WO2005028706A1 - Composite material and method of manufacturing the same - Google Patents

Composite material and method of manufacturing the same Download PDF

Info

Publication number
WO2005028706A1
WO2005028706A1 PCT/JP2004/012070 JP2004012070W WO2005028706A1 WO 2005028706 A1 WO2005028706 A1 WO 2005028706A1 JP 2004012070 W JP2004012070 W JP 2004012070W WO 2005028706 A1 WO2005028706 A1 WO 2005028706A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
gel
dimensional network
metal
solvent
Prior art date
Application number
PCT/JP2004/012070
Other languages
French (fr)
Japanese (ja)
Inventor
Akio Tanikawa
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005514009A priority Critical patent/JPWO2005028706A1/en
Publication of WO2005028706A1 publication Critical patent/WO2005028706A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer

Definitions

  • the present invention relates to a composite material and a method for producing the same.
  • an aluminum alloy film formed by a sputtering method or a copper film formed by a plating method is used for wiring of a semiconductor integrated circuit. If the mechanical strength of such a metal film is low, the wiring may be disconnected. The reliability of the semiconductor device cannot be maintained.
  • power supplies and connectors as electric appliances are provided with a coating film of gold or silver by a sputtering method or a plating method for the purpose of lowering junction resistance, and screws and bolts as mechanical components are protected from heat.
  • a coating film of nickel or chromium is provided, and a coating film of black chrome or black nickel is provided inside a lens barrel in which a lens as an optical component is housed. There is a demand for such a coating film to have higher mechanical strength and excellent wear resistance.
  • Patent Document 1 describes a wiring having a multilayer structure.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-198691
  • the present invention has been made to meet the above-mentioned demands, and an object of the present invention is to provide a metal material (a metal filled in the gaps of a three-dimensional network structure) with a chemical property and an electrical property.
  • An object of the present invention is to provide a composite material which can be used for various metal films and has improved mechanical strength, abrasion resistance and uniformity as a film while maintaining the properties as it is, and a method for producing the same.
  • disconnection can be prevented by providing wiring with excellent reliability, and coating or mechanical parts such as electrical appliances such as connectors.
  • the composite material of the present invention for achieving the above object is characterized in that a metal is densely filled in the gaps of the three-dimensional network structure. Further, the composite material of the present invention for achieving the above object is characterized in that a metal is densely filled in the gaps of the three-dimensional network structure of the gel.
  • the chemical and electrical properties of the metal filled in the gaps of the three-dimensional network (hereinafter, also referred to as the filled metal or the filled metal) are described. , While maintaining mechanical strength and abrasion resistance.
  • a first method for producing a composite material according to the present invention comprises forming a gel having a three-dimensional network structure on a substrate, and forming a three-dimensional network material containing a solvent in a gap.
  • the method is characterized by comprising a step of forming a tissue and a step of filling the gap with a metal by replacing the solvent with a plating method.
  • the second method for producing a composite material of the present invention for achieving the above object provides a method for forming a gel having a three-dimensional network structure on a substrate and forming a three-dimensional gel containing a solvent in a gap.
  • a step of filling the liquid is a method for forming a gel having a three-dimensional network structure on a substrate and forming a three-dimensional gel containing a solvent in a gap.
  • the density of the three-dimensional network in the composite is determined by: (i) selection of the type of gel used for the three-dimensional network; (Iii) In the step of forming a three-dimensional network structure, by adjusting the amount of solvent contained in the gel formed on the substrate, uniformity with good reproducibility Can control. As a result, the dislocation density of the filled metal can be controlled, and dislocations can be uniformly introduced into the metal with good reproducibility.
  • the volume ratio or the weight ratio of the three-dimensional network structure to the solvent can be made 1% or less, and the three-dimensional network structure to the metal to be filled is
  • the amount of weave can be finely adjusted. Therefore, the three-dimensional network structure becomes an impurity, and changes the chemical properties such as chemical resistance and the electrical properties such as electric resistance of the filled metal. It can be prevented from changing. As a result, it is possible to easily produce a composite material having high mechanical strength and excellent wear resistance while maintaining the chemical and electrical properties of the filled metal as they are.
  • the volume ratio of the three-dimensional network structure to the solvent is the difference between the volume of the gel containing the solvent and the volume of only the solvent at that time (the three-dimensional network structure of the gel). Tissue volume) divided by the volume of the gel containing the solvent.
  • the weight ratio of the three-dimensional network structure to the solvent as used herein means the weight of the gel obtained by drying the solvent (called the dry gel) (the weight of the three-dimensional network structure of the gel) and the weight of the dried gel. And the weight of the solvent. At this time, the solvent is assumed to be water, and if the solvent is other than water, the calculation is performed by replacing the weight of water with the same volume.
  • the composite material of the present invention it is possible to obtain a metal film having high mechanical strength and excellent wear resistance while maintaining the chemical and electrical properties of the filled metal as they are. it can.
  • the wiring is less likely to be disconnected, and a highly reliable semiconductor integrated circuit can be obtained.
  • the coating film when used as a coating film for mechanical parts, the coating film has high mechanical strength, excellent abrasion resistance, and is hard to peel off from the substrate.
  • the method for producing a composite material of the present invention it is possible to obtain a composite material having high mechanical strength, excellent abrasion resistance, and hardly peeling off from the substrate. Further, according to the method for producing a composite material of the present invention, a composite material having a uniform thickness can be obtained. When such a composite material is used for various metal films, the uniformity of the film can be improved. There is an effect that the property is improved.
  • FIG. 1 is a schematic cross-sectional view illustrating a structure of a composite material according to an embodiment.
  • FIG. 2 is a manufacturing process diagram showing an example of a manufacturing process of the composite material of the embodiment.
  • FIG. 3 is a manufacturing process diagram showing another example of the manufacturing process of the composite material of the embodiment.
  • FIG. 4 is a schematic cross-sectional view for explaining the operation of the composite material of the embodiment.
  • FIG. 5 is a manufacturing process diagram showing the manufacturing process of the composite material of Example 1.
  • FIG. 6 is a manufacturing process diagram showing the manufacturing process of the composite material of Example 2.
  • FIG. 7 is a manufacturing process diagram showing the manufacturing process of the composite material of Example 3.
  • FIG. 8 is a manufacturing process diagram showing the manufacturing process of the composite material of Example 4.
  • the composite material of the present invention (1) a part of the three-dimensional network is removed, and (2) a part of the three-dimensional network is denatured. (3) It is preferable that the three-dimensional network is formed of an organic material, and a part of the three-dimensional network is carbonized.
  • the composite material of the present invention is preferably used as a wiring of a semiconductor integrated circuit or a coating film of an electric appliance, a mechanical part, or an optical part.
  • FIG. 1 is a schematic sectional view showing one example of the composite material of the present invention.
  • the composite material 100 of the present invention has a structure in which a metal 103 is densely filled in a gap of a three-dimensional network structure 102. That is, from another viewpoint, the composite material 100 of the present invention has a structure in which a three-dimensional network structure 102 is provided in a metal 103 film.
  • the three-dimensional network structure 102 is provided substantially uniformly throughout the metal 103 film, and supports the metal 103 film from the inside to improve mechanical strength and the like.
  • a gel having a three-dimensional network structure is formed on a substrate to form a three-dimensional network structure containing a solvent in a gap, and a plating method is used.
  • a first method for producing a composite material by filling the gap with a metal in place of the solvent described above, and forming a gel having a three-dimensional network on a substrate to form a three-dimensional gel containing a solvent in the gap.
  • a three-dimensional network with no solvent in the gaps is formed by drying the solvent, forming a three-dimensional network by chemical vapor deposition or physical vapor deposition.
  • There is a second manufacturing method in which a metal is filled in the gap by a long method to manufacture a composite material.
  • FIG. 2 is a schematic view showing a first method for producing the composite material of the present invention.
  • the first manufacturing method is a method of forming a structure in which the metal 206 is filled in the gaps of the three-dimensional network 203 of the gel 202 by using a plating method.
  • a gel 202 is formed by applying a dispersion liquid in which a gel material is dispersed in a solvent to a substrate 201.
  • the substrate 201 is immersed in a plating solution 205 to grow a metal 206 from the surface of the substrate 201, and the solvent 204 contained in the gaps of the three-dimensional network 203 is formed. With metal 206.
  • the excess gel 202 is removed, and as shown in FIG. 2 (c), the composite material 200 (a metal 206 film containing a three-dimensional network 203 derived from the gel 202) is formed. it can.
  • FIG. 3 is a schematic view showing a second method for producing the composite material of the present invention.
  • the second manufacturing method is a method of forming a structure in which the metal 307 is filled in the gaps 306 of the three-dimensional network structure 303 derived from the gel 302 by using chemical vapor deposition or physical vapor deposition. is there.
  • a gel 302 is formed by applying a dispersion liquid in which a gel material is dispersed in a solvent to a substrate 301.
  • the solvent 304 is removed without crushing the three-dimensional network structure 303 of the gel 302, and as shown in FIG. 3 (b), the air port gel 305 (dry gel) make.
  • a metal 307 is grown from the substrate 301 by a chemical vapor deposition method or a physical vapor deposition method such as a sputtering method or a vapor deposition method.
  • the space 306 between the three-dimensional network 303 is densely filled with the metal 307. If necessary, the excess air-port gel 305 (dried glass) is removed, and the composite material 300 (the metal 307 containing the three-dimensional network structure 303 of the gel 302) is removed as shown in FIG. 3 (d). Film).
  • the colloid solution When the colloid solution is heated or cooled, the colloid solution may lose its fluidity and solidify (the particles may be connected to each other to form a three-dimensional network structure).
  • a state in which the colloid solution has lost its fluidity is called a gel. If water is forcibly removed from the gel, only the network structure will remain. This is called a three-dimensional network structure, and includes dried silica gel. Since they are porous and have a large surface area, they are often used as hygroscopic agents and adsorbents.
  • a gel is a one-dimensional chain of atoms or molecules (one-dimensional bonds of atoms or the like). Is a substance that has a three-dimensional network structure formed by a chain and a solvent in the interstices. Gels also have a three-dimensional network consisting of a structure in which one-dimensional chains of such atoms or molecules are cross-linked to other one-dimensional chains by cross-linking points, and substances containing solvents in the gaps are also included. included.
  • the three-dimensional network structure includes a tissue having a crosslinked structure and a tissue having no crosslinked structure.
  • a structure in which one-dimensional chains cross each other may be used without having a crosslinked structure.
  • the three-dimensional network forms a kind of porous material. That is, the three-dimensional mesh-shaped gap corresponds to a hole included in the porous material.
  • the porous material has a three-dimensional network structure having a network structure having cross-linking points and cross points.
  • the airlog nore 305 (dry gel) is a substance from which the solvent contained in the gaps of the gel is removed without breaking the three-dimensional network structure.
  • a form of the three-dimensional network structure of the gel a form in which a one-dimensional bond is formed by linking with a cross-linking point where two- or three-cleavage occurs, and a form in which one-dimensional bond is linked, There is a mode in which this chain is formed by entanglement.
  • gels include natural material gels and synthetic material gels. Each gel has a three-dimensional network structure and is preferably applied as a substance containing a solvent in gaps. It is.
  • Microbial polysaccharide gellan gum 3 ⁇ 4 [chain glucan, ( ⁇ — ⁇ ) _glucose,
  • Protein gel Protein in general (gelatin, boiled white, tofu, etc.)
  • Organic organic carriers Ethyl hexanesan salt, neodecanoic acid or octanoic acid salt
  • Examples of the gel of a natural material include a polysaccharide gel, a protein gel and a DNA gel. Further, a gel composed of a component extract or the like thereof may be used. Polysaccharide gels are formed from gel materials such as seaweed polysaccharides, plant polysaccharides or microbial polysaccharides.
  • the gel material of the seaweed polysaccharide is mainly composed of i3_D_galactose, anhydro-l-D-galactose, anhydro-ct_L_galactose, j3_D-mannuronic acid or ⁇ -L-guluronic acid.
  • Examples include galactoses (galarginan, agarose, etc.) or alginic acid.
  • the gel material of the plant polysaccharide is mainly composed of protopectin, pectic acid, pectinic acid ( ⁇ -D-galataturonic acid), i3_D_gnorecose, i3_D-mannose or ⁇ -D-galactose.
  • pectin konnyaku mannan, locust bean gum or guar gum.
  • Examples of the gel material of the microbial polysaccharide include linear gnorecan, i3-D-glucose, i3_D-glucuronic acid, high L-rhamnose, mannose, poly ( ⁇ -glutamine) or poly ( ⁇ - lysine). Dianlan gum, xanthan gum, curdlan or amino acids whose main component is diene).
  • a gel material for forming a protein gel a polymer material of general protein such as gelatin, boiled egg white or tofu can be used.
  • DNA or RNA can be used as a gel material for forming a DNA gel.
  • an inorganic gel formed from a gel material such as an oxide, a metal salt or a nanotube, or a gel material such as an organic acid salt, an organic metal or a crosslinked polymer is used as the gel of the synthetic material.
  • Organic gels formed can be mentioned.
  • Examples of gels formed from gel materials of oxides include silica gel, alumina gel, titania gel, and the like. Tetramethoxysilane can be used as a material for forming silica gel.
  • nitrate As a gel material of metal salts, nitrate can be used.
  • a gel material of nanotubes As a gel material of nanotubes, a carbon nanotube, a boron nitride nanotube, or the like can be used.
  • Examples of the gel material of organic acid salts include acetate, ethylhexansan, neodecanoate and octanoate.
  • organometallic gel material examples include alkoxide (methoxide, ethoxide, butoxide, propoxide, isopropoxide, methoxyethoxide, etc.) and acetylacetonato. Cu methoxide or the like can be used.
  • gel material of the crosslinked polymer examples include polyvinyl alcohol, polyacrylic acid, atalinoleamide, silicone, polyurethane, polyethylene oxide, polyethylene glycol, and the like.
  • the gel molecules of the gel material described above may be modified with atoms or molecules of the added carohydrate in order to positively exert the effect of the additive.
  • an organic solvent such as water or methanol can be used as long as the gel material can be dispersed.
  • the term “dispersion” used herein refers to both mixing and dissolving. Is included.
  • the substrate (substrate) is a substrate (substrate) on which a composite material is formed as a metal film.
  • a composite material is used as wiring, a semiconductor integrated circuit substrate is used here.
  • the electric device to be coated is the base material.
  • the gel is formed on the substrate (substrate) by adding a crosslinking agent to the dispersion or cooling or heating the dispersion applied to the substrate (substrate), depending on the type of the gel material used. And the like.
  • a crosslinking agent for example, when tetramethoxysilane is used as a gel material, water is added as an additive for gelling by a hydrolysis reaction and a polymerization reaction, and when polybutyl alcohol is used as a gel material, the gel is formed. Boric acid aqueous solution is added as a crosslinking agent.
  • agarose is used as the gel material, the dispersion liquid applied to the substrate (substrate) gels when cooled.
  • Metals that can be filled by the plating method include, for example, pure metals such as Ag, Au, Cd, Co, Cr, Cu, Fe, Ni, Pb, Pd, Pt, Rh, Ru, Si, Sn or Zn, Ag—Cd, Ag—Co, Ag—Cu, Ag—Sn, Ag—Zn, Al—Mn, Au—Cu, Au—Ni, Au—Pd, Au—Sn, Cd—Sn, Cd—Zn, Co— Cu, Co—Fe, Co-Mo, Co—Ni, Co—Sn, Co_W, Cr ⁇ H, Cu-Ni, Cu-Pb, Cu-Sb, Cu—Sn, Cu—Zn, Fe_Mo, Fe_Ni, Fe— Alloys such as W, Fe—Zn, In—Sn, Ni—B, Ni—Mo, Ni—P, Ni—S, Ni—Sn, Ni—W, Ni—Zn or Sn—Zn, Mg ⁇ or The compound to be
  • the plating solution may be an aqueous solution such as a sulfate, chloride, or pyrophosphate of the metal to be filled, or ethanol, N-methylformamide, honolemamide, acetone, ethyl acetate, benzene, or dimethyl of these salts.
  • an organic solvent solution such as sulfoxide, N-dimethylformamide, acetonitrile, pyridine, tetrahydrofuran or di-n-butyl ether.
  • plating solution specifically, those shown in Table 2 can be used. That is, as a plating solution for Ag, a silver iodide bath: Agl (0.05 mol / L) + KI (2 mol ZL) can be used. As the plating solution, cyan bath: KAu (CN) (0.05 mol / L), sulfite bath: Na Au (S
  • Cu plating solution is Cu sulfuric acid bath: CuSO ⁇ ⁇ (1. Omol
  • a sulfuric acid bath FeS ⁇ (1.0 mol / L)
  • NiSO 0.9 mol / L
  • NiCl (0.09 mol / L) + HBO (0.5 mol / L)
  • sulfamic acid bath Ni (SNH) (1.0 mol / L) + HB ⁇ (0.5mol / L L) etc.
  • Ni (SNH) 1.0 mol / L
  • HB ⁇ 0.5mol / L L
  • the plating solution of the alloy As a specific example of the plating solution of the alloy, as the plating solution of the Ag-Sn alloy, AgI (0.02 mol / L) + SnCl2 ⁇ 0 (0.18 mol / L) + Kl (2 mol / L) + KPO (
  • an electrolytic plating method or an electroless plating method can be applied, but it is preferable to apply the electrolytic plating method from the viewpoint of performing dense filling.
  • the filled metal may have a multilayer structure of a plurality of types of metals.
  • the substrate on which the three-dimensional network structure is formed can be easily formed by immersing the substrate in a plating solution of a desired metal and further immersing the substrate in a plating solution of another metal.
  • the metal is filled in the gaps of the three-dimensional network structure, it is possible to remove excess gel if necessary.
  • a gel is formed to be thicker, a metal is filled to a required thickness, and then a portion of the gel not filled with the metal is removed.
  • a method of removing the gel a method of chemical mechanical polishing or a method of washing with a jet stream or hot water of 80 ° C or more can be used. Further, according to the chemical polishing, it is possible to remove an excess portion of the metal filled together with an excess gel.
  • the drying of the solvent in the second production method is performed so as not to break the three-dimensional network structure of the gel.
  • a supercritical drying method or a freeze drying method can be applied. From the viewpoint of not destroying the three-dimensional network structure, the supercritical drying method is preferred.
  • the supercritical drying method is a method in which a solvent is dried under a condition of a critical temperature or higher and a critical pressure or higher.Since the surface tension of the solvent becomes zero, the three-dimensional network structure of the gel is not destroyed. The solvent can be dried.
  • Examples of the source gas used for metal filling by chemical vapor deposition (CVD) include inorganic metal compounds such as tungsten halide and organic metal compounds such as trimethylaluminum which are generally used.
  • CVD chemical vapor deposition
  • a thermal CVD method, a plasma CVD method, or a photo CVD method can be used, and a known general method can be used as the method and conditions.
  • a gel material having heat resistance to the growth temperature of the metal is selected from the above gel materials.
  • Metal filling by physical vapor deposition includes filling by sputtering and filling by vapor deposition.
  • metal When metal is filled by sputtering or vapor deposition, it is necessary to select a metal that easily diffuses on the substrate surface and reduce the thickness of the metal so that dense filling is possible. preferable.
  • the material atoms of the sputtered metal adhere to the three-dimensional network before reaching the substrate, and the filling property of the metal is slightly reduced. By filling under such conditions, the metal can be densely filled into the gaps of the three-dimensional network structure.
  • the chemical and electrical properties of the metal filled in the gaps of the three-dimensional network (hereinafter sometimes referred to as the filled metal or the filled metal) are improved.
  • the mechanical strength and abrasion resistance can be improved while maintaining the same.
  • the composite material of the present invention since the dislocations tangled in a network are introduced into the metal crystal at a high density, the lattice defects of the metal change on the order of nanometers, and the lattice distortion is uneven. It is in a state. Generally, when an external force is applied to a metal, the metal atoms tend to diffuse. In the composite material of the present invention, the diffusion path of such metal atoms is complicatedly bent due to the non-uniform lattice distortion. As a result, the composite material has improved mechanical strength and abrasion resistance because the rate of plastic deformation of the filled metal is reduced.
  • FIG. 4 (a) when a tensile stress 403 is applied to a metal 401, dislocations 405 contained in the metal crystal are activated, so that stress is concentrated on a grain boundary 402 of the metal 401. As a result, voids (cracks) 404 grow. Therefore, the conventional metal 401 is easily broken or cut, and has low mechanical strength.
  • the three-dimensional network structure 406 has a high density of dislocations 407 entangled in a crystal of the metal 401 in the metal 401. Therefore, when a tensile stress 403 is applied, these dislocations slightly shift.
  • the metal 401 is deformed while dispersing the strain uniformly in the order of crystal grains, so that stress concentration at the grain boundaries 402 leading to destruction or cutting does not occur. Therefore, the composite material of the present invention has improved mechanical strength and abrasion resistance.
  • the three-dimensional network 406 is indicated by a solid line
  • the dislocation 407 is indicated by a broken line.
  • dislocation is a kind of lattice defect, and refers to a series of displacements of atoms that occur along a line (dislocation line) in a crystal.
  • the interface stress with the substrate can be reduced by the above two actions, so that the composite material is separated from the substrate. Difficult, metal film (coating film).
  • various effects can be obtained by adjusting the amount of the solvent (iii).
  • the volume ratio or the weight ratio of the three-dimensional network structure to the solvent is adjusted to 10% or less, it is possible to sufficiently suppress the change in the electrical properties of the metal to be filled. If the volume ratio is adjusted to 5% or less, the color of the metal ⁇ ⁇ can be sufficiently suppressed from changing. Further, when the volume ratio or the like is adjusted to 20% or less, dense filling of the metal can be easily performed when the metal is filled into the gaps of the three-dimensional network structure by the plating method. If the volume ratio is adjusted to 2% or less, the metal can be densely packed when filling the gaps of the three-dimensional network by physical vapor deposition such as sputtering or evaporation. Can be easily performed.
  • the size of the network of the three-dimensional network can be adjusted in the range of several nanometers to several tens of nanometers, and sufficient strength and application of the composite material It is possible to achieve compatibility with functions that meet the requirements.
  • the three-dimensional network structure causes the surface of the substrate on which the composite material is to be formed to have a surface roughness, an electric field concentration, a temperature difference, or the like. And the convection of the raw material gas is suppressed, so that the thickness of the obtained composite material becomes uniform. Therefore, when such a composite material is used for various metal films, there is also an effect that the uniformity of the film is improved.
  • a sputtered Cu film 507 having a thickness of about 100 nm is applied to a Si wafer 501 having an interlayer insulating film 504 pattern of trenches and via holes serving as wiring of an integrated circuit provided with a TaN barrier film 505 or the like. Deposited. Thereafter, an aqueous solution of polyvinyl alcohol before crosslinking and an aqueous solution of boric acid as a crosslinking agent were sequentially spin-coated to form a polybutyl alcohol gel 506.
  • an extra polyvinyl alcohol gel 506 is produced by the chemical mechanical polishing process. And the Cu film 508 were simultaneously removed. If a multi-layer wiring is required, an interlayer insulating film 504 is continuously provided and the above steps are repeated.
  • Example 2 As Example 2, a wiring made of an A1-Si-Cu alloy (hereinafter, referred to as an A1 alloy) of an LSI was manufactured by the process shown in FIG.
  • a mixed solution of tetramethoxysilane-methanol-water (used for hydrolysis and polymerization) is spin-coated on a Si wafer 601 having an interlayer insulating film 504 provided with a TiN barrier film 605 and the like.
  • Silica gel formed. This was dried under conditions of a temperature of 239.4 ° C. or more and a pressure of 8.9 MPa or more, which are the critical conditions for methanol, to form a silica air port gel 607 having a porosity of 98% and a thickness of 1 m.
  • A1 alloy wiring 609 containing a three-dimensional network structure of the gel as the composite material of Example 2 was obtained.
  • the A1 alloy wiring 609 was able to reduce the disconnection rate due to stress migration and elect opening migration to 1/1000 compared to the conventional A1 alloy wiring.
  • Example 3 a coating film of a BNC connector having two layers of Ni and Ag or two layers of Ni and Au was manufactured by the process shown in FIG.
  • the connector core 701 and the connector ring 702 connected to the shield were immersed in a 0.8 wt% agarose solution heated to 80 ° C., and immediately immersed in cold water to be inserted into the connector core 701. And the surface of the connector ring 702 was gel-coated. These are immersed in a Ni electroplating solution to form a Ni layer 704 containing a three-dimensional network structure of the gel, and then immersed in an Ag electroplating solution or an Au electroplating solution to form a gel. An Ag layer or Au layer 705 containing the three-dimensional network structure was formed. Then, jet water or hot water of 80 ° C or more Therefore, excess agarose gel 703 was removed.
  • the composite material of Example 3 is a two-layer coating film of Ni layer 704 and Ag layer 705 containing a three-dimensional network structure of gel, or Ni layer 704 and Au layer 705.
  • a coating film having a two-layer strength was obtained. These coatings have improved abrasion resistance compared to coatings of conventional connectors.
  • a screw coating film made of Cr as the composite material of Example 4 was manufactured by the process shown in FIG.
  • the screw 801 after processing is appropriately placed and arranged on a metal net, immersed in a 0.8 wt.% Agarose solution heated to 80 ° C, and then immediately put into cold water to clean the surface. Gel coated.
  • the sample was immersed in a Cr electroplating solution as it was to form a Cr layer 803 containing a three-dimensional network structure of the gel, and then excess agarose gel 802 was removed with hot water at 80 ° C or higher.
  • Example 5 As a composite material of Example 5, a base film made of an Ag—Sn alloy or a Cu—Sn alloy provided on the surface of a Cu layer of a printed circuit board for lead-free solder, whose demand has been increasing in recent years, was manufactured.
  • Examples of the present invention include, in addition to the above-described examples, a coating film inside a lens barrel in which a lens as an optical component is housed, a surface layer of a metal gasket, and a cutting tool such as a force razor. Numerous applications, such as a coating film, are considered.
  • a metal film using the composite material of the present invention is subjected to a carbon impregnation treatment known as a surface treatment of steel.
  • a composite material formed by filling the gaps of the three-dimensional network structure of the organic gel with iron is provided on the surface of the steel (substrate), and then heat-treated in a reducing atmosphere to form the organic gel.
  • the three-dimensional network is carbonized, and the resulting carbon is infiltrated into iron to form a carbonized layer.
  • This heat treatment can be performed, for example, at 400 ° C. for 30 minutes, and can significantly reduce the temperature and time in comparison with the conventional method at 800 ° C. for 4 hours.
  • a part of a three-dimensional network structure is removed or denatured in the obtained composite material.
  • a composite material is used as a coating film for components and the like in a high-vacuum device
  • a three-dimensional mesh exposed on the surface of the composite material to prevent contamination of the device with gel.
  • the ability to remove or denature dendrites As a method of removing a part of the three-dimensional network, for example, a method of removing the three-dimensional network having a certain depth from the surface of the composite material by etching, oxygen plasma treatment or the like can be mentioned.
  • Examples of a method of denaturing a part of the three-dimensional network include a method of reacting the metal with the three-dimensional network of the gel located near the surface of the composite by heat treatment. Even in the case of a composite material in which the three-dimensional network structure serving as the core has disappeared, since the dislocation structure is preserved in the filled metal,

Abstract

A composite material having high mechanical strength and excellent wear resistance and a method of manufacturing the composite material. The composite material is formed by densely filling a metal in the clearances of a three-dimensional mesh structure or in the clearances of the three-dimensional structure of a gel. The method comprises a step for forming the three-dimensional mesh structure including a solvent in the clearances by forming the gel with the three-dimensional mesh structure on a substrate and a step for filling the metal in the clearances by replacing the metal with the solvent by a plating method.

Description

明 細 書  Specification
複合材およびその製造方法  Composite material and method for producing the same
技術分野  Technical field
[0001] 本発明は、複合材およびその製造方法に関するものである。  The present invention relates to a composite material and a method for producing the same.
背景技術  Background art
[0002] 各種用途に用レ、られる金属膜は、その用途に応じた高い機械的強度が要求されて いる。  [0002] Metal films used for various applications are required to have high mechanical strength according to the applications.
[0003] 例えば、半導体集積回路の配線には、スパッタ法によるアルミニウム合金膜やめつ き法による銅膜等が用いられており、このような金属膜の機械的強度が低いと配線が 断線して半導体装置の信頼性を維持できない。また、電気器具である電源やコネク タには、接合抵抗の低下を目的としてスパッタ法やめつき法による金または銀等の被 覆膜が設けられ、機械部品であるビスやボルトには、防鲭を目的としてニッケルまた はクロム等の被覆膜が設けられ、光学部品であるレンズの納められた鏡筒の内部に は、黒色クロムまたは黒色ニッケルの被覆膜が設けられている。このような被覆膜に は、いずれもより高い機械的強度や優れた耐磨耗性についての要請がある。なお、 機械的強度の高い配線に関する技術として、特許文献 1には、多層構造の配線が記 載されている。  For example, an aluminum alloy film formed by a sputtering method or a copper film formed by a plating method is used for wiring of a semiconductor integrated circuit. If the mechanical strength of such a metal film is low, the wiring may be disconnected. The reliability of the semiconductor device cannot be maintained. In addition, power supplies and connectors as electric appliances are provided with a coating film of gold or silver by a sputtering method or a plating method for the purpose of lowering junction resistance, and screws and bolts as mechanical components are protected from heat. For this purpose, a coating film of nickel or chromium is provided, and a coating film of black chrome or black nickel is provided inside a lens barrel in which a lens as an optical component is housed. There is a demand for such a coating film to have higher mechanical strength and excellent wear resistance. As a technique relating to wiring having high mechanical strength, Patent Document 1 describes a wiring having a multilayer structure.
[0004] また、このような金属膜には、より簡便に均一性が確保される製造方法についての 要請もある。  [0004] In addition, there is a demand for a method of manufacturing such a metal film that can more easily ensure uniformity.
[0005] 特許文献 1 :特開平 5— 198691号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 5-198691
発明の開示  Disclosure of the invention
[0006] 本発明は、上記の要請に応えるためになされたものであって、その目的は、金属材 料 (三次元的網目状組織の間隙に充填された金属)の化学的性質および電気的性 質をそのままに保ちつつ、機械的強度、耐磨耗性および膜としての均一性を向上さ せた、各種金属膜に用いることができる複合材およびその製造方法を提供することに ある。それによつて、半導体集積回路においては、断線が生じに《信頼性の確保に 優れた配線を提供し、電気器具であるコネクタ等のコーティングまたは機械部品もし くは光学製品のコーティングにおいては、より高い機械的強度や優れた耐摩耗性を 有する被覆膜を提供する。 [0006] The present invention has been made to meet the above-mentioned demands, and an object of the present invention is to provide a metal material (a metal filled in the gaps of a three-dimensional network structure) with a chemical property and an electrical property. An object of the present invention is to provide a composite material which can be used for various metal films and has improved mechanical strength, abrasion resistance and uniformity as a film while maintaining the properties as it is, and a method for producing the same. As a result, in the case of semiconductor integrated circuits, disconnection can be prevented by providing wiring with excellent reliability, and coating or mechanical parts such as electrical appliances such as connectors. In the coating of optical products, we provide coatings with higher mechanical strength and excellent abrasion resistance.
[0007] 上記目的を達成するための本発明の複合材は、三次元的網目状組織の間隙に金 属が緻密に充填されていることを特徴とする。また、上記目的を達成するための本発 明の複合材は、ゲルの有する三次元的網目状組織の間隙に金属が緻密に充填され ていることを特徴とする。  [0007] The composite material of the present invention for achieving the above object is characterized in that a metal is densely filled in the gaps of the three-dimensional network structure. Further, the composite material of the present invention for achieving the above object is characterized in that a metal is densely filled in the gaps of the three-dimensional network structure of the gel.
[0008] これらの複合材によれば、三次元的網目状組織の間隙に充填された金属(以下、 充填された金属または充填される金属ということもある。 )の化学的性質および電気的 性質をそのままに保ちつつ、機械的強度および耐磨耗性を向上させることができる。  [0008] According to these composite materials, the chemical and electrical properties of the metal filled in the gaps of the three-dimensional network (hereinafter, also referred to as the filled metal or the filled metal) are described. , While maintaining mechanical strength and abrasion resistance.
[0009] 上記目的を達成するための本発明の第 1の複合材の製造方法は、三次元的網目 状組織を有するゲルを基板上に形成させて、間隙に溶媒を含む三次元的網目状組 織を形成する工程と、上記間隙に、めっき法により上記溶媒と置き換えて金属を充填 させる工程を有することを特徴とする。  [0009] In order to achieve the above object, a first method for producing a composite material according to the present invention comprises forming a gel having a three-dimensional network structure on a substrate, and forming a three-dimensional network material containing a solvent in a gap. The method is characterized by comprising a step of forming a tissue and a step of filling the gap with a metal by replacing the solvent with a plating method.
[0010] また、上記目的を達成するための本発明の第 2の複合材の製造方法は、三次元的 網目状組織を有するゲルを基板上に形成させて、間隙に溶媒を含む三次元的網目 状組織を形成する工程と、当該溶媒を乾燥させて、間隙に溶媒を含まない三次元的 網目状組織を形成する工程と、物理気相成長法または化学気相成長法により金属を 上記間隙に充填させる工程とを有することを特徴とする。  [0010] Further, the second method for producing a composite material of the present invention for achieving the above object provides a method for forming a gel having a three-dimensional network structure on a substrate and forming a three-dimensional gel containing a solvent in a gap. A step of forming a network-like structure, a step of drying the solvent to form a three-dimensional network-like structure containing no solvent in the gap, and a step of forming a metal by physical vapor deposition or chemical vapor deposition. And a step of filling the liquid.
[0011] これらの複合材の製造方法によれば、複合材における三次元的網目状組織の密 度を、 (i)三次元的網目状組織に用いるゲルの種類の選択、 (ii)三次元的網目状組 織の形成方法の選択、 (iii)三次元的網目状組織の形成工程にぉレ、て基板に形成さ れたゲルに含まれる溶媒の量の調整、によって再現性よく均一に制御できる。その結 果、充填された金属の転位密度を制御することができ、金属に再現性よく均一に転 位を導入することができる。  According to these composite material manufacturing methods, the density of the three-dimensional network in the composite is determined by: (i) selection of the type of gel used for the three-dimensional network; (Iii) In the step of forming a three-dimensional network structure, by adjusting the amount of solvent contained in the gel formed on the substrate, uniformity with good reproducibility Can control. As a result, the dislocation density of the filled metal can be controlled, and dislocations can be uniformly introduced into the metal with good reproducibility.
[0012] また、上記 (iii)の溶媒の量の調整によると、溶媒に対する三次元的網目状組織の 体積比または重量比を 1%以下にでき、充填される金属に対する三次元的網目状組 織の量を微細に調整することができる。したがって、三次元的網目状組織が不純物と なって、薬品耐性等の化学的性質や充填された金属の電気抵抗等の電気的性質を 変化させるのを防止することができる。その結果、充填された金属の化学的性質およ び電気的性質をそのままに保ちつつ、高い機械的強度および優れた耐磨耗性を有 する複合材を容易に製造することができる。 Further, according to the adjustment of the amount of the solvent in the above (iii), the volume ratio or the weight ratio of the three-dimensional network structure to the solvent can be made 1% or less, and the three-dimensional network structure to the metal to be filled is The amount of weave can be finely adjusted. Therefore, the three-dimensional network structure becomes an impurity, and changes the chemical properties such as chemical resistance and the electrical properties such as electric resistance of the filled metal. It can be prevented from changing. As a result, it is possible to easily produce a composite material having high mechanical strength and excellent wear resistance while maintaining the chemical and electrical properties of the filled metal as they are.
[0013] なお、ここでレ、う溶媒に対する三次元的網目状組織の体積比とは、溶媒を含むゲ ルの体積とそのときの溶媒のみの体積との差 (ゲルの三次元的網目状組織の体積) を、溶媒を含むゲルの体積で除した値である。また、ここでいう溶媒に対する三次元 的網目状組織の重量比とは、溶媒を乾燥させたゲル (乾燥ゲルという)の重量 (ゲル の三次元的網目状組織の重量)を、乾燥ゲルの重量と溶媒の重量との和で除した値 である。このとき、溶媒は水であるものとし、仮に、溶媒が水以外であれば、同体積の 水の重量と置き換えて算出する。  Here, the volume ratio of the three-dimensional network structure to the solvent is the difference between the volume of the gel containing the solvent and the volume of only the solvent at that time (the three-dimensional network structure of the gel). Tissue volume) divided by the volume of the gel containing the solvent. The weight ratio of the three-dimensional network structure to the solvent as used herein means the weight of the gel obtained by drying the solvent (called the dry gel) (the weight of the three-dimensional network structure of the gel) and the weight of the dried gel. And the weight of the solvent. At this time, the solvent is assumed to be water, and if the solvent is other than water, the calculation is performed by replacing the weight of water with the same volume.
[0014] 本発明の複合材によれば、充填された金属の化学的性質および電気的性質をそ のままに保ちつつ、機械的強度が高く耐磨耗性に優れた金属膜を得ることができる。 例えば、半導体集積回路の配線に用いられた場合には、断線の生じにくい配線とな り、信頼性の高い半導体集積回路を得ることができる。また、機械部品等の被覆膜に 用レ、られた場合には、機械的強度が高く耐磨耗性に優れ、かつ、基板から剥離し難 い被覆膜となる。  [0014] According to the composite material of the present invention, it is possible to obtain a metal film having high mechanical strength and excellent wear resistance while maintaining the chemical and electrical properties of the filled metal as they are. it can. For example, when used for wiring of a semiconductor integrated circuit, the wiring is less likely to be disconnected, and a highly reliable semiconductor integrated circuit can be obtained. In addition, when used as a coating film for mechanical parts, the coating film has high mechanical strength, excellent abrasion resistance, and is hard to peel off from the substrate.
[0015] 本発明の複合材の製造方法によれば、機械的強度が高く耐磨耗性に優れ、かつ、 基板から剥離し難い複合材を得ることができる。また、本発明の複合材の製造方法に よれば、厚さが均一な複合材を得ることができ、このような複合材が各種金属膜に用 レ、られた場合には、その膜の均一性が向上するという効果がある。  According to the method for producing a composite material of the present invention, it is possible to obtain a composite material having high mechanical strength, excellent abrasion resistance, and hardly peeling off from the substrate. Further, according to the method for producing a composite material of the present invention, a composite material having a uniform thickness can be obtained. When such a composite material is used for various metal films, the uniformity of the film can be improved. There is an effect that the property is improved.
図面の簡単な説明  Brief Description of Drawings
[0016] 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実 施の形態、およびそれに付随する以下の図面によってさらに明らかになる。  [0016] The above-mentioned object, and other objects, features, and advantages will be further clarified by preferred embodiments described below and the accompanying drawings.
[0017] [図 1]実施形態の複合材の構造を説明するための模式断面図である。  FIG. 1 is a schematic cross-sectional view illustrating a structure of a composite material according to an embodiment.
[図 2]実施形態の複合材の製造工程の一例を示す製造工程図である。  FIG. 2 is a manufacturing process diagram showing an example of a manufacturing process of the composite material of the embodiment.
[図 3]実施形態の複合材の製造工程の他の一例を示す製造工程図である。  FIG. 3 is a manufacturing process diagram showing another example of the manufacturing process of the composite material of the embodiment.
[図 4]実施形態の複合材の作用を説明するための模式断面図である。  FIG. 4 is a schematic cross-sectional view for explaining the operation of the composite material of the embodiment.
[図 5]実施例 1の複合材の製造工程を示す製造工程図である。 [図 6]実施例 2の複合材の製造工程を示す製造工程図である。 FIG. 5 is a manufacturing process diagram showing the manufacturing process of the composite material of Example 1. FIG. 6 is a manufacturing process diagram showing the manufacturing process of the composite material of Example 2.
[図 7]実施例 3の複合材の製造工程を示す製造工程図である。  FIG. 7 is a manufacturing process diagram showing the manufacturing process of the composite material of Example 3.
[図 8]実施例 4の複合材の製造工程を示す製造工程図である。  FIG. 8 is a manufacturing process diagram showing the manufacturing process of the composite material of Example 4.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明の複合材において、 (1)上記の三次元的網目状組織の一部が取り除かれ てレ、ること、(2)前記三次元的網目状組織の一部が変成していること、(3)上記の三 次元的網目状組織が有機系材料で形成されており、当該三次元的網目状組織の一 部が炭化していること、が好ましい。  [0018] In the composite material of the present invention, (1) a part of the three-dimensional network is removed, and (2) a part of the three-dimensional network is denatured. (3) It is preferable that the three-dimensional network is formed of an organic material, and a part of the three-dimensional network is carbonized.
[0019] 本発明の複合材は、半導体集積回路の配線、または、電気器具、機械部品もしく は光学部品の被覆膜として用いられることが好ましい。  The composite material of the present invention is preferably used as a wiring of a semiconductor integrated circuit or a coating film of an electric appliance, a mechanical part, or an optical part.
[0020] 本発明の複合材の製造方法において、(1)前記金属を充填させる工程の後に、前 記三次元的網目状組織の一部を取り除く工程を有すること、 (2)前記金属を充填さ せる工程の後に、前記三次元的網目状組織の一部を変成させる工程を有すること、 (3)前記ゲルが有機系材料で形成されており、前記金属を充填させる工程の後に、 前記三次元的網目状組織の一部を炭化させる工程を有すること、が好ましい。  [0020] In the method for producing a composite material of the present invention, (1) after the step of filling the metal, there is a step of removing a part of the three-dimensional network, (2) filling the metal Having a step of denaturing a part of the three-dimensional network structure after the step of (3) the gel is formed of an organic material, and after the step of filling the metal, It is preferable to have a step of carbonizing a part of the original network.
[0021] 以下、本発明の複合材およびその製造方法を、図面を参照しつつ説明する。  Hereinafter, a composite material of the present invention and a method for producing the same will be described with reference to the drawings.
[0022] 図 1は、本発明の複合材の一例を示す模式断面図である。本発明の複合材 100は 、三次元的網目状組織 102の間隙に金属 103が緻密に充填されている構造を有す る。すなわち、別の観点から見れば、本発明の複合材 100は、金属 103膜内に三次 元的網目状組織 102が設けられている構造を有する。そして、三次元的網目状組織 102は、金属 103膜内の全体にわたって略均一に設けられており、金属 103膜を内 部から支持して、機械的強度などを向上させる。  FIG. 1 is a schematic sectional view showing one example of the composite material of the present invention. The composite material 100 of the present invention has a structure in which a metal 103 is densely filled in a gap of a three-dimensional network structure 102. That is, from another viewpoint, the composite material 100 of the present invention has a structure in which a three-dimensional network structure 102 is provided in a metal 103 film. The three-dimensional network structure 102 is provided substantially uniformly throughout the metal 103 film, and supports the metal 103 film from the inside to improve mechanical strength and the like.
[0023] 本発明の複合材の製造方法には、三次元的網目状組織を有するゲルを基板上に 形成させることにより間隙に溶媒を含む三次元的網目状組織を形成し、めっき法によ り上記溶媒と置き換えて金属をこの間隙に充填させて複合材を製造する第 1の製造 方法と、三次元的網目状組織を有するゲルを基板上に形成させることにより間隙に 溶媒を含む三次元的網目状組織を形成し、この溶媒を乾燥させることにより間隙に 溶媒を含まない三次元的網目状組織を形成し、化学気相成長法または物理気相成 長法により金属をこの間隙に充填させて複合材を製造する第 2の製造方法とがある。 In the method for producing a composite material of the present invention, a gel having a three-dimensional network structure is formed on a substrate to form a three-dimensional network structure containing a solvent in a gap, and a plating method is used. A first method for producing a composite material by filling the gap with a metal in place of the solvent described above, and forming a gel having a three-dimensional network on a substrate to form a three-dimensional gel containing a solvent in the gap. A three-dimensional network with no solvent in the gaps is formed by drying the solvent, forming a three-dimensional network by chemical vapor deposition or physical vapor deposition. There is a second manufacturing method in which a metal is filled in the gap by a long method to manufacture a composite material.
[0024] 図 2は、本発明の複合材を製造する第 1の方法を示す概略図である。第 1の製造方 法は、めっき法を用いてゲル 202の三次元的網目状組織 203の間隙に金属 206が 充填された構造を形成する方法である。  FIG. 2 is a schematic view showing a first method for producing the composite material of the present invention. The first manufacturing method is a method of forming a structure in which the metal 206 is filled in the gaps of the three-dimensional network 203 of the gel 202 by using a plating method.
[0025] 具体的には、まず、図 2 (a)に示すように、基板 201にゲル材料を溶媒に分散させ た分散液を塗布することによりゲル 202を形成させる。その後、図 2 (b)に示すように、 この基板 201をめつき液 205に浸して金属 206を基板 201の表面から成長させ、三 次元的網目状組織 203の間隙に含まれている溶媒 204を金属 206で置換する。最 後に、必要に応じて余分のゲル 202を除去して、図 2 (c)に示すように、複合材 200 ( ゲル 202由来の三次元的網目状組織 203を内包した金属 206の膜)ができる。  Specifically, first, as shown in FIG. 2A, a gel 202 is formed by applying a dispersion liquid in which a gel material is dispersed in a solvent to a substrate 201. Thereafter, as shown in FIG. 2 (b), the substrate 201 is immersed in a plating solution 205 to grow a metal 206 from the surface of the substrate 201, and the solvent 204 contained in the gaps of the three-dimensional network 203 is formed. With metal 206. Finally, if necessary, the excess gel 202 is removed, and as shown in FIG. 2 (c), the composite material 200 (a metal 206 film containing a three-dimensional network 203 derived from the gel 202) is formed. it can.
[0026] 図 3は、本発明の複合材を製造する第 2の方法を示す概略図である。第 2の製造方 法は、化学気相成長法または物理気相成長法を用いて、ゲル 302由来の三次元的 網目状組織 303の間隙 306に金属 307が充填された構造を形成する方法である。  FIG. 3 is a schematic view showing a second method for producing the composite material of the present invention. The second manufacturing method is a method of forming a structure in which the metal 307 is filled in the gaps 306 of the three-dimensional network structure 303 derived from the gel 302 by using chemical vapor deposition or physical vapor deposition. is there.
[0027] 具体的には、まず、図 3 (a)に示すように、基板 301にゲル材料を溶媒に分散させ た分散液を塗布することによりゲル 302を形成させる。次に、超臨界乾燥法等を用い て、ゲル 302の三次元的網目状組織 303をつぶさずに溶媒 304を除去し、図 3 (b) に示すように、エア口ゲル 305 (乾燥ゲル)を作る。その後、図 3 (c)に示すように、化 学気相成長法またはスパッタ法もしくは蒸着法等の物理的気相成長法によって、金 属 307を基板 301から成長させて、エア口ゲル 305の三次元的網目状組織 303の間 隙 306を金属 307で緻密に充填する。必要に応じて余分のエア口ゲル 305 (乾燥ゲ ノレ)を除去して、図 3 (d)に示すように、複合材 300 (ゲル 302の三次元的網目状組織 303を内包した金属 307の膜)ができる。  Specifically, first, as shown in FIG. 3A, a gel 302 is formed by applying a dispersion liquid in which a gel material is dispersed in a solvent to a substrate 301. Next, using a supercritical drying method or the like, the solvent 304 is removed without crushing the three-dimensional network structure 303 of the gel 302, and as shown in FIG. 3 (b), the air port gel 305 (dry gel) make. Thereafter, as shown in FIG. 3 (c), a metal 307 is grown from the substrate 301 by a chemical vapor deposition method or a physical vapor deposition method such as a sputtering method or a vapor deposition method. The space 306 between the three-dimensional network 303 is densely filled with the metal 307. If necessary, the excess air-port gel 305 (dried glass) is removed, and the composite material 300 (the metal 307 containing the three-dimensional network structure 303 of the gel 302) is removed as shown in FIG. 3 (d). Film).
[0028] なお、コロイド溶液を加熱したり、冷却したりすると、流動性を失い固化する(粒子ど うしがつながり、 3次元的な網目構造等をとる)場合がある。コロイド溶液が流動性を 失った状態をゲルという。ゲルから水分を強制的に取り去ると、後に網目構造だけが 残る。これを三次元的網目状組織といい、乾燥シリカゲルなどがある。これらは多孔 質で表面積が広いので吸湿剤や吸着剤としてよく用いられる。  [0028] When the colloid solution is heated or cooled, the colloid solution may lose its fluidity and solidify (the particles may be connected to each other to form a three-dimensional network structure). A state in which the colloid solution has lost its fluidity is called a gel. If water is forcibly removed from the gel, only the network structure will remain. This is called a three-dimensional network structure, and includes dried silica gel. Since they are porous and have a large surface area, they are often used as hygroscopic agents and adsorbents.
[0029] すなわち、ゲルとは、原子または分子の一次元的連鎖 (原子等の一次元的な結合 が連鎖したもの)によって形成された三次元的網目状組織を有し、間隙に溶媒を含 む物質である。また、ゲルには、このような原子または分子の一次元的連鎖が架橋点 により他の一次元的連鎖と架橋した構造からなる三次元的網目状組織を有し、間隙 に溶媒を含む物質も含まれる。 [0029] That is, a gel is a one-dimensional chain of atoms or molecules (one-dimensional bonds of atoms or the like). Is a substance that has a three-dimensional network structure formed by a chain and a solvent in the interstices. Gels also have a three-dimensional network consisting of a structure in which one-dimensional chains of such atoms or molecules are cross-linked to other one-dimensional chains by cross-linking points, and substances containing solvents in the gaps are also included. included.
[0030] すなわち、本発明において、三次元的網目状組織には、架橋構造を有する組織も 、架橋構造を有しない組織も含まれる。また、架橋構造を有しなくても、一次元的連 鎖が互いに交叉する構造であってもよい。言い換えれば、 3次元的網目状組織は、 一種の多孔性材料を形成している。すなわち、三次元的網目状の間隙は、多孔性材 料に含まれる孔部に相当する。そして、多孔性材料は、架橋点や交叉点を備えるネ ットワーク構造を有する三次元的網目状組織力 構成されている。  That is, in the present invention, the three-dimensional network structure includes a tissue having a crosslinked structure and a tissue having no crosslinked structure. In addition, a structure in which one-dimensional chains cross each other may be used without having a crosslinked structure. In other words, the three-dimensional network forms a kind of porous material. That is, the three-dimensional mesh-shaped gap corresponds to a hole included in the porous material. The porous material has a three-dimensional network structure having a network structure having cross-linking points and cross points.
[0031] また、エアログノレ 305 (乾燥ゲル)とは、三次元的網目状組織がつぶれずに、このゲ ルの間隙に含まれた溶媒が除去されている物質である。ゲルの有する三次元的網目 状組織の態様としては、一次元的な結合が 2裂または 3裂する架橋点をもって連鎖す ることにより形成されている態様と、一次元的な結合が連鎖し、この連鎖が絡み合うこ とにより形成されている態様とがある。  [0031] The airlog nore 305 (dry gel) is a substance from which the solvent contained in the gaps of the gel is removed without breaking the three-dimensional network structure. As a form of the three-dimensional network structure of the gel, a form in which a one-dimensional bond is formed by linking with a cross-linking point where two- or three-cleavage occurs, and a form in which one-dimensional bond is linked, There is a mode in which this chain is formed by entanglement.
[0032] ゲルには、表 1に示すように天然材料のゲルまたは合成材料のゲルがあり、いずれ のゲルも、三次元的網目状組織を有し、間隙に溶媒を含む物質として好ましく適用さ れる。  As shown in Table 1, gels include natural material gels and synthetic material gels. Each gel has a three-dimensional network structure and is preferably applied as a substance containing a solvent in gaps. It is.
[0033] [表 1] [0033] [Table 1]
大分類 中分類 物質の例 Major classification Medium classification Examples of substances
天然材料 多 海藻多糖類 ガラク トース類 主成分  Natural materials Poly Seaweed polysaccharides Galactose Main ingredients
(ガラギーナン /3— D—ガラク ト一ス、 アンヒ ドロ一 α ゲ , ァガロース等 一 D—ガラク トース、 アンヒ ドロー α— ノレ )、 アルギン酸 L—ガラク トース、 一 D—マンヌロン (Galarginan / 3-D-galactose, anhydro- alpha , agarose, etc.-D-galactose, anhydro-alpha-nore), alginate L-galactose, 1-mannuron
酸、 α— Lーグノレロン酸  Acid, α-L-Gnorelone acid
桷物多糖類 ぺクチン、 コン プロ トぺクチン、 ぺクチン酸、 ぺクチ- ャクマンナン ン酸 < t»— D—ガラクッロン酸)、 - Ό 、 ローカス 卜ビ —グルコース、 /3— D—マンノース、 β ーンガム、 グァ — D—ガラク ト一ス  Bulgar polysaccharide pectin, protein tractin, pectic acid, lactic acid <t »—D-galacturonic acid),-Ό, local glucose — / 3-D—mannose, β Gum, gua — D—galactose
ガム  Gum
微生物多糖類 ジェランガム、 ¾ [鎖状グルカン、 (Ϊ— Γ) _グルコース、  Microbial polysaccharide gellan gum, ¾ [chain glucan, (Ϊ— Γ) _glucose,
キサンタンガム 一 D—グルクロン酸、 一: L一ラムノ 、 力一ドラン、 —ス、 マンノース、 ボリ (γ—グルタミ アミノ酸 ン)、 ポリ 一リジン)  Xanthan gum-D-glucuronic acid, L-rhamno, L-dran, s-, mannose, poly (γ-glutamic amino acid), poly-lysine)
タンパクゲル タンパク質全般 (ゼラチン、 ゆで 白、 豆腐等)  Protein gel Protein in general (gelatin, boiled white, tofu, etc.)
DNAゲル D N A, R NA  DNA gel DNA, RNA
合成材料 無 酸化物類 シリカゲル、 アルミナゲル、 チタ アゲル  Synthetic materials No oxides Silica gel, alumina gel, titanium gel
機 金尿塩類 硝酸  Machine gold urine salts nitric acid
糸 ナノチューブ カーボンナノチューブまたは空化ホウ素ナノチューブ  Yarn nanotube carbon nanotube or vacant boron nanotube
ゲ 類  Species
 Le
有 有機酸坦類 醉酸 ェチルへキサンサン塩, ネオデカン酸 またはォク 機 タン酸塩  Organic organic carriers Ethyl hexanesan salt, neodecanoic acid or octanoic acid salt
系 有機 類 アルコキシド (メ トキシド, エトキシド, ブトキシド, プロ ゲ ポキシド, イソプロポキシド, メ トキシェトキシド等) また ル はァセチルァセトナト  Organic alkoxides (methoxide, ethoxide, butoxide, progepoxide, isopropoxide, methoxetoxide, etc.) or acetylacetonato
架襴ポリマー ボリビエルアルコール, ポ!;アクリル酸, アクリルアミ ド, シリコーン, ポリウレタン, ポリエチレンォキシドまたはポ リヱチレング!;コール  Brocade polymer Bolivian alcohol, Po! Acrylic acid, acrylamide, silicone, polyurethane, polyethylene oxide or polyethylene!
[0034] 天然材料のゲルとしては、多糖ゲル、タンパクゲルまたは DNAゲルを挙げることが できる。また、それらからの成分抽出物等からなるゲルでもよい。多糖ゲルは、海藻多 糖類、植物多糖類または微生物多糖類等のゲル材料から形成される。 [0034] Examples of the gel of a natural material include a polysaccharide gel, a protein gel and a DNA gel. Further, a gel composed of a component extract or the like thereof may be used. Polysaccharide gels are formed from gel materials such as seaweed polysaccharides, plant polysaccharides or microbial polysaccharides.
[0035] 海藻多糖類のゲル材料としては、 i3 _D_ガラクトース,アンヒドロ一ひ一 D—ガラクトー ス, アンヒドロ— ct _L_ガラクトース, j3 _D—マンヌロン酸または α—L—グルロン酸を 主成分とするガラクトース類 (ガラギーナン,ァガロース等)またはアルギン酸が挙げら れる。  [0035] The gel material of the seaweed polysaccharide is mainly composed of i3_D_galactose, anhydro-l-D-galactose, anhydro-ct_L_galactose, j3_D-mannuronic acid or α-L-guluronic acid. Examples include galactoses (galarginan, agarose, etc.) or alginic acid.
[0036] 植物多糖類のゲル材料としては、プロトぺクチン,ぺクチン酸,ぺクチニン酸(α— D —ガラタツロン酸), i3 _D_グノレコース, i3 _D—マンノースまたは α—D—ガラクトース を主成分とするぺクチン,コンニヤクマンナン,ローカストビーンガムまたはグァーガム を挙げることができる。  [0036] The gel material of the plant polysaccharide is mainly composed of protopectin, pectic acid, pectinic acid (α-D-galataturonic acid), i3_D_gnorecose, i3_D-mannose or α-D-galactose. Pectin, konnyaku mannan, locust bean gum or guar gum.
[0037] 微生物多糖類のゲル材料としては、直鎖状グノレカン, i3 -D-グルコース, i3 _D- グルクロン酸, ひ— L—ラムノース,マンノース,ポリ(γ—グルタミン)またはポリ( ε—リジ ン)を主成分とするジエランガム,キサンタンガム,カードランまたはアミノ酸が挙げら れる。 [0037] Examples of the gel material of the microbial polysaccharide include linear gnorecan, i3-D-glucose, i3_D-glucuronic acid, high L-rhamnose, mannose, poly (γ-glutamine) or poly ( ε- lysine). Dianlan gum, xanthan gum, curdlan or amino acids whose main component is diene).
[0038] タンパクゲルを形成するゲル材料としては、ゼラチン,ゆで卵白または豆腐等のタン パク質全般の高分子材料を用いることができる。  [0038] As a gel material for forming a protein gel, a polymer material of general protein such as gelatin, boiled egg white or tofu can be used.
[0039] DNAゲルを形成するゲル材料としては、 DNAまたは RNAを用いることができる。 [0039] DNA or RNA can be used as a gel material for forming a DNA gel.
[0040] 合成材料のゲルとしては、酸化物類、金属塩類もしくはナノチューブ類等のゲル材 料から形成される無機系ゲル、または、有機酸塩類、有機金属類もしくは架橋ポリマ 一等のゲル材料から形成される有機系ゲルを挙げることができる。 As the gel of the synthetic material, an inorganic gel formed from a gel material such as an oxide, a metal salt or a nanotube, or a gel material such as an organic acid salt, an organic metal or a crosslinked polymer is used. Organic gels formed can be mentioned.
[0041] 酸化物類のゲル材料から形成されるゲルとしては、シリカゲル,アルミナゲルまたは チタニアゲル等が挙げられる。シリカゲルの形成材料には、テトラメトキシシランを用 レ、ることができる。 [0041] Examples of gels formed from gel materials of oxides include silica gel, alumina gel, titania gel, and the like. Tetramethoxysilane can be used as a material for forming silica gel.
[0042] 金属塩類のゲル材料としては、硝酸塩を用いることができる。  [0042] As a gel material of metal salts, nitrate can be used.
[0043] ナノチューブ類のゲル材料としては、カーボンナノチューブまたは窒化ホウ素ナノ チューブ等を用いることができる。 As a gel material of nanotubes, a carbon nanotube, a boron nitride nanotube, or the like can be used.
[0044] 有機酸塩類のゲル材料としては、酢酸塩,ェチルへキサンサン塩,ネオデカン酸塩 またはオクタン酸塩等を挙げることができる。  [0044] Examples of the gel material of organic acid salts include acetate, ethylhexansan, neodecanoate and octanoate.
[0045] 有機金属類のゲル材料としては、アルコキシド (メトキシド,エトキシド,ブトキシド,プ ロポキシド,イソプロポキシド,メトキシエトキシド等)またはァセチルァセトナト等を挙 げること力 Sでき、例えば、 Cuメトキシド等を用いることができる。 [0045] Examples of the organometallic gel material include alkoxide (methoxide, ethoxide, butoxide, propoxide, isopropoxide, methoxyethoxide, etc.) and acetylacetonato. Cu methoxide or the like can be used.
[0046] 架橋ポリマーのゲル材料としては、ポリビニルアルコール,ポリアクリル酸,アタリノレ アミド,シリコーン,ポリウレタン,ポリエチレンォキシドまたはポリエチレングリコール等 を挙げることができる。 Examples of the gel material of the crosslinked polymer include polyvinyl alcohol, polyacrylic acid, atalinoleamide, silicone, polyurethane, polyethylene oxide, polyethylene glycol, and the like.
[0047] 三次元的網目状組織として使用されるゲルは、上記に例示したゲル以外のゲルで もよぐ多様なゲルを用いることができる。  [0047] As the gel used as the three-dimensional network structure, various gels other than the gels exemplified above can be used.
[0048] 上記のゲル材料のゲル分子は、積極的に添加物の効果を発揮させる目的で、添カロ 物の原子あるいは分子で修飾されてレ、てもよレ、。 [0048] The gel molecules of the gel material described above may be modified with atoms or molecules of the added carohydrate in order to positively exert the effect of the additive.
[0049] 溶媒は、ゲル材料を分散させることができればよぐ例えば、水またはメタノール等 の有機溶媒を用いることができる。なお、ここでいう「分散」には、混合または溶解の双 方が含まれる。 [0049] As the solvent, an organic solvent such as water or methanol can be used as long as the gel material can be dispersed. The term “dispersion” used herein refers to both mixing and dissolving. Is included.
[0050] 上記分散液の塗布方法としては、上記分散液に基板を浸すディップ法、スプレー 法またはスピンコート法等の各種塗布方法を適用できる。なお、基板(基材)は、複合 材が金属膜として形成される被形成基板(基材)であり、例えば、複合材を配線として 利用する場合には半導体集積回路基板がここでレ、う基板となり、複合材を各種被覆 膜として利用する場合には被覆される電気器具等が基材となる。  [0050] As a method of applying the dispersion, various application methods such as a dipping method in which a substrate is immersed in the dispersion liquid, a spray method, and a spin coating method can be applied. The substrate (substrate) is a substrate (substrate) on which a composite material is formed as a metal film. For example, when a composite material is used as wiring, a semiconductor integrated circuit substrate is used here. When the composite material is used as various coating films, the electric device to be coated is the base material.
[0051] 基板(基材)でのゲルの形成は、用いたゲル材料の種類に応じて、分散液への架 橋剤の添加または基板(基材)に塗布された分散液の冷却もしくは加熱等のゲルィ匕( 架橋)の方法を用いて行う。例えば、ゲル材料にテトラメトキシシランを用いる場合に は、加水分解反応および重合反応によりゲル化させるための添加物として水を添カロ し、ゲル材料にポリビュルアルコールを用いる場合には、ゲル化させるための架橋剤 としてホウ酸水溶液を添加する。また、ゲル材料にァガロースを用いる場合には、基 板 (基材)に塗布した分散液を冷却するとゲル化する。  [0051] The gel is formed on the substrate (substrate) by adding a crosslinking agent to the dispersion or cooling or heating the dispersion applied to the substrate (substrate), depending on the type of the gel material used. And the like. For example, when tetramethoxysilane is used as a gel material, water is added as an additive for gelling by a hydrolysis reaction and a polymerization reaction, and when polybutyl alcohol is used as a gel material, the gel is formed. Boric acid aqueous solution is added as a crosslinking agent. When agarose is used as the gel material, the dispersion liquid applied to the substrate (substrate) gels when cooled.
[0052] めっき法により充填できる金属は、例えば、 Ag, Au, Cd, Co, Cr, Cu, Fe, Ni, P b, Pd, Pt, Rh, Ru, Si, Snまたは Zn等の純金属、 Ag— Cd, Ag— Co, Ag— Cu, Ag -Sn, Ag— Zn, Al-Mn, Au— Cu, Au— Ni, Au— Pd, Au— Sn, Cd— Sn, Cd— Zn, Co— Cu, Co— Fe, Co-Mo, Co— Ni, Co— Sn, Co_W, Cr~H, Cu-Ni, Cu-Pb, Cu-Sb, Cu— Sn, Cu— Zn, Fe_Mo, Fe_Ni, Fe— W, Fe— Zn, In— Sn, Ni— B, N i一 Mo, Ni-P, Ni-S, Ni— Sn, Ni— W, Ni— Znまたは Sn— Zn等の合金、 Mg〇また は Sn〇等の化合物であり、充填させる金属は、複合材が用いられる各種用途に応じ て、これらの金属等から選択される。  [0052] Metals that can be filled by the plating method include, for example, pure metals such as Ag, Au, Cd, Co, Cr, Cu, Fe, Ni, Pb, Pd, Pt, Rh, Ru, Si, Sn or Zn, Ag—Cd, Ag—Co, Ag—Cu, Ag—Sn, Ag—Zn, Al—Mn, Au—Cu, Au—Ni, Au—Pd, Au—Sn, Cd—Sn, Cd—Zn, Co— Cu, Co—Fe, Co-Mo, Co—Ni, Co—Sn, Co_W, Cr ~ H, Cu-Ni, Cu-Pb, Cu-Sb, Cu—Sn, Cu—Zn, Fe_Mo, Fe_Ni, Fe— Alloys such as W, Fe—Zn, In—Sn, Ni—B, Ni—Mo, Ni—P, Ni—S, Ni—Sn, Ni—W, Ni—Zn or Sn—Zn, Mg〇 or The compound to be filled is a compound such as Sn〇, and the metal to be filled is selected from these metals and the like according to various uses in which the composite material is used.
[0053] めっき液には、充填させる金属の硫酸塩、塩化物塩もしくはピロリン酸塩等の水溶 液、または、これらの塩のエタノール, N—メチルホルムアミド,ホノレムアミド,アセトン, 酢酸ェチル,ベンゼン,ジメチルスルホキシド, N—ジメチルホルムアミド,ァセトニトリ ノレ,ピリジン,テトラヒドロフランもしくはジ _n_ブチルエーテル等の有機溶媒溶液を用 いる。 [0053] The plating solution may be an aqueous solution such as a sulfate, chloride, or pyrophosphate of the metal to be filled, or ethanol, N-methylformamide, honolemamide, acetone, ethyl acetate, benzene, or dimethyl of these salts. Use an organic solvent solution such as sulfoxide, N-dimethylformamide, acetonitrile, pyridine, tetrahydrofuran or di-n-butyl ether.
[0054] めっき液としては、具体的には、表 2に示したものが使用できる。すなわち、 Agのめ つき液としては、ヨウ化銀浴: Agl (0. 05mol/L) +KI(2molZL)を使用でき、 Au のめつき液としては、シアン浴: KAu(CN) (0. 05mol/L)、亜硫酸浴: Na Au(SAs the plating solution, specifically, those shown in Table 2 can be used. That is, as a plating solution for Ag, a silver iodide bath: Agl (0.05 mol / L) + KI (2 mol ZL) can be used. As the plating solution, cyan bath: KAu (CN) (0.05 mol / L), sulfite bath: Na Au (S
O ) (0.05mol/L)または塩化金酸浴: HAuCl (0.02mol/L)等を使用できる。 また、 Crのめつき液としては、サージェント浴: Cr〇 (2. 5mol/L) +H SO (0. 02O 2) (0.05 mol / L) or chloroauric acid bath: HAuCl (0.02 mol / L) or the like can be used. In addition, as a plating solution of Cr, a surge bath: Cr〇 (2.5 mol / L) + H SO (0.02
5mol/L)を使用でき、 Cuのめつき液としては、 Cu硫酸浴: CuSO ·Η〇(1. Omol5mol / L) can be used. Cu plating solution is Cu sulfuric acid bath: CuSO · Η〇 (1. Omol
/L)またはピロリン酸浴: CuP〇 ·3Η〇(0. 2mol/L) +KP Ο ·3Η〇(0. 7mol/ L) or pyrophosphate bath: CuP〇3Η〇 (0.2mol / L) + KPΟ3Η〇 (0.7mol
/L)を使用できる。さらに、 Feのめつき液としては、硫酸浴: FeS〇 (1.0mol/L)/ L) can be used. Further, as a plating solution for Fe, a sulfuric acid bath: FeS〇 (1.0 mol / L)
+ H BO (0. 5mol/L)、塩化物浴: FeCl (1.0mol/L)+HB〇(0· 5mol/L) またはスルファミン酸浴: Fe(S NH ) (1.0mol/L)+HFNH (0· lmol/U等を 使用できる。さらに、 Niのめつき液としては、硫酸浴: NiSO (1.0mol/L) +H BO + HBO (0.5 mol / L), chloride bath: FeCl (1.0 mol / L) + HB〇 (0.5 mol / L) or sulfamic acid bath: Fe (SNH) (1.0 mol / L) + HFNH (0 · lmol / U, etc. Further, as the plating solution for Ni, a sulfuric acid bath: NiSO (1.0mol / L) + HBO
4 3 3 4 3 3
(0· 5mol/L)、塩化物浴: NiCl (1· 0mol/L) +Η BO (0. 5mol/L)、ワット浴:(0.5mol / L), chloride bath: NiCl (1.0mol / L) + ΗBO (0.5mol / L), Watt bath:
NiSO (0. 9mol/L)+NiCl (0.09mol/L)+HBO (0. 5mol/L)またはスル ファミン酸浴: Ni(S NH ) (1.0mol/L)+HB〇 (0· 5mol/L)等を使用すること ができる。合金のめっき液の具体的な例を挙げると、 Ag-Sn合金のめっき液としては 、AgI(0. 02mol/L) +SnCl ·2Η 0(0. 18mol/L) +Kl(2mol/L) +K P O (NiSO (0.9 mol / L) + NiCl (0.09 mol / L) + HBO (0.5 mol / L) or sulfamic acid bath: Ni (SNH) (1.0 mol / L) + HB〇 (0.5mol / L L) etc. can be used. As a specific example of the plating solution of the alloy, as the plating solution of the Ag-Sn alloy, AgI (0.02 mol / L) + SnCl2 · 0 (0.18 mol / L) + Kl (2 mol / L) + KPO (
0. 54mol/L)を使用でき、 Cu_Sn合金のめっき液としては、 SnSO (Xmol/L) +0.554 mol / L), and the plating solution for Cu_Sn alloy is SnSO (Xmol / L) +
CuSO (0. 5-Xmol/L) +H SO (lmol/L) +クレゾ一ルスルホン酸(0· 25molCuSO (0.5-Xmol / L) + HSO (lmol / L) + cresolsulfonic acid (0.225 mol
/L)を使用することができる。 / L) can be used.
[表 2] [Table 2]
Figure imgf000012_0001
Figure imgf000012_0001
[0056] めっき法としては、電解めつき法または無電解めつき法を適用できるが、緻密な充 填を行う観点から電解めつき法を適用することが好ましい。 As a plating method, an electrolytic plating method or an electroless plating method can be applied, but it is preferable to apply the electrolytic plating method from the viewpoint of performing dense filling.
[0057] 充填された金属は、複数種類の金属の多層構造とすることもできる。その場合には 、三次元的網目状組織が形成された基板を所望の金属のめっき液に浸した後、さら に他の金属のめっき液に浸すことにより、容易に形成することができる。  [0057] The filled metal may have a multilayer structure of a plurality of types of metals. In this case, the substrate on which the three-dimensional network structure is formed can be easily formed by immersing the substrate in a plating solution of a desired metal and further immersing the substrate in a plating solution of another metal.
[0058] 三次元的網目状組織の間隙に金属を充填した後は、必要に応じて、余分なゲルを 除去すること力 S好ましレ、。例えば、ゲルを厚めに形成し、金属を必要な厚さだけ充填 させた後、金属が充填されていない部分のゲルを除去する。ゲルを取り除く方法とし ては、ケミカルメカニカルポリツシングしたり、ジェット水流もしくは 80°C以上の湯により 洗浄したりする方法を利用することができる。また、ケミカノレメカニカルポリツシングに よると、余分なゲルとともに充填された金属のうち余分な部分を取り除くこともできる。 [0059] 第 2の製造方法における溶媒の乾燥は、ゲルの有する三次元的網目状構造をつ ぶさないように行う。このような乾燥方法としては、超臨界乾燥法または冷凍乾燥法等 を適用でき、三次元的網目状構造をつぶさない観点からは、超臨界乾燥法が好まし レ、。超臨界乾燥法は、溶媒を、臨界温度以上かつ臨界圧力以上の条件下で乾燥さ せる方法であり、溶媒の表面張力がゼロになるのでゲルの有する三次元的網目状構 造をつぶさずに溶媒を乾燥させることができる。 [0058] After the metal is filled in the gaps of the three-dimensional network structure, it is possible to remove excess gel if necessary. For example, a gel is formed to be thicker, a metal is filled to a required thickness, and then a portion of the gel not filled with the metal is removed. As a method of removing the gel, a method of chemical mechanical polishing or a method of washing with a jet stream or hot water of 80 ° C or more can be used. Further, according to the chemical polishing, it is possible to remove an excess portion of the metal filled together with an excess gel. [0059] The drying of the solvent in the second production method is performed so as not to break the three-dimensional network structure of the gel. As such a drying method, a supercritical drying method or a freeze drying method can be applied. From the viewpoint of not destroying the three-dimensional network structure, the supercritical drying method is preferred. The supercritical drying method is a method in which a solvent is dried under a condition of a critical temperature or higher and a critical pressure or higher.Since the surface tension of the solvent becomes zero, the three-dimensional network structure of the gel is not destroyed. The solvent can be dried.
[0060] 化学気相成長法(CVD法)による金属の充填に用いられる原料ガスとしては、一般 に使用されているハロゲン化タングステン等の無機金属化合物やトリメチルアルミユウ ム等の有機金属化合物が挙げられる。化学気相成長法としては、熱 CVD法、プラズ マ CVD法または光 CVD法を利用でき、その方法や条件等には周知一般の方法等 を用いることができる。なお、複合材の製造工程で熱 CVD法を用いて金属を充填す る場合には、上記ゲル材料のうち金属の成長温度に対する耐熱性を有するゲル材 料を選択する。  [0060] Examples of the source gas used for metal filling by chemical vapor deposition (CVD) include inorganic metal compounds such as tungsten halide and organic metal compounds such as trimethylaluminum which are generally used. Can be As the chemical vapor deposition method, a thermal CVD method, a plasma CVD method, or a photo CVD method can be used, and a known general method can be used as the method and conditions. When the metal is filled by the thermal CVD method in the manufacturing process of the composite material, a gel material having heat resistance to the growth temperature of the metal is selected from the above gel materials.
[0061] 物理気相成長法による金属の充填には、スパッタ法による充填と蒸着法による充填 がある。スパッタ法または蒸着法により金属を充填する場合には、緻密な充填が可能 となるように、充填される金属に基板表面で拡散しやすい金属を選択し、その金属の 厚さを薄くすることが好ましい。スパッタ法または蒸着法を用いる場合には、スパッタ 等された金属の原料原子が基板に到達する前に三次元的網目状組織に付着してし まい金属の充填性がやや低下するが、上記したような条件で充填すれば三次元的 網目状組織の間隙に金属を緻密に充填できる。  [0061] Metal filling by physical vapor deposition includes filling by sputtering and filling by vapor deposition. When metal is filled by sputtering or vapor deposition, it is necessary to select a metal that easily diffuses on the substrate surface and reduce the thickness of the metal so that dense filling is possible. preferable. In the case of using the sputtering method or the vapor deposition method, the material atoms of the sputtered metal adhere to the three-dimensional network before reaching the substrate, and the filling property of the metal is slightly reduced. By filling under such conditions, the metal can be densely filled into the gaps of the three-dimensional network structure.
[0062] これらの複合材によれば、三次元的網目状組織の間隙に充填された金属(以下、 充填された金属または充填される金属ということもある)の化学的性質および電気的 性質をそのままに保ちつつ、機械的強度および耐磨耗性を向上させることができる。  [0062] According to these composite materials, the chemical and electrical properties of the metal filled in the gaps of the three-dimensional network (hereinafter sometimes referred to as the filled metal or the filled metal) are improved. The mechanical strength and abrasion resistance can be improved while maintaining the same.
[0063] その理由は、充填された金属の結晶格子に、三次元的網目状組織を形成するゲル の原子または分子の一次元的連鎖(ゲルの原子または分子の一次元的な結合が連 鎖して形成されたもの)を芯にして転位と同様の格子欠陥構造が導入されるからであ り、金属に単に不純物原子が添加されたからではない。つまり、充填された金属の結 晶は、網目状に絡みついた転位が高密度に導入された状態となっており、この転位 が以下の 2つの作用を奏することにより上記の効果が得られる。 [0063] The reason is that a one-dimensional chain of gel atoms or molecules that form a three-dimensional network structure (a one-dimensional bond of gel atoms or molecules is linked to the crystal lattice of the filled metal). This is because a lattice defect structure similar to that of dislocations is introduced with the core formed by using a metal as a core, not simply because an impurity atom is added to a metal. In other words, the crystal of the filled metal is in a state in which dislocations entangled in a network are introduced at a high density. Exerts the following two effects, whereby the above-mentioned effect is obtained.
[0064] まず、第 1の作用について説明する。 First, the first operation will be described.
[0065] 本発明の複合材は、金属の結晶中に網目状に絡みついた転位が高密度に導入さ れているので、この金属の格子欠陥がナノメータオーダで変化し、格子歪みが不均 一な状態となっている。一般に、金属に外力が加わると金属原子は拡散しょうとする が、本発明の複合材では、上記の不均一な格子歪みによって、そのような金属原子 の拡散経路を複雑に曲折させる。その結果、この複合材は、充填された金属の塑性 変形の速度が遅くなるので、機械的強度および耐磨耗性が向上する。  [0065] In the composite material of the present invention, since the dislocations tangled in a network are introduced into the metal crystal at a high density, the lattice defects of the metal change on the order of nanometers, and the lattice distortion is uneven. It is in a state. Generally, when an external force is applied to a metal, the metal atoms tend to diffuse. In the composite material of the present invention, the diffusion path of such metal atoms is complicatedly bent due to the non-uniform lattice distortion. As a result, the composite material has improved mechanical strength and abrasion resistance because the rate of plastic deformation of the filled metal is reduced.
[0066] 次に、第 2の作用について図面を参照しつつ説明する。  Next, the second operation will be described with reference to the drawings.
[0067] 一般的に、図 4 (a)に示すように、金属 401に引張り応力 403が加わると、金属結晶 中に含まれる転位 405が活動することにより、金属 401の粒界 402に応力集中が生 じてボイド(クラック) 404が成長する。したがって、従来の金属 401は、破壊や切断が 生じやすく機械的強度が低い。一方、本発明の複合材 400は、図 4 (b)に示すように 、三次元的網目状組織 406により金属 401の結晶中に網目状に絡みついた転位 40 7が高密度に導入されているので、引張り応力 403が加えられた場合に、これらの転 位が僅かずつずれる。その結果、金属 401は、結晶粒オーダでは歪みを均一に分散 させつつ変形するので、粒界 402に破壊や切断に至る応力集中が生じなレ、。したが つて、本発明の複合材は、機械的強度および耐磨耗性が向上する。なお、図 4にお いて、三次元的網目状組織 406は実線で示され、転位 407は破線で示されている。 また、本明細書において「転位」とは、格子欠陥の一種で、結晶内の線 (転位線)に 沿って起こった一連の原子の変位をいう。  Generally, as shown in FIG. 4 (a), when a tensile stress 403 is applied to a metal 401, dislocations 405 contained in the metal crystal are activated, so that stress is concentrated on a grain boundary 402 of the metal 401. As a result, voids (cracks) 404 grow. Therefore, the conventional metal 401 is easily broken or cut, and has low mechanical strength. On the other hand, in the composite material 400 of the present invention, as shown in FIG. 4 (b), the three-dimensional network structure 406 has a high density of dislocations 407 entangled in a crystal of the metal 401 in the metal 401. Therefore, when a tensile stress 403 is applied, these dislocations slightly shift. As a result, the metal 401 is deformed while dispersing the strain uniformly in the order of crystal grains, so that stress concentration at the grain boundaries 402 leading to destruction or cutting does not occur. Therefore, the composite material of the present invention has improved mechanical strength and abrasion resistance. In FIG. 4, the three-dimensional network 406 is indicated by a solid line, and the dislocation 407 is indicated by a broken line. Further, in this specification, “dislocation” is a kind of lattice defect, and refers to a series of displacements of atoms that occur along a line (dislocation line) in a crystal.
[0068] また、本発明の複合材によれば、上記 2つの作用により、金属膜として基板に形成 された場合にその基板との界面応力を緩和できるので、この複合材は、基板から剥 離し難レ、金属膜 (被覆膜)となる。  In addition, according to the composite material of the present invention, when formed as a metal film on a substrate, the interface stress with the substrate can be reduced by the above two actions, so that the composite material is separated from the substrate. Difficult, metal film (coating film).
[0069] 本発明の複合材の製造方法によれば、上記 (iii)の溶媒の量の調整により、多様な 効果が得られる。例えば、溶媒に対する三次元的網目状組織の体積比または重量 比を 10%以下に調整すると、充填される金属の電気的性質の変化を充分に抑制す ること力 Sできる。また、この体積比等を 5%以下に調整すると、充填される金属の色合 レ、の変化を十分抑制することができる。さらに、この体積比等を 20%以下に調整する と、めっき法により三次元的網目状組織の間隙に金属を充填する際に、金属の緻密 な充填を容易に行うことができる。カロえて、この体積比等を 2%以下に調整すると、ス パッタ法や蒸着法等の物理気相成長法により三次元的網目状組織の間隙に金属を 充填する際に、金属の緻密な充填を容易に行うことができる。 According to the method for producing a composite material of the present invention, various effects can be obtained by adjusting the amount of the solvent (iii). For example, when the volume ratio or the weight ratio of the three-dimensional network structure to the solvent is adjusted to 10% or less, it is possible to sufficiently suppress the change in the electrical properties of the metal to be filled. If the volume ratio is adjusted to 5% or less, the color of the metal 変 化 can be sufficiently suppressed from changing. Further, when the volume ratio or the like is adjusted to 20% or less, dense filling of the metal can be easily performed when the metal is filled into the gaps of the three-dimensional network structure by the plating method. If the volume ratio is adjusted to 2% or less, the metal can be densely packed when filling the gaps of the three-dimensional network by physical vapor deposition such as sputtering or evaporation. Can be easily performed.
[0070] また、上記 (iii)の溶媒の量の調整により、三次元的網目状組織の網目の大きさを、 数ナノメータから数十ナノメータの範囲で調整でき、十分な強度と複合材の用途に応 じた機能との両立を図ることができる。  [0070] In addition, by adjusting the amount of the solvent in the above (iii), the size of the network of the three-dimensional network can be adjusted in the range of several nanometers to several tens of nanometers, and sufficient strength and application of the composite material It is possible to achieve compatibility with functions that meet the requirements.
[0071] さらに、本発明の複合材の製造方法によれば、三次元的網目状組織によって、複 合材が形成される基板の表面の粗さ、電界集中または温度差等に起因するめつき液 や原料ガスの対流が抑制されるので、得られる複合材の厚さが均一となる。したがつ て、このような複合材が各種金属膜に用レ、られた場合には、その膜の均一性が向上 するという効果もある。  [0071] Further, according to the method for producing a composite material of the present invention, the three-dimensional network structure causes the surface of the substrate on which the composite material is to be formed to have a surface roughness, an electric field concentration, a temperature difference, or the like. And the convection of the raw material gas is suppressed, so that the thickness of the obtained composite material becomes uniform. Therefore, when such a composite material is used for various metal films, there is also an effect that the uniformity of the film is improved.
(実施例)  (Example)
[0072] 本発明の実施例を、図を参照しつつ説明する。  An embodiment of the present invention will be described with reference to the drawings.
[0073] (実施例 1) (Example 1)
実施例 1の複合材として半導体集積回路 (LSI)の Cu配線を、図 5に示す方法によ り製造した。  As a composite material of Example 1, Cu wiring of a semiconductor integrated circuit (LSI) was manufactured by the method shown in FIG.
[0074] まず、 TaNバリア膜 505などを施した集積回路の配線となる溝やビアホールの層間 絶縁膜 504パターンを有する Siウェハ 501に電解めつきの前処理として、 lOOnm厚 程度のスパッタ Cu膜 507を堆積した。その後、架橋前のポリビニルアルコール水溶 液と架橋剤としてのホウ酸水溶液を順次スピンコートして、ポリビュルアルコールゲル 506を形成した。そのまま、 Cu電解めつき液に浸してゲルの三次元網目状組織を内 包した Cu膜 508 (500nm厚以上)を成長させた後、ケミカルメカニカルポリツシング 工程によって、余分のポリビュルアルコールゲル 506と Cu膜 508を同時に除去した。 多層配線が必要なら、続けて層間絶縁膜 504を設けて上記工程を繰り返す。  First, as a pretreatment for electrolytic plating, a sputtered Cu film 507 having a thickness of about 100 nm is applied to a Si wafer 501 having an interlayer insulating film 504 pattern of trenches and via holes serving as wiring of an integrated circuit provided with a TaN barrier film 505 or the like. Deposited. Thereafter, an aqueous solution of polyvinyl alcohol before crosslinking and an aqueous solution of boric acid as a crosslinking agent were sequentially spin-coated to form a polybutyl alcohol gel 506. After growing the Cu film 508 (500 nm thick or more) enclosing the three-dimensional network structure of the gel by immersing it in the Cu electroplating solution as it is, an extra polyvinyl alcohol gel 506 is produced by the chemical mechanical polishing process. And the Cu film 508 were simultaneously removed. If a multi-layer wiring is required, an interlayer insulating film 504 is continuously provided and the above steps are repeated.
[0075] このようにして実施例 1の複合材であるゲルの三次元的網目状組織を内包した Cu 酉己線 509を得た。この Cu酉己線 509は、従来の Cu配線と比較して、ストレスマイグレー シヨンおよびエレクト口マイグレーションによる断線率を 1/1000にすることができた。 [0075] In this way, a Cu material line 509 containing the three-dimensional network structure of the gel as the composite material of Example 1 was obtained. This Cu Rokki line 509 is stress my gray compared to conventional Cu wiring. The disconnection rate due to migration of the sill and elect opening was reduced to 1/1000.
[0076] (実施例 2)  (Example 2)
実施例 2として LSIの A1— Si— Cuの合金(以下、 A1合金という。)からなる配線を、図 6に示す工程により製造した。  Example 2 As Example 2, a wiring made of an A1-Si-Cu alloy (hereinafter, referred to as an A1 alloy) of an LSI was manufactured by the process shown in FIG.
[0077] まず、 TiNバリア膜 605などを施した層間絶縁膜 504を有する Siウェハ 601に、テト ラメトキシシラン一メタノール一水 (加水分解と重合に用いられる)の混合溶液をスピン コートして、シリカゲルを形成した。これをメタノールの臨界条件である、温度 239. 4 °C以上、圧力 8. 09MPa以上の条件下でメタノールを乾燥させて、気孔率 98%、厚 さ 1 mのシリカエア口ゲル 607を形成した。その後は、通常の LSI工程である、 A1合 金スパッタ(500nm厚)→フォトリソグラフ 合金ドライエッチングを行って、ゲル の三次元的網目状組織を内包した A1合金膜 608を形成した。この後、シリケート系の 層間絶縁膜 604を堆積する場合には、余分のシリカエア口ゲル 607は、フォトリソダラ フィ時にシリカ薄膜になって A1合金パターンに付着しており、層間絶縁膜 604と一体 化するので、除去しなくてもよい。多層配線が必要なら、続けて層間絶縁膜 604を設 けて上記工程を繰り返す。  First, a mixed solution of tetramethoxysilane-methanol-water (used for hydrolysis and polymerization) is spin-coated on a Si wafer 601 having an interlayer insulating film 504 provided with a TiN barrier film 605 and the like. Silica gel formed. This was dried under conditions of a temperature of 239.4 ° C. or more and a pressure of 8.9 MPa or more, which are the critical conditions for methanol, to form a silica air port gel 607 having a porosity of 98% and a thickness of 1 m. Thereafter, A1 alloy sputtering (500 nm thick) → photolithographic alloy dry etching, which is a normal LSI process, was performed to form an A1 alloy film 608 including a three-dimensional network structure of gel. Thereafter, when depositing a silicate-based interlayer insulating film 604, the excess silica air opening gel 607 becomes a silica thin film during photolithography and adheres to the A1 alloy pattern, and is integrated with the interlayer insulating film 604. It is not necessary to remove it. If a multilayer wiring is required, an interlayer insulating film 604 is provided, and the above steps are repeated.
[0078] このようにして実施例 2の複合材であるゲルの三次元的網目状組織が内包された A 1合金配線 609を得た。この A1合金配線 609は、従来の A1合金配線と比較して、スト レスマイグレーションおよびエレクト口マイグレーションによる断線率を 1/1000にす ること力 Sできた。  [0078] In this way, A1 alloy wiring 609 containing a three-dimensional network structure of the gel as the composite material of Example 2 was obtained. The A1 alloy wiring 609 was able to reduce the disconnection rate due to stress migration and elect opening migration to 1/1000 compared to the conventional A1 alloy wiring.
[0079] (実施例 3)  (Example 3)
実施例 3として、 Niと Agの 2層または Niと Auの 2層力 なる BNCコネクタの被覆膜 を、図 7に示す工程により製造した。  As Example 3, a coating film of a BNC connector having two layers of Ni and Ag or two layers of Ni and Au was manufactured by the process shown in FIG.
[0080] まず、コネクタの芯 701とシールドに接続されるコネクタリング 702とを、 80°Cに加熱 した 0. 8wt%ァガロース溶液に浸して出した後、直ちに冷水に入れてコネクタの芯 7 01およびコネクタリング 702の表面をゲルコートした。そのまま、これらを Ni電解めつ き液に浸して、ゲルの三次元的網目状組織を内包した Ni層 704を形成し、続けて Ag 電解めつき液または Au電解めつき液に浸して、ゲルの三次元的網目状組織を内包 した Ag層または Au層 705を形成した。その後、ジェット水流または 80°C以上の湯に よって余分のァガロースゲル 703を除去した。 First, the connector core 701 and the connector ring 702 connected to the shield were immersed in a 0.8 wt% agarose solution heated to 80 ° C., and immediately immersed in cold water to be inserted into the connector core 701. And the surface of the connector ring 702 was gel-coated. These are immersed in a Ni electroplating solution to form a Ni layer 704 containing a three-dimensional network structure of the gel, and then immersed in an Ag electroplating solution or an Au electroplating solution to form a gel. An Ag layer or Au layer 705 containing the three-dimensional network structure was formed. Then, jet water or hot water of 80 ° C or more Therefore, excess agarose gel 703 was removed.
[0081] このようにして実施例 3の複合材である、ゲルの三次元的網目状組織を内包した Ni 層 704と Ag層 705の 2層力 なる被覆膜または Ni層 704と Au層 705の 2層力 なる 被覆膜を得た。これらの被覆膜は、従来のコネクタの被覆膜と比較して耐摩耗性が 向上した。 [0081] Thus, the composite material of Example 3 is a two-layer coating film of Ni layer 704 and Ag layer 705 containing a three-dimensional network structure of gel, or Ni layer 704 and Au layer 705. Thus, a coating film having a two-layer strength was obtained. These coatings have improved abrasion resistance compared to coatings of conventional connectors.
[0082] (実施例 4) (Example 4)
実施例 4の複合材として Crからなるねじの被覆膜を、図 8に示す工程により製造し た。  A screw coating film made of Cr as the composite material of Example 4 was manufactured by the process shown in FIG.
[0083] まず、加工後のねじ 801を金属製の網の上に適当に敷き並べ、 80°Cに加熱した 0 . 8wt. %ァガロース溶液に浸して出した後、直ちに冷水に入れて表面をゲルコート した。そのまま Cr電解めつき液に浸して、ゲルの三次元的網目状組織を内包した Cr 層 803を形成し、その後、 80°C以上の湯によって余分のァガロースゲル 802を除去 した。  [0083] First, the screw 801 after processing is appropriately placed and arranged on a metal net, immersed in a 0.8 wt.% Agarose solution heated to 80 ° C, and then immediately put into cold water to clean the surface. Gel coated. The sample was immersed in a Cr electroplating solution as it was to form a Cr layer 803 containing a three-dimensional network structure of the gel, and then excess agarose gel 802 was removed with hot water at 80 ° C or higher.
[0084] このようにして実施例 4の複合材である、ゲルの三次元的網目状組織を内包した Cr 層 803からなる被覆膜を得た。この被覆膜は、従来のねじの被覆膜と比較して耐摩 耗性が向上した。  [0084] In this way, a coating film composed of the Cr layer 803 containing the three-dimensional network structure of the gel, which is the composite material of Example 4, was obtained. This coating film has improved abrasion resistance as compared with the conventional screw coating film.
[0085] (実施例 5) (Example 5)
実施例 5の複合材として、近年需要が増加している無鉛ハンダのための、プリント基 板の Cu層表面に設けられる Ag— Sn合金または Cu— Sn合金からなるベース膜を製 造した。  As a composite material of Example 5, a base film made of an Ag—Sn alloy or a Cu—Sn alloy provided on the surface of a Cu layer of a printed circuit board for lead-free solder, whose demand has been increasing in recent years, was manufactured.
[0086] まず、プリント基板に Cuメトキシドのェチルェチルァセトアセテート溶液をスプレー 塗布してゲルを形成し、これをそのまま Ag_Sn合金または Cu— Sn合金の電解めつき 液に浸して合金膜を成長させた。引き続き、ジェット水流で余分の Cuメトキシドゲルを 除去した。こうして、形成された実施例 5の複合材である無鉛ハンダのためのベース 層は、剥離がなく均一な金属膜となった。  [0086] First, an ethyl acetate solution of Cu methoxide was spray-coated on a printed circuit board to form a gel, which was immersed directly in an electrolytic plating solution of an Ag_Sn alloy or Cu-Sn alloy to form an alloy film. Grew. Subsequently, excess Cu methoxide gel was removed by a jet stream. Thus, the formed base layer for the lead-free solder, which is the composite material of Example 5, was a uniform metal film without peeling.
[0087] なお、上記の各実施例におけるめっき液には、表 2に挙げたものを適宜用いること ができ、いずれのめっき液でも同様の結果が得られる。また、上記した実施例におい て用いることのできるゲルは、表 1に分類したように、無数に存在する。 [0088] 本発明の実施例としては、上記の実施例以外にも、光学部品であるレンズの納めら れた鏡筒の内部の被覆膜、金属製ガスケットの表面層や力ミソリなどの刃物の被覆膜 等の数多くの応用が考えられる。 [0087] As the plating solution in each of the above Examples, those listed in Table 2 can be used as appropriate, and similar results can be obtained with any plating solution. In addition, there are countless gels that can be used in the above-described examples, as classified in Table 1. Examples of the present invention include, in addition to the above-described examples, a coating film inside a lens barrel in which a lens as an optical component is housed, a surface layer of a metal gasket, and a cutting tool such as a force razor. Numerous applications, such as a coating film, are considered.
[0089] また、その他の実施の態様として、本発明の複合材を用いた金属膜に鉄鋼の表面 処理として知られる炭浸処理を施した態様が挙げられる。この場合、鉄鋼 (基板)の表 面に、有機系ゲルの三次元的網目状組織の間隙に鉄を充填させて形成した複合材 を設けた後、還元雰囲気中で熱処理して有機系ゲルの三次元的網目状組織を炭化 させ、これにより生じた炭素を鉄に浸透させて炭化層を形成させる。この熱処理は、 たとえば 400°C、 30分間で行うことが可能であり、従来法の 800°C、 4時間に比べて 圧倒的に低温化と短時間化を図ることができる。  Further, as another embodiment, there is an embodiment in which a metal film using the composite material of the present invention is subjected to a carbon impregnation treatment known as a surface treatment of steel. In this case, a composite material formed by filling the gaps of the three-dimensional network structure of the organic gel with iron is provided on the surface of the steel (substrate), and then heat-treated in a reducing atmosphere to form the organic gel. The three-dimensional network is carbonized, and the resulting carbon is infiltrated into iron to form a carbonized layer. This heat treatment can be performed, for example, at 400 ° C. for 30 minutes, and can significantly reduce the temperature and time in comparison with the conventional method at 800 ° C. for 4 hours.
[0090] さらに、その他の実施態様として、得られた複合材のうち、三次元的網目状組織の 一部を取り除き、または、変成させる態様が挙げられる。例えば、複合材を高真空装 置内の部品等の被覆膜に用いる場合に、ゲルにより装置内が汚染されるのを防ぐた めに、複合材の表面に露出している三次元的網目状組織を取り除き、または、変成さ せること力 Sできる。三次元的網目状組織の一部を取り除く方法としては、例えば、エツ チングゃ酸素プラズマ処理等により複合材の表面から一定の深さの三次元的網目状 組織を取り除く方法が挙げられる。三次元的網目状組織の一部を変成させる方法と しては、例えば、熱処理によって複合材の表面付近に位置するゲルの三次元的網目 状組織と金属とを反応させる方法が挙げられる。このように芯となる三次元的網目状 組織が消失した複合材であっても、充填された金属には転位構造が保存されるため Further, as another embodiment, there is an embodiment in which a part of a three-dimensional network structure is removed or denatured in the obtained composite material. For example, when a composite material is used as a coating film for components and the like in a high-vacuum device, a three-dimensional mesh exposed on the surface of the composite material to prevent contamination of the device with gel. The ability to remove or denature dendrites. As a method of removing a part of the three-dimensional network, for example, a method of removing the three-dimensional network having a certain depth from the surface of the composite material by etching, oxygen plasma treatment or the like can be mentioned. Examples of a method of denaturing a part of the three-dimensional network include a method of reacting the metal with the three-dimensional network of the gel located near the surface of the composite by heat treatment. Even in the case of a composite material in which the three-dimensional network structure serving as the core has disappeared, since the dislocation structure is preserved in the filled metal,
、機械的強度、耐摩耗性および耐剥離性等の効果は維持される。 Effects such as mechanical strength, abrasion resistance and peeling resistance are maintained.

Claims

請求の範囲 The scope of the claims
[I] 三次元的網目状組織の間隙に金属が緻密に充填されていることを特徴とする複合 材。  [I] A composite material characterized in that metal is densely filled in gaps of a three-dimensional network structure.
[2] 前記三次元的網目状組織が有機系材料で形成されていることを特徴とする請求の 範囲第 1項に記載の複合材。  [2] The composite material according to claim 1, wherein the three-dimensional network structure is formed of an organic material.
[3] 半導体集積回路の配線として用いられることを特徴とする請求の範囲第 1項に記載 の複合材。 [3] The composite material according to claim 1, which is used as a wiring of a semiconductor integrated circuit.
[4] 電気器具、機械部品または光学部品の被覆膜として用いられることを特徴とする請 求の範囲第 1項に記載の複合材。  [4] The composite material according to claim 1, wherein the composite material is used as a coating film of an electric appliance, a mechanical component, or an optical component.
[5] ゲルの有する三次元的網目状組織の間隙に金属が緻密に充填されていることを特 徴とする複合材。 [5] A composite material characterized in that the metal is densely filled in the gaps of the three-dimensional network structure of the gel.
[6] 金属膜と、 [6] a metal film,
前記金属膜の内部に設けられている三次元網目状組織と、  A three-dimensional network provided inside the metal film,
を備えることを特徴とする複合材。  A composite material comprising:
[7] 請求項 6に記載の複合材において、 [7] The composite material according to claim 6, wherein
前記三次元網目状組織は、複数の架橋点または交叉点を有するネットワーク構造 を有することを特徴とする複合材。  The composite material, wherein the three-dimensional network has a network structure having a plurality of cross-linking points or cross points.
[8] 請求項 6に記載の複合材において、 [8] The composite material according to claim 6, wherein
前記三次元網目状組織は、多孔性材料で構成されてレ、ることを特徴とする複合材  The three-dimensional network is composed of a porous material.
[9] 請求項 6に記載の複合材において、 [9] The composite material according to claim 6, wherein
前記三次元網目状組織は、有機系材料で形成されてレ、ることを特徴とする複合材  The composite material, wherein the three-dimensional network is formed of an organic material.
[10] 請求項 6に記載の複合材において、 [10] The composite material according to claim 6, wherein
前記三次元網目状組織は、ゲル材料で形成されていることを特徴とする複合材。  The composite material, wherein the three-dimensional network is formed of a gel material.
[II] 半導体基板と、  [II] a semiconductor substrate;
前記半導体基板上に設けられており、請求項 6に記載の複合材カ なる導電部材 と、 を備えることを特徴とする半導体装置。 A conductive member provided on the semiconductor substrate and comprising the composite material according to claim 6, A semiconductor device comprising:
[12] 基材と、  [12] a substrate,
前記基材の表面に設けられており、請求項 6に記載の複合材を用いる被腹膜と、 を備えることを特徴とする装置部品。  7. An apparatus component, comprising: a peritoneum provided on a surface of the base material and using the composite material according to claim 6.
[13] 三次元的網目状組織を有するゲルを基板上に形成させて、間隙に溶媒を含む三 次元的網目状組織を形成する工程と、 [13] a step of forming a gel having a three-dimensional network on the substrate to form a three-dimensional network containing a solvent in a gap;
前記間隙に、めっき法により前記溶媒と置き換えて金属を充填させる工程とを有す ることを特徴とする複合材の製造方法。  Filling the gap with a metal by replacing with the solvent by plating.
[14] 前記ゲルが有機系材料で形成されていることを特徴とする請求の範囲第 13項に記 載の複合材の製造方法。 14. The method according to claim 13, wherein the gel is formed of an organic material.
[15] 三次元的網目状組織を有するゲルを基板上に形成させて、間隙に溶媒を含む三 次元的網目状組織を形成する工程と、 [15] a step of forming a gel having a three-dimensional network on the substrate to form a three-dimensional network containing a solvent in a gap;
当該溶媒を乾燥させて、間隙に溶媒を含まない三次元的網目状組織を形成する 工程と、  Drying the solvent to form a three-dimensional network containing no solvent in the gaps;
物理気相成長法または化学気相成長法により金属を前記間隙に充填させる工程と を有することを特徴とする複合材の製造方法。  Filling the gaps with a metal by physical vapor deposition or chemical vapor deposition.
[16] 基材上に、ゲルを形成する工程と、 [16] a step of forming a gel on the base material,
前記ゲルに含まれる三次元網目状組織の間隙に含まれる溶媒をめつき法により金 属と置換させ、金属膜内に前記三次元網目状組織が設けられている複合材を形成 する工程と、  Forming a composite material having the three-dimensional network in a metal film by replacing the solvent contained in the gaps of the three-dimensional network included in the gel with a metal by a plating method;
を含むことを特徴とする複合材の製造方法。  A method for producing a composite material, comprising:
[17] 基材上に、ゲルを形成する工程と、 [17] a step of forming a gel on the base material,
前記ゲルに含まれる三次元網目状組織の間隙に含まれる溶媒を乾燥させて、乾燥 ゲルを形成する工程と、  Drying the solvent contained in the gaps of the three-dimensional network contained in the gel to form a dried gel;
前記三次元網目状組織の前記間隙に気相成長法により金属を堆積させ、金属膜 内に前記三次元網目状組織が設けられている複合材を形成する工程と、 を含むことを特徴とする複合材の製造方法。  Depositing metal in the gaps of the three-dimensional network by vapor phase epitaxy to form a composite having the three-dimensional network in a metal film. Manufacturing method of composite material.
PCT/JP2004/012070 2003-09-19 2004-08-23 Composite material and method of manufacturing the same WO2005028706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514009A JPWO2005028706A1 (en) 2003-09-19 2004-08-23 Composite material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-329118 2003-09-19
JP2003329118 2003-09-19

Publications (1)

Publication Number Publication Date
WO2005028706A1 true WO2005028706A1 (en) 2005-03-31

Family

ID=34372955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012070 WO2005028706A1 (en) 2003-09-19 2004-08-23 Composite material and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JPWO2005028706A1 (en)
WO (1) WO2005028706A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113089A (en) * 2005-10-21 2007-05-10 Nissin Kogyo Co Ltd Method for producing ceramic thin film and base material
JP2011021220A (en) * 2009-07-14 2011-02-03 Toyama Univ Method of generating film on metal surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252556A (en) * 1994-03-17 1995-10-03 Toyota Motor Corp Production of reinforcement formed body for composite material
JP2003051463A (en) * 2001-05-29 2003-02-21 Sharp Corp Method of forming metal wiring and metal wiring substrate using the method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252556A (en) * 1994-03-17 1995-10-03 Toyota Motor Corp Production of reinforcement formed body for composite material
JP2003051463A (en) * 2001-05-29 2003-02-21 Sharp Corp Method of forming metal wiring and metal wiring substrate using the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113089A (en) * 2005-10-21 2007-05-10 Nissin Kogyo Co Ltd Method for producing ceramic thin film and base material
JP4490900B2 (en) * 2005-10-21 2010-06-30 日信工業株式会社 Manufacturing method and substrate of ceramic thin film
JP2011021220A (en) * 2009-07-14 2011-02-03 Toyama Univ Method of generating film on metal surface

Also Published As

Publication number Publication date
JPWO2005028706A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JPWO2006098101A1 (en) Metal material, wiring for semiconductor integrated circuit using metal material, and coating film
CN109423637B (en) Preparation method of high-conductivity material
CN1455829A (en) Metal-plated material and method for preparation, and electric and electronic parts using same
JP3631392B2 (en) Method for forming wiring film
KR20020086830A (en) Metal article coated with near-surface doped tin or tin alloy
US9245670B2 (en) Reliable wire method
US5730853A (en) Method for plating metal matrix composite materials with nickel and gold
Hu et al. Study of electroless Sn-coated Cu microparticles and their application as a high temperature thermal interface material
KR101514890B1 (en) Preparing method of metal complex having excellent surface properties
WO2005028706A1 (en) Composite material and method of manufacturing the same
CN111945193B (en) Ni-P-YSZ/Ni-P double-layer nano composite plating layer and preparation method thereof
CN115584540B (en) Diamond wire saw with composite coating and preparation process thereof
CN111364030A (en) Pretreatment method for improving flatness of electroless NiP plating layer on aluminum substrate
CN1325790A (en) Copper film for TAB band carrier and TAB carried band and TAB band carrier
JP3322211B2 (en) Composite gold plating film, method for producing the same, and electrical contact having the composite gold plating film
CN112176374A (en) Composite film layer with sandwich structure and preparation method thereof
KR102115232B1 (en) fabricating method including sonicating for metal nanowire dispersed solution
KR101621852B1 (en) Semiconductor device and method for manufacturing the same
CN112877560B (en) Diamond/copper composite material and preparation method thereof
KR102243054B1 (en) Fiber complexes and methods of manufacturing the same
CN114182241A (en) Ni-W-P/Ni-P nano cerium oxide composite anticorrosive coating and process
TWI261873B (en) Plasma treatment to lower CVD Cu film resistivity and enhance Cu(111)/Cu(200) peak ratio
WO2014102140A1 (en) A method for plating a substrate with a metal
CN1590597A (en) Copper electroplating film method
TW202336273A (en) Electroless plating solution and method for manufacturing wiring substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514009

Country of ref document: JP

122 Ep: pct application non-entry in european phase