WO2005028100A1 - Air purifying member and filter using carbon nanohorn - Google Patents

Air purifying member and filter using carbon nanohorn Download PDF

Info

Publication number
WO2005028100A1
WO2005028100A1 PCT/JP2004/013356 JP2004013356W WO2005028100A1 WO 2005028100 A1 WO2005028100 A1 WO 2005028100A1 JP 2004013356 W JP2004013356 W JP 2004013356W WO 2005028100 A1 WO2005028100 A1 WO 2005028100A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
carbon nanohorn
carbon
air
tobacco
Prior art date
Application number
PCT/JP2004/013356
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Azami
Tsutomu Yoshitake
Yoshimi Kubo
Sumio Iijima
Ichirou Ishida
Daisuke Kasuya
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005514032A priority Critical patent/JP4618128B2/en
Publication of WO2005028100A1 publication Critical patent/WO2005028100A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • A24D3/163Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0415Beds in cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • B01D2259/4146Contiguous multilayered adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4541Gas separation or purification devices adapted for specific applications for portable use, e.g. gas masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means

Definitions

  • the present invention relates to an air purifying member and a filter using a carbon nanohorn.
  • cigarette smoke purification technology There are two main types of cigarette smoke purification technology.
  • One is the technology for purifying tobacco smoke, which is directly absorbed by smokers, that is, the mainstream smoke, and the technology for purifying sidestream smoke that is inhaled by people around the smoker.
  • a typical example is a charcoal filter in which granular activated carbon is dispersed and supported on a fibrous filter.
  • the charcoal filter is a crimped fiber bundle that is spread into a sheet at the time of manufacturing the filter, or is a sheet obtained by adding activated carbon to the paper with an upward force and then bunching the sheet into a rod.
  • Air purifiers have the function of removing specified substances and odors in tobacco sidestream smoke, and are widely used for business, home, and vehicle use.
  • Activated carbon is also frequently used in filters used in such air purifiers (Patent Document 2).
  • Activated carbon is effective for a relatively large number of gases and is inexpensive. , And has been favorably used as a filter material.
  • odorous substances such as tobacco and the like may adhere and the removal performance may decrease.
  • the amount of treated air is reduced and the dust removing effect of the air purifier itself is reduced.
  • the fan capacity is increased to compensate for the decrease in the air volume and the air volume is increased, problems such as increased noise will occur.
  • Patent Document 3 discloses an air purifying filter using carbon nanotubes instead of activated carbon or the like. This document describes a technique for applying a filter containing carbon nanotubes to a chemical filter used in a semiconductor manufacturing process. However, according to the study of the present inventors, it has been found that it is difficult to obtain sufficient removal performance with carbon nanotubes. In particular, it has been found that the action of removing nicotine in tobacco is not at a satisfactory level.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-95552
  • Patent Document 2 JP-A-6-319790
  • Patent Document 3 JP-A-11-221414
  • Patent Document 4 JP 2002-159851 A
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2003-225561
  • An object of the present invention is to provide a member and a filter for removing a predetermined substance contained in air. Specifically, an object of the present invention is to provide an air purifying member having a high efficiency of removing contaminants and the like in the air, and to provide a tobacco filter for removing substances such as tobacco smoke and nicotine.
  • an air purifying member including a carbon nanohorn.
  • a tobacco filter characterized by including a carbon nanohorn.
  • the present invention has been made based on the new finding that carbon nanohorns can effectively remove contaminants in air, particularly nicotine.
  • ADVANTAGE OF THE INVENTION According to this invention, the remarkable air purifying effect is obtained by the removal capability of the specific component in the air which a carbon nanohorn has. This purification action is remarkably superior to activated carbon and carbon nanotubes described in the related art.
  • Patent Document 5 discloses an element for storing hydrogen gas and the like (abstract and the like). This element is installed in a gas container and is used for storing hydrogen and the like.
  • a configuration including a base through which air can flow, and a carbon nanohorn disposed in the base.
  • the carbon nanohorn refers to a horn-shaped substance formed of a graphite sheet.
  • a carbon nanohorn aggregate formed of a plurality of carbon nanohorns is called a carbon nanohorn aggregate.
  • the air purifying member refers to an external air force that removes a predetermined component to purify the air.
  • the form is not particularly limited, and various forms can be used.
  • a tobacco filter is a form of an air purification member, and is a filter that is attached to one end of a tobacco and removes a predetermined substance contained in a main smoke stream. For example, it refers to a filter that removes components such as nicotine and purifies air containing tobacco smoke.
  • the carbon nanohorn since the carbon nanohorn is used, a predetermined substance contained in air can be efficiently removed.
  • the effect of removing nicotine is remarkable, and it can be suitably applied as a cigarette smoke filter.
  • an air purifier including the air purifying member. Since the air purifier of the present invention includes the air purifying member including the carbon nanohorn, the air in the outside world can be efficiently purified and returned to the outside world.
  • FIG. 1 is a view showing a TEM observation result showing a structure of a Darier type carbon nanohorn.
  • FIG. 2 is a view showing a TEM observation result showing a structure of a Darier type carbon nanohorn.
  • FIG. 3 is a view showing a configuration example of an apparatus for manufacturing a carbon nanohorn.
  • FIG. 4 is a view for explaining a definition of an irradiation angle in the manufacturing apparatus shown in FIG. 3.
  • FIG. 5 is a view showing a TEM observation result showing a structure of a carbon nanohorn obtained in an example.
  • FIG. 6 is a view showing a TEM observation result showing a structure of a carbon nanohorn obtained in an example.
  • FIG. 7 is a schematic configuration diagram of a tobacco filter according to an embodiment.
  • FIG. 8 is a diagram showing an example of the configuration of the tobacco filter according to the embodiment.
  • FIG. 9 is a schematic configuration diagram of an air purifier according to the embodiment.
  • FIG. 10 is a diagram showing a configuration of a filter attached to the air purifier shown in FIG. 9.
  • FIG. 11 is a diagram for explaining a method of evaluating the performance of a tobacco filter.
  • FIG. 12 is a diagram showing performance evaluation results of the tobacco filter.
  • FIG. 13 is a diagram showing performance evaluation results of the tobacco filter.
  • carbon nanohorn is used as a filter material.
  • the carbon nanohorn will be described.
  • Carbon nanohorns are angular (horn) -like substances composed of graphite sheet. Conventionally, carbon nanohorns have been classified into a dary type, a bud type, and the like based on their morphological characteristics.
  • FIG. 1 and FIG. 2 show a dahlia-type carbon nanohorn. This structure is manufactured by using a device having no cooling means and targeting a graphite rod. In the dahlia type, as shown in Fig. 1 and Fig. 2, there is a dense part of the graphite sheet (the thick black part in the figure). In addition, the horn structures are overlapping or bent, and the aggregate contains various types of horns.
  • the node type has a structure very similar to the amorphous structure.
  • the morphological feature is that the horn hardly protrudes from the aggregate.
  • the present inventor has succeeded in producing a carbon nanohorn having a shape different from the displacement.
  • the present inventors refer to such a carbon nanohorn having a unique shape as a carbon nano baby finger (hereinafter, appropriately referred to as “CNBF”) and distinguish it from a conventional carbon nanohorn.
  • CNBF carbon nano baby finger
  • each of the nanohorns has an independent shape, and the overlap of the horn structure such as dahlia is relatively small, and it has a different shape from the aggregated shape such as the bad type. ing.
  • the diameter of the carbon nanohorn aggregate is 80 to 120 nm in the dary type, and the size of the bad type is about 10% smaller than that of the dahlia type.
  • CNBF has a diameter of 50 nm or less, and has a smaller size than the above-mentioned type of carbon nanohorn.
  • CNBF has a specific structure different from conventional carbon nanohorns, and can be suitably used as a filter material.
  • FIG. 3 is a diagram showing an example of a carbon nanohorn manufacturing apparatus. 3 has a structure in which a manufacturing channel 107 and a carbon nanohorn recovery chamber 119 are connected via a recovery pipe 155.
  • Argon is introduced into the manufacturing chamber 107 from the inert gas supply unit 127 via a flow meter 129. During the production of the carbon nanohorn, a predetermined amount of argon is kept flowing.
  • a graphite rod 101 supported by a target support member 116 is arranged in the manufacturing chamber 107.
  • the graphite rod 101 has a cylindrical shape and is driven to rotate by a rotating device 115.
  • the laser light 103 emitted from the laser light source 111 is applied to the side surface of the graphite rod 101 via the ZnSe lens 123 and the ZnSe window 113.
  • the ZnSe lens 123 emits laser light 103 ⁇ .
  • the ZnSe window 113 is a window for guiding the laser beam 103 into the manufacturing chamber 107.
  • the lateral force of the graphite rod 101 irradiated with the laser beam 103 also causes carbon to evaporate and generate a plume 109.
  • the irradiation angle of the laser beam 103 is preferably 30 ° or more and 60 ° or less.
  • the irradiation angle is defined as an angle between a line segment connecting the irradiation position and the center of the circle and a horizontal plane in a cross section perpendicular to the length direction of the graphite rod 101, as shown in FIG.
  • the irradiation angle be 40 ° to 50 °.
  • the ratio of the carbon nanohorn aggregates 117 in the product can be further improved.
  • the yield of carbon nanohorn can be measured as follows.
  • the carbon nanohorn is After ultrasonic dispersion in the body, the liquid is spread on a sample stage and observed by TEM.
  • the magnification is, for example, about 30,000.
  • the recovery pipe 155 is provided in the direction in which the plume 109 is generated, and is disposed so as to cover a part of the plume 109.
  • the shape of the recovery tube 155 is cylindrical here, but is not limited to this, and various types can be used.
  • the evaporated carbon is led to the carbon nanohorn recovery chamber 119 via the recovery pipe 155, and is recovered as the carbon nanohorn aggregate 117.
  • a cooling tank 150 containing liquid nitrogen 151 is arranged in the recovery pipe 155.
  • the cooling tank 150 controls the temperature of the plume 109 to be low and cools the carbon vapor when passing through the recovery pipe 155.
  • the cooled carbon vapor is recovered as a carbon nanohorn assembly 117 controlled to a desired shape and size.
  • the cooling temperature of the carbon vapor can be, for example, ⁇ 50 ° C. or lower, preferably ⁇ 100 ° C. or lower. By doing so, CNBF as carbon nanohorn aggregate 117 can be produced more stably.
  • the cooling section filled with liquid nitrogen 151 (boiling point: 196 ° C) in the cooling tank 150 converts the carbon vapor generated from the graphite rod 101 into an argon liquid. It can be cooled down to the temperature (110 ° C).
  • the cooling temperature is not particularly limited, but may be, for example, ⁇ 120 ° C. or higher.
  • the carbon nanohorn thus obtained has, for example, a form as shown in Figs.
  • the observation image shown is obtained by dispersing the obtained carbon nanohorn in a predetermined dispersion medium and observing it with a transmission electron microscope.
  • the carbon nanohorn assembly 117 using the manufacturing apparatus of FIG. 3 will be specifically described.
  • the graphite rod 101 high-purity graphite, for example, round rod-shaped sintered carbon or compression molded carbon can be used.
  • the laser beam 103 for example, a laser beam such as a high-output CO gas laser beam is used.
  • Irradiation of the laser beam 103 onto the graphite rod 101 is performed using a rare gas such as Ar or He.
  • Reaction inert gas atmosphere including, performed for example 10 3 Pa or more 10 5 Pa in the following atmosphere.
  • rough force Ji is preferably an inert gas atmosphere.
  • the output of the laser beam 103 is, for example, 3 kW or more and 5 kW or less, and the pulse width is, for example, 20 Omsec or more and 2000 msec or less, preferably 750 msec or more and 1250 msec or less. Further, preferable irradiation angles are as described above with reference to FIG.
  • the spot diameter of the laser beam 103 on the side of the graphite rod 101 at the time of irradiation can be, for example, 0.5 mm or more and 5 mm or less.
  • the rotating rod 115 rotates the graphite rod 101 in the circumferential direction at a constant speed.
  • the rotation speed is, for example, not less than 0.05 rpm and not more than 50 rpm.
  • the soot-like substance obtained by the irradiation with the laser beam 103 is collected and deposited on a suitable substrate having a structure in which the soot-like substance is collected in the carbon nanohorn collection chamber 119. It can also be collected by a method of collecting fine particles using a dust bag.
  • an inert gas is allowed to flow in the reaction vessel, and soot-like substances can be recovered by the flow of the inert gas.
  • the soot-like substance obtained by using the apparatus of FIG. 3 mainly includes carbon nanohorn aggregates 117.
  • the carbon nanohorn aggregate 117 is recovered as a substance containing 90 wt% or more.
  • the carbon nanohorn obtained by the above method is advantageous in device application where the portion having a graphite sheet structure is extremely small.
  • the carbon nanohorn obtained by the above method is significantly different in size and shape from the conventional one.
  • the typical value range of the conventional carbon nanohorn structure is that the horn length along the axial direction is 10 to 30 nm, and the diameter perpendicular to the axial direction is 6 nm or less, typically 2 to 4 nm.
  • the carbon nanohorn structure The horn length is lOnm or less, typically 2-5 nm, and the diameter perpendicular to the axial direction is 4 nm or less, typically 1-2 nm.
  • CNBF The method of manufacturing CNBF has been described above as an example. If a cooling member such as the cooling tank 150 is not provided, a normal dary-type or bad-type carbon nanohorn can be manufactured.
  • a force using a “carbon nanohorn aggregate” as the “carbon nanohorn” unless otherwise specified, a non-carbon nanohorn may be used.
  • FIG. 7 is a schematic configuration diagram of a tobacco filter according to the present embodiment.
  • the tobacco filter 210 includes a storage section 202 having an insertion port 208 at one end of the main body, and is configured to detachably insert and hold the tobacco 200 in this portion.
  • On the other end side there is provided a suction port 212 for a smoker to suck in cigarette smoke contained in his / her mouth.
  • a portion of the storage section 202 that also reaches the suction port 212 is connected by a flue 204 that passes through the inside of the main body.
  • a nicotine removal filter 206 is provided in the middle of the flue 204. Another filter may be provided before or after the nicotine removal filter 206! /.
  • Nicotine removal filter 206 is made of a carbon nanohorn molded body.
  • the carbon nanohorn molded article can be obtained by compression-molding the carbon nanohorn produced by the method described above. At the time of molding, it is also possible to appropriately use a molding binder.
  • any of the above-mentioned CNBF type, Dary type, bud type, and shift may be used.
  • an organic binder and Z or an inorganic binder are used. These may be used alone or in combination of two or more.
  • an organic binder or an inorganic binder is used, and both may be used in combination. These may be used alone or in combination of two or more.
  • the organic binder include polysaccharides; cellulose compounds such as methylcellulose and hydroxymethylcellulose; and polyhydric hydroxy compounds such as glycerin and ethylene glycol. Can be.
  • examples of the inorganic binder include clay minerals such as natural clay, kaolin, bentonite, and sepiolite; and inorganic hydrated or inorganic hydrated products such as alumina, alumina hydroxide, silica, and titer. can give.
  • the tobacco 200 and the tobacco filter 210 in the state of FIG. 7A are integrated, and one end of the tobacco 200 is stored in the storage section 202 as shown in FIG. 7B.
  • Tobacco smoke passes through the flue 204 and then through the nicotine removal filter 206. As a result, the amount of nicotine taken into the body of the smoker can be significantly reduced.
  • FIG. 8 shows the configuration of the tobacco filter according to the present embodiment.
  • This tobacco filter comprises a nicotine removal filter 304 and fibrous filters 302 and 306 disposed before and after the filter.
  • the nicotine removal filter 304 can use the carbon nanohorn molded body described in the first embodiment.
  • Filter materials include, for example, cellulose (such as wood pulp and linter pulp after fibrillation, regenerated cellulose (such as viscose rayon and cuprammonium rayon)), cellulose ester, and synthetic polymers (polyester, polyurethane, etc.). , Polyamide, polyethylene, polypropylene, etc.), and the filter material may be in the form of fiber, sheet or paper (such as a sheet having a papermaking structure).
  • Preferred filter materials include cellulose fiber and Z or cellulose ester fiber, and often include at least cellulose ester fiber to improve taste.
  • Cellulose ester fibers include, for example, cellulose acetate, cell Organic acid esters such as cellulose propionate and cellulose butyrate (for example, esters with an organic acid having about 2 to 4 carbon atoms); mixed acid esters such as cellulose acetate propionate and cellulose acetate butyrate; Cellulose ester derivatives such as sesame ester and the like are exemplified. These cellulose ester fibers can also be used alone or in combination of two or more.
  • a molded product of carbon nanohorn is used as a filter.
  • a configuration in which carbon nanohorn is adhered to a base through which air can pass can be used.
  • a fiber bundle obtained by mixing carbon nanohorn into a fiber bundle such as cellulose acetate fiber can be used.
  • the carbon nanohorn may be attached to the fiber bundle using a binder, or may be simply mixed in the fiber bundle.
  • the type of the substrate is not limited to cellulose acetate fiber, and those exemplified in the second embodiment can be used.
  • the solder for example, the materials exemplified in the first embodiment can be used.
  • FIG. 9 is a schematic configuration diagram of an air purifier 430 according to the present embodiment.
  • the air purifier 430 has a structure in which a filter 400 is provided on a top surface of a main body 415.
  • the tobacco smoke sucked from the filter 400 after being cleaned by the filter 400, moves in the main body 415 by the airflow generated by the fan 420, and is discharged from the outlet 425 to the outside of the purifier. .
  • the filter 400 has a structure as shown in FIG. That is, on the main body 415, the deodorizing filter 408, the nicotine removing filter 406, the pre-filter 404, and the mounting frame 402 are stacked in this order and fixed by the fixing tool 401.
  • the pre-filter 404 removes dust in the air.
  • the deodorizing filter 408 adsorbs and deodorizes aldehydes and the like, which are odor components of tobacco.
  • the nicotine removal filter 406 is formed of a sheet-like molded body of carbon nanohorn. ing.
  • the carbon nanohorn used as a raw material can be obtained by the method described above, and may be any of a C NBF type, a Darrier type, and a bud type.
  • a sheet-like molded body can be obtained by compression molding these. In molding, a binder may be used as appropriate.
  • the types of binders that can be used can be the same as those exemplified in the third embodiment.
  • tobacco smoke first passes through the pre-filter 404, and dust in the air is removed.
  • the passed air then passes through a nicotine removal filter 406, which removes nicotine.
  • the smell of the tobacco is reduced through the deodorizing filter 408, and the air becomes clean.
  • the air purifier 430 shown in FIG. 9 can completely remove the smoke of the tobacco and returns the air to the room.
  • a chamber filled with a carbon nanohorn aggregate may be used instead of the carbon nanohorn molded body used in the above embodiment.
  • the nicotine removal filter 206 in Fig. 7 may have a configuration in which a carbon nanohorn aggregate is filled in a container.
  • the nicotine removal filter 304 in FIG. 8 may have a configuration in which a chamber defined by the fibrous filters 302 and 306 and the paper wrapper is filled with a carbon nanohorn aggregate.
  • a filter for removing nicotine can be used other than the force tobacco described in the case of the filter for tobacco.
  • a system that purifies indoor air can be constructed by fitting an air purifying filter containing carbon nanohorns into the partition that separates the smoking room.
  • the air purifying member according to the present invention can be applied to the ventilation part of the mask. That is, a main body is formed by laminating a plurality of cloth bodies, and a main body is formed on a mask formed by installing rubber strings for holding on both side edges of the main body. It is possible to adopt a configuration in which carbon nanohorns are mixed in the constituent fabric. By using such a mask, it is possible to suppress not only invasion of dust and pollen but also oral invasion of nicotine and the like.
  • tobacco smoke filter using a carbon-based material as a cleaning agent evaluation of a tobacco smoke filter using a carbon-based material as a cleaning agent was performed. Tobacco smoke was generated using the device shown in Fig. 11, and the trapping performance of the components was measured.
  • tobacco leaves 502 are arranged in an annular furnace 503. The amount of tobacco leaf 502 is about 20 mg.
  • a heater 501 is provided around the annular furnace 503, so that the tobacco leaves 502 can be burned in a stream of clean air.
  • the smoke component generated from the tobacco leaf 502 is led to the sampling tube 506.
  • the sampling tube 506 is filled with filter material 504 and quartz wool 505.
  • tobacco smoke components were collected on a filter. It was repeated three times to increase the amount collected.
  • the filling length L of the sample in the sampling tube was about 5 mm.
  • the collected gas volume was about 7.5L.
  • carbon nanohorn Form of carbon nanohorn: carbon nanohorn (Dahlia type, etc.)
  • Example 2 In the same manner as in Example 1, an evaluation of a tobacco smoke filter using a carbon-based material as a cleaning agent was performed. Each sample was filled into a volume of 4 mm ⁇ X 5 mm L to collect tobacco smoke. The lower limit of quantification for this test is 100 / zg / g.
  • Figure 13 shows the test results for the amount of nicotine adsorbed together with the evaluated materials. It was revealed that the nicotine adsorption amount of the carbon nanohorn was remarkably large. Although the value is generally larger than that of Example 1, it is considered that this is due to the size of the adsorption time.
  • Example 2 The same test as in Example 2 was performed using carbon nanotubes. At the same amount of sample, lmg, the amount of adsorption showed a large repeated measurement error and was lower than that of the carbon nanohorn, and was approximately 1900 g / g).

Abstract

A filter (400) has a structure wherein a deodorizing filter (408), a nicotine-removing filter (406), a pre-filter (404) and a mounting frame (402) are sequentially stacked in this order on a main body (415) and fixed together by a fixing member (401). The nicotine-removing filter (406) is a sheet-like formed body composed of carbon nanohorns.

Description

カーボンナノホーンを用いた空気浄化部材およびフィルタ 技術分野  Air purification member and filter using carbon nanohorn
[0001] 本発明は、カーボンナノホーンを用いた空気浄ィ匕部材およびフィルタに関する。  The present invention relates to an air purifying member and a filter using a carbon nanohorn.
背景技術  Background art
[0002] 近年の健康指向にともない、人間が吸い込む空気の浄化、居住空間の空気の清浄 化に対する関心が高まりをみせている。空気の汚染の原因となる物質には様々なも のがあるが、その一つにたばこの煙がある。  [0002] With the recent trend toward health, there is increasing interest in purifying air that humans inhale and purifying air in living spaces. There are a variety of substances that cause air pollution, one of which is tobacco smoke.
[0003] たばこの煙の浄ィ匕技術については大きく分けて 2つの種類がある。その一つは、喫 煙者が直接吸引するたばこ煙、すなわち、主流煙を浄化する技術と、喫煙者の周り の人達が吸 、込む副流煙を浄ィ匕する技術とである。  [0003] There are two main types of cigarette smoke purification technology. One is the technology for purifying tobacco smoke, which is directly absorbed by smokers, that is, the mainstream smoke, and the technology for purifying sidestream smoke that is inhaled by people around the smoker.
[0004] 主流煙力 ニコチンやタールを除去する技術は従来力 盛んに検討されており(特 許文献 1)、こうした成分を除去するフィルタが市販されている。代表的なものとして、 繊維質フィルタに粒状の活性炭を分散担持させたチヤコールフィルタが挙げられる。 チヤコールフィルタは、フィルタ製造時にシート状に開繊した捲縮繊維束ある 、は紙 に対して上方力も活性炭を添加した後、シート状から円棒状に集束したものである。  [0004] Mainstream smoke power Techniques for removing nicotine and tar have been actively studied (Patent Document 1), and filters for removing such components are commercially available. A typical example is a charcoal filter in which granular activated carbon is dispersed and supported on a fibrous filter. The charcoal filter is a crimped fiber bundle that is spread into a sheet at the time of manufacturing the filter, or is a sheet obtained by adding activated carbon to the paper with an upward force and then bunching the sheet into a rod.
[0005] ところが、こうしたフィルタでは、上記成分の除去性能は必ずしも充分でなかった。 [0005] However, such a filter has not always been sufficiently effective in removing the above components.
活性炭の添加量を増加させれば除去量も増加するが、この場合、フィルタの通気抵 抗が増加することなる。すなわち、所定成分の除去性能と良好な通気抵抗とを両立さ せることは困難であった。  Increasing the amount of activated carbon increases the removal amount, but in this case, the ventilation resistance of the filter increases. That is, it was difficult to achieve both the performance of removing the predetermined component and the good ventilation resistance.
[0006] 一方、近年では、喫煙者だけでなぐ喫煙者の周りの人達の受動喫煙の害や不***を低減させることについても関心が高まっており、たばこの主流煙だけでなぐ副流 煙への対策も要望されるようになってきた。空気清浄機は、たばこ副流煙中の所定物 質及び臭気を取り除く機能を有し、業務用、家庭用、車載用等に広く使用されている [0006] On the other hand, in recent years, there has been increasing interest in reducing the harm and discomfort of passive smoking among people around smokers who are not only smokers. Measures have also been requested. Air purifiers have the function of removing specified substances and odors in tobacco sidestream smoke, and are widely used for business, home, and vehicle use.
[0007] こうした空気清浄機に用いられるフィルタにも、やはり活性炭が頻用されている(特 許文献 2)。活性炭は、比較的多種類のガスに効果を示しコストも安価であることから 、フィルタ材料として好んで用いられてきた。しかしながら、活性炭を用いた空気清浄 機では、充分にたばこのャ二等を除去することが困難である。また、長期にわたり使 用していると、たばこャ二等の臭い物質が付着し、除去性能が低下することがあった 。このような問題を解消するため活性炭の担持量を増カロさせることも考えられるが、そ の場合、処理風量が低下し空気清浄機自体の除塵効果が低下する。また、風量低 下を補うためにファンの能力を上げて風量を増加すると騒音が増大する等の問題が 生じる。 [0007] Activated carbon is also frequently used in filters used in such air purifiers (Patent Document 2). Activated carbon is effective for a relatively large number of gases and is inexpensive. , And has been favorably used as a filter material. However, it is difficult for an air cleaner using activated carbon to sufficiently remove tobacco and the like. In addition, when used for a long period of time, odorous substances such as tobacco and the like may adhere and the removal performance may decrease. In order to solve such a problem, it is conceivable to increase the amount of activated carbon carried. However, in such a case, the amount of treated air is reduced and the dust removing effect of the air purifier itself is reduced. In addition, if the fan capacity is increased to compensate for the decrease in the air volume and the air volume is increased, problems such as increased noise will occur.
[0008] 特許文献 3には、活性炭等に代えカーボンナノチューブを用いた空気清浄フィルタ が開示されている。同文献には、カーボンナノチューブを含むフィルタを、半導体製 造プロセスに利用されるケミカルフィルタへの適用する技術が記載されている。し力し ながら、本発明者らの検討によれば、カーボンナノチューブでは充分な除去性能を 得ることは困難であることが判明した。特に、たばこに含まれるニコチンを除去する作 用は、充分満足できる水準にはないことが明らかになった。  [0008] Patent Document 3 discloses an air purifying filter using carbon nanotubes instead of activated carbon or the like. This document describes a technique for applying a filter containing carbon nanotubes to a chemical filter used in a semiconductor manufacturing process. However, according to the study of the present inventors, it has been found that it is difficult to obtain sufficient removal performance with carbon nanotubes. In particular, it has been found that the action of removing nicotine in tobacco is not at a satisfactory level.
[0009] 以上のように、従来、たばこの煙に含まれる物質を除去し空気を清浄化する目的で 利用されてきたたばこ煙用フィルタは、除去効率の点でなお改善の余地を有して ヽ た。  [0009] As described above, tobacco smoke filters that have been used for the purpose of purifying air by removing substances contained in tobacco smoke still have room for improvement in terms of removal efficiency.ヽ
特許文献 1:特開 2001— 95552号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-95552
特許文献 2 :特開平 6— 319790号公報  Patent Document 2: JP-A-6-319790
特許文献 3:特開平 11—221414号公報  Patent Document 3: JP-A-11-221414
特許文献 4:特開 2002 - 159851号公報  Patent Document 4: JP 2002-159851 A
特許文献 5 :特開 2003— 225561号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2003-225561
[0010] 発明の開示 [0010] Disclosure of the Invention
[0011] 本発明は、空気中に含まれる所定の物質を除去する部材、フィルタを提供すること を目的とする。具体的には、空気中の汚染物質等の除去効率の高い空気浄化部材 を提供すること、たばこの煙力 ニコチン等の物質を除去するたばこフィルタを提供 することを目的とする。  [0011] An object of the present invention is to provide a member and a filter for removing a predetermined substance contained in air. Specifically, an object of the present invention is to provide an air purifying member having a high efficiency of removing contaminants and the like in the air, and to provide a tobacco filter for removing substances such as tobacco smoke and nicotine.
[0012] 本発明によれば、カーボンナノホーンを含むことを特徴とする空気浄ィ匕部材が提供 される。 [0013] また本発明によれば、カーボンナノホーンを含むことを特徴とするたばこフィルタが 提供される。 According to the present invention, there is provided an air purifying member including a carbon nanohorn. [0013] Further, according to the present invention, there is provided a tobacco filter characterized by including a carbon nanohorn.
[0014] 本発明は、カーボンナノホーンが空気中の汚染物質、特にニコチンを効果的に除 去できるとの新たな知見に基づきなされたものである。本発明によれば、カーボンナ ノホーンの有する空気中の特定成分の除去能力により、顕著な空気浄ィヒ作用が得ら れる。この浄ィ匕作用は、従来技術で述べた活性炭やカーボンナノチューブに比べ顕 著に優れている。  [0014] The present invention has been made based on the new finding that carbon nanohorns can effectively remove contaminants in air, particularly nicotine. ADVANTAGE OF THE INVENTION According to this invention, the remarkable air purifying effect is obtained by the removal capability of the specific component in the air which a carbon nanohorn has. This purification action is remarkably superior to activated carbon and carbon nanotubes described in the related art.
[0015] カーボンナノホーンは、水素等のガスを吸蔵する性質を有し、ガス吸蔵体としての 工業的応用が検討された例があった。たとえば特許文献 5には、水素ガスなどを吸蔵 するエレメントが開示されている(要約等)。このエレメントは、ガス容器内に設置し、 水素等の吸蔵に利用される。  [0015] The carbon nanohorn has a property of absorbing a gas such as hydrogen, and there have been cases where its industrial application as a gas occluding material was studied. For example, Patent Document 5 discloses an element for storing hydrogen gas and the like (abstract and the like). This element is installed in a gas container and is used for storing hydrogen and the like.
[0016] こうした用途については検討された例があるが、空気の浄化に利用する提案はこれ までなされたことがなかった。  [0016] Although there have been examples of studies on such uses, no proposal has been made so far for use in air purification.
[0017] 本発明におけるカーボンナノホーンの配置については様々な態様をとり得る力 た とえば以下の構成を採用することができる。  [0017] With regard to the arrangement of the carbon nanohorns in the present invention, the following configurations can be adopted, for example, forces that can take various aspects.
(0カーボンナノホーンが充填された室を備える構成  (0 Configuration with a chamber filled with carbon nanohorns
(ii)空気の通る流路と、該流路中に配して設けられたカーボンナノホーンとを備える構 成  (ii) A configuration including a flow path through which air flows, and a carbon nanohorn provided in the flow path.
(m)フィルタ構造  (m) Filter structure
(iv)内部に空気が流通することができる基体と、該基体中に配置されたカーボンナノ ホーンとを備える構成  (iv) A configuration including a base through which air can flow, and a carbon nanohorn disposed in the base.
(V)カーボンナノホーンを含む成形シートを具備する構成  (V) Configuration with molded sheet containing carbon nanohorn
[0018] カーボンナノホーンとは、グラフアイトシートにより構成された角(ホーン)状の物質を いう。このカーボンナノホーンが複数集合してゥ-状の形態をなすものを、カーボンナ ノホーン集合体とよぶ。  [0018] The carbon nanohorn refers to a horn-shaped substance formed of a graphite sheet. A carbon nanohorn aggregate formed of a plurality of carbon nanohorns is called a carbon nanohorn aggregate.
[0019] 本発明にお 、ては、カーボンナノホーンおよびカーボンナノホーン集合体の!/、ずれ を用いることちでさる。  In the present invention, it is preferable to use! /, Deviation of carbon nanohorns and carbon nanohorn aggregates.
[0020] 本発明にお 、て、空気浄化部材とは、外界の空気力 所定の成分を除去して浄ィ匕 する部材をいい、たばこの煙を含む空気を浄化するものも含む。その形態は特に限 定されず、種々のものを用いることができる。たばこフィルタとは、空気浄化部材のー 形態であり、たばこの一端に装着して、主煙流中に含まれる所定物質を除去するフィ ルタをいう。たとえば、ニコチン等の成分を除去し、たばこの煙を含む空気を清浄ィ匕 するフィルタをいう。 [0020] In the present invention, the air purifying member refers to an external air force that removes a predetermined component to purify the air. To clean air including tobacco smoke. The form is not particularly limited, and various forms can be used. A tobacco filter is a form of an air purification member, and is a filter that is attached to one end of a tobacco and removes a predetermined substance contained in a main smoke stream. For example, it refers to a filter that removes components such as nicotine and purifies air containing tobacco smoke.
[0021] 本発明によれば、カーボンナノホーンを用いているため、空気中に含まれる所定の 物質を効率的に除去することができる。特に、ニコチンの除去作用が顕著であり、た ばこ煙フィルタとして好適に適用できる。  According to the present invention, since the carbon nanohorn is used, a predetermined substance contained in air can be efficiently removed. In particular, the effect of removing nicotine is remarkable, and it can be suitably applied as a cigarette smoke filter.
[0022] また、本発明によれば、前記空気浄化部材を含むことを特徴とする空気清浄機が 提供される。本発明の空気清浄機は、カーボンナノホーンを含む空気浄ィ匕部材を含 むため、外界の空気を効率的に清浄化し、外界に還元することができる。  Further, according to the present invention, there is provided an air purifier including the air purifying member. Since the air purifier of the present invention includes the air purifying member including the carbon nanohorn, the air in the outside world can be efficiently purified and returned to the outside world.
図面の簡単な説明  Brief Description of Drawings
[0023] 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実 施の形態、およびそれに付随する以下の図面によってさらに明らかになる。  [0023] The above-mentioned object, and other objects, features, and advantages will be further clarified by preferred embodiments described below and accompanying drawings below.
[0024] [図 1]ダリァ型カーボンナノホーンの構造を示す TEM観察結果を示す図である。  FIG. 1 is a view showing a TEM observation result showing a structure of a Darier type carbon nanohorn.
[図 2]ダリァ型カーボンナノホーンの構造を示す TEM観察結果を示す図である。  FIG. 2 is a view showing a TEM observation result showing a structure of a Darier type carbon nanohorn.
[図 3]カーボンナノホーンの製造装置の構成例を示す図である。  FIG. 3 is a view showing a configuration example of an apparatus for manufacturing a carbon nanohorn.
[図 4]図 3に示す製造装置における照射角の定義を説明する図である。  FIG. 4 is a view for explaining a definition of an irradiation angle in the manufacturing apparatus shown in FIG. 3.
[図 5]実施例で得られたカーボンナノホーンの構造を示す TEM観察結果を示す図で ある。  FIG. 5 is a view showing a TEM observation result showing a structure of a carbon nanohorn obtained in an example.
[図 6]実施例で得られたカーボンナノホーンの構造を示す TEM観察結果を示す図で ある。  FIG. 6 is a view showing a TEM observation result showing a structure of a carbon nanohorn obtained in an example.
[図 7]実施の形態に係るたばこ用フィルタの概略構成図である。  FIG. 7 is a schematic configuration diagram of a tobacco filter according to an embodiment.
[図 8]実施の形態に係るたばこフィルタの構成の一例を示す図である。  FIG. 8 is a diagram showing an example of the configuration of the tobacco filter according to the embodiment.
[図 9]実施の形態に係る空気清浄機の概略構成図である。  FIG. 9 is a schematic configuration diagram of an air purifier according to the embodiment.
[図 10]図 9に示す空気清浄機に取り付けられたフィルタの構成を示す図である。  FIG. 10 is a diagram showing a configuration of a filter attached to the air purifier shown in FIG. 9.
[図 11]たばこフィルタの性能評価方法を説明するための図である。  FIG. 11 is a diagram for explaining a method of evaluating the performance of a tobacco filter.
[図 12]たばこフィルタの性能評価結果を示す図である。 [図 13]たばこフィルタの性能評価結果を示す図である。 FIG. 12 is a diagram showing performance evaluation results of the tobacco filter. FIG. 13 is a diagram showing performance evaluation results of the tobacco filter.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 本発明においては、フィルタ材料としてカーボンナノホーンを用いる。以下、カーボ ンナノホーンについて説明する。 [0025] In the present invention, carbon nanohorn is used as a filter material. Hereinafter, the carbon nanohorn will be described.
[0026] [カーボンナノホーン] [0026] [Carbon nanohorn]
カーボンナノホーンは、グラフアイトシートにより構成された角(ホーン)状の物質を いう。カーボンナノホーンは、従来、その形態的な特徴から、ダリァ型、バッド型 (bud: つぼみ)等に分類されてきた。  Carbon nanohorns are angular (horn) -like substances composed of graphite sheet. Conventionally, carbon nanohorns have been classified into a dary type, a bud type, and the like based on their morphological characteristics.
[0027] ダリア型のカーボンナノホーンを図 1および図 2に示す。この構造は、冷却手段を有 さない装置を用い、グラフアイトロッドをターゲットとして製造されたものである。ダリア 型では、図 1および図 2に示すように、グラフアイトシートの重なった密な部分(図中、 黒く太い部分)が存在している。また、ホーン構造が重なり合ったり折れ曲がつたりし ていて、集合体中、多様な形態のホーンが含まれている。  FIG. 1 and FIG. 2 show a dahlia-type carbon nanohorn. This structure is manufactured by using a device having no cooling means and targeting a graphite rod. In the dahlia type, as shown in Fig. 1 and Fig. 2, there is a dense part of the graphite sheet (the thick black part in the figure). In addition, the horn structures are overlapping or bent, and the aggregate contains various types of horns.
[0028] 一方、ノ ッド型はアモルファス構造によく似た構造となっている。形態的には、集合 体からのホーンの突出がほとんどみられない点が特徴となっている。  On the other hand, the node type has a structure very similar to the amorphous structure. The morphological feature is that the horn hardly protrudes from the aggregate.
[0029] これに対し、最近、本発明者は、これらの 、ずれとも異なる形状を有するカーボンナ ノホーンを作製することに成功した。こうした特異な形状を有するカーボンナノホーン を、本発明者らは、カーボンナノべビーフィンガー(以下、適宜「CNBF」という)と称し 、従来のカーボンナノホーンと区別している。 CNBFは、ナノホーンの一つ一つが独 立した形態を保持しており、ダリア型のようなホーン構造の重なりは比較的少なぐバ ッド型のような凝集した集合体とも異なる形状を有している。  On the other hand, recently, the present inventor has succeeded in producing a carbon nanohorn having a shape different from the displacement. The present inventors refer to such a carbon nanohorn having a unique shape as a carbon nano baby finger (hereinafter, appropriately referred to as “CNBF”) and distinguish it from a conventional carbon nanohorn. In CNBF, each of the nanohorns has an independent shape, and the overlap of the horn structure such as dahlia is relatively small, and it has a different shape from the aggregated shape such as the bad type. ing.
[0030] カーボンナノホーン集合体のサイズは、ダリァ型では、カーボンナノホーン集合体 の直径が 80— 120nm、バッド型はダリア型に比し 10%程度小さいサイズとなる。こ れに対し CNBFでは、直径 50nm以下であり、上記タイプのカーボンナノホーンに比 ベて小さなサイズを有する。  [0030] Regarding the size of the carbon nanohorn aggregate, the diameter of the carbon nanohorn aggregate is 80 to 120 nm in the dary type, and the size of the bad type is about 10% smaller than that of the dahlia type. In contrast, CNBF has a diameter of 50 nm or less, and has a smaller size than the above-mentioned type of carbon nanohorn.
[0031] CNBFは、上記したように従来のカーボンナノホーンとは異なる特有の構造を有し ており、フィルタ材料として好適に用いることができる。  [0031] As described above, CNBF has a specific structure different from conventional carbon nanohorns, and can be suitably used as a filter material.
[0032] 次に、カーボンナノホーンの製造方法にっ 、て説明する。ここでは、 CNBFの製造 方法について説明する。 Next, a method for producing a carbon nanohorn will be described. Here, the manufacture of CNBF The method will be described.
[0033] [カーボンナノホーンの製造方法]  [Method for producing carbon nanohorn]
図 3は、カーボンナノホーンの製造装置の一例を示す図である。図 3の製造装置は 、製造チャンノ 107とカーボンナノホーン回収チャンバ 119とが回収管 155を介して 連結した構造となって 、る。  FIG. 3 is a diagram showing an example of a carbon nanohorn manufacturing apparatus. 3 has a structure in which a manufacturing channel 107 and a carbon nanohorn recovery chamber 119 are connected via a recovery pipe 155.
[0034] 製造チャンバ 107の内部には、流量計 129を介して不活性ガス供給部 127よりアル ゴンが導入される。カーボンナノホーンの製造中、アルゴンを所定量、流し続ける。  Argon is introduced into the manufacturing chamber 107 from the inert gas supply unit 127 via a flow meter 129. During the production of the carbon nanohorn, a predetermined amount of argon is kept flowing.
[0035] 製造チャンバ 107内には、ターゲット支持部材 116によって支持されたグラフアイト ロッド 101が配置されている。グラフアイトロッド 101は円筒形状を有し、回転装置 115 によって回転駆動するようになって!/、る。  In the manufacturing chamber 107, a graphite rod 101 supported by a target support member 116 is arranged. The graphite rod 101 has a cylindrical shape and is driven to rotate by a rotating device 115.
[0036] レーザー光源 111から出射したレーザー光 103は、 ZnSeレンズ 123、 ZnSe窓 11 3を介してグラフアイトロッド 101の側面に照射される。 ZnSeレンズ 123は、レーザー 光 103 ^^光する。 ZnSe窓 113は、製造チャンバ 107内にレーザー光 103を導く窓 である。レーザー光 103が照射されたグラフアイトロッド 101側面力もは、炭素が蒸発 し、プルーム 109が発生する。  The laser light 103 emitted from the laser light source 111 is applied to the side surface of the graphite rod 101 via the ZnSe lens 123 and the ZnSe window 113. The ZnSe lens 123 emits laser light 103 ^^. The ZnSe window 113 is a window for guiding the laser beam 103 into the manufacturing chamber 107. The lateral force of the graphite rod 101 irradiated with the laser beam 103 also causes carbon to evaporate and generate a plume 109.
[0037] レーザー光 103の照射角は、 30° 以上 60° 以下とすることが好ましい。照射角と は、図 4に示すように、グラフアイトロッド 101の長さ方向に垂直な断面において、照射 位置と円の中心とを結ぶ線分と、水平面とのなす角と定義する。この照射角を 30° 以上とすることにより、照射するレーザー光 103の反射、すなわち戻り光の発生を防 止することができる。また、発生するプルーム 109力 ¾nSe窓 113を通じて ZnSeレン ズ 123へ直撃することが防止される。このため、 ZnSeレンズ 123を保護し、またカー ボンナノホーン集合体 117の ZnSe窓 113への付着防止に有効である。また、レーザ 一光 103を 60° 以下で照射することにより、アモルファスカーボンの生成を抑制し、 生成物中のカーボンナノホーン集合体 117の割合、すなわちカーボンナノホーン集 合体 117の収率を向上させることができる。また、照射角は 40° — 50° とすること力 S 特に好ましい。 45° 近辺の角度で照射することにより、生成物中のカーボンナノホー ン集合体 117の割合をより一層向上させることができる。なお、カーボンナノホーンの 収率は、以下のようにして測定することができる。すなわち、カーボンナノホーンを液 体中で超音波分散した後、当該液体を試料台上に展開し、 TEM観察する。倍率は たとえば 3万倍程度とする。外観観察により、カーボンナノホーン構造を有する部分と そうでない部分とが明瞭に区別されるので、それぞれの部分の面積比から収率を測 定することができる。 [0037] The irradiation angle of the laser beam 103 is preferably 30 ° or more and 60 ° or less. The irradiation angle is defined as an angle between a line segment connecting the irradiation position and the center of the circle and a horizontal plane in a cross section perpendicular to the length direction of the graphite rod 101, as shown in FIG. By setting the irradiation angle to 30 ° or more, reflection of the irradiated laser beam 103, that is, generation of return light can be prevented. In addition, the plume 109 is prevented from being directly hit the ZnSe lens 123 through the nSe window 113. Therefore, it is effective in protecting the ZnSe lens 123 and in preventing the carbon nanohorn assembly 117 from adhering to the ZnSe window 113. By irradiating the laser beam 103 at a temperature of 60 ° or less, the generation of amorphous carbon can be suppressed, and the ratio of the carbon nanohorn aggregate 117 in the product, that is, the yield of the carbon nanohorn aggregate 117 can be improved. it can. It is particularly preferable that the irradiation angle be 40 ° to 50 °. By irradiating at an angle near 45 °, the ratio of the carbon nanohorn aggregates 117 in the product can be further improved. In addition, the yield of carbon nanohorn can be measured as follows. That is, the carbon nanohorn is After ultrasonic dispersion in the body, the liquid is spread on a sample stage and observed by TEM. The magnification is, for example, about 30,000. By observing the external appearance, a portion having a carbon nanohorn structure and a portion having no carbon nanohorn structure are clearly distinguished, so that the yield can be measured from the area ratio of each portion.
[0038] 回収管 155は、プルーム 109の発生方向に設けられ、プルーム 109の一部を覆うよ うに配設されている。回収管 155の形状はここでは円筒状としたが、これに限られず 種々のものを用いることができる。蒸発した炭素は、この回収管 155を経由してカー ボンナノホーン回収チャンバ 119に導かれ、カーボンナノホーン集合体 117として回 収される。  The recovery pipe 155 is provided in the direction in which the plume 109 is generated, and is disposed so as to cover a part of the plume 109. The shape of the recovery tube 155 is cylindrical here, but is not limited to this, and various types can be used. The evaporated carbon is led to the carbon nanohorn recovery chamber 119 via the recovery pipe 155, and is recovered as the carbon nanohorn aggregate 117.
[0039] ここで、液体窒素 151を含む冷却タンク 150が回収管 155内に配置されている。冷 却タンク 150は、プルーム 109の温度を低く制御するとともに、回収管 155を通過す る際にカーボン蒸気を冷却する。冷却されたカーボン蒸気は、所望の形状、サイズに 制御されたカーボンナノホーン集合体 117として回収される。カーボン蒸気の冷却温 度は、たとえば- 50°C以下、好ましくは— 100°C以下とすることができる。こうすること により、カーボンナノホーン集合体 117として CNBFをより一層安定的に製造すること ができる。カーボン蒸気を- 100°C以下に冷却する場合、たとえば、冷却タンク 150 に液体窒素 151 (沸点— 196°C)を充填した冷却部により、グラフアイトロッド 101から 発生したカーボン蒸気を、アルゴンの液ィ匕する温度 (一 110°C)まで冷却させることが できる。また、冷却温度に特に制限はないが、たとえば、— 120°C以上とすることがで きる。  Here, a cooling tank 150 containing liquid nitrogen 151 is arranged in the recovery pipe 155. The cooling tank 150 controls the temperature of the plume 109 to be low and cools the carbon vapor when passing through the recovery pipe 155. The cooled carbon vapor is recovered as a carbon nanohorn assembly 117 controlled to a desired shape and size. The cooling temperature of the carbon vapor can be, for example, −50 ° C. or lower, preferably −100 ° C. or lower. By doing so, CNBF as carbon nanohorn aggregate 117 can be produced more stably. When the carbon vapor is cooled to -100 ° C or lower, for example, the cooling section filled with liquid nitrogen 151 (boiling point: 196 ° C) in the cooling tank 150 converts the carbon vapor generated from the graphite rod 101 into an argon liquid. It can be cooled down to the temperature (110 ° C). The cooling temperature is not particularly limited, but may be, for example, −120 ° C. or higher.
[0040] このようにして得られるカーボンナノホーンは、たとえば図 5、図 6のような形態を有し ている。図示した観察像は、得られたカーボンナノホーンを所定の分散媒中に分散し 、透過型電子顕微鏡により観察したものである。  [0040] The carbon nanohorn thus obtained has, for example, a form as shown in Figs. The observation image shown is obtained by dispersing the obtained carbon nanohorn in a predetermined dispersion medium and observing it with a transmission electron microscope.
[0041] 次に、図 3の製造装置を用いたカーボンナノホーン集合体 117の製造方法につい て具体的に説明する。図 3の製造装置において、グラフアイトロッド 101として、高純 度グラフアイト、たとえば丸棒状焼結炭素や圧縮成形炭素等を用いることができる。ま た、レーザー光 103として、たとえば、高出力 COガスレーザー光などのレーザー光  Next, a method of manufacturing the carbon nanohorn assembly 117 using the manufacturing apparatus of FIG. 3 will be specifically described. In the manufacturing apparatus shown in FIG. 3, as the graphite rod 101, high-purity graphite, for example, round rod-shaped sintered carbon or compression molded carbon can be used. Further, as the laser beam 103, for example, a laser beam such as a high-output CO gas laser beam is used.
2  2
を用いる。レーザー光 103のグラフアイトロッド 101への照射は、 Ar、 He等の希ガス をはじめとする反応不活性ガス雰囲気、たとえば 103Pa以上 105Pa以下の雰囲気中 で行う。また、製造チャンバ 107内をあら力じめ、たとえば 10—2Pa以下に減圧排気し た後、不活性ガス雰囲気とすることが好ましい。また、グラフアイトロッド 101の側面に おけるレーザー光 103のパワー密度がほぼ一定、たとえば 20± lOkWZcm2となる ようにレーザー光 103の出力、スポット径、および照射角を調節することが好ましい。 Is used. Irradiation of the laser beam 103 onto the graphite rod 101 is performed using a rare gas such as Ar or He. Reaction inert gas atmosphere, including, performed for example 10 3 Pa or more 10 5 Pa in the following atmosphere. Further, after evacuating the inside of manufacturing chamber 107 rough force Ji because, for example, below 10- 2 Pa, is preferably an inert gas atmosphere. Further, it is preferable to adjust the output, spot diameter, and irradiation angle of the laser beam 103 so that the power density of the laser beam 103 on the side surface of the graphite rod 101 is substantially constant, for example, 20 ± 10 kWZcm 2 .
[0042] レーザー光 103の出力は、たとえば 3kW以上 5kW以下、パルス幅はたとえば、 20 Omsec以上 2000msec以下、好ましくは 750msec以上 1250msec以下とする。また 、好ましい照射角度は、図 4を用いて前述した通りである。照射時のレーザー光 103 のグラフアイトロッド 101側面へのスポット径は、たとえば 0. 5mm以上 5mm以下とす ることがでさる。 The output of the laser beam 103 is, for example, 3 kW or more and 5 kW or less, and the pulse width is, for example, 20 Omsec or more and 2000 msec or less, preferably 750 msec or more and 1250 msec or less. Further, preferable irradiation angles are as described above with reference to FIG. The spot diameter of the laser beam 103 on the side of the graphite rod 101 at the time of irradiation can be, for example, 0.5 mm or more and 5 mm or less.
[0043] レーザー光 103照射時に、回転装置 115によってグラフアイトロッド 101を円周方向 に一定速度で回転させる。回転数はたとえば 0. 05rpm以上 50rpm以下とする。  When the laser beam 103 is irradiated, the rotating rod 115 rotates the graphite rod 101 in the circumferential direction at a constant speed. The rotation speed is, for example, not less than 0.05 rpm and not more than 50 rpm.
[0044] 図 3の装置では、レーザー光 103の照射によって得られたすす状物質がカーボン ナノホーン回収チャンバ 119に回収される構成となっている力 適当な基板上に堆積 して回収することや、ダストバッグによる微粒子回収の方法によって回収することもで きる。また、不活性ガスを反応容器内で流通させて、不活性ガスの流れによりすす状 物質を回収することもできる。  In the apparatus shown in FIG. 3, the soot-like substance obtained by the irradiation with the laser beam 103 is collected and deposited on a suitable substrate having a structure in which the soot-like substance is collected in the carbon nanohorn collection chamber 119. It can also be collected by a method of collecting fine particles using a dust bag. In addition, an inert gas is allowed to flow in the reaction vessel, and soot-like substances can be recovered by the flow of the inert gas.
[0045] 図 3の装置を用いて得られたすす状物質は、カーボンナノホーン集合体 117を主と して含む。たとえば、カーボンナノホーン集合体 117が 90wt%以上含まれる物質とし て回収される。  The soot-like substance obtained by using the apparatus of FIG. 3 mainly includes carbon nanohorn aggregates 117. For example, the carbon nanohorn aggregate 117 is recovered as a substance containing 90 wt% or more.
[0046] 上記方法によれば、均一なホーン構造を有し、純度の高!、カーボンナノホーン集 合体を得ることができる。すなわち、上記方法により得られるカーボンナノホーンは、 グラフアイトシート構造を有する部分がきわめて少なぐデバイス応用上、有利である  According to the above method, it is possible to obtain a carbon nanohorn aggregate having a uniform horn structure, high purity and high purity. In other words, the carbon nanohorn obtained by the above method is advantageous in device application where the portion having a graphite sheet structure is extremely small.
[0047] また、上記方法により得られるカーボンナノホーンは、従来のものに比べてサイズ、 形状が大きく異なる。従来型のカーボンナノホーン構造の代表値の範囲は、軸方向 に沿うホーン長さが 10— 30nm、軸方向に直交する径の大きさは、 6nm以下、代表 的には、 2— 4nmである。これに対して、上記方法によるカーボンナノホーン構造の ホーン長さは、 lOnm以下、代表的には、 2— 5nmで、軸方向に直交する径の大きさ は、 4nm以下、代表的には 1一 2nmである。 [0047] The carbon nanohorn obtained by the above method is significantly different in size and shape from the conventional one. The typical value range of the conventional carbon nanohorn structure is that the horn length along the axial direction is 10 to 30 nm, and the diameter perpendicular to the axial direction is 6 nm or less, typically 2 to 4 nm. On the other hand, the carbon nanohorn structure The horn length is lOnm or less, typically 2-5 nm, and the diameter perpendicular to the axial direction is 4 nm or less, typically 1-2 nm.
[0048] 以上、 CNBFを製造する方法を例に挙げて説明した。冷却タンク 150等の冷却部 材を設けなければ、通常のダリァ型、バッド型のカーボンナノホーンを作製することが できる。 [0048] The method of manufacturing CNBF has been described above as an example. If a cooling member such as the cooling tank 150 is not provided, a normal dary-type or bad-type carbon nanohorn can be manufactured.
[0049] 次に、カーボンナノホーンを用いたフィルタについて、図面に基づいて説明する。  Next, a filter using a carbon nanohorn will be described with reference to the drawings.
以下の実施の形態では特にことわりがない限り「カーボンナノホーン」として「カーボン ナノホーン集合体」を用いている力 そのような形態でないものを使用することもでき る。  In the following embodiments, a force using a “carbon nanohorn aggregate” as the “carbon nanohorn” unless otherwise specified, a non-carbon nanohorn may be used.
[0050] (第一の実施の形態)  (First Embodiment)
図 7は、本実施の形態に係るたばこ用フィルタの概略構成図である。たばこ用フィル タ 210は、本体の一端に差込口 208を有する収納部 202を備え、この部分にたばこ 2 00を着脱可能に差し込んで保持するように構成されている。他端側には、喫煙者が 口に含んでたばこの煙を吸引するための吸引口 212が設けられている。収納部 202 力も吸引口 212に至る部分は、本体内を通る煙道 204により連絡されている。煙道 2 04の途中には、ニコチン除去フィルタ 206が設けられている。ニコチン除去フィルタ 2 06の前または後に、他のフィルタを設けても構わな!/、。  FIG. 7 is a schematic configuration diagram of a tobacco filter according to the present embodiment. The tobacco filter 210 includes a storage section 202 having an insertion port 208 at one end of the main body, and is configured to detachably insert and hold the tobacco 200 in this portion. On the other end side, there is provided a suction port 212 for a smoker to suck in cigarette smoke contained in his / her mouth. A portion of the storage section 202 that also reaches the suction port 212 is connected by a flue 204 that passes through the inside of the main body. A nicotine removal filter 206 is provided in the middle of the flue 204. Another filter may be provided before or after the nicotine removal filter 206! /.
[0051] ニコチン除去フィルタ 206は、カーボンナノホーン成形体からなる。カーボンナノホ ーン成形体は、前述の方法により作製されたカーボンナノホーンを圧縮成形すること により得られる。成形に際し、成形用バインダーを適宜用いることも可能である。  [0051] Nicotine removal filter 206 is made of a carbon nanohorn molded body. The carbon nanohorn molded article can be obtained by compression-molding the carbon nanohorn produced by the method described above. At the time of molding, it is also possible to appropriately use a molding binder.
[0052] カーボンナノホーンとしては、前述した CNBF型、ダリァ型、つぼみ型の 、ずれを用 いてもよい。  [0052] As the carbon nanohorn, any of the above-mentioned CNBF type, Dary type, bud type, and shift may be used.
[0053] 成形用ノインダーとしては、有機系バインダーおよび Zまたは無機系バインダーが 用いられる。これらは、単独、あるいは 2種類以上を用いてもよい。成形用バインダー としては、有機系バインダーまたは無機系ノインダ一が用いられ、両者を併用するこ ともできる。これらは、単独、あるいは 2種類以上を用いてもよい。有機系ノ インダ一と しては、たとえば、多糖類;メチルセルロース、ヒドロキシメチルセルロースなどのセル ロース系化合物;グリセリン、エチレングリコールなどの多価ヒドロキシ化合物等を用 いることができる。無機系ノインダ一としては、たとえば天然粘土、カオリン、ベントナ イト、セピオライト等の粘土鉱物、アルミナ、水酸化アルミナ、シリカ、チタ-ァ等の無 機酸ィ匕物あるいは無機含水酸ィ匕物等があげられる。 [0053] As the molding binder, an organic binder and Z or an inorganic binder are used. These may be used alone or in combination of two or more. As the molding binder, an organic binder or an inorganic binder is used, and both may be used in combination. These may be used alone or in combination of two or more. Examples of the organic binder include polysaccharides; cellulose compounds such as methylcellulose and hydroxymethylcellulose; and polyhydric hydroxy compounds such as glycerin and ethylene glycol. Can be. Examples of the inorganic binder include clay minerals such as natural clay, kaolin, bentonite, and sepiolite; and inorganic hydrated or inorganic hydrated products such as alumina, alumina hydroxide, silica, and titer. can give.
[0054] カーボンナノホーン成形体の製造方法としては種々の方法を採用することができる 1S たとえば、カーボンナノホーン原料に、水やアルコールなどの溶剤を必要量カロえ [0054] Various methods can be adopted as a method for producing the carbon nanohorn molded article. 1S For example, a necessary amount of a solvent such as water or alcohol is added to the carbon nanohorn raw material.
、混合し、押し出し成形法などで目的の形に成形した後、乾燥し、必要により熱処理 を行う方法が挙げられる。 , Mixing, forming into the desired shape by extrusion molding, etc., followed by drying and, if necessary, heat treatment.
[0055] 図 7に戻り、本実施の形態に係るたばこ用フィルタの使用方法について説明する。  Returning to FIG. 7, a method of using the tobacco filter according to the present embodiment will be described.
喫煙時には、図 7 (a)の状態にあるたばこ 200およびたばこ用フィルタ 210を一体ィ匕 し、図 7 (b)に示すように、たばこ 200の一端が収納部 202に収納された状態とする。 たばこの煙は、煙道 204を通過し、次いでニコチン除去フィルタ 206を通過することと なる。この結果、喫煙者の体内に摂取されるニコチン量を大幅に低減することができ る。  At the time of smoking, the tobacco 200 and the tobacco filter 210 in the state of FIG. 7A are integrated, and one end of the tobacco 200 is stored in the storage section 202 as shown in FIG. 7B. . Tobacco smoke passes through the flue 204 and then through the nicotine removal filter 206. As a result, the amount of nicotine taken into the body of the smoker can be significantly reduced.
[0056] (第二の実施の形態)  (Second Embodiment)
本実施の形態に係るたばこフィルタの構成を図 8に示す。このたばこフィルタは、二 コチン除去フィルタ 304と、その前後に配置された繊維質フィルタ 302、 306からなる  FIG. 8 shows the configuration of the tobacco filter according to the present embodiment. This tobacco filter comprises a nicotine removal filter 304 and fibrous filters 302 and 306 disposed before and after the filter.
[0057] ニコチン除去フィルタ 304は、第一の実施の形態で述べたカーボンナノホーン成形 体を用いることができる。 The nicotine removal filter 304 can use the carbon nanohorn molded body described in the first embodiment.
[0058] 繊維質フィルタ 302、 306としては、セルロースアセテートの繊維束あるいは紙から なるフィルタを用いることができる。フィルタ素材は、たとえば、セルロース(フイブリル ィ匕されて 、てもよ 、木材パルプやリンターパルプなど)、再生セルロース(ビスコース レーヨン、銅アンモニアレーヨンなど)、セルロースエステル、合成高分子(ポリエステ ル、ポリウレタン、ポリアミド、ポリエチレン、ポリプロピレンなど)などで構成でき、フィル ター素材の形態は、繊維やシート又は紙 (抄紙構造を有するシートなど)などとするこ ともできる。好ましいフィルタ素材には、セルロース繊維及び Z又はセルロースエステ ル繊維が含まれ、喫味を向上させるため少なくともセルロースエステル繊維を含む場 合が多い。セルロースエステル繊維としては、たとえば、セルロースアセテート、セル ロースプロピオネート、セルロースブチレートなどの有機酸エステル(たとえば、炭素 数 2— 4程度の有機酸とのエステル);セルロースアセテートプロピオネート、セルロー スアセテートブチレートなどの混酸エステル;およびポリ力プロラタトングラフトイ匕セル口 ースエステルなどのセルロースエステル誘導体などが例示される。これらのセルロー スエステル繊維も、単独でまたは二種以上混合して使用できる。 As the fibrous filters 302 and 306, a filter made of a cellulose acetate fiber bundle or paper can be used. Filter materials include, for example, cellulose (such as wood pulp and linter pulp after fibrillation, regenerated cellulose (such as viscose rayon and cuprammonium rayon)), cellulose ester, and synthetic polymers (polyester, polyurethane, etc.). , Polyamide, polyethylene, polypropylene, etc.), and the filter material may be in the form of fiber, sheet or paper (such as a sheet having a papermaking structure). Preferred filter materials include cellulose fiber and Z or cellulose ester fiber, and often include at least cellulose ester fiber to improve taste. Cellulose ester fibers include, for example, cellulose acetate, cell Organic acid esters such as cellulose propionate and cellulose butyrate (for example, esters with an organic acid having about 2 to 4 carbon atoms); mixed acid esters such as cellulose acetate propionate and cellulose acetate butyrate; Cellulose ester derivatives such as sesame ester and the like are exemplified. These cellulose ester fibers can also be used alone or in combination of two or more.
[0059] (第三の実施の形態)  (Third Embodiment)
第一および第二の実施の形態では、フィルタとしてカーボンナノホーンの成形体を 用いたが、内部を空気が通過できる基体にカーボンナノホーンを付着させた構成と することもできる。たとえば、セルロースアセテート繊維などの繊維束にカーボンナノ ホーンを混入させたものを用いることもできる。この場合、カーボンナノホーンは、バイ ンダーを用いて繊維束に付着させてもよいし、単に繊維束中に混ぜた形態としてもよ い。基体の種類は、セルロースアセテート繊維に限定されず、第二の実施の形態で 例示したものを用いることができる。また、ノインダ一としては、たとえば第一の実施の 形態に例示された材料を用いることができる。  In the first and second embodiments, a molded product of carbon nanohorn is used as a filter. However, a configuration in which carbon nanohorn is adhered to a base through which air can pass can be used. For example, a fiber bundle obtained by mixing carbon nanohorn into a fiber bundle such as cellulose acetate fiber can be used. In this case, the carbon nanohorn may be attached to the fiber bundle using a binder, or may be simply mixed in the fiber bundle. The type of the substrate is not limited to cellulose acetate fiber, and those exemplified in the second embodiment can be used. Further, as the solder, for example, the materials exemplified in the first embodiment can be used.
[0060] (第四の実施の形態)  (Fourth Embodiment)
本実施の形態では、空気清浄器のフィルタにカーボンナノホーンフィルタを適用し た例について説明する。図 9は本実施の形態に係る空気清浄機 430の概略構成図 である。この空気清浄機 430は、本体 415の天面にフィルタ 400を設けた構造を有し ている。  In the present embodiment, an example in which a carbon nanohorn filter is applied to a filter of an air purifier will be described. FIG. 9 is a schematic configuration diagram of an air purifier 430 according to the present embodiment. The air purifier 430 has a structure in which a filter 400 is provided on a top surface of a main body 415.
[0061] フィルタ 400から吸引されたたばこの煙は、フィルタ 400で清浄化された後、ファン 4 20により発生させた気流によって本体 415内を移動し、排出口 425から清浄機外部 へ排出される。  [0061] The tobacco smoke sucked from the filter 400, after being cleaned by the filter 400, moves in the main body 415 by the airflow generated by the fan 420, and is discharged from the outlet 425 to the outside of the purifier. .
[0062] フィルタ 400は、図 10のような構造を有している。すなわち、本体 415上に、脱臭フ ィルタ 408、ニコチン除去フィルタ 406、プレフィルタ 404および取り付け枠 402をこ の順で積み重ね、固定具 401で固定した構成となっている。  [0062] The filter 400 has a structure as shown in FIG. That is, on the main body 415, the deodorizing filter 408, the nicotine removing filter 406, the pre-filter 404, and the mounting frame 402 are stacked in this order and fixed by the fixing tool 401.
[0063] プレフィルタ 404は、空気中の塵埃を除去する。脱臭フィルタ 408は、たばこの臭い 成分であるアルデヒド類等を吸着し脱臭する。  [0063] The pre-filter 404 removes dust in the air. The deodorizing filter 408 adsorbs and deodorizes aldehydes and the like, which are odor components of tobacco.
[0064] ニコチン除去フィルタ 406は、カーボンナノホーンのシート状成形体により構成され ている。原料となるカーボンナノホーンは、すでに述べた方法により得ることができ、 C NBF型、ダリァ型、つぼみ型のいずれを用いてもよい。これらを圧縮成形することに よりシート状成形体を得ることができる。成形に際し、適宜バインダーを用いることもで きる。利用できるバインダーの種類は第三の実施の形態で例示したものとすることが できる。 [0064] The nicotine removal filter 406 is formed of a sheet-like molded body of carbon nanohorn. ing. The carbon nanohorn used as a raw material can be obtained by the method described above, and may be any of a C NBF type, a Darrier type, and a bud type. A sheet-like molded body can be obtained by compression molding these. In molding, a binder may be used as appropriate. The types of binders that can be used can be the same as those exemplified in the third embodiment.
[0065] 図 10において、たばこの煙は、まずプレフィルタ 404を通過し、空気中の塵埃が除 去される。通過した空気は、次にニコチン除去フィルタ 406を通過し、これによりニコ チンが除去される。その後、脱臭フィルタ 408を経てたばこの臭いが低減され、清浄 な空気となる。このようなフィルタ 400の作用により、図 9に示す空気清浄機 430は、 たばこの煙を清浄ィ匕しきれ 、な空気を室内に還元する。  [0065] In FIG. 10, tobacco smoke first passes through the pre-filter 404, and dust in the air is removed. The passed air then passes through a nicotine removal filter 406, which removes nicotine. Thereafter, the smell of the tobacco is reduced through the deodorizing filter 408, and the air becomes clean. By the action of such a filter 400, the air purifier 430 shown in FIG. 9 can completely remove the smoke of the tobacco and returns the air to the room.
[0066] 本発明は、上記実施の形態の説明に限定されるものではなぐ本発明の趣旨を逸 脱しな 、範囲で種々変更しても構わな!/、。  [0066] The present invention is not limited to the description of the above embodiment, and various changes may be made without departing from the spirit of the present invention.
[0067] たとえば、上記実施の形態で使用したカーボンナノホーン成形体に代え、カーボン ナノホーン集合体を充填した室を利用することもできる。  For example, a chamber filled with a carbon nanohorn aggregate may be used instead of the carbon nanohorn molded body used in the above embodiment.
[0068] たとえば、図 7におけるニコチン除去フィルタ 206は、容器内にカーボンナノホーン 集合体を充填した構成とすることもできる。また、図 8におけるニコチン除去フィルタ 3 04は、繊維質フィルタ 302, 306および巻紙によって区画された室にカーボンナノホ ーン集合体を充填した構成とすることもできる。  [0068] For example, the nicotine removal filter 206 in Fig. 7 may have a configuration in which a carbon nanohorn aggregate is filled in a container. In addition, the nicotine removal filter 304 in FIG. 8 may have a configuration in which a chamber defined by the fibrous filters 302 and 306 and the paper wrapper is filled with a carbon nanohorn aggregate.
[0069] また、上記実施の形態ではたばこ用フィルタの場合について説明した力 たばこ以 外でもニコチンの除去用フィルタとして使用することもできる。たとえば、喫煙室を区 画するパーティションに、カーボンナノホーンを含有する空気清浄フィルタをはめ込 み、室内の空気を清浄にするシステムを構成することもできる。  [0069] In the above-described embodiment, a filter for removing nicotine can be used other than the force tobacco described in the case of the filter for tobacco. For example, a system that purifies indoor air can be constructed by fitting an air purifying filter containing carbon nanohorns into the partition that separates the smoking room.
[0070] また、マスクの通気部に本発明に係る空気浄ィ匕部材を適用することもできる。すな わち、布体を複数枚重ね合わせて本体部を形成し、その本体部の両側縁部に、保持 用のゴム紐を設置することにより形成されるマスクにお ヽて、本体部を構成する布体 にカーボンナノホーンを混入させた構成とすることができる。このようなマスクを用いる ことにより、塵埃や花粉の侵入はもとより、ニコチン等の経口侵入を抑制できる。  [0070] Further, the air purifying member according to the present invention can be applied to the ventilation part of the mask. That is, a main body is formed by laminating a plurality of cloth bodies, and a main body is formed on a mask formed by installing rubber strings for holding on both side edges of the main body. It is possible to adopt a configuration in which carbon nanohorns are mixed in the constituent fabric. By using such a mask, it is possible to suppress not only invasion of dust and pollen but also oral invasion of nicotine and the like.
[0071] (実施例) 実施例 1 (Example) Example 1
本実施例では、炭素系材料を清浄化剤として用いたたばこ煙用フィルタの評価を 行った。図 11に示す装置を用いてたばこの煙を発生させ、その成分の捕集性能を測 定した。図 11中、環状炉 503内にたばこ葉 502が配置されている。たばこ葉 502の 量は約 20mgである。環状炉 503の周囲にはヒーター 501が設置され、これにより、た ばこ葉 502を清浄空気気中流で燃焼できるようになつている。たばこ葉 502から発生 した煙成分はサンプリングチューブ 506に導かれる。サンプリングチューブ 506には、 フィルタ材料 504および石英ウール 505が充填されている。  In this example, evaluation of a tobacco smoke filter using a carbon-based material as a cleaning agent was performed. Tobacco smoke was generated using the device shown in Fig. 11, and the trapping performance of the components was measured. In FIG. 11, tobacco leaves 502 are arranged in an annular furnace 503. The amount of tobacco leaf 502 is about 20 mg. A heater 501 is provided around the annular furnace 503, so that the tobacco leaves 502 can be burned in a stream of clean air. The smoke component generated from the tobacco leaf 502 is led to the sampling tube 506. The sampling tube 506 is filled with filter material 504 and quartz wool 505.
[0072] この装置を用い、たばこ煙成分をフィルタに捕集した。捕集量を増やす為に 3回繰 り返し行った。サンプリングチューブ内の試料の充填長さ Lは約 5mmとした。捕集ガ ス量は約 7. 5Lとした。 Using this device, tobacco smoke components were collected on a filter. It was repeated three times to increase the amount collected. The filling length L of the sample in the sampling tube was about 5 mm. The collected gas volume was about 7.5L.
[0073] 評価対象のフィルタ材料 504は、以下のものを準備し、それぞれ評価した。なお、 本実施例で評価したカーボンナノホーンは、 、ずれもカーボンナノホーン集合体の 形態を維持した状態のものである。  [0073] The following filter materials 504 were prepared and evaluated. Note that the carbon nanohorns evaluated in the present example are in a state in which the misalignment maintains the form of the carbon nanohorn aggregate.
[0074] (0アセチレンブラック  [0074] (0 Acetylene black
(ii)ケッチェンブラック  (ii) Ketjen Black
(iii)カーボンナノホーン(CNBF)  (iii) Carbon nanohorn (CNBF)
カーボンナノホーンの形態:カーボンナノべビーフィンガータイプ  Form of carbon nano horn: carbon nano baby finger type
ホーンの長さ: 40— 50nm  Horn Length: 40-50nm
(iv)カーボンナノホーン (ダリア型)  (iv) Carbon nanohorn (Dahlia type)
カーボンナノホーンの形態:カーボンナノホーン (ダリア型等)  Form of carbon nanohorn: carbon nanohorn (Dahlia type, etc.)
ホーンの長さ: 80nm— 120nm  Horn length: 80nm-120nm
[0075] 試料に吸着したたばこ成分をジクロロメタンに浸漬して抽出し、ガスクロマトグラフ— 質量分析法によって定量を行った。各試料は 4mm φ X 5mmLの容積に充填してた ばこ煙を捕集した。この試験の定量下限値は 100 g/gである。図 12にニコチン吸 着量の試験結果を示す。カーボンナノホーンのニコチン吸着量が顕著に大き 、こと が明らかになった。  [0075] The tobacco component adsorbed on the sample was immersed in dichloromethane and extracted, and quantified by gas chromatography-mass spectrometry. Each sample was collected in a volume of 4mm φ X 5mmL to collect tobacco smoke. The lower limit of quantification for this test is 100 g / g. Figure 12 shows the test results for the amount of nicotine absorbed. It was revealed that the nicotine adsorption amount of the carbon nanohorn was remarkably large.
[0076] 実施例 2 実施例 1と同様にして、炭素系材料を清浄化剤として用いたたばこ煙用フィルタの評 価を行った。各試料は 4mm φ X 5mmLの容積に充填してたばこ煙を捕集した。この 試験の定量下限値は 100 /z g/gである。図 13に、評価した材料とともにニコチン吸着 量の試験結果を示す。カーボンナノホーンのニコチン吸着量が顕著に大き 、ことが 明らかになった。なお、実施例 1よりも全般的に大きな値となっているが、これは、吸 着させる時間の大小によるものと考えられる。 Example 2 In the same manner as in Example 1, an evaluation of a tobacco smoke filter using a carbon-based material as a cleaning agent was performed. Each sample was filled into a volume of 4 mm φ X 5 mm L to collect tobacco smoke. The lower limit of quantification for this test is 100 / zg / g. Figure 13 shows the test results for the amount of nicotine adsorbed together with the evaluated materials. It was revealed that the nicotine adsorption amount of the carbon nanohorn was remarkably large. Although the value is generally larger than that of Example 1, it is considered that this is due to the size of the adsorption time.
なお、カーボンナノチューブを用いて実施例 2と同様の試験を行った。同量の供試 量 lmgにおいて、その吸着量は繰り返し測定誤差が大きぐかつ、いずれもカーボン ナノホーンよりも低い値であり、 1900 g/g)程度であった。  The same test as in Example 2 was performed using carbon nanotubes. At the same amount of sample, lmg, the amount of adsorption showed a large repeated measurement error and was lower than that of the carbon nanohorn, and was approximately 1900 g / g).

Claims

請求の範囲 The scope of the claims
[I] カーボンナノホーンを含むことを特徴とする空気浄ィ匕部材。  [I] An air purifying member comprising a carbon nanohorn.
[2] 請求の範囲第 1項に記載の空気浄ィ匕部材において、 [2] The air purifying member according to claim 1,
前記カーボンナノホーンが充填された室を備えることを特徴とする空気浄ィ匕部材。  An air purifying member comprising a chamber filled with the carbon nanohorn.
[3] 請求の範囲第 1項または第 2項に記載の空気浄ィ匕部材において、 [3] In the air purifying member according to claim 1 or 2,
空気の通る流路と、該流路中に配して設けられた前記カーボンナノホーンとを備え ることを特徴とする空気浄化部材。  An air purifying member comprising: a flow path through which air passes; and the carbon nanohorn provided in the flow path.
[4] 請求の範囲第 1項乃至第 3項いずれかに記載の空気浄ィ匕部材において、 [4] The air purifying member according to any one of claims 1 to 3,
フィルタ構造を有することを特徴とする空気浄ィ匕部材。  An air purifying member having a filter structure.
[5] 請求の範囲第 1項乃至第 4項いずれかに記載の空気浄ィ匕部材において、 [5] The air purifying member according to any one of claims 1 to 4,
内部に空気が流通することができる基体と、該基体中に配置された前記カーボンナ ノホーンとを備えることを特徴とする空気浄ィ匕部材。  An air purifying member comprising: a base through which air can flow; and the carbon nanohorn disposed in the base.
[6] 請求の範囲第 1項乃至第 5項いずれかに記載の空気浄ィ匕部材において、 [6] The air purifying member according to any one of claims 1 to 5,
前記カーボンナノホーンを含む成形シートを具備することを特徴とする空気浄ィ匕部 材。  An air purifying member comprising a molded sheet containing the carbon nanohorn.
[7] 請求の範囲第 1項乃至第 6項いずれかに記載の空気浄ィ匕部材において、  [7] The air purifying member according to any one of claims 1 to 6, wherein
カーボンナノホーン集合体を含むことを特徴とする空気浄化部材。  An air purification member comprising a carbon nanohorn aggregate.
[8] 請求の範囲第 1項乃至第 7項いずれかに記載の空気浄ィ匕部材を具備することを特 徴とする空気清浄機。  [8] An air purifier comprising the air purifying member according to any one of claims 1 to 7.
[9] カーボンナノホーンを含むことを特徴とするたばこフィルタ。  [9] A tobacco filter comprising a carbon nanohorn.
[10] 請求の範囲第 9項に記載のたばこフィルタにおいて、  [10] The tobacco filter according to claim 9, wherein
カーボンナノホーンが充填された室を備えることを特徴とするたばこフィルタ。  A tobacco filter comprising a chamber filled with carbon nanohorns.
[II] 請求の範囲第 9項または第 10項に記載のたばこフィルタにおいて、  [II] The tobacco filter according to claim 9 or 10, wherein
空気の通る流路と、該流路中に配して設けられた前記カーボンナノホーンとを備え ることを特徴とするたばこフィルタ。  A tobacco filter, comprising: a flow path through which air passes; and the carbon nanohorn provided in the flow path.
[12] 請求の範囲第 9項乃至第 11項いずれかに記載のたばこフィルタにおいて、 [12] In the tobacco filter according to any one of claims 9 to 11,
内部に空気が流通することができる基体と、該基体中に配置された前記カーボンナ ノホーンとを備えることを特徴とするたばこフィルタ。 求の範囲第 9項乃至第 12項いずれかに記載のたばこフィルタにおいて、 一ボンナノホーン集合体を含むことを特徴とするたばこフィルタ。 A tobacco filter comprising: a base through which air can flow; and the carbon nanohorn disposed in the base. 13. The tobacco filter according to any one of items 9 to 12, wherein the filter includes a single-bon nanohorn aggregate.
PCT/JP2004/013356 2003-09-19 2004-09-14 Air purifying member and filter using carbon nanohorn WO2005028100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514032A JP4618128B2 (en) 2003-09-19 2004-09-14 Filter using carbon nanohorn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003327260 2003-09-19
JP2003-327260 2003-09-19

Publications (1)

Publication Number Publication Date
WO2005028100A1 true WO2005028100A1 (en) 2005-03-31

Family

ID=34372866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013356 WO2005028100A1 (en) 2003-09-19 2004-09-14 Air purifying member and filter using carbon nanohorn

Country Status (2)

Country Link
JP (1) JP4618128B2 (en)
WO (1) WO2005028100A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076314A (en) * 2007-09-20 2009-04-09 Nec Corp Field emission light-emitting element
WO2013058383A1 (en) 2011-10-19 2013-04-25 株式会社環境・エネルギーナノ技術研究所 Porous material including carbon nanohorns and use thereof
WO2013058382A1 (en) 2011-10-19 2013-04-25 株式会社環境・エネルギーナノ技術研究所 Dense material including carbon nanohorns and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159851A (en) * 2000-11-24 2002-06-04 Japan Science & Technology Corp Adsorbent, catalyst, and catalyst carrier comprising single-layer carbon nanohorn
JP2002326032A (en) * 2001-01-29 2002-11-12 Japan Science & Technology Corp Carbon nanohorn adsorbent and method for producing the same
US20030000538A1 (en) * 2000-11-10 2003-01-02 Bereman Robert D. Method and product for removing carcinogens from tobacco smoke
JP2003206113A (en) * 2002-01-08 2003-07-22 Japan Science & Technology Corp Carbon nanotube-carbon nanohorn complex and method for preparing the same
JP2004189570A (en) * 2002-12-13 2004-07-08 Jfe Engineering Kk Carbon nanotube aggregate, and carbon nanotube setting device with the same set therein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030000538A1 (en) * 2000-11-10 2003-01-02 Bereman Robert D. Method and product for removing carcinogens from tobacco smoke
JP2002159851A (en) * 2000-11-24 2002-06-04 Japan Science & Technology Corp Adsorbent, catalyst, and catalyst carrier comprising single-layer carbon nanohorn
JP2002326032A (en) * 2001-01-29 2002-11-12 Japan Science & Technology Corp Carbon nanohorn adsorbent and method for producing the same
JP2003206113A (en) * 2002-01-08 2003-07-22 Japan Science & Technology Corp Carbon nanotube-carbon nanohorn complex and method for preparing the same
JP2004189570A (en) * 2002-12-13 2004-07-08 Jfe Engineering Kk Carbon nanotube aggregate, and carbon nanotube setting device with the same set therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076314A (en) * 2007-09-20 2009-04-09 Nec Corp Field emission light-emitting element
WO2013058383A1 (en) 2011-10-19 2013-04-25 株式会社環境・エネルギーナノ技術研究所 Porous material including carbon nanohorns and use thereof
WO2013058382A1 (en) 2011-10-19 2013-04-25 株式会社環境・エネルギーナノ技術研究所 Dense material including carbon nanohorns and use thereof

Also Published As

Publication number Publication date
JP4618128B2 (en) 2011-01-26
JPWO2005028100A1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
US7074260B2 (en) Filter using carbon nanotube
JP4948325B2 (en) Deodorizing filter and air cleaning device
US20080149120A1 (en) Cigarette filter incorporating nanofibers
CN101107053B (en) Method and apparatus for treatment of exhaust gas
JP3402385B2 (en) Gas cleaning method and apparatus
JPH05245325A (en) Air cleaning filter
JP2009178670A (en) Filter medium of air filter and air filter for air cleaning device
JP4618128B2 (en) Filter using carbon nanohorn
JP2963311B2 (en) How to replace the air purifier filter
JPH11221442A (en) Composite deodorizing and dust collecting filter
JP2002331212A (en) Dedusting deodorizing filter
JP4049774B2 (en) Porous filter, method for producing porous filter, air cleaning device and air cleaning method
JP2006055227A (en) Air purifier
KR100778360B1 (en) active carbon filter of air cleaner and manufacturing method of active carbon filter of air cleaner
JP3027412U (en) Air cleaning filter
JP6570153B1 (en) Air floating material collection material, air purification member and air purification device using the same
JPH1176718A (en) Dust filter and production thereof and air conditioner and air cleaner
JPH10235154A (en) Deodorizing filter for deodorizing apparatus or air cleaner
JP2001096114A (en) Air cleaner
CN207544327U (en) A kind of cigarette filter
JP4846245B2 (en) Air purifier and air conditioner
CN108619854A (en) A kind of efficient absorption formaldehyde removes aldehyde device and preparation method
JP4776066B2 (en) Air treatment device using air purifying filter
CN208493664U (en) A kind of horizontal soldering smoke and dust purifier
JPH1015332A (en) Air cleaner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514032

Country of ref document: JP

122 Ep: pct application non-entry in european phase