WO2005005941A1 - Temperature measurement device, thermal processing device, and temperature measurement method - Google Patents

Temperature measurement device, thermal processing device, and temperature measurement method Download PDF

Info

Publication number
WO2005005941A1
WO2005005941A1 PCT/JP2004/009735 JP2004009735W WO2005005941A1 WO 2005005941 A1 WO2005005941 A1 WO 2005005941A1 JP 2004009735 W JP2004009735 W JP 2004009735W WO 2005005941 A1 WO2005005941 A1 WO 2005005941A1
Authority
WO
WIPO (PCT)
Prior art keywords
heated
heat treatment
temperature
case
optical filter
Prior art date
Application number
PCT/JP2004/009735
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Takahashi
Original Assignee
Ir Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003293606A external-priority patent/JP2006177666A/en
Priority claimed from JP2003303648A external-priority patent/JP2006179509A/en
Application filed by Ir Inc. filed Critical Ir Inc.
Publication of WO2005005941A1 publication Critical patent/WO2005005941A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity

Definitions

  • Temperature measuring device heat treatment device, and temperature measuring method
  • the present invention relates to a heat treatment apparatus used in, for example, a semiconductor manufacturing process, a temperature measurement apparatus used for the heat treatment apparatus, and a temperature measurement method.
  • heat treatment of a semiconductor wafer (hereinafter, referred to as a wafer) is frequently performed, such as formation of an oxide film / nitride film, introduction of impurities, or annealing step.
  • a heat treatment apparatus an apparatus using a halogen lamp as a heat source is known.
  • temperature control of the wafer becomes important.
  • a method using a thermocouple has been known as a method for measuring the temperature of a wafer.
  • thermocouple cannot accurately measure the temperature unless the tip of the thermocouple is brought into contact with the wafer.
  • the wafer may be contaminated or damaged, and in such a case, the manufacturing yield is reduced.
  • a method has been adopted in which the tip of a thermocouple is placed very close to the wafer, and the temperature is measured without bringing the thermocouple into contact with the wafer.
  • this method has a problem that it is difficult to accurately measure the temperature, lacks reproducibility, and has poor reliability.
  • a radiation thermometer is arranged on the surface of the wafer opposite to the side heated by the halogen lamp, and light is shielded so that light of the halogen lamp does not leak to the radiation thermometer side.
  • a temperature measurement method is known in which the light does not directly affect the radiation thermometer.
  • the above-described measurement method using a radiation thermometer has a problem in that a device for shielding light is complicated and costs are high. There is a problem that the method cannot be applied to a device that heats at a high speed by heating with a gen lamp.
  • the present invention has been made in view of a powerful problem, and a first object of the present invention is to provide a simple configuration that can accurately measure the temperature of an object to be heated without being affected by disturbance of radiated light from a heat source.
  • An object of the present invention is to provide a heat treatment apparatus which can measure well, heat the object to be heated to an appropriate temperature based on the measured temperature, and can also raise the temperature at a high speed, and have high reliability and good reproducibility.
  • a second object of the present invention is to provide a simple configuration that can accurately measure the temperature of an object to be heated which is not affected by disturbance of radiated light from a heat source of a heat treatment apparatus. It is an object of the present invention to provide a temperature measuring device and a temperature measuring method which can be suitably used particularly for a heat treatment device used in a semiconductor manufacturing process or the like which has high reliability.
  • a third object of the present invention is to provide a heat treatment apparatus and a heat treatment method that have a simple configuration, enable high-speed cooling of an object to be heated, have high reliability, and have good reproducibility. .
  • the first heat treatment apparatus has the following requirements (A) to (D), and controls the temperature of the object to be heated which is not affected by disturbance of radiation emitted from a heat source. It can accurately measure the temperature of the object to be heated to an appropriate temperature based on the measured temperature.
  • (D) A radiation thermometer that measures the temperature of the object to be heated using a specific wavelength in the wavelength range cut off by the optical filter as the measurement wavelength.
  • a selected wavelength range of light emitted from a heat source for example, a halogen lamp
  • an object to be heated for example, a semiconductor wafer
  • the surface temperature of the heated object is measured without being affected by disturbance light by using a specific wavelength in the wavelength range cut off by the optical filter as a measurement wavelength.
  • a temperature measuring device has the following requirements (A) and (B), and has a heat source It can accurately measure the temperature of the object to be heated without being affected by disturbances of force radiation.
  • (B) A radiation thermometer that measures the temperature of the object to be heated using a specific wavelength in the wavelength range cut off by the optical filter as the measurement wavelength.
  • an optical filter is arranged between a heat source and an object to be heated, and the optical filter cuts off a selected wavelength range of light radiated from the heat source and cuts off the light.
  • the temperature of the object to be heated is measured by a radiation thermometer that uses a specific wavelength in the wavelength range as a measurement wavelength.
  • the second heat treatment apparatus has the following requirements (A) to (E), thereby enabling high-speed cooling of the object to be heated and control of the cooling rate. is there.
  • an object to be heated (for example, a semiconductor wafer) is accommodated in a pre-cooled case with a gap kept between the case and the case, and the case is accommodated in the processing chamber.
  • the processing chamber is evacuated by the exhaust valve, so that a vacuum insulation function is provided in a gap between the case and the object to be heated, and the low temperature held by the case is not transmitted to the object to be heated.
  • the object to be heated in the case is heated by a heat source (for example, a halogen lamp).
  • the pressure in the processing chamber is increased by the gas introduction valve, and the low temperature held by the case is conducted to the heated object through the gap to cool the heated object at a high speed.
  • the heat treatment method according to the present invention performs heat treatment of an object to be heated accommodated in a processing chamber by radiant heat from a heat source.
  • the case for accommodating the object to be heated is cooled and cooled. After the object to be heated is accommodated in the case while holding a gap between the case and the case, the case is accommodated in the processing chamber, and then the object to be heated in the case is evacuated while the processing chamber is evacuated. Is heated, and after the heating is completed, the pressure in the processing chamber is increased to cool the object to be heated in the case.
  • FIG. 1 is a cross-sectional view of a heat treatment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a view for explaining a modification of the optical filter.
  • FIG. 3 is a sectional view of a heat treatment apparatus according to a second embodiment of the present invention.
  • FIG. 1 shows a configuration of a heat treatment apparatus according to a first embodiment of the present invention.
  • the temperature measuring device of the present invention is included in this heat treatment device, and its configuration and operation and effect will be described together in the description of the heat treatment device.
  • the heat treatment apparatus 10 includes an upper reaction furnace 11A and a lower reaction furnace 11B.
  • An object to be heated for example, a semiconductor wafer (hereinafter, referred to as a wafer) 13 is horizontally held by a holder 14 in a processing chamber 12 thereof. Is to be held.
  • O oxygen
  • N nitrogen
  • Each of the upper reactor 11A and the lower reactor 11B is provided with a plurality (four in this example) of reflecting mirror grooves 16 having a U-shaped cross section, for example. Is stored.
  • the halogen lamp 17 emits light in a wavelength range of about 375 nm to 4500 nm.
  • the opening of the reflecting mirror groove 16 serves as an emission port of the light from the halogen lamp 17 into the processing chamber 12.
  • the optical filter 18 is fixed by a filter holder 19.
  • the optical filter 18 is manufactured by evaporating a filter thin film 18b on a substrate 18a such as quartz glass, for example.Here, for example, a selected wavelength range of light emitted from the halogen lamp 17 is preferable. Cuts a short wavelength region, for example, a wavelength region of 375 nm or more and 700 nm or less, that is, transmits the remaining light in a wavelength region of about 700 nm to 4500 nm.
  • the filter thin film 18b is made of, for example, SiO
  • titanium dioxide titanium dioxide
  • Each of the upper reactor 11A and the lower reactor 1 IB is provided with one or more (here, two upper and lower) through holes, and a radiation thermometer 20 is installed in these through holes.
  • the radiation thermometer 20 measures the temperature of the wafer 13 with the wavelength component in the wavelength range of 375 nm to 700 nm blocked by the optical filter 18, here, for example, 650 nm as a measurement wavelength.
  • the filter thin film 18b of the optical filter 18 is provided with a cutout hole 18c at a position where the tip of the radiation thermometer 20 faces.
  • the heating temperature of the wafer 13 is measured in a non-contact manner by the radiation thermometer 20 from the notch hole 18c through the substrate 18a of the optical filter 18.
  • the radiation thermometers 20 are installed in each of the upper reactor 11A and the lower reactor 11B, the temperatures of both the front and back surfaces of the wafer 13 are measured.
  • the optical filter 18 having the cutout holes 18c is formed by forming a vapor deposition film on a glass substrate and then selectively removing the vapor deposition film using a mask so that the optical filter 18 is transparent at the position of the radiation thermometer 20. It can be created by setting up a place.
  • the temperature signal measured by each radiation thermometer 20 is sent to, for example, the control unit 21.
  • the control unit 21 controls the heat treatment operation based on the temperatures measured by the plurality of radiation thermometers 20, for example, based on the average temperature.
  • the heat treatment operation specifically, for example, the voltage value applied to the heat source (halogen lamp 17) is automatically adjusted so that the heating temperature of the wafer 13 becomes an appropriate value, or the heating temperature is kept constant. If it exceeds the value, the heating is automatically stopped, and so on.
  • the measured temperature may be simply displayed on the display without performing the operation control.
  • a plurality of halogen lamps 17 are turned on at the upper and lower portions of the wafer 13, respectively. Then, it is irradiated with light having a wavelength range of about 375 nm to 4500 nm, and is heated. At this time, light in the wavelength range of 375 nm to 700 nm is cut off by the optical filter 18, and the wafer 13 is heated by the remaining light in the wavelength range of about 700nm to 4500nm.
  • the temperature of the heated front surface and the back surface of the wafer 13 is measured through the notch 18c of the optical filter 18 by a plurality of radiation thermometers 20 having a measurement wavelength of 650 nm. At this time, since there is no 375 nm-70 Onm wavelength light cut off by the optical filter 18 around the heated wafer 13, high precision is obtained without being affected by disturbance light. The temperature of the wafer 13 is measured. It should be noted that the power S at which the heating energy causes a loss due to partial light blocking by the optical filter 18 and the wavelength range to be blocked is on the short wavelength side of the emission wavelength of the halogen lamp 17, and the loss is small.
  • the wavelength measured by the radiation thermometer 20 is also short (650 nm), the temperature measurement resolution is improved. Further, in the present embodiment, the temperature of the front surface and the back surface of wafer 13 can be measured by radiation thermometer 20 arranged on the same side as halogen lamp 17, respectively.
  • a force in which halogen lamps 17 are arranged above and below so as to heat both surfaces of the wafer 13 may be adopted so that only one surface of the wafer 13 is heated.
  • the filter thin film 18 can be deposited directly on the halogen lamp 17 even if the filter thin film is deposited directly, as shown in Fig. 2. The same effect as in the embodiment can be obtained.
  • FIG. 2 shows a configuration of a heat treatment apparatus according to a second embodiment of the present invention.
  • the heat treatment apparatus 30 includes an upper reaction furnace 31A and a lower reaction furnace 31B.
  • a case 34 containing a heat-treated material such as a wafer 33 is horizontally held by a holder 35. It has become so.
  • the pressure inside the processing chamber 32 can be controlled by an exhaust valve 37 and a gas introduction valve 38 connected to a vacuum pump 36, and the pressure is measured by a pressure gauge 39.
  • Each of the upper reactor 31A and the lower reactor 31B is provided with a plurality of (four in this example), for example, U-shaped cross-section reflecting mirror grooves 40 as in the first embodiment.
  • a halogen lamp 41 is housed in each reflecting mirror groove 40 as a heat source.
  • the opening of the reflected light groove 40 serves as a radiation port of the light from the halogen lamp 41 to the processing chamber 32.
  • the radiation ports of all the reflector grooves 40 are covered with a cover 42 made of transparent quartz glass.
  • the temperature of the wafer 33 is measured by a wafer thermometer 43.
  • the case 34 is preferably made of a material such that heat from a heat source passes through the case 34 and is absorbed only by the wafer 33.
  • the heat source is a halogen lamp 41 In this case, it is transparent quartz glass.
  • the case 34 can be accommodated while holding a gap 33 A between the case 34 and the wafer 33 by a spacer 34 A provided on the bottom surface.
  • the gap 33A is for suppressing heat conduction due to contact between the wafer 33 and the case 34, and preferably has a size of, for example, 0.5 mm to 2.0 mm.
  • the case 34 is provided with a ventilation hole 34B.
  • the pressure in the gap 33A is controlled by controlling the pressure in the processing chamber 32, and the gap 33A has a function as a vacuum heat insulating layer or a heat transfer layer, and the wafer 33 is rapidly heated or cooled. You can do it.
  • the case 34 is cooled off by an external cooling device (not shown), and then the wafer 33 is placed in the cooled case 34 with a gap between the case 34 and the case 34. House with 33A held. It is preferable that the size of the gap 33A is, for example, 0.5 mm or 2 Omm, as described above.
  • the cooling temperature of the case 34 is, for example, sufficiently cooled, for example, 5 ° C to 10 ° C. But preferred. Subsequently, the case 34 is housed in the processing chamber 32.
  • the wafer 33 in the case 34 is heated by the halogen lamp 41 while the inside of the processing chamber 32 is evacuated by the exhaust valve 37.
  • the gap 33A can have a function as a vacuum heat insulating layer. Therefore, the wafer 33 can be heated without conducting the low temperature held by the case 34 to the wafer 33.
  • the case 34 is made of a material that allows the heat energy radiated from the halogen lamp 41 to pass through the case 34 and be absorbed only by the wafer 33, only the wafer 33 is heated without heating the case 34. Can be heated.
  • the degree of vacuum f in the processing chamber 32 is preferably 0.133322Pa (0. OOlTorr), and preferably 0.100133 32Pa (0. OOOOlTorr). Within this range, a sufficient vacuum insulation effect can be obtained using the gap 33A.
  • the gas is introduced into the gap 33 A in the case 34 by increasing the pressure in the processing chamber 32 by the gas introduction valve 38. As a result, the gap 33A is converted into a vacuum heat insulating layer and a heat transfer layer, and the low temperature held by the case 34 is thermally conducted to the wafer 33 through the gap 33A, so that the wafer 33 is cooled quickly and uniformly. .
  • an optical filter is arranged between a heat source and an object to be heated. Since the selected wavelength region of the light radiated from the heat source is cut off, and the temperature of the object to be heated is measured by a radiation thermometer that measures a specific wavelength in the cut-off wavelength range, The temperature of the object to be heated, which is not affected by the disturbance of the radiated light from the heat source, can be accurately measured without contact, and the temperature can be controlled with high accuracy. In particular, the reliability of a high-speed heating device (rabbit thermal furnace) that heats semiconductor wafers from both sides to achieve high-speed heating is improved.
  • a high-speed heating device rabbit thermal furnace
  • the cut-off wavelength is cut off on the short wavelength side of the radiated light.
  • the resolution of temperature measurement can be increased, thereby improving the measurement accuracy.
  • the object to be heated is The heating target is heated while the processing chamber is evacuated by the exhaust valve, and the space is provided with a function as a vacuum heat insulating layer, and the case is held.
  • the object to be heated can be heated without transmitting the low temperature to the object to be heated.
  • the gap in the case is converted into a vacuum heat insulating layer and a heat transfer layer by increasing the pressure in the processing chamber by the gas introduction valve, and the low temperature held by the case is covered through the gap.
  • the heat input to the object to be heated can be controlled, and the heat treatment with high accuracy and high reproducibility can be achieved.
  • the device can be realized.
  • the heat treatment apparatus, temperature measurement apparatus, temperature measurement method, or heat treatment method according to the present invention can be widely applied to semiconductor manufacturing apparatuses involving heat treatment such as annealing and CVD (Chemical Vapor Deposition). It can be used for manufacturing various semiconductor devices such as lasers for CDs, compact disks (CDs), lasers for pickups for DVDs (Digital Versatile Disks), high-frequency devices for mopile communication, and blue LEDs (Light Emitting Diodes).
  • annealing and CVD Chemical Vapor Deposition

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

There are provided a temperature measurement device having a simple structure and capable of measuring a temperature of a heated object with a high accuracy without being affected by external turbulence of radiation light from a thermal source and a thermal processing device using the temperature measurement device. A plurality of halogen lamps (17) are used to apply light of a wavelength range of about 375 nm to 4500 nm onto both surfaces of a wafer (13) and heat them. Here, the light of the wavelength range of 375 nm to 700 nm is cut off by an optical filter (18) and the wafer (13) is heated by the light of the remaining wavelength range of about 700 nm to 4500 nm. The temperature of the front surface and the rear surface of the wafer heated is measured via a cut-off hole (18c) of the optical filter (18) by a plurality of radiation thermometers (20). Since the light of wavelength of 375 nm to 700 nm cut off by the optical filter (18) does not exist around the heated wafer (13), it is possible to measure the temperature of the wafer (13) with a high accuracy without being affected by the external turbulence light.

Description

明 細 書  Specification
温度測定装置および熱処理装置、並びに温度測定方法  Temperature measuring device, heat treatment device, and temperature measuring method
技術分野  Technical field
[0001] 本発明は、例えば半導体製造過程で使用される熱処理装置、およびそれに用いる 温度測定装置、並びに温度測定方法に関する。  The present invention relates to a heat treatment apparatus used in, for example, a semiconductor manufacturing process, a temperature measurement apparatus used for the heat treatment apparatus, and a temperature measurement method.
背景技術  Background art
[0002] 半導体装置の製造過程では、酸化膜ゃ窒化膜の形成、不純物の導入またはァニ ール工程など、半導体ウェハ(以下、ウェハという)の加熱処理が頻繁に行われてい る。熱処理装置としては、ハロゲンランプを熱源としたものが知られている。そして、こ の熱処理装置では、ウェハの温度制御が重要になる。従来、ハロゲンランプを熱源と した熱処理装置において、ウェハの温度を測定する方法としては熱電対を使用する 方法が知られている。  [0002] In the process of manufacturing a semiconductor device, heat treatment of a semiconductor wafer (hereinafter, referred to as a wafer) is frequently performed, such as formation of an oxide film / nitride film, introduction of impurities, or annealing step. As a heat treatment apparatus, an apparatus using a halogen lamp as a heat source is known. In this heat treatment apparatus, temperature control of the wafer becomes important. Conventionally, in a heat treatment apparatus using a halogen lamp as a heat source, a method using a thermocouple has been known as a method for measuring the temperature of a wafer.
[0003] し力しながら、熱電対は、ウェハにその先端を接触させないと、正確に温度を測定 することができない。一方、ウェハに熱電対を接触させると、ウェハが汚染、あるいは 傷が付くなどの虞があり、そのような場合には製造歩留りが低下する。そのため、従来 では、熱電対の先端をウェハの、ごく近くに配置し、熱電対をウェハに接触させること なく温度を測定する方法が採用されていた。しかし、この方法では、正確に温度を測 定することは困難であり、再現性にも欠け、信頼性も乏しいという問題があった。  However, the thermocouple cannot accurately measure the temperature unless the tip of the thermocouple is brought into contact with the wafer. On the other hand, if a thermocouple is brought into contact with the wafer, the wafer may be contaminated or damaged, and in such a case, the manufacturing yield is reduced. Conventionally, therefore, a method has been adopted in which the tip of a thermocouple is placed very close to the wafer, and the temperature is measured without bringing the thermocouple into contact with the wafer. However, this method has a problem that it is difficult to accurately measure the temperature, lacks reproducibility, and has poor reliability.
[0004] また、他の方法として、ウェハの、ハロゲンランプで加熱される側の反対側の面に放 射温度計を配置すると共に、ハロゲンランプの光が放射温度計側に漏れないよう遮 光し、その光が直接、放射温度計に影響しないようにした温度測定法が知られている  [0004] As another method, a radiation thermometer is arranged on the surface of the wafer opposite to the side heated by the halogen lamp, and light is shielded so that light of the halogen lamp does not leak to the radiation thermometer side. A temperature measurement method is known in which the light does not directly affect the radiation thermometer.
[0005] し力、しながら、上述の放射温度計を用いた測定法では、遮光のための装置が複雑 になりコストが高くなるという問題があり、また、この方法では、ウェハの両面からハロ ゲンランプで加熱して高速昇温を行う装置には適用できないという問題があった。 [0005] However, the above-described measurement method using a radiation thermometer has a problem in that a device for shielding light is complicated and costs are high. There is a problem that the method cannot be applied to a device that heats at a high speed by heating with a gen lamp.
[0006] 更に、従来の熱処理装置では、ウェハの急加熱は可能である力 急冷却しようとす る場合、急峻かつ均一な冷却および冷却速度の制御が困難であった。また、冷却に 時間力 Sかかるため稼働率も低下し、経済性の点でも問題を有してレ、た。 発明の開示 [0006] Further, in the conventional heat treatment apparatus, it is difficult to control steep and uniform cooling and cooling rate when trying to perform rapid cooling, which allows rapid heating of the wafer. Also for cooling Because of the time required S, the operating rate also declined, and there was a problem in terms of economic efficiency. Disclosure of the invention
[0007] 本発明は力かる問題点に鑑みてなされたもので、その第 1の目的は、簡単な構成で 、熱源からの放射光の外乱によって影響されることなぐ被加熱物の温度を精度よく 測定し、その測定温度により被加熱物を適性温度に加熱することができると共に高速 昇温も可能であり、信頼性が高ぐしかも再現性の良好な熱処理装置を提供すること にある。  [0007] The present invention has been made in view of a powerful problem, and a first object of the present invention is to provide a simple configuration that can accurately measure the temperature of an object to be heated without being affected by disturbance of radiated light from a heat source. An object of the present invention is to provide a heat treatment apparatus which can measure well, heat the object to be heated to an appropriate temperature based on the measured temperature, and can also raise the temperature at a high speed, and have high reliability and good reproducibility.
[0008] また、本発明の第 2の目的は、簡易な構成で、熱処理装置の熱源からの放射光の 外乱によって影響されることなぐ被加熱物の温度を精度よく測定することができ、信 頼性が高ぐ特に半導体製造過程などで使用される熱処理装置に好適に用いること ができる温度測定装置および温度測定方法を提供することにある。  [0008] A second object of the present invention is to provide a simple configuration that can accurately measure the temperature of an object to be heated which is not affected by disturbance of radiated light from a heat source of a heat treatment apparatus. It is an object of the present invention to provide a temperature measuring device and a temperature measuring method which can be suitably used particularly for a heat treatment device used in a semiconductor manufacturing process or the like which has high reliability.
[0009] 更に、本発明の第 3の目的は、簡素な構成で、被加熱物の高速冷却を可能とし、信 頼性が高ぐ再現性の良い熱処理装置および熱処理方法を提供することにある。  [0009] Further, a third object of the present invention is to provide a heat treatment apparatus and a heat treatment method that have a simple configuration, enable high-speed cooling of an object to be heated, have high reliability, and have good reproducibility. .
[0010] 本発明による第 1の熱処理装置は、以下の(A)—(D)の要件を備えたものであり、 熱源からの放射光の外乱により影響されることなぐ被加熱物の温度を精度よく測定 し、その測定温度により被加熱物を適性温度に加熱することができるものである。 [0010] The first heat treatment apparatus according to the present invention has the following requirements (A) to (D), and controls the temperature of the object to be heated which is not affected by disturbance of radiation emitted from a heat source. It can accurately measure the temperature of the object to be heated to an appropriate temperature based on the measured temperature.
(A)被加熱物を収容する処理室 (A) Processing chamber for storing heated objects
(B)処理室内の被加熱物を加熱するための熱源  (B) Heat source for heating the object to be heated in the processing chamber
(C)熱源と被加熱物との間に設けられ、熱源力 放射された光のうち選択した波長域 を遮断する光フィルタ  (C) An optical filter that is installed between the heat source and the object to be heated and blocks the selected wavelength range of the emitted light.
(D)光フィルタにより遮断された波長域のうちの特定波長を測定波長として被加熱物 の温度を測定する放射温度計  (D) A radiation thermometer that measures the temperature of the object to be heated using a specific wavelength in the wavelength range cut off by the optical filter as the measurement wavelength.
[0011] この熱処理装置では、熱源 (例えばハロゲンランプ)から放射される光のうち選択し た波長域が光フィルタによって遮断され、残りの波長域の光によって被加熱物(例え ば半導体ウェハ)が加熱される。そして、この加熱された被加熱物の表面温度力 放 射温度計によって、光フィルタにより遮断された波長域のうちの特定波長を測定波長 として、外乱光に影響されることなく測定される。  [0011] In this heat treatment apparatus, a selected wavelength range of light emitted from a heat source (for example, a halogen lamp) is cut off by an optical filter, and an object to be heated (for example, a semiconductor wafer) is irradiated with light in the remaining wavelength range. Heated. Then, the surface temperature of the heated object is measured without being affected by disturbance light by using a specific wavelength in the wavelength range cut off by the optical filter as a measurement wavelength.
[0012] 本発明による温度測定装置は、以下の (A),(B)の要件を備えたものであり、熱源 力 の放射光の外乱により影響されることなぐ被加熱物の温度を精度よく測定するこ とができるものである。 A temperature measuring device according to the present invention has the following requirements (A) and (B), and has a heat source It can accurately measure the temperature of the object to be heated without being affected by disturbances of force radiation.
(A)熱源と被加熱物との間に設けられ、熱源から放射された光のうち選択した波長域 を遮断する光フィルタ  (A) An optical filter installed between the heat source and the object to be heated, which blocks a selected wavelength range of the light radiated from the heat source
(B)光フィルタにより遮断された波長域のうちの特定波長を測定波長として被加熱物 の温度を測定する放射温度計  (B) A radiation thermometer that measures the temperature of the object to be heated using a specific wavelength in the wavelength range cut off by the optical filter as the measurement wavelength.
[0013] 本発明による温度測定方法は、熱源と被加熱物との間に光フィルタを配置し、この 光フィルタにより熱源から放射された光のうち選択した波長域を遮断すると共に、遮 断された波長域のうちの特定波長を測定波長とする放射温度計によって、被加熱物 の温度を測定するものである。  [0013] In the temperature measuring method according to the present invention, an optical filter is arranged between a heat source and an object to be heated, and the optical filter cuts off a selected wavelength range of light radiated from the heat source and cuts off the light. The temperature of the object to be heated is measured by a radiation thermometer that uses a specific wavelength in the wavelength range as a measurement wavelength.
[0014] また、本発明による第 2の熱処理装置は、以下の (A)—(E)の要件を備えることによ り、被加熱物の高速冷却および冷却速度の制御を可能としたものである。  Further, the second heat treatment apparatus according to the present invention has the following requirements (A) to (E), thereby enabling high-speed cooling of the object to be heated and control of the cooling rate. is there.
(A)被加熱物を、前記被加熱物との間に隙間を保持して収容可能なケースと、  (A) a case in which the object to be heated can be accommodated by holding a gap between the object and the object to be heated,
(B)ケースを収容する処理室  (B) Processing room to house the case
(C)ケース内の被力卩熱物を加熱するための熱源  (C) Heat source for heating the heated material in the case
(D)処理室内を真空排気する排気弁  (D) Exhaust valve for evacuating the processing chamber
(E)処理室内の圧力を上昇させるガス導入弁  (E) Gas introduction valve that increases the pressure inside the processing chamber
[0015] この熱処理装置では、予め冷却されたケース内に被加熱物(例えば半導体ウェハ) がケースとの間に隙間を保持して収容され、このケースが処理室内に収容される。次 いで、排気弁により処理室内が真空排気されることにより、ケースと被加熱物との間の 隙間に真空断熱機能が付与され、ケースの保持してレ、る低温が被加熱物に伝わらな い状態で、熱源 (例えばハロゲンランプ)によりケース内の被加熱物が加熱される。加 熱終了後、ガス導入弁により処理室内の圧力が上昇し、ケースの保持している低温 が隙間を介して被加熱物に熱伝導されることにより被加熱物が高速に冷却される。  [0015] In this heat treatment apparatus, an object to be heated (for example, a semiconductor wafer) is accommodated in a pre-cooled case with a gap kept between the case and the case, and the case is accommodated in the processing chamber. Next, the processing chamber is evacuated by the exhaust valve, so that a vacuum insulation function is provided in a gap between the case and the object to be heated, and the low temperature held by the case is not transmitted to the object to be heated. In this state, the object to be heated in the case is heated by a heat source (for example, a halogen lamp). After the heating is completed, the pressure in the processing chamber is increased by the gas introduction valve, and the low temperature held by the case is conducted to the heated object through the gap to cool the heated object at a high speed.
[0016] 本発明による熱処理方法は、熱源からの放射熱により、処理室に収容した被加熱 物の熱処理を行うものであって、被加熱物を収容するためのケースを冷却し、冷却さ れたケースに被加熱物を前記ケースとの間に隙間を保持して収容したのち、ケース を処理室に収容し、そののち、処理室内を真空排気した状態でケース内の被加熱物 を加熱し、加熱終了後に処理室内の圧力を上昇させることにより前記ケース内の被 加熱物を冷却するようにしたものである。 [0016] The heat treatment method according to the present invention performs heat treatment of an object to be heated accommodated in a processing chamber by radiant heat from a heat source. The case for accommodating the object to be heated is cooled and cooled. After the object to be heated is accommodated in the case while holding a gap between the case and the case, the case is accommodated in the processing chamber, and then the object to be heated in the case is evacuated while the processing chamber is evacuated. Is heated, and after the heating is completed, the pressure in the processing chamber is increased to cool the object to be heated in the case.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の第 1の実施形態に係る熱処理装置の断面図である。  FIG. 1 is a cross-sectional view of a heat treatment apparatus according to a first embodiment of the present invention.
[図 2]光フィルタの変形例を説明するための図である。  FIG. 2 is a view for explaining a modification of the optical filter.
[図 3]本発明の第 2の実施形態に係る熱処理装置の断面図である。  FIG. 3 is a sectional view of a heat treatment apparatus according to a second embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の実施の形態について、図 1を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.
[0019] 図 1は本発明の第 1の実施の形態に係る熱処理装置の構成を表すものである。な お、本発明の温度測定装置については、この熱処理装置に含まれるものであり、そ の構成および作用効果は熱処理装置の説明のなかで合わせて説明するものとする。 FIG. 1 shows a configuration of a heat treatment apparatus according to a first embodiment of the present invention. The temperature measuring device of the present invention is included in this heat treatment device, and its configuration and operation and effect will be described together in the description of the heat treatment device.
[0020] この熱処理装置 10は、上反応炉 11Aと下反応炉 11Bとにより構成されており、その 処理室 12内に被加熱物、例えば半導体ウェハ(以下,ウェハという) 13がホルダ 14 によって水平に保持されるようになっている。処理室 12内には、例えば O (酸素), N The heat treatment apparatus 10 includes an upper reaction furnace 11A and a lower reaction furnace 11B. An object to be heated, for example, a semiconductor wafer (hereinafter, referred to as a wafer) 13 is horizontally held by a holder 14 in a processing chamber 12 thereof. Is to be held. In the processing chamber 12, for example, O (oxygen), N
2  2
(窒素), SiH (シラン)などのガスがガス導入口 15Aから流入し、反応後のガスがガ (Nitrogen), SiH (silane), and other gases flow in through the gas inlet 15A, and
2 4 twenty four
ス排気口 15Bから排気されるようになっている。上反応炉 11Aおよび下反応炉 11B にはそれぞれ複数 (ここでは 4個)の例えば断面 U字型の反射鏡溝 16が設けられて おり、各反射鏡溝 16内には熱源、例えばハロゲンランプ 17が収納されている。この ハロゲンランプ 17からは、約 375nm— 4500nmの波長域の光が放射される。  Exhaust port 15B. Each of the upper reactor 11A and the lower reactor 11B is provided with a plurality (four in this example) of reflecting mirror grooves 16 having a U-shaped cross section, for example. Is stored. The halogen lamp 17 emits light in a wavelength range of about 375 nm to 4500 nm.
[0021] 反射鏡溝 16の開口部はハロゲンランプ 17からの光の処理室 12内への放射口とな つている。上反応炉 11 Aおよび下反応炉 11Bそれぞれにおいて、全ての反射鏡溝 1 6の放射口は光フィルタ 18により覆われている。光フィルタ 18はフィルタ押え 19により 固定されている。光フィルタ 18は、例えば石英ガラスなどの基板 18a上にフィルタ薄 膜 18bを蒸着することにより作製されたものであり、ここでは、例えば、ハロゲンランプ 17からの放射光のうち選択した波長域、好ましくは短波長、例えば 375nm以上 700 nm以下の波長域を遮断する、すなわち、残りの約 700nmカゝら 4500nmの範囲の波 長域の光を透過するものである。なお、フィルタ薄膜 18bは、例えば SiO (二酸化ケ The opening of the reflecting mirror groove 16 serves as an emission port of the light from the halogen lamp 17 into the processing chamber 12. In each of the upper reactor 11A and the lower reactor 11B, the radiation ports of all the reflector grooves 16 are covered with the optical filter 18. The optical filter 18 is fixed by a filter holder 19. The optical filter 18 is manufactured by evaporating a filter thin film 18b on a substrate 18a such as quartz glass, for example.Here, for example, a selected wavelength range of light emitted from the halogen lamp 17 is preferable. Cuts a short wavelength region, for example, a wavelength region of 375 nm or more and 700 nm or less, that is, transmits the remaining light in a wavelength region of about 700 nm to 4500 nm. The filter thin film 18b is made of, for example, SiO
2 ィ素), Ti〇 (二酸化チタン)の多層膜により構成される。  It is composed of a multilayer film of titanium dioxide and titanium dioxide (titanium dioxide).
2 [0022] 上反応炉 11Aおよび下反応炉 1 IBにはそれぞれ 1または複数 (ここでは上下 2個) の貫通孔が設けられ、これら貫通孔に放射温度計 20が設置されている。放射温度計 20は、光フィルタ 18により遮断された 375nm— 700nmの波長域のうちの波長成分 、ここでは例えば 650nmを測定波長としてウェハ 13の温度を測定するものである。 2 Each of the upper reactor 11A and the lower reactor 1 IB is provided with one or more (here, two upper and lower) through holes, and a radiation thermometer 20 is installed in these through holes. The radiation thermometer 20 measures the temperature of the wafer 13 with the wavelength component in the wavelength range of 375 nm to 700 nm blocked by the optical filter 18, here, for example, 650 nm as a measurement wavelength.
[0023] 光フィルタ 18のフィルタ薄膜 18bには、この放射温度計 20の先端が対向する位置 に切欠き孔 18cが設けられている。ウェハ 13の加熱温度は、この切欠き孔 18cから光 フィルタ 18の基板 18aを通して放射温度計 20により非接触で測定されるようになって いる。ここでは、上反応炉 11Aおよび下反応炉 11Bそれぞれにおいて放射温度計 2 0が設置されているため、ウェハ 13の表裏両面の温度が測定される。なお、この切欠 き孔 18cを有する光フィルタ 18は、ガラス基板上に蒸着膜を形成したのち、マスクを 利用して蒸着膜を選択的に除去することにより、放射温度計 20の配置位置に透明の 場所を設けることにより作成することができる。  The filter thin film 18b of the optical filter 18 is provided with a cutout hole 18c at a position where the tip of the radiation thermometer 20 faces. The heating temperature of the wafer 13 is measured in a non-contact manner by the radiation thermometer 20 from the notch hole 18c through the substrate 18a of the optical filter 18. Here, since the radiation thermometers 20 are installed in each of the upper reactor 11A and the lower reactor 11B, the temperatures of both the front and back surfaces of the wafer 13 are measured. The optical filter 18 having the cutout holes 18c is formed by forming a vapor deposition film on a glass substrate and then selectively removing the vapor deposition film using a mask so that the optical filter 18 is transparent at the position of the radiation thermometer 20. It can be created by setting up a place.
[0024] 各放射温度計 20により測定された温度信号は、例えば、制御部 21に送られるよう になっている。制御部 21では、複数の放射温度計 20により測定された温度を基に、 例えばその平均温度を基にして熱処理動作の制御を行うようになっている。熱処理 動作としては、具体的には、例えば、ウェハ 13の加熱温度が適性値になるように、熱 源 (ハロゲンランプ 17)に印加する電圧値を自動的に調整する、あるいは、加熱温度 が一定値以上になった場合には加熱を自動的に停止する、などである。なお、動作 制御を行うことなぐディスプレイに測定温度を表示するだけでもよい。  The temperature signal measured by each radiation thermometer 20 is sent to, for example, the control unit 21. The control unit 21 controls the heat treatment operation based on the temperatures measured by the plurality of radiation thermometers 20, for example, based on the average temperature. As the heat treatment operation, specifically, for example, the voltage value applied to the heat source (halogen lamp 17) is automatically adjusted so that the heating temperature of the wafer 13 becomes an appropriate value, or the heating temperature is kept constant. If it exceeds the value, the heating is automatically stopped, and so on. The measured temperature may be simply displayed on the display without performing the operation control.
[0025] このような構成を有する本実施の形態の熱処理装置では、ウェハ 13を加熱処理す る際に、ウェハ 13の上部および下部においてそれぞれ複数のハロゲンランプ 17が 点燈し、ウェハ 13の両面に、波長域が約 375nm— 4500nmの光を照射しカ卩熱する 。このとき 375nm 700nmの波長域の光は光フィルタ 18により遮断され、ウェハ 13 は残りの約 700nm 4500nmの波長域の光で加熱される。  In the heat treatment apparatus of the present embodiment having such a configuration, when heating the wafer 13, a plurality of halogen lamps 17 are turned on at the upper and lower portions of the wafer 13, respectively. Then, it is irradiated with light having a wavelength range of about 375 nm to 4500 nm, and is heated. At this time, light in the wavelength range of 375 nm to 700 nm is cut off by the optical filter 18, and the wafer 13 is heated by the remaining light in the wavelength range of about 700nm to 4500nm.
[0026] そして、この加熱されたウェハ 13の表面および裏面の温度は、測定波長が 650nm の複数の放射温度計 20により光フィルタ 18の切欠き孔 18cを通して測定される。こ のとき加熱されたウェハ 13の周辺には、光フィルタ 18により遮断された 375nm— 70 Onmの波長の光が存在しないので、外乱光の影響を受けることがなぐよって高精度 でウェハ 13の温度が測定される。なお、光フィルタ 18により一部光が遮断されるため に加熱エネルギーに損失が生じる力 S、遮断される波長域がハロゲンランプ 17の発光 波長のなかで短波長側であり、その損失は小さい。 [0026] The temperature of the heated front surface and the back surface of the wafer 13 is measured through the notch 18c of the optical filter 18 by a plurality of radiation thermometers 20 having a measurement wavelength of 650 nm. At this time, since there is no 375 nm-70 Onm wavelength light cut off by the optical filter 18 around the heated wafer 13, high precision is obtained without being affected by disturbance light. The temperature of the wafer 13 is measured. It should be noted that the power S at which the heating energy causes a loss due to partial light blocking by the optical filter 18 and the wavelength range to be blocked is on the short wavelength side of the emission wavelength of the halogen lamp 17, and the loss is small.
[0027] また、本実施の形態では、放射温度計 20による測定波長も短波長(650nm)とした ので、その温度測定分解能が向上する。更に、本実施の形態では、ウェハ 13の表面 および裏面の温度を、それぞれハロゲンランプ 17と同じ側に配置された放射温度計 20により測定することができる。  Further, in the present embodiment, since the wavelength measured by the radiation thermometer 20 is also short (650 nm), the temperature measurement resolution is improved. Further, in the present embodiment, the temperature of the front surface and the back surface of wafer 13 can be measured by radiation thermometer 20 arranged on the same side as halogen lamp 17, respectively.
[0028] なお、上記実施の形態では、ウェハ 13の両面を加熱するように、上下にハロゲンラ ンプ 17を配置するようにした力 ウェハ 13の片面のみを加熱するようにしてもよレ、。ま た、板状の光フィルタ 18をハロゲンランプ 17とは別に独立して設けるようにした力 図 2に示したように、ノ、ロゲンランプ 17に直接フィルタ薄膜を蒸着するようにしても、上 記実施の形態と同様の効果を得ることができる。  [0028] In the above embodiment, a force in which halogen lamps 17 are arranged above and below so as to heat both surfaces of the wafer 13 may be adopted so that only one surface of the wafer 13 is heated. In addition, as shown in Fig. 2, the filter thin film 18 can be deposited directly on the halogen lamp 17 even if the filter thin film is deposited directly, as shown in Fig. 2. The same effect as in the embodiment can be obtained.
[0029] 〔第 2の実施の形態〕  [Second Embodiment]
図 2は本発明の第 2の実施の形態に係る熱処理装置の構成を表すものである。この 熱処理装置 30は、上反応炉 31Aと下反応炉 31Bとにより構成されており、その処理 室 32内に被カ卩熱物、例えばウェハ 33を収容したケース 34がホルダ 35によって水平 に保持されるようになっている。また、処理室 32内は、真空ポンプ 36に連結された排 気弁 37およびガス導入弁 38により圧力制御可能とされ、その圧力が圧力計 39により 測定される。  FIG. 2 shows a configuration of a heat treatment apparatus according to a second embodiment of the present invention. The heat treatment apparatus 30 includes an upper reaction furnace 31A and a lower reaction furnace 31B. In a processing chamber 32, a case 34 containing a heat-treated material such as a wafer 33 is horizontally held by a holder 35. It has become so. The pressure inside the processing chamber 32 can be controlled by an exhaust valve 37 and a gas introduction valve 38 connected to a vacuum pump 36, and the pressure is measured by a pressure gauge 39.
[0030] 上反応炉 31Aおよび下反応炉 31Bには、第 1の実施の形態と同様に、それぞれ複 数 (ここでは 4個)の例えば断面 U字型の反射鏡溝 40が設けられており、各反射鏡溝 40内には熱源としてハロゲンランプ 41が収納されている。反射光溝 40の開口部は ハロゲンランプ 41からの光の処理室 32への放射口となっている。上反応炉 31Aおよ び下反応炉 31Bそれぞれにおいて、全ての反射鏡溝 40の放射口は透明石英ガラス よりなるカバー 42により覆われている。ウェハ 33の温度は、ウェハ用温度計 43により 測定されるようになっている。  Each of the upper reactor 31A and the lower reactor 31B is provided with a plurality of (four in this example), for example, U-shaped cross-section reflecting mirror grooves 40 as in the first embodiment. A halogen lamp 41 is housed in each reflecting mirror groove 40 as a heat source. The opening of the reflected light groove 40 serves as a radiation port of the light from the halogen lamp 41 to the processing chamber 32. In each of the upper reactor 31A and the lower reactor 31B, the radiation ports of all the reflector grooves 40 are covered with a cover 42 made of transparent quartz glass. The temperature of the wafer 33 is measured by a wafer thermometer 43.
[0031] ケース 34は、熱源からの熱がケース 34を透過してウェハ 33のみに吸収されるよう な材料により構成されていることが好ましい。例えば、熱源がハロゲンランプ 41である 場合には、透明石英ガラスである。 The case 34 is preferably made of a material such that heat from a heat source passes through the case 34 and is absorbed only by the wafer 33. For example, the heat source is a halogen lamp 41 In this case, it is transparent quartz glass.
[0032] また、ケース 34は、底面に設けられたスぺーサ 34Aにより、ウェハ 33との間に隙間 33Aを保持して収容可能となっている。隙間 33Aは、ウェハ 33とケース 34との接触 による熱伝導を抑制するためのものであり、その大きさは例えば 0. 5mmないし 2. 0 mmであることが好ましレ、。ケース 34には、通気孔 34Bが設けられており、排気弁 37 により処理室 32内を真空排気することによりケース 34内の隙間 33Aも真空排気され 、ガス導入弁 38により処理室 32内の圧力を上昇させることによりケース 34内の隙間 3 3Aの圧力も上昇するようになっている。これにより、この熱処理装置 30では、処理室 32内の圧力制御により隙間 33Aの圧力を制御し、隙間 33 Aに真空断熱層または伝 熱層としての機能をもたせ、ウェハ 33を高速加熱または高速冷却することができるよ うになつている。  The case 34 can be accommodated while holding a gap 33 A between the case 34 and the wafer 33 by a spacer 34 A provided on the bottom surface. The gap 33A is for suppressing heat conduction due to contact between the wafer 33 and the case 34, and preferably has a size of, for example, 0.5 mm to 2.0 mm. The case 34 is provided with a ventilation hole 34B. By evacuating the inside of the processing chamber 32 by the exhaust valve 37, the gap 33A in the case 34 is also evacuated. By increasing the pressure, the pressure in the gap 33A in the case 34 also increases. Thus, in the heat treatment apparatus 30, the pressure in the gap 33A is controlled by controlling the pressure in the processing chamber 32, and the gap 33A has a function as a vacuum heat insulating layer or a heat transfer layer, and the wafer 33 is rapidly heated or cooled. You can do it.
[0033] この熱処理装置 30では、例えば、まず、外部の冷却装置(図示せず)によりケース 3 4を冷去 Pし、次いで、冷却されたケース 34にウェハ 33をケース 34との間に隙間 33A を保持した状態で収容する。隙間 33Aの大きさは上述したように例えば 0. 5mmない し 2· Ommとすることが好ましぐまた、ケース 34の冷却温度は、例えば 5°Cないし 10°Cと十分に冷えていることが好ましレ、。続いて、このケース 34を処理室 32に収容 する。  In the heat treatment apparatus 30, for example, first, the case 34 is cooled off by an external cooling device (not shown), and then the wafer 33 is placed in the cooled case 34 with a gap between the case 34 and the case 34. House with 33A held. It is preferable that the size of the gap 33A is, for example, 0.5 mm or 2 Omm, as described above.The cooling temperature of the case 34 is, for example, sufficiently cooled, for example, 5 ° C to 10 ° C. But preferred. Subsequently, the case 34 is housed in the processing chamber 32.
[0034] そののち、処理室 32内を排気弁 37により真空排気した状態で、ハロゲンランプ 41 によりケース 34内のウェハ 33を加熱する。このとき、処理室 32内を真空排気すること により隙間 33Aも真空排気した状態でウェハ 33を加熱するようにしたので、隙間 33 Aに真空断熱層としての機能をもたせることができる。よって、ケース 34の保持してい る低温をウェハ 33に伝導させずにウェハ 33を加熱することができる。また、ケース 34 は、ハロゲンランプ 41から放射された熱エネルギーがケース 34を透過してウェハ 33 にのみ吸収されるような材料により構成されているので、ケース 34を加熱することなく ウェハ 33のみを加熱することができる。  Thereafter, the wafer 33 in the case 34 is heated by the halogen lamp 41 while the inside of the processing chamber 32 is evacuated by the exhaust valve 37. At this time, since the wafer 33 is heated while the gap 33A is evacuated by evacuating the processing chamber 32, the gap 33A can have a function as a vacuum heat insulating layer. Therefore, the wafer 33 can be heated without conducting the low temperature held by the case 34 to the wafer 33. Also, since the case 34 is made of a material that allows the heat energy radiated from the halogen lamp 41 to pass through the case 34 and be absorbed only by the wafer 33, only the wafer 33 is heated without heating the case 34. Can be heated.
[0035] 処理室 32内の真空度 fま、伊 ijえ ίま、、 0. 133322Pa (0. OOlTorr)なレヽし 0. 00133 32Pa (0. OOOOlTorr)とすることが好ましレ、。この範囲内とすれば、隙間 33Aを利 用して十分な真空断熱効果を得ることができるからである。 [0036] 加熱が終了したのち、ガス導入弁 38により処理室 32内の圧力を上昇させることによ り、ケース 34内の隙間 33Aにもガスを導入する。これにより、隙間 33Aが真空断熱層 力 伝熱層に転換され、ケース 34の保持している低温が隙間 33Aを介してウェハ 33 に熱伝導されるので、ウェハ 33が高速かつ均一に冷却される。 [0035] The degree of vacuum f in the processing chamber 32 is preferably 0.133322Pa (0. OOlTorr), and preferably 0.100133 32Pa (0. OOOOlTorr). Within this range, a sufficient vacuum insulation effect can be obtained using the gap 33A. After the heating is completed, the gas is introduced into the gap 33 A in the case 34 by increasing the pressure in the processing chamber 32 by the gas introduction valve 38. As a result, the gap 33A is converted into a vacuum heat insulating layer and a heat transfer layer, and the low temperature held by the case 34 is thermally conducted to the wafer 33 through the gap 33A, so that the wafer 33 is cooled quickly and uniformly. .
[0037] ここで、圧力を上昇させると熱伝導率が上がり、減圧にして真空度を上げていくと断 熱保温効果が上がっていくことが知られている。そこで、処理室 32内の圧力を変化さ せることによりウェハ 33に対する隙間 33Aの保温効果も変化させることができ、このこ とを利用してウェハ 33の冷却速度を制御することも可能となる。  Here, it is known that increasing the pressure increases the thermal conductivity, and decreasing the pressure and increasing the degree of vacuum increases the thermal insulation effect. Therefore, by changing the pressure in the processing chamber 32, the heat retaining effect of the gap 33A with respect to the wafer 33 can also be changed, and by utilizing this, the cooling rate of the wafer 33 can be controlled.
[0038] 更に、例えば、ウェハ 33の加熱の最高温度を一定にして冷却速度を変化させるこ とにより、ウェハ 33に対する入熱の制御が可能となり、精度が高ぐ再現性の良い熱 処理を行うことができる。  Further, for example, by changing the cooling rate while keeping the maximum temperature of the heating of the wafer 33 constant, it becomes possible to control the heat input to the wafer 33, and to perform the heat processing with high accuracy and high reproducibility. be able to.
[0039] 以上説明したように本発明による第 1の熱処理装置、または温度測定装置若しくは 温度測定方法によれば、熱源と被加熱物との間に光フィルタを配置し、この光フィノレ タにより、熱源から放射された光のうち選択した波長域を遮断すると共に、遮断された 波長域のうちの特定波長を測定波長とする放射温度計によって、被加熱物の温度を 測定するようにしたので、熱源からの放射光の外乱により影響されることなぐ被加熱 物の温度を非接触で、精度よく測定することができると共に、温度制御を高精度で行 うことができる。特に、半導体ウェハの両面から加熱して高速昇温を行う高速昇温装 置 (ラビッドサ一マル炉)では、その信頼性が高くなる。  [0039] As described above, according to the first heat treatment apparatus, the temperature measurement apparatus, or the temperature measurement method of the present invention, an optical filter is arranged between a heat source and an object to be heated. Since the selected wavelength region of the light radiated from the heat source is cut off, and the temperature of the object to be heated is measured by a radiation thermometer that measures a specific wavelength in the cut-off wavelength range, The temperature of the object to be heated, which is not affected by the disturbance of the radiated light from the heat source, can be accurately measured without contact, and the temperature can be controlled with high accuracy. In particular, the reliability of a high-speed heating device (rabbit thermal furnace) that heats semiconductor wafers from both sides to achieve high-speed heating is improved.
[0040] また、半導体ウェハの片面力 加熱して熱処理を行う装置においては、従来では、 ハロゲンランプなどの熱源からの放射光の外乱の影響を防ぐために複雑な遮光機構 を用いる必要があり高価であつたが、本発明では機構が簡単になり、安価に実現す ること力 Sできる。  [0040] Further, in an apparatus for performing heat treatment by heating a single-sided force of a semiconductor wafer, conventionally, it is necessary to use a complicated light-shielding mechanism in order to prevent the influence of disturbance of radiated light from a heat source such as a halogen lamp, which is expensive. In the present invention, however, the mechanism can be simplified and the cost can be reduced.
[0041] 更に、ハロゲンランプの波長を光フィルタにより遮断し、遮断した波長域のうちから 放射温度計による測定波長を定めるようにしたので、遮断波長を放射光のうちの短 波長側を遮断し、放射温度計として短波長型のものを選択することにより、温度測定 分解能を上げることができ、これによつても測定精度が向上する。  Further, since the wavelength of the halogen lamp is cut off by the optical filter and the wavelength measured by the radiation thermometer is determined from the cut-off wavelength range, the cut-off wavelength is cut off on the short wavelength side of the radiated light. In addition, by selecting a short-wavelength type radiation thermometer, the resolution of temperature measurement can be increased, thereby improving the measurement accuracy.
[0042] 本発明の第 2の熱処理装置または熱処理方法によれば、被加熱物をケースに隙間 を保持した状態で収容し、かつ、排気弁により処理室内を真空排気した状態で被カロ 熱物を加熱するようにしたので、隙間に真空断熱層としての機能をもたせ、ケースの 保持している低温を被加熱物に伝導させずに被加熱物を加熱することができる。また 、加熱終了後は、ガス導入弁により処理室内の圧力を上昇させることにより、ケース内 の隙間を真空断熱層力 伝熱層に転換し、ケースの保持している低温を隙間を介し て被加熱物に熱伝導させることにより、被加熱物を高速かつ均一に冷却することがで きる。特に、加熱保持時間の短い場合において強い効果を発揮する。 According to the second heat treatment apparatus or heat treatment method of the present invention, the object to be heated is The heating target is heated while the processing chamber is evacuated by the exhaust valve, and the space is provided with a function as a vacuum heat insulating layer, and the case is held. The object to be heated can be heated without transmitting the low temperature to the object to be heated. After the heating is completed, the gap in the case is converted into a vacuum heat insulating layer and a heat transfer layer by increasing the pressure in the processing chamber by the gas introduction valve, and the low temperature held by the case is covered through the gap. By conducting heat to the heated object, the object to be heated can be cooled rapidly and uniformly. In particular, a strong effect is exhibited when the heating and holding time is short.
[0043] また、処理室内の圧力を変化させることにより被加熱物に対する隙間の保温効果も 変化させることができるので、このことを利用して被加熱物の冷却速度を精度よく制御 することも可能となる。  [0043] In addition, by changing the pressure in the processing chamber, the effect of keeping the gap in the object to be heated can be changed, so that the cooling rate of the object to be heated can be accurately controlled by using this fact. It becomes.
[0044] 更に、例えば、被加熱物の加熱の最高温度を一定にして冷却速度を変化させるこ とにより、被加熱物に対する入熱の制御が可能となり、精度が高ぐ再現性の良い熱 処理装置を実現することができる。  Further, for example, by changing the cooling rate while keeping the maximum temperature of the object to be heated constant, the heat input to the object to be heated can be controlled, and the heat treatment with high accuracy and high reproducibility can be achieved. The device can be realized.
産業上の利用可能性  Industrial applicability
[0045] 本発明による熱処理装置、温度測定装置あるいは温度測定方法、または熱処理方 法は、ァニール、 CVD (Chemical Vapor Deposition)などの熱処理を伴う半導 体製造装置に広く適用可能であり、光通信用レーザ、 CD (Compact Disk)、 DVD (Digital Versatile Disk)用ピックアップ用レーザ、モパイル通信用高周波デバイ ス、青色 LED (Light Emitting Diode)など種々の半導体素子の製造に利用する こと力 Sできる。 [0045] The heat treatment apparatus, temperature measurement apparatus, temperature measurement method, or heat treatment method according to the present invention can be widely applied to semiconductor manufacturing apparatuses involving heat treatment such as annealing and CVD (Chemical Vapor Deposition). It can be used for manufacturing various semiconductor devices such as lasers for CDs, compact disks (CDs), lasers for pickups for DVDs (Digital Versatile Disks), high-frequency devices for mopile communication, and blue LEDs (Light Emitting Diodes).

Claims

請求の範囲 The scope of the claims
[1] 被加熱物を収容する処理室と、 [1] a processing chamber for storing the object to be heated,
前記処理室内の被加熱物を加熱するための熱源と、  A heat source for heating the object to be heated in the processing chamber;
前記熱源と前記被加熱物との間に設けられ、前記熱源から放射された光のうち選 択した波長域を遮断する光フィルタと、  An optical filter that is provided between the heat source and the object to be heated, and that blocks a wavelength range selected from light emitted from the heat source;
前記光フィルタにより遮断された波長域のうちの特定波長を測定波長として前記被 加熱物の温度を測定する放射温度計  A radiation thermometer for measuring the temperature of the object to be heated with a specific wavelength in a wavelength range cut off by the optical filter as a measurement wavelength;
とを備えたことを特徴とする熱処理装置。  A heat treatment apparatus comprising:
[2] 前記熱源はハロゲンランプであり、前記光フィルタは前記ハロゲンランプから放射さ れた光のうち短波長域の波長成分を遮断する  [2] The heat source is a halogen lamp, and the optical filter blocks a wavelength component in a short wavelength range of light emitted from the halogen lamp.
ことを特徴とする請求の範囲第 1項記載の熱処理装置。  The heat treatment apparatus according to claim 1, wherein:
[3] 前記光フィルタは 375nm以上 700nm以下の範囲の波長域の光を遮断し、前記放 射温度計は 375nm以下 700nm以下の範囲のなかの波長で温度を測定する ことを特徴とする請求の範囲第 2項記載の熱処理装置。 [3] The optical filter blocks light in a wavelength range of 375 nm to 700 nm, and the radiation thermometer measures temperature at a wavelength in a range of 375 nm to 700 nm. 3. The heat treatment apparatus according to claim 2, wherein:
[4] 前記光フィルタは、基板の表面に薄膜を形成したものであると共に、前記薄膜に切 欠き孔を有し、前記放射温度計は前記切欠き孔に対向する位置に配置されてレ、る ことを特徴とする請求の範囲第 1項記載の熱処理装置。 [4] The optical filter is formed by forming a thin film on the surface of a substrate, has a cutout hole in the thin film, and the radiation thermometer is disposed at a position facing the cutout hole. The heat treatment apparatus according to claim 1, wherein:
[5] 前記ハロゲンランプの表面に前記光フィルタを構成する薄膜が形成されている ことを特徴とする請求の範囲第 2項記載の熱処理装置。 5. The heat treatment apparatus according to claim 2, wherein a thin film constituting the optical filter is formed on a surface of the halogen lamp.
[6] 前記放射温度計により計測された温度を基に熱処理動作を制御するための制御手 段 [6] A control means for controlling the heat treatment operation based on the temperature measured by the radiation thermometer
を備えたことを特徴とする請求の範囲第 1項記載の熱処理装置。  The heat treatment apparatus according to claim 1, further comprising:
[7] 熱源からの放射熱により、処理室に収容した被加熱物の熱処理を行う熱処理装置 におレ、て、前記被加熱物の温度を測定するための温度測定装置であって、 前記熱源と前記被加熱物との間に設けられ、前記熱源から放射された光のうち選 択した波長域を遮断する光フィルタと、 [7] A temperature measuring device for measuring the temperature of the object to be heated, wherein the heat source performs heat treatment of the object to be heated housed in the processing chamber by radiant heat from the heat source. An optical filter provided between the heat source and the object to be heated, for blocking a selected wavelength range of light emitted from the heat source;
前記光フィルタにより遮断された波長域のうちの特定波長を測定波長として前記被 加熱物の温度を測定する放射温度計 とを備えたことを特徴とする温度測定装置。 A radiation thermometer for measuring the temperature of the object to be heated with a specific wavelength in a wavelength range cut off by the optical filter as a measurement wavelength; A temperature measuring device comprising:
[8] 熱源からの放射熱により、処理室に収容した被加熱物の熱処理を行う熱処理装置 におレ、て、前記被加熱物の温度を測定するための温度測定方法であって、 前記熱源と前記被加熱物との間に光フィルタを配置し、前記光フィルタにより、前記 熱源から放射された光のうち選択した波長域を遮断すると共に、前記光フィルタによ り遮断された波長域のうちの特定波長を測定波長とする放射温度計によって、前記 被加熱物の温度を測定する  [8] A temperature measurement method for measuring the temperature of the object to be heated, wherein the heat source is a heat treatment apparatus that performs heat treatment on the object to be heated housed in the processing chamber by radiant heat from the heat source. An optical filter is arranged between the heat source and the object to be heated, and the optical filter blocks a selected wavelength range of the light emitted from the heat source, and also controls a wavelength range blocked by the optical filter. The temperature of the object to be heated is measured by a radiation thermometer having a specific wavelength as a measurement wavelength.
ことを特徴とする温度測定方法。  A temperature measuring method, characterized in that:
[9] 被加熱物を、前記被加熱物との間に隙間を保持して収容可能なケースと、 [9] A case capable of housing the object to be heated while holding a gap between the object and the object to be heated,
前記ケースを収容する処理室と、  A processing chamber containing the case,
前記ケース内の被力卩熱物を加熱するための熱源と、  A heat source for heating the heated material in the case;
前記処理室内を真空排気する排気弁と、  An exhaust valve for evacuating the processing chamber,
前記処理室内の圧力を上昇させるガス導入弁と  A gas introduction valve for increasing the pressure in the processing chamber;
を備えたことを特徴とする熱処理装置。  A heat treatment apparatus comprising:
[10] 前記ケースは、前記熱源からの熱が前記ケースを透過して被加熱物のみに吸収さ れるような材料により構成されてレ、る [10] The case is made of a material such that heat from the heat source passes through the case and is absorbed only by the object to be heated.
ことを特徴とする請求の範囲第 9項記載の熱処理装置。  10. The heat treatment apparatus according to claim 9, wherein:
[11] 熱源からの放射熱により、処理室に収容した被加熱物の熱処理を行う熱処理方法 であって、 [11] A heat treatment method for performing heat treatment of the object to be heated housed in the processing chamber by radiant heat from a heat source,
被加熱物を収容するためのケースを冷却し、冷却されたケースに被加熱物を前記 ケースとの間に隙間を保持して収容したのち、前記ケースを処理室に収容し、そのの ち、前記処理室内を真空排気した状態で前記ケース内の被加熱物を加熱し、加熱 終了後に前記処理室内の圧力を上昇させることにより前記ケース内の被加熱物を冷 却する  A case for accommodating the object to be heated is cooled, and the object to be heated is accommodated in the cooled case with a gap kept between the case and the case. Then, the case is accommodated in the processing chamber. The object to be heated in the case is heated while the processing chamber is evacuated, and after the heating is completed, the object to be heated in the case is cooled by increasing the pressure in the processing chamber.
ことを特徴とする熱処理方法。  A heat treatment method comprising:
PCT/JP2004/009735 2003-07-11 2004-07-08 Temperature measurement device, thermal processing device, and temperature measurement method WO2005005941A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003293606A JP2006177666A (en) 2003-07-11 2003-07-11 Temperature measurement method and device
JP2003-293606 2003-07-11
JP2003303648A JP2006179509A (en) 2003-07-25 2003-07-25 Method and device for thermal processing for quick heating and quenching
JP2003-303648 2003-07-25

Publications (1)

Publication Number Publication Date
WO2005005941A1 true WO2005005941A1 (en) 2005-01-20

Family

ID=34067407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009735 WO2005005941A1 (en) 2003-07-11 2004-07-08 Temperature measurement device, thermal processing device, and temperature measurement method

Country Status (1)

Country Link
WO (1) WO2005005941A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358462B2 (en) 2002-11-05 2008-04-15 Mattson Technology, Inc. Apparatus and method for reducing stray light in substrate processing chambers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442025A (en) * 1990-06-07 1992-02-12 M Setetsuku Kk Method and apparatus for measuring temperature of wafer
JPH04305130A (en) * 1990-04-10 1992-10-28 Luxtron Corp Noncontact measuring method and system for temperature of heated body by radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04305130A (en) * 1990-04-10 1992-10-28 Luxtron Corp Noncontact measuring method and system for temperature of heated body by radiation
JPH0442025A (en) * 1990-06-07 1992-02-12 M Setetsuku Kk Method and apparatus for measuring temperature of wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358462B2 (en) 2002-11-05 2008-04-15 Mattson Technology, Inc. Apparatus and method for reducing stray light in substrate processing chambers

Similar Documents

Publication Publication Date Title
TWI649821B (en) Apparatus and method for low temperature measurement in a wafer processing system
JP6286463B2 (en) Apparatus including a heat source reflection filter for high temperature measurements
US9552989B2 (en) Apparatus and method for improved control of heating and cooling of substrates
KR101047088B1 (en) Device temperature control and pattern compensation device method
TWI376005B (en) Advanced process sensing and control using near infrared spectral reflectometry
JP4540796B2 (en) Quartz window, reflector and heat treatment equipment
US8367983B2 (en) Apparatus including heating source reflective filter for pyrometry
US5445675A (en) Semiconductor processing apparatus
JP2001308023A (en) Equipment and method for heat treatment
JP2009510262A (en) Film forming apparatus and method including temperature and emissivity / pattern compensation
US10147623B2 (en) Pyrometry filter for thermal process chamber
TWI673483B (en) Method for measuring temperature by refraction and change in velocity of waves with magnetic susceptibility
JP4346208B2 (en) Temperature measuring method, heat treatment apparatus and method, and computer-readable medium
JP2016025242A (en) Warpage measurement apparatus of semiconductor wafer
WO2005005941A1 (en) Temperature measurement device, thermal processing device, and temperature measurement method
JP3042229B2 (en) Substrate heating device
JP7450373B2 (en) Substrate processing equipment and substrate processing method
TWI545654B (en) Transparent reflector plate for rapid thermal processing chamber
JP2013257189A (en) Thermometric apparatus and processing apparatus
JP4646354B2 (en) Heat treatment apparatus and method
JP2009236631A (en) Temperature measurement apparatus, mounting platform structure having the same, and heat treatment apparatus
JP2006177666A (en) Temperature measurement method and device
JP2002299275A (en) Heat treatment device
WO2023192402A1 (en) Radiative heat windows and wafer support pads in vapor etch reactors
JP2006179509A (en) Method and device for thermal processing for quick heating and quenching

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP