WO2005005533A1 - 酸素吸収性樹脂組成物 - Google Patents

酸素吸収性樹脂組成物 Download PDF

Info

Publication number
WO2005005533A1
WO2005005533A1 PCT/JP2004/009705 JP2004009705W WO2005005533A1 WO 2005005533 A1 WO2005005533 A1 WO 2005005533A1 JP 2004009705 W JP2004009705 W JP 2004009705W WO 2005005533 A1 WO2005005533 A1 WO 2005005533A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
resin
copolymer
resin composition
absorbing resin
Prior art date
Application number
PCT/JP2004/009705
Other languages
English (en)
French (fr)
Inventor
Hiroaki Goto
Ikuo Komatsu
Takayuki Ishihara
Yoshihiro Ohta
Shigenobu Murakami
Nobuo Hirakawa
Original Assignee
Toyo Seikan Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004046697A external-priority patent/JP4671161B2/ja
Application filed by Toyo Seikan Kaisha, Ltd. filed Critical Toyo Seikan Kaisha, Ltd.
Priority to EP04747174A priority Critical patent/EP1672019B1/en
Priority to AU2004255626A priority patent/AU2004255626B2/en
Priority to DE602004026206T priority patent/DE602004026206D1/de
Priority to AT04747174T priority patent/ATE461969T1/de
Publication of WO2005005533A1 publication Critical patent/WO2005005533A1/ja
Priority to US11/351,737 priority patent/US7709567B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to an oxygen-absorbing resin composition used for contents which are liable to be degraded in the presence of oxygen, particularly for packaging materials such as beverages, foods, and medicines.
  • Plastic containers have the advantage that they are lightweight and have some degree of impact resistance, but they also have problems such as deterioration of contents and deterioration of flavor due to oxygen permeating the container walls. ing. In particular, oxygen permeation through the container wall is zero in metal cans and glass bottles, and only oxygen remaining in the container poses a problem, whereas plastic containers can be ignored through the container wall. Since no oxygen is permeated, there is a problem in the preservation of the contents.
  • the composition captures oxygen by metal-catalyzed oxidation of an oxidizable organic component.
  • a packaging barrier has been proposed, in which a polyamide, particularly a xylylene group-containing polyamide, is used as the oxidizable organic component (see, for example, Japanese Patent Application Laid-Open No. 2-500846).
  • the above resins with excellent gas barrier properties such as ethylene-vinyl alcohol copolymer (EVOH), show excellent oxygen barrier properties under low humidity conditions, but have extremely high oxygen permeability under high humidity conditions.
  • EVOH ethylene-vinyl alcohol copolymer
  • the gas barrier-compatible resin is often used in combination with a heat sterilization packaging technique such as hot water sterilization, boiling sterilization, and retort sterilization. Therefore, during this heat sterilization, EVOH is placed in a high humidity condition, so that not only is the state of high oxygen permeability, but also the state of high oxygen permeability, even after sterilization, due to the water retention of EVOH. Subsequently, the predetermined gas barrier property cannot be obtained.
  • the oxygen-absorbing resin composition has a problem that the resin is colored during molding due to oxidative deterioration, which is not preferable in appearance. There is also a need for an oxygen-absorbing resin composition having better heat resistance.
  • An object of the present invention is to provide an oxygen-absorbing resin composition which is excellent in oxygen-absorbing performance, suppresses oxidative deterioration of a resin during molding, and does not cause coloring during molding. That is.
  • Another object of the present invention is to provide an oxygen-absorbing resin composition having excellent heat resistance.
  • the present invention comprises a hydrogenated styrene-gen copolymer ( ⁇ ), a thermoplastic resin having an ethylene structure in its molecular structure ( ⁇ ), and a transition metal catalyst (C), wherein the copolymer ( ⁇ ) is a trigger.
  • the present invention provides an oxygen-absorbing resin composition that absorbs oxygen by oxidizing a thermoplastic resin ( ⁇ ).
  • copolymer (Alpha) are carbon one-carbon double bond 1 X 1 0- 5 ⁇ from Jen: good to contain in the range of 1 X 1 0- 2 eq / g .
  • the oxygen-absorbing resin composition of the present invention By using the oxygen-absorbing resin composition of the present invention, excellent oxygen-absorbing performance can be obtained, and oxidative deterioration of the resin during molding can be suppressed. Further, an oxygen-absorbing resin composition having excellent heat resistance can be provided. (Best mode for carrying out the invention)
  • the oxygen-absorbing resin composition of the present invention comprises a hydrogenated styrene-gen copolymer (A), a thermoplastic resin having an ethylene structure in its molecular structure (B), and a transition metal catalyst (C). Oxygen is absorbed by the oxidation of the thermoplastic resin (B), which is triggered by the coalescence (A).
  • the hydrogenated styrene-copolymer (A) can be obtained by hydrogenating a styrene-copolymer.
  • a styrene-copolymer For example, it can be obtained from Asahi Kasei Chemicals Corporation as a resin with a grade name of Yufutec P20000.
  • the reason for this is that the vinyl-polybutene phase of the styrene-copolymer is hydrogenated.
  • an oxygen-absorbing resin composition having excellent heat resistance can be provided.
  • styrene-one-gen copolymer a resin containing a unit derived from a linear or cyclic conjugated or non-conjugated diene is preferable. These resins may be used alone or in the form of a blend of two or more resins.
  • linear or cyclic conjugated or non-conjugated diene monomer examples include conjugated diene such as butadiene and isoprene; 1,4-hexadiene, 3-methyl-1,4-hexadiene, 4-methyl-1,1,3-diene.
  • Kisajen 5-methyl-1, 4 one to Kisaji E down, 4 5 5-dimethyl-1, Kisajen to 4, 7-methyl-6-O-click chain nonconjugated diene of the evening Zhen like; methyl tetrahydroindene, 5 —Ethylidene 2-norbornene, 5-methylene-12-norbornene, 5-isopropylidene-12-norbornene, 5-vinylidene-12-norbornene, 6-chloromethyl-15—isopropenyl-12-norbornene, dicyclopentene, etc. And a cyclic non-conjugated diene.
  • Specific copolymers (A) include hydrogenated styrene-butylene copolymer and hydrogenated styrene. Styrene-isoprene copolymer and the like can be mentioned.
  • a random copolymer or a block copolymer may be used, but a block copolymer is more preferable in terms of a trigger effect, and particularly, a hydrogenated styrene-isoprene-styrene triblock copolymer, Hydrogenated styrene-butadiene styrene triple block copolymer is more preferred.
  • the chemical structure of the above-mentioned triplock copolymer may be linear or radial, and the carbon-carbon double bond in the gen moiety of the gen moiety before hydrogenation has a main chain in the form of a vinylene group. Or a side group in the form of a vinyl group.
  • the random copolymer include a hydrogenated styrene-isoprene random copolymer and a hydrogenated styrene-butylene random copolymer.
  • hydrogenated styrene-gen-one-year-old olefin crystal triblock copolymer is also useful.
  • hydrogenated styrene-butadiene-olefin Crystalline triblock copolymers are preferred in that oxidation by-products are suppressed.
  • thermoplastic resin (B) since the amount of oxidation byproducts after the oxygen absorption is low, the copolymer (A) units derived from Jen as the C A A copolymer having a branched portion which is an alkyl chain is preferable, and specifically, a hydrogenated styrene / butadiene copolymer, particularly a hydrogenated styrene / polystyrene / styrene / triploc copolymer is preferable.
  • the copolymer (A) has a carbon-carbon double bond derived from a gen of 1 X because of its remarkable thermal stability during molding and a remarkable trigger effect on the thermoplastic resin (B).
  • the resin (B) for example, polyethylene such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, polypropylene such as isoisotactic or syndiotactic polypropylene, Ethylene-based copolymers such as ethylene-propylene copolymer, polybutene-11, ethylene-propylene-1-copolymer, ethylene-propylene-ptene-11 copolymer, ethylene-vinyl acetate copolymer, and ethylene-vinyl alcohol copolymer Examples thereof include propylene copolymers such as copolymers, propylene-butene-11 copolymers, ion-crosslinked olefin copolymers, and blends thereof.
  • the resin (B) is polyethylene, polypropylene, ethylene-propylene copolymer, ethylene copolymer, and
  • the above resin may be used as a base polymer, and an acid-modified olefin resin graft-modified with an unsaturated carboxylic acid or a derivative thereof may be used as a thermoplastic resin (B) having an ethylene structure in its molecular structure.
  • the resin (B) is preferably a resin polymerized from C2 to C20 monomers and containing substantially no ethylenically unsaturated bond. Further, the resin (B) has a total amount of 0.005 eq of linear low-density polyethylene comprising 0.003 eq / g or less linear hydrocarbon or aliphatic side chains. It is preferable that a cyclic hydrocarbon sharing a part of the ring structure of / g or less with the main chain, or (/ ⁇ is a resin composed of the cyclic hydrocarbon and the linear hydrocarbon.
  • Eq / g in linear low-density polyethylene consisting of linear hydrocarbons with a value of 0.003 eq / g or less is the value obtained by calculating the number of side chains in 1 g of resin and dividing it by the Avogadro number. If the Avogadro number is represented by N and the number of side chains in 1 g of resin is represented by n, it can be calculated from n / N (the same applies hereinafter). Here, it is said that substantially no ethylenically unsaturated bond is contained. , Ethylenically unsaturated It is preferable that no bond is contained, but an embodiment containing about 0.001 eq / g can also be included.
  • the linear low-density polyethylene used in the above-described oxygen-absorbing resin composition of the present invention selects a comonomer capable of forming a linear side chain, and copolymerizes with ethylene to have a side chain of 0.0. 0 3 eq / g or less linear hydrocarbon.
  • the side chain By making the side chain a straight-chain hydrocarbon, it is possible to prevent the breaking of the molecule at the branched site as in the case where the side chain is branched, and to suppress the generation of low molecular volatile components.
  • by intentionally introducing a tertiary carbon site that is easily oxidized into the molecular chain it is possible to control the progress of oxidation, and to avoid disorderly molecular cleavage caused by oxidation of the secondary carbon site and the like. Can be.
  • Suitable catalysts include meta-open catalysts.
  • catalysts for the polymerization of olefins which are positioned as bottom melocene catalysts, particularly phenoxyimine catalysts (FI catalysts) are suitable.
  • the preferred range of the side chain is 0.003 to 0.003 eq / g, and particularly 0.005 to 0.003 eq / g. This is preferable because stable oxygen absorption and thermal stability can be ensured in addition to reduction of by-products.
  • linear low-density polyethylene examples include, for example, a copolymer of ethylene and 1-butene, a copolymer of ethylene and 1-hexene, and a copolymer of ethylene and 1-octene using a meta-mouth catalyst as a polymerization catalyst.
  • Copolymers of ethylene and monoolefin, such as polymers, are preferred. These resins may be used alone or in combination of two or more.
  • the above-mentioned polymerization of the resin with a single-site catalyst may be carried out by any method as long as it is industrially possible, but is preferably carried out by a liquid phase method because it is most widely used.
  • a cyclic hydrocarbon in which the aliphatic side chain used in the above-described oxygen-absorbing resin composition of the present invention shares a part of the ring structure with the main chain having a total amount of 0.05 eq / g or less or
  • the resin comprising the cyclic hydrocarbon and the linear hydrocarbon may be a copolymer of ethylene and an alicyclic hydrocarbon having an ethylene unsaturated bond, or an alicyclic resin having an ethylene or ethylene unsaturated bond. It can be obtained by copolymerizing a hydrocarbon and a comonomer capable of forming a linear side chain.
  • These resins having an aliphatic cyclic side chain tend to have a high glass transition temperature, but if the glass transition temperature is high, the mobility of molecular chains at room temperature becomes insufficient, and the oxygen absorption rate tends to decrease. In this sense, it is possible to appropriately lower the glass transition point by copolymerizing a resin obtained by copolymerizing an appropriate ethylene or a linear comonomer other than ethylene and providing a side chain of a linear hydrocarbon. it can.
  • the side chain of the linear hydrocarbon is preferably C4 or more.
  • the preferred glass transition point is 50 ° C or lower.
  • the monomer having a cyclic side chain may be block copolymerized, randomly copolymerized, or alternately copolymerized, but the aliphatic cyclic side chain moiety is Mobility tends to be low, so random or alternating copolymerization It is preferable to take such a form.
  • the aliphatic side chain bonded to the main chain exceeds 0.05 eqZg, the tertiary carbon density in the main chain becomes too high, and the generation frequency of small molecules increases due to main chain cleavage. However, it causes the generation of low molecular components that adversely affect the flavor and the like.
  • the preferred range of the aliphatic side chain is 0.005 to 0.05 eq / g, particularly 0.001 to 0.05, and by being in this range, This is preferable because stable oxygen absorption and thermal stability are ensured in addition to reduction of oxidation by-products.
  • Cyclic hydrocarbons that share part of the ring structure with the main chain, or resins composed of the aforementioned cyclic hydrocarbons and linear hydrocarbons can be polymerized using a single-site catalyst to form various copolymers. This is preferable because the microstructure of the copolymer can be controlled.
  • a catalyst for polymerization of olefins which is positioned as the above-mentioned melocene catalyst or the bostomethacene catalyst, can be suitably used.
  • a phenoxytitanium-based catalyst obtained by combining a cyclopentene genenyl type ligand with a phenoxy ligand is also preferably used.
  • An example of a resin having a cyclic side chain using a single site catalyst is a linear olefin copolymer (APEL: Mitsui Chemicals, Inc.).
  • the cyclic hydrocarbon which shares a part of the ring structure with the main chain, or the resin composed of the cyclic hydrocarbon and the linear hydrocarbon is, for example, a single-site metallocene catalyst having zirconium as a central metal. It can be obtained by combining ethylene with cyclobutene or ethylene.
  • a linear aliphatic side chain can be introduced by using a comonomer such as 1-butene, 1-hexene, or 1-octene in the above binary system.
  • the type of catalyst the structure of the copolymer is described above. As described above, various forms such as block and random can be obtained.
  • the resin having the number of side chains of the present invention can be obtained.
  • cyclic hydrocarbon some hydrogen atoms constituting the cyclic hydrocarbon may be replaced by other atoms or atomic groups.
  • the atomic group include an alkyl group, an aldehyde group, a carboxyl group, and a hydroxyl group.
  • monomers such as 3-cyclohexene-1-carboxaldehyde, 3-cyclohexene-11-carboxylic acid, and 3-cyclohexene1-1-methylphenol are used. It is easily available as a reagent.
  • the substitution of a hydrogen atom by an atomic group is preferably at most one per side chain composed of a cyclic hydrocarbon.
  • the central metal and the ligand may be appropriately selected according to the bulkiness of the molecule, the degree of the polarity, and the like.
  • a copolymerization catalyst of ethylene and methyl monomer acrylate which is a polar monomer a meta-acene catalyst having Sm as a central metal and having two cyclopentenyl groups is known.
  • the resin may have an aromatic side chain other than aliphatic, such as a phenyl group.
  • the portion having an aromatic side chain is present in the resin in a form such as a styrene block. Good to do.
  • the total amount of the linear low-density borylene ethylene resin having a side chain of 0.003 eq / g or less and the aliphatic side chain is 0.005 eq / g or less.
  • the cyclic hydrocarbon which shares a part of the ring structure with the main chain, or the resin composed of the cyclic hydrocarbon and the linear hydrocarbon may be used as a blend.
  • the copolymer ( ⁇ ) is preferably present in a dispersed state in the matrix of the resin ( ⁇ ).
  • the copolymer ( ⁇ ) is preferably dispersed in fine particles having an average particle diameter of 10 jm or less, particularly preferably 5 m or less.
  • Co-weight uniformly dispersed in matrix of resin (B) Resin (B) itself functions as an oxygen absorbent due to the triggering action of coalescence (A). Therefore, the resin composition of the present invention can effectively absorb oxygen for a longer period than conventional oxygen scavengers.
  • the compounding amount of the copolymer (A) is such a small amount that a trigger action is exhibited, and the moldability of the matrix resin (B) does not decrease.
  • general-purpose resins can absorb oxygen, they are advantageous in terms of cost.
  • the resin (B) is preferably contained in a large proportion so that a matrix can be formed and a large amount of oxygen can be absorbed by oxidation.
  • the content of the resin (B) is 90%. The range is more preferably from 9 to 9% by weight, and even more preferably from 92.5 to 97.5% by weight.
  • the copolymer (A) can exist in a dispersed state in the matrix of the tree J (B), and can sufficiently function as a trigger for the oxidation of the tree [B]. It is preferable that the copolymer (A) be contained in a small proportion so that the copolymer (A) can be formed into a film, sheet or cup, tray, bottle, tube, or cap.
  • the content is preferably in the range of 1 to 10.0% by weight, more preferably in the range of 2.5 to 7.5% by weight.
  • a Group VIII metal component of the periodic table such as iron, cobalt, and nickel is preferable.
  • a Group I metal such as copper and silver: a Group IV metal such as tin, titanium, and zirconium And Group VI metals such as vanadium, chromium such as chromium, and manganese such as manganese.
  • the cone component has a high oxygen absorption rate and is particularly suitable for the purpose of the present invention.
  • the transition metal catalyst is generally used in the form of a low-valent inorganic or organic acid salt or a complex salt of the above transition metal.
  • examples of the inorganic acid salts include halides such as chlorides, oxalates such as sulfates, nitrogen oxalates such as nitrates, phosphates such as phosphates, and silicates.
  • examples of the organic acid salt include carboxylate, sulfonate, phosphonate and the like.
  • Carboxylates are suitable for the purpose of the present invention, and specific examples thereof include acetic acid, propionic acid, and isopropionate.
  • Isopenic acid hexanoic acid, heptanoic acid, isoheptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, 3,5,5-trimethylhexanoic acid, decanoic acid, neodecanoic acid, pentadecanoic acid, lauric acid , Myristic acid, panolemitic acid, malic acid, stearic acid, arachinic acid, lindelic acid, dizuric acid, petroselinic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, formic acid, oxalic acid, sulfamic acid And transition metal salts such as naphthenic acid.
  • a complex with ⁇ -diketone or /?-Keto acid ester is used, and as the diketone or /?-Keto acid ester, for example, acetyl acetone, ethyl acetate, 1,3 —Cyclohexadione, methylenebis-1,3-cyclohexadione, 2-benzyl-1,3-cyclohexadione, acetyltetralone, palmitoyltetralone, stearoyltetralone, benzoyltetralone, 2 —Acetylcyclohexanone, 2-benzoylcyclohexanone, 2-acetyl-1,3-cyclohexanedione, benzoyl-p-chlorobenzoylmethane, bis (4-methylbenzoyl) methane, bis (2-hydroxybenzoyl) methane,
  • the number of unsaturated bonds in the copolymer (A), that is, the copolymer (A) determines the oxygen absorption of the composition.
  • Increasing the amount of the copolymer (A) increases the amount of oxygen absorbed, but causes a problem when the oxygen barrier property of the base resin is lowered and the transparency is lowered. Therefore, the blending amount is limited, and the amount of oxygen absorbed is also limited.
  • the oxygen-absorbing resin composition of the present invention absorbs oxygen by causing the copolymer (A) to act as a trigger to promote oxidation of the resin (B).
  • a much larger amount of oxygen can be absorbed as compared with an oxygen-absorbing resin composition based on
  • oxygen can be effectively absorbed over a long period of time, and oxygen can be absorbed by general-purpose resins, which is advantageous in terms of cost.
  • the transition metal catalyst has a transition metal content of 10 to 500 ppm, particularly 50 to 500 ppm, based on the total weight of the oxygen-absorbing resin composition. It is preferably contained in the amount of ppm.
  • the amount of the transition metal catalyst is within the above range, good gas barrier properties can be obtained, and the tendency of deterioration of the oxygen-absorbing resin composition during kneading and molding can be suppressed.
  • the oxygen-absorbing resin composition of the present invention contains not more than 2000 ppm of a phosphorus-based antioxidant.
  • the oxygen-absorbing resin composition of the present invention contains 300 to 150 ppm of a phosphorus antioxidant.
  • Various means can be used for compounding the oxygen-absorbing resin composition, but a method using a twin-screw extruder equipped with a side feed is preferable.
  • the mixing by the twin-screw extruder is preferably performed in a non-oxidizing atmosphere in order to minimize the deterioration of the oxygen-absorbing resin composition. Also, keep the residence time short and the molding temperature as low as possible. Is very important in maintaining the performance of the oxygen-absorbing resin composition.
  • the oxygen-absorbing resin composition used in the present invention may contain a known activator if desired.
  • Suitable examples of the activator include, but are not limited to, polyethylene glycol, polypropylene glycol, an ethylene / methacrylic acid copolymer, and a polymer containing a hydroxyl group and / or a carboxyl group such as various ionomers.
  • the oxygen-absorbing resin composition used in the present invention includes a filler, a coloring agent, a heat stabilizer, a weather stabilizer, an antioxidant other than a phosphorus-based antioxidant, an antioxidant, a light stabilizer, and ultraviolet light.
  • Known resin compounding agents such as absorbents, antistatic agents, lubricants such as metal soaps and waxes, modifying resins and rubbers, and the like can be compounded according to a formulation known per se.
  • Lubricants include metal soaps such as magnesium stearate and calcium stearate, hydrocarbons such as fluid, natural or synthetic paraffin, microwax, polyethylene wax, chlorinated polyethylene wax, and stearic acid and lauric acid.
  • Fatty acid monoamides or bisamides such as stearic acid amide, balmitic acid amide, oleic acid amide, esylic acid amide, methylenebisstearamide, ethylenebistearamide, etc.
  • Esters such as thearate, hydrogenated castor oil, ethylene glycol monostearate, etc., alcohols such as cetyl alcohol and stearyl alcohol, and mixtures thereof are generally used.
  • the oxygen-absorbing composition of the present invention can be used for absorbing oxygen in a hermetically sealed package in the form of powder, granules or sheets. Further, it can be blended into a resin or rubber for forming a liner, a gasket or a coating, and used for absorbing residual oxygen in the package. In addition, it can be used as a packaging material in the form of films and sheets, and as a packaging container in the form of cups, trays, bottles and tube containers. You can.
  • the oxygen-absorbing resin composition of the present invention is preferably used in the form of a multilayer structure comprising at least one layer containing the same (hereinafter referred to as an oxygen-absorbing layer) and another resin layer.
  • the layer containing the oxygen-absorbing resin composition includes both a layer composed of the above-described oxygen-absorbing resin composition alone and a layer formed by mixing the oxygen-absorbing resin composition based on another resin or the like. Including the case of
  • the resin layer other than the oxygen-absorbing layer constituting the multilayer structure can be appropriately selected from a thermoplastic resin or a thermosetting resin depending on the usage mode and required functions.
  • a thermoplastic resin or a thermosetting resin depending on the usage mode and required functions.
  • an olefin resin, a thermoplastic polyester resin, an oxygen-barrier resin, and the like can be given.
  • Polyolefin resins such as low-density polyethylene (LDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and linear ultra-low-density polyethylene (LVLDPE) ), Polypropylene (PP), ethylene-propylene copolymer, polybutene-11, ethylene-butene-11 copolymer, propylene-butene-11 copolymer, ethylene-propylene-butene-11 copolymer, ethylene Examples thereof include vinyl monoacetate copolymer, ion-crosslinked olefin copolymer (ionomer), and blends thereof.
  • LDPE low-density polyethylene
  • MDPE medium-density polyethylene
  • HDPE high-density polyethylene
  • LLDPE linear low-density polyethylene
  • LVLDPE linear ultra-low-density polyethylene
  • PP Polypropylene
  • PP
  • thermoplastic polyester resin examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthate (PEN), a polyester resin mainly composed of polyglycolic acid, or a copolymer of these. Examples thereof include polymerized polyesters, and blends of these.
  • oxygen barrier resin ethylene-vinyl alcohol copolymer (EVO)
  • the saponified ethylene vinyl alcohol copolymer has a molecular weight capable of forming a film. Generally, it has a viscosity of 0.01 dlZg or more, preferably 0.05 dl / g or more, measured at 30 ° C. in a mixed solvent of phenol: water at a weight ratio of 85:15.
  • the oxygen barrier uniform resin a polyamide resin such as polymethaxylidene adipamide (MXD6) and a polyester resin such as polyglycolic acid can be used.
  • MXD6 polymethaxylidene adipamide
  • polyester resin such as polyglycolic acid
  • the oxygen absorbing layer is represented as OAR and has the following structure.
  • Double layer structure PET / OAR, PE / OARs OPP / OAR ⁇
  • Three-layer structure PE / OAR / PET, PET / OA / PETs PE / OA / O PP ⁇ EVOH / OAR / PETs PE / OAR / COC;
  • PE means low density polyethylene (LDPE), medium density polyethylene (MD PE), high density polyethylene (HDPE), linear low density polyethylene (LLDP E), linear ultra low density polyethylene (LVLDPE) .
  • LDPE low density polyethylene
  • MD PE medium density polyethylene
  • HDPE high density polyethylene
  • LLDP E linear low density polyethylene
  • LVLDPE linear ultra low density polyethylene
  • a structure having at least one oxygen barrier layer is preferable because the life of the oxygen storage layer can be improved.
  • an adhesive resin may be interposed between the resin layers as necessary.
  • Such adhesive resins include carbonyl (1-CO-) groups based on carboxylic acids, carboxylic anhydrides, carboxylic acid salts, carboxylic acid amides, carboxylic acid esters, etc. And a thermoplastic resin containing the resin at a concentration of from 10 to 500 (meq) / 100 g resin.
  • Suitable examples of the adhesive resin include ethylene-acrylic acid copolymer, ionic cross-linked copolymer, maleic anhydride-grafted polyethylene, maleic anhydride-grafted polypropylene, acrylic acid-grafted polyolefin and ethylene-vinyl acetate copolymer.
  • the multilayer structure can be manufactured by a method known per se. For example, ordinary extrusion molding may be performed using a multilayered multiple die using a number of extruders according to the type of resin.
  • a multilayer injection molded body can be produced by a co-injection method or a sequential injection method using a number of injection molding machines according to the type of the resin. Further, in the production of a film or sheet using the multilayer structure of the present invention, an extrusion coating method or a San German tila lamination can be used, and a multilayer film or a laminar film can be formed by a dry lamination of a film formed in advance. Sheets can also be manufactured.
  • Packaging materials such as films can be used as various types of packaging bags, and the bags can be produced by a bag production method known per se, such as ordinary three- or four-sided sealed patches, and gusseted patches. , Standing patches, pillow wrapping bags, etc., but are not limited to this example.
  • the packaging container using the multilayer structure of the present invention is useful as a container capable of preventing a decrease in the flavor of the contents due to oxygen.
  • Contents that can be filled include beverages such as beer, wine, fruit juice, carbonated soft drinks, oolong tea, green tea, etc.Food products such as fruits, nuts, vegetables, meat products, infant food, coffee, jam, mayonnaise, ketchup, cooking oil , Dressing, sauces, tsukudani, dairy products, etc., and pharmaceuticals, cosmetics, gasoline, etc., and other products that deteriorate in the presence of oxygen, but are not limited to these examples.
  • beverages such as beer, wine, fruit juice, carbonated soft drinks, oolong tea, green tea, etc.
  • Food products such as fruits, nuts, vegetables, meat products, infant food, coffee, jam, mayonnaise, ketchup, cooking oil , Dressing, sauces, tsukudani, dairy products, etc., and pharmaceuticals, cosmetics, gasoline, etc., and other products that deteriorate in the presence of oxygen, but are not limited to these examples.
  • the packaging container may be a package further packaged by an exterior body.
  • Styrene-one-gen copolymer was dissolved at a concentration of 10 to 15 wt% using double-mouthed form as a solvent, and 13 C-NMR measurement (JEOL, JNM-EX270) was performed to identify the resin structure from the spectrum. . Thereby, the content was determined by calculating the number of moles of double bonds (eq / g) contained in the resin lg.
  • Low-density polyethylene resin manufactured by Nippon Polyolefin Co., Ltd.
  • hydrogenated styrene-butylene copolymer resin or hydrogenated styrene-isoprene copolymer resin at various weight percentages and as an oxidation catalyst
  • Cobalt neodecanoate (DICNAT E 5000, manufactured by Dainippon Ink and Chemicals, Inc.) was blended at 35 Oppm in terms of Co, premixed at 50 ° C. using a stirrer (manufactured by Dalton, Inc.), and then charged into the hopper.
  • an oxygen-impermeable container with an inner volume of 85 ml together with 1.0 ml of distilled water [Hiretoflex: HR78-84 Polypropylene Z manufactured by Toyo Seikan Co., Ltd. Steel foil / polypropylene cup-shaped laminated container], heat-sealed with polypropylene (inner layer) / aluminum foil / polyester (outer layer) lid material, and stored at 50 ° C.
  • the oxygen concentration in this container was measured at the lapse of time using gas chromatography (GC-8A, manufactured by Shimadzu Corporation), and the oxygen absorption (cc / g) was calculated.
  • Low-density polyethylene resin JB221R Nippon Polyolefin Co., Ltd.
  • hydrogenated styrene-isoprene-styrene-triploc copolymer resin Hybler 7125 Kuraray Co., Ltd., carbon-carbon double bond content in this resin
  • a resin composition level 1 was prepared by the above method, and the amount of oxygen absorbed by the resin composition (cc / g) was calculated.
  • Low-density polyethylene resin manufactured by JB221R Nippon Polyolefin Co., Ltd.
  • hydrogenated styrene-isoprene-styrene tripropylene copolymer resin Hibra-71 25 manufactured by Kuraray Co., Ltd., the carbon in the resin - carbon double bond content 2.
  • Example 1 A resin composition pellet was prepared in the same manner as in Example 1 except that hydrogenated styrene-isoprene-styrene triblock copolymer resin S (Hibra-1125, manufactured by Kuraray Co., Ltd.) was not blended. The oxygen absorption amount (cc / g) of the resin composition was calculated. The result
  • a multilayer bottle was prepared using the pellets by the method described above, and oxygen barrier integrity was evaluated and color b values were measured. The results are shown in Table 2.
  • Example 1 18. 9 44. 9 66. ⁇ 100. 6
  • Example 2 19. 0 46. 0 64. 0 100. 0
  • Example 3 1. 0 41. 0 60.0 98.0
  • Example 4 15.0 42.0 61.5
  • a freeze grinder JFC-300: Nippon Kagaku Kogyo Co., Ltd.
  • an oxygen-absorbing resin composition comprising an oxygen-absorbing resin, an oxidation trigger resin and a transition metal catalyst was sealed in a sealed container having an internal volume of 85 cc in air, and stored at 30 ° C.
  • the oxygen concentration in the container was measured by gas chromatography (GC3B T: Shimadzu Corporation), detector: TCD (60 ° C), column: molecular sheep 5A (100 ° C), carrier (Gas: argon), and the amount of oxygen absorbed per 1 g of the oxygen-absorbing resin composition was measured. Those with an oxygen absorption of less than 10 cc / g were rated x, and those with an oxygen absorption of 10 cc / g 'or more were rated ⁇ .
  • Acid comprising linear low-density polyethylene resin, acid-triggered trigger resin and transition metal catalyst
  • the sealed container enclosing the elemental absorbent resin composition was stored at 30 ° C., and approximately 30 cc of oxygen was absorbed per 1 g of the linear low-density polyethylene resin.
  • the area value of the spectrum of the obtained gas chromatograph is defined as the amount of the oxidation by-product, and the value is less than 1 ⁇ 10 7 , the value of 1 ⁇ 10 7 to less than 2 ⁇ 10 7 is 2 or less.
  • X 107 or more was designated as X.
  • a linear low-density polyethylene resin consisting of 95% by weight (Evolyu 0510B: manufactured by Mitsui Chemicals, Inc.) is hydrogenated styrene-butane styrene-tripropane copolymer resin (Tuftec P2000: Asahi Kasei Co., Ltd.) 5% by weight and cobalt metal content 9.5% by weight of cobalt stearate (Dainippon Inki Chemical Industry Co., Ltd.) were blended at 15 Oppm in terms of cobalt, and a stirring dryer (Dalton) The mixture was preliminarily kneaded with the hopper and then charged into a hopper.
  • This material was evaluated for the amount of oxidation by-products and the mechanical strength by the above-described evaluation method. As a result, it was found that the material showed good oxygen absorption and the amount of oxidation by-products was small.
  • Example 2 The procedure was carried out except that a linear low-density polyethylene resin (ZM063: Ube Industries, Ltd.) in which the side chain branched from the main chain was a 0.001 1 eq / g linear hydrocarbon was used.
  • ZM063 Ube Industries, Ltd.
  • an oxygen-absorbing resin composition was prepared and evaluated. This material also showed good oxygen absorption, and the amount of oxidation by-products was small.
  • Example 2 Except that the resin was a normal high-pressure method low-density polyethylene resin (JB221R: manufactured by Nippon Polyethylene Co., Ltd.) which cannot be called linear low-density polyethylene, oxygen absorption was carried out in the same manner as in Example 1. Preparation and evaluation of the resin composition were performed. This resin had a chain side chain of 0.001eq / g having branches of various chain lengths. The oxidized by-products in Examples 5 and 6 were smaller than those in Example 7 due to the difference in the form of the chain side chains.
  • JB221R manufactured by Nippon Polyethylene Co., Ltd.
  • the oxygen-absorbing resin composition was cooled for 10 minutes with a freeze grinder (JFC-300: Nippon Kagaku Kogyo Co., Ltd.) and then ground for 10 minutes. Next, 0.1 g of the obtained sample and 1 cc of distilled water were placed in a sealed container having an inner volume of 85 cc, and sealed with a lid material having aluminum foil as a barrier layer. After storage at 30 ° C for 2 weeks, the oxygen concentration in the container was measured by gas mouth chromatography (GC-3BT: Shimadzu Corporation). Samples with oxygen absorption of 5 cc or more per gram of sample were marked with ⁇ , and others were marked with X.
  • GC-3BT gas mouth chromatography
  • the sealed container enclosing the oxygen-absorbing resin composition used for the evaluation of the oxygen-absorbing performance was stored at 30, and approximately 50 cc of oxygen was absorbed per 1 g of the absorptive resin composition. At this time, 5 cc of the gas in the sealed container was collected with a syringe, and the oxidation by-product was analyzed by GC-MS (TEKMAR-4000: Agilent column: DB-1) by the purge & trap method. .
  • the area value of the spectrum of the obtained gas chromatograph was defined as the amount of oxidation by-products, and those having a value of less than 2.5 ⁇ 10 7 were designated as ⁇ , and those having a value of 2.5 ⁇ 10 7 or more were designated as X. . 4. Evaluation of mechanical strength
  • An oxygen-absorbing resin composition pellet was sandwiched between hot plates to produce a 0.3 mm thick sheet at 200 ° C.
  • a dumbbell-shaped test piece was cut out from this sheet.
  • the test piece was stored at 30 ° C. in the above-mentioned sealed container having an inner volume of 85 cc and absorbed oxygen at 15 cc / g. Using this test piece in a 23 ° C-50% RH environment
  • An oxygen-absorbing resin composition was prepared and evaluated in the same manner as in Example 5, except that the base resin was a linear low-density polyethylene having a multi-site catalyst (ULTZEX 2020 SB: Mitsui Chemicals, Inc.).
  • the prepared oxygen-absorbing resin composition is Although the yield was good, it had many branched by-products derived from 4-methylpentene-1, so that there were many oxidation by-products, especially acetone. The mechanical strength of this oxygen-absorbing resin composition was not measured.
  • an oxygen-absorbing resin composition was prepared in the same manner as in Example 5, except that a random copolymer resin of ethylene propylene (RE386: Nippon Polypropylene Co., Ltd.) was used as a base resin.
  • the prepared oxygen-absorbing resin composition had good oxygen-absorbing performance, but had many branches, so that the amount of oxidized by-products was very large, and the mechanical strength was greatly reduced.
  • Table 4 shows the results of Examples 5 and 8 to 11; as is clear from Table 4, depending on the state of branching of the base resin, the oxygen absorption performance, the amount of oxidized by-products, A clear difference was observed in the degree of strength reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)

Abstract

 酸素吸収性能に優れ、かつ成形中の樹脂の酸化劣化を抑制して、成形時に着色を生じない酸素吸収性樹脂組成物を提供すること。 水添スチレン−ジエン共重合体(A)、分子構造にエチレン構造を有する熱可塑性樹脂(B)及び遷移金属触媒(C)を含み、共重合体(A)がトリガーとなって熱可塑性樹脂(B)の酸化が進行することによって酸素を吸収する酸素吸収性樹脂組成物を提供する。ここで、共重合体(A)は、ジエン由来の炭素−炭素二重結合を1×10−5~1×10−2eq/gの範囲で含有するのがよい。

Description

酸素吸収性樹脂組成物
(発明の背景)
本発明は、 酸素存在下で劣化を起こしやすい内容品、 特に飲料、 食品、 及び医 薬品等の包装材に用いられる酸素吸収性樹脂組成物に関する。
従来、. 包装容器としては、'金属缶、 ガラスビン、 各種プラスチック容器等が使. 用されている。 プラスチック容器は、 軽量であり、 耐衝撃性にもある程度優れて いるという利点を有しているが、 容器壁を透過する酸素による内容物の変質、 フ レ一バ一低下等の問題を有している。 特に、 金属缶やガラスビンでは容器壁を通 しての酸素透過がゼロであり、 容器内に残留する酸素のみが問題となるのに対し て、 プラスチック容器の場合には、 器壁を通して無視し得ないォ一ダ一の酸素が 透過し、 内容品の保存性の点で問題となっている。
これを防止するために、 プラスチック容器では、 エチレン一ビニルアルコール 共重合体等のガス遮断性を有する樹脂の層を少なくとも 1層有する多層構造体が 提案されている (例えば、 特開平 1— 2 7 8 3 4 4号公報参照) 。
また、 ポリマ一から成り酸素捕集特性を有する組成物又は該組成物の層を含有 する包装用障壁において、 組成物が酸化可能有機成分の金属触媒酸化により酸素 を捕集することを特徴とする包装用障壁が提案されており、 酸化可能有機成分と して、 ポリアミド、 特にキシリレン基含有ポリアミドが使用されている (例えば 、 特表平 2— 5 0 0 8 4 6号公報参照) 。
上記ガスバリヤー性に優れた樹脂、 例えばェチレン—ビニルアルコール共重合 体 (E V O H) は、 低湿度条件下ではきわめて優れた酸素遮断性を示すものの、 高湿度条件下では酸素に対する透過性が極めて大きくなるという問題を有してい る。 さらに、 内容物の保存性の向上を目的として、 上記ガスバリヤ一性樹脂は湯 殺菌、 ボイル殺菌、 レトルト殺菌等の加熱殺菌包装技法と組み合わせて用いられ る場合が多い。 従って、 この加熱殺菌時に、 E V O Hは高湿度条件下に置かれる ため、 酸素透過性の大きい状態になるばかりでなく、 E V O Hが有する保水性の ために、 殺菌終了後も酸素透過性の大きい状態が続き、 所定のガスバリヤ一性が 得られない。
(発明の開示)
しかしながら、 上記酸素吸収性樹脂組成物は、 成形中に樹脂の酸ィ匕劣化によつ て着色するという問題が生じ、 外観上好ましくない。 また、 より優れた耐熱性を 有する酸素吸収性樹脂組成物に対する要求がある。
本発明の目的は、 上記酸素吸収性樹脂組成物において、 酸素吸収性能に優れ、 かつ成形中の樹脂の酸化劣化を抑制して、 成形時に着色を生じない酸素吸収性樹 旨組成物を提供することである。
また、 本発明の他の目的は、 耐熱性に優れた酸素吸収性樹脂組成物を提供する しとであ 。
本発明は、 水添スチレン—ジェン共重合体 (Α) 、 分子構造にエチレン構造を 有する熱可塑性樹脂 ( Β ) 及び遷移金属触媒 (C ) を含み、 共重合体 (Α) がト リガ一となって熱可塑性樹'脂 ( Β ) の酸化が進行することによって酸素を吸収す る酸素吸収性樹脂組成物を提供する。 ここで、 共重合体 ( Α) は、 ジェン由来の 炭素一炭素二重結合を 1 X 1 0— 5〜: 1 X 1 0— 2 e q / gの範囲で含有するのが よい。
本発明の酸素吸収性樹脂組成物を用いることにより、 酸素吸収性能に優れ、 か つ成形中の樹脂の酸化劣化を抑制することができる。 また、 耐熱性に優れた酸素 吸収性樹脂組成物を提供することができる。 (発明を実施するための最良の形態)
本発明の酸素吸収性樹脂組成物は、 水添スチレン—ジェン共重合体 (A) 、 分 子構造にエチレン構造を有する熱可塑性樹脂 ( B ) 及び遷移金属触媒 ( C ) を含 み、 共重合体 (A) がトリガ一となって熱可塑性樹脂 (B ) の酸化が進行するこ とによって酸素を吸収するものである。
水添スチレン一ジェン共重合体 (A) としては、 スチレン一ジェン共重合体を 水素化することによって得ることができる。 例えば、 旭化成ケミカルズ (株) か ら夕フテック P 2 0 0 0というグレード名の樹脂として入手ができる。 この樹 J旨 は、 スチレン一ジェン共重合体におけるビニルーポリブ夕ジェン相が水素添加さ れている。 水添スチレン一ジェン共重合体 ( A) を用いることにより、 耐熱性に 優れた酸素吸収性樹脂組成物を提供することができる。
スチレン一ジェン共重合体としては、 鎖状又は環状の共役又は非共役ジェンか ら誘導された単位を含む樹脂が好ましい。 これらの樹脂は単独で用いてもよく、 また二種以上の樹脂のブレンド物の形態で用いることもできる。
鎖状又は環状の共役又は非共役ジェンの単量体としては、 例えばブタジエン、 ィソプレン等の共役ジェン; 1, 4一へキサジェン、 3—メチル一 1, 4—へキ サジェン、 4ーメチル一 1, 4—へキサジェン、 5ーメチルー 1 , 4一へキサジ ェン、 4 5 5—ジメチルー 1 , 4—へキサジェン、 7—メチルー 6—ォク夕 ジェン等の鎖状非共役ジェン;メチルテトラヒドロインデン、 5—ェチリデンー 2—ノルボルネン、 5—メチレン一 2—ノルボルネン、 5—イソプロピリデン一 2—ノルボルネン、 5—ビニリデン一 2—ノルボルネン、 6—クロロメチル一 5 —イソプロぺニル一 2—ノルボルネン、 ジシクロペン夕ジェン等の環状非共役ジ ェンが挙げられる。
具体的な共重合体 (A) としては、 水添スチレン一ブ夕ジェン共重合体、 水添 スチレン一イソプレン共重合体等が挙げられる。
共重合体の態様としては、 ランダム共重合体でもプロヅク共重合体でも良いが 、 ブロック共重合体は、 トリガ一効果の点でより好ましく、 特に水添スチレン一 イソプレン一スチレントリブロック共重合体、 水添スチレン一ブタジエンースチ レントリプロック共重合体がより好ましい。 上記トリプロック共重合体の化学構 造的には、 線状でもラジアル状でも良く、 また、 水添前のジェン部位のジェン部 分の炭素—炭素二重結合は、 ビニレン基の形で主鎖に存在しても、 ビニル基の形 で側差に存在しても良い。 また、 ランダム共重合体としては、 水添スチレン一ィ ソプレンランダム共重合体乃至水添スチレン一ブ夕ジェンランダム共重合体が挙 げられる。
また、 ジェン由来の部位を適度に水添したスチレン共重合体の別の態様として 、 水添スチレン一ジェン一才レフイン結晶トリブロック共重合体も有用であり、 特に、 水添スチレン—ブタジエン—ォレフィン結晶トリブロック共重合体は、 酸 化副生成物が抑制される点で好ましい。
このうち、 熱可塑性樹脂 (B ) に対するトリガ一効果が顕著であること、 酸素 吸収後の酸化副生物の量が少ないことから、 共重合体 (A) としてはジェンから 誘導された単位が CAのアルキル鎖である分岐部分を有する共重合体が好ましく 、 具体的には水添スチレン一ブタジエン共重合体、 特に水添スチレンープ夕ジェ ン一スチレントリプロック共重 ' 体が好ましい。
また、 成形中の熱安定性、 及び熱可塑性樹脂 (B ) に対するトリガー効果が顕 著である点から、 共重合体 (A) は、 ジェン由来の炭素—炭素二重結合を 1 X
1 0 - 5〜: L X 1 0— 2 e q/gの範囲で含有するのが好ましい。 より好ましくは
、 1 X 1 0一4〜 1 X 1 0— 2 e q / gである。 さらに好ましくは、 1 x 1 0一4
5 x 1 0—3 e q/gである。 そこで、 (A) (B ) 及び ( C ) を配合した酸素 吸収性樹脂組成物としては、 炭素—炭素二重結合を 2 X 1 0一6〜 1 X 1 0一4 e q/ gの範囲で含有するのが好ましい。 より好ましくは、 1 X 1 0— 5~ 5 X I 0 _5 e q/gである。
前記樹脂 ( B ) としては、 例えば、 低密度ポリエチレン、 中密度ポリエチレン 、 高密度ポリエチレン、 線状低密度ポリエチレン、 線状超低密度ポリエチレン等 のポリエチレン、 アイソ夕クティック又はシンジオタクティクスポリプロピレン 等のポリプロピレン、 エチレン一プロピレン共重合体、 ポリブテン一 1、 ェチレ ンープテン一 1共重合体、 エチレン一プロビレン一プテン一 1共重合体、 ェチレ ン一酢酸ビニル共重合体、 エチレン—ビニルアルコール共重合体等のエチレン系 共重合体、 プロビレン一ブテン一 1共重合体等のプロピレン系共重合体、 イオン 架橋ォレフィン共重合体或いはこれらのブレンド物等が挙げられる。 好ましくは ヽ 樹脂 (B ) はポリエチレン、 ポリプロピレン、 エチレン一プロピレン共重合体 、 ェチレン系共重合体及びプロビレン系共重合体である。
また、 上記樹脂をべ一スポリマーとし、 不飽和カルボン酸又はこれらの誘導体 でグラフト変性された酸変性ォレフィン系樹脂を分子構造にエチレン構造を有す る熱可塑性樹脂 ( B ) として用いることもできる。
また、 前記樹脂 ( B ) としては、 C 2〜C 2 0の単量体から重合された実質的 にエチレン性不飽和結合を含有しない樹脂であるのが好ましい。 さらに、 前記樹 脂 (B ) は、 0 . 0 0 3 e q/g以下の直鎖状炭化水素から成る線状低密度ポリ エチレン、 または脂肪族性の側鎖が合計量 0 . 0 0 5 e q/g以下の環構造の一 部を主鎖と共有する環状炭化水素、 或 (/ ^は前記環状炭化水素及び直鎖状炭化水素 から成る棱 ί脂であるのが好ましい。 ここで、 側鎖が 0 . 0 0 3 e q/g以下の直 鎖状炭化水素から成る線状低密度ポリエチレンにおける e q/gは、 樹脂 1 g中 の側鎖数を求め、 それをァボガドロ数で除した値であり、 ァボガドロ数を N、 樹 脂 1 g中の側鎖数を nで表すと、 n/Nより計算することができる (以下同じ) ここで、 実質的にエチレン性不飽和結合を含有しないとは、 エチレン性不飽和 結合を全く含有しないのが好ましいが、 0 . 0 0 0 1 e q/g程度含有する態様 も含むことができる。
前述した本発明の酸素吸収性樹脂組成物で用いる線状低密度ポリェチレンは、 直鎖状の側鎖を形成できるコモノマーを選択し、 エチレンと共重合することによ り、 側鎖を 0 . 0 0 3 e q/g以下の直鎖状炭化水素とする。
側鎖を、 直鎖状炭化水素とすることにより、 側鎖に枝分かれがある場合のよう な、 枝分かれ部位の分子切断を防ぐことができ、 低分子揮発成分の生成を抑制で きる。 また、 酸化されやすい三級炭素部位を意図的に分子鎖に導入することによ り、 酸化の進行を制御することができ、 二級炭素部位等の酸化に伴う無秩序な分 子切断を避けることができる。
前記重合においてはシングルサイト触媒を用いて重合することにより、 確実に 各分子量成分に亘つて共重合組成比の変動が抑制することが防止できる。 その結 果、 分子構造が均一となり、 酸化が各分子鎖間で均一に進行することによって、 過剰な副反応を抑制し、 無意味な分子切断による酸化副生成物の発生を抑制する ことができるため、 好ましい。
好適な触媒としては、 メタ口セン系触媒が挙げられる。 他の触媒としてはボス トメ夕ロセン系触媒に位置づけられるォレフィン重合用触媒、 特にフエノキシィ ミン触媒 (F I触媒) が好適である。
一方、 シングルサイ ト触媒以外の触媒である例えば、 チ一グラ一ナツ夕触媒等 のマルチサイ ト触媒を用いて重合した場合は、 エチレンとコモノマーとの共重合 比が各分子鎖間で揃い難く、 酸化が局所的に集中するなどの好ましくない状況が 発生する。
また、 主鎖から分岐する側鎖が 0 . 0 0 3 e q/gを超えると、 選択的に酸化 が起き易い、 側鎖の結合点に当たる三級炭素が主鎖中に多くなり、 主鎖切断によ り低分子の生成頻度が増えて、 やはりフレーバー等に悪影響を与える低分子成分 の発生の原因となる。
側鎖の好適範囲は、 0 . 0 0 0 3〜0 . 0 0 3 e q/g、 特に 0 . 0 0 0 5 ~ 0 . 0 0 3 e q/gであり、 この範囲にあることで、 酸化副生成物の低減の他に 、 安定な酸素吸収性、 熱安定性が確保されるので好ましい。
前記した線状低密度ポリエチレンとしては、 例えば、 メタ口セン系触媒を重合 触媒として使用したエチレンと 1—ブテンの共重合体、 エチレンと 1—へキセン の共重合体、 エチレンと 1ーォクテンの共重合体等のエチレンと 一ォレフィン との共重合体が好ましい。 これらの樹脂は、 単独で用いてもよいし、 二種以上を 組み合わせて用いてもよい。
また、 前述した樹脂のシングルサイ ト触媒による重合は、 工業的に可能な方法 であればどのような方法でも良いが、 最も広く使用されている点から液相法で行 うのが好ましい。
一方、 前述した本発明の酸素吸収性樹脂組成物において用いる脂肪族性の側鎖 が合計量 0 . 0 0 5 e q/ g以下の環構造の一部を主鎖と共有する環状炭化水素 、 或いは前記環状炭化水素及び直鎖状炭化水素から成る樹脂は、 エチレンとェチ レン性不飽和結合を有する脂環属炭化水素との共重合、 或いはエチレン、 ェチレ ン性不飽和結合を有する脂環属炭化水素、 及び直鎖状の側鎖を形成できるコモノ マーを共重合することで得ることができる。
この樹脂は、 主鎖に、 環構造の一部を主鎖と共有する環状炭化水素が結合してい るため、 主鎖状の三級炭素が同時に二箇所切断しないと環状部分の分離が起きな いため、 酸素吸収量に比べてやはり酸化副生成物の発生が起き難い。
また、 化学式 1に記載した形の側鎖を形成すると、 側鎖中に三級炭素部分が酸 化される場合には、 スキーム 1を示したように低分子成分の発生が起きない。 化学式 1
Figure imgf000009_0001
これらの脂肪族性環状側鎖を有する樹脂は、 ガラス転移温度が高い傾向がある が、 ガラス転移温度が高いと常温において分子鎖の運動性が不十分となり、 酸素 吸収速度が低下する傾向があり、 この意味で適度なエチレンを共重合した樹脂、 或いはエチレン以外の直鎖状のコモノマ一を共重合し、 直鎖状炭化水素の側鎖を 設けることにより、 適度にガラス転移点を下げることができる。 この場合、 側鎖 は前記直鎖状炭化水素の側鎖は C 4以上であることが好ましい。 好ましいガラス 転移点は 5 0 °C以下である。
脂肪族性の側鎖が合計量 0 . 0 0 5 e q/ g以下の環構造の一部を主鎖と共有 する環状炭化水素、 或いは前記環状炭化水素及び直鎖状炭化水素から成る樹脂に おいては、 環状側鎖を有する単量体がブロック共重合されていても、 ランダム共 重合されていても、 或いは交互共重合されていても構わないが、 脂肪族性環状側 鎖部位は、 分子運動性が低くなりやすいため、 ランダム共重合や交互共重合のよ うな形態を取ることが好ましい。
主鎖に結合する前記脂肪族性の側鎖が 0 . 0 0 5 e qZ gを超えると、 主鎖中 の三級炭素密度が高くなりすぎ、 主鎖切断により低分子の生成頻度が増えて、 や はりフレーバー等に悪影響を与える低分子成分の発生の原因となる。
脂肪族性の側鎖の好適範囲は、 0 . 0 0 0 5〜0 . 0 0 5 e q/g、 特に、 0 . 0 0 1〜0 . 0 0 5であり、 この範囲にあることで、 酸化副生成物の低減の他 に、 安定な酸素吸収性、 熱安定性が確保されるので好ましい。
環構造の一部を主鎖と共有する環状炭化水素、 或いは前記環状炭化水素及び直 鎖状炭化水素から成る樹脂は、 シングルサイ ト触媒を用いて重合することが、 種 々の共重合体を得ることができ、 更に共重合体のミクロ構造が制御できるので好 ましい。 シングルサイ ト触媒としては、 前記メ夕ロセン触媒やボストメ夕口セン 系触媒に位置づけられるォレフィン重合用触媒が好適に使用できる。 具体的には
、 これに限定されないが、 中心金属として、 丄ゃ !^を用ぃ、 配位子として、
2つのィンデニル基を有するものゃシクロペン夕ジェニル基とベンゾィンデニル 基を有するもの等が挙げられる。 また、 シクロペン夕ジェニル型配位子をフエノ キシ配位子と組み合わせたフヱノキシチタン系触媒等も好適に使用される。 シン グルサイト触媒を用いた環状側鎖を有する樹脂の例としては、 璟状ォレフイン共 重合体 (A P E L :三井化学 (株) ) 等があげられる。
前記環構造の一部を主鎖と共有する環状炭化水素、 或いは前記環状炭化水素及 び直鎖状炭化水素から成る樹脂は、 例えばジルコニゥムを中心金属とするメタ口 セン系のシングルサイ ト触媒を用いて、 エチレンとシクロブテン、 エチレンとシ 合することで得ることができる。 また、 上記の 2元系に更に、 1—ブテン、 1一 へキセン、 1—ォクテン等のコモノマーを用いることで、 直鎖状の脂肪族性の側 鎖を導入できる。 また、 触媒の種類を選ぶことにより、 共重合体の構造も前述し たようにプロック、 ランダム等各種形態のものを得ることができる。
上記共重合体の組成比を制御することで、 本発明の側鎖数を有する樹脂を得る ことができる。
前記環状炭化水素は、 それを構成する一部の水素原子が他の原子や原子団によ り置換されていても良い。 原子団としては、 アルキル基、 アルデヒド基、 カルボ キシル基、 水酸基等が挙げられる。 例えば、 シクロへキセンの場合、 3—シクロ へキセン一 1—カルボクスアルデヒド、 3—シクロへキセン一 1—カルボン酸、 3—シクロへキセン一 1—メ夕ノ一ル等の単量体が試薬として容易に入手し得る 。 原子団による水素原子の置換は、 環状炭化水素からなる側鎖 1つ当たり 1っ以 下であることが好ましい。
置換原子団が極性を有する場合には、 分子の嵩高さ、 極性の程度等に応じて、 中心金属や配位子を適宜選択すればよい。 エチレンと極性単量体であるメチルメ 夕クリレートの共重合触媒として、 S mを中心金属とし、 2つのシクロペン夕ジ ェニル基を有するメタ口セン系触媒が知られている。
樹脂中に脂肪族性以外の例えばフェニル基のような芳香族性の側鎖があつても 良いが、 この場合芳香族性側鎖を有する部分は例えばスチレンブロックのような 形態で樹脂中に存在するのが良い。
さらに、 前述した側鎖が 0 . 0 0 3 e q/ g以下の直鎖状炭化水素から成る線 状低密度ボリェチレン樹脂、 と脂肪族性の側鎖が合計量 0 . 0 0 5 e q/g以下 の環構造の一部を主鎖と共有する環状炭化水素、 或いは前記環状炭化水素及び直 鎖状炭化水素から成る樹脂はブレンドして用いても良い。
本発明の酸素吸収性樹 β旨,組成物においては、 共重合体 ( Α) は樹脂 ( Β ) のマ トリックス中に分散した状態で存在するのが好ましい。 共重合体 (Α) は平均粒 径が 1 0 j m以下の微粒子状に分散するのが好ましく、 5 m以下の微粒子状に 分散するのが特に好ましい。 樹脂 ( B ) のマトリヅクス中に均一に分散した共重 合体 (A) のトリガー作用により、 樹脂 (B ) 自体が酸素吸収剤として機能する 。従って、 本発明の樹脂組成物は、 従来の酸素掃去剤よりも長期にわたって酸素 を有効に吸収できる。 また、 共重合体 (A) の配合量は、 トリガ一作用が発現す る程度の少量の配合であり、 マトリックス樹脂 (B ) の成形性の低下も生じない 。 また、 汎用樹脂に酸素を吸収させることができるためにコスト面でも有利であ る。
樹脂 (B ) は、 マトリックスの形成が可能であり、 かつ酸化により多量の酸素 を吸収することが可能であるように多割合で含有されるのが好ましく、 樹脂 (B ) の含有量は 9 0〜9 9重量%の範囲がより好ましく、 9 2 . 5〜9 7 . 5重量 %の範囲がさらに好ましい。 また、 共重合体 (A) は、 樹 J (B ) のマトリック ス中に分散した状態で存在することが可能であり、 かつ樹]旨 (B ) の酸化のトリ ガーとして機能を十分に発揮することが可能であるように少割合で含有されるの が好ましく、 フィルム、 シート或いはカップ、 トレイ、 ボトル、 チューブ、 キヤ ヅプとする際に成形性を考慮すると、 共重合体 (A) の含有量は 1〜1 0 . 0重 量%の範囲が好ましく、 2 · 5〜7 . 5重量%の範囲がさらに好ましい。
遷移金属触媒としては、 鉄、 コバルト、 ニッケル等の周期律表第 VI II族金属成 分が好ましいが、 他に銅、 銀等の第 I族金属:錫、 チタン、 ジルコニウム等の第 IV族金属、 バナジウムの第 V族、 クロム等 VI族、 マンガン等の VI I族の金属成分を 挙げることができる。 これらの金属成分の内でもコノ υレト成分は、 酸素吸収速度 が大きく、 本発明の目的に特に適したものである。
遷移金属触媒は、 上記遷移金属の低価数の無機酸塩或いは有機酸塩或 ヽは錯塩 の形で一般に使用される。
無機酸塩としては、 塩化物などのハラィド、 硫酸塩等のィォゥのォキシ酸塩、 硝酸塩などの窒素のォキシ酸塩、 リン酸塩などのリンォキシ酸塩、 ケィ酸塩等が 挙げられる。 一方有機酸塩としては、 カルボン酸塩、 スルホン酸塩、 ホスホン酸塩などが挙 げられるが、 カルボン酸塩が本発明の目的に好適であり、 その具体例としては、 酢酸、 プロピオン酸、 イソプロビオン酸、 ブタン酸、 イソプ夕ン酸、 ペンタン酸
、 イソペン夕ン酸、 へキサン酸、 ヘプタン酸、 イソヘプタン酸、 オクタン酸、 2 ーェチルへキサン酸、 ノナン酸、 3 , 5, 5—トリメチルへキサン酸、 デカン酸 、 ネオデカン酸、 ゥンデカン酸、 ラウリン酸、 ミリスチン酸、 パノレミチン酸、 マ 一ガリン酸、 ステアリン酸、 ァラキン酸、 リンデル酸、 ヅズ酸、 ペトロセリン酸 、 ォレイン酸、 リノール酸、 リノレン酸、 ァラキドン酸、 ギ酸、 シユウ酸、 スル ファ'ミン酸、 ナフテン酸等の遷移金属塩が挙げられる。
一方、 遷移金属の錯体としては、 ^一ジケトンまたは/?—ケト酸エステルとの 錯体が使用され、 ジケトンまたは/?一ケト酸エステルとしては、 例えば、 ァ セチルアセトン、 ァセト酢酸ェチル、 1, 3—シクロへキサジオン、 メチレンビ スー 1, 3—シクロへキサジオン、 2一べンジルー 1, 3—シクロへキサジオン 、 ァセチルテトラロン、 パルミ トイルテトラロン、 ステアロイルテトラロン、 ベ ンゾィルテトラロン、 2—ァセチルシクロへキサノン、 2—ベンゾィルシクロへ キサノン、 2—ァセチルー 1, 3—シクロへキサンジオン、 ベンゾィル一p—ク ロルベンゾィルメタン、 ビス (4—メチルベンゾィル) メタン、 ビス (2—ヒド ロキシベンゾィル) メタン、 ベンゾィルアセトン、 トリベンゾィルメタン、 ジァ セチルペンゾィルメタン、 ステアロイルペンゾィルメタン、 パルミ トイルペンゾ 口ルペンゾィル) メタン、 ビス (メチレン一 3 , 4—ジォキシペンゾィル) メタ ン、 ベンゾィルァセチルフエニルメタン、 ステアロイル (4—メトキシベンゾィ ル) メタン、 ブ夕ノィルァセトン、 ジステアロイルメタン、 ァセチルァセトン、 ステアロイルァセトン、 ビス (シクロへキサノィル) —メタン及びジピバロィル メ夕ン等を用いることができる。 E V O H等のガスバリヤ一性樹脂に共重合体 (A) を配合する酸素吸収性樹脂 組成物の場合には、 共重合体 (A) が有する不飽和結合の数、 即ち、 共重合体 ( A) の添加量により、 前記組成物の酸素吸収量が決定する。 共重合体 (A) の配 合量を多くすれば酸素吸収量も多くなるが、 基材樹脂の酸素バリヤー性が低下し 、 透明性が低下するといつた問題が生じる。 そのため、 その配合量には限界があ り、 酸素吸収量も限定される。 ·
一方、 本発明の酸素吸収性樹脂組成物は、 共重合体 (A) がトリガ一となって 樹脂 (B ) の酸化が進行することによって酸素を吸収するため、 E V O H等のガ スバリャ一性樹脂をべ一スとする酸素吸収性樹脂組成物に比べ、 はるかに多量の 酸素を吸収することができる。 また、 長期にわたり酸素を有効に吸収でき、 汎用 樹脂に酸素を吸収させることができるため、 コスト面でも有利である。
本発明の酸素吸収性樹脂組成物において、 遷移金属触媒は、 酸素吸収性樹脂組 成物合計重量に対して、 遷移金属量として 1 0〜: L 0 0 0 p p m、 特に 5 0〜 5 0 0 p p mの量で含有されていることが好ましい。遷移金属触媒の量が上記範囲 内であれば、 良好なガスバリヤー性を得ることができ、 酸素吸収性樹脂組成物の 混練成形時における劣化傾向を抑制することができる。
さらに、 本発明の酸素吸収性樹脂組成物は、 2 0 0 0 p p m以下のリン系酸化 防止剤を含有していることが好ましい。 リン系酸化防止剤を添加することによつ て、 本発明の酸素吸収性樹脂組成物の高い酸素吸収性能を維持しつつ、 成形時の 酸化劣化をさらに抑制することができる。 より好ましくは、 本発明の酸素吸収性 樹脂組成物は 3 0 0〜1 5 0 0 p p mのリン系酸化防止剤を含有する。
酸素吸収性樹脂組成物の配合には、 種々の手段を用いることができるが、 サイ ドフィードを備えた二軸押出機を用いる方法が好適である。 二軸押出機による混 連に際しては、 酸素吸収性樹脂組成物の劣化を最小限とするため、 非酸化的雰囲 気で実施するのが良い。 また、 滞留時間を短く、 成形温度もできるだけ低温とす ることが、 酸素吸収性樹脂組成物の性能維持において極めて重要である。
本発明で用いる酸素吸収性樹脂組成物には、 一般に必要ではないが、 所望によ りそれ自体公知の活性化剤を配合することができる。 活性化剤の適当な例は、 こ れに限定されないが、 ポリエチレングリコール、 ポリプロピレングリコール、 ェ チレン 'メタクリル酸共重合体、 各種アイオノマ一等の水酸基及び/又はカルボ キシル基含有重合体である。
本発明に用いる酸素吸収性樹脂組成物には、 充填剤、 着色剤、 耐熱安定剤、 耐 候安定剤、 リン系酸ィ匕防止剤以外の酸化防止剤、 老化防止剤、 光安定剤、 紫外線 吸収剤、 帯電防止剤、 金属セッケンゃワックス等の滑剤、 改質用樹脂乃至ゴム、 等の公知の樹脂配合剤を、 それ自体公知の処方に従って配合できる。
例えば、 滑剤を配合することにより、 スクリユーへの樹脂の食い込みが改善さ れる。 滑剤としては、 ステアリン酸マグネシウム、 ステアリン酸カルシウム等の 金属石ケン、 流動、 天然または合成パラフィン、 マイクロワックス、 ポリエチレ ンワックス、 塩素化ポリエチレンヮックス等の炭化水素系のもの、 ステアリン酸 、 ラウリン酸等の脂肪酸系のもの、 ステアリン酸アミ ド、 バルミチン酸アミ ド、 ォレイン酸アミ ド、 ェシル酸アミ ド、 メチレンビスステア口アミド、 エチレンビ スステア口アミ ド等の脂肪酸モノアミ ド系またはビスアミ ド系のもの、 プチルス テアレート、 硬化ヒマシ油、 エチレングリコ一ルモノステアレ一ト等のエステル 系のもの、 セチルアルコール、 ステアリルアルコール等のアルコ一ル系のもの、 およびそれらの混合系が一般に用 、られる。
本発明の酸素吸収性組成物は、 粉末、 粒状又はシート等の形状で、 密封包装体 内の酸素吸収に使用することができる。 また、 ライナー、 ガスケット用又は被覆 形成用の樹脂やゴム中に配合して、 包装体内の残留酸素吸収に用いることができ る。 さらに、 フィルム、 シートの形で包装材料として、 また、 カップ、 トレイ、 ボトル、 チューブ容器等のキヤヅプ形で包装容器として包装体の製造に用いるこ とができる。
本発明の酸素吸収性樹脂組成物は、 これを含む少なくとも一層 (以下、 酸素吸 収性層という。 ) と、 他の樹脂の層からなる多層構造体の形で使用することが好 ましい。 なお、 酸素吸収性樹脂組成物を含む層とは、 上記の酸素吸収性樹脂組成 物のみからなる層、 及び他の樹脂等を基材とし酸素吸収性樹脂組成物を配合して なる層の両者の場合を含む。
多層構造体を構成する、 酸素吸収性層以外の樹脂層は、 熱可塑性樹脂又は熱硬 化性樹脂から、 その使用態様や要求される機能により適宜選択できる。例えば、 ォレフィン系樹脂、 熱可塑性ポリエステル樹脂、 酸素バリヤ一性樹脂等が挙げら れる。
ォレフィン樹脂としては、 低密度ポリエチレン (LDPE) 、 中密度ポリェチ レン (MDPE) 、 高密度ポリエチレン (HDPE) 、 線状低密度ポリエチレン (LLDPE) 、 線状超低密度ポリエチレン (LVLDPE) 等のポリエチレン (PE) 、 ポリプロピレン (PP) 、 エチレン一プロビレン共重合体、 ポリブテ ン一 1、 エチレン一ブテン一 1共重合体、 プロピレン一プテン一 1共重合体、 ェ チレン一プロピレン一ブテン一 1共重合体、 ェチレン一酢酸ビニル共重合体、 ィ ォン架橋ォレフィン共重合体 (アイオノマー) 或いはこれらのブレンド.物等が挙 げられる。
また、 熱可塑性ボリエステル樹脂としては、 ポリエチレンテレフ夕レート (P ET) 、 ポリプチレンテレフ夕レート (PBT) 、 ポリエチレンナフ夕レート ( PEN) ヽ ポリグリコ一ル酸を主体とするポリエステル樹脂、 或いはこれらの共 重合ポリエステル、 更にはこれらのブレンド物等が挙げられる。
酸素バリヤー性樹脂としては、 エチレン—ビニルアルコール共重合体 (EVO
H) を挙げることができる。 例えば、 エチレン含有量が 20〜60モル%、 好ま しくは、 25〜 50モル%であるエチレン—酢酸ビニル共重合体を、 ケン化度が 96モル%以上、 好ましくは、 99モル%以上となるようにケン化して得られる 共重合体ケン化物が使用される。
このェチレンビニルアルコール共重合体ケン化物は、 フィルムを形成すること ができる分子量を有する。 一般に、 フエノール:水の重量比で 85 : 15の混合 溶媒中 30°Cで測定して 0. 01 d lZg以上、 好ましくは、 0. 05dl/g 以上の粘度を有する。
酸素バリヤ一性樹脂の他の例としては、 ポリメタキシリデンアジパミ ド (MX D 6)等のポリアミド樹脂、 ポリグリコール酸等のポリエステル樹脂等を用いる ことができる。
上記多層構造体の構造は、 使用態様、 要求される機能により適宜選択できる。 例えば、 酸素吸収性層を OARとして表して、 次の構造がある。
二層構造: PET/OAR、 PE/OARs OPP/OAR^
三層構造: PE/OAR/PET、 PET/OA /PETs PE/OA /O PPヽ EVOH/OAR/PETs PE/OAR/COC;、
四層構造: PE/PET/OAR/PETヽ P E/0 AR/E VO H/P E T、 PE T/OAR/E VO H/P ET PE/OAR/E VOH/CO Cs PE/
Figure imgf000017_0001
五層構造: PE T/OAR/P E T/OAR/P ET、 PE/PET/OAR/
Figure imgf000017_0002
、 PE/OAR/E VOH/CO C/P ETs PE
/E V 0 H/O AR/E VO H/P E P E/E VOH/O AR/C 0 C/P E 、 PP/E VOH/O AR/E VO H/P P
六層構造:
Figure imgf000017_0003
、 PE/PET
/0 AR/C OC/EV OH/PET, P E T/OAR/E VO H/P E T/C H/OAR/REG/EV〇H/PE、 P P/E VO H/0 AR/P P/E VO
/0 AR/R E G/E V 0 H/P P, PE/E VOH/OAR/E VOH/CO C/PE
E
Figure imgf000018_0001
R/R E G/E VOH/CO C/P Eヽ P P/E VO H/O AR/R E G/E V OH/COC/PP
尚、 PEとは、 低密度ポリエチレン (LDPE) 、 中密度ポリエチレン (MD PE) 、 高密度ポリエチレン (HDPE) 、 線状低密度ポリエチレン (LLDP E) 、 線状超低密度ポリエチレン (LVLDPE) を意味する。
これらの構造で、 酸素バリヤ一層を少なくとも一層有している構造が、 酸素吸 収層の寿命を向上することができるため好ましい。
上記積層体の製造に当たって、 各樹脂層間に必要により接着剤樹脂を介在させ ることもできる。
このような接着剤樹脂としては、 カルボン酸、 カルボン酸無水物、 カルボン酸 塩、 カルボン酸アミ ド、 カルボン酸エステル等に基づくカルボニル (一 CO -) 基を主鎖又は側鎖に、 1〜700ミリイクィバレント (meq) /100 g樹脂 、 特に 10〜500 (meq) /100 g樹脂の濃度で含有する熱可塑性樹脂が 挙げられる。 接着剤樹'脂の適当な例は、 エチレン一アクリル酸共重合体、 イオン 架橋ォレフィン共重合体、 無水マレィン酸グラフトポリエチレン、 無水マレイン 酸グラフトポリプロピレン、 ァクリル酸グラフトポリオレフフィン、 エチレン一 酢酸ビニル共重合体、 共重合ポリエステル、 共重合熱可塑性等の 1種又は 2種以 上の組み合わせである。 これらの樹脂は、 同時押出或いはサンドィツチラミネー シヨン等による積層に有用である。
7 上記多層構造体は、 それ自体公知の方法で製造が可能である。例えば、 樹脂の 種類に応じた数の押出機を用いて、 多層多重ダイを用いて通常の押出成形を行え ばよい。
また、 本発明の多層構造体の製造には、 樹脂の種類に応じた数の射出成形機を 用いて、 共射出法や逐次射出法により多層射出成形体を製造することができる。 更に、 本発明の多層構造体を用いたフィルムやシートの製造には、 押出コート 法や、 サンドイツチラミネーシヨンを用いることができ、 また、 予め形成された フィルムのドライラミネ一シヨンによって多層フィルムあるいはシートを製造す ることもできる。
フィルム等の包装材料は、 種々の形態の包装袋として用いることができ、 その 製袋は、 それ自体公知の製袋法で行うことができ、 三方或いは四方シールの通常 のパゥチ類、 ガセヅト付パゥチ類、 スタンディングパゥチ類、 ピロ一包装袋など が挙げられるが、 この例に限定されな I、。
本発明の多層構造体を用いた包装容器は、 酸素による内容物の香味低下を防止 できる容器として有用である。
充填できる内容物としては、 飲料ではビール、 ワイン、 フルーツジュース、 炭 酸ソフトドリンク、 ウーロン茶、 緑茶等、 食品では果物、 ナツヅ、 野菜、 肉製品 、 幼児食品、 コーヒー、 ジャム、 マヨネーズ、 ケチャップ、 食用油、 ドレヅシン グ、 ソース類、 佃煮類、 乳製品等、 その他では医薬品、 化粧品、 ガソリン等、 酸 素存在下で劣化を起こしゃすい内容品などが挙げられるが、 これらの例に限定さ れない。
上記包装容器は、 さらに外装体によって包装した包装体としてもよい。
次に、 実施例及び比較例を示して本発明を説明する o
[実施例]
[評価 1 ] 実施例で用いたスチレン一ジェン共重合体の炭素一炭素二重結合含有量の測定 方法や樹脂組成ペレツトの作製方法を次に示す。
1. スチレン—ジェン共重合体の炭素—炭素二重結合含有量の測定方法
重クロ口ホルムを溶媒に用い、 スチレン一ジェン共重合体を 10〜15wt% の濃度に溶解し、 13 C— NMR測定 ( JEOL製、 JNM-EX270) を行 いスペクトルより樹脂の構造を同定した。 それにより上記含有量は、 樹脂 lg中 に含まれる二重結合のモル数 (eq/g) を計算により求めた。
2. 樹脂組成べレットの作製方法
低密度ポリエチレン樹脂 (JB 221R日本ポリオレフイン (株) 製) に、 水 添スチレン一ブ夕ジェン共重合体樹脂又は水添スチレン一イソプレン共重合体樹 脂を種々の重量%で、 又、 酸化触媒としてネオデカン酸コバルト (DICNAT E 5000大日本インキ化学工業 (株) 製) を Co換算で 35 Oppm配合し、 撹拌乾燥機 (ダルトン (株) 製) を用い 50°Cで予備混練後ホヅパーに投入した 。 定量フィーダ一により 2軸押出機 (TEM35東芝機械 (株) 製) 内に投入し 、 温度設定 200°C、 回転数 100RPMでストランド状に押出、 樹脂組成ペレ ヅトを得た。
3. 樹脂組成物の酸素吸収量の測定方法
種々の樹脂組成ペレットを凍結粉砕機で粉砕後定量し、 蒸留水 1. 0mlと共 に内容量 85mlの酸素不透過性容器 [ハイレトフレックス: HR78— 84東 洋製罐 (株) 製ポリプロピレン Zスチール箔 /ポリプロピレン製カップ状積層容 器] に入れ、 ポリプロピレン (内層) /アルミ箔 /ポリエステル (外層) の蓋材 でヒートシールし、 50°C条件下で保存した。 この容器内酸素濃度を経時日時に おいてガスクロマトグラフィー (GC— 8A島津製作所 (株) 製) を用いて測定 し、 酸素吸収量 (cc/g) を算出した。
4. 多層ボトルの作製方法及び酸素バリヤー性評価 内外ポリエチレン層用 50mm主押出機に JB 221R (日本ポリオレフイン (株) 製) 、 接着層用 3 Omm副押出機 Aにモディック L 522 (三菱化学 (株 ) 製)、 バリヤ一層用 30 mm副押出機 Bにェバール F 101B ( (株) クラレ 製)、 酸素吸収層用 30mm副押出機 Cに種々の樹脂組成ペレットを供給し、 温 度 210 °Cの多層ダイより溶融パリソンを押し出し、 公知の溶融ブロー成形法に よりノズル径 045、 内容量 150m 1、 重量 12 gの円筒形 5種 6層多層ボト ルを作製した。 層構成を下記に示す。
外側 P E層 Z接着層/バリヤー層 //接着層/酸素吸収層 ZP E層
重量% 20/2. 5/5/2. 5/10/60
多層ボトルの酸素バリャ一性を評価する為、 容器内に蒸留水 1 m 1を入れ、 窒 素雰囲気下で口部をアルミラミネート材で密封し、 容器内の初期酸素濃度を 0. 02%以下にし、 30°C、 80%RHで保存した。 この容器内酸素濃度を経時日 時においてガスクロマトグラフィー (GC— 8 A島津製作所 (株) 製) を用いて 測定した。
5. ハンターカラー b値の測定方法
上記多層ボトルの胴壁から 40 mm X 40 mmの試験片を切り出し、 カラー コンピュータ一 (SM— 4スガ試験機 (株) 製) を用い試験片の裏側に標準白板 を置き、 反射法によりハン夕一カラー b値を測定した。
[実施例 1 ]
低密度ポリエチレン樹脂 (JB221R日本ポリオレフイン (株) 製) に、 水 添スチレン一イソプレン一スチレントリプロック共重合体樹脂 (ハイブラー 71 25 (株) クラレ製、 この樹脂中の炭素一炭素二重結合含有量は 2. 0 X 10一 4eqZgであった) 5. 0重量%と酸ィ匕触媒を配合し、 上記方法で樹脂組成べ レヅ 1、を作製し、 樹脂組成物の酸素吸収量 (c c/g) を算出した。 その結果を
3¾ 1に ί~。 また、 このペレットを用いて、 上記方法で多層ボトルを作製し、 酸素バリヤ一 性評価及びハン夕一カラー b値の測定を行った。 その結果を表 2に示す。
[実施例 2 ]
水添スチレン一イソプレン一スチレントリブロック共重合体樹脂の代わりに水 添スチレン一ブタジエン一スチレントリブ口ック共重合体樹脂 (タフテック P 2 000旭化成ケミカルズ (株) 製、 この樹脂中の炭素—炭素二重結合含有量は 1 . 9 X 10_3e q/gであった) を用いた以外は実施例 1と同様に樹脂組成べ レツトを作製し、 樹脂組成物の酸素吸収量 (c c/g) を算出した。 その結果を 表 1に示す。
また、 このペレットを用いて、 上記方法で多層ボトルを作製し、 酸素バリヤ一 性評価及びノヽン夕一カラー b値の測定を行つた。 その結果を表 2に示す。
[実施例 3]
水添スチレン一イソプレン一スチレントリブロック共重合体樹脂の代わりに水 添スチレン一ブタジエン一スチレントリブ口ヅク共重合体樹脂 (タフテック P 2 000旭化成ケミカルズ (株) 製、 この樹脂中の炭素—炭素二重結合含有量は 1 . 9 X 10— 3e q/gであった) 2. 5重量%と水添スチレン一ブ夕ジェン共 重合体樹脂 (ダイナロン 1320 P (株) JSR製、 この樹脂中の炭素—炭素二 重結合含有量は 2. 4 X 10— 5e q/gであった) 2. 5重量%を用いた以外 は実施例 1と同様に樹脂組成ペレツトを作製し、 樹脂組成物の酸素吸収量 (c c /g) を算出した。 その結果を表 1に示す。
また、 このペレツトを用いて、 上記方法で多層ボトルを作製し、 酸素バリヤ一 性評価及びハンターカラー b値の測定を行った。 その結果を表 2に示す。
[実施例 4 ]
低密度ポリエチレン樹脂 (JB221R日本ポリオレフイン (株) 製) に、 水 添スチレン一ィソプレン一スチレン卜リプロヅク共重合体樹脂 (ハイブラ一 71 25 (株) クラレ製、 この樹脂中の炭素—炭素二重結合含有量は 2. 0X 10一 4eq/gであった) 5. 0重量%と酸化触媒を配合し、 さらにリン系酸ィ匕防止 剤 (アデカス夕プ 2112旭電化工業 (株) 製) を 100 Oppm配合し、 実施 例 1と同様に樹脂組成ペレツトを作製し、 樹脂組成物の酸素吸収量 (c c/g) を算出した。 その結果を表 1に示す。
また、 このペレットを用いて、 上記方法で多層ボトルを作製し、 酸素バリヤ一 性評価及びハンターカラ一 b値の測定を行った。 その結果を表 2に示す。 [比較例 1 ] 水添スチレン一イソプレン一スチレントリブロック共重合体樹 S旨 (ハイブラ一 7125 (株) クラレ製) を配合しなかった以外は実施例 1と同様に樹脂組成べ レツトを作製し、 樹脂組成物の酸素吸収量 (c c/g) を算出した。 その結果を
1に J 5 また、 このペレットを用いて、 上記方法で多層ボトルを作製し、 酸素バリヤ一 性評価及びノ、ン夕一カラー b値の測定を行つた。 その結果を表 2に示す。
表 1
酸素吸収量 (c c/g)
3曰後 7日後 14曰後 30曰後 実施例 1 18. 9 44. 9 66. ό 100. 6 実施例 2 19. 0 46. 0 64. 0 100. 0 実施例 3 1 . 0 41. 0 60. 0 98. 0 実施例 4 15. 0 42. 0 61. 5
比較例 1 0. 0 0. 0 3. 0 50. 0 表 2
Figure imgf000024_0001
[評価 2 ]
1. 酸素吸収性樹脂の構造解析
線状低密度ポリェチレン樹脂 0. 2 を冷凍粉砕器 (JFC- 300:日本分析工業 (株 ))で 10分間冷却後、 10分間粉砕した。 次いで、 得られたペレット 0. 06 g に対し、 ベンゼン /オルトジクロ口ベンゼン =1/3重水素化体の混合溶媒を 0 . 6 ml加えて溶封し、 13C- NMR(EX-270:日本電子 (株) )測定を行い、 側鎖の組 成を評価した。
2. 酸素吸収性の評価
酸素吸収性樹脂、 酸化トリガ一樹脂及び遷移金属触媒から成る酸素吸収性樹脂 組成物 0 · 1 gを内容積 85 c cの密封容器に空気中で封入し、 30 °Cで保管し た。絰時 1ヶ月の時点で容器内の酸素濃度をガスクロマトグラフィー (GC3B T:島津製作所 (株) 、 検出器: TCD (60°C) 、 カラム:モレキュラーシー プ 5A (100°C) 、 キャリア一ガス:アルゴン) により測定し、 酸素吸収性樹 脂組成物 1 gあたりの酸素吸収量を測定した。 酸素吸収量が 10 c c/g未満の ものを x、 10 c c/g'以上のものを〇とした。
3. 酸化副生成物の評価
線状低密度ポリェチレン樹脂、 酸ィ匕トリガー樹脂及び遷移金属触媒から成る酸 素吸収性樹脂組成物を封入した密封容器を 30 °Cで保管し、 線状低密度ポリェチ レン樹脂 1 g当たりほぼ 30 c cの酸素を吸収させた。
この時の密封容器中の気体をシリンジで 5 c c採取し、 パージ &トラヅプ法に より GC—MS(TEKMAR- 4000: agi l ent社 カラム : DB-1)で酸化副生成 物の分析を行った。
得られたガスクロマトグラフのスぺクトルの面積値を酸化副生成物の量とし、 その値が 1 X 107未満のものを〇、 1 X 107〜2 X 107未満のものを△、 2 X 107以上のものを Xとした。
[実施例 5]
エチレンと 1—へキセンを単量体とし、 シングルサイト触媒であるメタ口セン 触媒を用いて重合した、 主鎖から分岐する側鎖が 0.' 002 e q/gの直鎖状炭 化水素から成る線状低密度ポリェチレン樹脂 (エボリユー 0510B :三井化学 (株)製) 95重量%に対し、 酸化のトリガー樹脂として水添スチレン—ブ夕ジェ ン一スチレントリプロヅク共重合体樹脂 (タフテック P 2000 :旭化成 (株) 製) 5重量%と、 コバルト金属含有率 9. 5重量%のステアリン酸コバルト (大 日本ィンキ化学工業 (株)製) をコバルト換算で 15 Oppm配合し、 撹袢乾燥機 (ダルトン (株)製) で予備混練後ホヅパーに投入した。
次いで、 出口部分にス卜ランドダイを装着した二軸押出機 ( TEM35B:東芝 機械 (株) )を用いて、 スクリユー回転数 100 rpmで高真空ベントを引きな がら、 ストランド状に押出し、 酸素吸収材樹脂組成物ペレットを作製した。
この材料について、 上記評価方法により酸化副生成物量、 機械的強度の評価を 行った結果、 良好な酸素吸収性を示し、 しかも酸化副生成物量も少なかった。
[実施例 6 ]
主鎖から分岐する側鎖が 0. 001 1 e q / gの直鎖状炭化水素である線状低 密度ポリエチレン樹脂 (ZM063 :宇部興産 (株) 製)を用いた以外は、 実施 例 1と同様にして酸素吸収性樹脂組成物を作製と評価を行った。 この材料も良好 な酸素吸収性を示し、 しかも酸化副生成物量は少なかつた。
[実施例 7 ]
樹脂を、 線状低密度ポリエチレンとは呼べない通常の高圧法低密度ポリェチレ ン樹脂 ( J B 2 2 1 R:日本ポリエチレン (株) 製) にした以外は、 実施例 1と 同様にして酸素吸収性樹脂組成物の作製と評価を行った。 この樹脂は、 種々の鎖 長の枝分かれを有する 0 · 0 0 1 1 e q/gの鎖状側鎖を有していた。鎖状側鎖 の形態が異なるため、 実施例 5及び 6では実施例 7に比べて酸化副生成物が少な かった。
実施例 5〜 7の結果を表 3にまとめて示す。
表 3
Figure imgf000027_0001
[評価 3]
1. ベース樹脂の構造解析
低密度ポリエチレン樹脂 0. 2 gを冷凍粉砕器 ( JFC- 300:日本分析工業㈱)で 1 0分間冷却後、 10分間粉砕した。 次いで、 得られたペレット 0. 06 gに対し 、 ベンゼン /オルトジクロ口ベンゼン = 1 / 3重水素化体の混合溶媒を 0. 6 m 1加えて溶封し、 13C-賺 (EX- 270:日本電子 (株))測定を行った。 この測定結果より 低密度ポリェチレン樹脂の主鎖骨格に含まれる分岐数と側鎖の炭素数を求めた。 またベース樹脂の側鎖が 0. 003 e q/g以下の直鎖状炭化水素から成るもの を〇、 それ以外のものを Xとした。
2. 酸素吸収性能の評価
酸素吸収性樹脂組成物を冷凍粉砕器( JFC- 300 :日本分析工業 (株) )で 10分間冷却後、 10分間粉砕した。 次いで、 得られたサンプル 0. l gと蒸留 水 1 c cを内容積 85 c cの密封容器に入れ、 アルミ箔をバリヤ一層とする蓋材 で密封した。 30 °Cの条件下で 2週間保管経時した後、 容器内酸素濃度をガスク 口マトグラフィ一(GC— 3BT :島津製作所 (株) )で測定した。 サンプル l g 当たり 5 c c以上の酸素吸収があつたものを〇、 それ以外のものを Xとした。
3. 酸化副生成物の評価
前記酸素吸収性能の評価に使用した酸素吸収性樹脂組成物を封入した密封容器 を 30でで保管し、 変素吸収性樹脂組成物 1 g当たりほぼ 50 c cの酸素を吸収 させた。 この時の密封容器中の気体をシリンジで 5 c c採取し、 パージ &トラヅ プ法により G C— M S (TEKMAR-4000: agi l ent社 カラム: DB- 1 )で酸化 副生成物の分析を行った。 得られたガスクロマトグラフのスぺクトルの面積値を 酸化副生成物の量とし、 その値が 2. 5 x 107未満のものを〇、 2. 5 X 10 7以上のものを Xとした。 . 4. 機械的強度の評価
酸素吸収性樹脂組成物ペレヅトを熱板の間に挟み 200 °Cにて厚さ 0. 3 mm のシートを作製した。 このシートからダンベル型の試験片を切り出した。 この試 験片を、 30°Cで前記内容積 85 c cの密封容器中に保管し、 15 c c/gの酸 素を吸収させた。 この試験片を用いて 23°C— 50%RHの環境下で引張試験機
(テンシロン UCT— 5T : (株) ティ .エス 'エンジニアリング) により引 張試験 (引張速度 500 mmZ分) を行い、 破断点伸びを測定した。 得られた破 断点伸びを酸素吸収前の破断点伸びで除し、 酸素吸収前に比べて 50 %以上の破 断点伸びを維持していた場合を〇、 50%未満のものを Xとした。
[実施例 8]
ベース樹脂をメ夕ロセン触媒の直鎖状低密度ポリェチレン樹脂 L LDPE(Z M063 :宇部興産 (株) )にした以外は、 実施例 5と同様にして酸素吸収性樹 脂組成物の作製と評価を行つた。 作製した酸素吸収性樹脂組成物は、 良好な酸素 吸収性能を示し、 しかも酸化副生成物も少なく、 機械的強度の低下も小さかった
[実施例 9]
ベース樹脂を線状低密度ボリエチレンとはいえない高圧法低密度ポリエチレン (JB 221 :日本ポリオレフイン (株) ) にした以外は、 実施例 5と同様に して酸素吸収性樹脂組成物の作製と評価を行った。 作製した酸素吸収性樹脂組成 物は、 酸素吸収性能は良好であつたが、 複雑な長鎖分岐を含む構造のため、 酸化 副生成物が多く、 また機械的強度の低下も大きかった。
[実施例 10 ]
ベース樹脂をマルチサイト触媒の直鎖状低密度ポリエチレン (ULTZEX 2020 SB:三井化学 (株) )にした以外は、 実施例 5と同様にして酸素吸収 性樹脂組成物の作製と評価を行った。 作製した酸素吸収性樹脂組成物は、 酸素吸 収性能は良好であつたが、 4—メチルペンテン— 1由来の枝分かれのある分岐を 有しているため、 酸化副生成物、 特にアセトンが多かった。 この酸素吸収性樹脂 組成物については、 機械的強度の測定は実施しなかった。
[実施例 1 1 ]
ベース樹脂をマルチサイト触媒のエチレンプロピレンのランダム共重合樹脂 ( R E 3 8 6 :日本ポリプロ㈱)にした以外は実施例 5と同様にして酸素吸収性樹脂 組成物の作製と評価を行った。 作製した酸素吸収性樹脂組成物は、 酸素吸収性能 は良好であつたが、 分岐が多いため、 酸化副生成物が非常に多く、 また機械的強 度の低下も大きかった。
表 4に実施例 5及び 8〜; 1 1の結果を示すが、 表 4より明らかなように、 ベ一 ス樹脂の分岐の状態により、 酸素吸収性能、 酸化副生成物量、 S化による機械的 強度の低下の程度に明確な差異が認められた。
4
Figure imgf000031_0001
CO
o

Claims

請求の範囲
1 . 水添スチレン一ジェン共重合体 (A) 、 分子構造にエチレン構造を有する 熱可塑性樹脂 ( B ) 及び遷移金属触媒 (C) を含み、 共重合体 (A) がトリガ一 となって熱可塑性樹脂 (B ) の酸化が進行することによって酸素を吸収する酸素 吸収性樹脂組成物。
2 . 共重合体 (A) がジェン由来の炭素一炭素二重結合を 1 X 1 0一5〜 1 X 1 0— 2 e q/gの範囲で含有する、 請求項 1に記載の酸素吸収性樹脂組成物。
3 . ジェンがブタジエンである、 請求項 1又は 2に記載の酸素吸収性樹脂組成 物。
4 . ジェンがィソプレンである、 請求項 1又は 2に記載の酸素吸収性樹脂組成 物。
5 . 共重合体 (A) が水添スチレン一ジェン一スチレントリブロヅク共重合体 である、 請求項 1〜 4のいずれか 1項に記載の酸素吸収性樹脂組成物。
6 . 水添スチレン一ジェン一スチレントリプロヅク共重合体が水添スチレン一 イソプレン一スチレントリブロヅク共重合体又は水添スチレン一ブタジエンース チレントリプロック共重合体である、 請求項 5に記載の酸素吸収性樹脂組成物。
7 . 樹脂 (B ) がポリエチレン、 ポリプロピレン、 エチレン一プロピレン共重 合、 ェチレン系共重合体又はプロピレン系共重合体である請求項 1〜 6のいずれ か 1項に記載の酸素吸収性樹脂組成物。
8. 樹脂 (B) が C2〜C 20の単量体から重合された実質的にエチレン性不 飽和結合を含有しない樹脂である請求項 1〜 6のいずれか 1項に記載の酸素吸収 性樹脂組成物。
9. 樹脂 (B) が、 側鎖が 0. 003 e q/g以下の直鎖状炭化水素から成る 線状低密度ポリェチレン樹脂である請求項 8に記載の酸素吸収性樹脂組成物。
10. 樹脂 (B) が、 脂肪族性の側鎖が合計量 0. 005 e qZg以下の環構 造の一部を主鎖と共有する環状炭化水素、 或いは前記環状炭化水素及び直鎖状炭 化水素から成る樹脂である請求項 8に記載の酸素吸収性樹脂組成物。
11. 樹脂 (B) が、 シングルサイト触媒を用いて重合されている請求項 8〜 10のいずれか 1項に記載の酸素吸収性樹脂組成物。
12. 共重合体 (A) が樹脂 (B) のマトリヅクス中に分散している、 請求項 1〜: 11のいずれか 1項に記載の酸素吸収性樹脂組成物。
13. 樹脂 (B) の含有量が 90〜99重量%である、 請求項 1〜12のいず れか 1項に記載の酸素吸収性樹脂組成物。
14. さらに 2000 p pm以下のリン系酸化防止剤を含有している請求項 1
~ 13のいずれか 1項に記載の酸素吸収性樹脂組成物。
PCT/JP2004/009705 2003-07-10 2004-07-01 酸素吸収性樹脂組成物 WO2005005533A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04747174A EP1672019B1 (en) 2003-07-10 2004-07-01 Oxygen-absorbing resin composition
AU2004255626A AU2004255626B2 (en) 2003-07-10 2004-07-01 Oxygen-absorbing resin composition
DE602004026206T DE602004026206D1 (ja) 2003-07-10 2004-07-01
AT04747174T ATE461969T1 (de) 2003-07-10 2004-07-01 Sauerstoffabsorbierende harzzusammensetzung
US11/351,737 US7709567B2 (en) 2003-07-10 2006-02-10 Oxygen-absorbing resin composition

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2003-194839 2003-07-10
JP2003194839 2003-07-10
JP2004046696 2004-02-23
JP2004-046696 2004-02-23
JP2004-046697 2004-02-23
JP2004046697A JP4671161B2 (ja) 2003-07-10 2004-02-23 酸素吸収性樹脂組成物
JP2004104437 2004-03-31
JP2004-104437 2004-03-31
JP2004112453 2004-04-06
JP2004-112453 2004-04-06
JP2004-185097 2004-06-23
JP2004185097 2004-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/351,737 Continuation US7709567B2 (en) 2003-07-10 2006-02-10 Oxygen-absorbing resin composition

Publications (1)

Publication Number Publication Date
WO2005005533A1 true WO2005005533A1 (ja) 2005-01-20

Family

ID=34069456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009705 WO2005005533A1 (ja) 2003-07-10 2004-07-01 酸素吸収性樹脂組成物

Country Status (6)

Country Link
US (1) US7709567B2 (ja)
EP (1) EP1672019B1 (ja)
AT (1) ATE461969T1 (ja)
AU (1) AU2004255626B2 (ja)
DE (1) DE602004026206D1 (ja)
WO (1) WO2005005533A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232347B2 (en) 2005-07-19 2012-07-31 Toyo Seikan Kaisha, Ltd. Method of making oxygen-absorbing resin composition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019248B2 (ja) * 2004-11-24 2012-09-05 東洋製罐株式会社 酸素吸収性樹脂組成物
WO2006070678A1 (ja) * 2004-12-27 2006-07-06 Zeon Corporation 酸素吸収性多層シート、これからなる包装材料及び包装容器
JP5181671B2 (ja) * 2005-03-23 2013-04-10 日本ゼオン株式会社 酸素吸収性ガスバリアー樹脂組成物及びこれを含有してなる酸素吸収性ガスバリアー構造体
US20080161465A1 (en) * 2006-12-28 2008-07-03 Jason Christopher Jenkins Oxygen-scavenging polyester compositions useful for packaging
US20080161529A1 (en) * 2006-12-28 2008-07-03 Jason Christopher Jenkins Oxygen-scavenging polyesters useful for packaging
US7521523B2 (en) * 2006-12-28 2009-04-21 Eastman Chemical Company Oxygen-scavenging polyester compositions useful in packaging
JP5595272B2 (ja) * 2007-08-27 2014-09-24 ヴァルスパー・ソーシング・インコーポレーテッド 樹状酸素捕捉ポリマー
US8147592B2 (en) * 2008-03-14 2012-04-03 The Boeing Company Using a metallocene to remove oxygen from a stream of gas
US10232593B2 (en) 2013-03-13 2019-03-19 The Sherwin-Williams Company Oxygen-scavenging composition and articles thereof
WO2018097468A1 (ko) * 2016-11-23 2018-05-31 롯데케미칼 주식회사 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551494A (ja) * 1991-05-16 1993-03-02 Asahi Chem Ind Co Ltd ポリオレフイン組成物
JPH1087921A (ja) * 1996-09-09 1998-04-07 Chisso Corp オレフィン重合体組成物製容器
JPH10298306A (ja) * 1997-02-27 1998-11-10 Sekisui Chem Co Ltd プロピレン系樹脂フィルム及びその製造方法
WO1999045064A1 (fr) * 1998-03-02 1999-09-10 Kureha Chemical Industry Co., Ltd. Compositions de resine polypropylene et film d'emballage etire fabrique avec cette resine
JPH11279344A (ja) * 1998-03-25 1999-10-12 Japan Polychem Corp ブロー成形用樹脂組成物
JP2000143889A (ja) * 1998-11-13 2000-05-26 Asahi Chem Ind Co Ltd 樹脂組成物
JP2002241608A (ja) * 2000-12-08 2002-08-28 Toyo Seikan Kaisha Ltd 酸素吸収性樹脂組成物、包装材料及び包装用多層容器
JP2003011283A (ja) * 2001-04-26 2003-01-15 Toyo Seikan Kaisha Ltd 多層包装材料
JP2003012944A (ja) * 2001-04-26 2003-01-15 Toyo Seikan Kaisha Ltd 成形性及びガス遮断性に優れた樹脂組成物及び包装材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG125044A1 (en) * 1996-10-14 2006-09-29 Mitsubishi Gas Chemical Co Oxygen absorption composition
CA2299934C (en) * 1999-03-03 2006-09-19 Kuraray Co., Ltd. Oxygen absorptive resin composition
KR100490710B1 (ko) 1999-03-03 2005-05-24 가부시키가이샤 구라레 산소 흡수성 수지 조성물
US6680094B2 (en) 2000-12-08 2004-01-20 Toyo Seikan Kaisha, Ltd. Packaging material and multi-layer container
US6878774B2 (en) 2000-12-08 2005-04-12 Toyo Seikan Kaisha, Ltd. Resin composition and multi-layer container using the same
AU2003262283B2 (en) * 2002-08-23 2007-03-22 Toyo Seikan Kaisha, Ltd. Oxygen-absorbing resin composition and layered product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551494A (ja) * 1991-05-16 1993-03-02 Asahi Chem Ind Co Ltd ポリオレフイン組成物
JPH1087921A (ja) * 1996-09-09 1998-04-07 Chisso Corp オレフィン重合体組成物製容器
JPH10298306A (ja) * 1997-02-27 1998-11-10 Sekisui Chem Co Ltd プロピレン系樹脂フィルム及びその製造方法
WO1999045064A1 (fr) * 1998-03-02 1999-09-10 Kureha Chemical Industry Co., Ltd. Compositions de resine polypropylene et film d'emballage etire fabrique avec cette resine
JPH11279344A (ja) * 1998-03-25 1999-10-12 Japan Polychem Corp ブロー成形用樹脂組成物
JP2000143889A (ja) * 1998-11-13 2000-05-26 Asahi Chem Ind Co Ltd 樹脂組成物
JP2002241608A (ja) * 2000-12-08 2002-08-28 Toyo Seikan Kaisha Ltd 酸素吸収性樹脂組成物、包装材料及び包装用多層容器
JP2003011283A (ja) * 2001-04-26 2003-01-15 Toyo Seikan Kaisha Ltd 多層包装材料
JP2003012944A (ja) * 2001-04-26 2003-01-15 Toyo Seikan Kaisha Ltd 成形性及びガス遮断性に優れた樹脂組成物及び包装材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232347B2 (en) 2005-07-19 2012-07-31 Toyo Seikan Kaisha, Ltd. Method of making oxygen-absorbing resin composition

Also Published As

Publication number Publication date
EP1672019A4 (en) 2006-10-25
US7709567B2 (en) 2010-05-04
US20060211811A1 (en) 2006-09-21
EP1672019A1 (en) 2006-06-21
DE602004026206D1 (ja) 2010-05-06
ATE461969T1 (de) 2010-04-15
AU2004255626A1 (en) 2005-01-20
AU2004255626B2 (en) 2009-03-12
EP1672019B1 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4314637B2 (ja) 酸素吸収性樹脂組成物及び積層体
US7709567B2 (en) Oxygen-absorbing resin composition
EP1816157B1 (en) Oxygen-absorbing resin compositions
US8232347B2 (en) Method of making oxygen-absorbing resin composition
JP2001039475A (ja) 樹脂組成物、積層体、容器及び容器蓋
JP4993405B2 (ja) 酸素吸収性樹脂物品形成用ペレット及びその製造方法
JP4941873B2 (ja) 酸素吸収性樹脂組成物
JP4671161B2 (ja) 酸素吸収性樹脂組成物
JP4186609B2 (ja) ガスバリヤー材及びそれを用いた積層構造体
JP5585795B2 (ja) 酸素吸収性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480026100.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004747174

Country of ref document: EP

Ref document number: 11351737

Country of ref document: US

Ref document number: 2004255626

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004255626

Country of ref document: AU

Date of ref document: 20040701

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004255626

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004747174

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11351737

Country of ref document: US