WO2005014531A1 - N-メタクリロイル-4-シアノ-3-トリフルオロメチルアニリンの製造方法、該化合物の安定化方法およびビカルタミドの製造方法 - Google Patents

N-メタクリロイル-4-シアノ-3-トリフルオロメチルアニリンの製造方法、該化合物の安定化方法およびビカルタミドの製造方法 Download PDF

Info

Publication number
WO2005014531A1
WO2005014531A1 PCT/JP2004/011800 JP2004011800W WO2005014531A1 WO 2005014531 A1 WO2005014531 A1 WO 2005014531A1 JP 2004011800 W JP2004011800 W JP 2004011800W WO 2005014531 A1 WO2005014531 A1 WO 2005014531A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
polymerization inhibitor
cyano
trifluoromethylaniline
reaction
Prior art date
Application number
PCT/JP2004/011800
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Sugi
Tetsuya Shintaku
Tadashi Katsura
Nobushige Itaya
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2005014531A1 publication Critical patent/WO2005014531A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups

Definitions

  • the present invention relates to a method for producing N-methacryloylu 4 _cyano-3-trifluoromethylaniline, a method for stabilizing the compound, and a method for producing bicalutamide via the compound.
  • N-methylacryloyl-1-cyano-3-trifluoromethylaniline is an intermediate of bicalutamide useful as an anticancer drug.
  • N-methacryloyl-14-cyano-3-trifluoromethylaniline is produced by reacting 4-cyano-3_trifluoromethylaniline with methacryloyl chloride (for example, J. Med. Chem. 1988, 31, 954-959).
  • An object of the present invention is to provide a method for producing N-methacryloyl-4-cyano-3-trifluoromethylaniline, which is an intermediate of bicalutamide useful as an anticancer agent, in a stable and high yield, N-methacryloyl-4 A method for stabilizing cyano-3-trifluoromethylaniline, and a method for producing bicalutamide in a stable and high yield via the compound.
  • the present inventors have found that by reacting 4-cyano-3-trifluoromethylaniline with methacrylic acid or a reactive derivative thereof in the presence of a polymerization inhibitor, N-methacryloyl-
  • the yield and stability of 3-cyano-3-trifluoromethylaniline are improved, and the addition of a polymerization inhibitor to N-methacryloyl-14-cyano-13-trifluoromethylaniline is improved. It has been found that its stability is improved.
  • the use of these N-methacryloylue 4-cyano 3-trifluoromethylaniline in the synthesis of bicalutamide improves the overall yield, thereby completing the present invention. That is, the present invention is as described below.
  • ⁇ 2> The method according to ⁇ 1>, wherein the reactive derivative of methacrylic acid is methacryloyl chloride.
  • the polymerization inhibitor is at least one compound selected from the group consisting of 2,6-di-tert-butyl-4-methylphenol and butylated hydroxyazole.
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the weight of the polymerization inhibitor added to the reaction system is from 500 to 3,000 ppm based on 4-cyano 3-trifluoromethylaniline.
  • N-methacryloyl 4- 4-cyano-3-trifluoromethylaniline which includes mixing a polymerization inhibitor with N-methacryloyl 4- 4-cyano-3-aniline Stabilization method.
  • ⁇ 6> The method according to ⁇ 5>, wherein the mixing weight of the polymerization inhibitor is 0.001 g to 0.5 g per 1 g of N-methylacryloylur 4_cyano_3-trifluoromethylaniline.
  • ⁇ 7> The polymerization inhibitor according to ⁇ 5> or ⁇ 6>, wherein the polymerization inhibitor is at least one compound selected from the group consisting of 2,6-di-tert-butyl-4-methylphenol and butylated hydroxyanisole. The described method.
  • the compound (1) is reacted with a percarboxylic acid to form a compound of the formula (2)
  • Formula (4) including a step D of reacting the compound (3) with a percarboxylic acid to obtain bicalutamide
  • the polymerization inhibitor in the reaction of the step A is at least one compound selected from the group consisting of 2,6-di-tert-butyl-4-methylphenol and butylated hydroxyazole. > Or gag 9>.
  • step A further comprises adding a polymerization inhibitor to the obtained compound (1).
  • the weight of the polymerization inhibitor further added to the obtained compound (1) is 0.001 g to 0.5 g per lg of the compound (1), and is preferably described in 12> or ⁇ 13>.
  • step A comprises storing the compound (1) obtained after adding a polymerization inhibitor to the obtained compound (1) at 0 to 40 ° C. for 1 to 60 days.
  • N-methacryloyl 4-cyano-3-trifluoromethylaniline (hereinafter, referred to as compound (1)) (hereinafter, referred to as production method 1 of the present invention) represented by the formula (I) is carried out in the presence of a polymerization inhibitor.
  • a polymerization inhibitor 4-cyano 3-trifluoromethylaniline (hereinafter, referred to as compound I) and methacrylic acid or a reactive derivative thereof (hereinafter, referred to as compound II).
  • methacrylic acid can be used as the compound II, and the compound II can be reacted with the compound I by reacting an amidating agent such as DCC.
  • an amidating agent such as DCC.
  • the reactive derivative of methacrylic acid is not particularly limited as long as it has reactivity with an amino group.
  • X is a halogen (for example, chlorine, bromine, iodine, etc.)
  • methacrylic acid halides such as methacrylic acid chloride, methacrylic acid bromide, methacrylic acid iodide, Methacrylic anhydride and the like.
  • polymerization inhibitor examples include 2,6-di-tert-butyl_4-methylphenol (abbreviation: BHT) and butylated hydroxyanisole (abbreviation: BHA). , 2,6-Di-tert-butyl-4-methylphenol is preferred.
  • Two or more polymerization inhibitors may be used in combination.
  • the weight of the polymerization inhibitor added in the production method 1 of the present invention is usually 100 to 500 ppm, preferably 500 to 300 ppm, more preferably 500 to 2 ppm with respect to the compound I. 500 ppm.
  • the addition weight of the polymerization inhibitor in the production method 1 of the present invention 100 ppm or more, preferably 500 ppm or more with respect to the compound I, the deterioration of the target product and the yield due to side reactions such as polymerization can be achieved. Reduction and the like can be suppressed.
  • the amount of compound II to be used is generally 1 to 1.6 mol, preferably 1.3 to 1.4 mol, per 1 mol of compound I.
  • a commercially available product may be used, or its reactive derivative may be separately prepared from methacrylic acid and used.
  • the reactive derivative of methacrylic acid is methacrylic acid halide
  • the methacrylic acid halide is separately prepared from methacrylic acid and a halogenating agent such as thionyl chloride according to a known method. Can be used.
  • the amount of the halogenating agent used is usually 1 to 1.2 mol, preferably 1 to 1.1 mol, per 1 mol of methacrylic acid.
  • the solvent used is preferably N, N-dimethylacetoamide (DMAC).
  • DMAC N, N-dimethylacetoamide
  • the reaction temperature varies depending on the reaction conditions, but is usually ⁇ 20 to + 5 ° C., preferably ⁇ 12 to + 12 ° C.
  • the reaction time varies depending on the reaction conditions, but is usually 0.5 to 4 hours, preferably 1 to 2 hours.
  • a methacrylic acid halide is preferable, and a methacrylic acid chloride is particularly preferable.
  • the method 1 of the present invention can be carried out by preparing a reactive derivative of methacrylic acid in advance and adding the compound I to the solution of the prepared reactive derivative of methacrylic acid.
  • the production of the compound (1) from the preparation of the reactive derivative of methacrylic acid to the production of the compound (1) can be performed in one reaction vessel, which is industrially preferable.
  • a polymerization inhibitor is added in advance before the preparation of the reactive derivative of methacrylic acid. If a reactive derivative of methacrylic acid is prepared in the presence of a polymerization inhibitor and used in the reaction with compound I, the production method 1 of the present invention can be carried out without adding a polymerization inhibitor separately.
  • a solvent is usually used.
  • the solvent include N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, and the like. Amides are preferred.
  • the amount of the solvent to be used is generally 2 to 5 parts by weight, preferably 3.5 to 4.5 parts by weight, per 1 part by weight of compound I.
  • the reaction temperature in the production method 1 of the present invention varies depending on the type of the compound II, the reaction conditions, and the like. However, when methyl methacrylate is used, the reaction temperature is usually 15 to 110 ° C. The temperature is preferably between 12 and 12 ° C.
  • the reaction time also varies depending on the type of compound II and reaction conditions, but when using methyl methacrylate halide, it is usually 0.5 to 4 hours, preferably 1 to 2 hours.Presence of polymerization inhibitor
  • side reactions eg, polymerization reaction, decomposition reaction, etc.
  • an intermediate of bicalutamide useful as an anticancer agent Can be produced with a high yield and purity of 88-98% and a purity of 99.5-99.9%, for example, when using methacrylic acid halide. .
  • the compound (1) obtained by the production method 1 of the present invention is subjected to post-treatments such as quenching (reaction stop) and liquid separation, and is isolated and purified by a known method such as crystallization, recrystallization, or separation by chromatography. Can be.
  • the solvent used to stop the reaction is not particularly limited as long as the purpose is achieved.
  • the reaction solvent for example, N, N-dimethylacetamide and the like
  • the reaction solvent eg, N, N-dimethylacetamide, etc.
  • the reaction solvent can be removed from an organic extraction solvent such as ethyl acetate.
  • a saline solution preferably, a 10% saline solution.
  • the extraction and liquid separation are usually performed once to three times, preferably two to three times.
  • the extract may be filtered using diatomaceous earth (for example, Celite trade name) from the viewpoint of improving the liquid separation rate.
  • diatomaceous earth for example, Celite trade name
  • Activated carbon may be added in addition to the diatomaceous earth from the viewpoint of improving the hue of the target substance and improving the liquid separation property (removing the emulsion).
  • the temperature may be generally maintained at 20 to 50 ° C, preferably 30 to 40, more preferably 35 to 40 ° C.
  • the organic layer is concentrated usually at 30 to 60 kPa, preferably 30 to 40 kPa, usually at 80 T or less, preferably at 40 to 80 ° C, more preferably at 50 to 60 ° C. It is desirable. Further, from the viewpoint of removing impurities, once concentration, the crystallization solvent described in detail below may be added, diluted, and concentrated again, and dilution and concentration may be repeated.
  • the compound (1) produced by the production method 1 of the present invention can be isolated and purified by adding a crystallization solvent to the concentrate obtained by the above-mentioned concentration and crystallizing in the solvent. Since the liquid contains a polymerization inhibitor, the isolation and purification can be carried out without substantially causing side reactions such as polymerization and decomposition.
  • crystallization solvent examples include benzene and toluene with a mono-mouth, a mixed solvent of ethyl acetate and heptane, and the like. From the viewpoint of the crystallization yield and the effect of removing impurities, benzene and toluene are used. preferable.
  • a solution of the above-mentioned crystallization solvent containing the compound (1) and a polymerization inhibitor for example, a concentration obtained by concentration in the above-mentioned post-treatment
  • the solution obtained by adding the above-mentioned crystallization solvent to the product is heated (preferably heated to 70 to 85 ° C, more preferably to 75 to 85 ° C), and then the compound (1) crystal is formed.
  • Concentrate to such an extent that precipitation does not occur for example, 15 to 30 kPa, preferably 15 to 20 kPa, for example, 75 to 80 ° C., preferably 75 to 78 ° C.
  • cool for example, 15 to 20, preferably Is cooled to 15 to 17 ° C to crystallize compound (1).
  • alumina or activated carbon may be added from the viewpoint of decolorization and removal of metallic impurities.
  • the added alumina, activated carbon and the like are usually removed by filtration or the like before crystallization of compound (1).
  • Compound (1) can be stabilized by mixing a polymerization inhibitor with compound (1) (hereinafter, this method is referred to as the present stabilization method). That is, decomposition and polymerization of the compound (1) can be prevented.
  • mixing the polymerization inhibitor with the compound (1) means not only “mixing the polymerization inhibitor with the compound (1) itself” but also, for example, the compound (1) of the production method 1 of the present invention.
  • compound (1) in the crystallization of compound (1), can be stabilized by mixing compound (1) with a polymerization inhibitor.
  • a polymerization inhibitor may be added to the solution or the reaction solution before crystallization and mixed, or after the compound (1) is crystallized, for example, the crystal (including the crude crystal) Mixing can also be performed by contact with a solution containing a polymerization inhibitor.
  • a method of contacting the crystals with a solution containing a polymerization inhibitor a method of filtering the crystals and then washing the crystals with a solution containing a polymerization inhibitor can be mentioned.
  • polymerization inhibitor those mentioned in the above-mentioned Production method 1 of the present invention can be similarly used. From the viewpoint of economy, 2,6-ditert-butyl-1-butyl-4-methylphenol is preferred.
  • Two or more polymerization inhibitors may be used in combination.
  • the mixed weight of the polymerization inhibitor is usually 0.001 to 0.5 g, preferably 0.005 to 0.5 lg, and more preferably 0.01 to 0.05 per gram of the compound (1). g.
  • the solvent for forming the solution must have high solubility in the polymerization inhibitor and wash the crystal of compound (1).
  • ethyl acetate, toluene, and monochlorobenzene are preferred. Among them, toluene and monochlorobenzene are particularly preferred from the viewpoint of suppressing dissolution loss of crystals due to washing.
  • the amount of the solvent used in the solution containing the polymerization inhibitor is not particularly limited as long as it can wash the crystals of compound (1), but preferably 2 to 6 parts by weight per part by weight of compound (1) Department.
  • step A By mixing compound (1) with a polymerization inhibitor, decomposition and polymerization of compound (1) can be prevented, and the compound can be stabilized.
  • step A A step of obtaining the compound (1) by the production method 1 of the present invention (hereinafter, sometimes referred to as step A), reacting the compound (1) with a percarboxylic acid to obtain a compound of the formula (2)
  • step C A step of obtaining a compound (3) represented by (hereinafter, referred to as step C), and
  • step D By reacting the compound (3) with a percarboxylic acid to obtain bicalutamide (hereinafter referred to as step D), the compound of formula (4)
  • production method 2 of the present invention Can be produced stably and in a high yield (hereinafter, the production method is referred to as production method 2 of the present invention).
  • Step B is a step of obtaining a compound (2) represented by the formula (2) by oxidizing the compound (1).
  • an oxidizing agent percarboxylic acid
  • percarboxylic acid examples include m-chloroperbenzoic acid and monoperphthalic acid.
  • Monoperphthalic acid is preferred from the viewpoint of safety and reactivity.
  • Monoperphthalic acid can be easily prepared, for example, by reacting phthalic anhydride with hydrogen peroxide.
  • monoperphthalic acid is prepared by mixing phthalic anhydride and hydrogen peroxide in a suitable solvent in the presence of a base in approximately equimolar amounts.
  • a small excess of hydrogen peroxide is used relative to anhydrous phthalic acid.
  • hydrogen peroxide is generally used in an amount of 1 to 1.5 mol, preferably 1 to 1.3 mol, per 1 mol of fluoric anhydride.
  • Phthalic anhydride is inexpensive, has no hygroscopicity, and is easy to handle, and is therefore preferred as a raw material for monoperphthalic acid.
  • aqueous hydrogen peroxide As the hydrogen peroxide, it is preferable to use aqueous hydrogen peroxide from the viewpoint of easy handling.
  • the aqueous hydrogen peroxide is usually used at a concentration of 20 to 50%, preferably 30 to 35%. Hydrogen peroxide at a concentration of 30 to 35% is preferred because it has a low risk of explosion, is generally commercially available, and is inexpensive.
  • Examples of the base include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium hydroxide and the like. From the viewpoint of economy, sodium carbonate is preferred.
  • the amount of the base to be used is generally 1 to 1.3 mol, preferably 1 to 1.2 mol, per 1 mol of phthalic anhydride.
  • Solvents to be used include solvents such as water.Among them, metals that may exhibit catalytic activity for decomposition of hydrogen peroxide are not contained, and solubility and economy of hydrogen peroxide are low. From the viewpoint of properties, deionized water is preferred.
  • the amount of the solvent to be used is usually 2 to 5 m, preferably 3 to 4 ml, per 1 g of phthalic anhydride.
  • the reaction temperature is usually from 15 to + 5 ° C, preferably from -5 to 0 ° C.
  • the reaction time varies depending on the reaction temperature and the like, but is usually 5 to 2 hours, preferably 0.5 to 0.75 hours.
  • the reaction system is neutralized with an acid such as sulfuric acid (preferably, 98% sulfuric acid), and then isolated and purified by ordinary post-treatment. It can be used for the subsequent oxidation reaction (ie, step B and step D above) without the need.
  • Suitable solvents for the reaction in the step B include, for example, toluene, benzene, ethyl acetate and the like, and among them, ethyl acetate is preferred from the viewpoint of solubility in the compound (1).
  • the amount of the solvent to be used is usually 2-5 ml, preferably 2.5-4 ml, per 1 g of the compound (1).
  • the amount of percarboxylic acid to be used is generally 1.5 to 3 mol, preferably 1.8 to 2.5 mol, per 1 mol of compound (1).
  • the percarboxylic acid solution dropwise from the viewpoint of easiness of addition, safety and operability.
  • the solution may be dropped in two or more portions.
  • Suitable solvents for preparing the percarboxylic acid solution include, for example, ethyl acetate, ethers (eg, getyl ether, etc.), and among them, ethyl acetate is preferable from the viewpoint of safety. It is desirable to use the same solvent as the reaction solvent.
  • the amount of the solvent used for preparing the percarboxylic acid solution is usually 3 to; L0m1, preferably 3.5 to 7 ml per 1 g of the percarboxylic acid.
  • the dropping rate depends on the concentration of the dropping solution, the temperature of the dropping solution and the temperature of the solution to be dropped, but usually 1 to 4 mlZ minutes per 1 g of the compound (1), preferably 1 to 4 mlZ. 5 to 3 mlZ min.
  • the temperature of the solution is usually 0 to 35 ° (: preferably 10 to 30 ° C).
  • the temperature of the solution to be dropped is usually 20 to 60 ° C.
  • the temperature is preferably 40 to 55 ° C.
  • the reaction temperature is usually 20-60 ° C, preferably 45-55 ° C.
  • the reaction time varies depending on the reaction temperature and other reaction conditions, but is usually 5 to 15 hours, preferably 6 to 9 hours.
  • Step C is a step of reacting the compound (2) of the formula obtained in the above step B with 4-fluorothiophenol to obtain a compound (3).
  • the reaction is usually carried out in the presence of a base. It is performed in.
  • examples of the base include sodium hydride, sodium hydroxide, sodium carbonate, potassium hydroxide and the like. From the viewpoint of economy, sodium hydroxide is preferred.
  • sodium hydroxide is preferred.
  • an aqueous sodium hydroxide solution is preferable because of easy handling.
  • a commercially available aqueous sodium hydroxide solution may be used as it is, or a commercially available aqueous sodium hydroxide solution may be diluted.
  • the concentration of the aqueous sodium hydroxide solution used is usually 5 to 20% by weight, preferably 15 to 20% by weight.
  • step C from the viewpoint of operability, a base is added in advance to a solution of 4-fluorothiophenol in a suitable reaction solvent (preferably, a solution containing a base is added dropwise).
  • a method of adding the compound (2) to the mixture preferably by adding a solution containing the compound (2) dropwise is preferable.
  • Suitable reaction solvents include polar solvents such as THF and t-butanol, and among them, THF is preferred from the viewpoint of solubility in compound (2).
  • the amount of the reaction solvent to be used is generally 1-40 ml, preferably 2-20 ml, per 1 g of compound (2).
  • the amount of the base to be used is generally 1 to 1.3 mol, preferably 1 to 1.2 mol, per 1 mol of 4-fluorothiophenol.
  • the addition temperature of the base is usually 0 to 30, preferably 0 to 20 ° C.
  • the temperature at which the compound (2) is added is generally 0 to 15 ° (preferably 0 to 10 ° C.)
  • an aprotic solvent such as THF is used as a solvent.
  • THF is preferred from the viewpoint of solubility in compound (2), and the same solvent as the above reaction solvent is desirable, and the amount of the solvent to be used is generally 1 to 10 m per 1 g of compound (2). 1, preferably 2 to 6 m1.
  • the reaction temperature is usually 0 to 30 ° C, preferably 0 to 20 ° C.
  • the reaction time varies depending on the reaction temperature and other reaction conditions, but is usually 1 to 20 hours, preferably 2 to 15 hours.
  • Step D is a step of reacting compound (3) with a percarboxylic acid to obtain bicalixamide (hereinafter sometimes referred to as compound (4)) represented by formula (4).
  • percarboxylic acid those exemplified in Step B can be similarly used, and preferably, monoperphthalic acid can be used.
  • step D percarboxylic acid is added to compound (3) in a suitable reaction solvent.
  • a reaction solvent in the reaction of Step D ethyl acetate is preferred from the viewpoint of operability.
  • the amount of the solvent used is usually 1 to 3 ml, preferably 1.5 to 2.5 ml, per 1 g of the compound (3).
  • the amount of percarboxylic acid to be used is generally 3-5 mol, preferably 3.5-4.5 mol, per 1 mol of compound (3).
  • dropping of a percarboxylic acid solution is preferable from the viewpoint of easiness of addition, safety, and operability.
  • the solution may be added in two or more portions.
  • Suitable solvents for preparing the percarboxylic acid solution include, for example, ethyl acetate, ethers (eg, getyl ether, etc.). Thus, ethyl acetate is preferred. It is desirable to use the same solvent as the above reaction solvent.
  • the amount of the solvent used for preparing the percarboxylic acid solution is usually 3 to L0m1 per gram of percarboxylic acid, preferably 3.5 to 7 ml. It is.
  • the dropping rate depends on the concentration of the dropping solution, the temperature of the dropping solution and the temperature of the solution to be dropped, but usually 1 to 4 ml / min. Preferably 1.5-3. Oml // minute.
  • the temperature of the solution is usually 0 to 30 ° C, preferably 10 to 25 ° C.
  • the temperature of the solution to be added is usually 0 to 20 ° C, preferably 0 to 1 ° C.
  • the reaction temperature is generally 0-20 ° C, preferably 0-10 ° C.
  • the reaction time varies depending on the reaction temperature and other reaction conditions, but is usually 0.5 to 5 hours, preferably 1 to 3 hours.
  • an extraction solvent for example, an organic solvent such as ethyl acetate
  • an organic solvent such as ethyl acetate
  • the above reaction solution was added dropwise to a mixture of a 17% aqueous sodium carbonate solution (907 g) and ethyl acetate (310 g). Separate, add activated carbon (2.4 g) and 10% saline (720 g) to the organic phase, filter through Nutsche pre-coated with Celite (6.7 g), and filter Nutsche with ethyl acetate (43 g). Washed. The filtrate was separated, 10% saline (720 g) was added to the organic phase, the mixture was kept at 35 ° C to 40 ° C, and then separated.
  • the organic phase was concentrated (ethyl acetate) at about 30 kPa and an internal temperature of 80 ° C or less, and benzene (494 g) was added thereto.
  • the content of ethyl acetate in the concentrate was 0.8%.
  • benzene (595 g) was added, and at about 75 ° C., alumina (6.5 g) was added. After stirring for 15 minutes, the mixture was filtered. Alumina was washed with benzene (33 g), and the combined benzene solution was concentrated at 15 kPa and an internal temperature of 75 ° (: up to 78 ° C. The distillation amount of benzene was 511 ml to 538 ml. When the concentration reached, the concentration was stopped, the concentrate was cooled to 15 ° C to 20 ° C, and N-methacrylonitrile 4-cyano-3-trifluoromethylaniline was crystallized.
  • reaction solution was added dropwise to a mixture of water (336 g) and ethyl acetate (367.6 g). Next, a mixed solution of water (480 g) and sodium carbonate (91.0 g) was added until the pH reached 7.1.
  • N-dimethylacetamide (32.8 g) and 2,6-di-tert-butyl-4-monomethylphenol (0.02 g) were added to methacrylic acid (11.4 g). Then, at ⁇ 5 ⁇ 7 ° C., thionyl chloride (15.8 g) was added dropwise. The mixture was stirred at the same temperature for 30 minutes.
  • reaction solution was dropped into a mixture of water (130 g) and ethyl acetate (142.4 g). Then, a mixed solution of water (186 g) and sodium carbonate (35.3 g) was added until the pH reached 7.1.
  • N, N-Dimethylacetamide (345.3 g) was added to methacrylic acid (94.7 g), and then thionyl chloride (130.9 g) was added dropwise at 0 ⁇ 2 ° C. The mixture was stirred at the same temperature for 2 hours.
  • the alumina was filtered off, washed with monochlorobenzene (102.9 g), and concentrated to distill off 1645 g of monochlorobenzene.
  • N-methacryloylue 4-cyano 3_trifluoromethylaniline was crystallized by cooling. After cooling to 15 and stirring at the same temperature for 2 hours, the crystals were collected by filtration and washed with 203.5 g of monochlorobenzene.
  • N-methacryloyl-4-1-cyano-3-trifluoromethylaniline an intermediate of bicalutamide, which is useful as an anticancer agent
  • N-methacryloyl-14-cyano-3-trifluoromethylaniline can be stabilized.
  • bicalutamide can be stably supplied with high yield and high purity.
  • the method for producing and stabilizing N-methacryloylu 4-cyano-13-trifluoromethylaniline is useful for industrial production of bicalutamide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

4−シアノ−3−トリフルオロメチルアニリンと、メタクリル酸またはその反応性誘導体とを、重合防止剤の存在下に反応させることを包含するN−メタクリロイル−4−シアノ−3−トリフルオロメチルアニリンの製造方法、4−シアノ−3−トリフルオロメチルアニリンと、メタクリル酸またはその反応性誘導体とを、重合防止剤の存在下に反応させ、得られるN−メタクリロイル−4−シアノ−3−トリフルオロメチルアニリンを、過カルボン酸とを反応させ、4−フルオロチオフェノールとを反応させ、次いで過カルボン酸とを反応させることを包含するビカルタミドの製造方法、およびN−メタクリロイル−4−シアノ−3−トリフルオロメチルアニリンに重合防止剤を混合することを包含するN−メタクリロイル−4−シアノ−3−トリフルオロメチルアニリンの安定化方法を提供する。

Description

明 細 書
N—メタクリロイル— 4—シァノー 3—トリフルォロメチルァ二リンの製造方法、 該化合物の安定化方法およびビカルタミドの製造方法 技術分野
本発明は、 N—メタクリロイルー 4 _シァノ— 3—トリフルォロメチルァ二リン の製造方法、 該化合物の安定化方法、 更には該化合物を経由するビカルタミドの製 造方法に関する。 背景技術
N—メ夕クリロイル一4ーシァノー 3—トリフルォロメチルァ二リンは、 制癌剤 として有用なビカルタミドの中間体である。
Figure imgf000002_0001
上記のスキーム 1に示すように、 N—メタクリロイル一 4ーシァノー 3—トリフ ルォロメチルァ二リンは、 4ーシァノー 3 _トリフルォロメチルァ二リンと、 メタ クリロイルク口リドとを反応させることによって製造される (例えば、 J. Me d . Ch em. 1988, 31, 954— 959) 。
しかし、 上記方法においては、 反応、 後処理、 単離精製、 加熱溶融、 次反応まで の室温保管等の各段階において N—メタクリロイルー 4—シァノ— 3—トリフルォ ロメチルァ二リンの重合が不測にも起こることにより、 その一部が樹脂状 (ポリマ 一状) の不純物に変化し、 収率および純度が著しく低下することが懸念される。 ま た、 このような不純物を含有する N—メタクリロイルー 4—シァノー 3—トリフル ォロメチルァ二リンをビカル夕ミドの製造に使用すると、 上記と同様の理由から、 最終生成物であるビカルタミドの収率が大幅に低下する等の問題が起こる可能性が あった。 発明の開示
本発明の目的は、 制癌剤として有用なビカルタミドの中間体である、 N—メタク リロイル—4—シァノ— 3—トリフルォロメチルァニリンを安定かつ高収率で製造 する方法、 N—メタクリロイル—4—シァノ一 3—トリフルォロメチルァニリンを 安定化する方法、 更には該化合物を経由し、 安定かつ高収率でビカルタミドを製造 する方法を提供する。
本発明者らは、 上記問題点に鑑み、 重合防止剤の存在下、 4 _シァノ— 3—トリ フルォロメチルァ二リンと、 メタクリル酸またはその反応性誘導体とを反応させる ことによって、 N—メタクリロイル一 4ーシァノー 3一トリフルォロメチルァニリ ンの収率および安定性が向上すること、 さらには N—メ夕クリロイル一 4—シァノ 一 3—トリフルォロメチルァニリンに重合防止剤を添加することによってその安定 性が向上することを見出した。 またその結果、 これらの N—メタクリロイルー 4一 シァノー 3—トリフルォロメチルァニリンをビカルタミド合成に用いると、 全収率 が向上することを見出し、 本発明を完成するに至った。 即ち、 本発明は、 以下に示 す通りである。
< 1 > 4一シァノ一 3—トリフルォロメチルァ二リンと、 メタクリル酸またはそ の反応性誘導体とを、 重合防止剤の存在下に反応させることを包含する N—メタク リロイルー 4一シァノ— 3—トリフルォロメチルァ二リンの製造方法。
< 2 > メタクリル酸の反応性誘導体がメタクリロイルクロリドである < 1 >に記 載の方法。
< 3 > 重合防止剤が、 2 , 6—ジー t e r t—プチルー 4一メチルフエノールお よびプチル化ヒドロキシァ二ソ一ルからなる群から選択される少なくとも 1つの化 合物であるぐ 1 >または < 2 >に記載の方法。
<4> 重合防止剤の反応系への添加重量が 4ーシァノー 3—トリフルォロメチル ァニリンに対して 500〜3000 p pmであるく 1>〜<3>のいずれかに記載 の方法。
<5> N—メ夕クリロイルー 4—シァノ _ 3—トリフルォロメチルァ二リンに重 合防止剤を混合することを包含する N—メタクリロイルー 4一シァノ— 3—トリフ ルォロメチルァニリンの安定化方法。
<6> 重合防止剤の混合重量が、 N—メ夕クリロイルー 4_シァノ _3—トリフ ルォロメチルァ二リン 1 g当り 0. 001 g〜0. 5 gである <5>に記載の方法
<7> 重合防止剤が 2, 6—ジー t e r t—ブチルー 4—メチルフエノールおよ びプチル化ヒドロキシァ二ソールからなる群から選択される少なくとも 1つの化合 物である < 5 >または < 6 >に記載の方法。
<8> 4 _シァノ _ 3—トリフルォロメチルァ二リンと、 メタクリル酸またはそ の反応性誘導体とを、 重合防止剤の存在下に反応させて式 (1)
Figure imgf000004_0001
で示される化合物 (1) を得る工程 A、
該化合物 (1) と過カルボン酸とを反応させて式 (2)
Figure imgf000005_0001
Figure imgf000005_0002
で示される化合物 (3) を得る工程 (:、 および
該化合物 (3) と過カルボン酸とを反応させてビカルタミドを得る工程 Dを包含す る式 (4)
Figure imgf000005_0003
で示されるビカルタミドの製造方法。
<9> メ夕クリル酸の反応性誘導体がメ夕クリロイルクロリドである <8>に記 載の方法。
<10〉 工程 Aの反応における重合防止剤が、 2, 6—ジ— t e r t—プチルー 4一メチルフエノールおよびブチル化ヒドロキシァ二ソ一ルからなる群から選択さ れる少なくとも 1つの化合物である < 8 >またはぐ 9 >に記載の方法。 <11> 工程 Aの反応における重合防止剤の添加重量が、 4ーシァノー 3—トリ フルォロメチルァ二リンに対して 500〜3000 ppmである <8〉〜<10> のいずれかに記載の方法。
<12> 工程 Aが、 得られる化合物 (1) に重合防止剤を添加することをさらに 包含するく 8 >〜く 11 >のいずれかに記載の方法。
13. 工程 Aの反応において添加される重合防止剤と、 得られる化合物 (1) にさ らに添加される重合防止剤とが同じ重合防止剤である < 12>に記載の方法。
14. 工程 Aにおいて、 得られる化合物 (1) に更に添加する重合防止剤の重量が 、 化合物 (1) l g当り 0. 001 g〜0. 5 gであるく 12>または <13>に 記載の方法。
15. 工程 Aが、 得られる化合物 (1) に重合防止剤を添加後、 0〜40°〇で1 〜60日保存することを包含するぐ 12>〜<14 >のいずれかに記載の方法。 発明を実施するための最良の形態
本発明を以下の SCHEME 2を参照しながら詳細に説明する。
本発明の式 (1)
Figure imgf000006_0001
で示される N—メタクリロイルー 4ーシァノー 3—トリフルォロメチルァ二リン ( 以下、 化合物 (1) と記す) の製造方法 (以下、 本発明製法 1と記す。 ) は、 重合 防止剤の存在下、 4ーシァノー 3—トリフルォロメチルァニリン (以下、 化合物 I と記す) と、 メ夕クリル酸またはその反応性誘導体 (以下、 化合物 I Iと記す) と を反応させることを包含する。 SCHEME 2
Figure imgf000007_0001
化合物 I 化合物 II
化合物 (1)
Figure imgf000007_0002
本発明製法 1において、 化合物 I Iとしてメ夕クリル酸を用い、 例えば D C C等 のアミド化剤を作用させて化合物 I Iと化合物 Iとを反応させることもできるが、 工業的にはメタクリル酸の反応性誘導体が通常用いられる。 メタクリル酸の反応性 誘導体としては、 ァミノ基との反応性を有するものであれば特に制限はない。 例え ば、 上記スキーム 2における化合物 I Iにおいて、 Xがハロゲン (例えば、 塩素、 臭素、 ヨウ素等) である化合物、 例えばメタクリル酸塩化物、 メタクリル酸臭化物 、 メタクリル酸ヨウ化物等のメタクリル酸ハロゲン化物や、 メタクリル酸無水物等 が挙げられる。
重合防止剤としては、 例えば、 2 , 6—ジ— t e r t —ブチル _ 4—メチルフエ ノール (略称: B H T) 、 プチル化ヒドロキシァ二ソール (略称: B HA) などが 挙げられ、 経済性の観点より、 2, 6 —ジー t e r t —プチルー 4ーメチルフエノ ールが好ましい。
2種類以上の重合防止剤を組み合わせて使用してもよい。
本発明製法 1における重合防止剤の添加重量は、 化合物 Iに対して、 通常 1 0 0 〜5 0 0 0 p p m、 好ましくは 5 0 0〜3 0 0 0 p p m、 より好ましくは 5 0 0〜 2 5 0 0 p p mである。
本発明製法 1における重合防止剤の添加重量を化合物 Iに対して 1 0 0 p p m以 上、 好ましくは 5 0 0 p p m以上にすることで、 重合等の副反応による目的物の劣 化、 収率低下等を抑制することができる。
化合物 I Iの使用量は、 1モルの化合物 I当り、 通常 1〜1 . 6モル、 好ましく は 1 . 3〜1 . 4モルである。 化合物 I Iは、 市販品を使用してもよく、 また、 メタクリル酸からその反応性誘 導体を別途調整して使用してもよい。 たとえばメ夕クリル酸の反応性誘導体がメタ クリル酸ハロゲン化物である場合は、 公知の方法に従って、 メタクリル酸と、 塩ィ匕 チォニルなどのハロゲン化剤とからメ夕クリル酸ハロゲン化物を別途調製して使用 することができる。
たとえばメタクリル酸ハロゲン化物を別途調製する場合、 ハロゲン化剤の使用量 は、 メタクリル酸 1モルに対して、 通常 1〜1 . 2モル、 好ましくは 1〜1 . 1モ ルであり、 別途調製に使用する溶媒としては N, N—ジメチルァセトアミド (DM A C) が好ましい。 また、 反応温度は、 反応条件によって異なるが、 通常— 2 0〜 + 5 °C、 好ましくは— 1 2〜十 2 °Cである。 反応時間は、 反応条件によって異なる が、 通常 0 . 5〜4時間、 好ましくは 1〜2時間である。
メタクリル酸の反応性誘導体としては、 反応性の観点から、 メタクリル酸ハロゲ ン化物が好ましく、 メタクリル酸塩化物が特に好ましい。
メタクリル酸の反応性誘導体を予め調製し、 この調製したメタクリル酸の反応性 誘導体の溶液に化合物 Iを添加する方法により本発明製法 1を行うことができる。 この場合、 1つの反応容器でメタクリル酸の反応性誘導体の調製から化合物 (1 ) の製造まで行うことができるため工業的に好ましい。
また、 上述のように 1つの反応容器でメタクリル酸の反応性誘導体の調製から化 合物 (1 ) の製造まで行う場合、 予め重合防止剤をメタクリル酸の反応性誘導体の 調製前に添加しておき、 重合防止剤の存在下でメタクリル酸の反応性誘導体を調製 し、 これを化合物 Iとの反応に使用すれば別途重合防止剤を添加せずに本発明製法 1を実施できる。
本発明製法 1においては通常溶媒が使用され、 該溶媒としては N, N—ジメチル ァセトアミド、 N—メチルピロリドン、 1 , 3 —ジメチルー 2 —イミダゾリジノン 等が挙げられ、 N, N—ジメチルァセトアミドが好ましい。
溶媒の使用量は、 1重量部の化合物 I当り、 通常 2〜 5重量部、 好ましくは 3 . 5〜4. 5重量部である。
本発明製法 1における反応温度は、 化合物 I Iの種類、 反応条件等によって異な るが、 メ夕クリル酸ハロゲン化物を使用する場合には、 通常一 1 5〜十 1 0 °C、 好 ましくは一 12〜十 2°Cである。
反応時間も、 化合物 I Iの種類、 反応条件によって異なるが、 メ夕クリル酸ハロ ゲン化物を使用する場合には、 通常 0. 5〜4時間、 好ましくは 1〜2時間である 重合防止剤の存在下で化合物 Iと、 化合物 I Iとを反応させることによって、 反 応系中での副反応 (例えば、 重合反応、 分解反応等) を抑制することができ、 制癌 剤として有用なビカルタミドの中間体である化合物 (1) を、 例えばメ夕クリル酸 ハロゲン化物を用いる場合には収率 88〜98 %、 純度 99. 5〜99. 9%とい う高収率 ·高純度で製造することができる。
本発明製法 1によって得られる化合物 (1) は、 クェンチング (反応停止) 、 分 液等の後処理を行い、 結晶化、 再結晶、 クロマトグラフィーによる分離等の公知の 方法によって単離 ·精製することができる。
反応の停止に用いる溶媒には、 その目的を達する限りにおいて特に限定はないが
、 酸分の中和、 反応溶媒 (例えば、 N, N—ジメチルァセトアミド等) の除去の観 点から、 炭酸ナトリゥム水溶液と酢酸ェチルとの混合液を用いることが好ましい。 また、 上記の条件にて反応の停止を行った場合には、 分液の際、 例えば、 酢酸ェ チル等の有機抽出溶媒から、 反応溶媒 (例えば N, N—ジメチルァセトアミド等) をできるだけ水側に分配させるために、 食塩水 (好ましくは、 10%食塩水) を用 いて抽出および分液を行うことが好ましい。 抽出および分液は、 通常 1回〜 3回、 好ましくは 2回〜 3回繰り返し行う。
該抽出および分液の際、 分液性速度の向上の観点から抽出液を珪藻土 (例えば商 品名セライト等) を用いて濾過を行ってよい。 また、 目的物の色相の改善、 分液性 の改善 (ェマルジヨン除去) の観点から前記珪藻土に加えて活性炭を添加してもよ い。
抽出および分液の際、 通常 20〜50°C、 好ましくは 30〜40 、 より好まし くは 35〜40°Cに保温してもよい。
分液後、 有機層を、 通常 30〜60 kP a、 好ましくは 30〜40 kP aにて、 通常 80T:以下、 好ましくは 40〜80°C、 より好ましくは 50〜60°Cで濃縮す ることが望ましい。 さらに、 不純物除去の観点から、 一旦濃縮後、 下記に詳述する結晶化溶媒を添加. して希釈し、 再び濃縮する方法で、 希釈、 濃縮を繰り返し行っても良い。
また、 本発明製法 1で生成する化合物 (1) は、 前記濃縮により得られる濃縮物 に結晶化溶媒を添加し、 該溶媒中で結晶化することにより単離および精製すること ができるが、 反応液中には重合防止剤が含有されているので、 該単離および精製も 、 重合、 分解等の副反応を実質的に引き起こすことなく行うことができる。
上記結晶化溶媒としては、 例えば、 モノクロ口ベンゼン、 トルエンや、 酢酸ェチ ルとヘプタンの混合溶媒等が挙げられ、 結晶化における収率、 不純物除去効果等の 観点から、 モノクロ口ベンゼンおよびトルエンが好ましい。
化合物 (1) の結晶化による単離および精製方法として、 具体的には、 化合物 ( 1) および重合防止剤を含む上記結晶化溶媒の溶液 (例えば、 上記後処理での濃縮 によって得られた濃縮物に上記結晶化溶媒を添加して得られる溶液等) を加熱 (好 ましくは 70〜85°C、 より好ましくは 75〜85°Cに加熱) し、 次いで、 化合物 (1) の結晶が析出しない程度に濃縮 (例えば 15〜30 kP a、 好ましくは 15 〜20 kP a、 例えば 75〜80°C、 好ましくは 75〜 78 °Cの条件で濃縮) し、 冷却 (例えば 15〜20 、 好ましくは 15〜17°Cに冷却) することによって、 化合物 (1) を結晶化することができる。
加熱の際に、 脱色、 金属性不純物類の除去の観点から、 例えば、 ァアルミナ、 活 性炭等を添加してもよい。 この場合、 通常は化合物 (1) の結晶化前に、 添加した ァアルミナ、 活性炭等は濾過等により除去される。
結晶化溶媒としてモノクロロベンゼンを用いた場合の結晶化工程での収率は 96 〜98 %である。 化合物 (1) に重合防止剤を混合することにより化合物 (1) を安定化すること ができる (以下、 該方法を本安定化法と記す。 ) 。 すなわち、 化合物 (1) の分解 および重合を防止することができる。
本発明において、 「化合物 (1) に重合防止剤を混合する」 とは、 「化合物 (1 ) そのものに重合防止剤を混合する」 ことのみならず、 例えば、 本発明製法 1のご とく化合物 (1) の製造時に原料中に重合防止剤を添加することによって、 「化合 物 (1) に重合防止剤を混合した」 のと実質的に同等または酷似の効果を示す態様 も含まれる。
例えば、 化合物 (1) の結晶化において、 化合物 (1) を重合防止剤と混合する ことによって、 化合物 (1) を安定化することができる。
具体的な混合の形態として、 結晶化前の溶液或いは反応液に重合防止剤を添加し 混合しても良いし、 化合物 (1) を結晶化後、 例えば、 該結晶 (粗結晶を含む) を 重合防止剤を含む溶液と接触させることにより混合することもできる。 該結晶と重 合防止剤を含む溶液との接触の具体的な方法としては、 該結晶を濾取後、 重合防止 剤を含む溶液で結晶を洗浄する方法をあげることができる。
重合防止剤としては、 上記本発明製法 1において挙げたものを同様に使用するこ とができる。 経済性の観点からは、 2, 6—ジー t e r t一ブチル—4ーメチルフ ェノールが好ましい。
2種類以上の重合防止剤を組み合わせて使用してもよい。
本安定化法における重合防止剤の混合重量は、 化合物 (1) l g当り、 通常 0. 001〜0. 5 g、 好ましくは 0. 005〜0. l g、 より好ましくは 0. 01〜 0. 05 gである。
本安定化法において重合防止剤を含む溶液を用いる場合、 該溶液を形成するため の溶媒としては、 重合防止剤に対して高い溶解性を有し、 化合物 (1) の結晶を洗 浄することができれば特に限定はないが、 酢酸ェチル、 トルエン、 モノクロ口ベン ゼンが好ましい。 なかでも、 洗浄による結晶の溶解損失を抑える点から、 トルエン 、 モノクロ口ベンゼンが特に好ましい。
重合防止剤を含む溶液における溶媒の使用量は、 化合物 (1) の結晶を洗浄する ことができる量であれば特に限定はないが、 化合物 (1) 1重量部当り、 好ましく は 2〜 6重量部である。
化合物 (1) を重合防止剤と混合することによって、 化合物 (1) の分解および 重合を防止することができ、 化合物を安定化することができる。 本発明製法 1により化合物 (1) を得る工程 (以下、 工程 Aということがある) 、 化合物 (1) と過カルボン酸とを反応させて式 (2)
Figure imgf000012_0001
Figure imgf000012_0002
で示される化合物 (3) を得る工程 (以下、 工程 Cと記す) 、 および
該化合物 (3) と過カルボン酸とを反応させてビカルタミドを得る工程 (以下、 ェ 程 Dと記す) を付すことにより式 (4)
Figure imgf000012_0003
で示されるビカルタミドを安定かつ高収率で製造することができる (以下、 該製造 方法を本発明製法 2と記す) 。
(工程
工程 Bは、 化合物 (1) を酸化することによって式 (2) で表される化合物 (2 ) を得る工程である。 工程 Bにおいて、 適切な反応溶媒中、 酸化剤である過カルボン酸を化合物 (1 ) に添加する。
過カルボン酸としては、 m—クロ口過安息香酸、 モノ過フタル酸等を挙げること ができる。 安全性、 反応性の点からはモノ過フタル酸が好ましい。
モノ過フタル酸は、 例えば無水フ夕ル酸と過酸化水素とを反応させることによつ て容易に調製することがでぎる。
具体的には、 適切な溶媒中、 塩基の存在下に無水フタル酸と過酸化水素とをほぼ 等モルで混合することでモノ過フタル酸を調製する。 好ましくは、 過酸化水素を無 水フタル酸に対して少過剰量使用する。 具体的には、 過酸化水素を無水フ夕ル酸 1 モルに対して、 通常 1〜1 . 5モル、 好ましくは 1〜1 . 3モル使用する。
無水フタル酸は安価であり、 吸湿性がなく、 また取り扱いが容易であるので、 モ ノ過フタル酸の合成原料として好ましい。
過酸化水素としては、 取り扱いが容易であるという観点から、 過酸化水素水を使 用するのが好ましい。 過酸化水素水は、 通常、 2 0〜5 0 %、 好ましくは 3 0〜3 5 %濃度のものを使用する。 3 0〜 3 5 %濃度の過酸化水素水は、 爆発の危険性が 少なく、 一般に市販されており、 しかも安価であることから好ましい。
塩基としては、 炭酸ナトリウム、 炭酸水素ナトリウム、 炭酸カリウム、 水酸化ナ トリウム等が挙げられる。 経済性の観点から、 炭酸ナトリウムが好ましい。 塩基の使用量は、 無水フタル酸 1モルに対して、 通常 1〜1 . 3モル、 好ましく は 1〜1 . 2モルである。 使用する溶媒としては水等の溶媒が挙げられ、 なかでも、 過酸化水素に対して分 解の触媒活性を示す可能性のある金属類を含まないこと、 過酸化水素の溶解性およ び経済性の観点から、 脱イオン水が好ましい。 溶媒の使用量は、 無水フタル酸 1 gに対して、 通常 2〜 5 mし 好ましくは 3〜 4 m lである。 反応温度は、 通常一 5〜+5°C、 好ましくは— 5〜0°Cである。 反応時間は、 反応温度等によって異なるが、 通常 5〜2時間、 好ましくは 0 . 5〜0. 75時間である。 反応終了後、 必要に応じて、 反応系を硫酸 (好ましくは、 98%硫酸) 等の酸で 中和し、 通常の後処理によって、 単離 ·精製してもよいけれども、 単離 ·精製する ことなく後続の酸化反応 (すなわち、 上記工程 Bおよび工程 D) に用いることがで きる。 工程 Bにおける反応に適切な溶媒としては、 例えば、 トルエン、 クロ口ベンゼン 、 酢酸ェチル等が挙げられ、 なかでも化合物 (1) に対する溶解性の観点から、 酢 酸ェチルが好ましい。
使用する溶媒の量は、 化合物 (1) l gに対して、 通常 2〜 5mlであり、 好ま しくは 2. 5〜4mlである。
過カルボン酸の使用量は化合物 (1) 1モルに対して、 通常 1. 5〜3モル、 好 ましくは 1. 8〜2. 5モルである。
過カルボン酸の添加方法として、 添加の容易性、 安全性、 操作性の観点から、 過 カルボン酸溶液を滴下することが好ましい。 過カルボン酸溶液を滴下する場合、 溶 液を 2回以上に分けて滴下してもよい。
過カルボン酸溶液を調製するに適した溶媒としては、 例えば、 酢酸ェチル、 エー テル類 (例えば、 ジェチルエーテル等) 等が挙げられ、 なかでも安全性の観点から 、 酢酸ェチルが好ましい。 上記反応溶媒と同一の溶媒を使用することが望ましい。 過カルボン酸溶液の調製に使用する溶媒の量は、 過カルボン酸 1 gに対して、 通 常 3〜; L 0m 1であり、 好ましくは 3. 5〜7mlである。
過カルボン酸溶液を滴下する場合、 その滴下速度は、 滴下溶液の濃度、 滴下溶液 および被滴下溶液の温度にもよるが、 化合物 (1) 1 gに対して通常 l〜4mlZ 分、 好ましくは 1. 5〜3mlZ分である。
過カルボン酸溶液を滴下する場合、 その滴下溶液の温度は、 通常 0〜35° (:、 好 ましくは 10〜30°Cである。
過カルボン酸溶液を滴下する場合、 その被滴下溶液の温度は、 通常 20〜60°C 、 好ましくは 40〜55°Cである。
反応温度は、 通常 20〜60°C、 好ましくは 45〜55°Cである。
反応時間は、 反応温度、 その他の反応条件によって変動するが、 通常 5〜15時 間、 好ましくは 6〜 9時間である。
反^が完了した後、 必要に応じて、 反応系を水酸化カリウム、 炭酸カリウム等の 塩基で弱塩基性 (例えば、 pH=8) とし、 通常の後処理によって、 単離 ·精製し てもよい。
(工程 C)
工程 Cは、 上記工程 Bで得られる式の化合物 (2) と、 4一フルォロチオフエノ 一ルとを反応させて化合物 (3) を得る工程であり、 反応は通常、 塩基の存在下に 行われる。
工程 Cにおいて、 塩基としては、 例えば、 水素化ナトリウム、 水酸化ナトリウム 、 炭酸ナトリウム、 水酸化カリウム等が挙げられる。 経済性の観点から、 水酸化ナ トリウムが好ましい。 水酸化ナトリウムとしては、 取り扱いの容易性から水酸化ナ トリウム水溶液が好ましく、 水酸化ナトリウム水溶液の市販品をそのまま、 または 市販品を希釈して使用してもよい。 使用する水酸化ナトリウム水溶液の濃度として は、 通常 5〜20重量%、 好ましくは 15〜20重量%である。
工程 Cにおいて、 操作性の観点から、 適切な反応溶媒に 4一フルォロチオフエノ ールを溶解した溶液に、 塩基を予め添加 (好ましくは、 塩基を含む溶液の滴下によ り添加) しておき、 その混合物に、 化合物 (2) を添加 (好ましくは化合物 (2) を含む溶液の滴下により添加) する方法が好ましい。 '
適切な反応溶媒としては、 THF、 tーブタノ一ル等の極性溶媒が挙げられ、 な かでも、 化合物 (2) に対する溶解性の観点から、 THFが好ましい。
反応溶媒の使用量は、 化合物 (2) 1 gに对して通常 l〜40ml、 好ましくは 2〜20m 1である。
塩基の使用量は、 4 _フルォロチオフエノール 1モルに対して、 通常 1〜1. 3 モル、 好ましくは 1〜1. 2モルである。
塩基の添加温度は、 通常 0〜30 、 好ましくは 0〜20°Cである。 化合物 (2) の添加温度は、 通常 0〜15° (:、 好ましくは 0〜10°Cである。 化合物 (2) を溶液として滴下する場合、 溶媒としては、 THF等の非プロトン 性溶媒が挙げられ、 なかでも、 化合物 (2) に対する溶解性の観点から、 THFが 好ましい。 上記反応溶媒と同一の溶媒が望ましい。 溶媒の使用量は、 化合物 (2) 1 gに対して通常 1〜10m 1、 好ましくは 2〜 6m 1である。
反応温度は、 通常 0〜30°C、 好ましくは 0〜20°Cである。
反応時間は、 反応温度、 その他の反応条件によって変動するが、 通常 1〜20時 間、 好ましくは 2〜15時間である。
反応が完了した後、 通常の後処理を行い、 必要に応じて、 単離 ·精製してもよい 。
(工程 D)
工程 Dは、 化合物 (3) と過カルボン酸とを反応させることによって式 (4) で 示されるビカル夕ミド (以下、 化合物 (4) と記すことがある) を得る工程である 。
過カルボン酸としては、 工程 Bにおいて例示したものを同様に使用でき、 好まし くはモノ過フタル酸を上げることができる。
工程 Dにおいて、 適切な反応溶媒中、 過カルボン酸を化合物 (3) に添加する。 工程 Dの反応における反応溶媒としては、 操作性の観点から、 酢酸ェチルが好ま しい。
使用する溶媒の量は、 化合物 (3) l g当り、 通常 l〜3mlであり、 好ましく は 1. 5〜2. 5mlである。
過カルボン酸の使用量は化合物 (3) 1モル当り、 通常 3〜 5モル、 好ましくは 3. 5〜4. 5モルである。
過カルボン酸の添加方法として、 添加の容易性、 安全性、 操作性の観点から、 過 カルボン酸溶液の滴下が好ましい。 過カルボン酸溶液を滴下する場合、 溶液を 2回 以上に分けて滴下してもよい。
過カルボン酸溶液を調製するのに適切な溶媒としては、 例えば、 酢酸ェチル、 ェ —テル類 (例えば、 ジェチルエーテル等) 等が挙げられ、 なかでも安全性の観点か ら、 酢酸ェチルが好ましい。 上記反応溶媒と同一の溶媒を使用することが望ましい 過カルボン酸溶液の調製に使用する溶媒の量は、 過カルボン酸 l g当り、 通常 3 〜; L 0m 1であり、 好ましくは 3. 5〜7mlである。
過カルボン酸溶液を滴下する場合、 その滴下速度は、 滴下溶液の濃度、 滴下溶液 および被滴下溶液の温度にも依存するが、 化合物 (3) l gに対して、 通常 1~4 ml/分、 好ましくは 1. 5〜3. Oml //分である。
過カルボン酸溶液を滴下する場合、 その滴下溶液の温度は、 通常 0〜30°C、 好 ましくは 10〜25°Cである。
過カルボン酸溶液を滴下する場合、 その被滴下溶液の温度は、 通常 0〜20°C、 好ましくは 0〜1 o°cである。
反応温度は、 通常 0〜20°C、 好ましくは 0〜10°Cである。
反応時間は、 反応温度、 その他の反応条件によって変動するが、 通常 0. 5〜5 時間、 好ましくは 1〜3時間である。
反応が完了した後、 例えば、 反応終了後、 反応混合物に抽出溶媒 (例えば、 酢酸 ェチルなどの有機溶媒) を添加、 撹拌し、 静置する。 静置後、 分液して得られた抽 出液 (有機層) を洗浄し、 濃縮することにより、 化合物 (4) を単離することがで きる。 必要により再結晶等により精製することもできる。
また、 工程 Aで得られる化合物 (1) に、 更に化合物 (1) l gに対し 0. 00 1〜0. 5 g程度重合防止剤を添加した場合には、 該重合防止剤添加化合物 (1) を完全に洗浄溶媒除去せず、 例えば 5〜15%程度洗浄溶媒を含有する、 いわゆる ゥエツト条件下で、 例えば 0〜40°Cで、 1〜60日程度の期間保存した場合にお いても、 重合、 分解等に由来する品質劣化が殆ど起きない。 このため、 例えば本発 明製法 2によるビカルタミドの製造において、 工程 Aにより化合物 (1) を製造後 、 何らかの理由で本発明製法 2を中断する場合や、 工程 Aと工程 Bの反応スケール が異なるため工程 Aを何回か繰り返した後に得られた化合物 (1) を合わせて工程 Bに供する場合などに生じる化合物 (1) の一時的な保存も、 通常の条件下で問題 なく行うことができる。 実施例 1
メタクリル酸 (29. 5 g) に N, N—ジメチルァセトアミド (85. 5 g) お よび 2, 6—ジ ( t e r t _ブチル) — 4一メチルフエノール (0. 05 g) を加 え、 次いで、 一 5±7°C (— 12 〜 2°C) の温度で塩化チォニル (40. 8 g) を滴下した。 同温度で 1時間攪拌した。
N, N—ジメチルァセトアミド (112. 4 g) に 4一シァノ _ 3—トリフルォ ロメチルァ二リン (48. 0 g) を溶解した液を、 一 5±7°C (― 12°C〜2。C) の温度で先の反応溶液中に滴下し、 同温度で 1時間攪拌した。 高速液体クロマトグ ラフィ一 (HPLC) にて原料 (4ーシァノー 3 _トリフルォロメチルァ二リン) の消失を確認した。
17%の炭酸ナトリウム水溶液 (907 g) および酢酸ェチル (310 g) の混 合液中に先の反応溶液を滴下した。 分液して有機相に活性炭 (2. 4g) と 10% 食塩水 (720 g) を加え、 セライト (6. 7 g) をプレコートしたヌッチェで濾 過し、 ヌッチェを酢酸ェチル (43 g) で洗浄した。 濾液を分液し、 有機相に 10 %食塩水 (720 g) を加え、 35°C〜40°Cで保温した後、 分液した。 有機相を 約 30 kPa、 内温 80 °C以下で濃縮 (酢酸ェチル) し、 モノクロ口ベンゼン (4 94g) を加え、 さらに濃縮した。 濃縮液中の酢酸ェチルの含量は 0. 8%であつ た。
濃縮液にモノクロ口ベンゼン (595 g) を加え、 約 75°Cでァアルミナ (6. 5 g) を加え、 15分間攪拌後、 濾過した。 アルミナをモノクロ口ベンゼン (33 g) で洗浄し、 合わせたモノクロ口ベンゼン溶液を 15 kP a、 内温 75° (:〜 78 °Cで濃縮した。 モノクロ口ベンゼンの留出量が 511ml〜 538mlとなった時 点で濃縮を停止し、 濃縮液を 15°C〜20°Cに冷却し、 N—メ夕クリロイルー 4— シァノ—3—トリフルォロメチルァ二リンの結晶化を行った。 結晶を濾取し、 2, 6—ジ (t e r t_プチル) 一 4一メチルフエノ一ル (0. 73 g) を溶解したモ ノクロロベンゼン (159 g) で洗浄した。 結晶を乾燥し、 N—メタクリロイルー 4一シァノ—3—トリフルォロメチルァ二リン (58. 34 g) を得た。 収率 89 %。
I R (KB r) : 3387, 3063, 2992, 2229, 1693, 1528 , 1330, 1171, 1129, 1050, 928, 907, 854 cm -1. 実施例 2
メタクリル酸 (29. 5 g) に N, N—ジメチルァセトアミド (85. 5 g) お よび 2, 6—ジー t e r t—ブチル— 4_メチルフエノール (0. 05 g) を加え 、 次いで— 5± 7°Cで塩化チォニル (40. 8 g) を滴下した。 同温度で 3 0分攪 拌した。
N, N—ジメチルァセトアミド (112. 4 g) に 4ーシァノー 3—トリフルォ ロメチルァ二リン (48. 0 g) を溶解した液を— 5 ±7°Cで先の反応溶液中に滴 下し、 同温度で 1時間攪拌した。 高速液体クロマトグラフィー (HPLC) にて原 料 (4—シァノー 3—トリフルォロメチルァ二リン) の消失を確認した。
水 (3 3 6 g) および酢酸ェチル (36 7. 6 g) の混合液中に先の反応溶液を 滴下した。 次いで、 水 (480 g) および炭酸ナトリウム (91. 0 g) の混合溶 液を pH7. 1になるまで加えた。
分液後得られた有機層を 10%食塩水 (720 g) で 2回洗浄したのち、 クロル ベンゼン (265. 4 g) を加えて減圧濃縮した。 その時の留出液は 287. 2 g であった。
次に、 クロルベンゼン (743. 2 g) 、 活性炭 (2. 4 g) およびァアルミナ (6. 5 g) を仕込み、 80°Cで 30分攬拌の後、 活性炭およびァアルミナをろ別 し、 クロルベンゼン (53. 1 g) で洗浄した。 その後、 減圧濃縮した。 その時の 留出液は 7 0 3. 0 gであった。
その後、 65 °Cまで冷却し、 結晶化の後、 20°Cまで冷却し、 同温で 1. 5時間 保温した。
その後得られた結晶をろ別し、 2, 6—ジ— t e r t—プチルー 4一メチルフエ ノール (0. 7 3 g) を溶解したモノクロルベンゼン (1 5 9 g) で洗浄した。
'結晶を乾燥し、 N—メタクリロイルー 4—シァノー 3—トリフルォロメチルァ二 リン(60. 0 g、を得た。 収率 91. 5%。 DSC (differential scanning calorimetry) を測定したところ、 205 に発熱ピークが見られた。 熱量は 4. 8 c a 1 Zgであった。 D S C測定:島津製作所 D S C— 60 実施例 3
メ夕クリル酸 (11. 4 g) に N, N—ジメチルァセトアミド (32. 8 g) お よび 2, 6—ジー t e r t—ブチル—4一メチルフエノール (0. 02 g) を加 え、 次いで— 5±7°Cで塩化チォニル (15. 8 g) を滴下した。 同温度で 30分 攪拌した。
N, N—ジメチルァセトアミド (38. 4 g) に 4ーシァノー 3—トリフルォロ メチルァニリン (18. 6 g) を溶解した液を一 5 ±7°Cで先の反応溶液中に滴下 し、 同温度で 1時間攪拌した。 高速液体クロマトグラフィー (HPLC) にて原料 (4一シァノ— 3—トリフルォロメチルァ二リン) の消失を確認した。
水 (130 g) および酢酸ェチル (142. 4 g) の混合液中に先の反応溶液を 滴下した。 次いで、 水 (186 g) および炭酸ナトリウム (35, 3 g) の混合溶 液で pH7. 1になるまで加えた。
分液後得られた有機層を 15%食塩水 (295. 3 g) で 3回洗浄したのち、 濃 縮により粗 N—メタクリロイル一 4ーシァノー 3—トリフルォロメチルァ二リン 2 5. 0 gを得た。
DS C (differential scanning calorimetry) を測定したところ、 206 °Cに発熱ピー クが見られた。 熱量は 7. 2 c a lZgであった。
DSC測定:島津製作所 DSC— 60 比較例 1
メタクリル酸 (94. 7 g) に N, N—ジメチルァセトアミド (345. 3 g) を加え、 次いで 0 ± 2°Cで塩化チォニル (130. 9 g) を滴下した。 同温度で 2 時間攪拌した。
N, N—ジメチルァセトアミド (360. 0 g) に 4ーシァノー 3—トリフルォ ロメチルァ二リン (153. 6 g) を溶解した液を 0±2°Cで先の反応溶液中に滴 下し、 同温度で 1時間攪拌した。 高速液体クロマトグラフィー (HPLC) にて原 料 (4—シァノ—3—トリフルォロメチルァ二リン) の消失を確認した。 10%炭酸ナトリウム水溶液 (2912 g) および酢酸ェチル (990 g) の混 合液中に先の反応溶液を滴下した。 分液後得られた有機層を 10%食塩水 (573 g) で 3回洗浄したのち、 濃縮により酢酸ェチルを 580 g留出させ、 モノクロル ベンゼン (1259 g) を仕込み、 さらに濃縮し、 664 g留出させる。
濃縮液にモノクロルベンゼン 1356 gを加え、 約 75 °Cで溶解の後、 ァアルミ ナ (21. 5 g) を加えて 30分攪拌した。
ァアルミナをろ別し、 モノクロルベンゼン (102. 9 g) で洗浄し、 濃縮によ りモノクロルベンゼンを 1645 g留出させた。
その後冷却により N—メタクリロイルー 4ーシァノー 3_トリフルォロメチルァ 二リンの結晶化を行った。 1 5 まで冷却し、 2時間同温度で攪拌の後、 結晶をろ 取し、 モノクロルベンゼン 203. 5 gで洗浄した。
結晶を乾燥し、 N—メタクリロイルー 4一シァノ一 3—トリフルォロメチルァ二 リン( 180. 8 g)を得た。 収率 87. 2 %。 D S C (differential scanning calorimetry) を測定したところ、 155 °Cに発熱ピークが見られた。 熱量は 7. 6 8 c a 1 Zgであった。
DSC測定:島津製作所 DSC— 60 本発明によれば、 制癌剤として有用なビカルタミドの中間体である、 N—メタク リロイル—4一シァノ— 3—トリフルォロメチルァニリンを安定かつ高収率で製造 することが可能となり、 さらに、 N—メタクリロイル一4—シァノー 3—トリフル ォロメチルァ二リンを安定化することができる。 その結果、 ビカルタミドを高収率 、 高純度で安定して供給することができる。 当該 N—メタクリロイルー 4一シァノ 一 3—トリフルォロメチルァニリンの製造方法および安定化方法は、 ビカルタミド の工業的製造に有用である。

Claims

請 求 の 範 囲
1. 4ーシァノー 3—トリフルォロメチルァ二リンと、 メタクリル酸またはその 反応性誘導体とを、 重合防止剤の存在下に反応させることを包含する N—メタクリ ロイルー 4—シァノ— 3—トリフルォロメチルァ二リンの製造方法。
2. メタクリル酸の反応性誘導体がメタクリロイルクロリドである請求の範囲 1 に記載の方法。
3. 重合防止剤が、 2, 6—ジ _ t e r t—ブチル—4一メチルフエノールおよ びブチル化ヒドロキシァ二ソールからなる群から選択される少なくとも 1つの化合 物である請求の範囲 1に記載の方法。
4. 重合防止剤の反応系への添加重量が 4ーシァノー 3—トリフルォロメチルァ 二リンに対して 500〜3000 p pmである請求の範囲 1に記載の方法。
5. N—メタクリロイルー 4ーシァノー 3—トリフルォロメチルァニリンに重合 防止剤を混合することを包含する N—メタクリロイルー 4一シァノ一3—トリフル ォロメチルァニリンの安定化方法。
6. 重合防止剤の混合重量が、 N—メタクリロイルー 4—シァノ— 3—トリフル ォロメチルァ二リン 1 g当り 0. 001 g〜0. 5 gである請求の範囲 5に記載の 方法。
7. 重合防止剤が 2, 6—ジ— t e r t—プチルー 4一メチルフエノールおよび プチル化ヒドロキシァ二ソールからなる群から選択される少なくとも 1つの化合物 である請求の範囲 5に記載の方法。
8. 4一シァノ _ 3 _トリフルォロメチルァ二リンと、 メタクリル酸またはその 反応性誘導体とを、 重合防止剤の存在下に反応させて式 (1)
Figure imgf000023_0001
で示される化合物 (1) を得る工程 A、
該化合物 (1) と過カルボン酸とを反応させて式 (2)
Figure imgf000023_0002
で示される化合物 (2) を得る工程 B、
該化合物 (2) と、 4—フルォロチォフエノールとを反応させて式 (3)
Figure imgf000023_0003
で示される化合物 (3) を得る工程 C、 および
該化合物 (3) と過カルボン酸とを反応させてビカルタミドを得る工程 Dを包含す る式 (4)
Figure imgf000024_0001
で示されるビカルタミドの製造方法。
9. メ夕クリル酸の反応性誘導体がメタクリロイルクロリドである請求の範囲 8 に記載の方法。
10. 工程 Aの反応における重合防止剤が、 2, 6—ジ— t e r t—プチルー 4 一メチルフエノールおよびブチル化ヒドロキシァ二ソールからなる群から選択され る少なくとも 1つの化合物である請求の範囲 8に記載の方法。
11. 工程 Aの反応における重合防止剤の添加重量が、 4—シァノ _ 3 _トリフ ルォロメチルァニリンに対して 500〜3000 p pmである請求の範囲 8に記載 の方法。
12. 工程 Aが、 得られる化合物 (1) に重合防止剤を添加することをさらに包 含する請求の範囲 8に記載の方法。
13. 工程 Aの反応において添加される重合防止剤と、 得られる化合物 (1) にさ らに添加される重合防止剤とが同じ重合防止剤である請求の範囲 12に記載の方法 。
14. 工程 Aにおいて、 得られる化合物 (1) に更に添加する重合防止剤の重量が 、 化合物 (1) l g当り 0. 001 g〜0. 5 gである請求の範囲 12に記載の方 法。
15. 工程 Aが、 得られる化合物 (1) に重合防止剤を添加後、 0〜40°〇で1 〜60日保存することを包含する請求の範囲 12に記載の方法。
PCT/JP2004/011800 2003-08-12 2004-08-11 N-メタクリロイル-4-シアノ-3-トリフルオロメチルアニリンの製造方法、該化合物の安定化方法およびビカルタミドの製造方法 WO2005014531A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003292498A JP2005060302A (ja) 2003-08-12 2003-08-12 N−メタクリロイル−4−シアノ−3−トリフルオロメチルアニリンの製造方法および安定化方法
JP2003-292498 2003-08-12

Publications (1)

Publication Number Publication Date
WO2005014531A1 true WO2005014531A1 (ja) 2005-02-17

Family

ID=34131723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011800 WO2005014531A1 (ja) 2003-08-12 2004-08-11 N-メタクリロイル-4-シアノ-3-トリフルオロメチルアニリンの製造方法、該化合物の安定化方法およびビカルタミドの製造方法

Country Status (2)

Country Link
JP (1) JP2005060302A (ja)
WO (1) WO2005014531A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106748884A (zh) * 2016-12-13 2017-05-31 山西振东制药股份有限公司 一种比卡鲁胺中间体的制备方法
WO2022249994A1 (ja) * 2021-05-28 2022-12-01 富士フイルム株式会社 N-(ヘテロ)アリール(メタ)アクリルアミド化合物の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542627A (ja) * 2006-07-07 2009-12-03 パナセア バイオテック リミテッド ビカルタミドを含む医薬組成物およびその使用方法
JP2009067710A (ja) * 2007-09-12 2009-04-02 Sumitomo Chemical Co Ltd N−メタクリロイル−4−シアノ−3−トリフルオロメチルアニリンの製造方法
CN106831509B (zh) * 2017-02-07 2018-05-18 西北师范大学 一种比卡鲁胺的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826849A (ja) * 1981-08-01 1983-02-17 レ−ム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング メタクリル−及びアクリルアミドの製造法
JPS5933250A (ja) * 1982-07-23 1984-02-23 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− アシルアニリド、その製法及び抗アンドロゲン作用を有する医薬又は獣医薬組成物
WO2002024638A1 (en) * 2000-09-21 2002-03-28 Bristol-Myers Squibb Company Process for the preparation of n-(substituted phenyl)-3-alkyl-, aryl- and heteroarylsulfonyl-2-hydroxy-2-alkyl- and haloalkylpropanamide compounds
US20030073742A1 (en) * 2002-10-02 2003-04-17 Synthon B.V. Process for making bicalutamide and intermediates thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826849A (ja) * 1981-08-01 1983-02-17 レ−ム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング メタクリル−及びアクリルアミドの製造法
JPS5933250A (ja) * 1982-07-23 1984-02-23 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− アシルアニリド、その製法及び抗アンドロゲン作用を有する医薬又は獣医薬組成物
WO2002024638A1 (en) * 2000-09-21 2002-03-28 Bristol-Myers Squibb Company Process for the preparation of n-(substituted phenyl)-3-alkyl-, aryl- and heteroarylsulfonyl-2-hydroxy-2-alkyl- and haloalkylpropanamide compounds
US20030073742A1 (en) * 2002-10-02 2003-04-17 Synthon B.V. Process for making bicalutamide and intermediates thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TUCKER H. ET AL.: "Nonsteroidal antiandrogens. Synthesis and structure-activity relationship of 3-substituted derivatives of 2-hydroxypropionanilides", JOURNAL OF MEDICINAL CHEMISTRY, vol. 31, 1988, pages 954 - 959, XP000605264 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106748884A (zh) * 2016-12-13 2017-05-31 山西振东制药股份有限公司 一种比卡鲁胺中间体的制备方法
CN106748884B (zh) * 2016-12-13 2021-08-20 山西振东制药股份有限公司 一种比卡鲁胺中间体的制备方法
WO2022249994A1 (ja) * 2021-05-28 2022-12-01 富士フイルム株式会社 N-(ヘテロ)アリール(メタ)アクリルアミド化合物の製造方法

Also Published As

Publication number Publication date
JP2005060302A (ja) 2005-03-10

Similar Documents

Publication Publication Date Title
JP4872668B2 (ja) 2−アミノ−5−ヨード安息香酸の製造方法
ZA200504203B (en) Process for the preparation of 2,6-dihalo-para-trifluoromethylaniline
WO2005014531A1 (ja) N-メタクリロイル-4-シアノ-3-トリフルオロメチルアニリンの製造方法、該化合物の安定化方法およびビカルタミドの製造方法
WO2005037777A1 (ja) ビカルタミドの製造方法及びその中間体の精製方法
CA1203811A (en) Process for the purification of phenoxybenzoic acid derivatives
JP3047059B2 (ja) ジアゾメタン誘導体の製造方法
WO2003093212A1 (fr) Derive de (fluoroalkyl)benzene de haute purete et procede de production de celui-ci
JP2005532406A (ja) ニトロフェノールの製造方法
KR950013107B1 (ko) 제초성 디페닐 에테르 유도체의 제조방법
JP4619602B2 (ja) ジフェニルエーテル化合物の製造方法
JP2003534335A (ja) 2‐クロル‐5‐クロルメチル‐1,3‐チアゾールの製法
JP2859791B2 (ja) 4−ブロモメチルビフェニル化合物の製造法
KR20030070824A (ko) 피-아미노벤조산의 제조방법
EP0968994A1 (en) Substituted trifluorobenzoic acids, esters thereof, and process for producing the same
JPH07330755A (ja) ピペロナールの製法
JPS6054948B2 (ja) α,β↓−不飽和環状脂肪族ケトキシムから芳香族アミンを製造する方法
JP2000506184A (ja) 3―(10―フェノチアジル)プロパン酸又は3―(10―フェノキサジル)プロパン酸誘導体の改良型製造方法
JP3001626B2 (ja) 2―クロロプロピオンアルデヒド三量体およびその製造方法
JPH10505602A (ja) セレギリンの製法
JP4303685B2 (ja) 2−シクロペンテン−1−オンの製造方法
JP3573245B2 (ja) 2,4,5−トリフルオロ−3−トリフルオロメチル安息香酸エステル類の製造方法
JP4143295B2 (ja) 9,9−二置換−2,3,6,7−キサンテンテトラカルボン酸二無水物の製造方法
KR20110006795A (ko) 2-(2-프탈이미도에톡시)아세트산의 제조방법
JPH0791246B2 (ja) ジメチルホルムアミドの精製法
JPS6246534B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase