっ 、て、超低周波(300HZ以下の周波数)電磁界が原因であるとの説が いつの間にか主流となった。このためその後の議論は (発明者が調査した限りではョ 一口ツバの中世における魔女狩りのように)超低周波電磁界が原因である否かを中心 に議論がされている。 1996年に世界保健機関 (WHO)は、電磁界の暴露に伴う健康 問題に取り組むために、国際電磁界 (EMF)プロジェクトを立ち上げた。国際電磁界 プロジェクトは現在も、超低周波電磁界暴露の研究結果の再評価とリスク評価を行つ ている。
[0007] WHOのがん研究の専門機関である国際がん研究機関(IARC)は、 WHOの健康リス ク評価プロセスの第一段階として 2001年 6月に超低周波電磁界について、人へのが んを引き起こす力どうかという証拠の強さに基づいて分類した。その結果、人、動物 及び実験的な証拠に重み付けして評価する標準的な IARCの分類基準を用いて評 価したところ、超低周波磁界は、小児白血病に関する疫学研究結果に基づき、人に 対して発がん性がある可能性があると分類された。 WHO資料 NO.263によると、疫学 研究に関するプール分析の結果、平均磁界暴露が 0. 3から 0.4 T (マイクロテスラ)を 超える住民では、それ以下の暴露下にある住民に対して子供の白血病の発生力 ^倍 になる力もしれないことを示唆していると記載されている。なお、多くのデータベース にもかかわらず、小児白血病の発生増を説明し得るものが磁界暴露なのかあるいは 他の何らかの因子なのかにっ 、て、 、くつかの不確実性が残って 、るとも記されて!/ヽ る。
[0008] 日本においても、家庭内での磁界と小児白血病及び脳腫瘍との関係を明ら力とする ために大規模な疫学調査が文部科学省の予算で国立環境研究所主導により行われ 、 2003年 6月に総合報告が行われた。報告によると、小児白血病の症例で大部分を 占める、急性リンパ性白血病 (ALL)、急性骨髄性白血病 (AML)の初症例 (年齢 15 歳未満)について調査された。
調査結果、以下のような点が示されたと報告されている。
(1)「寝室の磁界レベル」の小児白血病(ALL+AML)に対するリスクは 0.4 T付近 までは上昇傾向はみられず、 0.4 T以上でのみ上昇する傾向を示し、調整ォッズ比 は 2. 63 (95%信頼区間: 0. 77-8. 96)であった。なお、小児白血病を ALLと AM Lに分けて同様な解析を行うと、 ALLのみが 0.4 T以上でより大きなリスク上昇を示 し、調整ォッズ比は 4. 73 (95%信頼区間: 1. 14-19. 7)で有意であった。
(2)高圧送電線の距離が 50m以内の小児白血病に対するリスクは、 100m以上を基 準とした場合には、有意な上昇を示した。すなわち、小児白血病のリスクに関する調 整ォッズ比は、住居カも最寄の送電線までの距離が 100m超を参照カテゴリーとする と、 50から 100m及び 50m未満のカテゴリーで、それぞれ 1. 56 (95%信頼区間: 0. 87-2. 91)と 3. 26 (95%信頼区間: 1. 39—7. 54)であった。同様に、 ALLのみで は、それぞれ 1. 36 (95%信頼区間:0. 70-2. 65)と 3. 68 (95%信頼区間: 1. 47 -9. 21)であったことから、高圧送電線近傍でのリスク上昇が示唆される。
[0009] 一方、これに前後して行われた動物 ·細胞を対象にした実験研究からは磁界と生物 学的な作用変化との関連が認められないため、電磁界暴露が健康にリスクをもたらす 科学的証拠は弱いと米国国立健康科学研究所では結論付けている。又日本におけ る動物実験でも、超低周波磁界をかけた場合に小児白血病に対応する現象は見ら れていない。したがって、他の要因があるのではないかとの意見が見られるようになつ た。
[0010] これらの問題について、発明者は 0. 4 Tの超低周波磁界の電磁力が電極分子に 及ぼす影響について電磁気学の理論により試算した。その結果電磁力は非常に弱 V、力であり分子生物学で!/、われる DNAを切断するには至らな!/、のではな!/、かと考え た。又、 0. 4 Tの超低周波磁界により発生するジュール熱も非常に小さい値であり 生体に影響を及ぼすとは考えにくいことに気がついた。また、 0. 程度の超低周 波磁界は家庭電化機器よりも発生する。
この点についてシンポジユウムで議論になったとき、「高圧送電線力もでる磁界と通常 の家庭電化機器から発生する磁界とは異なる、知らないのか。」と医療の専門家から 堂々と述べられた。このような医療の専門家が言う考え方は現代の物理学 (電磁気学 、量子力学、素粒子論)、物理ィ匕学の理論では説明できず、大変疑問に感じた。そこ で、発明者が関連分野を調査したところ、下記のような事実が判明した。
[0011] (1)コロナ放電によって、紫外線が発生する。コロナ放電は電圧を上げるに従い、グ ローコロナ、ブラシコロナ、ホッスコロナと発達する。グロ一コロナ発生により、紫外線 が発生する。昼間は太陽光の影響により発生していても目に見えないおそれがある。 電子と窒素分子との衝突により、波長 202. 3nmに相当する共振電圧に励起される 力 波長 80nmに相当する電離電圧の電離分子となる。したがって、フランク一コンド ンの原理(Franck— Condon principle)よりこれらよりすこし長!ヽ波長の紫外線が それぞれ発生すると考えられる。加速された電子の運動エネルギーが大きければ衝 突によってエネルギー順位が高く励起されより波長の短い電磁波を放出する。
[0012] (2)非特許文献 11によればグロ一放電で 315nm, 337nm, 357nm, 391nm, 42 7nmの紫外線が放出され、ストリーマコロナ放電により 315nm, 337nm, 357nmの 紫外線が放出される。また、 82. 6nmから 124. 2nmの紫外線が放出されるとの報 告がある (非特許文献 12)。
[0013] (3)コロナ放電により、オゾン、 NOガス、 N02ガスも発生する。 NOガスに起因して 2 30nm, 240nmの紫外線が放出されるとの報告も有る(非特許文献 13)。又、窒素分 子や酸素分子が電離し、電子が付着する。この際電子と電離した分子が送電線の導 体に衝突すると、交流電圧の上に高周波が重なり、無線周波数の雑音源となる。気 象環境、送電線に傷があったり水滴がついたりしてもコロナ放電の発生電圧は大きく 変動する。
[0014] (4)従来問題とされてきたコロナ放電はラジオ、テレビで障害となるコロナ雑音がでる 力 音として聞こえるコロナ騒音が出る力、さらにもっと高い電圧で発生するコロナ損 失の場合が問題とされており、グロ一コロナの段階で紫外線が発生していることはあ まり注目されなかった。
[0015] (5)また、コロナ放電は放電が開始することにより電界電圧が下がることに特徴があり 長い時間持続する。したがって、近くにいる人は紫外線の照射を長時間受けるおそ れが高い。一方、 WHO資料 205では、騒音、オゾン、コロナについても検討されて いる。しかし、コロナ放電により紫外線が発生するとの認識がないまま議論されたので はな ヽかと考えられる。文面では「その騒音レベルやオゾン濃度では健康に影響を 与えることはありません。」とのみ記載されている。コロナ放電力も発生する紫外線に 関してはなんら言及がない。もし、審議していないのであれば、この要因についても 再度審議すべきあると考える。また、高圧送電線より送電中は超低周波磁界も発生 するが、同時にコロナ放電が発生した時は有害な紫外線も発生する。
[0016] 一方紫外線については、一時期は健康に良いような風評があり、あまり一般には問 題視されていな力つた。しかし、近年紫外線の健康に及ぼす影響が問題となり、皮膚 、目、免疫系に影響を及ぼすことが指摘されている。特に子供は、紫外線の被曝によ り、これらのリスクが高いとされ、 WHOより 2001年 7月に N— 261として勧告が発行さ れている。ただし、どの程度の紫外線の被曝まで問題ないかとの見解は示されていな い。
[0017] 量子力学の理論で説明されるように、波長 λの電磁波は hcZ λのエネノレギーを持 つ。ここに hはプランク定数であり、 cは光の速度である。紫外線は波長が短いので非 常に大きなエネルギーを持ち、生体中の DNAを破壊するに足るエネルギーを持って いる (非特許文献 17)。
[0018] 紫外線には波長が長い方から UV— A(400nmから 315nm)、 UV— B (315nmから 2 80nm)、 UV— C (280nm力ら lOOnm)がある。
太陽光からの紫外線は大気中の酸素、オゾンに吸収され、地表では UV— Aと強度の 弱くなつた UV— Bしカゝ観測されない。したがって、通常紫外線の健康への影響が報 告されて!/ヽるのは UV— Aと一部地表に到達した UV— Bにつ!/ヽてである。 UV— Bの紫 外線については有害であり、 DNAを損傷し、免疫機能を低下させると報告されてい る。 UV— Cについては殺菌用として使用されており、人体を UV— Cにさらすことは非 常に危険である。上記のように、コロナ放電力も発生する紫外線では UV— B, UV-C も含まれている。このうち UV— Bはオゾンにより吸収され、 UV— Cはオゾン、酸素原子 により吸収される。 UV— Bは、コロナ放電の発生領域を離れると大気中の濃度が低い ので、遠くまで到達する。一方、 UV— Cは地表にかなりある酸素分子により急速に吸 収される。し力し、それでも 200から 300mまで到達するとされる。したがって、コロナ 放電の発生した送電線より近!、住民は、コロナ放電は長時間続く場合があるので、 放出された紫外線 (特に UV— B, UV— C)を長時間被曝し、人体に重大な影響を及 ぼすと考えられる。
[0019] 分子生物学の観点カゝら見た場合、紫外線 UV— B, UV— Cにより人体の DNAは損傷 される力 通常はいくつもの修復系で修復される。しかし幼児ではこの修復が十分機 能しない場合がある。又長時間浴びた場合は修復の限度を超える場合がある。さら に、紫外線は体内の免疫機能にも影響をあたえる。紫外線が免疫機能を低下させる メカニズムは次のように考えられる。皮膚の表皮には、「ランゲルノヽンス細胞」という手 のひらを広げたような細胞がある。この細胞は異物が侵入した情報をキャッチし、リン パ節に移動してその情報をリンパ球に伝え、異物をやっつけてもらう仲介役のような 役割をしている。しかし、ランゲルノヽンス細胞が紫外線によってダメージを受けると、 異物の情報をキャッチできなくなるためリンパ球に情報が伝わらず、免疫機能が働か なくなる。
[0020] 以上の調査より、従来あまり問題とされていな力つたグロ一コロナの段階でも紫外線 が発生する。又これらには人体に有害な UV— B, UV— Cの紫外線が含まれている。 近くに住民が生活している場合は、有害な紫外線による被曝と同様な症状が出ること が予想される。また、紫外線は WHOの資料 NO. 263によっても「ヒトにたいして恐ら く発がん性がある」と分類されて 、る。
[0021] 以上のように高圧送電線の近くで小児白血病のリスクが疫学の調査の結果認められ ることの主原因はコロナ放電による人体に有害な紫外線であると考える。したがって、 グロ一コロナが発生した場合も状況によっては速やかに電圧を下げる等の対策により コロナ放電の発生を止める必要がある。長年の電気技術者等の努力で築き上げた「 電気は安全で便利なもの」との信頼を維持するためにも大切であると考える。
紫外線の発生を抑止する観点より、送配電系統中でコロナ放電を抑止する方法-技 術は従来の文献等には見当たらな 、。従来はコロナ放電を抑止するのは主に電力 機器の損傷防止、放送機器への電波障害の防止、コロナ損の抑止を目的とするもの である。
特許文献 1:特開平 11-038078
特許文献 2:特開平 10-038957
非特許文献 1 :電気学会「電気工学ハンドブック 第 6版」 485— 486ページ、 1005 一 1023ページ、 1225— 1226ページ。
非特許文献 2 :電気学会「電離気体論」 28— 51ページ、 103— 114ページ。
非特許文献 3 :世界保健機関 (WHO) 資料 N0.263 電磁界と公衆衛生 超低周波 とがん。
非特許文献 4:世界保健機関 (WHO) 資料 NO.205 電磁界と公衆衛生 超低周波 (ELF)。
非特許文献 5 :世界保健機関 (WHO) 資料 N— 261 紫外線放射からの子供の保護 非特許文献 6 :国立環境研究所「生活環境中電磁界による小児の健康リスク評価に 関する研究」兜 真徳
非特許文献 7:電力中央研究所「電力中研レビュー NO. 47」 56ページ。
非特許文献 8 :電力中央研究所「送電線のコロナ騒音」 T01 福島充男。
非特許文献 9 :電力中央研究所「UHV交流送電線のコロナ特性」 T04 笹野他。 非特許文献 10:丸善株式会社「分子生物学」田沼誠一編 81ページ。
非特許文献 11 :室蘭工大「コロナ放電プラズマによる排ガス中ベンゼンの分解」 佐 藤孝紀他
非特干文献 12 :「TaDles of vacuum ultraviolet emission band systems of molecular nitorogen from 82. 6 to 124. 2nm」J— Y. Roncin and F . Launay A&A Supplement series, Vol. 128, march 1 1998, 361—36 2 非特許文献 13 :Texas Instruments「Use of Spectrograph— based OES fo r ¾i Etch Selectivity and Endpoint OptimizationjF. G. Celii and C. Huffman el. all
非特許文献 14:紫外線保健指導マニュアル、環境省ホームページ
非特許文献 15 : DHC出版「子どもと皮膚と太陽」巿橋正光
非特許文献 16 :http : ZZwww. intl— light. com「Light Measurement Hand bookjAlex Ryer
非特許文献 17 :東京化学同人「アトキンス物理ィ匕学 (下)」 P. W. ATKINS著、千原 秀昭他訳
発明の開示
発明が解決しょうとする課題
[0023] 解決しょうとする課題は、人体の健康上問題となる(例えば、小児白血病の原因とな る)紫外線を発生するコロナ放電の発生をシステム的に抑止し、一方で電力供給を 安定して行うことのできる電力系統システムを提供することである。コロナ放電開始電 圧は気象状況、送電線を架線する際の傷の付き具合、風化の状況により変動する。 このため、コロナ放電が一切発生しな 、ようにシステム全体で低 、電圧で送配電する ことは送電容量が著しく制限されるため経済的でない。
[0024] また、電力の送電線は非常に長距離におよぶので、全区域でコロナ放電の発生の有 無を検出することは現実的に不可能である。従って、実現可能な方法により経済的か つ効果的にコロナ放電の発生を抑止することが望ましい。
課題を解決するための手段
[0025] 本発明では、送電線ごとにコロナ放電開始に関連する項目のデータを事前に記憶手 段に記憶しておき、一定時間ごとに気象予報のデータを地域ごとにコンピュータに入 力し、コンピュータにより送電線ごとにコロナ放電開始予想電圧を演算する。コロナ放 電開始予想電圧が通常送電電圧以下の場合はあらかじめ記憶されている対策電圧 をその送電線の設定送電電圧とする。すべての送電線につ!ヽて演算して設定送電 電圧を決め、設定送電電圧を電力系統解析手段に入力し、電力系統解析手段は設 定送電電圧を前提としてシステムの各機器の負担を解析する。解析した結果により 各機器に具体的な対策を指令する。その結果、コロナ放電を発生することなく需要家 に安定して電力を供給する。
[0026] 本発明の別な解決方法では、人間の居住地、職場等などの近くの送電線でのコロナ 放電の発生を検出する検出手段、検出結果を送信する送信手段を設ける。コロナ放 電を検出した場合は検出結果を電力系統解析手段に送信する。電力系統解析手段 は、コロナ放電が発生した送電線の電圧を下げるか送電を止める措置を取ることを前 提として安定した電力を供給するための各機器、全送電線の負担を解析する。解析 した結果を各機器に指令する。その結果人に対して有害な紫外線の発生を短い時 間で止めるとともに電力の安定供給をすることが出来る。
発明の効果
[0027] 本発明により、人間の健康に影響を及ぼす紫外線を長い時間にわたって発生するお それのあるコロナ放電の発生を抑止することが出来る。
発明を実施するための最良の形態
[0028] 電力系統システムにおいて、各送電線の敷設地域における気温、気圧、天候等の気 象データを入力する気象データ入力手段、各送電線のデータ、演算結果を記憶する 記憶手段、各送電線のコロナ放電開始電圧を演算し各送電の設定送電電圧を決定 する演算手段、各送電線の送電電圧を設定送電電圧に調整出来る装置、電力系統 解析手段を備え、一定時間ごとに気象予報データを入力し、当該気象予報データに より各送電線のコロナ放電開始予想電圧を演算し、演算されたコロナ放電開始予想 電圧が通常送電電圧以下であった場合はあらカゝじめ定めた低い対策電圧を設定送 電電圧とし、演算されたコロナ放電開始予想電圧が通常送電電圧をこえていた場合 は通常送電電圧を設定送電電圧とし、各送電線に設定された設定送電電圧を前提 として、電力系統解析手段によりシステムに属する各機器の負担を計算し、解析結果 により具体的に各機器に指令しコロナ放電が発生しないと予想される設定送電電圧 で送電することにより経済的、効果的にコロナ放電の発生を抑止することが出来る。
[0029] コンピュータプログラムにおいて、各送電線の気温、気圧、天候等の気象データを入 力する気象データ入力手段、各送電線のデータを記憶する記憶手段、各送電線の コロナ放電開始電圧を演算する演算手段、各送電の送電可能電圧を決定する決定 手段、各送電線の送電可能電圧を出力する出力手段を備えた電子計算機において 、気象データを入力するステップ、上記気象データにより各送電線のコロナ放電開始 予想電圧を演算するステップ、演算されたコロナ放電開始予想電圧が通常送電電圧 以下であった場合は低!、対策電圧を設定送電可能電圧とするステップ、演算された コロナ放電開始予想電圧が通常送電電圧をこえていた場合は通常送電電圧を設定 送電電圧とするステップ、全送電線の設定送電電圧を出力または送信するステップ を含むコンピュータプログラムを構成する。運用されている電力の総合自動化システ ムのなかで、本発明のコンピュータプログラムにより決定された全送電線でコロナ放 電が発生しないと予想される設定送電電圧で送電することを条件とする運用により、 経済的 ·効果的にコロナ放電の発生を抑止することが出来る。
[0030] 又、電力系統システムにおいて、人間の居住地、職場等などの近くにコロナ放電発 生検出手段を設け、検出結果を電力系統解析手段に送信し、コロナ放電の発生した 回線の送電電圧を下げるか、送電を止めることによりコロナ放電を短時間で止め、電 力系統内で送電経路を再計算して送電することにより安定した電力を供給することを 特徴とする。コロナ放電検出手段は紫外線レベルの電磁波を検出する素子により構 成する。当該素子を検出しょうとする送電線からコロナ放電により発する紫外線を受 光するように構成する。この場合昼間でもコロナ放電を検出するために、太陽により 発生する紫外線と区別する必要がありより波長の短い紫外線 (例えば、波長が ΙΟΟη mから 315nm)のみを検出するよう〖こソーラ一'ブラインド ·バキユウム ·ホトダイオード (Solar-Blind Vacuum Photodiode)用いることが望ましい。
実施例 1
[0031] 図 1は本発明の実施の形態に係る電力系統システムのブロック図である。図 2は、本 発明の演算手段の処理の内容を表すフローチャート図である。図 3は気象予報デー タの 1例であり、図 4は各送電線データの 1例であり、図 5は各送電線の設定送電電圧 の 1例である。
[0032] 図 1の実施例では、明細書の背景技術の所で説明した図 8の電力系統システムの 基本構成において、気象データ入力手段 7、演算手段 8、記憶手段 9が追加された 構成となる。さらに基本構成においても電力系統解析手段 10、送電電圧調整手段 1 1が後で説明する設定送電電圧で運用できるように変更されていることを要する。気 象データ入力手段 7は通信回線を介して図 3に示すような気象予報データを演算手 段 8に入力する手段であり、市販のモデム (例えば日本電気製 Aterm IT21L)を パーソナルコンピュータに接続することにより実現することが出来る。演算手段 8は図 2に示す処理を行う装置であり、 8ビット以上の中央演算機能を持つパーソナルコンビ ユータによって実現することが出来る。または、演算手段 8はデジタルシグナルプロセ ッサ一によつても実現できる。記憶手段 9は各送電線のデータを記憶し、演算手段 8 によって演算された設定送電電圧を記憶する。記憶手段はハードディスク装置また は半導体記憶装置等にて実現することが出来る。または、パーソナルコンピュータに 内蔵されて!ヽる記憶装置を流用してもよ!ヽ。電力系統解析手段 10は電力系統の規 模に対応して高速な計算機により構成されるが、上記のように設定送電電圧を前提と してシステム上の各機器の負担を決定して必要な指令または制御信号を出す。送電 電圧調整手段 11は設定送電電圧にて送電する機能を有し、停電せずにタップ切り 替えの出来る負荷時電圧調整変圧器にて構成することが出来る。なお、送電電圧調 整手段 11は 2回線以上の送電線が並列に敷設されて ヽる場合等で、一方の送電線 における送電を止めても電力供給が行える場合はシステム上省略できる。
次に、演算手段 8の処理内容について図 2にしたがって説明をする。演算手段 8の ソフトウェアがスタートすると、演算手段 8は最初に nを 1にセットする(S10)。次に演 算手段 8は気象予報データを気象データ入力手段 7により読み込む (S20)。気象予 報データは図 3に示すように送電線の敷設地域ごとの気温、気圧、天候のデータで あり、 2時間ごとに入力して演算することが望ましい。その後記憶手段 9により 1番最初 に記録された送電線 21のデータが読み込まれる(S30)。各送電線のデータ例を図 4 に示す。各送電線のデータにはコロナ放電抑止対象か否力、過去データを使用する か否か、通常送電電圧、敷設地域、電線表面係数 mOと送電線の設計により決まる 数 kの乗数、対策電圧が記憶されている。コロナ放電抑止対象か否かをデータとした のは送電線によっては人の 、な 、地域に敷設されて 、る場合もあり、人の健康のた めには対象とする必要がな 、からである。過去データを使用するか否かを決めて 、る のは、実際にコロナ放電を観測している場合はその条件とデータを入れる方が望まし いからである。送電線が長い距離にまたがることもあるので、敷設地域は場合によつ ては複数の地域となることもある。
[0034] 読み込まれた送電線のデータにより当該送電線がコロナ放電抑止対象カゝ否カゝ判断 される(S40)。コロナ放電抑止対象でない場合はデータに記憶されていた通常送電 電圧が設定される(S 100)。コロナ放電抑止対象の場合は過去のデータを使用する か否力を読み込まれたデータにより演算手段 8は判断をする。過去のデータを使用 する場合は記憶されて!ヽた過去のデータを放電開始電圧とする(S60)。
[0035] 過去のデータを使用しない場合は、当該送電線のコロナ放電開始電圧 Voを気象予 報データ'送電線データを計算式に入力することにより計算する(S70)。計算式は現 時点では下記の計算式を用いることが望ましい。ここに mlは天候係数であり現在で は晴れの場合 1. 0が雨、雪、霧では 0. 8が取られる。但し mlの値はさらにデータを 積み上げてより細力べ設定することが望ましい。また mO :電線表面係数、 k:送電線の 構成により決まる定数、 r:送電線を構成する素導体半径 (cm)、 b :気圧 (hPa)、 t:気 温(C)である。
[0036] [数 1]
Figure imgf000014_0001
[0037] [数 2]
δ - 0.290 ? /( 273 +
[0038] コロナ放電開始電圧 Voと通常送電電圧 Vnが比較される (S80)。通常送電電圧 Vn よりコロナ放電開始電圧 Voが同等力 り低い場合はあら力じめ記憶されたコロナ放 電開始電圧 Vo以下の対策電圧が設定される(S90)。それ以外の場合は通常送電 電圧 Vnが設定される (S100) oそして 1番目の送電線の設定送電電圧が記憶手段 9 に記憶される(S110)。次に全送電線について設定したカゝ判定され (S120)、全送 電線につ ヽて設定されて 、なければ nに 1つ加算して(S 130)次の送電線のデータ を読み込む(S30)。このようにして順次送電線の送電電圧を設定して全送電線 (コロ ナ放電の発生が予想される相電圧 22KV以上送電線が対象となる。 )の電圧が設定 された場合は全送電線のデータが電力系統解析手段 10に送られる。 [0039] 電力系統解析手段 10により、系統内の各機器の負担が全送電線の設定された電圧 を前提として決定される。その結果にもとづき各機器の負担が指令されるとともに、当 該送電線の電圧が送電電圧調整手段 11により調整される。この結果コロナ放電の発 生が事前に抑止される。したがって人体に有害なコロナ放電による紫外線の発生が 抑えられる。一方事前に電力系統の解析が行われるので安定した電力の供給が行 われる。
実施例 2
[0040] 上記の実施例の別な形として、気象データ入力手段、記憶手段、演算手段、出力手 段を備えたコンピュータ上で動作する図 2に示したのと同様な機能を持つプログラム として実現することも出来る。この場合は当該プログラムを用いて演算した全送電線 の設定送電電圧を電力系統システムに入力して、同様な効果を得ることも出来る。こ の場合は当該コンピュータプログラムを格納したコンピュータ読み取り可能な記録媒 体、または当該プログラムを格納したサーバを電力事業者に提供することによつても 実現することが出来る。
実施例 3
[0041] 図 6は、別の実施例を表す電力系統システムのブロック図である。この実施例でも明 細書の背景技術の所で説明した図 8の電力系統システムの基本構成に、コロナ放電 検出手段 12、演算手段 13、送信手段 14を加えた構成となる。さらに基本構成にお いても電力系統解析手段 10 - 2、送電電圧調整手段 11 - 2が後で説明するように動 作するよう改良を加える必要がある。
[0042] コロナ放電検出手段 12は、送電線においてコロナ放電が発生したことを検出する手 段である。コロナ放電検出手段 12は人の居住する近くに設置した紫外線検出素子 によるのが従来力もの電力系統システムに与える影響が少ない点で最も望ましい。紫 外線検出素子はソーラ一'ブラインド ·バキユウム ·ホトダイオード(Solar~Blind Vac uum Photodiode)が現時点ではもつとも望ましいが、その他半導体ホトダイオード 、光電子管、光導電形センサ、光起電力形センサ等によっても実現することができる 。さらに、昼間の太陽力もの紫外線と区別するために特別なフィルターを用いて、太 陽からの紫外線を遮断して、コロナ放電による紫外線のみを検出することも出来る。 また、コロナ放電検出手段 12は紫外線のうち人体に特に有害な波長 lOOnmから 32 Onm (UV-C, UV— B)を検出して行うことにより、より効果的に有害なコロナ放電が 発生しているか否かを検出する事も出来る。さらに、コロナ放電検出手段 12はコロナ 雑音を検出する手段、コロナ騒音を検出する手段によっても実現できる。
[0043] 演算手段 13は、コロナ放電検出手段 12によって検出した情報を上位の電力系統解 析手段 10— 2の必要とする情報に変換する手段である。演算手段 13は市販のマイク 口コンピュータを用いた回路と付随するソフトウェアにより実現することが出来る。送信 手段 14は、演算手段 13により変換された情報を電力系統解析手段 10 - 2に送信す る手段である。送信手段 14は有線でも無線でも、その他これに代わる手段でもよい。
[0044] コロナ放電検出手段 12によって監視対象の送電線にコロナ放電が発生したことが 検出されると、発生したことが演算手段 13により電力系統解析手段 10— 2の必要とす る情報に変換される。変換された情報は送信手段 14により電力系統解析手段 10— 2 に伝えられる。電力系統解析手段 10— 2は送られた情報を基づき電力系統に必要な 他の条件を解析して各機器の負担を決定して、各機器に指令を出す。その一環とし て送電電圧調整手段 11 - 2にも指令が出さる。送電電圧調整手段 11一 2は指令にも とづき、送電電圧を下げる。または、コロナ放電の検出された送電線の送電を止める 方法もある。その結果送電電圧は下がり、コロナ放電は止まる。止まらない場合は、コ ロナ放電検出手段 12よりの情報と演算手段 13に記憶された情報から再度電力系統 解析手段 10— 2に伝えられる。電力系統解析手段 10— 2は再度送られた情報を元に 電力系統に必要な他の条件を解析して各機器の負担を決定して、各機器に指令を 出す。送電電圧調整手段 11一 2は指令にもとづき、さらに送電電圧を下げる。その結 果送電電圧は下がり、コロナ放電は止まる。したがって人体に有害なコロナ放電によ る紫外線の発生が短時間に止まる。一方送電電圧を下げる前に電力系統の解析が 行われるので安定した電力の供給が行われる。
[0045] 一方、コロナ放電が発生しないような条件となったときも送電電圧を下げたままでは 不経済である。このため、簡単な方法としては送電電圧を下げてから一定時間後 (気 象条件が変動する時間が一つの目安となる。)に電圧を復帰させる。復帰させてもコ ロナ放電が発生しな 、場合はその状態で送電を続ける。コロナ放電が発生する場合 は上記のコロナ放電が発生した場合と同じ措置をとる。
[0046] 別な解決法を図 7に示す。図 7の構成では、図 6の構成に気象状態検出手段 16が 追加されている。気象状態検出手段 12は気温、気圧、湿度等コロナ放電の発生電 圧に影響を与える気象状態を検出する手段である。さらに検出された情報を演算手 段 13に伝える手段を含む。気温、気圧、湿度の検出は公知の機器のうちから小型で 適したものを選択することにより実現することが出来る。コロナ放電検出手段 12により コロナ放電が発生した時の気象状態を気象状態検出手段 16により検出して演算手 段 13により情報を変換して記憶手段 15に記憶する。上記で説明した手順によりコロ ナ放電が止まった後、気象状態検出手段 16により検出した気象状態が記憶されて いるコロナ放電開始時の状態と異なり、コロナ放電が発生しないと予測される時は送 電電圧を元に復帰させることが出来る。
[0047] さらに、記憶手段 15に記憶された情報により各送電線においてどのような条件でコ ロナ放電が発生するのかのデータが蓄積される。この蓄積されたデータを実施例 1で のべた送電線データに適用することが出来る。
[0048] 本発明は、その精神および必須の特徴事項力 逸脱することなく他のやり方で実施 することができる。例えば電力系統システムは大規模な例で説明したが、もっと小規 模なシステムでも本発明を適用することが出来る。又システム中一部人が操作する方 法によっても実現することが出来る。
したがって、本明細書に記載した実施例は例示的なものであり限定的なものではな い。発明の範囲は請求の範囲によって示されており、それらの請求の範囲の中に含 まれるすべての変形例は本発明に含まれるものである。
図面の簡単な説明
[0049] [図 1]本発明の実施の形態に係る電力系統システムのブロック図である。
[図 2]本発明の演算手段の処理の内容を表すフローチャート図である。
[図 3]気象予報データの 1例である。
[図 4]各送電線データの 1例である。
[図 5]各送電線の設定送電電圧の 1例である。
[図 6]実施例 3を表す電力系統システムのブロック図である。 [図 7]別の実施例を表す電力系統システムのブロック図である, [図 8]大規模な電力系統システムの基本構成図である。
符号の説明
G1、G2、 • · ·、 Gn 電力系統の発電所
Hl、 H2、 • · · , Hk 電源系統の送電線
Tl、 Τ2、 • . .、 Tm ¾.电所
Cl、 C2、 •••、Cj 連係系統の送電線
Dl、 D2、 …、 Dh 配電系統への送電
Ul、 U2、 ' ' 'ゝ Ua 配電系統
7 気象データ入力手段
8 演算手段
9 記憶手段
10 電力系統解析手段
11 送電電圧調整手段
12 コロナ放電検出手段
13 演算手段
14 送信手段
15 記憶手段
16 気象状態検出手段

Claims

請求の範囲
[1] 電力系統システムにおいて、
各送電線の気温、気圧、天候等の気象データを入力する気象データ入力手段、 各送電線のデータ、演算結果を記憶する記憶手段、
各送電線のコロナ放電開始電圧を演算し、各送電の設定送電電圧を決定する演算 手段、
電力系統解析手段を備え、
一定時間ごとに気象予報データを入力し、
上記気象予報データにより各送電線のコロナ放電開始予想電圧を演算し、 演算されたコロナ放電開始予想電圧が通常送電電圧以下であった場合は低い対 策電圧を設定送電電圧とするか当該送電線の送電を止めることとし、
演算されたコロナ放電開始予想電圧が通常送電電圧をこえていた場合は通常送 電電圧を設定送電電圧とし、
各送電線に設定された設定送電電圧を前提として、電力系統解析手段により システムに属する各機器の負担を計算し、
計算結果に基づき各機器の運転ならびに送電することを特徴とする電力系統シス テム。
[2] 各送電線の気温、気圧、天候等の気象データを入力する気象データ入力手段、 各送電線のデータを記憶する記憶手段、
各送電線のコロナ放電開始電圧を演算し、各送電線の設定送電電圧を決定する 演算手段、
各送電線の設定送電電圧を出力または送信する出力手段、
を備えた電子計算機において、
気象データを入力するステップ、
上記気象データにより各送電線のコロナ放電開始予想電圧を演算するステップ、 演算されたコロナ放電開始予想電圧が通常送電電圧以下であった場合は低い対 策電圧を設定送電電圧とするステップ、
演算されたコロナ放電開始予想電圧が通常送電電圧をこえていた場合は通常送 電電圧を設定送電電圧とするステップ、
全送電線の設定送電電圧を出力または送信するステップを含むコンピュータプ ログラム。
[3] 請求項 2のプログラムを格納したコンピュータ読み取り可能な記録媒体。
[4] 請求項 2のプログラムを格納したサーバ。
[5] 電力系統システムにおいて、コロナ放電検出手段と気象条件検出手段と送信手段と 演算手段と電力系統解析手段とを備え、コロナ放電の発生した送電線の送電電圧を 下げるか送電を止めることによりコロナ放電を短時間で止め、電力系統システムの各 機器の負担を再調整し、再調整した条件で各機器を運転することにより電力を供給 することを特徴とする電力系統システム。
[6] 請求項 5において、コロナ放電の発生した前後の気象条件を記憶し、気象条件がコ ロナ放電しないと予想される条件となった場合に送電電圧を元に戻すことを特徴とす る電力系統システム。
[7] 請求項 5において、コロナ放電検出手段を紫外線検出素子によることを特徴とする電 力系統システム。
[8] 請求項 5において、コロナ放電検出手段に波長 lOOnmから 320nmの紫外線を検出 する紫外線検出素子を使用することを特徴とする電力系統システム。
[9] 請求項 5において、送電電圧を下げた後に一定時間後に電圧を復帰させることを特 徴とする電力系統システム。
[10] 電力系統において、
各送電線の気温、気圧、天候等の気象データを入力する気象データ入力手段、 各送電線のデータ、演算結果を記憶する記憶手段、
各送電線のコロナ放電開始電圧を演算し、各送電の設定送電電圧を決定する演算 手段、
電力系統解析手段を備え、
一定時間ごとに気象予報データを入力し、
上記気象予報データにより各送電線のコロナ放電開始予想電圧を演算し、 演算されたコロナ放電開始予想電圧が通常送電電圧以下であった場合は低い対 策電圧を設定送電電圧とするか当該送電線の送電を止めるかを決定し、 演算されたコロナ放電開始予想電圧が通常送電電圧をこえていた場合は通常送 電電圧を設定送電電圧とし、
各送電線に設定された設定送電電圧を前提として、電力系統解析手段により システムに属する各機器の負担を計算し、
計算結果に基づき各機器の運転ならびに送電することを特徴とする電力系統運用方 法。
電力系統において、コロナ放電検出手段と気象条件検出手段と送信手段と演算手 段と電力系統解析手段とを備え、コロナ放電の発生した送電線の送電電圧を下げる か送電を止めることによりコロナ放電を短時間で止め、電力系統システムの各機器の 負担を再調整し、再調整した条件で各機器を運転ならびに送電することを特徴とす る電力系統運用方法。
PCT/JP2004/016153 2003-11-04 2004-10-29 環境的観点よりコロナ放電の発生を抑止する電力系統システム WO2005043708A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04793254A EP1691461A4 (en) 2003-11-04 2004-10-29 POWER SUPPLY SYSTEM FOR REMOVING CORONIC DISCHARGE FROM THE ENVIRONMENTAL PERSPECTIVE
JP2005515185A JP3984631B2 (ja) 2003-11-04 2004-10-29 環境的観点よりコロナ放電の発生を抑止する電力系統システム
US10/578,604 US7447567B2 (en) 2003-11-04 2004-10-29 Electric power system suppressing corona discharge from viewpoint of environment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-373850 2003-11-04
JP2003373850 2003-11-04

Publications (1)

Publication Number Publication Date
WO2005043708A1 true WO2005043708A1 (ja) 2005-05-12

Family

ID=34544167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016153 WO2005043708A1 (ja) 2003-11-04 2004-10-29 環境的観点よりコロナ放電の発生を抑止する電力系統システム

Country Status (4)

Country Link
US (1) US7447567B2 (ja)
EP (1) EP1691461A4 (ja)
JP (1) JP3984631B2 (ja)
WO (1) WO2005043708A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181977A1 (zh) * 2012-06-06 2013-12-12 国家电网公司 一种高压直流输电线路可听噪声计算方法
CN112363020A (zh) * 2020-11-11 2021-02-12 国网江苏省电力有限公司盐城供电分公司 一种基于不同天气的输配电线路声音异常检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100461579C (zh) * 2007-04-17 2009-02-11 清华大学 一种大区电网与省级电网的协调电压控制方法
TWI464567B (zh) * 2008-07-18 2014-12-11 Tennrich Int Corp Data Inquiry System for Power Bank
CN102655324A (zh) * 2011-03-03 2012-09-05 华东电力试验研究院有限公司 500kV线路上无源产生额定电压的方法
CN102170136B (zh) * 2011-04-25 2013-05-15 贵州电力调度通信局 电厂电压无功主辅双指令控制方法
RU2488837C1 (ru) * 2012-02-16 2013-07-27 Открытое акционерное общество "Энергетический институт им. Г.М. Кржижановского" Способ измерения потерь мощности на корону в линии электропередачи
DE102017116075A1 (de) * 2017-07-17 2019-01-17 Technische Universität Dortmund Verfahren und System zur Anpassung der Übertragungsleistung von Stromleitungen
CN112698164B (zh) * 2020-12-12 2023-04-07 国网辽宁省电力有限公司鞍山供电公司 一种基于c频段紫外线检测密闭空间绝缘状态的分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181026A (en) 1990-01-12 1993-01-19 Granville Group, Inc., The Power transmission line monitoring system
JP2004127857A (ja) * 2002-07-31 2004-04-22 Sunx Ltd 除電装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806626A (en) * 1973-01-10 1974-04-23 Gen Electric Means for reducing audible noise developed by an extra high voltage transmission line
US4057736A (en) 1974-09-13 1977-11-08 Jeppson Morris R Electrical power generation and distribution system
CH668487A5 (de) * 1985-05-21 1988-12-30 Korona Messtechnik Gossau Kontrollvorrichtung zur elektronischen detektion von energieverluste verursachenden fehlstellen bei wechselstrom-freileitungen.
US5006846A (en) * 1987-11-12 1991-04-09 Granville J Michael Power transmission line monitoring system
US5513002A (en) * 1994-03-17 1996-04-30 The A.R.T. Group, Inc. Optical corona monitoring system
US5568385B1 (en) * 1994-06-01 1999-07-20 Int Weather Network Software system for collecting and displaying weather information
JPH1038957A (ja) 1996-07-29 1998-02-13 Hitachi Cable Ltd 地中送電線の部分放電測定における架空送電線のコロナ除去方法及び部分放電測定器
US6609062B2 (en) * 1996-08-22 2003-08-19 Wgrs Licensing Company, Llc Nesting grid structure for a geographic referencing system and method of creating and using the same
JPH1138078A (ja) 1997-07-14 1999-02-12 Nesuto:Kk コロナ放電撮影システム
FI980308A0 (fi) * 1998-02-10 1998-02-10 Borealis Polymers Oy Polymerfilmer och foerfarande framstaellning daerav
US6104297A (en) * 1999-01-20 2000-08-15 Danilychev; Vladimir A. Corona discharge detection system
US6476396B1 (en) * 1999-04-09 2002-11-05 Keith W. Forsyth Electro-optical, non-contact measurement of electrical discharges
US6498987B1 (en) * 2000-04-12 2002-12-24 Weather Central, Inc. System and method for providing personalized weather reports and the like
US6611773B2 (en) 2000-11-28 2003-08-26 Power Measurement Ltd. Apparatus and method for measuring and reporting the reliability of a power distribution system with improved accuracy
US7275089B1 (en) * 2001-03-15 2007-09-25 Aws Convergence Technologies, Inc. System and method for streaming of dynamic weather content to the desktop
US6822457B2 (en) * 2003-03-27 2004-11-23 Marshall B. Borchert Method of precisely determining the location of a fault on an electrical transmission system
US7157710B1 (en) * 2003-11-19 2007-01-02 Kaiser Systems, Inc. Corona discharge detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181026A (en) 1990-01-12 1993-01-19 Granville Group, Inc., The Power transmission line monitoring system
JP2004127857A (ja) * 2002-07-31 2004-04-22 Sunx Ltd 除電装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Health Guidance Manual against Ultraviolet Light", JAPAN MINISTRY OF THE ENVIRONMENT HOME
F.G. CELII; C. HUFFMAN: "Use of Spectrograph-based OES for SiN Etch Selectivity and Endpoint Optimization", TEXAS INSTRUMENTS
J-Y. RONCIN; F. LAUNAY, TABLES OF VACUUM ULTRAVIOLET EMISSION BANDS OF MOLECULAR NITROGEN FROM 82.6 TO 124.2 NM, vol. 128, 1 March 1998 (1998-03-01), pages 361 - 362
KOHKI SATOH ET AL.: "Decomposition Characteristics of Benzene in Flue Gas by Corona Discharge Plasma", MURORAN INSTITUTE OF TECHNOLOGY
P.W. ATKINS: "PHYSICAL CHEMISTRY", OXFORD UNIVERSITY PRESS
See also references of EP1691461A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181977A1 (zh) * 2012-06-06 2013-12-12 国家电网公司 一种高压直流输电线路可听噪声计算方法
CN112363020A (zh) * 2020-11-11 2021-02-12 国网江苏省电力有限公司盐城供电分公司 一种基于不同天气的输配电线路声音异常检测方法

Also Published As

Publication number Publication date
EP1691461A1 (en) 2006-08-16
JPWO2005043708A1 (ja) 2007-05-10
US7447567B2 (en) 2008-11-04
EP1691461A4 (en) 2008-08-13
US20070144766A1 (en) 2007-06-28
JP3984631B2 (ja) 2007-10-03

Similar Documents

Publication Publication Date Title
WO2005043708A1 (ja) 環境的観点よりコロナ放電の発生を抑止する電力系統システム
CN102508036A (zh) 盘式绝缘子污秽状态在线远程监测方法及装置
Rankin et al. Shear Alfvén waves on stretched magnetic field lines near midnight in Earth's magnetosphere
Khoshnami et al. Fault detection for PV systems using Teager–Kaiser energy operator
Duboz et al. Submicron metal–semiconductor–metal ultraviolet detectors based on AlGaN grown on silicon: Results and simulation
He et al. Audible noise spectral characteristics of high‐voltage ac bundled conductors at high altitude
Jayaratne et al. Corona ions from high-voltage power lines: nature of emission and dispersion
CN202548079U (zh) 一种盘式绝缘子污秽状态在线远程监测装置
MC et al. published in accordance with Art. 158 (3) EPC
Barabash et al. Are variations in PMSE intensity affected by energetic particle precipitation?
Manu et al. A fresh look at the intensity and impulsive strength of geomagnetic storms
CN112098784A (zh) 一种基于氧化镓的高精度局放在线检测仪
Uchaikin et al. Organization of Monitoring of Even Harmonics Amplitudes in the Electricity Networks of the Altai Republic as an Indicator of Space Weather
Matsuda et al. Variation of nitric oxide concentration before the Kobe earthquake, Japan
Greatorex et al. The impact of nonthermal electron properties on Lyman-alpha emission in solar flares
Adebesin et al. F2-layer response to a storm time disturbance at equatorial/low-and mid-latitude
US11761664B2 (en) System and method of ventilating a utility structure
Kies et al. Comparison of Renewable Generation Data for Large-Scale Energy System Analysis
Fields et al. Life and DEFT: Space Weather Preparedness
WO2010095398A1 (ja) 人工衛星画像によるコロナ放電検出システム及びその画像解析装置
Lichun et al. Study on the effect of artificial radiation simulating terrestrial solar ultraviolet radiation on negative DC discharge performance of air gap
J-Fatokun et al. Characterization of the atmospheric electrical environment near a corona ion-emitting source
Schachinger et al. Evaluation of GIC measurements in Austria
Sharif et al. UHVDC power transmission line’s environmental impacts Iraq desertec project, as a case study
Mukherjee et al. Effect of geomagnetic storms in the Equatorial Anomaly Region observed from ground based data

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515185

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007144766

Country of ref document: US

Ref document number: 10578604

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1229/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004793254

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004793254

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10578604

Country of ref document: US