WO2005014476A1 - ナノカーボン製造装置ならびにナノカーボンの製造方法および回収方法 - Google Patents

ナノカーボン製造装置ならびにナノカーボンの製造方法および回収方法 Download PDF

Info

Publication number
WO2005014476A1
WO2005014476A1 PCT/JP2004/011262 JP2004011262W WO2005014476A1 WO 2005014476 A1 WO2005014476 A1 WO 2005014476A1 JP 2004011262 W JP2004011262 W JP 2004011262W WO 2005014476 A1 WO2005014476 A1 WO 2005014476A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocarbon
chamber
wetting
producing
carbon nanohorn
Prior art date
Application number
PCT/JP2004/011262
Other languages
English (en)
French (fr)
Inventor
Takeshi Azami
Daisuke Kasuya
Tsutomu Yoshitake
Yoshimi Kubo
Sumio Iijima
Masako Yudasaka
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005512957A priority Critical patent/JPWO2005014476A1/ja
Priority to US10/566,579 priority patent/US20060237301A1/en
Publication of WO2005014476A1 publication Critical patent/WO2005014476A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0886Gas-solid

Definitions

  • the present invention relates to an apparatus for producing nanocarbon, a method for producing nanocarbon, and a method for recovering nanocarbon.
  • Nanocarbon refers to a carbon material having a nanoscale microstructure, such as carbon nanotubes and carbon nanohorns.
  • the carbon nanohorn has a tubular structure in which one end of a carbon nanotube in which a graphite sheet is rolled into a cylindrical shape has a conical shape. Due to its unique properties, it is applied to various technical fields. Is expected.
  • the force-bonnanohorn is formed by the van der Waals force acting between the conical parts, with the conical parts protruding from the surface like a corner (horn) around the tube, forming a force-bonnanohorn aggregate. Form it.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-64004
  • the present inventor studied this method and found that it was difficult to recover the generated soot-like substance.
  • the carbon nanohorn aggregates were so low in density that they flew in the air and immediately floated in the chamber, making it difficult to deposit them on the bottom of the chamber.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for efficiently recovering nanocarbon.
  • a generation chamber for generating nanocarbon and a recovery chamber for recovering the generated nanocarbon, wherein the generation chamber or the recovery chamber wets the generated nanocarbon.
  • An apparatus for producing nanocarbon is provided, wherein the apparatus is provided with means.
  • the wetting means is provided in the generation chamber or the recovery chamber, the nanocarbon generated in the generation chamber can be surely wetted. For this reason, it is possible to suppress the nanocarbon from floating in the collection chamber and deposit the nanocarbon on the bottom. Therefore, the deposited nanocarbon can be reliably recovered.
  • nanocarbon is produced by a method such as a laser ablation method, an arc discharge method, and a CVD method.
  • a light source for irradiating the surface of a graphite target with light a collecting means for collecting the nanocarbon generated by the irradiation of the light, a wetting means for wetting the nanocarbon, and a nanocarbon production apparatus characterized by comprising:
  • the nanocarbon production apparatus of the present invention since the wetting means for wetting the nanocarbon is provided, the generated nanocarbon can be wetted and settled. For this reason, it is possible to prevent the nanocarbon from flying in the air, and to efficiently recover it.
  • the wetting unit may be a spraying unit.
  • the generated nanocarbon can be surely wetted by the mist. Therefore, nanocarbon can be more easily recovered.
  • the atomizing means may be, for example, an ethanol atomizing device.
  • the recovery means includes a recovery chamber, and a recovery pipe for guiding the nanocarbon to the recovery chamber, and the wetting means includes the nanocarbon in the recovery chamber. May be moistened. By doing so, the generated nanocarbon can be efficiently guided to the collection chamber. Also, the nanocarbon collected in the collection chamber can be surely moistened. For this reason, it is possible to deposit nanocarbon in the collection chamber and to reliably collect it.
  • the bottom surface of the recovery chamber may be inclined with respect to the installation surface of the apparatus. This makes it easier to wet the nanocarbon Can be recovered.
  • the collection chamber may be configured to be detachable. In this case, since the recovery chamber can be removed, the nanocarbon can be easily recovered.
  • the apparatus for producing nanocarbon of the present invention may further include a generation chamber in which the graphite target is installed, and the wetting unit may wet the nanocarbon in the generation chamber. This ensures that the generated nanocarbon is moistened in the production chamber. For this reason, the nanocarbon is prevented from flying in the production chamber, and can be easily recovered. In addition, since the nanocarbon does not float in the production chamber, it is possible to suppress the fluctuation of the power density of the light applied to the graphite target. Therefore, it is possible to stably produce a nanocarbon having a desired property.
  • a collector for collecting the generated nanocarbon may be provided at a bottom of the generation chamber. By doing so, the nanocarbon wet in the production chamber can be deposited on the recovery device. Therefore, the ability to recover nanocarbon efficiently can be achieved.
  • the collector can be provided with a wetting means.
  • a generation chamber for generating nanocarbon and a recovery chamber for recovering the generated nanocarbon, wherein the generation chamber or the recovery chamber wets the generated nanocarbon.
  • An apparatus for producing nanocarbon is provided, wherein the apparatus is provided with means.
  • a method for producing nanocarbon comprising: irradiating the surface of a graphite target with light; and wetting the nanocarbon generated in the above-described step of irradiating light.
  • the step of wetting the generated nanocarbon is included, so that the floating of the nanocarbon can be suppressed. Therefore, it is possible to efficiently recover nanocarbon. In addition, nanocarbon can be reliably recovered.
  • the step of wetting the nanocarbon may include a step of spraying a liquid on the nanocarbon. This ensures that the nanocarbon is wetted. Therefore, it is possible to more reliably recover the nanocarbon.
  • the step of wetting the nanocarbon may include a step of spraying an organic solvent on the nanocarbon. Since the surface of the nanocarbon is hydrophobic, the nanocarbon can be more reliably wetted by spraying the organic solvent.
  • the step of wetting the nanocarbon may include spraying an alcohol or an aqueous solution thereof onto the nanocarbon. Since alcohol has excellent volatility, spraying alcohol or an aqueous solution thereof makes it easy to remove the spray liquid from the collected nanocarbon.
  • spraying alcohol or an aqueous solution thereof makes it easy to remove the spray liquid from the collected nanocarbon.
  • ethanol, methanol, isopropyl alcohol or an aqueous solution thereof can be sprayed.
  • a method for recovering nanocarbon which comprises producing nanocarbon and then wetting and recovering the nanocarbon.
  • the generated nanocarbon is moistened, so that the nanocarbon is prevented from flying in the air and can be easily recovered.
  • nanocarbon can be efficiently recovered.
  • FIG. 1 is a diagram showing a configuration of a carbon nanohorn manufacturing apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view in the AA ′ direction of the nanocarbon production apparatus of FIG. 1.
  • FIG. 3 is a diagram showing a configuration of a carbon nanohorn manufacturing apparatus according to an embodiment.
  • FIG. 4 is a cross-sectional view of the nanocarbon production apparatus of FIG. 3 in the BB ′ direction.
  • FIG. 5 is a view showing a configuration of a nozzle of the sprayer of FIG. 4.
  • FIG. 6 is a diagram showing a configuration of a carbon nanohorn manufacturing apparatus according to an embodiment.
  • FIG. 7 is a diagram showing a configuration of a carbon nanohorn manufacturing apparatus according to an embodiment.
  • FIG. 8 is a diagram showing a configuration of a carbon nanohorn manufacturing apparatus according to an embodiment.
  • FIG. 9 is a diagram showing a configuration of a carbon nanohorn manufacturing apparatus according to an embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing a configuration of a nanocarbon production apparatus 183 of the present embodiment. Note that, in this specification, FIG. 1 and the drawings used for describing other manufacturing apparatuses are schematic views, and the size of each component does not necessarily correspond to the actual dimensional ratio.
  • the nanocarbon production apparatus 183 in Fig. 1 includes a production chamber 107, a nanocarbon recovery chamber 119, a transport pipe 141, a laser light source 111, a ZnSe plano-convex lens 131, a ZnSe window 133, a rotating apparatus 115, and a sprayer 181.
  • the nanocarbon production device 183 includes an inert gas supply unit 127, a flow meter 129, a vacuum pump 143, and a pressure gauge 145.
  • a laser beam 103 emitted from a laser light source 111 is condensed by a ZnSe plano-convex lens 131, and is irradiated on a graphite rod 101 in a manufacturing chamber 107 through a ZnSe window 133.
  • the graphite rod 101 is used as a solid carbon substance serving as a target for irradiation with the laser beam 103.
  • the laser beam 103 is applied to the graphite rod 101 so that the irradiation angle is constant.
  • the laser beam 103 is supplied at a constant power in the circumferential direction on the side surface of the graphite rod 101. Irradiation can be performed continuously at a density. Further, by sliding the Dallaphyte rod 101 in its length direction, the laser beam 103 can be continuously irradiated at a constant power density in the length direction of the graphite rod 101.
  • the rotating device 115 holds the graphite rod 101 and rotates it around its central axis. By fixing the graphite rod 101 to the rotating device 115, the graphite rod 101 can rotate around the central axis. Further, the graphite rod 101 can be moved in the direction along the central axis, for example. Can be achieved.
  • the production chamber 107 and the nanocarbon recovery chamber 119 are connected by a transfer pipe 141.
  • the side of the graphite rod 101 is irradiated with a laser beam 103 from a laser light source 111.
  • a nanocarbon collection chamber 119 is provided through a transfer pipe 141 in a direction in which a plume 109 is generated.
  • the aggregate 117 is collected in the nanocarbon collection chamber 119.
  • the atomizer 181 is provided in the nanocarbon recovery chamber 119, and is configured to be able to spray liquid inside and on the wall surface of the nanocarbon recovery chamber 119. By doing so, the carbon nanohorn aggregate 117 recovered in the nanocarbon recovery chamber 119 can be wetted. Therefore, the carbon nanohorn aggregates 117 collected in the nanocarbon collection chamber 119 can be efficiently deposited and collected on the bottom of the nanocarbon collection chamber 119.
  • the atomizer 181 can be, for example, an atomizing device including an atomizing unit.
  • the spray liquid may be discharged from the solvent tank in a shower form.
  • a spraying device using a configuration such as a sprinkler can be used.
  • the sprayer 1
  • FIG. 2 is a diagram schematically showing a sprayer 181 provided with an atomizing unit.
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG.
  • the atomizer 181 shown in FIG. 2 includes an atomizing unit 199, and a spray liquid 193 is accommodated above the atomizing unit 199.
  • the nanocarbon recovery chamber 119 and the atomizer 181 are connected via a through-hole 197 provided in a part of the wall surface of the nanocarbon recovery chamber 119.
  • the spray liquid 193 is sprayed as mist 195 from the through-hole 197 into the nanocarbon recovery chamber 119 as described later.
  • the atomization unit 199 emits high frequency vibration such as ultrasonic vibration. This vibration is transmitted to the spray liquid 193 via the sprayer 181. Due to this vibration, the spray liquid 193 is atomized and mist 195 is generated. The mist 195 enters the nanocarbon recovery chamber 119 through the through-hole 197.
  • Kiridani unit 199 examples include USH-400 manufactured by Akizuki Denshi Co., Ltd. Ultrasonic vibration atomizing units such as C-HM-2412 sold by Jam. Such an atomizing unit can atomize the spray liquid 193 with good responsiveness. It is also possible to use an ultrasonic vibration type atomizing unit equipped with a piezoelectric vibrator, such as an atomizing disk manufactured by FDK Corporation. Since such an atomizing unit has low power consumption, mist 195 can be generated efficiently.
  • FIG. 3 is a diagram showing a nanocarbon production apparatus 184 having a sprayer 181 on the upper surface of a force nanocarbon recovery chamber 119 having the same basic configuration as the nanocarbon production apparatus 183 of FIG.
  • a plurality of sprayers 181 may be provided on different surfaces of the nanocarbon recovery chamber 119, respectively. By doing so, each wall surface of the nanocarbon recovery chamber 119 can be more reliably wetted, and the carbon nanohorn assembly 117 can be reliably recovered.
  • the manufacturing method of 17 will be specifically described.
  • the graphite rod 101 high-purity graphite, for example, round bar-shaped sintered carbon, compression molded carbon, or the like can be used.
  • the laser beam 103 for example, a high-output CO gas laser can be used. Irradiation of the graphite rod 101 of the laser beam 103 performs Ar, a noble gas such as He reaction inert gas atmosphere to This First, for example 10 3 Pa or more 10 5 Pa in the following atmosphere
  • the output, spot diameter, and irradiation angle of the laser beam 103 are set so that the power density of the laser beam 103 on the side surface of the graphite rod 101 is substantially constant, for example, 5 kW / cm 2 or more and 25 kW / cm 2 or less. It is preferable to adjust the.
  • the output of the laser beam 103 is, for example, not less than lkW and not more than 50kW. Also laser light 1
  • the pulse width of 03 is, for example, 0.5 seconds or more, and preferably 0.75 seconds or more. Like this Thus, the accumulated energy of the laser beam 103 applied to the surface of the graphite rod 101 can be sufficiently secured. Therefore, it is possible to efficiently manufacture the carbon nanohorn aggregate 117.
  • the pulse width of the laser beam 103 is, for example, 1.5 seconds or less, and preferably 1.25 seconds or less. By doing so, it is possible to prevent the surface of the graphite rod 101 from being excessively heated, thereby fluctuating the energy density of the surface and reducing the yield of the carbon nanohorn aggregate.
  • the pulse width of the laser beam 103 is more preferably 0.75 seconds or more and 1 second or less. This can improve both the production rate and the yield of the carbon nanohorn aggregate 117.
  • the pause width in the irradiation of the laser beam 103 can be, for example, 0.1 seconds or more, and preferably 0.25 seconds or more. By doing so, overheating of the surface of the graphite rod 101 can be more reliably suppressed.
  • the laser beam 103 is applied so that the irradiation angle is constant.
  • the laser beam 103 is fixed in the circumferential direction on the side surface of the graphite rod 101. Irradiation can be performed continuously at a power density of Further, by sliding the graphite rod 101 in its length direction, the laser beam 103 can be continuously irradiated at a constant power density in the length direction of the graphite rod 101.
  • the irradiation angle at this time is preferably 30 ° or more and 60 ° or less.
  • the irradiation angle is an angle between a perpendicular to the surface of the graphite target at the irradiation position of the laser beam 103 and the laser beam 103.
  • the irradiation angle is defined as the angle between the line segment connecting the irradiation position and the center of the circle and the horizontal plane in a cross section perpendicular to the longitudinal direction of the graphite rod 101. Become.
  • the irradiation angle By setting the irradiation angle to 30 ° or more, it is possible to prevent reflection of the irradiation laser beam 103, that is, generation of return light. In addition, the generated phenolic 109 is prevented from directly hitting the ZnSe plano-convex lens 131 through the ZnSe window 133. Therefore, it is effective to protect the ZnSe plano-convex lens 131 and to prevent the carbon nanohorn aggregate 117 from adhering to the ZnSe window 133. Further, by irradiating the laser beam 103 at a temperature of 60 ° or less, the generation of amorphous carbon is suppressed, and the carbon nanohorn aggregates 11 The ratio of 7, that is, the yield of the carbon nanohorn aggregate 117 can be improved. It is particularly preferable that the irradiation angle is 45 ° ⁇ 5 °. By irradiating at about 45 °, the ratio of the carbon nanohorn aggregate 117 in the product can be further improved
  • the spot diameter of the laser beam 103 on the side of the graphite rod 101 during irradiation can be, for example, 0.5 mm or more and 5 mm or less.
  • the spot of the laser beam 103 is moved at a speed (linear speed) of, for example, not less than 0.1 OlmmZsec and not more than 55 mm / sec.
  • a speed linear speed
  • the rotating rod 115 is used to rotate the graphite rod 101 having a diameter of 100 mm in the circumferential direction at a constant speed.
  • the linear velocity described above can be realized when the rotational speed is between 0. Olrpm and lOrpm.
  • the direction of rotation of the graphite rod 101 is not particularly limited. However, the irradiation position is away from the laser beam 103, that is, as shown in FIG. It is preferable to rotate in the direction from the light 103 to the transport pipe 141. By doing so, the carbon nanohorn aggregate 117 can be more reliably recovered.
  • the soot-like substance recovered in the nanocarbon recovery chamber 119 mainly includes the carbon nanohorn aggregate 117, and is recovered as, for example, a substance containing 90 wt% or more of the carbon nanohorn aggregate 117.
  • the plume 109 is generated in the direction perpendicular to the tangent to the graphite rod 101 at the irradiation position of the laser beam 103, if the transport pipe 141 is provided in this direction, the carbon vapor can be efficiently recovered from the nanocarbon. It is possible to guide the chamber to the chamber and recover the carbon nanohorn aggregate.
  • the mist 195 is sprayed from a sprayer 181 provided in the nanocarbon recovery chamber 119.
  • the carbon nanohorn aggregate 117 recovered in the nanocarbon recovery chamber 119 becomes wet with the sprayed liquid.
  • the carbon nanohorn aggregate 117 can be prevented from scattering in the nanocarbon recovery chamber 119, and the carbon nanohorn aggregate 117 can be efficiently deposited on the bottom of the nanocarbon recovery chamber 119.
  • nanocarbon times The adhesion of the carbon nanohorn aggregate 117 to the wall surface of the collection chamber 119 can also be suppressed. Therefore, the recovery rate of the carbon nanohorn aggregate 117 can be improved.
  • mist 195 it is preferable to spray the mist 195 from the sprayer 181 so that the mist 195 reaches all the wall surfaces of the nanocarbon recovery chamber 119 and is moistened. By doing so, the carbon nanohorn assembly 117 can be more reliably settled at the bottom of the nanocarbon recovery chamber 119.
  • the mist 195 sprayed from the sprayer 181 is preferably a relatively hydrophobic organic solvent. Since the surface of the carbon nanohorn aggregate 117 is relatively hydrophobic, the carbon nanohorn aggregate 117 can be surely wetted. Further, it is preferable to use a volatile solvent as mist 195. As a result, after recovery, the carbon nanohorn assembly 117 can be easily dried.
  • alcohols such as ethanol, methanol, and isopropyl alcohol
  • aromatic hydrocarbons such as benzene and toluene
  • halogenated hydrocarbons such as benzene and toluene
  • ethers such as benzene and toluene
  • amides such as benzene and toluene
  • solvents may be sprayed alone or as a mixture of two or more. Further, a mixed solvent of these solvents and water may be used.
  • Spraying of the liquid from the atomizer 181 may be performed intermittently at predetermined intervals or may be performed continuously.
  • the spray amount and the spray speed of the liquid can be appropriately set according to the size of the nanocarbon recovery chamber 119, and the like.
  • the Dara fight rod 101 is made of a round bar-shaped sintered carbon of ⁇ 100 mm ⁇ 250 mm, and the CO laser is
  • the purified soot-like substance is sprayed with ethanol from the sprayer 181 to the nanocarbon collection chamber. Since it can be deposited on the bottom of 119, the recovery rate of the purified carbon nanohorn aggregate can be improved.
  • the configuration of the sprayer 181 can be as follows.
  • Figure 3 The case of the nanocarbon production apparatus 184 will be described as an example.
  • FIG. 4 is a cross-sectional view in the ⁇ _ ⁇ ′ direction of the nanocarbon production apparatus 184 in FIG. 3, and is a diagram illustrating the configuration of the sprayer 181.
  • the sprayer 181 has a tank 201, a supply pipe 203, and a nos and a nozzle 205.
  • the tank 201 contains a spray of 193 psi per night.
  • the supply pipe 203 connects the tank 201 with the noss and the claws 205 to run.
  • the supply pipe 203 is provided with a valve 209 for adjusting the supply of the spray liquid 193 from the tank 201.
  • the nosedle 205 is formed in a watering can shape having a number of pores 207.
  • FIG. 5 is a perspective view showing a configuration of the nose cover 205.
  • the valve 209 is opened, and the spray liquid 193 is sprayed into the nanocarbon recovery chamber 119 from the horn nozzle 205.
  • the spray liquid 193 is sprayed as a mist 195 through the pores 207 in the form of a shower, so that the entire nanocarbon recovery chamber 119 can be suitably wetted. For this reason, the carbon nanohorn assembly 117 can be surely settled at the bottom of the nanocarbon recovery chamber 119 and deposited.
  • the configuration of the nozzle 205 is not particularly limited to the above-described embodiment, and can be appropriately selected according to the size of the nanocarbon recovery chamber 119 and the amount of nanocarbon generated.
  • a pressurized nozzle may be used.
  • the supply of the spray liquid 193 can be performed using a pump or the like. In this way, the spray liquid 193 can be more reliably sprayed over the entirety of the nanocarbon recovery chamber 119.
  • FIG. 6 is a view showing a nanocarbon producing apparatus 185 according to the present embodiment.
  • the bottom surface of the nanocarbon recovery chamber 187 is inclined.
  • the carbon nanohorn aggregate 117 moistened by the liquid sprayed from the sprayer 181 moves in the lower direction at the bottom of the nanocarbon recovery chamber 187.
  • the carbon nanohorn assembly 117 was It can be collected in the area below the bottom of member 187. Therefore, the carbon nanohorn aggregate 117 can be more easily collected.
  • FIG. 7 is a view showing a nanocarbon producing apparatus 189 according to the present embodiment.
  • a removable recovery cartridge 191 is provided in communication with the bottom of the nanocarbon recovery chamber 119. Since the bottom of the recovery cartridge 191 is located lower than the bottom of the nanocarbon production device 189, the carbon nanohorn aggregate 117 deposited on the bottom of the nanocarbon recovery chamber 119 is guided to the recovery cartridge 191. If the collection cartridge 191 is removed and the content is dried, the dried carbon nanohorn assembly 117 can be collected more easily.
  • FIG. 8 shows a carbon nanohorn manufacturing apparatus according to the present embodiment.
  • a lower collecting chamber 160 is provided below the manufacturing chamber 107.
  • a sprayer 181 for spraying a liquid into the manufacturing chamber 107 is further provided.
  • the sprayer 181 can have the configuration described in the first or second embodiment, for example.
  • the carbon nanohorn assembly 117 is recovered to the upper nanocarbon recovery chamber 119, while the carbon vapor not recovered to the upper part of the apparatus from the transfer pipe 141 is removed by gravity. It falls and is collected in the lower collecting chamber 160.
  • the carbon nanohorn with a short horn is separated and collected in the nanocarbon collection chamber 119, and the carbon nanohorn with a long horn is separated and collected in the lower collection chamber 160.
  • a plurality of types of carbon nanohorns can be separated and collected.
  • the carbon nanohorn collection remaining in the production chamber 107 without being collected by the nanocarbon collection chamber 119 is collected.
  • the coalescence 117 can be reliably moistened and guided to the bottom of the production chamber 107. For this reason, the carbon nanohorn aggregate 117 can be efficiently collected in the lower collection chamber 160.
  • the sprayer 181 is provided in the production chamber 107, but the sprayer 181 may be provided in the lower recovery chamber 160.
  • the carbon nanohorn aggregate 117 can be more reliably deposited on the bottom of the lower recovery chamber 160, and the scattering of the carbon nanohorn aggregate 117 can be suppressed.
  • the carbon nanohorn assembly 117 deposited on the bottom of the nanocarbon collection chamber 119 may be provided with a collecting unit 211 for collecting and collecting the carbon nanohorn aggregate 117 with force.
  • a collecting unit 211 for collecting and collecting the carbon nanohorn aggregate 117 with force.
  • the nanocarbon production apparatus 213 has a flat plate-shaped cutout portion 211 at the bottom of the nanocarbon recovery chamber 119.
  • the carbon nanohorn aggregate 117 deposited on the bottom of the nanocarbon collecting chamber 119 can be more reliably recovered.
  • the removal unit 211 may be provided at the bottom of the manufacturing chamber 107.
  • a cut-out unit 211 that slides up and down inside these chambers may be further provided. In this way, the moistened carbon nanohorn aggregate 117 can be more reliably collected at the bottom of the chamber.
  • a scraping means for scraping the deposited carbon nanohorn aggregate 117 may be further provided at the bottom of the manufacturing chamber 107.
  • the case where the graphite rod is used has been described as an example.
  • the shape of the graphite target is not limited to a cylindrical shape, but may be a sheet shape, a rod shape, or the like. Talk about this.
  • the shape, size, diameter, length, shape of the tip, and the distance between carbon molecules and carbon nanohorns of the carbon nanohorns constituting the carbon nanohorn assembly 117 are determined by the irradiation conditions of the laser beam 103. Can be controlled in various ways.

Abstract

  ナノカーボン製造装置(183)において、ナノカーボン回収チャンバー(119)の側面に噴霧器(181)を設け、噴霧器(181)からナノカーボン回収チャンバー(119)内全体にミスト(195)を噴霧する。

Description

明 細 書
ナノカーボン製造装置ならびにナノカーボンの製造方法および回収方法 技術分野
[0001] 本発明は、ナノカーボン製造装置ならびにナノカーボンの製造方法および回収方 法に関する。
背景技術
[0002] 近年、ナノカーボンの工学的応用が盛んに検討されている。ナノカーボンとは、力 一ボンナノチューブやカーボンナノホーン等に代表される、ナノスケールの微細構造 を有する炭素物質のことをいう。このうち、カーボンナノホーンは、グラフアイトのシート が円筒状に丸まったカーボンナノチューブの一端が円錐形状となった管状体の構造 を有しており、その特異な性質から、様々な技術分野への応用が期待されている。力 一ボンナノホーンは、通常、各々の円錐部間に働くファンデルワールス力によって、 チューブを中心にし円錐部が角(ホーン)のように表面に突き出る形態で集合し、力 一ボンナノホーン集合体を形成してレ、る。
[0003] カーボンナノホーン集合体は、不活性ガス雰囲気中で原料の炭素物質 (以下適宜 グラフアイトターゲットと呼ぶ)に対してレーザー光を照射するレーザー蒸発法によつ て製造されることが報告されている(特許文献 1)。この方法によれば、レーザー蒸発 により得られたすす状物質を適当に基板上に堆積させる方法等を用いて回収するこ とができるとされている。
特許文献 1:特開 2001 - 64004号公報
[0004] 発明の開示
[0005] ところ力 本発明者がこの方法について検討を行ったところ、生成したすす状物質 を回収することが困難であることが明らかになった。特に、カーボンナノホーン集合体 は密度が小さいため宙に舞いやすぐチャンバ一内で浮遊してしまレ、、チャンバ一底 部に堆積させておくことが困難であった。
[0006] 本発明は上記事情に鑑みてなされたものであり、その目的は、ナノカーボンを効率 よく回収する技術を提供することにある。 [0007] 本発明によれば、ナノカーボンを生成する生成室と、生成したナノカーボンを回収 する回収室と、を備え、前記生成室または前記回収室に、生成したナノカーボンを湿 潤させる湿潤手段が設けられたことを特徴とするナノカーボン製造装置が提供される
[0008] 本発明の製造装置によれば、生成室または回収室に湿潤手段が設けられるため、 生成室で生成したナノカーボンを確実に湿潤させることができる。このため、ナノカー ボンが回収室内を浮遊するのを抑制し、底部に堆積させることができる。よって、堆積 したナノカーボンを確実に回収することができる。
[0009] 本発明において、生成室では、たとえばレーザーアブレーシヨン法、アーク放電法 、 CVD法等の方法によりナノカーボンが生成する。
[0010] 本発明によれば、グラフアイトターゲットの表面に光を照射する光源と、前記光の照 射に生成したナノカーボンを回収する回収手段と、前記ナノカーボンを湿潤させる湿 潤手段と、を備えることを特徴とするナノカーボン製造装置が提供される。
[0011] 本発明に係るナノカーボン製造装置によれば、ナノカーボンを湿潤する湿潤手段を 備えるため、生成したナノカーボンを湿潤させ、沈降させることができる。このため、ナ ノカーボンが宙に舞うのを抑制し、効率よく回収することができる。
[0012] 本発明のナノカーボン製造装置において、前記湿潤手段は、噴霧手段であっても よい。こうすることにより、生成したナノカーボンを霧で確実に湿潤させることができる。 よって、ナノカーボンをさらに容易に回収することができる。本発明において、前記噴 霧手段はたとえばエタノール霧化装置とすることができる。
[0013] 本発明のナノカーボン製造装置において、前記回収手段は、回収室と、前記回収 室に前記ナノカーボンを導く回収管と、を備え、前記湿潤手段は、前記回収室中の 前記ナノカーボンを湿潤させてもよい。こうすることにより、生成したナノカーボンを効 率よく回収室に導くことができる。また、回収室に回収されたナノカーボンを確実に湿 潤させることができる。このため、ナノカーボンを回収室内に堆積させ、確実に回収す ること力 sできる。
[0014] 本発明のナノカーボン製造装置において、前記回収室の底面が装置の設置面に 対して傾斜していてもよい。こうすることにより、湿潤させたナノカーボンをさらに容易 に回収することができる。また、回収室は、着脱可能に構成されていてもよい。こうす れば、回収室を取り外すことができるため、容易にナノカーボンを回収することができ る。
[0015] 本発明のナノカーボンの製造装置において、前記グラフアイトターゲットの設置され る生成室を備え、前記湿潤手段は、前記生成室中の前記ナノカーボンを湿潤させて もよレ、。こうすることにより、生成したナノカーボンを生成室内で確実に湿潤させること ができる。このため、ナノカーボンが生成室内で舞うのを抑制し、容易に回収すること ができる。また、ナノカーボンが生成室内に浮遊しないため、グラフアイトターゲットに 照射される光のパワー密度のぶれを抑制することができる。よって、所望の性状のナ ノカーボンを安定的に製造することができる。
[0016] 本発明の製造装置において、前記生成室の底部に、生成した前記ナノカーボンを 回収する回収器が設けられていてもよい。こうすることにより、生成室内で湿潤したナ ノカーボンを回収器に堆積させることができる。よって、ナノカーボンを効率よく回収 すること力 Sできる。回収器は湿潤手段を備えることができる。
[0017] 本発明によれば、ナノカーボンを生成する生成室と、生成したナノカーボンを回収 する回収室と、を備え、前記生成室または前記回収室に、生成したナノカーボンを湿 潤させる湿潤手段が設けられたことを特徴とするナノカーボン製造装置が提供される
[0018] 本発明によれば、グラフアイトターゲットの表面に光照射する工程と、光照射する前 記工程で生成したナノカーボンを湿潤させる工程と、を含むことを特徴とするナノカー ボンの製造方法が提供される。
[0019] 本発明に係る製造方法によれば、生成したナノカーボンを湿潤させる工程を含む ため、ナノカーボンの浮遊を抑制することができる。よって、ナノカーボンを効率よく回 収すること力 Sできる。また、ナノカーボンを確実に回収することができる。
[0020] 本発明のナノカーボンの製造方法において、ナノカーボンを湿潤させる前記工程 は、前記ナノカーボンに液体を噴霧する工程を含んでもよい。こうすることにより、ナノ カーボンを確実に湿潤させることができる。よって、ナノカーボンをさらに確実に回収 すること力 sできる。 [0021] 本発明のナノカーボンの製造方法において、ナノカーボンを湿潤させる前記工程 は、前記ナノカーボンに有機溶媒を噴霧する工程を含んでもよい。ナノカーボンの表 面は疎水性であるため、有機溶媒を噴霧することにより、さらに確実にナノカーボンを 湿潤させることができる。
[0022] 本発明のナノカーボンの製造方法において、ナノカーボンを湿潤させる前記工程 は、前記ナノカーボンにアルコールまたはその水溶液を噴霧してもよレ、。アルコール は揮発性に優れるため、アルコールまたはその水溶液を噴霧することにより、回収し たナノカーボンからの噴霧液の除去が容易となる。本発明の製造方法において、たと えばエタノール、メタノール、イソプロピルアルコールまたはその水溶液を噴霧するこ とができる。
[0023] 本発明によれば、ナノカーボンを生成した後、該ナノカーボンを湿潤させて回収す ることを特徴とするナノカーボンの回収方法が提供される。本発明に係る回収方法に よれば、生成したナノカーボンを湿潤させるため、ナノカーボンが宙に舞うのを抑制し 、容易に回収することができる。
[0024] 以上説明したように、本発明によれば、ナノカーボンを効率よく回収することができ る。
図面の簡単な説明
[0025] 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実 施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
[0026] [図 1]実施の形態に係るカーボンナノホーンの製造装置の構成を示す図である。
[図 2]図 1のナノカーボン製造装置の A— A'方向の断面図である。
[図 3]実施の形態に係るカーボンナノホーンの製造装置の構成を示す図である。
[図 4]図 3のナノカーボン製造装置の B— B '方向の断面図である。
[図 5]図 4の噴霧器のノズノレの構成を示す図である。
[図 6]実施の形態に係るカーボンナノホーンの製造装置の構成を示す図である。
[図 7]実施の形態に係るカーボンナノホーンの製造装置の構成を示す図である。
[図 8]実施の形態に係るカーボンナノホーンの製造装置の構成を示す図である。
[図 9]実施の形態に係るカーボンナノホーンの製造装置の構成を示す図である。 発明を実施するための最良の形態
[0027] 以下、レーザーアブレーシヨン法によりカーボンナノホーン集合体を製造し、回収す る場合を例に説明する。なお、すべての図面において、共通の構成要素には同じ符 号を付し、適宜説明を省略する。
[0028] (第一の実施形態)
本実施形態では、ナノカーボン製造装置にナノカーボン回収用のチャンバーを設 け、回収用のチャンバ一にナノカーボンを湿潤させるための噴霧装置が設けられて いる。図 1は、本実施形態のナノカーボンの製造装置 183の構成を示す図である。な お、本明細書において、図 1および他の製造装置の説明に用いる図は概略図であり 、各構成部材の大きさは実際の寸法比に必ずしも対応していない。
[0029] 図 1のナノカーボン製造装置 183は、製造チャンバ一 107、ナノカーボン回収チヤ ンバー 119、搬送管 141、レーザー光源 111、 ZnSe平凸レンズ 131、 ZnSeウィンド ゥ 133、回転装置 115および噴霧器 181を備える。さらに、ナノカーボン製造装置 18 3は、不活性ガス供給部 127、流量計 129、真空ポンプ 143、および圧力計 145を備 える。
[0030] レーザー光源 111から出射するレーザー光 103は、 ZnSe平凸レンズ 131にて集光 され、 ZnSeウィンドウ 133を通じて製造チャンバ一 107内のグラフアイトロッド 101に 照射される。グラフアイトロッド 101は、レーザー光 103照射のターゲットとなる固体炭 素単体物質として用いられる。
[0031] レーザー光 103は、照射角が一定となるようにグラフアイトロッド 101に照射される。
レーザー光 103の照射角を一定に保ちながら、グラフアイトロッド 101をその中心軸に 対して所定の速度で回転させることにより、グラフアイトロッド 101の側面の円周方向 にレーザー光 103を一定のパワー密度で連続的に照射することができる。また、ダラ ファイトロッド 101をその長さ方向にスライドさせることにより、グラフアイトロッド 101の 長さ方向にレーザー光 103を一定のパワー密度で連続的に照射することができる。
[0032] 回転装置 115は、グラフアイトロッド 101を保持し、その中心軸周りに回転させる。グ ラフアイトロッド 101は回転装置 115に固定することにより、中心軸周りに回転可能で ある。またグラフアイトロッド 101はたとえば中心軸に沿った方向に位置移動可能な構 成とすることができる。
[0033] 製造チャンバ一 107とナノカーボン回収チャンバ一 119とは、搬送管 141によって 接続されている。グラフアイトロッド 101の側面にレーザー光源 111からレーザー光 1 03が照射され、その際のプルーム 109の発生方向に搬送管 141を介してナノカーボ ン回収チャンバ一 119が設けられており、生成したカーボンナノホーン集合体 117は ナノカーボン回収チャンバ一 119に回収される。
[0034] 噴霧器 181は、ナノカーボン回収チャンバ一 119に設けられており、ナノカーボン 回収チャンバ一 119の内部および壁面に液体を噴霧することができるように構成され ている。こうすることにより、ナノカーボン回収チャンバ一 119に回収されたカーボン ナノホーン集合体 117を湿潤させることができる。このため、ナノカーボン回収チャン バー 119に回収されたカーボンナノホーン集合体 117をナノカーボン回収チャンバ 一 119の底部に効率よく堆積させ、回収することができる。
[0035] ここで、噴霧器 181は、たとえば霧化ユニットを備えた霧化装置とすることができる。
また、溶媒タンクから噴霧液をシャワー状に放出する構成としてもよい。さらに、スプリ ンクラ一等の構成を利用した噴霧装置とすることもできる。本実施形態では、噴霧器 1
81が霧化ユニットを備える場合を例に、以下説明をする。
[0036] 図 2は、霧化ユニットを備える噴霧器 181を模式的に示す図である。なお、図 2は、 図 1の A— A'方向の断面図となっている。
[0037] 図 2の噴霧器 181は、霧化ユニット 199を備え、霧化ユニット 199上部に噴霧液 19 3が収容されている。ナノカーボン回収チャンバ一 119と噴霧器 181とは、ナノカーボ ン回収チャンバ一 119の壁面の一部に設けられた貫通口 197を介して連結されてい る。噴霧液 193は後述するようにミスト 195として、貫通口 197からナノカーボン回収 チャンバ一 119内へ噴霧される。
[0038] 霧化ユニット 199は、例えば超音波振動のような高周波数の振動を発する。この振 動は、噴霧器 181を介して噴霧液 193に伝導する。この振動により、噴霧液 193が霧 ィ匕されてミスト 195を生じる。ミスト 195は貫通口 197を通ってナノカーボン回収チャン バー 119に進入する。
[0039] 霧ィ匕ユニット 199としては、例えば秋月電子社製の USH— 400、株式会社テックジ ャム販売の C-HM-2412などの超音波振動型霧化ユニットが挙げられる。このよう な霧化ユニットは、噴霧液 193を応答性良く霧化することが可能である。また、 FDK 株式会社製の霧化ディスクのような、圧電振動子を備えた超音波振動型霧化ユニット を用レ、ることもできる。こうした霧化ユニットは低消費電力であるため、効率よくミスト 1 95を発生させることができる。
[0040] ナノカーボン製造装置 183では、噴霧器 181がナノカーボン回収チャンバ一 119 の側面に設けられている力 噴霧器 181はナノカーボン回収チャンバ一 119の上面 や底面に設けることもできる。たとえば図 3は、図 1のナノカーボン製造装置 183と基 本構成は同様である力 ナノカーボン回収チャンバ一 119の上面に噴霧器 181を有 するナノカーボン製造装置 184を示す図である。
[0041] また、複数の噴霧器 181をナノカーボン回収チャンバ一 119の異なる面にそれぞれ 設けてもよレ、。こうすることにより、ナノカーボン回収チャンバ一 119の各壁面をより一 層確実に湿潤することができるため、カーボンナノホーン集合体 117を確実に回収す ること力 Sできる。
[0042] 図 1に戻り、次に、ナノカーボン製造装置 183を用いたカーボンナノホーン集合体 1
17の製造方法について具体的に説明する。
[0043] ナノカーボン製造装置 183において、グラフアイトロッド 101として、高純度グラファ イト、たとえば丸棒状焼結炭素や圧縮成形炭素等を用いることができる。
[0044] また、レーザー光 103として、たとえば、高出力 COガスレーザーを用いることがで きる。レーザー光 103のグラフアイトロッド 101への照射は、 Ar、 He等の希ガスをはじ めとする反応不活性ガス雰囲気、たとえば 103Pa以上 105Pa以下の雰囲気中で行う
。また、製造チャンバ一 107内を予めたとえば 10— 2Pa以下に減圧排気した後、不活 性ガス雰囲気とすることが好ましレヽ。
[0045] また、グラフアイトロッド 101の側面におけるレーザー光 103のパワー密度がほぼ一 定、たとえば 5kW/cm2以上 25kW/cm2以下となるようにレーザー光 103の出力、 スポット径、および照射角を調節することが好ましレ、。
[0046] レーザー光 103の出力はたとえば lkW以上 50kW以下とする。また、レーザー光 1
03のパルス幅はたとえば 0. 5秒以上とし、好ましくは 0. 75秒以上とする。こうするこ とにより、グラフアイトロッド 101の表面に照射されるレーザー光 103の累積エネルギ 一を充分確保することができる。このため、カーボンナノホーン集合体 117を効率よく 製造すること力 Sできる。また、レーザー光 103のパルス幅はたとえば 1. 5秒以下とし、 好ましくは 1. 25秒以下とする。こうすることにより、グラフアイトロッド 101の表面が過 剰に加熱されることにより表面のエネルギー密度が変動し、カーボンナノホーン集合 体の収率が低下するのを抑制することができる。レーザー光 103のパルス幅は、 0. 7 5秒以上 1秒以下とすることがさらに好ましい。こうすれば、カーボンナノホーン集合体 117の生成率および収率をともに向上させることができる。
[0047] また、レーザー光 103照射における休止幅は、たとえば 0. 1秒以上とすることがで き、 0. 25秒以上とすることが好ましい。こうすることにより、グラフアイトロッド 101表面 の過加熱をより一層確実に抑制することができる。
[0048] レーザー光 103は、照射角が一定となるように照射される。レーザー光 103の照射 角を一定に保ちながら、グラフアイトロッド 101をその中心軸に対して所定の速度で回 転させることにより、グラフアイトロッド 101の側面の円周方向にレーザー光 103を一 定のパワー密度で連続的に照射することができる。また、グラフアイトロッド 101をその 長さ方向にスライドさせることにより、グラフアイトロッド 101の長さ方向にレーザー光 1 03を一定のパワー密度で連続的に照射することができる。
[0049] このときの照射角は 30° 以上 60° 以下とすることが好ましい。なお、本明細書にお いて、照射角とは、レーザー光 103の照射位置におけるグラフアイトターゲットの表面 に対する垂線とレーザー光 103とのなす角のことである。円筒形のグラフアイトターゲ ットを用いる場合、照射角は、グラフアイトロッド 101の長さ方向に垂直な断面におい て、照射位置と円の中心とを結ぶ線分と、水平面とのなす角となる。
[0050] この照射角を 30° 以上とすることにより、照射するレーザー光 103の反射、すなわ ち戻り光の発生を防止することができる。また、発生するプノレーム 109が ZnSeウィン ドウ 133を通じて ZnSe平凸レンズ 131へ直撃することが防止される。このため、 ZnS e平凸レンズ 131を保護し、またカーボンナノホーン集合体 117の ZnSeウィンドウ 13 3への付着防止に有効である。また、レーザー光 103を 60° 以下で照射することによ り、アモルファスカーボンの生成を抑制し、生成物中のカーボンナノホーン集合体 11 7の割合、すなわちカーボンナノホーン集合体 117の収率を向上させることができる。 また、照射角は 45° ± 5° とすることが特に好ましい。約 45° で照射することにより、 生成物中のカーボンナノホーン集合体 117の割合をより一層向上させることができる
[0051] また、照射時のレーザー光 103のグラフアイトロッド 101側面へのスポット径は、たと えば 0. 5mm以上 5mm以下とすることができる。
[0052] また、レーザー光 103のスポットを、たとえば 0. OlmmZsec以上 55mm/sec以 下の速度(線速度)で移動させることが好ましい。たとえば、直径 100mmのグラフアイ トターゲットの表面にレーザー光 103を照射する場合には、回転装置 115によって直 径 100mmのグラフアイトロッド 101を円周方向に一定速度で回転させ、回転数をたと えば 0. Olrpm以上 lOrpm以下とすると、上述の線速度を実現できる。
[0053] なお、グラフアイトロッド 101の回転方向に特に制限はなレ、が、照射位置がレーザー 光 103から遠ざかる方向、すなわち図 1におレ、ては図中に矢印で示したようにレーザ 一光 103から搬送管 141に向かう方向、に回転させることが好ましい。こうすることに より、カーボンナノホーン集合体 117をより一層確実に回収することができる。
[0054] ナノカーボン回収チャンバ一 119に回収されたすす状物質は、カーボンナノホーン 集合体 117を主として含み、たとえば、カーボンナノホーン集合体 117が 90wt%以 上含まれる物質として回収される。
[0055] なお、プルーム 109は、レーザー光 103の照射位置におけるグラフアイトロッド 101 の接線に垂直方向に発生するため、この方向に搬送管 141を設ければ、効率よく炭 素蒸気をナノカーボン回収チャンバ一 119に導き、カーボンナノホーン集合体 117を 回収すること力 Sできる。
[0056] カーボンナノホーン集合体 117の製造の際には、ナノカーボン回収チャンバ一 119 に設けられた噴霧器 181からミスト 195を噴霧しておく。こうすれば、ナノカーボン回 収チャンバ一 119に回収されたカーボンナノホーン集合体 117は、噴霧された液体 により湿潤する。このため、カーボンナノホーン集合体 117がナノカーボン回収チャン バー 119中で飛散するのを抑制し、ナノカーボン回収チャンバ一 119の底部にカー ボンナノホーン集合体 117を効率よく堆積させることができる。また、ナノカーボン回 収チャンバ一 119の壁面へのカーボンナノホーン集合体 117の付着も抑制すること ができる。よって、カーボンナノホーン集合体 117の回収率を向上させることができる
[0057] ミスト 195によりナノカーボン回収チャンバ一 119のすベての壁面に到達し、湿潤す るように噴霧器 181からミスト 195を噴霧することが好ましい。こうすれば、カーボンナ ノホーン集合体 117をより一層確実にナノカーボン回収チャンバ一 119の底部に沈 降させることができる。
[0058] 噴霧器 181から噴霧するミスト 195は、比較的疎水性の有機溶媒とすることが好ま しい。カーボンナノホーン集合体 117の表面は比較的疎水性であるため、これにより カーボンナノホーン集合体 117を確実に湿潤させることができる。また、ミスト 195とし て、揮発性の溶媒を用いることが好ましい。これにより、回収後、カーボンナノホーン 集合体 117を容易に乾燥することができる。
[0059] したがって、たとえば、エタノール、メタノール、イソプロピルアルコール等のアルコ ール類、ベンゼン、トルエン等の芳香族炭化水素、ハロゲン化炭化水素、エーテル 類、アミド類等を噴霧することができる。これらの溶媒は単独で噴霧してもよいし、 2種 以上を混合して用いてもよい。また、これらの溶媒と水との混合溶媒としてもよい。
[0060] 噴霧器 181からの液体の噴霧は、所定の間隔で断続的に行ってもよいし、連続的 に行ってもよい。液体の噴霧量や噴霧速度は、ナノカーボン回収チャンバ一 119の 大きさ等に応じて適宜設定することができる。
[0061] 本実施形態において、たとえば、図 1のナノカーボン製造装置 183において、ダラ ファイトロッド 101を φ lOOmm X 250mmの丸棒状焼結炭素とし、 COレーザーを Is
2
発振、 250ms休止のパルス条件でグラフアイトロッド 101の側面に照射してカーボン ナノホーン集合体の製造を行う際に、噴霧器 181からエタノールを噴霧することにより 、精製したすす状物質をナノカーボン回収チャンバ一 119の底部に堆積させることが できるため、精製したカーボンナノホーン集合体の回収率を向上させることができる。
[0062] (第二の実施形態)
第一の実施形態に記載のナノカーボン製造装置 183またはナノカーボン製造装置 184において、噴霧器 181の構成は以下のようにすることもできる。ここでは、図 3の ナノカーボン製造装置 184の場合を例に説明する。
[0063] 図 4は、図 3のナノカーボン製造装置 184の Β_Β'方向の断面図であり、噴霧器 18 1の構成を説明する図である。図 4において、噴霧器 181は、タンク 201と、供給管 20 3と、ノス、ノレ 205とを有する。タンク 201には、噴霧 ί夜 193力 S収容されてレヽる。また、供 給管 203は、タンク 201とノス、ノレ 205とを接続してレヽる。供給管 203には、タンク 201 力 の噴霧液 193の供給を調節するためのバルブ 209が設けられている。ノズノレ 20 5は、多数のポア 207を有するじょうろ状に形成されている。図 5は、ノズノレ 205の構 成を示す斜視図である。
[0064] カーボンナノホーン集合体 117を製造する際には、バルブ 209を開いて噴霧液 19 3をノズノレ 205からナノカーボン回収チャンバ一 119内に噴霧する。噴霧液 193は、 ポア 207を通じてミスト 195としてシャワー状に噴霧されるため、ナノカーボン回収チ ヤンバー 119全体を好適に湿潤させることができる。このため、カーボンナノホーン集 合体 117を確実にナノカーボン回収チャンバ一 119の底部に沈降させ、堆積させる こと力 Sできる。
[0065] なお、ノズル 205の構成は上述した態様には特に限定されず、ナノカーボン回収チ ヤンバー 119の大きさやナノカーボンの生成量に応じて適宜選択することができる。 たとえば、加圧式ノズルを用いてもよい。また、噴霧液 193の供給を、ポンプ等を用い て行うこともできる。このようにすれば、噴霧液 193をさらに確実にナノカーボン回収 チャンバ一 119内全体に噴霧することができる。
[0066] (第三の実施形態)
本実施形態は、第一または第二の実施形態に記載のナノカーボン製造装置と回収 チャンバ一の底部の構成が異なる。以下、第一の実施形態に記載のナノカーボン製 造装置 184の場合を例に説明する。図 6は、本実施形態に係るナノカーボン製造装 置 185を示す図である。
[0067] ナノカーボン製造装置 185では、ナノカーボン回収チャンバ一 187の底面が傾斜し ている。これにより、噴霧器 181から噴霧された液体により湿潤したカーボンナノホー ン集合体 117がナノカーボン回収チャンバ一 187の底部においてより低い方向に向 力、つて移動する。このため、カーボンナノホーン集合体 117をナノカーボン回収チヤ ンバー 187の底部の下方の領域に集めることができる。このため、より一層容易に力 一ボンナノホーン集合体 117を回収することができる。
[0068] (第四の実施形態)
本実施形態は、第一または第二の実施形態に記載のナノカーボン製造装置 183 に着脱可能な回収用カートリッジをさらに備えるナノカーボン製造装置に関する。以 下、第一の実施形態に記載のナノカーボン製造装置 184の場合を例に説明する。図 7は、本実施形態に係るナノカーボン製造装置 189を示す図である。
[0069] ナノカーボン製造装置 189では、ナノカーボン回収チャンバ一 119の底部に連通し て取り外し可能な回収用カートリッジ 191が設けられている。回収用カートリッジ 191 の底部はナノカーボン製造装置 189の底部よりも低い位置にあるため、ナノカーボン 回収チャンバ一 119の底部に堆積したカーボンナノホーン集合体 117は、回収用力 ートリッジ 191へと導かれる。回収用カートリッジ 191を取り外してその内容物を乾燥 させれば、さらに簡便に乾燥したカーボンナノホーン集合体 117を回収することがで きる。
[0070] (第五の実施形態)
本実施形態に係るカーボンナノホーン製造装置を図 8に示す。この装置では、製造 チャンバ一 107の下部に下部回収チャンバ一 160を設けている。また、製造チャンバ 一 107内に液体を噴霧するための噴霧器 181をさらに設けている。噴霧器 181は、 たとえば第一または第二の実施形態に記載した構成とすることができる。
[0071] 下部回収チャンバ一 160を設けることにより、カーボンナノホーン集合体 117は上 部のナノカーボン回収チャンバ一 119に回収される一方、搬送管 141から装置上部 に回収されなかったカーボン蒸気が重力により落下し、下部回収チャンバ一 160に 回収される。この構成によれば、ホーンの長さの短いカーボンナノホーンがナノカー ボン回収チャンバ一 119に、ホーンの長さの長いカーボンナノホーンが下部回収チ ヤンバー 160に、それぞれ分離されて回収される。本実施形態によれば、複数の種 類のカーボンナノホーンを分別して回収することができる。
[0072] また、製造チャンバ一 107内にも液体を噴霧することにより、ナノカーボン回収チヤ ンバー 119に回収されずに製造チャンバ一 107中に残存するカーボンナノホーン集 合体 117を確実に湿らせ、製造チャンバ一 107の底部に導くことができる。このため、 カーボンナノホーン集合体 117を効率よく下部回収チャンバ一 160に回収することが できる。
[0073] なお、本実施形態では、製造チャンバ一 107に噴霧器 181を設けたが、下部回収 チャンバ一 160に噴霧器 181を設けてもよレ、。こうすれば、下部回収チャンバ一 160 の底部により一層確実にカーボンナノホーン集合体 117を堆積させ、カーボンナノホ ーン集合体 117の飛散を抑制することができる。
[0074] (第六の実施形態)
以上の実施形態に記載のナノカーボン製造装置において、ナノカーボン回収チヤ ンバー 119の底部に堆積したカーボンナノホーン集合体 117を力、き集めて回収する ための搔取部 211を有していてもよい。以下、本実施形態を第四の実施形態に記載 のナノカーボン製造装置 189に適用する場合を例に説明する。図 9は、本実施形態 に係るナノカーボン製造装置 213の構成を示す図である。
[0075] ナノカーボン製造装置 213は、ナノカーボン回収チャンバ一 119の底部に、平板状 の搔取部 211を有する。搔取部 211の構成は、へらのようにナノカーボン回収チャン バー 119の底面をスライドさせてカーボンナノホーン集合体 117を回収用カートリッジ 191に導くことができれば特に制限はない。
[0076] 搔取部 211を設けることにより、ナノカーボン回収チャンバ一 119の底部に堆積した カーボンナノホーン集合体 117をより一層確実に回収することができる。なお、搔取 部 211は、製造チャンバ一 107の底部に設けてもよい。また、必要に応じて、これらの チャンバ一内を上下にスライドする搔取部 211をさらに設けてもよい。こうすれば、湿 潤したカーボンナノホーン集合体 117をさらに確実にチャンバ一の底部に集めること ができる。
[0077] 以上、本発明を実施形態に基づき説明した。これらの実施形態は例示であり様々 な変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理 解されるところである。
[0078] たとえば、以上の実施形態において、製造チャンバ一 107の底部にも、堆積した力 一ボンナノホーン集合体 117をかきとるためのかきとり手段をさらに設けてもよい。 [0079] また、以上の実施形態においては、グラフアイトロッドを用いた場合を例に説明をし たが、グラフアイトターゲットの形状は円筒形には限定されず、シート状、棒状等とす ることちでさる。
[0080] また、カーボンナノホーン集合体 117を構成するカーボンナノホーンの形状、径の 大きさ、長さ、先端部の形状、炭素分子やカーボンナノホーン間の間隔等は、レーザ 一光 103の照射条件などによって様々に制御することが可能である。

Claims

請求の範囲
[1] ナノカーボンを生成する生成室と、
生成したナノカーボンを回収する回収室と、
を備え、
前記生成室または前記回収室に、生成したナノカーボンを湿潤させる湿潤手段が 設けられたことを特徴とするナノカーボン製造装置。
[2] グラフアイトターゲットの表面に光を照射する光源と、
前記光の照射に生成したナノカーボンを回収する回収手段と、
前記ナノカーボンを湿潤させる湿潤手段と、
を備えることを特徴とするナノカーボン製造装置。
[3] 請求の範囲第 2項に記載のナノカーボン製造装置において、前記回収手段は、回 収室と、前記回収室に前記ナノカーボンを導く回収管と、を備え、
前記湿潤手段は、前記回収室中の前記ナノカーボンを湿潤させることを特徴とする ナノカーボン製造装置。
[4] 請求の範囲第 2項または第 3項に記載のナノカーボンの製造装置において、前記 グラフアイトターゲットの設置される生成室を備え、
前記湿潤手段は、前記生成室中の前記ナノカーボンを湿潤させることを特徴とする ナノカーボン製造装置。
[5] 請求の範囲第 1項乃至第 4項いずれかに記載のナノカーボン製造装置において、 前記湿潤手段は、噴霧手段であることを特徴とするナノカーボン製造装置。
[6] グラフアイトターゲットの表面に光照射する工程と、
光照射する前記工程で生成したナノカーボンを湿潤させる工程と、
を含むことを特徴とするナノカーボンの製造方法。
[7] 請求の範囲第 6項に記載のナノカーボンの製造方法において、ナノカーボンを湿 潤させる前記工程は、前記ナノカーボンに液体を噴霧する工程を含むことを特徴と するナノカーボンの製造方法。
[8] 請求の範囲第 6項または第 7項に記載のナノカーボンの製造方法において、ナノ力 一ボンを湿潤させる前記工程は、前記ナノカーボンにアルコールまたはその水溶液 を噴霧することを特徴とするナノカーボンの製造方法。
ナノカーボンを生成した後、該ナノカーボンを湿潤させて回収することを特徴とする ナノカーボンの回収方法。
PCT/JP2004/011262 2003-08-08 2004-08-05 ナノカーボン製造装置ならびにナノカーボンの製造方法および回収方法 WO2005014476A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005512957A JPWO2005014476A1 (ja) 2003-08-08 2004-08-05 ナノカーボン製造装置ならびにナノカーボンの製造方法および回収方法
US10/566,579 US20060237301A1 (en) 2003-08-08 2004-08-05 Apparatus for producing nanocarbon, method for producing nanocarbon and method for collecting nanocarbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003289863 2003-08-08
JP2003-289863 2003-08-08

Publications (1)

Publication Number Publication Date
WO2005014476A1 true WO2005014476A1 (ja) 2005-02-17

Family

ID=34131564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011262 WO2005014476A1 (ja) 2003-08-08 2004-08-05 ナノカーボン製造装置ならびにナノカーボンの製造方法および回収方法

Country Status (5)

Country Link
US (1) US20060237301A1 (ja)
JP (1) JPWO2005014476A1 (ja)
CN (1) CN1826287A (ja)
TW (1) TW200512156A (ja)
WO (1) WO2005014476A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125816A1 (ja) * 2006-04-24 2007-11-08 Nec Corporation カーボンナノホーンの製造装置及び製造方法
JP2010116632A (ja) * 2008-11-11 2010-05-27 Osaka Prefecture 微細炭素繊維撚糸の製造装置及び製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500922A (ja) 2009-07-31 2013-01-10 マサチューセッツ インスティテュート オブ テクノロジー 炭素系ナノ構造の形成に関するシステムおよび方法
EP2504278A2 (en) * 2009-11-25 2012-10-03 Massachusetts Institute of Technology Systems and methods for enhancing growth of carbon-based nanostructures
WO2012091789A1 (en) 2010-10-28 2012-07-05 Massachusetts Institute Of Technology Carbon-based nanostructure formation using large scale active growth structures
ES2663666T3 (es) 2013-02-28 2018-04-16 N12 Technologies, Inc. Dispensación basada en cartucho de películas de nanoestructura
CN106115661B (zh) * 2016-06-20 2019-02-19 青岛科技大学 一种碳纳米管分散体的收集装置
JP7120210B2 (ja) * 2017-02-27 2022-08-17 日本電気株式会社 カーボンナノホーン集合体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142318A (ja) * 1984-08-02 1986-02-28 Natl Res Inst For Metals 超微粒子捕集装置
JPH06183712A (ja) * 1992-10-23 1994-07-05 Showa Denko Kk フラーレン類の製造方法
JP2000159514A (ja) * 1998-11-26 2000-06-13 Univ Nagoya 金属内包フラーレンの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171451B1 (en) * 1997-01-13 2001-01-09 Daimlerchrysler Aerospace Method and apparatus for producing complex carbon molecules
JP3077655B2 (ja) * 1997-12-22 2000-08-14 日本電気株式会社 カーボンナノチューブの製造装置及びその製造方法
US6878360B1 (en) * 1999-09-01 2005-04-12 Nikkiso Company Limited Carbon fibrous matter, production device of carbon fibrous matter, production method of carbon fibrous matter and deposit prevention device for carbon fibrous matter
US6648975B2 (en) * 2000-03-29 2003-11-18 Matsushita Electric Industrial Co., Ltd. Method and apparatus for fabricating quantum dot functional structure, quantum dot functional structure, and optically functioning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142318A (ja) * 1984-08-02 1986-02-28 Natl Res Inst For Metals 超微粒子捕集装置
JPH06183712A (ja) * 1992-10-23 1994-07-05 Showa Denko Kk フラーレン類の製造方法
JP2000159514A (ja) * 1998-11-26 2000-06-13 Univ Nagoya 金属内包フラーレンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IIJIMA S. ET AL.: "Nano-aggregates of single-walled graphitic carbon nano-horns", CHEMICAL PHYSICS LETTERS, vol. 309, 13 August 1999 (1999-08-13), pages 165 - 170, XP002955889 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125816A1 (ja) * 2006-04-24 2007-11-08 Nec Corporation カーボンナノホーンの製造装置及び製造方法
JP5169824B2 (ja) * 2006-04-24 2013-03-27 日本電気株式会社 カーボンナノホーンの製造装置及び製造方法
US8882970B2 (en) 2006-04-24 2014-11-11 Nec Corporation Apparatus and method for manufacturing carbon nanohorns
JP2010116632A (ja) * 2008-11-11 2010-05-27 Osaka Prefecture 微細炭素繊維撚糸の製造装置及び製造方法

Also Published As

Publication number Publication date
JPWO2005014476A1 (ja) 2007-09-27
CN1826287A (zh) 2006-08-30
TW200512156A (en) 2005-04-01
US20060237301A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
Jaworek Micro-and nanoparticle production by electrospraying
US4696719A (en) Monomer atomizer for vaporization
EP1144721B1 (en) Material fabrication
TW565472B (en) Multiple horn atomizer with high frequency capability and method thereof
US10946407B2 (en) Apparatus and method for atomization of fluid
US4731517A (en) Powder atomizing methods and apparatus
WO2005014476A1 (ja) ナノカーボン製造装置ならびにナノカーボンの製造方法および回収方法
KR20180117689A (ko) 음향 영동법에 의해 유체로부터 고체 물질 입자 및 섬유, 및 가스로부터 에어로졸 및 고체 물질 입자 및 섬유를 분리하고/하거나 세정하기 위한 방법 및 장치
WO2001038601A1 (en) Precursor deposition using ultrasonic nebulizer
WO2004074172A1 (ja) 固定化方法、固定化装置および微小構造体製造方法
AU2004220079A1 (en) Apparatuses and methods for electrostatically processing polymer formulations
US20080003374A1 (en) Method and Device for Depositing Thin Films by Electrohydrodynamic, in Particular Post-Discharge, Spraying
DK163573B (da) Fremgangsmaade og apparat til overfladebehandling af formstofoverflader med en elektrisk koronaudladning
JP2005067916A (ja) カーボンナノチューブの製造方法およびその製造装置
CN204282275U (zh) 一种基于超声雾化的新型洒水车
US20170113213A1 (en) Catalyst particle and method for producing thereof
JP2020512934A (ja) 受動静電co2複合スプレー塗布器
JP4504569B2 (ja) 原料を噴霧する方法および装置
EP0366021A2 (en) Method and apparatus for cleaning electrostatic coating head
KR19980703106A (ko) 세라믹 박층을 침착시키기 위한 열적 침착방법 및 관련 장치
JPS63502839A (ja) 粉末の微細化方法および装置
DE3374988D1 (en) A process for conditioning a gas stream charged with solid particles and/or vapours
JP5130616B2 (ja) 薄膜形成装置
US20060147647A1 (en) Apparatus and method for manufacturing nano carbon
WO2004113225A1 (ja) ナノカーボンの製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021200.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512957

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006237301

Country of ref document: US

Ref document number: 10566579

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10566579

Country of ref document: US