WO2005000203A2 - Methods for treating cognitive impairment and improving cognition - Google Patents

Methods for treating cognitive impairment and improving cognition Download PDF

Info

Publication number
WO2005000203A2
WO2005000203A2 PCT/US2004/015974 US2004015974W WO2005000203A2 WO 2005000203 A2 WO2005000203 A2 WO 2005000203A2 US 2004015974 W US2004015974 W US 2004015974W WO 2005000203 A2 WO2005000203 A2 WO 2005000203A2
Authority
WO
WIPO (PCT)
Prior art keywords
amphetamine
human
memory
methamphetamine
impairment
Prior art date
Application number
PCT/US2004/015974
Other languages
French (fr)
Other versions
WO2005000203A3 (en
Inventor
Mel H. Epstein
Kjesten A. Wiig
Randall C. Carpenter
H. Moore Arnold
Original Assignee
Sention, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/139,606 external-priority patent/US20030119884A1/en
Priority claimed from US10/444,970 external-priority patent/US20030232890A1/en
Priority claimed from US10/791,223 external-priority patent/US20050059743A1/en
Priority to CN2004800211168A priority Critical patent/CN1826105B/en
Priority to US10/557,095 priority patent/US20070117869A1/en
Priority to AU2004251596A priority patent/AU2004251596B2/en
Priority to CA002567746A priority patent/CA2567746A1/en
Priority to EP04752902.9A priority patent/EP1635851B1/en
Priority to JP2006533278A priority patent/JP2007502863A/en
Priority to MXPA05012614A priority patent/MXPA05012614A/en
Application filed by Sention, Inc. filed Critical Sention, Inc.
Publication of WO2005000203A2 publication Critical patent/WO2005000203A2/en
Priority to US11/133,144 priority patent/US7619005B2/en
Publication of WO2005000203A3 publication Critical patent/WO2005000203A3/en
Priority to US11/636,703 priority patent/US20070197663A1/en
Priority to US11/636,702 priority patent/US20070100000A1/en
Priority to US11/636,644 priority patent/US20070099999A1/en
Priority to AU2008202794A priority patent/AU2008202794A1/en
Priority to US12/221,776 priority patent/US20100022658A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • the initial phase of memory consolidation occurs in the first few minutes after an exposure to a new idea or learning experience.
  • the next phase occurs over a longer period of time, such as during sleep. If a learning experience has on-going meaning to us, the next week or so serves as a further period of memory consolidation.
  • the memory moves from short-term to long-term storage.
  • various mechanisms have been proposed to account for the formation of long-term memory. A wide range of observations suggest an evolutionarily conserved molecular mechanism involved with the formation of long-term memory.
  • synaptic plasticity the change in the strength of neuronal connections in the brain, is thought to underlie long-term memory storage.
  • Memory consolidation the process of storing new information in long-term memory is also believed to play a crucial role in a variety of neurological and mental disorders, including mental retardation, Alzheimer's disease and depression. Indeed, loss or impairment of long-term memory is a significant feature of such diseases, and no effective therapy for that effect has emerged.
  • Short-term memory and working memory are generally not significantly impaired in such patients. Accordingly, methods and compositions that enhance long-term memory function and/or performance, or prophylactically (e.g., as a neuroprotective treatment) prevent or slow degradation of long-term memory function and/or performance would be desirable. Similarly, methods and compositions for restoring long-term memory function and/or performance are needed.
  • Impairments in cognitive and memory processes in a human can occur in a number of conditions or diseases, such as age-related memory loss, Mild Cognitive Impairment, Alzheimer's disease, Multiple Sclerosis, brain injury, brain aneurysm, stroke, schizophrenia, epilepsy, chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy (e.g., cancer chemotherapy), traumatic brain injury, and Parkinson's disease.
  • a muscarinic cholinergic receptor antagonist such as atropine or scopolamine
  • Clinical management strategies currently provide minimal, if any, improvement in memory and cognitive function.
  • the present invention relates to methods of treating a human having an impairment in memory and/or cognitive function.
  • the human can have an impairment in memory consolidation (the process of storing new information in long term memory), an impairment in short term memory processes, an impairment in working memory, an impairment in long-term memory, an impairment in declarative memory or an impairment in procedural memory.
  • the humans are treated with the amphetamine class of compounds (collectively referred to herein as "amphetamine compounds”) to enhance, prevent and/or restore long-term memory function and performance, e.g., to improve the process of storing new information in long term memory in humans (memory consolidation) or to improve short term memory or to improve working memory.
  • the human can have an impairment in memory and/or a cognition function as a consequence of exposure to a muscarinic cholinergic receptor antagonist. More particularly, the invention relates to the discovery that a particular enantiomer of amphetamine compounds (R)- (-)-amphetamine (1-amphetamine, levo-amphetamine) or (R)-(-)-methamphetamine (1-methamphetamine, levo-methamphetamine) is effective for treating humans having an impairment in memory and an impairment in cognitive function.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering at least one member selected from the group consisting of 1-amphetamine and 1-methamphetamine to a human having an impairment in memory consolidation.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering at least one member selected from the group consisting of 1-amphetamine and 1-methamphetamine to a human having an impairment in memory consolidation, wherein the 1-amphetamine is at least about 80 mole percent 1-amphetamine relative to d-amphetamine and the 1-methamphetamine is at least about 80 mole percent 1- methamphetamine relative to d-methamphetamine.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering at least one member selected from the group consisting of 1-amphetamine and 1- methamphetamine to a human having an impairment in memory consolidation, wherein the 1-amphetamine is at least about 90 mole percent 1-amphetamine relative to d-amphetamine and the 1-methamphetamine is at least about 90 mole percent 1- methamphetamine relative to d-methamphetamine.
  • An additional embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising the steps of assessing the degree of an impairment in memory consolidation in a human; administering at least one member selected from the group consisting of 1-amphetamine and 1-methamphetamine to the human; and determining the improvement in memory consolidation after administering the 1-amphetamine and 1-methamphetamine to the human.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 85 mole percent 1-amphetamine.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-amphetamine.
  • Another embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the 05/000203
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 90 mole percent 1-amphetamine and the 1-amphetamine is administered to the human in a dose between about a 0.01 mg dose to about a 125 mg dose.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-amphetamine and the 1-amphetamine is administered to the human in a dose at lease about a 0.01 mg dose.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is between about 80 mole percent 1-amphetamine to about 99 mole percent 1-amphetamine.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is between about 80 mole percent 1-amphetamine to about 99 mole percent 1-amphetamine and the 1-amphetamine is administered to the human in a dose at least about a 0.01 mg dose.
  • Another embodiment ofthe invention includes a method of improving memory consolidation in a human comprising assessing the degree of impairment in memory consolidation in a human having an impairment in memory consolidation and administering an amphetamine to the human in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-amphetamine.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 90 mole percent 1-amphetamine and has the structural formula:
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 90 mole percent 1-methamphetamine.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 85 mole percent 1-methamphetamine.
  • An additional embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-methamphetamine.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 99 mole percent 1-methamphetamine and the dose of 1-methamphetamine administered to the human is at least about a 0.01 mg dose.
  • Another embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherem the amphetamine is at least about 90 mole percent 1-methamphetamine and the 1-methamphetamine is administered to the human in a dose at least about a 0.01 mg dose.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-methamphetamine and the dose of 1-methamphetamine administered to the human is at least about a 0.01 mg dose.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is between about 80 mole percent 1-methamphetamine to about 99 mole percent 1-methamphetamine.
  • An additional embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is between about 80 mole percent 1-methamphetamine to about 99 mole percent 1-methamphetamine and the 1-methamphetamine is administered to the human in a dose at least about a 0.01 mg dose.
  • Another embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising assessing the degree of impairment in memory consolidation in a human having an impairment in memory consolidation and administering an amphetamine to the human in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-methamphetamine.
  • the improvement in memory consolidation after administering the amphetamine to the human is determined.
  • the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 90 mole percent 1-methamphetamine and has the structural formula:
  • the invention is a pharmaceutical kit comprising one or more amphetamine compound(s) in an amount sufficient to enhance long-term memory in a patient, a pharmaceutically acceptable carrier, and instructions (written and/or pictorial) describing the use ofthe formulation for enhancing memory.
  • the invention is a pharmaceutical preparation comprising one or more amphetamine compounds provided as a single oral dosage formulation in an amount sufficient to enhance long-term memory in a patient but resulting in a concentration in the patient lower than its EC 50 as a CNS stimulant.
  • the invention is a pharmaceutical preparation comprising one or more amphetamine compounds provided in the form of a transdermal patch and formulated for sustained release ofthe amphetamine(s) in order to administer an amount sufficient to enhance long-term memory in a patient but resulting in a concentration in the patient lower than its EC 50 as a CNS stimulant.
  • the pharmaceutical kits and preparations ofthe invention comprise at least one ofthe amphetamine compounds represented by Formula I, or a pharmaceutically acceptable salt, solvate, metabolite or pro-drug thereof:
  • R l5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting
  • R 3 represents hydrogen, while in other embodiments, R 3 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., hydroxy, amino, or carbonyl.
  • R 4 represents hydrogen, while in other embodiments, R 4 represents from 1 to 3 substituents on the ring to which it is attached selected from halogen, hydroxy, amino, sulfhydryl, cyano, nitro, lower alkyl, and sulfate.
  • R 4 represents hydrogen and at least one of R protagonist R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of R R 2 , and R 3 represents hydrogen. In certain embodiments, R 4 represents hydrogen and at least three of R l5 R 2 , and R 3 represent hydrogen. In certain embodiments, R 4 represents hydrogen and all four of R l5 R 2 , and R 3 represent hydrogen.
  • one R represents hydrogen
  • one R j represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc.
  • R 2 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc.
  • R 3 and R 4 represent hydrogen.
  • one occurrence of R r represents hydrogen, the second occurrence of Rj represents hydrogen, or lower alkyl;
  • R 2 represents hydrogen or lower alkyl,
  • R 3 represents hydrogen or lower alkyl, and
  • R 4 represents hydrogen or from 1 to 3 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl.
  • R 4 represents hydrogen and at least one of R perpetrat R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of Rj, R 2 , and R 3 represent hydrogen.
  • both occurrences of R j represent independently hydrogen, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • one occurrence of R ] represents hydrogen, the second occurrence of R, represents methyl, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • R independently and for each occurrence represents hydrogen, R 2 represents methyl, and R 3 and R 4 independently and for each occurrence represent hydrogen.
  • the pharmaceutical kits and preparations of this invention comprise at least one ofthe amphetamine compounds as a pharmaceutically acceptable salt represented by Formula II:
  • R l3 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting
  • R 3 represents hydrogen, while in other embodiments, R 3 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., hydroxy, amino, or carbonyl.
  • R 4 represents hydrogen, while in other embodiments, R 4 represents from 1 to 3 substituents on the ring to which it is attached selected from halogen, hydroxy, amino, sulfhydryl, cyano, nitro, lower alkyl, and sulfate.
  • R 4 represents hydrogen and at least one of R l5 R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of R l9 R 2 , and R 3 represents hydrogen. In certain embodiments, R 4 represents hydrogen and at least three of R l5 R 2 , and R 3 represent hydrogen. In certain embodiments, R 4 represents hydrogen and all four of R l5 R 2 , and R 3 represent hydrogen. In certain embodiments, one R !
  • R represents hydrogen
  • one R represent lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc.
  • R 2 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, etc.
  • R 3 and R 4 represent hydrogen.
  • one occurrence of R.. represents hydrogen
  • R 4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl.
  • R 4 represents hydrogen and at least one of
  • R l5 R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of R l5 R 2 , and R 3 represent hydrogen.
  • both occurrences of R represent independently hydrogen, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • one occurrence of Rj represents hydrogen
  • the second occurrence of R ⁇ represents methyl
  • R 2 represents methyl
  • R 3 represents hydrogen and R 4 represents hydrogen.
  • R represents hydrogen.
  • R relieve independently and for each occurrence, represents hydrogen, R 2 represents methyl, and R 3 and R 4 independently and for each occurrence represent hydrogen.
  • the pharmaceutical kits and preparations of this invention comprise at least one ofthe amphetamine compounds as an amphetamine metabolite represented by Formula III:
  • R l5 independently for each occurrence, represents hydrogen or s ⁇ bstituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy;
  • R 2 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy;
  • R 3 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralky
  • R 3 represents hydrogen, while in other embodiments, R 3 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., hydroxy, amino, or carbonyl.
  • R 4 represents hydrogen, while in other embodiments, R 4 represents from 1 to 3 substituents on the ring to which it is attached selected from halogen, hydroxy, amino, sulfhydryl, cyano, nitro, lower alkyl, and sulfate.
  • R 4 represents hydrogen and at least one of R l5 R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of R R 2 , and R 3 represent hydrogen. In certain embodiments, R 4 represents hydrogen and at least three of R l5 R 2 , and R 3 represent hydrogen. In certain embodiments, R 4 represents hydrogen and all four of R l5 R 2 , and R 3 represent hydrogen.
  • one R j represents hydrogen
  • one R represent lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc.
  • R 2 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc.
  • R 3 and R 4 represent hydrogen.
  • one occurrence of R j represents hydrogen, the second occurrence of Rj represents hydrogen, or lower alkyl;
  • R 2 represents hydrogen or lower alkyl,
  • R 3 represents hydrogen or lower alkyl, and
  • R 4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl.
  • R 4 represents hydrogen and at least one of R l5 R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of R-, R 2 , and R 3 represent hydrogen.
  • both occurrences of R represent independently hydrogen, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • one occurrence of Rj represents hydrogen, the second occurrence of R 1 represents methyl, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • R l5 independently and for each occurrence, represents hydrogen, R 2 represents methyl, and R 3 and R 4 independently and for each occurrence represent hydrogen.
  • a metabolite of an amphetamine compound is selected from p-hydroxyamphetamine, benzyl methyl ketone, l-phenylpropan-2-ol, benzoic acid, glycine, hippuric acid, p-hydroxynorephedrine, and N-hydroxylamphetamine .
  • the invention features a pharmaceutical kit or preparation comprising a mixture of at least a single species of amphetamine compounds or at least two different species of amphetamine compounds. The different species of amphetamine compounds can be present in equal or in differing amounts with respect to one another.
  • the invention features a composition comprising at least about 51 percent (w/w (weight/weight) or mole percent), about 60 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent), about 95 percent (w/w or mole percent) or about 99 percent (w/w or mole percent) of one amphetamine enantiomer relative to another amphetamine enantiomer (e.g., 1-amphetamine relative to d-amphetamine or 1- methamphetamine relative to d-methamphetamine).
  • an amphetamine composition employed in the methods can be about 80 percent (w/w or mole percent) 1-amphetamine or 1-methamphetamine relative to d-amphetamine or d- methamphetamine, where d-amphetamine or d-methamphetamine is about 20 percent (i.e., the remainder) (w/w or mole percent) ofthe amphetamine.
  • the methods ofthe invention employ an amphetamine that is about 100 percent (w/w or mole percent) 1-amphetamine or 1- methamphetamine, wherein the 1-amphetamine is a composition that includes at least about 100 mole percent 1-amphetamine relative to a total amphetamine content ofthe composition or wherein the 1-methamphetamine is administered as a composition that includes at least about 100 mole percent 1-amphetamine relative to a total amphetamine content ofthe composition.
  • An amphetamine that is "about 100 percent" 1-amphetamine or 1-methamphetamine can contain insignificant trace amounts of d-amphetamine or d-methamphetamine.
  • kits, preparations, compositions and methods preferably use compositions of (R)-(-)-amphetamine which contain less than 10 percent (w/w or mole percent) (S)-(+)-amphetamine, and even more preferably less than less than 5 percent (w/w or mole percent), 1 percent (w/w or mole percent) or even less than 0.5 percent (w/w or mole percent) (S)-(+)-amphetamine.
  • the amphetamine employed in the methods can be a percent ofthe total composition administered to the human.
  • the amphetamine component ofthe composition can be about 50 percent (w/w), about 60 percent (w/w), about 75 percent (w/w), about 80 percent (w/w), about 85 percent (w/w), about 90 percent (w/w), about 95 percent (w/w) and about 100 percent (w/w) ofthe total composition administered to the human.
  • the human can be administered a composition which comprises about 80 weight or volume percent amphetamine and about 20 weight or volume percent, respectively, inert excipient.
  • the amphetamine component ofthe composition includes at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, d- amphetamine and d-methamphetamine.
  • the invention features one or more amphetamine compound(s) provided in an amount sufficient to enhance long-term memory in a patient by a statistically significant amount when assessed by a standardized performance test.
  • the invention features one or more amphetamine compound(s) comprising at least 2-fold less, or at least 4-fold less ofthe distomer(s) as compared to an equally effective long term memory enhancing dose ofthe distomer(s) ofthe amphetamine compound(s).
  • the invention features amphetamine comprising at least 2-fold less, or at least 4-fold less of (R)-(-)-amphetamine as compared to an equally effective long term memory enhancing dose of (S)-(+)-amphetamine.
  • the invention features one or more amphetamine compound(s) provided in an amount sufficient to enhance long-term memory in a patient by a statistically significant amount when assessed by standardized performance test, such as one or more of a Rey Auditory and Verbal Learning Test (RAVLT); Cambridge Neuropsychological Test Automated Battery (CANTAB); a Children's Memory Scale (CMS); a Contextual Memory Test; a Continuous Recognition Memory Test (CMRT); a Denman Neuropsychology Memory Scale; a Fuld Object Memory Evaluation (FOME); a Graham-Kendall Memory for Designs Test; a Guild Memory Test; a Learning and Memory Battery (LAMB); a Memory Assessment Clinic Self-Rating Scale (MAC-S); a Memory Assessment Scales (MAS); a Randt Memory Test; a
  • RAVLT Rey Auditory and Verbal Learning Test
  • CANTAB Cambridge Neuropsychological Test Automated Battery
  • CMS Children's Memory Scale
  • CMRT Continuous Recognition Memory Test
  • FOME Fuld Object Memory Evaluation
  • RMT Recognition Memory Test
  • RWMS Rivermead Behavioral Memory Test
  • TOMAL Test of Memory and Learning
  • VMS Vermont Memory Scale
  • WRAML Wide Range Assessment of Memory and Learning
  • First-Last Name Association Youngjohn J.R., et al, Archives of Clinical Neuropsychology 6:287-300 (1991)
  • Name-Face Association Wechsler Memory Scale-Revised; (Wechsler, D., Wechsler Memory Scale-Revised Manual, NY, NY, The Psychological Corp.
  • the methods ofthe invention and pharmaceutical composition features one or more amphetamine compounds provided in an amount sufficient to enhance long-term memory (to improve memory consolidation in a human) when assessed by a word recall test such as RANLT.
  • the invention features one or more amphetamine compound(s) provided in an amount sufficient to enhance long-term memory in a patient by a statistically significant amount when assessed by a Schauking Memory Test.
  • the invention is a method to improve a memory impairment in a human having multiple sclerosis by administration ofthe amphetamine compounds ofthe invention. The memory impairment and improvement in memory can be assessed using established criteria (for example, Thornton, A.E., et al.
  • the invention features one or more amphetamine compound(s) provided in the form of a saccharate, a sulfate or an aspartate.
  • the subject pharmaceutical preparations are formulated for variable dosing, and preferably to deliver a sustained and increasing dose, e.g., over at least 4 hours, and more preferably over at least 8 or even 16 hours.
  • the amphetamine compound is contained within a nonabsorbable shell that releases the drug at a controlled rate.
  • the amphetamine compound(s) are formulated in a delivery system including a multiplicity of layers each including the same or different polymers, a dose ofthe amphetamine compound(s) in an increasing dose in the multiplicity of layers, wherein in operation the preparation delivers an increasing dose ofthe amphetamine compound(s) over time.
  • the amphetamine compound(s) are formulated in a delivery system including a bioerodible polymer, a dose ofthe amphetamine compound(s) present in an initial dose and a final dose, whereby the preparation delivers an initial dose then a final dose over time.
  • the amphetamine compound(s) are formulated in a delivery system including a plurality of beads, each bead including a amphetamine compound and having a dissolution profile, which plurality of beads is a variegated population with respect to dose and/or dissolution profile so as to deliver, upon administration, said sustained and increasing dose over at least 4 hours.
  • the amphetamine compound(s) are formulated in a delivery system wherein the amphetamine compound is (i) contained within a nonabsorbable shell that releases the drug at a controlled rate, and (ii) formulated in at least two different dissolution profiles.
  • the invention further features a neuronal growth factor, a neuronal survival factor, a neuronal trophic factor, a cholinergic modulator, an adrenergic modulator, a nonadrenergic modulator, a dopaminergic modulator, a glutaminergic modulator or an agent that modulates PKC, PKA, GAB A, NMD A, cannabinoid, AMP A, kainate, phosphodiesterase (PDE), CREB or nootropic pathways.
  • the modulation is a stimulation of one or more ofthe above-referenced pathways.
  • the modulation is an antagonism of one or more ofthe above- referenced pathways.
  • the invention further features methylphenidate.
  • Another aspect ofthe invention features the use ofthe pharmaceutical composition of amphetamine compounds in the manufacture of a medicament for prophylaxis or treatment of an animal susceptible to or suffering from anxiety, depression, age-associated memory impairment, minimal cognitive impairment, amnesia, dementia, learning disabilities, memory impairment associated with toxicant exposure, brain injury, brain aneurysm, Parkinson's disease, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, stroke, schizophrenia, epilepsy, Multiple Sclerosis, mental retardation, Alzheimer's disease, age, age-associated memory impairment, Mild Cognitive Impairment, attention deficit disorder, attention deficit hyperactivity disorder, Anterior Communicating Artery Syndrome, chronic fatigue syndrome, fibromyalgia syndrome (also referred to herein as "fibromyalgia”), chemotherapy, and traumatic brain injury, or AIDS-related dementia, which amphetamine compound is represented by Formula I, or a pharmaceutically
  • R represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl
  • R 2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl
  • R 3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl
  • R 4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting of hydrogen
  • one occurrence of R represents hydrogen, the second occurrence of R.. represents hydrogen, or lower alkyl;
  • R 2 represents hydrogen or lower alkyl,
  • R 3 represents hydrogen or lower alkyl, and
  • R 4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl.
  • R 4 represents hydrogen and at least one of Ri, R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of R l5 R 2 , and R 3 represent hydrogen.
  • both occurrences of R represent independently hydrogen, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • one occurrence of R j represents hydrogen
  • the second occurrence of R ⁇ represents methyl
  • R 2 represents methyl
  • R 3 represents hydrogen
  • R 4 represents hydrogen.
  • R independently and for each occurrence represents hydrogen
  • R 2 represents methyl
  • R 3 and R 4 independently and for each occurrence represent hydrogen.
  • Another aspect ofthe invention features the use of an amphetamine compound in the manufacture of a medicament for prophylaxis or treatment of an animal susceptible to or suffering from anxiety, depression, age-associated memory impairment, minimal cognitive impairment, amnesia, dementia, learning disabilities, memory impairment associated with toxicant exposure, brain injury, brain aneurysm, Parkinson's disease, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, stroke, schizophrenia, epilepsy, Multiple Sclerosis, mental retardation, Alzheimer's disease, age, attention deficit disorder, attention deficit hyperactivity disorder, Anterior Communicating Artery Syndrome, age-associated memory impairment, Mild Cognitive Impairment, chronic fatigue syndrome, fibromyalgia, chemotherapy, traumatic brain injury, Parkinson's disease or AIDS-related dementia, which amphetamine compound is represented by Formula II:
  • R j independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido; and
  • L is a non-toxic organic or inorganic acid.
  • one occurrence of R j represents hydrogen, the second occurrence of R j represents hydrogen, or lower alkyl;
  • R 2 represents hydrogen or lower alkyl,
  • R 3 represents hydrogen or lower alkyl, and
  • R 4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl.
  • R 4 represents hydrogen and at least one of R l5 R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of R l5 R 2 , and R 3 represent hydrogen. In certain preferred embodiments, both occurrences of Rj represent independently hydrogen, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • one occurrence of Rj represents hydrogen
  • the second occurrence of R represents methyl
  • R 2 represents methyl
  • R 3 represents hydrogen
  • R 4 represents hydrogen
  • R l5 independently and for each occurrence, represents hydrogen
  • R 2 represents methyl
  • R 3 and R 4 independently and for each occurrence represent hydrogen.
  • Another aspect of the invention features the use of an amphetamine compound in the manufacture of a medicament for prophylaxis or treatment of an animal susceptible to or suffering from anxiety, depression, age-associated memory impairment, minimal cognitive impairment, amnesia, dementia, learning disabilities, memory impairment associated with toxicant exposure, brain injury, brain aneurysm, Parkinson's disease, head trauma, Huntington's disease, Pick's disease,
  • R l5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy;
  • R 2 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy;
  • R 3 is absent or represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, hetero
  • one occurrence of R j represents hydrogen, the second occurrence of R represents hydrogen, or lower alkyl;
  • R 2 represents hydrogen or lower alkyl,
  • R 3 represents hydrogen or lower alkyl, and
  • R 4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl.
  • R 4 represents hydrogen and at least one of R perpetrat R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of R l5 R 2 , and R 3 represent hydrogen.
  • both occurrences of Rj represent independently hydrogen, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • one occurrence of Rj represents hydrogen, the second occurrence of Rj represents methyl, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • R 1( independently and for each occurrence, represents hydrogen, R 2 represents methyl, and R 3 and R 4 independently and for each occurrence represent hydrogen.
  • Levo-amphetamine, 1-amphetamine and (R)-(-)-amphetamine are used interchangeably herein.
  • Levo-methamphetamine, 1-methamphetamine and (R)-(-)- methamphetamine are used interchangeably herein.
  • the (R)-(-)-am ⁇ hetamine employed in the methods ofthe invention has the structural formula:
  • Formula IN is also referred to herein as C105, levo-amphetamine sulfate or 1- amphetamine sulfate.
  • Formula IV has the molecular formula C 18 H 28 ⁇ 2 O 4 S and a molecular weight of 368.50.
  • the IUPAC chemical name of Formula IV is (-)-l- methyl-2- ⁇ henylethylamine sulfate (2:1) and the CAS chemical name (-)- ⁇ - methylphenethylamine sulfate (2:1).
  • the (R)-(-)-amphetamine employed in the methods of the invention has the structural formula:
  • Formula V is also referred to herein as SN522-HC1 (hydrochloride), levo- methamphetamine HCl or 1-methamphetamine HCl.
  • Formula V has the molecular formula C 10 H 16 NC1.
  • the (R)-(-)-amphetamine employed in the methods ofthe invention has the structural formula:
  • Formula VI is also referred to herein as SN522, the free base of SN522, levo- methamphetamine, levo-desoxyephedrine, 1-desoxyephedrine or levmetamfetamine.
  • Formula VI has the molecular formula C 10 H 15 N and a molecular weight of 149.24.
  • the amphetamine compounds employed in the methods ofthe invention can be a combination ofthe amphetamine compounds described herein, e.g., Formulas IN, V and/or VI can be employed in any combination.
  • a human having mild cognitive impairment, Alzheimer's disease and an impairment in a cognitive function e.g., attention, executive function, reaction time, learning, information processing, conceptualization, problem solving, verbal fluency
  • a cognitive function e.g., attention, executive function, reaction time, learning, information processing, conceptualization, problem solving, verbal fluency
  • memory e.g., memory consolidation, short-term memory, working memory, long-term memory, declarative memory or procedural memory
  • 1-amphetamine e.g., C105
  • 1-methamphetamine e.g., SN522, SN522-HC1
  • the amphetamine compounds employed in the methods ofthe invention can be administered as a component of a composition that includes at least about 99 mole %, at least about 95 mole %, at least about 90 mole %, at least about 85 mole %, at least about 80 mole %, at least about 75 mole %, at least about 70 mole %, at least about 65 mole %, or at least about 60 mole %, of 1-amphetamine relative to the total amphetamine content in the composition; or at least about 99 mole %, at least about 95 mole %, at least about 90 mole %, at least about 85 mole %, at least about 80 mole %, at least about 75 mole %, at least about 70 mole %, at least about 65 mole %, or at least about 60 mole %, of 1-methamphetamine relative to the total amount of amphetamine content in the composition.
  • the animal to be treated is a mammal. In certain preferred embodiments the animal to be treated is a human, dog, cat, cattle, horse, sheep, hog or goat.
  • the pharmaceutical composition is for oral administration. In certain other embodiments the pharmaceutical composition is a transdermal patch. In certain embodiments the transdermal patch includes one or more penetration enhancers.
  • the pharmaceutical composition features an amphetamine compound provided as at least about 51 percent (w/w or mole percent), about 60 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent) about 95 percent (w/w or mole percent), or 99 percent (w/w or mole percent) ofthe eutomers relative to the distomers ofthe amphetamine compound (e.g., 1- amphetamine relative to d-amphetamine).
  • the amphetamine employed to treat a human is about 100 % 1-amphetamine (w/w or mole percent).
  • the pharmaceutical compositions are formulated for variable dosing, preferably to deliver a sustained dose, e.g., over at least 4 hours and more preferably over at least 8 or even 16 hours.
  • the amphetamine compound(s) are contained within a nonabsorbable shell that releases the drug at a controlled rate.
  • the pharmaceutical composition features an amphetamine compound (e.g., 1-amphetamine, 1-methamphetamine) provided in an amount sufficient to treat Mild Cognitive Impairment, Alzheimer's disease, enhance long-term memory, short-term memory, working memory, declarative memory, procedural memory or cognitive processes such as attention, executive function, reaction time or learning in a patient by a statistically significant amount when assessed by a standardized performance test.
  • an amphetamine compound e.g., 1-amphetamine, 1-methamphetamine
  • the pharmaceutical composition features one or more amphetamine compound(s) provided in an amount sufficient to enhance long-term memory in a patient by a statistically significant amount when assessed by one or more of a Rey Auditory and Nerbal learning Test (RANLT), Cambridge ⁇ europsychological Test Automated Battery (CANTAB); a Children's Memory Scale (CMS); a Contextual Memory Test; a Continuous Recognition Memory Test (CMRT); a Denman Neuropsychology Memory Scale; a Fuld Object Memory Evaluation (FOME); a Graham-Kendall Memory for Designs Test; a Guild Memory Test; a Learning and Memory Battery (LAMB); a Memory Assessment Clinic Self-Rating Scale (MAC-S); a Memory Assessment Scales (MAS); a Randt Memory Test; a Recognition Memory Test (RMT); a Rivermead Behavioral Memory Test; a Russell's Version ofthe Wechsler Memory Scale (RWMS); a Test of Memory and Learning (TOMAL); a Vermont Memory Scale (RANLT), Cambridge
  • the pharmaceutical composition features one or more amphetamine compound(s) provided in an amount sufficient to enhance long-term memory in a patient by a statistically significant amount when assessed by a word recall test such as the Rey Auditory and Verbal Learning Test (RAVLT).
  • the pharmaceutical composition features one or more amphetamine compound(s) provided in the form of a saccharate, a sulfate or an aspartate.
  • the invention further features amphetamine compound(s) being provided as a single oral dosage formulation in an amount sufficient to enhance long-term memory in a patient but resulting in a concentration in the patient lower than its EC 50 as a CNS stimulant.
  • the invention further features amphetamine compound(s) being provided for treating and/or preventing memory impairment (impairment in memory consolidation, impairment in short term memory, impairment in working memory), wherein the memory impairment results from one or more of anxiety, depression, age-associated memory impairment, minimal cognitive impairment, amnesia, dementia, learning disabilities, memory impairment associated with toxicant exposure, brain injury, brain aneurysm, Parkinson's disease, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, stroke, schizophrenia, epilepsy, mental retardation, Alzheimer's disease, age, age-associated memory impairment, Mild Cognitive Impairment, attention deficit disorder, attention deficit hyperactivity disorder, Multiple Sclerosis, Anterior Communicating Artery Syndrome or
  • the invention is a method of treating a perimenopausal, menopausal or postmenopausal woman having an impairment in memory (impairment in memory consolidation, impairment in short term memory, impairment in working memory) with an amphetamine compound ofthe invention (1- amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1).
  • the amphetamine co-pr ⁇ oun ⁇ ofthe invention can be administered to the perimenopausal, menopausal or postmenopausal woman simultaneously or sequentially with other compounds, drugs or agents.
  • the amphetamine compounds can be administered to a perimenopausal, irienopausal or postmenopausal woman undergoing steroid hormone replacement therapy and/or treatment for depression (e.g., selective serotonin reuptake inhibitors such as citalopram (Cipramil ® ), fluoxetine (Prozac ® ), fluvoxamine (Faverin ® ), paroxetine (Seroxat ® ), and sertraline (Lustral ® ).
  • the invention further features amphetamine compound(s) being provided for enhancing memory in normal individuals.
  • the invention features one or more amphetamine compound(s), wherein the amphetamine compound is (R)-(-)-amphetamine.
  • the invention features one or more amphetamine compound(s), wherein the amphetamine compound is (R)-(-)-methamphetamine.
  • the invention features a single oral dosage formulation of at least about 2.5 mg to about 25 mg, about 50 mg, about 75 mg, about 100 mg or about 125 mg of an amphetamine compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1) and a pharmaceutically acceptable carrier.
  • an amphetamine compound e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1
  • a pharmaceutically acceptable carrier e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1
  • the single dosage formulation is at least about 0.001 mg, about 0.01 mg, about 0.1 mg, about 1 mg, about 2 mg, about 2.5 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 750 mg, or about 1000 mg of an amphetamine compound (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1).
  • an amphetamine compound e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1.
  • the dose of an amphetamine compound is between about a 5 mg dose and about a 50 mg dose; or between about a 2 mg dose and about a 60 mg dose per day; or between about 1 mg to between about a 100 mg dose; or between about a 1 mg to about a 150 mg dose.
  • the methods ofthe invention employ multiple doses of an amphetamine compound.
  • Each dose ofthe multiple dose is at least about 0.001 mg, about 0.01 mg, about 0.1 mg, about 1 mg, about 2.5 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 750 mg or about 1000 mg of an amphetamine compound (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1).
  • an amphetamine compound e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1.
  • the multiple doses can be administered for a day, days, a week, weeks, a month, months or years.
  • the amphetamine compounds ofthe invention can be administered to a human acutely (briefly or short-term) or chronically (prolonged or long-term).
  • the amphetamine compounds, (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1) ofthe invention can be used in methods to treat a human by administering the amphetamine to the human once a day, multiple times (e.g., 2, 3, 4) in a day, for a day, days, a week, weeks, a month, months or years.
  • the invention features a single oral dosage formulation of between about 0.001 mg to about 125 mg; between about 0.001 mg to about 250 mg; between 0.001 mg to 500 mg; or between about 0.01 mg to about 125 mg; or between about 0.1 mg to about 125 mg; or between about 1 mg to about 125 mg; or between about 1 mg to about 250 mg; or between about 1 mg to about 500 mg; or between about 1 mg to about 1000 mg; or between about 2.5 mg to about 25 mg, about 50 mg, about 75 mg, about 100 mg or about 125 mg ofthe eutomer(s) of amphetamine compound(s) (1- amphetamine, C105, 1-methamphetamine, SN522) and, optionally, a pharmaceutically acceptable carrier.
  • the methods ofthe invention employ multiple doses between about 0.001 mg to about 500 mg ofthe amphetamine compound (e.g., 1- amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1), wherein each ofthe multiple doses ofthe amphetamine compound is between about 0.001 mg to about 125 mg; or between about 0.001 mg to about 250 mg; or between about 0.001 mg to about 500 mg; or between about 0.01 mg to about 125 mg; or between about 0.01 mg to about 500 mg; or between about 0.1 mg to about 125 mg; or between about 1 mg to about 125 mg; or between about 1 mg and about 100 mg; or between about a 1 mg to about a 150 mg dose; or between about 1 mg and about 500 mg; between about 5 mg and about 50 mg; between about 2 mg and 60 mg between about 2.5 mg to about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 250 mg, about 500 mg, about 750 mg, about
  • the methods ofthe invention employ a single dose ofthe amphetamine compound (1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1) between about 0.0015 mg/kg to about 2 mg/kg; between about 0.015 mg/kg to about 2 mg/kg; or about 0.07 mg to about 0.7 mg or between about 0.14 mg to about 0.7 mg; or about 0.03 mg to about 1.0 mg per day.
  • the amphetamine compound (1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1) between about 0.0015 mg/kg to about 2 mg/kg; between about 0.015 mg/kg to about 2 mg/kg; or about 0.07 mg to about 0.7 mg or between about 0.14 mg to about 0.7 mg; or about 0.03 mg to about 1.0 mg per day.
  • the methods ofthe invention employ a single dose about 0.04 mg/kg, about 0.07 mg/kg, about 0.15 mg/kg, about 0.20 mg/kg, about 0.40 mg/kg, about 0.65 mg/kg, about 1 mg/kg, about 1.50 mg/kg, about 1.80 mg/kg or about 3.5 mg/kg of 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1.
  • the methods ofthe invention employ multiple doses ofthe amphetamine compound (1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1), wherein each dose ofthe multiple dose is between about 0.0015 mg/kg to about 2 mg/kg; or between about 0.015 mg/kg to about 2 mg/kg.
  • the methods ofthe invention employ multiple doses, wherein each does ofthe multiple dose is about 0.04 mg/kg, about 0.07 mg/kg, about 0.15 mg/kg, about 0.20 mg/kg, about 0.40 mg/kg, about 0.65 mg/kg, about 1 mg/kg, about 1.50 mg/kg, about 1.80 mg/kg or about 3.5 mg/kg of 1- amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1.
  • the cumulative dose ofthe amphetamine compound (1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1) employed in the methods ofthe invention, regardless of whether the amphetamine is administered in a single dose or in multiple doses is between about 0.2 mg to about 250 mg; or between about 1 mg to about 1250 mg ofthe amphetamine compound.
  • the cumulative dose is about 2 mg, about 10 mg, about 20 mg, about 30 mg, about 50 mg, about 60 mg, about 90 mg, about 100 mg, about 150 mg, about 200 mg, about 250 mg, about 450 mg, about 750 mg, about 1000 mg, about 1250 mg, about 2500 mg or about 5000 mg.
  • the invention features a method for enhancing memory in an animal, a method of treating a human with an impairment in memory consolidation or an impairment in short term memory or an impairment in working memory comprising administering to the animal a composition of an amphetamine compound in an amount sufficient to enhance long-term memory or improve memory consolidation in the animal (human), wherein the composition includes at least about 51 percent (w/w or mole percent), about 60 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent), about 95 percent (w/w or mole percent), about 99 percent (w/w or mole percent) ofthe eutomers relative to the distomers ofthe amphetamine or about 100 % (w/w or mole percent) of compound represented by Formula I, or pharmaceutically acceptable salt, solvate, metabolite or pro-drug thereof, relative to the distomer of that amphetamine compound:
  • R l5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting
  • one occurrence of R l represents hydrogen, the second occurrence of R., represents hydrogen, or lower alkyl;
  • R 2 represents hydrogen or lower alkyl,
  • R 3 represents hydrogen or lower alkyl, and
  • R 4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl.
  • R 4 represents hydrogen and at least one of R j , R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of Ri, R 2 , and R 3 represent hydrogen.
  • both occurrences of R ⁇ represent independently hydrogen, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • one occurrence of R x represents hydrogen
  • the second occurrence of R 1 represents methyl
  • R 2 represents methyl
  • R 3 represents hydrogen
  • R 4 represents hydrogen.
  • R l5 independently and for each occurrence, represents hydrogen
  • R 2 represents methyl
  • R 3 and R 4 independently and for each occurrence represent hydrogen.
  • the invention features a method for enhancing memory in an animal or a method for treating a human with an impairment in memory consolidation, comprising administering to the animal a composition of an amphetamine compound in an amount sufficient to enhance long-term memory or improve memory consolidation in the animal (human), wherein the composition includes at least about 51 percent (w/w or mole percent), about 60 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent, about 95 percent (w/w or mole percent), or about 99 percent (w/w or mole percent) ofthe eutomers relative to the distomers ofthe amphetamine compound, wherein the amphetamine compound is a pharmaceutically acceptable salt represented by Formula II:
  • R ls independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or , cycloalkylalkyl;
  • R 4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group
  • one occurrence of R ⁇ represents hydrogen, the second occurrence of R, represents hydrogen, or lower alkyl;
  • R 2 represents hydrogen or lower alkyl,
  • R 3 represents hydrogen or lower alkyl, and
  • R 4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl.
  • R 4 represents hydrogen and at least one of Rj, R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of Rj, R 2 , and R 3 represent hydrogen.
  • both occurrences of R represent independently hydrogen, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • one occurrence of R ⁇ represents hydrogen, the second occurrence of R t represents methyl, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • R l5 independently and for each occurrence, represents hydrogen, R 2 represents methyl, and R 3 and R 4 independently and for each occurrence represent hydrogen.
  • the invention features a method for enhancing memory in an animal or a method of treating a human with an impairment in memory consolidation, comprising administering to the animal a composition of an amphetamine compound in an amount sufficient to enhance long-term memory or improve memory consolidation in the animal (human), wherein the composition includes at least about 51 percent (w/w or mole percent), about 60 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent), about 95 percent (w/w or mole percent), or about 99 percent (w/w or mole percent) ofthe eutomers relative to the distomers ofthe amphetamine compound, wherein the amphetamine compound is an amphetamine metabolite represented by Formula III, or pharmaceutically acceptable salt, solvate, or pro-drug thereof: wherein, as valence and stability permit, R l5 independently for each occurrence, represents hydrogen or substituted or unsubstit
  • one occurrence of R j represents hydrogen, the second occurrence of R j represents hydrogen, or lower alkyl;
  • R 2 represents hydrogen or lower alkyl,
  • R 3 represents hydrogen or lower alkyl, and
  • R 4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl.
  • R 4 represents hydrogen and at least one of R l5 R 2 , and R 3 represents hydrogen.
  • R 4 represents hydrogen and at least two of R l5 R 2 , and R 3 represent hydrogen.
  • both occurrences of Rj represent independently hydrogen, R 2 represents methyl, R 3 represents hydrogen and R 4 represents hydrogen.
  • one occurrence of R x represents hydrogen
  • the second occurrence of R r represents methyl
  • R 2 represents methyl
  • R 3 represents hydrogen
  • R 4 represents hydrogen.
  • R l5 independently and for each occurrence, represents hydrogen
  • R 2 represents methyl
  • R 3 and R 4 independently and for each occurrence represent hydrogen.
  • the invention features a kit comprising an amphetamine compound formulation, e.g., as described herein and preferably provided in single oral dosage form or as a transdermal patch for enhancing memory in a patient (preferably a human), and in association with instructions (written and/or pictorial) describing the use ofthe formulation for enhancing memory, and optionally, warnings of possible side effects and drug-drug or drug-food interactions.
  • Another aspect ofthe invention relates to a method for conducting a pharmaceutical business, which includes: (a) manufacturing the kits, preparations, and compositions ofthe present invention; and (b) marketing to healthcare providers the benefits of using the kits, preparations, and compositions ofthe present invention to enhance memory of treated patients.
  • Another aspect ofthe invention relates to a method for conducting a pharmaceutical business, comprising: (a) providing a distribution network for selling the kits, preparations, and compositions ofthe present invention; and (b) providing instruction material to patients or physicians for using the kits, preparations, and compositions ofthe present invention to enhance memory of treated patients.
  • Yet another aspect ofthe invention relates to a method for conducting a pharmaceutical business, comprising: (a) determining an appropriate dosage of an amphetamine compound to enhance memory function in a class of patients; (b) conducting therapeutic profiling of one or more formulations ofthe amphetamine compound identified in step (a), for efficacy and toxicity in animals; and (c) providing a distribution network for selling the formulations identified in step (b) as having an acceptable therapeutic profile.
  • the subject business method can include an additional step of providing a sales group for marketing the preparation to healthcare providers.
  • Another aspect ofthe invention relates to a method for conducting a pharmaceutical business, comprising: (a) determining an appropriate dosage of an amphetamine compound to enhance memory function in a class of patients; and (b) licensing, to a third party, the rights for further development and sale ofthe amphetamine compound for enhancing memory.
  • the class of patients suffer from memory impairment.
  • the memory impairment results from one or more of anxiety, depression, age-associated memory impairment, minimal cognitive impairment, amnesia, dementia, learning disabilities, memory impairment associated with toxicant exposure, brain injury, brain aneurysm, Parkinson's disease, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, stroke, schizophrenia, epilepsy, mental retardation, Alzheimer's disease, age, age-associated memory impairment, Mild Cognitive Impairment, attention deficit disorder, attention deficit hyperactivity disorder, Multiple Sclerosis, Anterior Communicating Artery Syndrome, AIDS-related dementia, chronic fatigue syndrome, fibromyalgia syndrome, traumatic brain injury, chemotherapy.
  • the class of patients are normal individuals.
  • Another aspect ofthe invention features solid dosage form comprising a eutomer of an amphetamine compound represented by Formula I, or a pharmaceutically acceptable salt, solvate, metabolite or pro-drug thereof, in an amount of 25 mg or less:
  • R l5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting
  • solid dosage form comprising a pharmaceutically acceptable salt of a eutomer of an amphetamine compound employed in the methods ofthe invention, for example, represented by Formula II, solvate, metabolite or pro-drug thereof, in an amount of 25 mg or less:
  • R j independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
  • R 4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consist
  • R l5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy;
  • R 2 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy;
  • R 3 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl,
  • the invention is a method of treating mild cognitive impairment in a human, comprising the step of administering an effective amount of an amphetamine to the human, wherem the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine.
  • the invention is a method of treating mild cognitive impairment in a human, comprising the step of administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1- methamphetamine.
  • the invention is a method of treating mild cognitive impairment in a human, comprising the step of administering an effective amount of an amphetamine to the human, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of between about a 2 mg dose and about a 60 mg dose per day.
  • the invention is a method of treating mild cognitive impairment in a human, comprising the step of orally administering an effective amount of an amphetamine to the human, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 95 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of between about a 2 mg dose and about a 60 mg dose per day.
  • Another embodiment ofthe invention is a method of treating mild cognitive impairment in a human, comprising the step of administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of between about a 2 mg dose and about a 60 mg dose per day.
  • An additional embodiment ofthe invention is a method of treating mild cognitive impairment in a human, comprising the step of orally administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 95 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of between about a 2 mg dose and about a 60 mg dose per day.
  • the invention is a method of treating Alzheimer's disease in a human, comprising the step of administering an effective amount of an amphetamine to the human, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine.
  • the invention is a method of treating Alzheimer's disease in a human, comprising the step of administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine.
  • a further embodiment ofthe invention is a method of treating Alzheimer's disease in a human, comprising the step of administering an effective amount of an amphetamine to the human, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of at least about a 2 mg and about a 60 mg dose per day.
  • Another embodiment ofthe invention is a method of treating Alzheimer's disease in a human, comprising the step of orally administering an effective amount of an amphetamine to the human, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 95 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of at least about a 2 mg and about a 60 mg dose per day.
  • the invention is a method of treating Alzheimer's disease in a human, comprising the step of administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of at least about a 2 mg and about a 60 mg dose per day.
  • the invention is a method of treating Alzheimer's disease in a human, comprising the step of orally administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 95 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of at least about a 2 mg and about a 60 mg dose per day.
  • Another embodiment ofthe invention is a method of treating mild cognitive impairment in a human, comprising the step of orally administering an effective amount of amphetamine to the human, wherein the amphetamine is at least about 95 mole percent 1-amphetamine relative to the total amphetamine content ofthe composition.
  • the invention is a method of treating mild cognitive impairment in the human, comprising the step of orally administering an effective amount of methamphetamine to the human, wherein the methamphetamine is at least about 95 mole percent 1-methamphetamine relative to the total methamphetamine content ofthe composition.
  • the invention is a method of treating Alzheimer's disease in a human, comprising the step of orally administering an effective amount of amphetamine to the human, wherein the amphetamine is at least about 95 mole percent 1-amphetamine relative to the total amphetamine content ofthe composition.
  • the invention is a method of treating Alzheimer's disease in the human, comprising the step of orally administering an effective amount of methamphetamine to the human, wherein the methamphetamine is at least about 95 mole percent 1-methamphetamine relative to the total methamphetamine content ofthe composition.
  • the invention is a method of treating a human for a memory impairment, comprising the step of administering an amphetamine ' composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in memory associated with multiple sclerosis.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having impairment in a cognitive function associated with multiple sclerosis.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive unction associated with a brain aneurysm.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with mental retardation.
  • the invention includes a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the human does not have an impairment in memory, attention and learning.
  • the invention includes a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of between about a 1 mg dose and about a 150 mg dose per day and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of between about a 1 mg dose and about a 150 mg dose per day and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of between about a 1 mg dose and about a 150 mg dose per day and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-methamphetamine and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 95 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of at least about a 1 mg and about a 150 mg dose per day and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering 05/000203 -49-
  • an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 95 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of at least about a 1 mg and about a 150 mg dose per day and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of amphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the amphetamine is at least about 95 mole percent 1-amphetamine relative to the total amphetamine content ofthe composition and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of methamphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the methamphetamine is at least about 95 mole percent 1-methamphetamine relative to the total methamphetamine content ofthe composition and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of amphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the amphetamine is at least about 95 mole percent 1-amphetamine relative to the total amphetamine content of the composition and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of methamphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the methamphetamine is at least about 95 mole percent 1-methamphetamine relative to the total methamphetamine content ofthe composition and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for a memory impairment, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in memory associated with multiple sclerosis.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with multiple sclerosis.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with a brain aneurysm and wherein the human does not have an impairment in memory, attention and learning.
  • an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with a brain aneurysm and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating an impairment in a cognitive function in a human, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with mental retardation and wherein the impairment is not an impairment in memory, attention and learning.
  • an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with mental retardation and wherein the impairment is not an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Parkinson's disease, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Parkinson's disease, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine wherein at least about 85 mole percent ofthe total methamphetamine in amphetamine content ofthe composition is 1-methamphetamine and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for a memory impairment, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in memory associated with chronic fatigue syndrome.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to human having an impairment in a cogmtive function associated with chronic fatigue syndrome.
  • the invention is a method of treating a human for a memory impairment, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in memory associated with fibromyalgia syndrome.
  • An additional embodiment ofthe invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to human having impairment in a cognitive function associated with fibromyalgia syndrome.
  • the invention is a method of treating a human for a memory impairment, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine,
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with a brain injury and wherein the human does not have an impairment in memory, attention and learning.
  • the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetatmine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with a stroke and wherein the human does not have an impairment in memory, attention and learning.
  • an amphetamine composition selected from the group consisting of 1-amphetatmine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with a stroke and wherein the human does not have an impairment in memory, attention and learning.
  • the invention includes a method of treating a human for memory impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before ' , concomitantly with and subsequent to exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the memory impairment consequent to the exposure to the muscarinic cholinergic receptor antagonist is at least partially attenuated.
  • the invention includes a method of treating a human for cognitive impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- ) threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the cognitive impairment consequent to the exposure to the muscarinic cholinergic receptor antagonist is at least partially ⁇ attenuated.
  • the invention includes a method of treating a human for memory impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to atropine, whereby the memory impairment consequent to the exposure to atropine is at least partially attenuated.
  • the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to atropine, whereby the memory impairment consequent to the exposure to atropine is at least
  • the invention includes a method of treating a human for memory impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to scopolamine, whereby the memory impairment consequent to the exposure to scopolamine is at least partially attenuated.
  • the invention includes a method of treating a human for cognitive impairment, comprising administering to the human at least one member selected the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to atropine, whereby the cognitive impairment consequent to the exposure to atropine is at least partially attenuated.
  • the invention includes a method of treating a human for cognitive impairment, comprising administering to the human at least one member selected the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to scopolamine, whereby the cognitive impairment consequent to the exposure to scopolamine is at least partially attenuated.
  • the invention includes a method of treating a human, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to a memory impairment that is a consequence of exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the memory impairment is at least partially attenuated.
  • An additional embodiment ofthe invention includes a method of treating a human, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphemdate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil before, concomitantly with, or subsequent to a cognitive impairment that is a consequence of exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the cognitive impairment is at least partially attenuated.
  • the invention includes a method of treating a human, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil before, concomitantly with, or subsequent to a memory impairment is a consequence of exposure ofthe human to atropine, whereby the memory impairment is at least partially attenuated.
  • the invention includes a method of treating a human, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil before, concomitantly with, or subsequent to a memory impairment is a consequence of exposure ofthe human to scopolamine, whereby the memory impairment is at least partially attenuated.
  • the practice ofthe present invention will employ, unless otherwise indicated, conventional techniques of synthetic chemistry, organic chemistry, inorganic chemistry, organometallic chemistry, pharmaceutical chemistry, and behavioral science, which are within the skill ofthe art.
  • the invention described herein provides methods of treating a human having an impairments in a cognitive function (e.g., attention, executive function, reaction time, learning information processing, conceptualization, problem solving, verbal fluency) and memory (e.g., memory consolidation, short term memory, working memory, long term memory, declarative memory or procedural memory).
  • a cognitive function e.g., attention, executive function, reaction time, learning information processing, conceptualization, problem solving, verbal fluency
  • memory e.g., memory consolidation, short term memory, working memory, long term memory, declarative memory or procedural memory.
  • Advantages ofthe claimed invention include, for example, the treatment of humans suffering an impairment in a cognitive function or memory in a cost effective manner and without significant side affects, especially in individuals who have had a condition or disease for an extended period of time and where clinical management strategies are difficult to implement. Of particular importance, are conditions which require long-term treatment where addictive and potent side effects would be considerably undesirable.
  • the claimed methods provide an efficient way to treat and reduce the severity of an impairment in a cognitive function (also referred to herein as "cognition") and memory in humans.
  • the invention described herein also provides a method for treating an individual, in particular a human individual, having an impairment in a cognitive function (e.g., an impairment in attention, an impairment in alertness, an impairment in wakefulness, and impairment in arousal, an impairment in executive function, an impairment in reaction time, an impairment in vigilance, an impairment in information processing, an impairment in conceptualization, an impairment in problem solving, an impairment in verbal fluency) and/or a memory process (e.g., impairment in memory consolidation, impairment in short-term memory, an impairment in working memory, an impairment in declarative memory, an impairment in procedural memory).
  • a cognitive function e.g., an impairment in attention, an impairment in alertness, an impairment in wakefulness, and impairment in arousal
  • an impairment in executive function e.g., an impairment in reaction time, an impairment in vigil
  • the individual can have an impairment in a cognitive or memory processes as a consequence of exposure to a muscarinic cholinergic receptor antagonist.
  • the claimed methods provide an efficient way to treat a human by preventing, reducing, diminishing, attenuating, minimizing or reversing the onset or severity of impairments in cognitive and memory processes in humans as, for example, a consequence of exposure to muscarinic cholinergic receptor antagonists or as associated with mild cognitive impairment, Alzheimer's disease, multiple sclerosis, mental retardation, brain aneurysm, chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy, traumatic brain injury, stroke or Parkinson's disease.
  • the invention described herein provides methods for improving memory and cognition in subjects who do not have an impairment in memory or a cognitive function (also referred to herein as "normal" subjects).
  • treatment with 1-amphetamine (e.g., C105) or 1-methamphetamine (e.g., SN522, SN522-HC1) can halt, reverse or diminish the progression ofthe impairment in cognition and memory, thereby increasing the quality of life without adverse side affects, such as addiction, alterations in blood pressure and heart rate.
  • treatment with at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil can potentially prevent, halt, reverse, diminish, attenuate or minimize the initiation or progression of an impairment in cognitive and memory processes as a consequence of exposure to muscarinic cholinergic receptor antagonists, thereby increasing the ability to execute, form or maintain cognitive and memory processes, which can improve the quality of life.
  • Figure 1 presents the effectiveness of various doses of S-(+)-amphetamine on Performance in the Inhibitory Avoidance Task.
  • Figure 2 demonstrates the effect of 2 mg/kg of S-(+)-amphetamine on Performance in the Inhibitory Avoidance Task.
  • Figure 3 shows the varying effect of S-(+)-amphetamine depending on the time between administration and inception of training.
  • Figure 4 illustrates the effect of S-(+)-amphetamine on memory retention one week after the initial training.
  • Figure 5 depicts the effects of S-(+)-amphetamine on normal and fornix-lesioned animals.
  • Figure 6 shows the effect of S-(+)-amphetamine (2.0 mg/kg) on Performance in Inhibitory Avoidance .
  • Figures 7A, 7B, 7C, 7D, 7E and 7F show the effect of S-(+)-amphetamine on Activity Levels.
  • Figure 8 shows the effectiveness of various doses of R-(-)-amphetamine on memory retention.
  • Figure 9 shows the effectiveness of R-(-)-amphetamine on memory retention.
  • Figure 10 shows the effect of R-(-)-amphetamine (0.5 mg/kg) on Performance in the Inhibitory Avoidance Task.
  • Figure 11 shows the effect of Post Training Administration of R-(-)-amphetamine (0.5 mg/kg) on Performance in the Inhibitory Avoidance Task.
  • Figure 12 shows the effect of R-(-)-amphetamine (1.0 mg/kg) on Inhibitory
  • Figures 13 A, 13B, 13C and 13D show the effect of R-(-)-amphetamine on Performance in the Object Recognition Task in Normal and Fornix Lesion Rats.
  • Figures 14 A, 14B, 14C, 14D, 14E and 14F show the effect of R-(-)-amphetamine (0.5 mg/kg) on Activity Levels.
  • Figures 15A, 15B, 15C, 15D, 15E and 15F shows the effect of S-(+)-amphetamine (2 mg/kg) on Activity Levels.
  • Figure 16 shows the effect of R-(-)-amphetamine on Tail-Flick Analgesia.
  • Figure 17 shows an exemplary sustained release device.
  • Figure 18 depicts the pharmacokinetics of R-(-)-amphetamine and Memory
  • Figure 19 shows that administration of R-(-)-amphetamine to human patients can improve verbal memory.
  • Figure 20 depicts the Step-Through Latency (sec) for rats treated with control/vehicle (veh), d-amphetamine (d-amph), 1-amphetamine (C105) or 1- methamphetamine (SN522).
  • Figure 21 depicts the Step-Through Latency (sec) for rats treated with control (0) or varying doses of 1-methamphetamine (SN522). The asterisk indicates a significant difference from the control (p ⁇ 0.05).
  • Figure 22 depicts the Escape Latency (sec) for rats treated with saline control or 1-methamphetamine (SN522).
  • Figure 23 depicts the Activity Measure (% increase from control) for rats treated with 1-methamphetamine (SN522).
  • Figure 24 depicts the Activity Measure (% increase from control) for rats treated with D-amphetamine (d-amph).
  • Figure 25 depicts the Memory Score, as assessed by the Rey Auditory and
  • Figure 26 compares individual subject's memory scores, as assessed by the Rey Auditory and Nerbal Learning Test (RANLT Score (0-15)), following placebo treatment to their best score following treating with 1-amphetamine (C105).
  • Figure 27 illustrates the keyboard proficiency for subjects diagnosed with mild cognitive impairment treated with 1-amphetamine (5 mg, 15 mg, 30 mg) and subjects diagnosed with mild cognitive impairment receiving placebo.
  • Figure 28 illustrates improvements in learning in subjects diagnosed with mild cognitive impairment following treatment with 1-amphetamine compared to placebo controls.
  • Figure 29 illustrates improvements in memory in subjects diagnosed with mild cognitive impairments following treatment with 1-amphetamine compared to placebo controls.
  • Figure 30 illustrates improvements in executive function in subjects diagnosed with mild cognitive impairment following treatment with 1-amphetamine compared to placebo controls.
  • Figure 31 illustrates improvement in memory and learning, as depicted by Z scores, in subjects diagnosed with mild cognitive impairment following treatment with 1-amphetamine (30 mg) compared to placebo controls.
  • Figure 32 depicts the Step-Through Latency (sec) for rats treated with saline control (Sal); and scopolamine rats treated with varying doses of 1-methamphetamine (SN522) or no 1-methamphetamine (0).
  • Figure 33 depicts the Step-Through Latency (sec) for rats treated with saline alone (sal-sal); and scopolamine rats treated with varying doses of 1-amphetamine (C105) or saline (sal). The asterisk indicates a significant difference between group means (p ⁇ 0.05).
  • Figure 34 depicts an improvement in memory in humans following the administration of 1-methamphetamine (SN522).
  • Figure 35 depicts an improvement in total speed score from baseline following the administration of 1-methamphetamine to humans.
  • Figure 36 depicts improvements in Picture Recognition/Sensitivity Index following the administration of 1-methamphetamine to humans.
  • Figure 37 depicts an improvement of 1-methamphetamine in Information
  • Figure 38 depicts an improvement in Information Processing-False Alarms following the administration of 1-methamphetamine to humans.
  • amphetamine compounds can be used to enhance and/or restore cognitive or memory function and performance, e.g., to improve attention, executive function, reactive time, learning, short-term memory, working memory, long-term memory, declarative memory, or procedural memory in animal subjects.
  • the invention relates to the discovery that particular stereoisomers of amphetamine compounds are the most effective for therapeutic use.
  • the amphetamine compounds ofthe invention e.g., R-(-)- amphetamine and R-(-)-methamphetamine
  • improve cognitive processes and memory e.g., memory consolidation or the process of storing new information in long-term memory
  • the present invention relates to the discovery that the amphetamine compounds can be used to enhance and/or restore cognitive processes such as attention span, focus, executive function, reaction time or learning in animal subjects.
  • the compounds can be useful in improving the attention span of normal individuals, as well as improving the attention span of individuals characterized by a deficit in attention span and/or focus (e.g., individuals diagnosed with an attention deficit disorder).
  • Lack of attentiveness may lead to a failure to process new information and accordingly commit such new information to memory.
  • Lack of focus may also lead to difficulties in later recalling previously processed information.
  • deficits in attentiveness and/or focus may affect learning and memory.
  • lack of attentiveness has many other negative social and behavioral consequences. Accordingly, the subject amphetamine compounds may be used to enhance and/or restore at least one of memory, learning, attentiveness, or focus.
  • compositions of 1-amphetamine or 1- methamphetamine are employed to treat impairments in cognitive and memory processes in a human having Alzheimer's disease or mild cognitive impairment.
  • Amphetamine is a nervous system stimulant that may mildly increase blood pressure and decreases appetite. Abuse of amphetamine has been shown to cause severe side effects including dependence and possibly induced psychosis.
  • Amphetamine is synonymous with actedron; actemin; adderall; adipan; akedron; allodene; alpha-methyl-( ⁇ )-benzeneethanamine; alpha-methylbenzeneethanamine; alpha-methylphenethylamine; amfetamine; amphate; anorexine; benzebar; benzedrine; benzyl methyl carbinamine; benzolone; beta-amino propylbenzene; beta-phenylisopropylamine; biphetamine; desoxynorephedrine; dieta ine; DL-amphetamine; elastonon; fenopromin; finam; isoamyne; isomyn; mecodrin; monophos; mydrial; norephedrane; novydrine; obesin; obesine; obetrol; octedrine; oktedrin; phena ine;
  • the present invention contemplates, in part, the use of an amphetamine composition which is enriched for eutomers of amphetamine compounds.
  • the use of pharmaceutical preparations for improving memory consolidation in humans include (R)-(-)-amphetamine or a derivative thereof.
  • (R)-(-)-amphetamine (1-amphetamine, levo-amphetamine, C105) is effective at a dose one-fourth (1/4) the dose of he (S)-(+) enantiomer (d-amphetamine, dexo- amphetamine) of amphetamine.
  • the ®)-(-) enantiomer has not been shown to be addictive and does not produce undesirable side effects such as increased activity, increased blood pressure or increased heart rate.
  • a mixture of enantiomers ofthe subject compounds may be employed, e.g., a racemic mixture containing both enantiomers of a chosen compound, e.g., with each enantiomer being present in equal amounts, or in differing amounts.
  • the therapeutic preparation may be enriched to provide predominantly one enantiomer of a subject compound.
  • an enantiomerically enriched mixture can comprise an amphetamine compound that is at least about 51 w/w or mole percent, about 60 w/w or mole percent, about 75 w/w or mole percent, about 80 w/w or mole percent, about 85 w/w or mole percent, about 90 w/w or mole percent, about 95 w/w or mole percent or about 99 w/w or mole percent 1-amphetamine relative to d-amphetamine.
  • the amphetamine compound employed in the methods is about 100 w/w or mole percent 1-amphetamine.
  • the amphetamine compound provided in the formulation is at least about 60 percent (w/w or mole percent) ofthe eutomer relative to the distomer ofthe amphetamine compound, and more preferably at least about 75 w/w or mole percent, about 80 w/w or mole percent, about 85 w/w or mole percent, about 90 w/w or mole percent, about 95 w/w or mole percent or about 99 w/w or mole percent.
  • the present invention is based on using the subject compounds for enhancing or restoring attention span and/or focus. The effects ofthe subject compounds on attention span may have secondary consequences on the ability to process and/or recall information, and therefore may also enhance memory and/or learning.
  • the amphetamine compounds can also be provided in the form of pharmaceutical salts and as prodrugs.
  • the method includes administering, conjointly with the pharmaceutical preparation, one or more of a neuronal growth factor, a neuronal survival factor, and a neuronal trophic factor.
  • a subject compound may be administered in conjunction with a cholinergic, adrenergic, nonadrenergic, dopaminergic, or glutaminergic modulator.
  • Other agents directed at modulating GABA, NMDA, cannabinoid, AMP A, kainate, phosphodiesterase (PDE), PKA, PKC, CREB or nootropic systems may be important to the improvement of cognitive function and may be administered in conjunction with a subject compound.
  • An agent to be administered conjointly with a subject compound may be formulated together with a subject compound as a single pharmaceutical preparation, e.g., as a pill or other medicament including both agents, or may be administered as a separate pharmaceutical preparation.
  • the present invention provides pharmaceutical preparations comprising, as an active ingredient, an enantiomerically enriched preparation of R-(-) amphetamine or a derivative thereof.
  • the amphetamine compound is formulated in an amount sufficient to improve memory consolidation in an animal.
  • the preparations and methods can be treatments using amphetamine compounds effective for human and/or animal subjects. In addition to humans, other animal t ⁇ which the invention is applicable extend to both domestic animals and livestock, raised either as pets or for commercial purposes.
  • Still another aspect ofthe invention relates to the use of enantiomerically enriched preparations of amphetamine compounds for lessening the severity or prophylactically preventing the occurrence of learning and/or memory defects in an animal, and thus, altering the learning ability and/or memory capacity ofthe animal.
  • the compounds ofthe present invention may be useful for treating and/or preventing memory impairment, e.g., due to toxicant exposure, brain injury, brain aneurysm, age-associated memory impairment, mild cognitive impairment, epilepsy, mental retardation in children, and dementia resulting from a disease, such as
  • Parkinson's disease Alzheimer's disease, AIDS, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, age-associated memory impairment, Mild Cognitive Impairment, Multiple Sclerosis, Anterior Communicating Artery Syndrome, chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy, traumatic brain injury, stroke or Parkinson's disease.
  • the compounds of the invention may be useful in enhancing memory in normal individuals.
  • the invention also relates to the conjoint use of an amphetamine compound with agents that mimic or stimulate PKC and/or PKA pathways.
  • the invention is a method of treating an impairment in cognitive processes. Cognition is also referred to herein as a cognitive process or a cognitive function.
  • the impairment in a cognitive process can be in a human having mild cognitive impairment, Alzheimer's disease, multiple sclerosis, chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy, traumatic brain injury, stroke or Parkinson's disease.
  • methods ofthe invention are employed to improve a cognitive function in a human having an impairment in a cognitive function associated with a brain aneurysm (e.g., anterior communicating artery brain aneurysm) or a human having an impairment in a cognitive function associated with mental retardation.
  • Impairment in a cognitive function treated by the methods described herein can be an impairment in attention, which is the capacity or process of selecting out of the totality of available sensory or affective stimuli, those stimuli that are most appropriate or desirable for focus at a given time (Kinchla, R.A., et al, Annu. Rev. Psychol. 43:111-142 (1992)).
  • the impairment in a cognitive process can be an impairment in executive function, which are neuropsychological functions such as decision making, planning, initiative, assigning priority, sequencing, motor control, emotional regulation, inhibition, problem solving, planning, impulse control, establishing goals, monitoring results of action and self-correcting (Elliott, R., Br. Med. Bull. 65:49-59 (2003)).
  • the cognitive impairment can be an impairment in alertness, wakefulness, arousal, vigilance, and reaction time information processing, conceptualization, problem solving and/or verbal fluency.
  • One of skill in the art would be capable of identifying and evaluating the impairment in a cognitive function in the individual.
  • impairments in cognitive processes are treated by the methods described herein in humans having a mild cognitive impairment or Alzheimer's disease.
  • amphetamine compounds is meant to include amphetamine, analogs of amphetamine, enantiomerically or isomerically enriched amphetamine, and enantiomerically or isomerically enriched analogs of amphetamine, as well as pharmaceutically acceptable salts of such compounds and prodrugs.
  • amphetamine compounds ofthe invention, or analogs thereof which are administered to the human having an impairment in memory include compounds having the structure as given in Formulas I, II, III, IN, N and NI above.
  • amphetamine such as is used when referring to "1-amphetamine” and “d-amphetamine,” means a compound having Formula Nil, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof.
  • Amhetamine can be in the form ofthe free base, salt, acid, ester, amide, carbamate, Schiff base, prodrug and other structural and functional derivatives of amphetamine or any combination thereof.
  • the amphetamine is the compound represented by Formula Nil including salts, acids, esters, amides, carbamates and Schiff bases.
  • the amphetamine is the compound represented by Formula Nil, including its salts and acids.
  • the amphetamine is the compound of Formula Nil:
  • methamphetamine such as is used when referring to "1- methamphetamine” and “d-methamphetamine,” means a compound having Formula NIII, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof.
  • a methamphetamine can be in the form ofthe free base, salt, acid, ester, amide, carbamate, Schiff base, prodrug and other structural and functional derivatives of methamphetamine or any combination thereof.
  • the methamphetamine is the compound represented by Formula NIII including salts, acids, esters, amides, carbamates and Schiff bases.
  • the methamphetamine is the compound represented by Formula NIII, including its salts and acids.
  • the methamphetamine is the compound represented by Formula NIII:
  • the dextro enantiomer of amphetamine is referred to in the art as the d, (+), D or S isomer and is represented by the general formula:
  • the levo enantiomer of amphetamine is referred to in the art as the 1, (-), L or
  • R isomer and is represented by the general formula:
  • the racemic mixtures may be referred to as d,l or (+,-) or ( ⁇ ) or DL or (R)(S).
  • ED 50 means the dose of a drug which produces 50% of its maximum response or effect.
  • LD 50 means the dose of a drug which is lethal in 50% of test subjects.
  • a "patient” or “subject” to be treated by the subject method can mean either a human or non-human animal.
  • prodrug represents compounds which are rapidly transformed in vivo, for example, by hydrolysis in blood into the therapeutically active agents ofthe present invention.
  • a common method for making a prodrug is to include selected moieties which are converted under physiologic conditions (enzymatic or nonenzymatic) to reveal the desired molecule.
  • transdermal patch is meant a system capable of delivery of a drug to a patient via the skin, or any suitable external surface, including mucosal membranes, such as those found inside the mouth.
  • delivery systems generally comprise a flexible backing, an adhesive and a drug retaining matrix, the backing protecting the adhesive and matrix and the adhesive holding the whole on the skin ofthe patient.
  • the drug-retaining matrix delivers drug to the skin, the drug then passing through the skin into the patient's system.
  • adrenergic refers to neurotransmitters or neuromodulators chemically related to adrenaline (epinephrine) or to neurons which release such adrenergic mediators. Examples are dopamine, norepinephrine, epinephrine. Such agents are also referred to as catecholamines, which are derived from the amino acid tyrosine.
  • catecholamines refers to a class of neurotransmitters which include catecholamines (e.g., dopamine, norepinephrine, and epinephrine) and serotonin.
  • catecholamines refers to neurotransmitters that have a catechol ring (e.g., a 3,4-dihydroxylated benzene ring). Examples are dopamine, norepinephrine, and epinephrine.
  • cholinergic refers to neurotransmitters or neuromodulators chemically related to choline or to neurons which release such cholinergic mediators.
  • dopaminergic refers to neurotransmitters or neuromodulators chemically related to dopamine or to neurons which release such dopaminergic mediators.
  • dopamine refers to an adrenergic neurotransmitter, as is known in the art.
  • aliphatic group refers to a straight-chain, branched-chain, or cyclic aliphatic hydrocarbon group and includes saturated and unsaturated aliphatic groups, such as an alkyl group, an alkenyl group, and an alkynyl group.
  • alkenyl and alkynyl refer to unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double or triple bond respectively.
  • alkoxyl or “alkoxy” as used herein refers to an alkyl group, as defined above, having an oxygen radical attached thereto.
  • alkoxy groups include methoxy, ethoxy, propyloxy, tert-butoxy and the like.
  • An "ether" is two hydrocarbons covalently linked by an oxygen. Accordingly, the substituent of an alkyl that renders that alkyl an ether is or resembles an alkoxyl, such as can be represented by one of -O-alkyl, -O-alkenyl, -O-alkynyl, -O-(CH 2 ) m -R 8 , where R 8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8
  • alkyl refers to the radical of saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl-substituted cycloalkyl groups, and
  • a straight chain or branched chain alkyl has 8 or fewer carbon atoms in its backbone (e.g., C j -C 8 for straight chains, C 3 -C 8 for branched chains), and more preferably 5 or fewer.
  • preferred cycloalkyls have from 3-10 carbon atoms in their ring structure, and more preferably have 5, 6 or 7 carbons in the ring structure.
  • alkyl (or “lower alkyl) as used throughout the specification, examples, and claims is intended to include both “unsubstituted alkyls” and “substituted alkyls”, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons ofthe hydrocarbon backbone.
  • Such substituents can include, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic moiety.
  • a halogen
  • the moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate.
  • the substituents of a substituted alkyl may include substituted and unsubstituted forms of amino, azido, imino, amido, phosphoryl (including phosphonate and phosphinate), sulfonyl (including sulfate, sulfonamido, sulfamoyl and sulfonate), and silyl groups, as well as ethers, alkylthios, carbonyls (including ketones, aldehydes, carboxylates, and esters), -CF 3 , -C ⁇ and the like.
  • substituted alkyls are described below. Cycloalkyls can be further substituted with alkyls, alkenyls, alkoxys, alkylthios, aminoalkyls, carbonyl-substituted alkyls, -CF 3 , -C ⁇ , and the like. Unless the number of carbons is otherwise specified, "lower alkyl” as used herein means an alkyl group, as defined above, but having from one to eight carbons, more preferably from one to five carbon atoms in its backbone structure. Likewise, “lower alkenyl” and “lower alkynyl” have similar chain lengths. Throughout the application, preferred alkyl groups are lower alkyls.
  • a substituent designated herein as alkyl is a lower alkyl.
  • alkylthio refers to an alkyl group, as defined above, having a sulfur radical attached thereto.
  • the "alkylthio" moiety is represented by one of -S-alkyl, -S-alkenyl, -S-alkynyl, and -S-(CH 2 ) m -R 8 , wherein R 8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8.
  • alkylthio groups include methylthio, ethylthio, and the like.
  • amine and “amino” are art-recognized and refer to both unsubstituted and substituted amines, e.g., a moiety that can be represented by the general formula: / -N ⁇ R 10
  • R 9 and R 10 each independently represent a hydrogen, an alkyl, an alkenyl, -(CH 2 ) m -R 8 , or R 9 and R 10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure;
  • R 8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and
  • m is zero or an integer in the range of 1 to 8.
  • R 9 and R 10 each independently represent a hydrogen, an alkyl, an alkenyl, or -(CH 2 ) m -R 8 , wherein R 8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8.
  • alkylamine as used herein means an amine group, as defined above, having a substituted or unsubstituted alkyl attached thereto, i.e., at least one of R 9 and R 10 is an alkyl group.
  • the term "amido" is art-recognized as an amino-substituted carbonyl and includes a moiety that can be represented by the general formula:
  • R 9 , R 10 are as defined above.
  • Preferred embodiments ofthe amide will not include imides which may be unstable.
  • aralkyl refers to an alkyl group substituted with an aryl group (e.g., an aromatic or heteroaromatic group).
  • aryl as used herein includes 5-, and 6-membered single-ring aromatic groups that may include from zero to four heteroatoms, for example, benzene, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like.
  • aryl groups having heteroatoms in the ring structure may also be referred to as "aryl heterocycles", “heteroaryls”, or “heteroaromatics.”
  • the aromatic ring can be substituted at one or more ring positions with such substituents as described above, for example, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino, nitro, sulfhydryl, imino, amido, phosphate, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, sulfonamido, ketone, aldehyde, ester, heterocyclyl, aromatic or heteroaromatic moieties, -CF 3 , -CN, or the like.
  • aryl also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings (the rings are "fused rings") wherein at least one ofthe rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls.
  • carbonyl is art-recognized and includes such moieties as can be represented by the general formula:
  • X is a bond or represents an oxygen or a sulfur
  • R n represents a hydrogen, an alkyl, an alkenyl, -(CH 2 ) m -R 8 or a pharmaceutically acceptable metal or aminergic counterion
  • R' u represents a hydrogen, an alkyl, an alkenyl or -(CH 2 ) m -R 8
  • R 8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle
  • m is zero or an integer in the range of 1 to 8.
  • heteroatom as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen and sulfur.
  • heterocyclyl or “heterocyclic group” refer to 3- to 10-membered ring structures, more preferably 3- to 7-membered rings, whose ring structures include one to four heteroatoms. Heterocycles can also be polycycles.
  • Heterocyclyl groups include, for example, thiophene, thianthrene, furan, pyran, isobenzofuran, chromene, xanthene, phenoxafhiin, pyrrole, imidazole, pyrazole, isothiazole, isoxazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, pyrimidine, phenanthroline, phenazine, phenarsazine, phenothiazine, furazan, phenoxazine, pyrrolidine,
  • the heterocyclic ring can be substituted at one or more positions with such substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphate, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, ketone, aldehyde, ester, a heterocyclyl, an aromatic or heteroaromatic moiety, -CF 3 , -CN, or the like.
  • substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphate, phosphonate, phosphin
  • metabolites refers to active derivatives produced upon introduction of a compound into a biological milieu, such as a patient.
  • L- amphetamine and 1-methamphetamine employed in the methods ofthe invention are not metabolites resulting from the administration of 1-deprenyl.
  • the oral administration of 1-amphetamine or 1-methamphetamine means ingestion of 1- amphetamine and/or 1-methamphetamine by the subject (e.g., human) not a metabolite of another ingested compound such as 1-deprenyl.
  • Humans with impairments in a cognitive function or memory are treated with amphetamine and/or methamphetamine, wherein the amphetamine and/or methamphetamine is enantiomerically enriched for 1-amphetamine of 1-methamphetamine relative to the total content of amphetamine and/or methamphetamine in the composition, wherein the 1-amphetamine and/or 1-methamphetamine is not administered as 1-deprenyl or a result ofthe metabolism of 1-deprenyl in the human.
  • nitro means -NO 2 ;
  • halogen designates -F, -CI, -Br or -I;
  • sulfhydryl means -SH;
  • hydroxyl means -OH;
  • sulfonyl means -SO 2 -.
  • polycyclyl or “polycyclic group” refer to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls) in which two or more carbons are common to two adjoining rings, e.g., the rings are "fused rings".
  • Rings that are joined through non-adjacent atoms are termed "bridged” rings.
  • Each ofthe rings ofthe polycycle can be substituted with such substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphate, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, ketone, aldehyde, ester, a heterocyclyl, an aromatic or heteroaromatic moiety, -CF 3 , -CN, or the like.
  • protecting group means temporary substituents which protect a potentially reactive functional group from undesired chemical transformations.
  • protecting groups include esters of carboxylic acids, silyl ethers of alcohols, and acetals and ketals of aldehydes and ketones, respectively.
  • the field of protecting group chemistry has been reviewed (Greene, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis, 2 nd ed.; Wiley: New York, 1991).
  • substituted is contemplated to include all permissible substituents of organic compounds.
  • the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds.
  • Illustrative substituents include, for example, those described herein above.
  • the permissible substituents can be one or more and the same or different for appropriate organic compounds.
  • the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences ofthe heteroatoms. This invention is not intended to be limited in any manner by the permissible substituents of organic compounds.
  • substitution or “substituted with” includes the implicit proviso that such substitution is in accordance with permitted valence ofthe substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc.
  • sulfamoyl is art-recognized and includes a moiety that can be represented by the general formula:
  • R 41 is an electron pair or represents a metal or aminergic counterion, hydrogen, alkyl, cycloalkyl, or aryl.
  • sulfonamido is art recognized and includes a moiety that can be represented by the general formula:
  • Rc, and R' n are a s defined above.
  • sulfonate is art-recognized and includes a moiety that can be represented by the general formula:
  • R 41 is an electron pair or represents a metal or aminergic counterion, hydrogen, alkyl, cycloalkyl, or aryl.
  • sulfoxido or “sulfinyl”, as used herein, refers to a moiety that can be represented by the general formula:
  • R 4 - 4 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aralkyl, or aryl.
  • sulfonyl refers to a moiety that can be represented by the general formula:
  • R 44 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl.
  • Analogous substitutions can be made to alkenyl and alkynyl groups to produce, for example, aminoalkenyls, aminoalkynyls, amidoalkenyls, amidoalkynyls, iminoalkenyls, iminoalkynyls, thioalkenyls, thioalkynyls, carbonyl-substituted alkenyls or alkynyls.
  • each expression e.g., alkyl, m, n, etc., when it occurs more than once in any structure, is intended to be independent of its definition elsewhere in the same structure.
  • Contemplated equivalents ofthe compounds described above include compounds which otherwise correspond thereto, and which have the same general properties thereof (e.g., the ability to effect long-term memory), wherein one or more simple variations of substituents are made which do not adversely affect the efficacy ofthe compound.
  • the compounds ofthe present invention may be prepared by the methods described below, or by modifications thereof, using readily available starting materials, reagents and conventional synthesis procedures. In these reactions, it is also possible to make use of variants which are in themselves known, but are not mentioned here.
  • hydrocarbon is contemplated to include all permissible compounds having at least one hydrogen and one carbon atom.
  • permissible hydrocarbons include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic organic compounds which can be substituted or unsubstituted.
  • a compound useful in the compositions and methods described herein has a structure of Formula IX:
  • R represents H or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy, etc.
  • R 2 represents H or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy, etc.
  • R 3 represents H or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl,
  • At least one occurrence of R j represents hydrogen. In certain embodiments, both occurrences of R j represent hydrogen. In other embodiments, one occurrence of R t represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc. In certain embodiments, R 2 represents hydrogen, while in other embodiments, R 2 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc.
  • R 3 represents hydrogen, while in other embodiments, R 3 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., hydroxy, amino, or carbonyl.
  • R 4 represents hydrogen, while in other embodiments, R 4 represents from 1 to 3 substituents on the ring to which it is attached selected from halogen, hydroxy, amino, sulfhydryl, cyano, nitro, and lower alkyl.
  • R 4 represents hydrogen and at least one of R l5 R 2 , and R 3 represents hydrogen.
  • R 4 is absent and at least two of Ri, R 2 , and R 3 represent hydrogen. In certain embodiments, R 4 represents hydrogen and at least three of R l5 R 2 , and R 3 represent hydrogen. In certain embodiments, R 4 represents hydrogen and all four of R l5 R 2 , and R 3 represent hydrogen.
  • certain embodiments of compounds of Formula IX may contain a basic functional group, such as amino or alkylamino, and thus, can be utilized in a free base form or as pharmaceutically acceptable salt forms derived from pharmaceutically acceptable organic and inorganic acids.
  • the pharmaceutically acceptable salts ofthe subject compounds represented by Formula IX include the conventional non-toxic salts ofthe compounds, e.g., from non-toxic orgamc or inorganic acids.
  • such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric, and the like; and the salts prepared from organic acids such as acetic, 2-acetoxybenzoic, ascorbic, benzene sulfonic, benzoic, chloroacetic, citric, ethane disulfonic, ethane sulfonic, formic, fumaric, gluconic, glutamic, glycolic, hydroxymaleic, isothionic, lactic, maleic, malic, methanesulfonic, oxalic, palmitic, phenylacetic, propionic, salicyclic, stearic, succinic, sulfanilic, tartaric, toluenesulfonic, and the like.
  • inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric,
  • sulfate saly of 1-amphetamine represented by Formula IV (CIO 5) and the hydrochloride salt of 1-methamphetamine represented by Formula V (SN522) are employed in the methods described herein.
  • such salts have a structure represented by the general Formula X:
  • L is a non-toxic organic or inorganic acid.
  • L is selected from the following inorganic acids: hydrochloric, hydrobromic, nitric, phosphoric, sulfamic, and sulfuric, or from the following organic acids: 2-acetoxybenzoic, ascorbic, benzene sulfonic, benzoic, chloroacetic, citric, ethane disulfonic, ethane sulfonic, formic, fumaric, gluconic, glutamic, glycolic, hydroxymaleic, isothionic, lactic, maleic, malic, methanesulfonic, oxalic, palmitic, phenylacetic, propionic, salicyclic, stearic, succinic, sulfanilic, tartaric, and toluenesulfonic.
  • the compounds ofthe present invention further include metabolites ofthe subject amphetamine compounds, included but not limited to the following: p-hydroxyamphetamine, benzyl methyl ketone, l-phenylpropan-2-ol, benzoic acid, glycine, hippuric acid, p-hydroxynorephedrine, and N-hydroxylamphetamine.
  • these metabolites have a structure represented by the general Formula XI:
  • Rj independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy, etc.
  • R 2 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy, etc.
  • R 3 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl
  • the method includes administering, conjointly with the pharmaceutical preparation, one or more of a neuronal growth factor, a neuronal survival factor, and a neuronal trophic factor.
  • a subject compound may be administered in conjunction with a cholinergic, adrenergic, noradrenergic, dopaminergic, glutaminergic or other modulators.
  • Other agents directed at modulating GABA, NMD A, cannabinoid, AMP A, kainate, phosphodiesterase (PDE), PKA, PKC, CREB or nootropic systems may be important to the improvement of cognitive function and may be administered in conjunction with a subject compound.
  • An agent to be administered conjointly with a subject compound may be formulated together with a subject compound as a single pharmaceutical preparation, e.g., as a pill or other medicament including both agents, or may be administered as a separate pharmaceutical preparation.
  • the present invention provides pharmaceutical preparations comprising, as an active ingredient amphetamine or a derivative thereof.
  • the subject amphetamine compound is formulated in an amount sufficient to improve LTP in an animal.
  • the subject preparations and methods can be treatments using amphetamine compounds effective for human and/or animal subjects.
  • other animal subjects to which the invention is applicable extend to both domestic animals and livestock, raised either as pets or for commercial purposes. Examples are dogs, cats, cattle, horses, sheep, hogs, and goats.
  • Still another aspect ofthe invention relates to the use of amphetamine compounds for lessening the severity or prophylactically preventing the occurrence of cognitive, learning and/or memory defects in an animal, and thus, altering the cognitive, learning ability and/or memory capacity ofthe animal.
  • the compounds ofthe present invention may be useful for treating and/or preventing cognitive or memory impairment, e.g., due to toxicant exposure, brain injury, brain aneurysm, age-associated memory impairment, mild cognitive impairment, epilepsy, Multiple Sclerosis, age-associated memory impairment, Mild Cognitive Impairment, mental retardation in children, and dementia resulting from a disease, such as Parkinson's disease, Alzheimer's disease, AIDS, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, Anterior Communicating Artery Syndrome, hypoxia, post cardiac surgery, Downs Syndrome, stroke, as a consequence of exposure to muscarinic cholinergic receptor antagonists.
  • a disease such as Parkinson's disease, Alzheimer's disease, AIDS, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, Anterior Communicating Artery Syndrome, hypoxia, post cardiac surgery, Downs Syndrome, stroke, as a consequence of exposure to muscarinic cholinergic
  • the compounds ofthe invention may be useful in enhancing cognition or memory in normal individuals.
  • the present invention also relates to treatment with at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine (also referred to as STRATTERA ® or tomoxetine) and modafinil (also referred to as PRO VIGIL ® ) to improve cognitive and memory processes in individuals exposed to a muscarinic cholinergic receptor antagonist.
  • atomoxetine also referred to as STRATTERA ® or tomoxetine
  • modafinil also referred to as PRO VIGIL ®
  • levo-amphetamine and levo-methamphetamine have been demonstrated to reduced impairment in memory that is a consequence of exposure to a muscarinic cholinergic receptor antagonist.
  • levo- amphetamine or levo-methamphetamine improves memory in rats that have an impairment in the ability to form new long term memory as a consequence of exposure to a muscarinic cholinergic receptor antagonist.
  • the ability to form new long term memory is the process of memory consolidation ("Neuroscience:
  • An embodiment ofthe invention includes a method of reducing a potential impairment in memory or cognition in a human who will be exposed to a muscarinic cholinergic receptor antagonist.
  • a “potential" impairment in memory or cognition refers to a possible effect ofthe muscarinic cholinergic receptor antagonist in the human which results in a diminished capacity in memory or cognition in the human as a consequence of exposure to the muscarinic cholinergic receptor.
  • the invention includes a method of treating a human, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphemdate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to a memory and/or cognitive impairment that is a consequence of exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the memory and/or cognitive impairment is at least partially attenuated.
  • the amphetamine (e.g., 1-amphetamine, d-amphetamine, 1-methamphetamine, d-methamphetamine or any combination thereof), threo-methylphenidate (e.g., d- threo-methylphenidate, 1-threo-methylphenidate, or any combination therof), methylphemdate, atomoxetine and modofinil are referred to herein, with respect to the methods of treating as a consequence of exposure of a human to a muscarinic cholinergic receptor antagonist, as "compounds,” “compounds ofthe invention,” or “compounds employed in the methods.”
  • "Before" exposure to the muscarinic cholinergic receptor antagonist refers to the administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylpheni
  • At least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil can be administered hours (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 12 hours), days (e.g., about 1, 2, 3, 4, 5, 6, 7 days) or weeks (e.g., 1, 2, 3, 4, 5, 6, 7, 8 weeks) before the individual being exposed to the muscarinic cholinergic receptor antagonist.
  • At least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil can be administered concomitantly (also referred to herein as "at about the same point in time” or “during") with exposure ofthe human to a muscarinic cholinergic receptor antagonist.
  • Constantly refers to the simultaneous or sequential administration of at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil to the human and exposure o the human to the muscarinic cholinergic receptor antagonist.
  • Concomitant administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil and exposure to the muscarinic cholinergic receptor antagonist can occur by administering a single formulation, which contains both at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil; and the muscarinic cholinergic receptor antagonist, to the human.
  • the single formulation results in simultaneous administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil; and exposure to the muscarinic cholinergic receptor antagonist.
  • At least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil can be administered concomitantly to the human by sequential administration of a formulation of at least one member selected from the group consisting of 1-amphetamine, 1- methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil and a separate formulation ofthe muscarinic cholinergic receptor antagonist.
  • Both the formulation of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil and the separate muscarinic cholinergic receptor antagonist formulation are concomitantly administered to the human by sequential administration.
  • the sequential administration can be the administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d- threo-methylphemdate, methylphenidate, atomoxetine and modafinil followed by exposure to the muscarinic cholinergic receptor antagonist at about the same time; or exposure to the muscarinic cholinergic receptor antagonist followed by the administration of at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil to the human at about the same time.
  • At least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil is administered subsequent to a memory and/or cognitive impairment that is a consequence of exposure ofthe human to a muscarinic cholinergic receptor antagonist.
  • Subsequent to refers to the administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil to the human after the human is exposed to the muscarinic cholinergic receptor antagonist.
  • At least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil can be administered hours (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 12 hours), days (e.g., about 1, 2, 3, 4, 5, 6, 7 days), weeks (e.g., about 1, 2, 3, 4, 5, 6, 7, 8 weeks), months (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 months) or years (e.g., about 1, 2, 3, 4, 5 years) subsequent to exposure ofthe individual to the muscarinic cholinergic receptor antagonist.
  • hours e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 12 hours
  • days e.g., about 1, 2, 3, 4, 5, 6, 7 days
  • weeks e.g., about 1, 2, 3, 4, 5, 6, 7, 8 weeks
  • months e.g., about 1, 2,
  • the amphetamine ofthe invention can be administered to a individual acutely (briefly or short-term) or chronically (prolonged or long-term) before, concomitantly with or subsequent to exposure ofthe individual to a muscarinic cholinergic receptor antagonist.
  • the compounds employed in the methods ofthe invention can be administered before, concomitantly with, subsequent to or any combination thereof (e.g., before; before and concomitantly with; concomitantly with; concomitantly with and subsequent to; before and subsequent to; subsequent to) ofthe human to exposure ofthe muscarinic cholinergic receptor antagonist.
  • Administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil to the human before, concomitantly with and/or subsequent to a memory and/or cognition impairment that is a consequence of exposure to the muscarinic cholinergic receptor antagonist can prevent, reduce or at least partially attenuate the impairment that can occur as a consequence of subsequent exposure to a muscarinic cholinergic receptor antagonist.
  • At least partially attenuated refers to any decrease or diminution in the severity, amount or intensity ofthe memory and/or cognitive impairment in the human exposed to a muscarinic cholinergic receptor antagonist, as a consequence of administration ofthe compounds.
  • Exposure to the muscarinic cholinergic receptor antagonist can be intentional exposure or unintentional exposure. Intentional exposure can be by administration (e.g., self administration) of a muscarinic cholinergic receptor antagonist to an individual.
  • intentional exposure of an individual can be administered through the application (e.g., transdermal), injection (e.g., intramuscular, intravenous) or ingestion (e.g., oral) of a muscarinic cholinergic receptor antagonist (e.g., scopolamine, atropine) to the individual.
  • a muscarinic cholinergic receptor antagonist e.g., scopolamine, atropine
  • Unintentional exposure ofthe individual to a muscarinic cholinergic receptor antagonist can be by any route of exposure other than intentional exposure.
  • unintentional exposure of an individual can result from environmental or airborne exposure to a muscarinic cholinergic receptor antagonist.
  • the muscarinic cholinergic receptor antagonist is an exogenous (originating or produced outside ofthe individual) muscarinic cholinergic receptor antagonist. In another embodiment, the muscarinic cholinergic receptor antagonist is an endogenous (originating or produced inside the individual) muscarinic cholinergic receptor antagonist.
  • the invention includes a method of treating a human for memory impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphemdate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the memory impairment consequent to the exposure to the muscarinic cholinergic receptor antagonist is at least partially attenuated.
  • the invention includes a method of treating a human for cognitive impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the cognitive impairment consequent to the exposure to the muscarinic cholinergic receptor antagonist is at least partially attenuated.
  • the cognitive and/or memory processes and impairments in cognitive and/or memory processes can be assessed or determined by established techniques.
  • memory can be assessed before, concomitantly with or after treatment of the individual with at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil by one or more well established tests known to one of skill in the art.
  • Such tests include the Rey Auditory Verbal Learning Test (RAVLT); Cambridge Neuropsychological Test Automated Battery (CANTAB); a Children's Memory Scale (CMS); a Contextual Memory Test; a Continuous Recognition Memory Test (CMRT); a Denman Neuropsychology Memory Scale; a Fuld Object Memory Evaluation (FOME); a Graham-Kendall Memory for Designs Test; a Guild Memory Test; a Learning and Memory Battery (LAMB); a Memory Assessment Clinic Self-Rating Scale (MAC-S); a Memory Assessment Scales (MAS); a Randt Memory Test; a Recognition Memory Test (RMT); a Rivermead Behavioral Memory Test; a Russell's Version ofthe Wechsler Memory Scale (RWMS); a Test of Memory and Learning (TOMAL); a Vermont Memory Scale (VMS); a Wechsler Memory Scale; a Wide Range Assessment of Memory and Learning (WRAML); First-Last Name Association (Youngjohn J.R., et al, Archives of
  • the memory ofthe human before, during or after administration of at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil is assessed or determined by a word recall test such as RAVLT.
  • a muscarinic cholinergic receptor antagonist includes any substance which blocks, diminishes, attenuates, inhibits, binders, limits, decreases, reduces, restricts or interferes with the action of acetylcholine (ACh) thereby disrupting ACh-mediated cell signaling between presynaptic and postsynaptic neurons.
  • the antagonist can, for example, oppose the action of ACh by acting in a manner which prevents ACh from binding to a muscarinic receptor on a postsynaptic neuron, from mediating postsynaptic events following binding of ACh to a muscarinic receptor, interfere with ACh degradation by acetycholinesterase in the synaptic cleft or interfere with release of ACh from presynaptic neurons.
  • interaction ofthe muscarinic cholinergic receptor with an ACh receptor can prevent ACh from activating a G q protein on post-synaptic neurons which in turn can prevent activation of phospholipase C (PLC) and the subsequent generation ofthe second messengers diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP 3 ).
  • PLC phospholipase C
  • DAG second messengers diacylglycerol
  • IP 3 inositol 1,4,5-triphosphate
  • Failure to generate intracellular DAG can prevent activation of protein kinase C (PKC) which can disrupt subsequent cellular events such as phosphorylation of substrates implicated in the formation of memory.
  • PKC protein kinase C
  • a muscarinic cholinergic receptor antagonist can prevent ACh from activating G ⁇ i/o protein on presynaptic neurons which in turn can lead to increased levels of cAMP by preventing inhibition of adenylcyclase.
  • PKA cyclic- AMP -dependent protein kinase A
  • AMP A AMP A receptors and the regulation of LTP. Phosphorylation of AMP A receptors can increase the inflow of sodium (Na + ) ions thereby increasing the cell depolarization and/or increasing the number of AMP A receptors at the synapse. It is envisioned that the muscarinic cholinergic receptor antagonists can oppose the action of ACh in any one or more ofthe above-referenced manners.
  • a muscarinic cholinergic receptor antagonist is also referred to as a muscarinic cholinergic antagonist. As a consequence of exposure to a muscarinic cholinergic receptor antagonist, the individual can have deficiencies or disruptions in signaling pathways which can lead to impairments in cognitive and memory processes.
  • muscarinic cholinergic receptor antagonist refers to an impairment in cognition and/or memory processes that follows exposure of an individual to a muscarinic cholinergic receptor antagonist.
  • the individual also referred to herein as a "subject” can have an impairment in memory.
  • the impairment in memory can be an impairment in memory consolidation, the process of storing new information in long term memory ("Neuroscience: Exploring The Brain,” Bear, M.F. et al, Williams & Wilkins, Baltimore, Maryland, Ch. 19, pp. 517-545 (1996); McGaugh, J.L. Science 287: 248- 251 (2000)).
  • the impairment in memory can be an impairment in short-term memory or an impairment in working memory.
  • Short-term memory and working memory are processes whereby newly acquired information is maintained for short periods of time and the newly acquired information is made available for further information processing ("Neuroscience: Exploring The Brain,” Bear, M.F. et al, Williams & Wilkins, Baltimore, Maryland, Ch. 19, pp. 517-545 (1996); McGaugh, J.L. Science 287: 248-251 (2000); Becker, J.T., et al, Brain and Cognition 41 ⁇ -S (1999)).
  • the impairment in memory can also be an impairment in declarative memory, which is the memory of facts and events ("Neuroscience: Exploring The Brain," Bear, M.F.
  • the impairment in memory can also be an impairment in procedural memory (also referred to as "tacit knowledge” or "implicit knowledge”), which is the memory for skills or behavior ("Neuroscience: Exploring The Brain,” Bear, M.F. et al, Williams & Wilkins, Baltimore, Maryland, Ch. 19, pp.
  • the impairment can also be an impairment in attention, acquisition, retrieval or retention.
  • One of skill in the art would be capable of identifying and evaluating the impairment in memory in the individual.
  • at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil is administered to a human having an impairment in memory consolidation as a consequence of exposure to a muscarinic cholinergic receptor antagonist.
  • the individual can have an impairment in a cognitive process (Carlson, N.R., Physiology of Behavior, Allyn and Bacon, Boston, MA (1986); Cognition on Cognition, eds., Mehler, J. et al, Bradford Books (1995)).
  • the impairment in a cognitive process can be an impairment in attention, which is the capacity or process of selecting out ofthe totality of available sensory or affective stimuli, those stimuli that are most appropriate or desirable for focus at a given time (Kinchla, R.A., et al, Annu. Rev. Psychol. 43: 711-742 (1992)).
  • the impairment in a cognitive process can be an impairment in executive function, which are neuropsychological functions such as decision making, planning, initiative, assigning priority, sequencing, motor control, emotional regulation, inhibition, problem solving, planning, impulse control, establishing goals, monitoring results of action and self-correcting (Elliott, R., Rr. Med. Bull 65:49-59 (2003)).
  • the cognitive impairment can be an impairment in alertness, wakefulness, arousal, vigilance, reaction time, attention, information processing, conceptualization, and verbal fluency.
  • One of skill in the art would be capable of identifying and evaluating the impairment in cognition in the individual.
  • the impairment in memory or cognition in an individual is a consequence of exposure to scopolamine (also referred to herein as hyoscine).
  • the impairment in memory or cognition can be a consequence of exposure to atropine.
  • the impairment in memory or cognition in an individual is a consequence of exposure to homatropine.
  • the muscarinic cholinergic receptor antagonist is trihexyphenidyl.
  • Muscarinic cholinergic receptor antagonism by, for example, scopolamine, atropine, homatropine and trihexyphenidyl can result in an impairment in memory (impairment in memory consolidation, impairment in short term memory, impairment in working memroy) and/or cognition (e.g., alertness, executive function, arousal, wakefulness, attention, vigilance, reaction time, information processing, conceptualization, problem solving and verbal fluency) that can be ameliorated, diminished, attenuated, reversed, prevented or reduced by treatment with at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil.
  • cognition e.g., alertness, executive function, arousal, wakefulness, attention, vigilance, reaction time, information processing, conceptualization, problem solving and verbal flu
  • threo-methylphenidate such as is used when referring to "1-threo- methylphenidate” and "d-threo-methylphenidate,” means a compound represented by Formula XII, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof.
  • the threo-methylphenidate is the compound represented by Formula XII including salts, acids, esters, amides, carbamates and Schiff bases.
  • the threo-methylphenidate is the compound represented by Formula XII, including its salts and acids.
  • the threo-methylphenidate is the compound represented by Formula XII:
  • the dextro enantiomer of threo-methylphenidate is referred to as the d, (+), or
  • D enantiomer D enantiomer and is represented by the following structural formula:
  • the levo enantiomer of threo-methylphenidate is referred to as the 1, (-), or L enantiomer and is represented by the following structural formula:
  • methylphenidate as used herein, means a compound represented by Formula XV, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof.
  • methylphemdate is the compound represented by Formula XV including salts, acids, esters, amides, carbamates and Schiff bases.
  • methylphenidate is the compound represented by Formula XV, including its salts and acids.
  • methylphenidate is the compound represented by Formula XV:
  • atomoxetine means a compound represented by Formula XNI, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof.
  • atomoxetine is the compound represented by Formula XVI including salts, acids, esters, amides, carbamates and Schiff bases.
  • atomoxetine is the compound represented by Formula XVI, including its salts and acids.
  • atomoxetine is the compound represented by Formula XVI:
  • Formula XNII including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof.
  • modafinil is the compound represented by Formula XNII including salts, acids, esters, amides, carbamates and Schiff bases.
  • modafinil is the compound represented by Formula XVII, including its salts and acids.
  • modafinil is the compound represented by Formula XVII:
  • the amphetamine, threo-methylphenidate and methylphenidate, compounds employed in methods of treating a human having an impairment in memory and/or cognition as a consequence of exposure to a muscarinic cholinergic receptor antagonist can comprise at least about 51 percent (w/w (weight/weight) or mole percent), about 60 percent (w/w or mole percent), about 70 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent), about 90 percent (w/w or mole percent), about 95 percent (w/w or mole percent), or about 99 percent (w/w or mole percent) of one enantiomer relative to another enantiomer (e.g., 1-amphetamine relative to d-amphetamine; or 1-threo-methylphenidate to d-threo-methylphenidate).
  • one enantiomer relative to another enantiomer
  • an amphetamine compound employed in the methods ofthe invention can be 1-amphetamine, wherein the 1-amphetamine is administered as a component of a composition that includes at least about 80 percent (w/w or mole percent) 1- amphetamine or 1-methamphetamine relative to a total amphetamine or methamphetamine, respectively, content ofthe composition.
  • a threo- methylphenidate compound employed in the methods ofthe invention can be 1-threo- methylphenidate, wherein the 1-threo-methylphenidate is administered as a component of a composition that includes at least about 80 percent (w/w or mole percent) 1-threo-methylphenidate relative to a total threo-methylphenidate content of the composition.
  • the amphetamine, threo-methylphenidate and methylphenidate compounds employed are about 100 percent (w/w or mole percent) 1-amphetamine relative to d-amphetamine; or 1-threo-methylphenidate relative to d- threo-methylphenidate is about 100 percent (w/w or mole percent).
  • 1-amphetamine, 1-methamphetamine or 1-threo-methylphenidate is a composition that includes about 100 percent (w/w or mole percent) 1-amphetamine, 1- methamphetamine or 1-threo-methylphenidate relative to a total content ofthe composition.
  • An amphetamine or threo-methylphenidate compound that is "about 100 percent" can have insignificant traces of other components, such as d- amphetamine, d-threo-methylphenidate.
  • Atomoxetine and modafinil can be at least about 51 percent (w/w (weight/weight) or mole percent), about 60 percent (w/w or mole percent), about 70 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent), about 90 percent (w/w or mole percent), about 95 percent (w/w or mole percent), or about 99 percent (w/w or mole percent) ofthe total composition administered to the individual.
  • the atomoxetine and modafinil employed in the methods ofthe invention are about 100 percent (w/w or mole percent) atomoxetine or about 100 percent (w/w or more percent) modafinil.
  • An atomoxetine or modafinil that is "about 100 percent" atomoxetine or modafinil can contain insignificant trace amounts of other compounds.
  • the compounds employed in the methods ofthe invention can be the free base or can exist as salts with pharmaceutically acceptable acids.
  • salts examples include hydrochlorides, hydrobromides, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, tartrates (e.g., (+)-tartrates, (-)-tartrates or mixtures thereof including racemic mixtures), succinates, benzoates and salts with amino acids such as glutamic acid.
  • the compounds employed in the methods can be a percent ofthe total composition administered to the human.
  • the amphetamine, threo-methylphenidate, methylphenidate, atomoxetine and/or modafinil component ofthe composition can be about 50 percent (w/w), about 60 percent (w/w), about 75 percent (w/w), about 80 percent (w/w), about 85 percent (w/w), about 90 percent (w/w), about 95 percent (w/w) and about 100 percent (w/w) ofthe total composition administered to the human.
  • the human can be administered a composition which comprises about 80 weight or volume percent amphetamine and/or threo-methylphenidate and about 20 weight or volume percent, respectively, of an inert excipient.
  • the human can be administered a composition which comprises about 80 weight or volume percent modafinil and/or atomoxetine and about 20 weight or volume percent, respectively, of an inert excipient.
  • the human can be administered a composition which comprises about 80 weight or volume percent of an amphetamine, a threo-methylphenidate, a methylphenidate, atomoxetine and/or modafinil and about 20 weight or volume percent, respectively, of an inert excipient.
  • Another embodiment ofthe invention relates to assessing the degree of impairment in cognitive and/or memory processes in a human having an impairment in a cognitive and/or memory process as a consequence of exposure to a muscarinic cholinergic receptor antagonist.
  • the improvement in cognitive or memory processes after administering at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil to the human can be determined at one or more time points following administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil.
  • the method can further include comparing the impairment in memory or cognition in the human before administering at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d- threo-methylphenidate, methylphenidate, atomoxetine and modafinil to the improvement in memory in the human after administering the compound.
  • memory is assessed prior to administration ofthe at least one member selected from the group consisting of 1-amphetamine, 1- methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil and determined after administration of at least one member selected from the group consisting of 1-amphetamine, 1- methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil by a word recall test such as RANLT (Rey, A. (1941). L'examenpsy dans les cas d'encephalopathie traumatique.
  • the invention is a method of improving an impaired memory and/or cognition in a human.
  • a human is exposed to a muscarinic cholinergic receptor antagonist and, as a consequence of exposure to the muscarinic cholinergic receptor antagonist, the human has an impairment in memory or cognition.
  • the human with an impaired memory or impaired cognition is administered at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil to improve the impairment in memory and/or cognition.
  • the human can be administered at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil concomitantly with and/or subsequent to the memory and/or cognitive impairment that is a consequence of exposure to the muscarinic cholinergic receptor antagonist.
  • a human undergoing treatment with atropine in anticipation of a nerve gas attack or to counteract the effects of nerve gas exposure can be treated with at least one member selected from the group consisting of 1-amphetamine, 1- methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil, concomitantly with or subsequent to exposure ofthe human to the atropine to prevent, minimize, alleviate or improve an impairment in memory or cognition as a consequence of exposure to the atropine.
  • the compounds employed in the methods ofthe invention can be administered as a single dose or as multiple doses.
  • Additional doses ofthe compounds ofthe invention can be administered to the human, as needed, to improve cognition and/or memory or to sustain an improvement in cognition and/or memory.
  • Cognition and/or memory can be assessed and determined before, concomitantly with or after treatment with the compounds to determine the progress of improvement in memory and the need for further doses.
  • the compound(s) employed in the methods ofthe invention e.g., 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil
  • the compound(s) employed in the methods ofthe invention e.g., 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate
  • the single dosage formulation is at least about 0.001 mg, about 0.01 mg, about 0.1 mg, about 1 mg, about 2.5 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 750 mg, or about 1000 mg ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil).
  • the compound e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo
  • the methods ofthe invention employ multiple doses ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil).
  • the compound e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil.
  • Each dose ofthe multiple dose is at least about 0.001 mg, about 0.01 mg, about 0.1 mg, about 1 mg, about 2.5 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 750 mg or about 1000 mg ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil).
  • the compound e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-thre
  • the multiple doses can be administered for a day, days, a week, weeks, a month, months or years.
  • the compounds employed in the methods ofthe invention can be administered to a human acutely (briefly or short-term) or chronically (prolonged or long-term).
  • the compounds, (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil) ofthe invention can be used in methods to treat a human by administering the compound to the human once a day, multiple times (e.g., 2, 3, 4) in a day, for a day, days, a week, weeks, a month, months or years.
  • the methods employ a single oral dosage formulation of between about 0.001 mg to about 125 mg; between about 0.001 mg to about 250 mg; between 0.001 mg to 500 mg; between about 0.01 mg to about 125 mg; between about 0.1 mg to about 125 mg; between about 1 mg to about 125 mg; between about 1 mg to about 250 mg; between about 1 mg to about 500 mg; or between about 1 mg to about 1000 mg ofthe compound employed in the methods (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo- methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) and, optionally, a pharmaceutically acceptable carrier.
  • the compound employed in the methods e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo- methylphenidate, d-threo-methyl
  • the methods ofthe invention employ multiple doses ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522- HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil), wherein each ofthe multiple doses ofthe compound is between about 0.001 mg to about 125 mg; or between about 0.001 mg to about 250 mg; or between about 0.001 mg to about 500 mg; or between about 0.01 mg to about 125 mg; or between about 0.1 mg to about 125 mg; or between about 0.01 mg; to about 500 mg; or between about 1 mg to about 125 mg; or between about 1 mg to about 500 mg; or between about 2.5 mg to about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 250 mg, about 500 mg or about 1000 mg ofthe compound(s) (e.g., 1-amphetamine, C105, 1-methamp
  • the methods ofthe invention employ a single dose ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522- HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) between about 0.0015mg/kg to about 2 mg/kg; or between about 0.015 mg/kg to about 2 mg/kg.
  • the compound e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522- HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil
  • the methods ofthe invention employ a single dose about 0.04 mg/kg, about 0.07 mg/kg, about 0.15 mg/kg, about 0.20 mg/kg, about 0.40 mg/kg, about 0.65 mg kg, about 1 mg/kg, about 1.50 mg/kg, about 1.80 mg/kg or about 3.5 mg/kg ofthe compound (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil).
  • the methods ofthe invention employ multiple doses ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522,
  • each dose ofthe multiple dose is between about
  • the methods ofthe invention employ multiple doses, wherein each does ofthe multiple dose is about 0.04 mg/kg, about 0.07 mg/kg, about 0.15 mg/kg, about 0.20 mg/kg, about 0.40 mg/kg, about 0.65 mg/kg, about 1 mg/kg, about 1.50 mg/kg, about 1.80 mg/kg or about 3.5 mg/kg ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1- ⁇ hreo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil).
  • the compound e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1- ⁇ hreo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil.
  • the cumulative dose ofthe compounds employed in the methods ofthe invention, regardless of whether the compound is administered in a single dose or in multiple doses is between about 0.2 mg to about 250 mg; or between about 1 mg to about 1250 mg ofthe compound(s).
  • the cumulative dose is about 2 mg, about 10 mg, about 20 mg, about 30 mg, about 50 mg, about 60 mg, about 90 mg, about 100 mg, about 150 mg, about 200 mg, about 250 mg, about 450 mg, about 750 mg, about 1000 mg, about 1250 mg, about 2500 mg, or about 5000 mg.
  • the multiple doses or cumulative dose ofthe compound can be any combination of a compound ofthe invention (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil) in any combination of dose or doses.
  • an “effective amount” or “amount effective,” when referring to the amount of the compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) administered to the individual, is defined as that amount, or dose, ofthe compound that, when administered to an individual having an impairment in memory as a consequence of exposure to a muscarinic cholinergic receptor antagonist, is sufficient for therapeutic efficacy (e.g., an amount sufficient to improve memory in an individual having an impairment in memory; an amount sufficient to improve cognition in an individual having an impairment in cognition).
  • the methods ofthe present invention can be accomplished by the administration ofthe compounds (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) ofthe invention by enteral or parenteral means.
  • the route of administration can be by oral ingestion (e.g., tablet, capsule form) or injection (e.g., intramuscular) ofthe compound.
  • Other routes of administration are also encompassed by the present invention including intravenous, intraarterial, intraperitoneal, subcutaneous routes or nasal administration. Suppositories or transdermal patches can also be employed.
  • the compounds employed in the methods ofthe invention can be administered alone or can be coadministered to the human. Coadminstration is meant to include simultaneous or sequential administration of one or more ofthe compounds (1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) individually or in combination.
  • the simultaneous or sequential administration of compounds ofthe invention is conducted so that the mode of administration and the timing of administration results in a maximal improvement in memory (memory consolidation, short term memory, working memory) or cognition (e.g., attention, executive function, alertness, wakefulness, arousal, conceptualization, information processing, problem solving, verbal fluency) with minimal side effects (e.g., addiction, increases in heart rate, increases in blood pressure).
  • memory consolidation short term memory, working memory
  • cognition e.g., attention, executive function, alertness, wakefulness, arousal, conceptualization, information processing, problem solving, verbal fluency
  • side effects e.g., addiction, increases in heart rate, increases in blood pressure.
  • multiple routes of administration can be used to administer 1-amphetamine, C 105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil or any combination thereof.
  • the dosage and frequency (single or multiple doses) administered to an individual can vary depending upon a variety of factors, including the duration of exposure to the muscarinic cholinergic receptor antagonist and severity ofthe impairment in memory (e.g., impairment in memory consolidation, impairment in short- term memory, an impairment in working memory) or cognition (e.g., attention, alertness, executive function, wakefulness, arousal, vigilance, executive function, reaction time); size, age, sex, health, body weight, body mass index and diet ofthe human; nature and extent of symptoms ofthe impairment in memory or cognition, kind of concurrent treatment (e.g., atropine, scopolamine), complications from exposure to the muscarinic cholinergic receptor antagonist, or other health-related problems ofthe human being treated.
  • Other therapeutic regimens or agents can be used in conjunction with the methods and compounds employed in the methods ofthe invention. Adjustment and manipulation of established dosages (e.g., frequency and duration) are well within the -li ⁇
  • the invention also relates to the conjoint use of a amphetamine compound with agents that mimic or stimulate PKC and/or PKA pathways.
  • Amphetamine compounds As described in further detail below, it is contemplated that the subject methods can be carried out using a stereomerically enriched preparation in a eutomer of amphetamine com ⁇ ound(s), particularly R-(-)-amphetamine, or a variety of different derivatives thereof.
  • the suitability of use of a particular amphetamine compound can be readily determined, for example, by such drug screening assays as described herein.
  • the subject amphetamine compounds, and derivatives thereof can be prepared readily by employing known synthetic methodology. As is well known in the art, these coupling reactions are carried out under relatively mild conditions and tolerate a wide range of "spectator" functionality.
  • Additional compounds may be synthesized and tested in a combinatorial fashion, to facilitate the identification of additional amphetamine compounds which may be employed in the subject method.
  • Numerous methods for synthesizing amphetamine and for resolving the enantiomers of amphetamine have been described in the art, see for example: US Patent No. 5,075,338 to Knoll et al.; US Patent No. 2,828,343 to Tindall; US Patent No. 3,458,576 to Bryan; UK Patent No. GB 2,122,617; US Patent No. 3,996,381 to Florvall et al.; Croce et al., 1996, Gazz. Chim. Ital. 126:107-109; Mastagli et. al., 1950, Bull.
  • a subject amphetamine compound can be synthesized according to the methods set forth in US Patent 5,075,338. Briefly, amphetamine compounds ofthe general formula:
  • R-(-)-amphetamine and S-(+)-amphetamine may be obtained by optical resolution of racemic mixtures of R- and S-enantiomers of amphetamine.
  • Such a resolution can be accomplished by any conventional resolution methods well known to a person skilled in the art, such as those described in J. Jacques, A. Collet and S. Wilen, "Enantiomers, Racemates and Resolutions," Wiley, N.Y. (1981).
  • the resolution may be carried out by preparative chromatography on a chiral column.
  • Another example of a suitable resolution method is the formation of diastereomeric salts with a chiral acid such as tartaric, malic, mandelic acid or N-acetyl derivatives of amino acids, such as N-acetyl leucine, followed by recrystallization to isolate the diastereomeric salt ofthe desired R enantiomer.
  • a subject R-(-)-amphetamine may be resolved according to the methods set forth in J. Med. Chem, 1988, 31 :1558:1570. Briefly, racemic amphetamine is combined with a hot ethanol solution of D-(-)-tartaric acid. The solution is allowed to cool to room temperature and the white crystals are collected and recrystallized twice more from ethanol to give D-tartaric acid salt of R-(-)-amphetamine. To recover R-(-)-amphetamine, the D-tartaric acid salt of R-(-)-amphetamine is treated with sodium hydroxide in water and extracted with diethyl ether.
  • the compounds ofthe present invention may also be provided in the form of prodrugs, e.g., to protect a drug from being altered while passing through a hostile environment, such as the digestive tract.
  • Prodrugs can be prepared by forming covalent linkages between the drug and a modifier. See, for example, Balant at al., Eur. J. Drug Metab. Pharmacokinetics, 1990, 15(2), 143-153.
  • the linkage is usually designed to be broken under defined circumstances, e.g., pH changes or exposure to specific enzymes.
  • the covalent linkage ofthe drug to a modifier essentially creates a new molecule with new properties such as an altered log P value and/or as well as a new spatial configuration.
  • the new molecule can have different solubility properties and be less susceptible to enzymatic digestion.
  • prodrug design and preparation see: Bundraard, Design of Prodrugs, Elsevier Science Pub. Co., N.Y. (1985), and Prodrugs as Novel Drug Delivery Systems Symposium,
  • Prodrugs of amine-containing compounds are well known in the art and have been prepared, e.g., by reacting the amine moiety of a drug with a carboxylic acid, acid chloride, chloroformate, or sulfonyl chloride modifiers, and the like, resulting in the formation of amides, sulfonamides, carboxyamides, carbamates, Schiff bases and similar compounds. See, for example, Abuchowski et al., J. Biol. Chem.
  • a combinatorial library for the purposes ofthe present invention is a mixture of chemically related compounds which may be screened together for a desired property.
  • the preparation of many related compounds in a single reaction greatly reduces and simplifies the number of screening processes which need to be carried out. Screening for the appropriate physical properties can be done by conventional methods. Diversity in the library can be created at a variety of different levels.
  • the substrate aryl groups used in the combinatorial reactions can be diverse in terms ofthe core aryl moiety, e.g., a variegation in terms ofthe ring structure, and/or can be varied with respect to the other substituents.
  • a variety of techniques are available in the art for generating combinatorial libraries of small organic molecules such as the subject amphetamine compounds. See, for example, Blondelle et al. (1995) Trends Anal. Chem. 14:83; the Affymax U.S. Patents 5,359,115 and 5,362,899: the Ellman U.S. Patent 5,288,514: the Still et al. PCT publication WO 94/08051; the ArQule U.S.
  • PCT publication WO 94/08051 e.g., being linked to a polymer bead by a hydrolyzable or photofyzable group, optionally located at one of the positions ofthe candidate regulators or a substituent of a synthetic intermediate.
  • the library is synthesized on a set of beads, each bead including a set of tags identifying the particular diversomer on that bead.
  • the bead library can then be "plated" with cells for which an amphetamine compound is sought.
  • the diversomers can be released from the bead, e.g., by hydrolysis.
  • Many variations on the above and related pathways permit the synthesis of widely diverse libraries of compounds which may be tested as amphetamine compounds.
  • the fornix-lesioned animals can be used for drug screening, e.g., to identify dosages ofthe subject compositions which enhance memory consolidation.
  • the lesioned mammal can have a lesion ofthe fornix or a related brain structure that disrupts memory consolidation (e.g., perirhinal cortex, amygdala, medial septal nucleus, locus coeruleus, hippocampus, mammallary bodies). Lesions in the mammal can be produced by mechanical or chemical disruption.
  • the fornix lesion can be caused by surgical ablation, electrolytic, neurotoxic and other chemical ablation techniques, or reversible inactivation such as by injection of an anesthetic, e.g., tetrodotoxin or lidocaine, to temporarily arrest activity in the fornix.
  • anesthetic e.g., tetrodotoxin or lidocaine
  • fimbrio-fornix (rodents) and fornix (primates) lesions can be created by stereotactic ablation.
  • neurons ofthe fornix structure are axotomized, e.g., by transection or aspiration (suction) ablation.
  • a complete transection ofthe fornix disrupts adrenergic, cholinergic and GABAergic function and electrical activity, and induces morphological reorganization in the hippocampal formation.
  • the fornix transection utilized in the subject method will not disconnect the parahippocampal region from the neocortex.
  • the fornix transection will not disrupt functions that can be carried out by the parahippocampal region independent of processing by the hippocampal formation, and hence would not be expected to produce the full-blown amnesia seen following more complete hippocampal system damage.
  • the animal can be a rat.
  • the animals are anesthetized, e.g., with intraperitoneal injections of a ketamine-xylazine mixture and positioned in a Kopf ® stereotaxic instrument.
  • a sagittal incision is made in the scalp and a craniotomy is performed extending 2.0 mm posterior and 3.0 mm lateral from Bregma.
  • An aspirative device e.g., with a 20 gauge tip, is mounted to a stereotaxic frame (Kopf ® Instruments) and fimbria-fornix is aspirated by placing the suction tip at the correct sterotaxic location in the animal's brain.
  • Unilateral aspirative lesions are made by suction through the cingulate cortex, completely transecting the fimbria fornix unilaterally, and (optionally) removing the dorsal tip ofthe hippocampus as well as the overlying cingulate cortex to inflict a partial denervation on the hippocampus target.
  • the animal can be a monkey.
  • the animal can be anesthetized, e.g., with isoflurane (1.5-2.0%).
  • transections ofthe left fornix can be performed, such as described by Kordower et al. (1990) J. Comp. Neural., 298:443. Briefly, a surgical drill is used to create a parasagittal bone flap which exposes the frontal superior sagittal sinus. The dura is retracted and a self-retaining retractor is used to expose the interhemispheric fissure. The corpus callosum is longitudinally incised. At the level ofthe foramen of Monro, the fornix is easily visualized as a discrete 2-3 mm wide white fiber bundle. The fornix can be initially transected using a ball dissector.
  • the fornix lesion can be created by excitotoxicity, or by other chemical means, inhibiting or ablating fornix neurons, or the cells ofthe hippocampus which are innervated by fornix neurons.
  • the fornix lesion is generated by selective disruption of particular neuronal types, such as fornix cholinergic and adrenergic neurons. For instance, the afferant fornix signals to the hippocampus due to cholinergic neurons can be ablated by atropine blockade.
  • 192IgG-saporin 192IgG-sap
  • the agents such as 6-OHDA and ibotenic acid can be used to selectively destroy fornix dopamine neurons as part ofthe ablative regimen.
  • the animal is a non-human mammal, such as a dog, cat, horse, cow, pig, sheep, goat, chicken, monkey, ape, rat, rabbit, etc.
  • the animal is a non-human primate.
  • the subject is a human.
  • Learning and/or memory tests include, for example, Inhibitory Avoidance Test (also referred to herein as "Passive Avoidance Test”), contextual fear conditioning, visual delay non-match to sample, spatial delay non-match to sample, visual discrimination, Barnes circular maze, Morris water maze, radial arm maze tests, Ray Auditory-Visual Learning Test, the Wechsler Logical Memory Test, and the Buffalo Recognition Memory Test.
  • An exemplary Inhibitory Avoidance Test utilizes an apparatus that consists of a lit chamber that can be separated from a dark chamber by a sliding door.
  • An exemplary maze testing embodiment is the water maze working memory test.
  • the method utilizes an apparatus which consists of a circular water tank. The water in the tank is made cloudy by the addition of milk powder.
  • a clear plexiglass platform supported by a movable stand rest on the bottom ofthe tank, is submerged just below the water surface.
  • a swimming rat cannot perceive the location ofthe platform but it may recall it from a previous experience and training, unless it suffers from some memory impairment.
  • the time taken to locate the platform is measured and referred to as the latency.
  • all orientational cues such as ceiling lights, etc., remain unchanged. Longer latencies are generally observed with rats with some impairment to their memory.
  • Another memory test includes the eyeblink conditioning test, which involves the administration of white noise or steady tone that precedes a mild air puff which stimulates the subject's eyeblink.
  • Still another memory test which can be used is fear conditioning, e.g., either "cued” and “contextual” fear conditioning.
  • a freeze monitor administers a sequence of stimuli (sounds, shock) and then records a series of latencies measuring the recovery from shock induced freezing ofthe animal.
  • Another memory test for the lesioned animals is a holeboard test, which utilizes a rotating holeboard apparatus containing (four) open holes arranged in a 4-corner configuration in the floor ofthe test enclosure. A mouse is trained to poke its head into a hole and retrieve a food reward from a "baited" hole which contains a reward on every trial.
  • a food reward e.g., a Fruit Loop
  • the screen allows the odor ofthe reward to emanate from the hole, but does not allow access to the reinforcer.
  • a reward is placed on top ofthe screen, where it is accessible.
  • the entire apparatus rests on a turntable so that it may be rotated easily to eliminate reliance on proximal (e.g., olfactory) cues.
  • a start tube is placed in the center ofthe apparatus. The subject is released from the tube and allowed to explore for the baited ("correct") hole.
  • the subject method utilizes an animal which has been manipulated to create at least partial disruption of fornix-mediated signalling to the hippocampus, the disruption affecting memory consolidation and learned behavior in the animal.
  • the animal is conditioned with a learning or memory regimen which results in learned behavior in the mammal in the absence ofthe fornix lesion.
  • Amphetamine compounds are admimstered to the animal in order to assess their effects on memory consolidation.
  • An increase in learned behavior, relative to the absence ofthe test agents, indicates that the administered combination enhances memory consolidation.
  • the Konmid Memory Test Another memory test especially developed for use in pharmaceutical studies is the Buffalo Recognition Memory Test. This test consists of one pictorial and one verbal assessment of long-term declarative memory. In each ofthe two modes, the patient views stimuli on a computer screen and is later asked to recognize those stimuli in a two-alternative forced-choice format.
  • the pictorial assessment mode consists of two parts: a study phase and a recognition phase. In the study phase, patients view a series of 120 pictures, for 3 seconds each. They are told to look at the pictures and remember them, so that they can recognize them later. In the recognition phase, patients view pictures two at a time and are asked to indicate by button press which ofthe two pictures they saw in a study phase.
  • Recognition memory testing occurs at ten minutes, one hour, and 24 hours after the end ofthe study phase.
  • the verbal assessment mode consists of two parts: a study phase and a recognition phase.
  • patients view a series of 60 sentences one at a time. They are asked to read the sentences aloud and remember them, so that they can recognize them later. Each sentence remains on the computer screen until the patient has finished reading it aloud. If patients read words incorrectly, the examiner supplies the correct word or words.
  • the recognition phase patients view sentences two at a time and are asked to indicate by button press which ofthe two sentences they saw in the study phase.
  • Recognition memory testing occurs at ten minutes, one hour, and 24 hours after the end ofthe study phase.
  • retention ofthe learned behavior can be determined, for example, after at least about 12-24 hours, 14-22 hours, 16-20 hours and or 18-19 hours after completion ofthe learning phase to determine whether the agents promote memory consolidation. In a particular embodiment, retention of the learned behavior can be determined 24 hours after completion ofthe learning phase.
  • models to assess side effects of amphetamine compounds on behavior have been utilized including locomotor activity models.
  • An exemplary locomotor activity test utilizes an apparatus that consists of photocell activity cages with a grid of photocell beams placed around the cage. The animals are placed in individual activity cages some period of time prior to administration of agents. Locomotor activity is measured by the number of interruptions ofthe photoelectric beam during a given period of time.
  • a "control mammal” can be an untreated lesion mammal (i.e., a lesion animal receiving no agents or not the same combinations to be assessed), a trained control mammal (i.e., a mammal that undergoes training to demonstrate a learned behavior without any lesion) and/or an untrained control mammal (i.e., a mammal with or without a lesion, that receives no training to demonstrate a learned behavior).
  • an untreated lesion mammal i.e., a lesion animal receiving no agents or not the same combinations to be assessed
  • a trained control mammal i.e., a mammal that undergoes training to demonstrate a learned behavior without any lesion
  • an untrained control mammal i.e., a mammal with or without a lesion, that receives no training to demonstrate a learned behavior
  • the present invention provides pharmaceutical preparations comprising the subject amphetamine compounds.
  • the amphetamine compounds for use in the subject method may be conveniently formulated for administration with a biologically acceptable, non-pyrogenic, and/or sterile medium, such as water, buffered saline, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like) or suitable mixtures thereof.
  • a biologically acceptable, non-pyrogenic, and/or sterile medium such as water, buffered saline, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like) or suitable mixtures thereof.
  • the optimum concentration ofthe active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known to behavioral scientists.
  • biologically acceptable medium includes any and all solvents, dispersion media, and the like which may be appropriate for the desired route of administration ofthe pharmaceutical preparation.
  • compositions of the present invention can also include veterinary compositions, e.g., pharmaceutical preparations ofthe amphetamine compounds suitable for veterinary uses, e.g., for the treatment of livestock or domestic animals, e.g., dogs. Methods of introduction may also be provided by rechargeable or biodegradable devices.
  • tolerance When tolerance develops following a single dose or a few doses over a very short time, it is referred to as acute tolerance. When the drug is administered over a more protracted period of time to show a demonstrable degree of tolerance, it is referred to as chronic tolerance.
  • the medical literature as exemplified in, The Pharmacological Bases of Therapeutics, by Goodman and Gilman, 8th Ed., p. 72 (1990) Pergamon Press, reported tolerance may be acquired to the effects of many drugs and this literature classifies tolerance as acute or chronic based on when it is acquired. That is, acute tolerance develops during a dosing phase of one dose or on one day, and chronic tolerance is acquired due to chronic administration typically weeks, months, and years.
  • the selected amphetamine compound is one which may produce tolerance, e.g., acute tolerance, in the patient
  • the subject amphetamine compounds are formulated to deliver a sustained and increasing dose, e.g., over at least 4 hours, and more preferably over at least 8 or even 16 hours.
  • representative dosage forms include hydrogel matrix containing a plurality of tiny pills.
  • the hydrogel matrix comprises a hydrophilic polymer, such as selected from the group consisting of a polysaccharide, agar, agarose, natural gum, alkali alginate including sodium alginate, carrageenan, fucoidan, furcellaran, laminaran, hypnea, gum arabic, gum ghatti, gum karaya, gum tragacanth, locust bean gum, pectin, amylopectin, gelatin and a hydrophilic colloid.
  • a hydrophilic polymer such as selected from the group consisting of a polysaccharide, agar, agarose, natural gum, alkali alginate including sodium alginate, carrageenan, fucoidan, furcellaran, laminaran, hypnea, gum arabic, gum ghatti, gum karaya, gum tragacanth, locust bean gum, pectin, amylopectin, gelatin and a
  • the hydrogel matrix comprises a plurality of tiny pills (such as 4 to 50), each tiny pill comprising an increasing dose population of from 100 ng ascending in dose such as 0.5 mg, 1 mg, 1.2 mg, 1.4 mg, 1.6 mg, 1.8 mg, etc.
  • the tiny pills comprise a release rate controlling wall of 0.0 mm to 10 mm thickness to provide for the timed ascending release of drug.
  • wall-forming materials include a triglyceryl ester selected from the group consisting of glyceryl tristearate, glyceryl monostearate, glyceryl dipalmitate, glyceryl laureate, glyceryl didecenoate and glyceryl tridecenoate.
  • the drug releasing beads are characterized by a dissolution profile wherein 0 to 20% ofthe beads undergo dissolution and release the drug in 0 to 2 hours, 20 to 40% undergo dissolution and release the drug in 2 to 4 hours, 40 to 60% exhibit dissolution and release in 4 to 6 hours, 60 to 80% in 6 to 8 hours, and 80 to 100% in 8 to 10 hours.
  • the drug releasing beads can include a central composition or core comprising a drug and pharmaceutically acceptable composition forming ingredients including a lubricant, antioxidant, and buffer.
  • the beads comprise increasing doses of drug, for example, 1 mg, 2 mg, 5 mg, and so forth to a high dose, in certain preferred embodiments, of 15 to 100 mg.
  • the beads are coated with a release rate controlling polymer that can be selected utilizing the dissolution profile disclosed above.
  • the manufacture ofthe beads can be adapted from, for example, Liu et al. (1994) Inter. J. of Pharm., 112:105-116; Liu et al. (1994) Inter. J. of Pharm., 112:117-124; Pharm. Sci., by Remington, 14th Ed. pp.
  • Another exemplary dosage form provided by the invention comprises a concentration gradient of amphetamine compound from 1 mg to 15-600 mg coated from the former low dose to the latter high dose on a polymer substrate.
  • the polymer can be erodible or a nonerodible polymer.
  • the coated substrate is rolled about itself from the latter high dose at the center ofthe dosage form, to the former low dose at the exposed outer end ofthe substrate.
  • the coated substrate is rolled from the high dose to the low dose to provide for the release of from low to high dose as the substrate unrolls or erodes.
  • an erodible polymer such as an polypeptide, collagen, gelatin, or polyvinyl alcohol
  • the substrate rolled concentrically from the high dose rolled over and inward to adapt a center position, and then outward towards the low dose to form an outer position.
  • the dosage form erodes dispensing an ascending dose of amphetamine that is released over time.
  • Another dosage form provided by the invention comprises a multiplicity of layers, wherein each layer is characterized by an increasing dose of drug.
  • the phrase "multiplicity of layers" denotes 2 to 6 layers in contacting lamination.
  • the multiplicity of layers are positioned consecutively, that is, one layer after another in order, with a first exposed layer, the sixth layer in contact with the fifth layer and its exposed surface coated with a drug impermeable polymer.
  • the sixth layer is coated with a drug impermeable polymer to insure release ofthe amphetamine compound from the first layer to the sixth layer.
  • the first layer comprises, for example, 1 to 50 mg of drug and each successive layer comprises an additional 1 to 50 mg of drug.
  • the biodegradable polymers undergo chemical decomposition to form soluble monomers or soluble polymer units. The biodegradation of polymers usually involves chemically or enzymatically catalyzed hydrolysis.
  • biodegradable polymers acceptable for an increase drug loading in each layer of from 5 to 50 wt % over the first and successive layers wherein the first layer comprises 100 ng.
  • Representative biodegradable polymers comprise a member selected from the group consisting of biodegradable poly(amides), poly(amino acids), poly(esters), poly(lactic acid), poly(glycolic acid), poly(orthoesters), poly(anhydrides), biodegradable poly(dehydropyrans), and poly(dioxinones).
  • the polymers are known to the art in Controlled Release of Drugs, by Rosoff, Ch. 2, pp. 53-95 (1989); and in U.S. Pat. Nos.
  • the invention employs a dosage form comprising a polymer that releases a drug by diffusion, flux through pores, or by rupture of a polymer matrix.
  • the drug delivery polymeric system comprises a concentration gradient, wherein the gradient is an ascent in concentration from a beginning or initial concentration to a final, or higher concentration.
  • the dosage form comprises an exposed surface at the beginning dose and a distant nonexposed surface at the final dose. The nonexposed surface is coated with a pharmaceutically acceptable material impermeable to the passage of drug.
  • the dosage form structure provides for a flux increase delivery of drug ascending from the beginning to the final delivered dose.
  • Figure 17 illustrates such an embodiment, where the amphetamine compound is contained within a nonabsorbable shell that releases the drug at a controlled rate.
  • the dosage form matrix can be made by procedures known to the polymer art.
  • 3 to 5 or more casting compositions are independently prepared wherein each casting composition comprises an increasing dose of drug with each composition overlayered from a low to the high dose. This provides a series of layers that come together to provide a unit polymer matrix with a concentration gradient.
  • the higher does is cast first followed by laminating with layers of decreasing dose to provide a polymer matrix with a drug concentration gradient.
  • An example of providing a dosage form comprises blending a pharmaceutically acceptable carrier, like polyethylene glycol, with a known dose of a amphetamine compound and adding it to a silastic medical grade elastomer with a cross-linking agent, like stannous octanoate, followed by casting in a mold. The step is repeated for each successive layer. The system is allowed to set, for 1 hour, to provide the dosage form.
  • a pharmaceutically acceptable carrier like polyethylene glycol
  • a silastic medical grade elastomer with a cross-linking agent like stannous octanoate
  • Representative polymers for manufacturing the dosage form comprise a member selected from the group consisting of olefin and vinyl polymers, condensation polymers, carbohydrate polymers, and silicon polymers as represented by poly(ethylene), poly(propylene), poly(vinyl acetate), poly(methyl acrylate), poly(isobutyl methacrylate), poly(alginate), poly(amide), and poly(silicone).
  • the polymers and manufacturing procedures are known in Polymers, by Coleman et al., Vol. 31, pp. 1187-1230 (1990); Drug Carrier Systems, by
  • the subject formulations can be a mixture of different prodrug forms of one or more different amphetamine compounds, each prodrug form having a different hydrolysis rate, and therefore activation rate, to provide an increasing serum concentrationof the active amphetamine compounds.
  • the subject formulations can be a mixture different amphetamine compounds, each compound having a different rate of adsorption (such as across the gut or epithelia) and/or serum half-life.
  • the dose-escalation regimen o the present invention can be used to compensate for the loss of a therapeutic effect of a amphetamine compound, if any, by providing a method of delivery that continually compensates for the development of acute tolerance, by considering the clinical effect (E) of a drug at time (t) as a function ofthe drug concentration (C) according to Equation 1 :
  • the rate of drug delivered (A), in mg per hour is inversely proportional to the concentration times the clearance ofthe drug.
  • (A) can be governed to ensure the therapeutic effect is maintained at a clinical value. If the effect from a drug is found clinically to decrease with time, this decline could be linear as expressed by Equation 2:
  • Effect (t) Effect (ini) -k effeot *t
  • Effect (ini) is the clinical effect observed initially at the start of drug administration and Effect(t) is the effect observed at time (t) hours
  • keffect is a proportionality constant ascertained by measuring the clinical effect (El) at time (tl) hours and (E2) at time (t2) hours while maintaining a constant plasma concentration followed by dividing (El) minus (E2) by (tl) minus (t2).
  • (A) must be adjusted with the same functionality according to Equation 3:
  • Equation 4 A (ini) is the initial drug input in mg per hour at the start ofthe therapy and A (t) is the drug input at time (t) hours, and keffect is the proportionality constant presented above. If the therapeutic effect is found to decline exponentially with time, this relationship is expressed by Equation 4:
  • Effect (ini) and Effect (t) are as defined before, keffect (or keffect) is a rate constant (h-1), a unit of reciprocal hours, ascertained by measuring the clinical effect (El) at time (tl) hours and (E2) at time (t2) hours while maintaining a constant plasma concentration followed by dividing natural log of (El) minus natural log of (E2) by (tl) minus (t2).
  • (A) must be adjusted according to Equation 5: ffect*t)
  • keffect is the rate constant (h-1) presented above.
  • the equations are presented in Holford et al. (1982) Pharmac. Ther., 16:143-166.
  • the preparations ofthe present invention may be given orally, parenterally, topically, or rectally. They are of course given by forms suitable for each administration route. For example, they are administered in tablets or capsule form, by injection, infusion, inhalation, rectal suppository, or controlled release patch. Oral and controlled release patch administrations are preferred.
  • 1-amphetamine and/or 1-methamphetamine are orally administered to a human.
  • the oral administration ofthe 1-amphetamine and/or 1-methamphetamine means that the 1-amphetamine and/or 1-methamphetamines is ingested by the human and is not a metabolite of another ingested compound such as 1-deprenyl.
  • the subject therapeutic is delivered by way of a transdermal patch.
  • a patch is generally a flat hollow device with a permeable membrane on one side and also some form of adhesive to maintain the patch in place on the patient's skin, with the membrane in contact with the skin so that the medication can permeate out ofthe patch reservoir and into and through the skin.
  • the outer side the patch is formed of an impermeable layer of material, and the membrane side and the outer side are joined around the perimeter ofthe patch, forming a reservoir for the medication and carrier between the two layers.
  • Patch technology is based on the ability to hold an active ingredient in constant contact with the epidermis. Over substantial periods of time, drug molecules, held in such a state, will eventually find their way into the bloodstream. Thus, patch technology relies on the ability ofthe human body to pick up drug molecules through the skin.
  • Transdermal drug delivery using patch technology has recently been applied for delivery of nicotine, in an effort to assist smokers in quitting, the delivery of nitroglycerine to angina sufferers, the delivery of replacement hormones in post menopausal women, etc.
  • These conventional drug delivery systems comprise a patch with an active ingredient such as a drug incorporated therein, the patch also including an adhesive for attachment to the skin so as to place the active ingredient in close proximity to the skin.
  • exemplary patch technologies are available from Ciba-Geigy Corporation and Alza Corporation.
  • transdermal delivery devices can be readily adapted for use with the subject amphetamine compounds.
  • the flux ofthe subject amphetamines across the skin can be modulated by changing either (a) the resistance (the diffusion coefficient), or (b) the driving force (the solubility ofthe drug in the stratum corneum and consequently the gradient for diffusion).
  • Various methods can be used to increase skin permeation by the subject amphetamines, including penetration enhancers, use of pro-drug versions, superfluous vehicles, iontophoresis, phonophoresis and thermophoresis.
  • Many enhancer compositions have been developed to change one or both of these factors. See, for example, U.S. Pat. Nos. 4,006,218; 3,551,154; and 3,472,931, for example, respectively describe the use of dimethylsulfoxide (DMSO), dimethyl formamide (DMF), and N,N-dimethylacetamide (DMA) for enhancing the absorption of topically applied drugs through the stratum corneum.
  • DMSO dimethylsulfoxide
  • DMF dimethyl formamide
  • DMA N,N-dimethylacetamide
  • enhancers consisting of diethylene glycol monoethyl or monomethyl ether with propylene glycol monolaurate and methyl laurate are disclosed in U.S. Pat. No. 4,973,468 .
  • a dual enhancer consisting of glycerol monolaurate and ethanol for the transdermal delivery of drugs is shown in U.S. Pat. No. 4,820,720.
  • U.S. Pat. No. 5,006,342 lists numerous enhancers for transdermal drug administration consisting of fatty acid esters or fatty alcohol ethers of C2 to C4 alkanediols, where each fatty acid/alcohol portion ofthe ester/ether is of about 8 to 22 carbon atoms.
  • 4,863,970 shows penetration-enhancing compositions for topical application comprising an active permeant contained in a penetration-enhancing vehicle containing specified amounts of one or more cell-envelope disordering compounds such as oleic acid, oleyl alcohol, and glycerol esters of oleic acid; a C2 or C3 alkanol; and an inert diluent such as water.
  • cell-envelope disordering compounds such as oleic acid, oleyl alcohol, and glycerol esters of oleic acid
  • a C2 or C3 alkanol such as water.
  • an inert diluent such as water.
  • parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, franstracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.
  • systemic administration means the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.
  • These compounds may be administered to humans and other animals for therapy by any suitable route of administration, including orally, nasally, as by, for example, a spray, rectally, mtravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually.
  • the compounds ofthe present invention which may be used in a suitable hydrated form, and/or the pharmaceutical compositions ofthe present invention, are formulated into pharmaceutically acceptable dosage forms such as described below or by other conventional methods known to those of skill in the art.
  • Actual dosage levels ofthe active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount ofthe active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.
  • the selected dosage level will depend upon a variety of factors including the activity ofthe particular compound ofthe present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion ofthe particular compound being employed, the duration ofthe treatment, other drugs, compounds and/or materials used in combination with the particular amphetamine compounds employed, the age, sex, weight, condition, general health and prior medical history ofthe patient being treated, and like factors well known in the medical arts.
  • a physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount ofthe pharmaceutical composition required. For example, the physician or veterinarian could start doses ofthe compounds ofthe invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.
  • a suitable daily dose of a compound ofthe invention will be that amount ofthe compound which is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above. Generally, intravenous, infracerebroventricular and subcutaneous doses ofthe compounds of this invention for a patient will range from about 0.0001 mg to about 100 mg per kilogram (kg) of body weight per day; about 0.0001 mg/kg to about 500 mg/kg; or 0.0001 mg/kg to about 1000 mg/kg. If desired, the effective daily dose ofthe active compound may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms.
  • treatment is intended to encompass also prophylaxis, therapy and cure.
  • the patient receiving this treatment is any animal in need, including primates, in particular humans, and other mammals such as equines, cattle, swine and sheep; and poultry and pets in general.
  • the compound ofthe invention can be administered as such or in admixtures with pharmaceutically acceptable carriers and can also be administered in conjunction with other psychoactive drugs such as stimulants, antidepressants, modulators of neurotransmittors and anticonvulsants.
  • Conjunctive therapy thus includes sequential, simultaneous and separate administration ofthe active compound in a way that the therapeutic effects ofthe first administered one is not entirely disappeared when the subsequent is administered.
  • compositions comprising a therapeutically effective amount of one or more ofthe compounds described above, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents.
  • compositions ofthe present invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension; (3) topical application, for example, as a cream, ointment or spray applied to the skin; or (4) intravaginally or intrarectally, for example, as a pessary, cream or foam.
  • oral administration for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes for application to the tongue
  • parenteral administration for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension
  • topical application for example
  • the subject compounds may be simply dissolved or suspended in sterile water.
  • pharmaceutically acceptable carrier means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filter, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject regulators from one organ, or portion ofthe body, to another organ, or portion ofthe body.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients ofthe formulation and not injurious to the patient.
  • materials which can serve as pharmaceutically acceptable carriers include (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15)
  • certain embodiments ofthe present amphetamine compounds may contain a basic functional group, such as amino or alkylamino, and are, thus, capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable acids.
  • pharmaceutically acceptable salts refers to the relatively non-toxic, inorganic and organic acid addition salts of compounds of the present invention. These salts can be prepared in situ during the final isolation and purification ofthe compounds ofthe invention, or by separately reacting a purified compound ofthe invention in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed.
  • Representative salts include but are not limited to following: 2-hydroxyethanesulfonate, 2-naphthalenesulfonate, 3-hydroxy-2-naphthoate, 3-phenylpropionate, acetate, adipate, alginate, amsonate, aspartate, benzenesulfonate, benzoate, besylate, bicarbonate, bisulfate, bitartrate, borate, butyrate, calcium edetate, camphorate, camphorsulfonate, camsylate, carbonate, citrate, clavulariate, cyclopentanepropionate, digluconate, dodecylsulfate, edetate, edisylate, estolate, esylate, ethanesulfonate, fumarate, gluceptate, glucoheptanoate, gluconate, glutamate, glycerophosphate, glycollylarsanilate, hemisulf
  • the pharmaceutically acceptable salts ofthe subject compounds include the conventional non-toxic salts ofthe compounds, e.g., from non-toxic organic or inorganic acids. Particularly suitable are salts of weak acids.
  • such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, hydriodic, cinnamic, gluconic, sulfuric, sulfamic, phosphoric, nitric, and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, maleic, tartaric, citric, ascorbic, palmitic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicyclic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isothionic, and the like.
  • inorganic acids such as hydrochloric, hydrobromic, hydriodic, cinnamic, gluconic, sulfuric, sulfamic, phospho
  • the compounds ofthe present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases.
  • pharmaceutically acceptable salts refers to the relatively non-toxic, inorganic and organic base addition salts of compounds ofthe present invention. These salts can likewise be prepared in situ during the final isolation and purification ofthe compounds, or by separately reacting the purified compound in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary or tertiary amine.
  • Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like.
  • Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like. (See, for example, Berge et al., supra) Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
  • antioxidants examples include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
  • water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
  • oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), le
  • Formulations ofthe present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal and/or parenteral administration.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount ofthe compound which produces a therapeutic effect.
  • compositions include the step of bringing into association a compound ofthe present invention with the carrier and, optionally, one or more accessory ingredients.
  • the formulations are prepared by uniformly and intimately bringing into association a compound ofthe present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
  • Formulations ofthe invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound ofthe present invention as an active ingredient.
  • lozenges using a flavored basis, usually sucrose and acacia or tragacanth
  • a compound ofthe present invention may also be administered as a bolus, electuary or paste.
  • the active ingredient is mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any ofthe following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as
  • the pharmaceutical compositions may also comprise buffering agents.
  • Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
  • a tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent.
  • Molded tablets may be made by molding in a suitable machine a mixture ofthe powdered compound moistened with an inert liquid diluent.
  • the tablets, and other solid dosage forms ofthe pharmaceutical compositions ofthe present invention such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release ofthe active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres.
  • compositions may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.
  • These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion ofthe gastrointestinal tract, optionally, in a delayed manner.
  • embedding compositions which can be used include polymeric substances and waxes.
  • the active ingredient can also be in micro-encapsulated form, if appropriate, with one or more ofthe above-described excipients.
  • Liquid dosage forms for oral administration ofthe compounds ofthe invention include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tefrahycfrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents commonly used in the art, such as, for example, water or other solvents, so
  • the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
  • Suspensions in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • Formulations ofthe pharmaceutical compositions ofthe invention for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more compounds ofthe invention with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active amphetamine compound.
  • Formulations ofthe present invention which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
  • Dosage forms for the topical or transdermal administration of a compound of this invention include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
  • the active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required.
  • the ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • Powders and sprays can contain, in addition to a compound of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
  • Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
  • the subject compound(s) are formulated as part of a transdermal patch.
  • Transdermal patches have the added advantage of providing controlled delivery of a compound ofthe present invention to the body. Such dosage forms can be made by dissolving or dispersing the amphetamine compounds in the proper medium.
  • Absorption enhancers can also be used to increase the flux ofthe amphetamine compounds across the skin.
  • the rate of such flux can be controlled by either providing a rate-controlling membrane or dispersing the compound in a polymer matrix or gel.
  • the "free base form" of amphetamine relates to a form in which amphetamine is not complexed with an acid, e.g., is not an ammonium salt. Such forms may be incorporated into a patch. It will be appreciated that the amphetamine compounds may be complexed, for example, with elements ofthe drug-retaining matrix ofthe patch and, as such, the amphetamine compounds may not necessarily be in the form ofthe free base, when actually retained by the patch.
  • the patch preferably comprises a drug-impermeable backing layer.
  • Suitable examples of drug-impermeable backing layers which may be used for transdermal or medicated patches include films or sheets of polyolefins, polyesters, polvurethanes, polyvinyl alcohols, polyvinyl chlorides, polyvinylidene chloride, polyamides, ethylene-vinyl acetate copolymer (EVA), ethylene-ethylacrylate copolymer (EEA), vinyl acetate-vinyl chloride copolymer, cellulose acetate, ethyl cellulose, metal vapour deposited films or sheets thereof, rubber sheets or films, expanded synthetic resin sheets or films, non-woven fabrics, fabrics, knitted fabrics, paper and foils.
  • Preferred drug-impermeable, elastic backing materials are selected from polyethylene tereplithalate (PET), polyurethane, ethylene-vinyl acetate copolymer (EVA), plasticized polyvinylchloride, woven and non-woven fabric. Especially preferred is non- woven polyethylenetereplithalate (PET).
  • PET polyethylene tereplithalate
  • EVA ethylene-vinyl acetate copolymer
  • PET non- woven polyethylenetereplithalate
  • Other backings will be readily apparent to those skilled in the art.
  • the term 'block copolymer' in the preferred adhesives ofthe invention, refers to a macromolecule comprised of two or more chemically dissimilar polymer structures, terminally connected together (Block Copolymers: Overview and Critical Survey, Noshay and McGrath, 1977).
  • the blocks may generally be arranged in an A-B structure, an A-B-A structure, or a multi-block -(A-B) n - system, wherein A and B are the chemically distinct polymer segments ofthe block copolymer. It is generally preferred that the block copolymer is of an A-B-A structure, especially wherein one of A and B is an acrylic-type polymeric unit. It will be appreciated that the present invention is also applicable using block copolymers which possess three or more different blocks, such as an A-B-C block copolymer.
  • block copolymers commonly possess both 'hard' and 'soft' segments.
  • a 'hard' segment is a polymer that has a glass transition temperature (Tg) and/or a melting temperature (Tm) that is above room temperature, while a 'soft' segment is a polymer that has a Tg (and possibly a Tm) below room temperature.
  • the different segments are thought to impart different properties to the block copolymer. Without being constrained by theory, it is thought that association ofthe hard segments of separate block copolymer units result in physical cross-links within the block copolymer, thereby promoting cohesive properties ofthe block copolymer. It is particularly preferred that the hard segments ofthe block copolymers form such physical close associations.
  • the block copolymers useful in the present invention preferably are acrylic block copolymers. In acrylic block copolymers, at least one ofthe blocks ofthe block copolymer is an acrylic acid polymer, or a polymer of an acrylic acid derivative. The polymer may be composed of just one repeated monomer species.
  • a mixture of monomeric species may be used to form each ofthe blocks, so that a block may, in itself, be a copolymer.
  • the use of a combination of different monomers can affect various properties ofthe resulting block copolymer.
  • variation in the ratio or nature ofthe monomers used allows properties such as adhesion, tack and cohesion to be modulated, so that it is generally advantageous for the soft segments ofthe block copolymer to be composed of more than one monomer species.
  • alkyl acrylates and alkyl methacrylates are polymerized to form the soft portion ofthe block copolymer. Alkyl acrylates and alkyl methacrylates are thought to provide properties of tack and adhesion.
  • Suitable alkyl acrylates and alkyl methacrylates include n-butyl acrylate, n-butyl methacrylate, hexyl acrylate, 2-ethylbutyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, decyl acrylate, decyl methacrylate, dodecyl acrylate, dodecyl methacrylate, tridecylacrylate and tridecyl methacrylate, although other suitable acrylates and methacrylates will be readily apparent to those skilled in the art.
  • the acrylic block copolymer comprises at least 50% by weight of alkyl acrylate or alkyl methacrylate(co)polymer.
  • Variation in the components ofthe soft segment affects the overall properties ofthe block copolymer, although the essential feature remains the cross-linking of the soft segments.
  • soft segments essentially consisting of diacetone acrylamide with either butyl acrylate and/or 2-ethylhexyl acrylate, in approximately equal proportions, work well, and a ratio by weight of about 3 : 4 : 4 provides good results.
  • diacetone acrylamide, or other polar monomer such as hydroxyethylmethacrylate or vinyl acetate
  • the acrylate component may generally be varied more freely, with good results observed with botb-2-ethylhexyl acrylate and butyl acrylate together or individually.
  • ratios ofthe various monomers are generally preferred to be approximately equal.
  • this is preferred to be with a polar component of 50% or less ofthe soft segment, with the apolar portion forming up to about 85% w/w, but preferably between about 50 and 70% w/w.
  • Adhesives ofthe invention are preferably essentially neutral, and this avoids any unnecessary degeneration ofthe amphetamine compounds. Limiting active functionalities, especially those with active hydrogen, is generally preferred, in order to permit wide use of any given formulation of adhesive without having to take into account how it is likely to interact, chemically, with its environment. Thus, a generally chemically inert adhesive is preferred, in the absence of requirements to the contrary.
  • polymers suitable for use as the hard portion ofthe block copolymer possess glass transition temperatures above room temperature.
  • Suitable monomers for use in forming the hard segment polymer include styrene, (x-methylstyrene, methyl methacrylate and vinyl pyrrolidone, although other suitable monomers will be readily apparent to those skilled in the art. Styrene and polymethylmethacrylate have been found to be suitable for use in the formation of the hard segment ofthe block copolymers. It is preferred that the hard portion ofthe block copolymer forms from 3-30% w/w ofthe total block copolymer, particularly preferably from 5-15% w/w.
  • the block copolymer is further characterized in that the soft portions contain a degree of chemical cross-linking. Such cross-linking may be effected by any suitable cross-linking agent.
  • the cross-linking agent be in the form of a monomer suitable for incorporation into the soft segment during polymerization.
  • the cross-linking agent has two, or more, radically polymerizable groups, such as a vinyl group, per molecule ofthe monomer, at least one tending to remain unchanged during the initial polymerization, thereby to permit cross-linking ofthe resulting block copolymer.
  • Suitable cross-linking agents for use in the present invention include divinylbenzene, methylene bis-acrylamide, ethylene glycol di(meth)acrylate, ethyleneglycol tetra(meth)acrylate, propylene glycol di(meth)acrylate, butylene glycoldi(meth)acrylate, or trimethylolpropane tri(meth)acrylate, although other suitable cross-linking agents will be readily apparent to those skilled in the art.
  • a preferred cross-linking agent is tetraethylene glycol dimethacrylate. It is preferred that the cross-linking agent comprises between about 0.01 to about 0.6% by weight ofthe block copolymer, with between about 0.1 to about 0.4% by weight being particularly preferred.
  • block copolymers from their monomeric constituents are well known.
  • the block copolymer portions ofthe present invention may be produced by any suitable method, such as step growth, anionic, cationic and free radical methods (Block Copolymers, supra). Free radical methods are generally preferred over other methods, such as anionic polymerization, as the solvent and the monomer do not have to be purified.
  • Suitable initiators for polymerization include polymeric peroxides with more than one peroxide moiety per molecule. An appropriate choice of reaction conditions is well within the skill of one in the art, once a suitable initiator has been chosen.
  • the initiator is preferably used in an amount of about 0.005 to about 0.1%) by weight ofthe block copolymer, with about 0.01 to about 0.05% by weight being particularly preferred, although it will be appreciated that the amount chosen is, again, well within the skill of one in the art. In particular, it is preferred that the amount should not be so much as to cause instant gelling ofthe mix, nor so low as to slow down polymerization and to leave excess residual monomers. A preferred level of residual monomers is below about 2000 ppm. It will also be appreciated that the amount of initiator will vary substantially, depending on such considerations as the initiator itself and the nature ofthe monomers.
  • the block copolymers are adhesives, and preferably are pressure sensitive adhesives.
  • Pressure sensitive adhesives can be applied to a surface by hand pressure and require no activation by heat, water or solvent. As such, they are particularly suitable for use in accordance with the present invention.
  • the block copolymers may be used without tackifiers and, as such, are particularly advantageous. However, it will be appreciated that the block copolymers may also be used in combination with a tackifier, to provide improved tack, should one be required or desired. Suitable tackifiers are well known and will be readily apparent to those skilled in the art.
  • the block copolymer preferably cross-links as the solvent is removed, so that cross-linking can be timed to occur after coating, this being the preferred method.
  • the process preferably comprises polymerizing the monomeric constituents of each soft segment in solution, then adding the constituents ofthe hard segment to each resulting solution and polymerizing the resulting mix, followed by cross-linking by removal of any solvent or solvent system, such as by evaporation. If the solution is to be stored for any length of time, it may be necessary to keep the polymer from precipitating out, and this may be achieved by known means, such as by suspending agents or shaking. It may also be necessary to select the type of polymers that will be subject to substantially no cross-linking until the solvent is evaporated.
  • the adhesive possesses a minimum number of functionalities having active hydrogen, in order to avoid undesirable reactions/interactions, such as with any drug that it is desired to incorporate into the adhesive material. It will be appreciated that this is only a preferred restriction, and that any adhesive may be tailored by one skilled in the art to suit individual requirements.
  • Suitable monomers for use in forming the hard segment include styrene, a-methylstyrene, methyl methacrylate and vinyl pyrrolidone, with the preferred proportion ofthe hard segment being between about 5 to about 15 percent (w/w).
  • plasticizer such as isopropyl myristate (IPM)
  • IPM isopropyl myristate
  • Plasticizers generally take the form of oily substances introduced into the adhesive polymer.
  • the effect ofthe introduction of such oily substances is to soften the physical structure ofthe adhesive whilst, at the same time, acting at the interface between the adhesive and the skin, thereby helping to somewhat weaken the adhesive, and to reduce exfoliation.
  • the free base oil may be obtained by basifying amphetamine salts, or any other suitable salt, with a suitable base, in the presence of a hydrophilic solvent, especially water, and an organic solvent. For instance, water and ethyl acetate, in approximately equal proportions, work well, with ammonia serving as the basifying agent.
  • the water may then be removed and the preparation washed with further water, or other aqueous preparation, after which the preparation may be suitably extracted with ether, for example, after having removed the ethyl acetate. It is preferred to keep the preparation under an inert atmosphere, especially after completion. Whilst it will be appreciated that patches ofthe present invention may be removed from the patient at any time, once it is desired to terminate a given dose, this can have the disadvantage of providing an opportunity for potential drug abuse ofthe partially discharged patch. Abuse of amphetamines is highly undesirable.
  • a patch tailored to have delivered the majority ofthe amphetamine that it is capable of delivering, in a 24 hour period, by about 8 hours after application, so that a patch can be left in place, and levels of drug still diminish appreciably.
  • the drug delivery profile has first order kinetics, so that the majority ofthe drug is delivered during the main part ofthe day and, even if the patient omits to remove the patch, the drug is moving towards exhaustion by the end ofthe day, and the amount of drug is dropping rapidly.
  • patches ofthe invention may be constructed in any suitable manner known in the art for the manufacture of transdermal patches.
  • the patches may simply comprise adhesive, drug and backing, or may be more complex, such as having edging to prevent seepage of drug out ofthe sides ofthe patch. Patches may also be multi-layered. Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.
  • compositions of this invention suitable for parenteral administration comprise one or more compounds ofthe invention in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood ofthe intended recipient or suspending or thickening agents.
  • aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
  • polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
  • vegetable oils such as olive oil
  • injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance ofthe required particle size in the case of dispersions, and by the use of surfactants.
  • These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.
  • microorganisms Prevention ofthe action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions.
  • isotonic agents such as sugars, sodium chloride, and the like into the compositions.
  • prolonged absorption ofthe injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
  • the rate of absorption ofthe drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form.
  • delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
  • injectable depot forms are made by forming microencapsule matrices ofthe subject compounds in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature ofthe particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides).
  • Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue.
  • the compounds ofthe present invention are administered as pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, about 0.1 to about 99.5% (more preferably, about 0.5 to about 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
  • the addition ofthe active compound ofthe invention to animal feed is preferably accomplished by preparing an appropriate feed premix containing the active compound in an effective amount and incorporating the premix into the complete ration. Alternatively, an intermediate concentrate or feed supplement containing the active ingredient can be blended into the feed.
  • the present invention contemplates modes of treatment and prophylaxis which utilize one or more ofthe amphetamine compounds. These agents may be useful for increasing the occurrence of memory consolidation or decreasing or preventing the effects of defects in an animal which mitigate memory consolidation.
  • the preparations ofthe present invention can be used simply to enhance normal memory function.
  • the present invention contemplates modes of treatment and prophylaxis which utilize one or more ofthe subject amphetamine compounds to alter defects in attention span and/or focus in an organism.
  • the enhancement and/or restoration of attention span in an organism has positive behavioral, social, and psychological consequences. Additionally, enhancement of attention span can improve memory and learning.
  • the subject method can be used to treat patients who have been diagnosed as having or at risk of developing disorders in which diminished declarative memory is a symptom, e.g., as opposed to procedural memory.
  • the subject method can also be used to treat normal individuals for whom improved declarative memory is desired.
  • Memory disorders which can be treated according to the present invention may have a number of origins: a functional mechanism (anxiety, depression), physiological aging (age-associated memory impairment, mild cognitive impairment, etc.), drugs, or anatomical lesions (dementia), associated with multiple sclerosis, chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy, traumatic brain injury, stroke or Parkinson's disease.
  • Indications for which such preparations may be useful include learning disabilities, memory impairment, e.g., due to toxicant exposure, brain injury, brain aneurysm, age, schizophrenia, epilepsy, mental retardation in children, and senile dementia, including Alzheimer's disease.
  • the invention contemplates the treatment of amnesia.
  • Amnesias are described as specific defects in declarative memory. Faithful encoding of memory requires a registration, rehearsal, and retention of information. The first two elements appear to involve the hippocampus and medial temporal lobe structures. The retention or storage appears to involve the heteromodal association areas. Amnesia can be experienced as a loss of stored memory or an inability to form new memories. The loss of stored memories is known as retrograde amnesia. The inability to form new memories is known as anterograde amnesia. Complaints of memory problems are common. Poor concentration, poor arousal and poor attention all may disrupt the memory process to a degree. The subjective complaint of memory problems therefore must be distinguished from true amnesias.
  • amnesias there is by definition a preservation of other mental capacities such as logic.
  • the neurobiologic theory of memory described above would predict that amnesias would have relatively few pathobiologic variations. Clinically the problem of amnesias often appears as a result of a sudden illness in an otherwise healthy person.
  • the subject method may also be used to treat amnesias of longer duration, such as post concussive or as the result of Herpes simplex encephalitis.
  • this invention contemplates the treatment ofthe Anterior Communicating Artery Syndrome.
  • This syndrome is prevalent among survivors of Anterior Communicating artery aneurysms and often includes anterograde amnesia, a specific deficit in new memory formation, with relative sparing of older memories as well as intelligence and attention.
  • the Anterior Communicating Artery Syndrome may also include some personality changes and confabulation.
  • the Anterior Communicating Artery Syndrome in man is a result of a focal lesion in the basal forebrain area (particularly the medial septal area), secondary to combined damage from the aneurysm and the surgical or endovascular treatment ofthe aneurysm.
  • the compounds ofthe invention enhance memory in normal individuals, in particular, memory consolidation in humans.
  • the present invention is further illustrated by the following examples, which are not intended to be limiting in any way.
  • the Inhibitory Avoidance (IA) task also referred to herein as "Passive Avoidance" (Bammer, G., Neurosci & Biobev. Rev. 6:247-296 (1982)) and the Spontaneous Object Recognition (SOR) task (Ennaceur, A., et al, Psychopharmacol. 109:321-330 (1992); Ennaceur, A., etal, Behav. Brain Res.
  • IA Inhibitory Avoidance
  • SOR Spontaneous Object Recognition
  • the Inhibitory Avoidance apparatus (Coulbourn Instruments) consisted of a light chamber and a dark chamber, which were joined by means of a sliding guillotine door.
  • the floor ofthe dark compartment consisted of 2.4 mm diameter steel rods, through which a foot-shock could be administered to the animal by a constant current 18-pole shock scrambler.
  • the test apparatus was enclosed in a ventilated, sound-attenuating cabinet, and was controlled by Graphic StateTM Notation Software (Version 1.013) and a Hewlett Packard Website Computer. Training involved the rat being placed in the light chamber for a ten second period, after which time the sliding door was opened, allowing the rat access to the dark chamber.
  • Spontaneous Object Recognition Apparatus for Object Recognition testing consisted of a plexiglass open field activity chamber, measuring 30 by 30 cm. A video camera was mounted on the wall above the chamber. Three plastic objects served as stimuli for the experiment. Two ofthe objects were identical to one another, and the third was different. Rats were individually habituated to the open-field box for three consecutive days. Habituation sessions were six minutes in duration. Twenty-four hours after the last day of habituation, a training session was conducted, in which two identical objects were placed in the open-field box, 10 cm from the back wall. The animal was placed into the box and was allowed to explore freely for a period of four minutes. Twenty-four hours after the training session, retention testing was conducted.
  • the rat was placed back into the same activity box with one ofthe familiar objects used during the training session and a novel object that the rat had not seen before.
  • the rat was allowed to explore the box and objects for a period of four minutes. Testing was conducted at the same time each day, and was videotaped for off-line analysis. Two discrimination indices, Dl and D2 were calculated in order to measure the strength of recognition memory. Dl reflects the amount of time spent exploring the novel object minus the amount of time spent exploring the familiar object, and D2 reflects Dl divided by total exploration time.
  • Activity monitoring was conducted in a Plexiblas open-field box. Activity levels were measured by a grid of infrared light beams that traversed the cage from left to right and back to front. The location ofthe animal was detected by breaks in the infrared light beams. General behavior and activity levels were recorded by a computerized monitoring system for a period often minutes. The analyzed behaviors included but were not limited to; horizontal activity, total distance moved, movement time, number of movements, number of rears, number of stereotyped movements, and time spent resting. Data was collected on-line using Versa Max (Version 1.83) computer software and a Hewlett Packard Pavilion computer.
  • Tail Flick For Tail-Flick Analgesia Testing the animal was placed on top ofthe Tail-Flick monitor and gently held in place with a cotton towel. The tail ofthe animal was placed in a shallow groove lying between two sensors and over the top of a radiant heat wire. The Tail Flick monitor was activated, and the latency for the animal to flick its tail out ofthe groove and away from the heat source was recorded. The animal was returned to its home cage immediately following testing.
  • Rats were anesthetized with Nembutal (55 mg/kg) and prepared for surgery.
  • the rat was placed in the stereotaxic apparatus, a midline incision made, and the scalp retracted to expose the skull.
  • the skull was cleaned and dried using sterile saline and cotton swabs, and four stereotaxically determined holes were drilled in the skull at the following coordinates: 0.3 and 0.8 mm posterior to Bregma, and 0.5 and 0.7 mm lateral to the midline.
  • An electrode Teflon-coated wire, 125 ⁇ m in diameter
  • DC current at 1.0 mA was passed through the electrodes for a duration of 10 seconds.
  • C105 Effects of (R)-(-)-amphetamine (C105) on Inhibitory Avoidance
  • the first experiment to be conducted using C105 was a dose response experiment, in which different doses of C 105 (about 0.4, about 0.5, about 0.75, 1.0 and about 2.0 mg/kg) were administered to the rats one hour prior to training on the Inhibitory Avoidance task. Retention for the task was tested 24-hours later.
  • Subsequent post hoc analysis demonstrated that the 1.0 mg/kg group performed significantly better than saline injected controls (p ⁇ 0.05).
  • EXAMPLE 2 TIME COURSE OF EFFECTIVENESS
  • the time of drug administration was varied in order to determine the optimal pre-training drug administration time.
  • Figure 3 shows that (S)-(+) amphetamine (2.0 mg/kg) is effective when administered to the rats between 0 and 2 hours prior to training.
  • EXAMPLE 4 EFFECTS ON LESIONED ANIMALS Effects of (-)(+)-amphetamine on Lesioned Animals The findings ofthe above experiments are important, as they identify the most effective dose and time of administration for this compound.
  • Rats received I.P injections of C105 (1.0 mg/kg) or saline immediately after the training session, and were tested for retention 24-hours later. As can be seen from Figure 13, when compared with controls, lesions ofthe fornix had a detrimental effect on performance of this task. Administration of C 105 produced a trend towards improving discrimination performance in Dl (p 0.0685), and slightly improved performance in D2.
  • EXAMPLE 5 EFFECTS OF (R)-(-) VS. (S)-(+) AMPHETAMINE ENANTIOMERS ON STIMULATION OF MEMORY CONSOLIDATION The effects ofthe (R)-(-)-amphetamine and the (S)-(+) amphetamine enantiomers on stimulation of memory consolidation and motor stimulation were compared.
  • the (R)-(-) enantiomer of amphetamine is referred to as C 105 in the figures.
  • EXAMPLE 8 POST TRAINING ADMINISTRATION While the results described above provide evidence to suggest that C105 enhances memory, it is possible that these results are due to non-mnemonic factors. Because the drug was administered prior to training, it is possible that learning or acquisitional processes were affected by drug administration. For this reason, a post training experiment was conducted in which C105 was administered to the rats immediately after the training session. Injecting the drug after the training session affects memory consolidation rather than acquisition, primarily because the drug is not on board at the time of training. The results of this experiment are represented in Figure 11 and presented individually in Table 6.
  • Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal (10 animals per treatment group). Data is rank-ordered.
  • Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal (10 animals per treatment group). Data is rank-ordered.
  • Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal (14 animals per treatment group). Data is rank-ordered.
  • Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal (10 animals per treatment group). Data is rank-ordered.
  • the rats were housed two to a cage in plastic cages with corncob bedding. The rats were maintained on a 12/12 light dark cycle with ad libitum access to food and water.
  • L-methamphetamine (SN522), 1-amphetamine (C105) and d-amphetamine were dissolved in saline and administered to the rats via intraperitoneal (i.p.) injections, in a volume of 1 ml/kg body weight.
  • the Passive Avoidance apparatus (Coulbourn Instruments) consisted of a light chamber and a dark chamber, which were joined by means of a sliding guillotine door.
  • the floor ofthe dark compartment consisted of 2.4 mm diameter steel rods, through which a foot-shock could be administered to the animal by a constant current 18-pole shock scrambler.
  • the test apparatus was enclosed in a ventilated, sound-attenuating cabinet, and was controlled by Graphic State TM Software (Version 1.013) and a Hewlett Packard Pavilion Computer. Training involved placing the rat inside the light chamber with its head facing away from the door.
  • Rats were injected (ip) immediately after training with saline (control/vehicle), SN522 (0.25 and 0.5 mg/kg), C105 (0,5 and 1.0 mg/kg) or d- amphetamine (1.0 and 2.0 mg/kg). Retention was tested 24 hours after training.
  • Figure 20 depicts a comparison of d-amphetamine, C105 and SN522 administered immediately after training in inhibitory avoidance. Data show the mean ( ⁇ SEM) step-through latency (seconds) on a test 24 hours following training.
  • L-methamphetamine (SN522) was dissolved in saline and administered to the rats via intraperitoneal (i.p.) injections, in a volume of 1 ml/kg body weight.
  • Passive Avoidance apparatus (Coulbourn Instruments) consisted of a light chamber and a dark chamber, which were joined by means of a sliding guillotine door.
  • the floor ofthe dark compartment consisted of 2.4 mm diameter steel rods, through which a foot-shock could be administered to the animal by a constant current 18-pole shock scrambler.
  • the test apparatus was enclosed in a ventilated, sound- attenuating cabinet, and was controlled by Graphic StateTM Software (Version 1.013) and a Hewlett Packard Pavilion Computer. Training involved placing the rat inside the light chamber with its head facing away from the door.
  • Extramaze cues were provided by large geometric shapes adhered to curtains that surrounded two sides ofthe pool, and by shelving units, a sink, and posters on the visible walls.
  • the training procedure involved placing the rat into the water, with the rat's head facing the wall ofthe pool, at one of four different starting points.
  • the rat was allowed 60 seconds to locate the hidden platform. If the rat did not find the platform within 60 seconds, it was gently guided to the platform. After 15 seconds spent on the platform at the end of each trial, the rat was removed from the pool and injected with saline or SN522 (0.25 and 0.5 mg/kg, i.p.). The rat was dried, and returned to its home cage. One trail was conducted each day for 10 days.
  • Experiment 3 Locomotor Activity Activity monitoring was conducted in a Plexiglas open-field box measuring 30 by 30 cm. Activity levels were measured via a grid of infrared light beams that traversed the cage from left to right and back to front. The location ofthe animal within the cage was detected by breaks in the infrared light beams. Light beams status information was collected and rapidly analyzed by a computerized activity monitoring system (VersaMax System, Accuscan Instruments.) In order to determine whether SN522 had any adverse effects on locomotor or exploratory activity, rats were injected with saline or 0.25, 0.5, 2.5 and 5.0 mg/kg of SN522 and immediately afterwards placed into the activity monitoring chambers for a period of three hours.
  • Figure 24 depicts the effect of d-amphetamine on activity levels measured by an automated motion detector.
  • Data are the mean activity ( ⁇ SEM) of four separate groups of rats treated with SN522
  • Mean activity ( ⁇ SEM) of four separate groups of rats (n 7 or 8 per group) treated with d-amphetamine sulfate (0.25, 0.5, 2.5, and 5.0 mg/kg, ip).
  • mice were injected with saline or SN522 (0.25, 0.5, 2.5 and 5.0 mg/kg, i.p.) and tested at four time points: immediately prior to injection, and again 15, 30, and 60 minutes following drug administration for a tail flick response (D'Amour, F.E., et al, J. Pharmacol. Exp. Ther. 72:174-179 (1941)).
  • the rats were housed two to a cage in plastic cages with corncob bedding and were maintained on a 12/12 light dark cycle with ad libitum access to food and water.
  • L-methamphetamine (SN522) was dissolved in saline and administered to the rats via intraperitoneal (i.p.) injections, in a volume of 1 ml/kg body weight.
  • the Passive Avoidance apparatus (Coulbourn Instruments) consisted of a light chamber and a dark chamber, which were joined by means of a sliding guillotine door.
  • the floor ofthe dark compartment consisted of 2.4 mm diameter steel rods, through which a foot-shock could be administered to the animal by a constant current 18-pole shock scrambler.
  • the test apparatus was enclosed in a ventilated, sound-attenuating cabinet, and was controlled by Graphic StateTM Software (Version 1.013) and a Hewlett Packard Pavilion Computer. Training involved placing the rat inside the light chamber with its head facing away from the door. Ten seconds later, the sliding door was opened, and the latency to enter the dark chamber was recorded (100 second maximum).
  • the rat When the rat entered the dark chamber, it received a continuous foot-shock (0.4 mA) through the metal grid floor until it returned to the light chamber. This sequence of events was continued until the rat remained in the light chamber for a period of 100 consecutive seconds or until a maximum of 5 foot-shocks had been received. Retention testing was conducted 24 hours later. The rat was placed into the light chamber with its head facing away from the door. Ten seconds later, the door was opened, allowing the rat access to the dark chamber. No foot-shock was administered during retention testing. Latency to enter the dark chamber was recorded (900 seconds maximum) and used as a measure of memory.
  • SN522 1-methamphetamine reverses memory deficiencies (also referred to herein as a "memory impairment")
  • scopolamine hydrochloride 0.75 mg/kg, i.p. 30 minutes before training. Rats were then trained on the passive avoidance task and immediately afterwards, injected with either saline or SN522 (0.12, 0.25, 0.5 and 1.0 mg/kg, i.p.). Retention was tested 24 hours after training.
  • the rats were housed two to a cage in plastic cages with corncob bedding and were maintained on a 12/12 light dark cycle with ad libitum access to food and water.
  • Drugs L-amphetamine (C105) was dissolved in saline and administered to the rats via intraperitoneal (i.p.) injections, in a volume of 1 ml/kg body weight.
  • BVMT Brief Visuospatial Memory Test
  • RAVLT Rey Auditory and Verbal learning Test
  • EXAMPLE 14 IMPROVEMENT IN MEMORY IN HUMANS WITH L- AMPHETAMINE Two (2) Phase 1 randomized, double-blind, placebo-controlled clinical studies of 1-amphetamine (C105) were conducted in normal healthy adult male and female subjects.
  • the first trial was conducted in eight (8) Caucasian subjects (3 male and 5 female) with a mean age of 35.1 years (range 21-49 years), and the second trial was conducted in eight (8) Caucasian subjects (1 male and 7 female) with a mean age of 65.4 years (range 60-72 years).
  • the studies were intended to identify the maximum tolerated dose (MTD) and dose-limiting side effects of C 105, to assess the effects of C 105 on quantitative memory scores, to assess the perceived central nervous system (CNS) effects following C105 administration, to assess the effects of C 105 on the cardiovascular system, to explore the relationship between dose, tolerability, safety and pharmacological effects of C105, and to define the pharmacokinetics (PK) of C105.
  • MTD maximum tolerated dose
  • CNS central nervous system
  • PK pharmacokinetics
  • treatment period was one (1) week in duration and consisted of two (2) consecutive days of treatment ("treatment period") with C105 (5 mg, 15 mg, 30 mg, 45 mg) or placebo, followed by five (5) consecutive days without C 105 or placebo ("washout period”).
  • the design is a ascending dose safety design with a placebo dose randomly inserted iinto the sequence.
  • Each subject was randomly administered a single dose of one of the C105 doses (5 mg, 15 mg, 30 mg, 45 mg) or a randomly assigned dose of placebo during each treatment period on the two consecutive treatment days.
  • Each subsequent treatment group would included whatever dose of C 105 (or placebo) had not previously been administered, until the patient had received each ofthe four C105 doses (5 mg, 15 mg, 30 mg, 45 mg) or single placebo treatment to conclude the five week treatment period.
  • the scores showed an overall statistically significant (p ⁇ 0.05) improvement in RAVLT score with respect to C 105 dose at both 30 minutes and 24 hours post-treatment.
  • improvements in RAVLT scores observed with the 30 mg and 45 mg doses of C 105 were statistically significant (p ⁇ 0.05), based on the Wilcoxon signed rank test, when compared to placebo at both 30 minutes and 24 hours post-dose.
  • a comparison of each individual subject's placebo score to their best score on any dose of C 105 showed that RAVLT memory performance for all subject (except for one subject who had a perfect RAVLT score under both conditions) improved following C105 treatment (see Figure 26).
  • L-AMPHETAMINE ADMINISTRATION A computerized cognitive screening tool (HeadMinder, Inc. (New York, NY)), was employed for the assessment and longitudinal tracking of cognitive functioning (Erlanger, D.M., et al, J. Head Trauma Rehabil. 17:458-476 (2002);
  • Mild cognitive impairment in subjects was diagnosed based on conventional neuropsychiatric testing parameters - scoring below the age- and educational- adjusted cutoff on the Logical Memory II subscale from the Wechsler Memory Scale. A single test score was used to define subjects with mild cognitive impairment. In addition, the subjects used in this study did not score higher than 0.5 on the Clinical Dementia Rating scale. Some subjects with a Clinical Dementia Rating of 0.5 can have early Alzheimer's disease. Some subjects enrolled in this study scored in the Alzheimer's disease range of some cognitive assessments. Thus, some subjects classified as having mild cognitive impairment may actually have early Alzheimer's disease.
  • neuropsychiatric tests typically measure a continuum (bell- shaped curve) and the definitions are relatively arbifrary cut points for the abnormal population - typically 1 or 1.5 standard deviations below the norm adjusted for age and education.
  • the remaining seven (7) subtests were included to evaluate cognitive abilities, such as learning and memory, attention, reaction time, and executive function.
  • Memory Cabinet 1 Subjects learn the placement of nine (9) household objects placed in a cabinet over three (3) learning trials. • Memory Cabinet 2 - Delayed Memory Following intervening tasks, one (1) recall trial ofthe Memory Cabinet is administered to the subject.
  • Attention and Executive Function • Response Direction 1 - Simple Attention (a low demand task) Numbers are presented. The subject presses the "1" key when a 1 is presented and presses the "0" key when a 0 is presented. The following depicts a schematic of this task:
  • Visuo-Motor Speed 2 Instructions appear in the center ofthe screen.
  • the subject presses the corresponding key as quickly as possible (e.g., "UPPER RIGHT” appears in the middle).
  • Visuo-Motor Speed 3 Instructions are presented on the screen in the wrong location. The subject presses keys according to each instruction while ignoring the location of the instruction (e.g., "UPPER RIGHT” appears in the lower right).
  • Subjects were randomly assigned to receive either 1-amphetamine or a placebo.
  • Subjects treated with 1-amphetamine received 5 mg of 1-amphetamine per day for the first seven (7) days ofthe study, following by 15 mg per day for the next seven (7) days ofthe study, followed by 30 mg per day for the next fourteen (14) days ofthe study.
  • Subjects receiving placebo received identical dosages of placebo pills for the duration ofthe study.
  • Cognitive functions were assessed at baseline (day 0) and on days 1, 8, 15 and 28 of treatment or placebo.
  • 1- amphetamine and placebo subjects did not differ in performance on this task at any test instance, indicating they were roughly equivalent (Figure 27). Higher scores in the keyboard proficiency indicate slower performance.
  • Improvements in executive function following freatment with 1-amphetamine or placebo were assessed by determining the difference between performance on Response Direction 1 (Low Demand Task) and Response Direction 2 (High Demand Task).
  • Maintained learning efficiency is associated with a stable difference score across repeated assessments.
  • Decreased learning efficiency, which is expected in a subject with mild cognitive impairment, is associated with increased differences across repeated assessments since inefficient subjects make greater improvements due to practice effects on the low demand task than on the high demand task, while efficient subjects improve on both tasks at a similar rate.
  • An ANCONA showed significant differences between subjects treated with 1- amphetamine (30 mg, day 15) and placebo.
  • a Z-score of 0 represents average performance for healthy individuals and a standard deviation equals 1.
  • both groups were about equivalent and scored in ranges clearly consistent with mild cognitive impairment and early Alzheimer's disease.
  • subject's scores improved by approximately 1 standard deviation to within normal limits. No change was observed in the control, placebo group. Improvements in memory, learning and executive function by treatment with 1- amphetamine can have profound implications for improvement in the clinical symptoms of mild cogmtive impairment, early Alzheimer's disease and in performances of everyday tasks ranging from managing medications to grocery shopping and operating a vehicle.
  • the eight (8) subjects received 25 mg, 50 mg, 100 mg of 1-methamphetamine; of these eight (8) subjects, five (5) subjects also received placebo (0 mg of 1- methamphetamine) and three (3) subjects received 150 mg of 1-methamphetamine.
  • the Phase I studies were designed to identify a maximum tolerated dose and dose-limiting side effects of 1-methamphetamine; to assess the effects of 1- methamphetamine on quantitative memory scores for example, by the California Verbal Learning Test (CVLTII) or RAVLT; to assess the perceived CNS effects following the administration of 1-methamphetamine on the cardiovascular system; to explore the relationship between dose, tolerability, safety and pharmacological effects of 1-methamphetamine; and to define the pharmacokinetics of 1- methamphetamine .
  • CVLTII California Verbal Learning Test
  • Each treatment period was one (1) week in duration and consisted of two (2) consecutive days of freatment with 1-methamphetamine (1, 4, 16 or 32 mg for the first Phase I study and 25, 50 or 100 mg for the second Phase I study) or a placebo, followed by five (5) consecutive days without 1-methamphetamine or a placebo.
  • Each subject was randomly administered a single dose of one ofthe 1-methamphetamine doses or randomly assigned a dose of placebo during each treatment period.
  • Each subsequent treatment group would include whatever dose of 1-methamphetamine had not previously been administered, until the patient had received each ofthe 1- methamphetamine doses or a single placebo treatment to conclude the treatment period.
  • Safety data were reviewed after each dose prior to advancement to the next dose level.
  • the RAVLT assessment for word recall was performed as described above and made at two different times following the adminisfration of 1- methamphetamine or a placebo during each ofthe treatment periods.
  • the initial RAVLT training was conducted approximately two and a half hours after administration ofthe 1-methamphetamine or a placebo. After a 30-minute delay period, the subject was required to recall a first set of 15 nouns.
  • the second RAVLT assessment was made approximately 24-hours following treatment with 1- methamphetamine.
  • Safety and tolerability assessments were as described for freatment with Phase I clinical study with 1-amphetamine and consisted of assessments in vital signs, ECGs, physical examination and the noting of any adverse events. L-methamphetamine was generally well tolerated in the first and second Phase
  • METHAMPHETAMINE ADMINISTRATION A randomized, double-blind, placebo-controlled, dose escalation study in human subjects, who were not suffering from an impairment in a memory or cognitive process ("normal subjects"), was conducted to assess the safety, tolerability and pharmacokinetics and improvement in cognitive processes, including memory, following the administration of 1-methamphetamine (25 mg, 50 mg, 100 mg, 150 mg). Eight (8) subjects received 25 mg, 50 mg, 100 mg of 1-methamphetamine; of these eight (8) subjects, five (5) subjects also received placebo and three (3) subjects received 150 mg of 1-methamphetamine. The studies were conducted employing a battery of cognitive tests developed by Cognitive Drug Research (CDR) in the United
  • a target digit was randomly selected and constantly displayed to the right ofthe screen. A series of digits was then presented in the center of the screen at the rate of 150 per minute and the subject was required to press the 'YES' button as quickly as possible every time the digit in the series matches the target digit. There were 45 targets in the series. The task lasted for 3 minutes.
  • Choice Reaction Time Either the word "NO' or the word YES' was presented on the screen and the subject was instructed to press the corresponding button as quickly as possible. There were 50 trials for which each stimulus word was chosen randomly with equal probability and there was a varying inter-stimulus interval.
  • Subjects receiving placebo take a longer time to respond with a dose-response reduction in the total response time.
  • a dose dependent pattern was evident in the LSmean difference from baseline, as shown in Figure 35.
  • a pattern for dose dependent benefit was evident on several ofthe reaction time measures, as shown in Figure 35.
  • Total speed tasks assess cognitive functions.
  • administration of 1-methamphetamine 25 mg, 150 mg
  • improved the Picture Recognition - Sensitivity Index a task that assesses memory.
  • a significant effect of treatment was seen from the ANOVA (p ⁇ O.004).
  • Figure 36 shows a pattern for dose dependent improvement for 50 mg, 100 mg and 150 mg of 1-methamphetamine.
  • a possible explanation for the lack of fit ofthe 25 mg dose was that the pre-dose baseline for 25 mg was poor, leading to a post-dose improvement.
  • the relative pre-dose performance ofthe dose groups should be considered.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Cognitive impairments are treated and cognition is improved with an amphetamine compound. In one embodiment, the method includes administering an I-amphetamine compound. In another embodiment, the method includes administering an 1-methamphetamine compound.

Description

METHODS FOR TREATING COGNITIVE IMPAIRMENT AND IMPROVING COGNITION ELATED APPLICATIONS This application is a continuation-in-part of U.S. Application No. 10/791,223, filed March 2, 2004, which is a continuation-in-part of U.S. Application No.:
10/444,970, filed May 23, 2003, which is a continuation-in-part of U.S. Application No.: 10/139,606, filed May 2, 2002, which is a continuation-in-part of U.S. Application No.: 10/003,740 filed October 31, 2001, which claims the benefit of U.S. Provisional Application No.: 60/245,323, filed on November 1, 2000, and claims priority to International Application PCT/US01/45793, filed October 31 , 2001 , which designates the United States and was published in English. This application also claims the benefit of U.S. Provisional Application No. 60/473,168, filed May 23, 2003. The teachings ofthe above applications are incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTION The term "memory" subsumes many different processes and requires the function of many different brain areas. Overall, human memory provides declarative recall, e.g., for facts and events accessible to conscious recollection, and non-declarative recall, e.g., procedural memory of skills and operations not stored regarding time and place. Research in recent years has provided information necessary to understand many ofthe various components of memory and has identified associated brain regions. A newly acquired experience initially is susceptible to various forms of disruption. With time, however, the new experience becomes resistant to disruption. This observation has been interpreted to indicate that a labile, working, short-term memory is consolidated into a more stable, long-term memory. Behavioral research has found that the human mind consolidates memory at certain key time intervals. The initial phase of memory consolidation occurs in the first few minutes after an exposure to a new idea or learning experience. The next phase occurs over a longer period of time, such as during sleep. If a learning experience has on-going meaning to us, the next week or so serves as a further period of memory consolidation. In effect, in this phase, the memory moves from short-term to long-term storage. Moreover, various mechanisms have been proposed to account for the formation of long-term memory. A wide range of observations suggest an evolutionarily conserved molecular mechanism involved with the formation of long-term memory. These include increased release of synaptic transmitter, increased number of synaptic receptors, decreased KD of receptors, synthesis of new memory factors either in the presynaptic or postsynaptic element, sprouting of new synaptic connections, increase ofthe active area in the presynaptic membrane and many others. Synaptic plasticity, the change in the strength of neuronal connections in the brain, is thought to underlie long-term memory storage. Memory consolidation, the process of storing new information in long-term memory is also believed to play a crucial role in a variety of neurological and mental disorders, including mental retardation, Alzheimer's disease and depression. Indeed, loss or impairment of long-term memory is a significant feature of such diseases, and no effective therapy for that effect has emerged. Short-term memory and working memory, are generally not significantly impaired in such patients. Accordingly, methods and compositions that enhance long-term memory function and/or performance, or prophylactically (e.g., as a neuroprotective treatment) prevent or slow degradation of long-term memory function and/or performance would be desirable. Similarly, methods and compositions for restoring long-term memory function and/or performance are needed. Impairments in cognitive and memory processes in a human can occur in a number of conditions or diseases, such as age-related memory loss, Mild Cognitive Impairment, Alzheimer's disease, Multiple Sclerosis, brain injury, brain aneurysm, stroke, schizophrenia, epilepsy, chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy (e.g., cancer chemotherapy), traumatic brain injury, and Parkinson's disease. Following exposure to a muscarinic cholinergic receptor antagonist, such as atropine or scopolamine, humans can experience impairment of cognitive and memory processes. Clinical management strategies currently provide minimal, if any, improvement in memory and cognitive function. Thus, there is a need to develop new, improved and effective methods for the treatment of a human suffering with an impairment in cognitive and memory processes.
SUMMARY OF THE INVENTION The present invention relates to methods of treating a human having an impairment in memory and/or cognitive function. The human can have an impairment in memory consolidation (the process of storing new information in long term memory), an impairment in short term memory processes, an impairment in working memory, an impairment in long-term memory, an impairment in declarative memory or an impairment in procedural memory. The humans are treated with the amphetamine class of compounds (collectively referred to herein as "amphetamine compounds") to enhance, prevent and/or restore long-term memory function and performance, e.g., to improve the process of storing new information in long term memory in humans (memory consolidation) or to improve short term memory or to improve working memory. The human can have an impairment in memory and/or a cognition function as a consequence of exposure to a muscarinic cholinergic receptor antagonist. More particularly, the invention relates to the discovery that a particular enantiomer of amphetamine compounds (R)- (-)-amphetamine (1-amphetamine, levo-amphetamine) or (R)-(-)-methamphetamine (1-methamphetamine, levo-methamphetamine) is effective for treating humans having an impairment in memory and an impairment in cognitive function. In one embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering at least one member selected from the group consisting of 1-amphetamine and 1-methamphetamine to a human having an impairment in memory consolidation. In another embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering at least one member selected from the group consisting of 1-amphetamine and 1-methamphetamine to a human having an impairment in memory consolidation, wherein the 1-amphetamine is at least about 80 mole percent 1-amphetamine relative to d-amphetamine and the 1-methamphetamine is at least about 80 mole percent 1- methamphetamine relative to d-methamphetamine. In yet another embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering at least one member selected from the group consisting of 1-amphetamine and 1- methamphetamine to a human having an impairment in memory consolidation, wherein the 1-amphetamine is at least about 90 mole percent 1-amphetamine relative to d-amphetamine and the 1-methamphetamine is at least about 90 mole percent 1- methamphetamine relative to d-methamphetamine. An additional embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising the steps of assessing the degree of an impairment in memory consolidation in a human; administering at least one member selected from the group consisting of 1-amphetamine and 1-methamphetamine to the human; and determining the improvement in memory consolidation after administering the 1-amphetamine and 1-methamphetamine to the human. In still another embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 85 mole percent 1-amphetamine. In another embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-amphetamine. Another embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the 05/000203
amphetamine is at least about 99 mole percent 1-amphetamine and the 1-amphetamine is administered to the human in a dose of at least about a 0.01 mg dose. In yet another embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 90 mole percent 1-amphetamine and the 1-amphetamine is administered to the human in a dose between about a 0.01 mg dose to about a 125 mg dose. In an additional embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-amphetamine and the 1-amphetamine is administered to the human in a dose at lease about a 0.01 mg dose. In a further embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is between about 80 mole percent 1-amphetamine to about 99 mole percent 1-amphetamine. In still another embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is between about 80 mole percent 1-amphetamine to about 99 mole percent 1-amphetamine and the 1-amphetamine is administered to the human in a dose at least about a 0.01 mg dose. Another embodiment ofthe invention includes a method of improving memory consolidation in a human comprising assessing the degree of impairment in memory consolidation in a human having an impairment in memory consolidation and administering an amphetamine to the human in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-amphetamine. The improvement in memory consolidation after administering the amphetamine to the human is determined. In an additional embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 90 mole percent 1-amphetamine and has the structural formula:
Figure imgf000008_0001
In still another embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 90 mole percent 1-methamphetamine. In a further embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 85 mole percent 1-methamphetamine. An additional embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-methamphetamine. In yet another embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 99 mole percent 1-methamphetamine and the dose of 1-methamphetamine administered to the human is at least about a 0.01 mg dose. Another embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherem the amphetamine is at least about 90 mole percent 1-methamphetamine and the 1-methamphetamine is administered to the human in a dose at least about a 0.01 mg dose. In yet another embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-methamphetamine and the dose of 1-methamphetamine administered to the human is at least about a 0.01 mg dose. In a further embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is between about 80 mole percent 1-methamphetamine to about 99 mole percent 1-methamphetamine. An additional embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is between about 80 mole percent 1-methamphetamine to about 99 mole percent 1-methamphetamine and the 1-methamphetamine is administered to the human in a dose at least about a 0.01 mg dose. Another embodiment ofthe invention includes a method of improving memory consolidation in a human, comprising assessing the degree of impairment in memory consolidation in a human having an impairment in memory consolidation and administering an amphetamine to the human in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 80 mole percent 1-methamphetamine. The improvement in memory consolidation after administering the amphetamine to the human is determined. In an additional embodiment, the invention includes a method of improving memory consolidation in a human, comprising the step of administering an amphetamine to a human having an impairment in memory consolidation in an amount effective to improve memory consolidation in the human, wherein the amphetamine is at least about 90 mole percent 1-methamphetamine and has the structural formula:
Figure imgf000010_0001
In one embodiment, the invention is a pharmaceutical kit comprising one or more amphetamine compound(s) in an amount sufficient to enhance long-term memory in a patient, a pharmaceutically acceptable carrier, and instructions (written and/or pictorial) describing the use ofthe formulation for enhancing memory. In another embodiment, the invention is a pharmaceutical preparation comprising one or more amphetamine compounds provided as a single oral dosage formulation in an amount sufficient to enhance long-term memory in a patient but resulting in a concentration in the patient lower than its EC50 as a CNS stimulant. In still another embodiment, the invention is a pharmaceutical preparation comprising one or more amphetamine compounds provided in the form of a transdermal patch and formulated for sustained release ofthe amphetamine(s) in order to administer an amount sufficient to enhance long-term memory in a patient but resulting in a concentration in the patient lower than its EC50 as a CNS stimulant. In particular embodiments, the pharmaceutical kits and preparations ofthe invention comprise at least one ofthe amphetamine compounds represented by Formula I, or a pharmaceutically acceptable salt, solvate, metabolite or pro-drug thereof:
Figure imgf000011_0001
wherein, as valence and stability permit, Rl5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido. In certain embodiments, R3 represents hydrogen, while in other embodiments, R3 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., hydroxy, amino, or carbonyl. In certain embodiments, R4 represents hydrogen, while in other embodiments, R4 represents from 1 to 3 substituents on the ring to which it is attached selected from halogen, hydroxy, amino, sulfhydryl, cyano, nitro, lower alkyl, and sulfate. In certain embodiments, R4 represents hydrogen and at least one of R„ R2, and R3 represents hydrogen. In certain embodiments, R4 represents hydrogen and at least two of R R2, and R3 represents hydrogen. In certain embodiments, R4 represents hydrogen and at least three of Rl5 R2, and R3 represent hydrogen. In certain embodiments, R4 represents hydrogen and all four of Rl5 R2, and R3 represent hydrogen. In certain embodiments, one R, represents hydrogen, one Rj represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., R2 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., R3 and R4 represent hydrogen. In certain preferred embodiments, one occurrence of Rr represents hydrogen, the second occurrence of Rj represents hydrogen, or lower alkyl; R2 represents hydrogen or lower alkyl, R3 represents hydrogen or lower alkyl, and R4 represents hydrogen or from 1 to 3 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl. In certain preferred embodiments, R4 represents hydrogen and at least one of R„ R2, and R3 represents hydrogen. In certain preferred embodiments, R4 represents hydrogen and at least two of Rj, R2, and R3 represent hydrogen. In certain preferred embodiments, both occurrences of Rj represent independently hydrogen, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In certain preferred embodiments, one occurrence of R] represents hydrogen, the second occurrence of R, represents methyl, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In most preferred embodiments, R independently and for each occurrence, represents hydrogen, R2 represents methyl, and R3 and R4 independently and for each occurrence represent hydrogen. In other preferred embodiments the pharmaceutical kits and preparations of this invention comprise at least one ofthe amphetamine compounds as a pharmaceutically acceptable salt represented by Formula II:
Figure imgf000013_0001
wherein, as valence and stability permit, Rl3 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido; and L is a non-toxic organic or inorganic acid. In certain embodiments, R3 represents hydrogen, while in other embodiments, R3 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., hydroxy, amino, or carbonyl. In certain embodiments, R4 represents hydrogen, while in other embodiments, R4 represents from 1 to 3 substituents on the ring to which it is attached selected from halogen, hydroxy, amino, sulfhydryl, cyano, nitro, lower alkyl, and sulfate. In certain embodiments, R4 represents hydrogen and at least one of Rl5 R2, and R3 represents hydrogen. In certain embodiments, R4 represents hydrogen and at least two of Rl9 R2, and R3 represents hydrogen. In certain embodiments, R4 represents hydrogen and at least three of Rl5 R2, and R3 represent hydrogen. In certain embodiments, R4 represents hydrogen and all four of Rl5 R2, and R3 represent hydrogen. In certain embodiments, one R! represents hydrogen, one R, represent lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., R2 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, etc., R3 and R4 represent hydrogen. In certain preferred embodiments, one occurrence of R.. represents hydrogen, the second occurrence of R! represents hydrogen, or lower alkyl; R2 represents hydrogen or lower alkyl, R3 represents hydrogen or lower alkyl, and R4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl. In certain preferred embodiments, R4 represents hydrogen and at least one of
Rl5 R2, and R3 represents hydrogen. In certain preferred embodiments, R4 represents hydrogen and at least two of Rl5 R2, and R3 represent hydrogen. In certain preferred embodiments, both occurrences of R, represent independently hydrogen, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In certain preferred embodiments, one occurrence of Rj represents hydrogen, the second occurrence of Rλ represents methyl, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In most preferred embodiments, R„ independently and for each occurrence, represents hydrogen, R2 represents methyl, and R3 and R4 independently and for each occurrence represent hydrogen. In other preferred embodiments the pharmaceutical kits and preparations of this invention comprise at least one ofthe amphetamine compounds as an amphetamine metabolite represented by Formula III:
Figure imgf000015_0001
wherein, as valence and stability permit, Rl5 independently for each occurrence, represents hydrogen or sμbstituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R2 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R3 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R4 represents from 1 to 3 substituents on the ring to which it is attached, e.g., selected from hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido; R5 independently for each occurrence, represents hydrogen or hydroxy. In certain embodiments, R3 represents hydrogen, while in other embodiments, R3 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., hydroxy, amino, or carbonyl. In certain embodiments, R4 represents hydrogen, while in other embodiments, R4 represents from 1 to 3 substituents on the ring to which it is attached selected from halogen, hydroxy, amino, sulfhydryl, cyano, nitro, lower alkyl, and sulfate. In certain embodiments, R4 represents hydrogen and at least one of Rl5 R2, and R3 represents hydrogen. In certain embodiments, R4 represents hydrogen and at least two of R R2, and R3 represent hydrogen. In certain embodiments, R4 represents hydrogen and at least three of Rl5 R2, and R3 represent hydrogen. In certain embodiments, R4 represents hydrogen and all four of Rl5 R2, and R3 represent hydrogen. In certain embodiments, one Rj represents hydrogen, one R, represent lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., R2 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., R3 and R4 represent hydrogen. In certain preferred embodiments, one occurrence of Rj represents hydrogen, the second occurrence of Rj represents hydrogen, or lower alkyl; R2 represents hydrogen or lower alkyl, R3 represents hydrogen or lower alkyl, and R4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl. In certain preferred embodiments, R4 represents hydrogen and at least one of Rl5 R2, and R3 represents hydrogen. In certain preferred embodiments, R4 represents hydrogen and at least two of R-, R2, and R3 represent hydrogen. In certain preferred embodiments, both occurrences of R, represent independently hydrogen, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In certain preferred embodiments, one occurrence of Rj represents hydrogen, the second occurrence of R1 represents methyl, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In one embodiment, Rl5 independently and for each occurrence, represents hydrogen, R2 represents methyl, and R3 and R4 independently and for each occurrence represent hydrogen. In another embodiment, a metabolite of an amphetamine compound is selected from p-hydroxyamphetamine, benzyl methyl ketone, l-phenylpropan-2-ol, benzoic acid, glycine, hippuric acid, p-hydroxynorephedrine, and N-hydroxylamphetamine . In particular embodiments ofthe kits, preparations, compositions and methods, the invention features a pharmaceutical kit or preparation comprising a mixture of at least a single species of amphetamine compounds or at least two different species of amphetamine compounds. The different species of amphetamine compounds can be present in equal or in differing amounts with respect to one another. In another embodiment ofthe kits, preparations, compositions and methods, the invention features a composition comprising at least about 51 percent (w/w (weight/weight) or mole percent), about 60 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent), about 95 percent (w/w or mole percent) or about 99 percent (w/w or mole percent) of one amphetamine enantiomer relative to another amphetamine enantiomer (e.g., 1-amphetamine relative to d-amphetamine or 1- methamphetamine relative to d-methamphetamine). For example, an amphetamine composition employed in the methods can be about 80 percent (w/w or mole percent) 1-amphetamine or 1-methamphetamine relative to d-amphetamine or d- methamphetamine, where d-amphetamine or d-methamphetamine is about 20 percent (i.e., the remainder) (w/w or mole percent) ofthe amphetamine. In another embodiment, the methods ofthe invention employ an amphetamine that is about 100 percent (w/w or mole percent) 1-amphetamine or 1- methamphetamine, wherein the 1-amphetamine is a composition that includes at least about 100 mole percent 1-amphetamine relative to a total amphetamine content ofthe composition or wherein the 1-methamphetamine is administered as a composition that includes at least about 100 mole percent 1-amphetamine relative to a total amphetamine content ofthe composition. An amphetamine that is "about 100 percent" 1-amphetamine or 1-methamphetamine can contain insignificant trace amounts of d-amphetamine or d-methamphetamine. In certain preferred embodiments, particularly for those which use (R)-(-)-amphetamine (1-amphetamine) or 1-methamphetamine, the kits, preparations, compositions and methods preferably use compositions of (R)-(-)-amphetamine which contain less than 10 percent (w/w or mole percent) (S)-(+)-amphetamine, and even more preferably less than less than 5 percent (w/w or mole percent), 1 percent (w/w or mole percent) or even less than 0.5 percent (w/w or mole percent) (S)-(+)-amphetamine. In another embodiment, the amphetamine employed in the methods can be a percent ofthe total composition administered to the human. The amphetamine component ofthe composition can be about 50 percent (w/w), about 60 percent (w/w), about 75 percent (w/w), about 80 percent (w/w), about 85 percent (w/w), about 90 percent (w/w), about 95 percent (w/w) and about 100 percent (w/w) ofthe total composition administered to the human. For example, the human can be administered a composition which comprises about 80 weight or volume percent amphetamine and about 20 weight or volume percent, respectively, inert excipient. The amphetamine component ofthe composition includes at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, d- amphetamine and d-methamphetamine. In still another embodiment ofthe kits, preparations, compositions and methods, the invention features one or more amphetamine compound(s) provided in an amount sufficient to enhance long-term memory in a patient by a statistically significant amount when assessed by a standardized performance test. In certain embodiments ofthe kits, preparations, compositions and methods, the invention features one or more amphetamine compound(s) comprising at least 2-fold less, or at least 4-fold less ofthe distomer(s) as compared to an equally effective long term memory enhancing dose ofthe distomer(s) ofthe amphetamine compound(s). In certain embodiments ofthe kits, preparations, compositions and methods, the invention features amphetamine comprising at least 2-fold less, or at least 4-fold less of (R)-(-)-amphetamine as compared to an equally effective long term memory enhancing dose of (S)-(+)-amphetamine. In certain embodiments ofthe kits, preparations, composition and methods, the invention features one or more amphetamine compound(s) provided in an amount sufficient to enhance long-term memory in a patient by a statistically significant amount when assessed by standardized performance test, such as one or more of a Rey Auditory and Verbal Learning Test (RAVLT); Cambridge Neuropsychological Test Automated Battery (CANTAB); a Children's Memory Scale (CMS); a Contextual Memory Test; a Continuous Recognition Memory Test (CMRT); a Denman Neuropsychology Memory Scale; a Fuld Object Memory Evaluation (FOME); a Graham-Kendall Memory for Designs Test; a Guild Memory Test; a Learning and Memory Battery (LAMB); a Memory Assessment Clinic Self-Rating Scale (MAC-S); a Memory Assessment Scales (MAS); a Randt Memory Test; a
Recognition Memory Test (RMT); a Rivermead Behavioral Memory Test; a Russell's Version ofthe Wechsler Memory Scale (RWMS); a Test of Memory and Learning (TOMAL); a Vermont Memory Scale (VMS); a Wechsler Memory Scale; and a Wide Range Assessment of Memory and Learning (WRAML); First-Last Name Association (Youngjohn J.R., et al, Archives of Clinical Neuropsychology 6:287-300 (1991)); Name-Face Association; Wechsler Memory Scale-Revised; (Wechsler, D., Wechsler Memory Scale-Revised Manual, NY, NY, The Psychological Corp. (1987)); California Verbal Learning Test-Second Edition (Delis, D.C., et al, The Californian Verbal Learning Test, Second Edition, Adult Version, Manual, San Antonio, TX: The Psychological Corporation (2000)); Facial Recognition (delayed non-matching to sample); Cognitive Drug Research (CDR) Computerized Assessment Battery- Wesnes; Buschke's Selective Reminder Test (Buschke, H., et al, Neurology 24:1019-1025 (1974)); Telephone Dialing Test; and Brief Nisuospatial Memory Test-Revised. In certain embodiments, the methods ofthe invention and pharmaceutical composition features one or more amphetamine compounds provided in an amount sufficient to enhance long-term memory (to improve memory consolidation in a human) when assessed by a word recall test such as RANLT. In yet another embodiment ofthe kits, preparations, compositions and methods, the invention features one or more amphetamine compound(s) provided in an amount sufficient to enhance long-term memory in a patient by a statistically significant amount when assessed by a Providence Recognition Memory Test. In an additional embodiment, the invention is a method to improve a memory impairment in a human having multiple sclerosis by administration ofthe amphetamine compounds ofthe invention. The memory impairment and improvement in memory can be assessed using established criteria (for example, Thornton, A.E., et al. Neuropsychology 11:357-366 (1997)). These techniques include the Brown-Peterson task (Brown, J., Quarterly J. of Exp. Psychology 10: 2- 21 (1958)); the Paced Auditory Serial Addition Test (PASAT) (Gronwall, D.M.A., Perceptual and Motor Skills 44:361-313 (1977)); and tasks described, for example, by DeLuca, J., et al, J. Clinical and Exp. Neuropsychology (2004). In another embodiment ofthe kits, preparations, compositions and methods, the invention features one or more amphetamine compound(s) provided in the form of a saccharate, a sulfate or an aspartate. In certain embodiments, the subject pharmaceutical preparations are formulated for variable dosing, and preferably to deliver a sustained and increasing dose, e.g., over at least 4 hours, and more preferably over at least 8 or even 16 hours. For instance, the amphetamine compound is contained within a nonabsorbable shell that releases the drug at a controlled rate. In certain escalating dose formulations, the amphetamine compound(s) are formulated in a delivery system including a multiplicity of layers each including the same or different polymers, a dose ofthe amphetamine compound(s) in an increasing dose in the multiplicity of layers, wherein in operation the preparation delivers an increasing dose ofthe amphetamine compound(s) over time. In other embodiments of escalating dose formulations, the amphetamine compound(s) are formulated in a delivery system including a bioerodible polymer, a dose ofthe amphetamine compound(s) present in an initial dose and a final dose, whereby the preparation delivers an initial dose then a final dose over time. In still other embodiments of escalating dose formulations, the amphetamine compound(s) are formulated in a delivery system including a plurality of beads, each bead including a amphetamine compound and having a dissolution profile, which plurality of beads is a variegated population with respect to dose and/or dissolution profile so as to deliver, upon administration, said sustained and increasing dose over at least 4 hours. In certain escalating dose formulations, the amphetamine compound(s) are formulated in a delivery system wherein the amphetamine compound is (i) contained within a nonabsorbable shell that releases the drug at a controlled rate, and (ii) formulated in at least two different dissolution profiles. In another embodiment ofthe kits, preparations, compositions and methods, the invention further features a neuronal growth factor, a neuronal survival factor, a neuronal trophic factor, a cholinergic modulator, an adrenergic modulator, a nonadrenergic modulator, a dopaminergic modulator, a glutaminergic modulator or an agent that modulates PKC, PKA, GAB A, NMD A, cannabinoid, AMP A, kainate, phosphodiesterase (PDE), CREB or nootropic pathways. In one embodiment, the modulation is a stimulation of one or more ofthe above-referenced pathways. In another embodiment, the modulation is an antagonism of one or more ofthe above- referenced pathways. In yet another embodiment ofthe kits, preparations, compositions and methods, the invention further features methylphenidate. Another aspect ofthe invention features the use ofthe pharmaceutical composition of amphetamine compounds in the manufacture of a medicament for prophylaxis or treatment of an animal susceptible to or suffering from anxiety, depression, age-associated memory impairment, minimal cognitive impairment, amnesia, dementia, learning disabilities, memory impairment associated with toxicant exposure, brain injury, brain aneurysm, Parkinson's disease, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, stroke, schizophrenia, epilepsy, Multiple Sclerosis, mental retardation, Alzheimer's disease, age, age-associated memory impairment, Mild Cognitive Impairment, attention deficit disorder, attention deficit hyperactivity disorder, Anterior Communicating Artery Syndrome, chronic fatigue syndrome, fibromyalgia syndrome (also referred to herein as "fibromyalgia"), chemotherapy, and traumatic brain injury, or AIDS-related dementia, which amphetamine compound is represented by Formula I, or a pharmaceutically acceptable salt, solvate, metabolite or pro-drug thereof:
Figure imgf000022_0001
wherein, as valence and stability permit, R„ independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido. In certain preferred embodiments, one occurrence of R: represents hydrogen, the second occurrence of R.. represents hydrogen, or lower alkyl; R2 represents hydrogen or lower alkyl, R3 represents hydrogen or lower alkyl, and R4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl. In certain preferred embodiments, R4 represents hydrogen and at least one of Ri, R2, and R3 represents hydrogen. In certain preferred embodiments, R4 represents hydrogen and at least two of Rl5 R2, and R3 represent hydrogen. In certain preferred embodiments, both occurrences of R, represent independently hydrogen, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In certain preferred embodiments, one occurrence of Rj represents hydrogen, the second occurrence of Rλ represents methyl, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In most preferred embodiments, R independently and for each occurrence, represents hydrogen, R2 represents methyl, and R3 and R4 independently and for each occurrence represent hydrogen. Another aspect ofthe invention features the use of an amphetamine compound in the manufacture of a medicament for prophylaxis or treatment of an animal susceptible to or suffering from anxiety, depression, age-associated memory impairment, minimal cognitive impairment, amnesia, dementia, learning disabilities, memory impairment associated with toxicant exposure, brain injury, brain aneurysm, Parkinson's disease, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, stroke, schizophrenia, epilepsy, Multiple Sclerosis, mental retardation, Alzheimer's disease, age, attention deficit disorder, attention deficit hyperactivity disorder, Anterior Communicating Artery Syndrome, age-associated memory impairment, Mild Cognitive Impairment, chronic fatigue syndrome, fibromyalgia, chemotherapy, traumatic brain injury, Parkinson's disease or AIDS-related dementia, which amphetamine compound is represented by Formula II:
Figure imgf000023_0001
wherein, as valence and stability permit,
Rj, independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
R3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl;
R4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido; and
L is a non-toxic organic or inorganic acid.
In certain preferred embodiments, one occurrence of Rj represents hydrogen, the second occurrence of Rj represents hydrogen, or lower alkyl; R2 represents hydrogen or lower alkyl, R3 represents hydrogen or lower alkyl, and R4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl.
In certain preferred embodiments, R4 represents hydrogen and at least one of Rl5 R2, and R3 represents hydrogen.
In certain preferred embodiments, R4 represents hydrogen and at least two of Rl5 R2, and R3 represent hydrogen. In certain preferred embodiments, both occurrences of Rj represent independently hydrogen, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen.
In certain preferred embodiments, one occurrence of Rj represents hydrogen, the second occurrence of R, represents methyl, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen.
In most preferred embodiments, Rl5 independently and for each occurrence, represents hydrogen, R2 represents methyl, and R3 and R4 independently and for each occurrence represent hydrogen. Another aspect of the invention features the use of an amphetamine compound in the manufacture of a medicament for prophylaxis or treatment of an animal susceptible to or suffering from anxiety, depression, age-associated memory impairment, minimal cognitive impairment, amnesia, dementia, learning disabilities, memory impairment associated with toxicant exposure, brain injury, brain aneurysm, Parkinson's disease, head trauma, Huntington's disease, Pick's disease,
Creutzfeldt- Jakob disease, stroke, schizophrenia, epilepsy, mental retardation, Alzheimer's disease, age, age-associated memory impairment, Mild Cognitive Impairment, attention deficit disorder, attention deficit hyperactivity disorder, Multiple Sclerosis, Anterior Communicating Artery Syndrome chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy, traumatic brain injury, Parkinson's disease or AIDS-related dementia, which amphetamine compound is represented by Formula III:
Figure imgf000025_0001
wherein, as valence and stability permit, Rl5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R2 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R3 is absent or represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R4 represents from 1 to 3 substituents on the ring to which it is attached, e.g., selected from hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido; R5 independently for each occurrence, represents hydrogen or hydroxy. In certain preferred embodiments, one occurrence of Rj represents hydrogen, the second occurrence of R represents hydrogen, or lower alkyl; R2 represents hydrogen or lower alkyl, R3 represents hydrogen or lower alkyl, and R4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl. In certain preferred embodiments, R4 represents hydrogen and at least one of R„ R2, and R3 represents hydrogen. In certain preferred embodiments, R4 represents hydrogen and at least two of Rl5 R2, and R3 represent hydrogen. In certain preferred embodiments, both occurrences of Rj represent independently hydrogen, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In certain preferred embodiments, one occurrence of Rj represents hydrogen, the second occurrence of Rj represents methyl, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In most preferred embodiments, R1( independently and for each occurrence, represents hydrogen, R2 represents methyl, and R3 and R4 independently and for each occurrence represent hydrogen. Levo-amphetamine, 1-amphetamine and (R)-(-)-amphetamine are used interchangeably herein. Levo-methamphetamine, 1-methamphetamine and (R)-(-)- methamphetamine are used interchangeably herein. In one embodiment, the (R)-(-)-amρhetamine employed in the methods ofthe invention has the structural formula:
Figure imgf000027_0001
Formula IN is also referred to herein as C105, levo-amphetamine sulfate or 1- amphetamine sulfate. Formula IV has the molecular formula C18H28Ν2O4S and a molecular weight of 368.50. The IUPAC chemical name of Formula IV is (-)-l- methyl-2-ρhenylethylamine sulfate (2:1) and the CAS chemical name (-)-α- methylphenethylamine sulfate (2:1). In another embodiment, the (R)-(-)-amphetamine employed in the methods of the invention has the structural formula:
Figure imgf000028_0001
Formula V is also referred to herein as SN522-HC1 (hydrochloride), levo- methamphetamine HCl or 1-methamphetamine HCl. Formula V has the molecular formula C10H16NC1. In still another embodiment, the (R)-(-)-amphetamine employed in the methods ofthe invention has the structural formula:
Figure imgf000028_0002
Formula VI is also referred to herein as SN522, the free base of SN522, levo- methamphetamine, levo-desoxyephedrine, 1-desoxyephedrine or levmetamfetamine. Formula VI has the molecular formula C10H15N and a molecular weight of 149.24. In still another embodiment, the amphetamine compounds employed in the methods ofthe invention can be a combination ofthe amphetamine compounds described herein, e.g., Formulas IN, V and/or VI can be employed in any combination. For example, a human having mild cognitive impairment, Alzheimer's disease and an impairment in a cognitive function (e.g., attention, executive function, reaction time, learning, information processing, conceptualization, problem solving, verbal fluency) or memory (e.g., memory consolidation, short-term memory, working memory, long-term memory, declarative memory or procedural memory) can be treated, with 1-amphetamine (e.g., C105) and 1-methamphetamine (e.g., SN522, SN522-HC1), either in combination or sequentially. The amphetamine compounds employed in the methods ofthe invention (e.g., 1-amphetamine and/or 1-methamphetamine) can be administered as a component of a composition that includes at least about 99 mole %, at least about 95 mole %, at least about 90 mole %, at least about 85 mole %, at least about 80 mole %, at least about 75 mole %, at least about 70 mole %, at least about 65 mole %, or at least about 60 mole %, of 1-amphetamine relative to the total amphetamine content in the composition; or at least about 99 mole %, at least about 95 mole %, at least about 90 mole %, at least about 85 mole %, at least about 80 mole %, at least about 75 mole %, at least about 70 mole %, at least about 65 mole %, or at least about 60 mole %, of 1-methamphetamine relative to the total amount of amphetamine content in the composition. In certain embodiments, the animal to be treated is a mammal. In certain preferred embodiments the animal to be treated is a human, dog, cat, cattle, horse, sheep, hog or goat. In certain embodiments, the pharmaceutical composition is for oral administration. In certain other embodiments the pharmaceutical composition is a transdermal patch. In certain embodiments the transdermal patch includes one or more penetration enhancers. In certain embodiments, the pharmaceutical composition features an amphetamine compound provided as at least about 51 percent (w/w or mole percent), about 60 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent) about 95 percent (w/w or mole percent), or 99 percent (w/w or mole percent) ofthe eutomers relative to the distomers ofthe amphetamine compound (e.g., 1- amphetamine relative to d-amphetamine). In another embodiment, the amphetamine employed to treat a human is about 100 % 1-amphetamine (w/w or mole percent). In certain embodiments, the pharmaceutical compositions are formulated for variable dosing, preferably to deliver a sustained dose, e.g., over at least 4 hours and more preferably over at least 8 or even 16 hours. For instance, the amphetamine compound(s) are contained within a nonabsorbable shell that releases the drug at a controlled rate. In certain embodiments, the pharmaceutical composition features an amphetamine compound (e.g., 1-amphetamine, 1-methamphetamine) provided in an amount sufficient to treat Mild Cognitive Impairment, Alzheimer's disease, enhance long-term memory, short-term memory, working memory, declarative memory, procedural memory or cognitive processes such as attention, executive function, reaction time or learning in a patient by a statistically significant amount when assessed by a standardized performance test. In certain embodiments, the pharmaceutical composition features one or more amphetamine compound(s) provided in an amount sufficient to enhance long-term memory in a patient by a statistically significant amount when assessed by one or more of a Rey Auditory and Nerbal learning Test (RANLT), Cambridge Νeuropsychological Test Automated Battery (CANTAB); a Children's Memory Scale (CMS); a Contextual Memory Test; a Continuous Recognition Memory Test (CMRT); a Denman Neuropsychology Memory Scale; a Fuld Object Memory Evaluation (FOME); a Graham-Kendall Memory for Designs Test; a Guild Memory Test; a Learning and Memory Battery (LAMB); a Memory Assessment Clinic Self-Rating Scale (MAC-S); a Memory Assessment Scales (MAS); a Randt Memory Test; a Recognition Memory Test (RMT); a Rivermead Behavioral Memory Test; a Russell's Version ofthe Wechsler Memory Scale (RWMS); a Test of Memory and Learning (TOMAL); a Vermont Memory Scale (VMS); a Wechsler Memory Scale; and a Wide Range Assessment of Memory and Learning (WRAML); First-Last Name Association (Youngjohn J.R., et al, Archives of Clinical Neuropsychology 6:287-300 (1991)); Name-Face Association; Wechsler Memory Scale-Revised; (Wechsler, D., Wechsler Memory Scale-Revised Manual, NY, NY, The Psychological Corp. (1987)); California Verbal Learning Test-Second Edition (Delis, D.C., et al, The Californian Verbal Learning Test, Second Edition, Adult Version, Manual, San Antonio, TX: The Psychological Corporation (2000)); Facial Recognition (delayed non-matching to sample); Cognitive Drug Research (CDR) Computerized Assessment Battery- Wesnes; Buschke's Selective Reminder Test (Buschke, H., et al, Neurology 24:1019-1025 (1974)); Telephone Dialing Test; and Brief Visuospatial Memory Test-Revised. In certain embodiments, the pharmaceutical composition features one or more amphetamine compound(s) provided in an amount sufficient to enhance long-term memory in a patient by a statistically significant amount when assessed by a word recall test such as the Rey Auditory and Verbal Learning Test (RAVLT). In certain embodiments, the pharmaceutical composition features one or more amphetamine compound(s) provided in the form of a saccharate, a sulfate or an aspartate. In other embodiments of he kits, preparations, compositions and methods, the invention further features amphetamine compound(s) being provided as a single oral dosage formulation in an amount sufficient to enhance long-term memory in a patient but resulting in a concentration in the patient lower than its EC50 as a CNS stimulant. In other embodiments ofthe kits, preparations, compositions and methods, the invention further features amphetamine compound(s) being provided for treating and/or preventing memory impairment (impairment in memory consolidation, impairment in short term memory, impairment in working memory), wherein the memory impairment results from one or more of anxiety, depression, age-associated memory impairment, minimal cognitive impairment, amnesia, dementia, learning disabilities, memory impairment associated with toxicant exposure, brain injury, brain aneurysm, Parkinson's disease, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, stroke, schizophrenia, epilepsy, mental retardation, Alzheimer's disease, age, age-associated memory impairment, Mild Cognitive Impairment, attention deficit disorder, attention deficit hyperactivity disorder, Multiple Sclerosis, Anterior Communicating Artery Syndrome or
AIDS-related dementia, chronic fatigue syndrome, fibromyalgia syndrome, traumatic brain injury, or chemotherapy. In yet another embodiment, the invention is a method of treating a perimenopausal, menopausal or postmenopausal woman having an impairment in memory (impairment in memory consolidation, impairment in short term memory, impairment in working memory) with an amphetamine compound ofthe invention (1- amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1). The amphetamine co-prμounα ofthe invention can be administered to the perimenopausal, menopausal or postmenopausal woman simultaneously or sequentially with other compounds, drugs or agents. \ For example, the amphetamine compounds can be administered to a perimenopausal, irienopausal or postmenopausal woman undergoing steroid hormone replacement therapy and/or treatment for depression (e.g., selective serotonin reuptake inhibitors such as citalopram (Cipramil®), fluoxetine (Prozac®), fluvoxamine (Faverin®), paroxetine (Seroxat®), and sertraline (Lustral®). In other embodiments ofthe kits, preparations, compositions and methods, the invention further features amphetamine compound(s) being provided for enhancing memory in normal individuals. In certain preferred embodiments ofthe kits, preparations, compositions and methods, the invention features one or more amphetamine compound(s), wherein the amphetamine compound is (R)-(-)-amphetamine. In certain preferred embodiments ofthe kits, preparations, compositions and methods, the invention features one or more amphetamine compound(s), wherein the amphetamine compound is (R)-(-)-methamphetamine. In one embodiment ofthe kits, preparations, compositions and methods, the invention features a single oral dosage formulation of at least about 2.5 mg to about 25 mg, about 50 mg, about 75 mg, about 100 mg or about 125 mg of an amphetamine compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1) and a pharmaceutically acceptable carrier. In another embodiment, the single dosage formulation is at least about 0.001 mg, about 0.01 mg, about 0.1 mg, about 1 mg, about 2 mg, about 2.5 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 750 mg, or about 1000 mg of an amphetamine compound (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1). In a particular embodiment, the dose of an amphetamine compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1) is between about a 5 mg dose and about a 50 mg dose; or between about a 2 mg dose and about a 60 mg dose per day; or between about 1 mg to between about a 100 mg dose; or between about a 1 mg to about a 150 mg dose. In still another embodiment, the methods ofthe invention employ multiple doses of an amphetamine compound. Each dose ofthe multiple dose is at least about 0.001 mg, about 0.01 mg, about 0.1 mg, about 1 mg, about 2.5 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 750 mg or about 1000 mg of an amphetamine compound (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1). The multiple doses can be administered for a day, days, a week, weeks, a month, months or years. The amphetamine compounds ofthe invention can be administered to a human acutely (briefly or short-term) or chronically (prolonged or long-term). For example, the amphetamine compounds, (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1) ofthe invention can be used in methods to treat a human by administering the amphetamine to the human once a day, multiple times (e.g., 2, 3, 4) in a day, for a day, days, a week, weeks, a month, months or years. In yet another embodiment ofthe kits, preparations, compositions and methods, the invention features a single oral dosage formulation of between about 0.001 mg to about 125 mg; between about 0.001 mg to about 250 mg; between 0.001 mg to 500 mg; or between about 0.01 mg to about 125 mg; or between about 0.1 mg to about 125 mg; or between about 1 mg to about 125 mg; or between about 1 mg to about 250 mg; or between about 1 mg to about 500 mg; or between about 1 mg to about 1000 mg; or between about 2.5 mg to about 25 mg, about 50 mg, about 75 mg, about 100 mg or about 125 mg ofthe eutomer(s) of amphetamine compound(s) (1- amphetamine, C105, 1-methamphetamine, SN522) and, optionally, a pharmaceutically acceptable carrier. In a further embodiment, the methods ofthe invention employ multiple doses between about 0.001 mg to about 500 mg ofthe amphetamine compound (e.g., 1- amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1), wherein each ofthe multiple doses ofthe amphetamine compound is between about 0.001 mg to about 125 mg; or between about 0.001 mg to about 250 mg; or between about 0.001 mg to about 500 mg; or between about 0.01 mg to about 125 mg; or between about 0.01 mg to about 500 mg; or between about 0.1 mg to about 125 mg; or between about 1 mg to about 125 mg; or between about 1 mg and about 100 mg; or between about a 1 mg to about a 150 mg dose; or between about 1 mg and about 500 mg; between about 5 mg and about 50 mg; between about 2 mg and 60 mg between about 2.5 mg to about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 250 mg, about 500 mg, about 750 mg, about 1000 mg ofthe eutomer(s) of amphetamine compound(s) (1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1) and, optionally, a pharmaceutically acceptable carrier. In a further embodiment, the methods ofthe invention employ a single dose ofthe amphetamine compound (1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1) between about 0.0015 mg/kg to about 2 mg/kg; between about 0.015 mg/kg to about 2 mg/kg; or about 0.07 mg to about 0.7 mg or between about 0.14 mg to about 0.7 mg; or about 0.03 mg to about 1.0 mg per day. In yet another embodiment, the methods ofthe invention employ a single dose about 0.04 mg/kg, about 0.07 mg/kg, about 0.15 mg/kg, about 0.20 mg/kg, about 0.40 mg/kg, about 0.65 mg/kg, about 1 mg/kg, about 1.50 mg/kg, about 1.80 mg/kg or about 3.5 mg/kg of 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1. In an additional embodiment, the methods ofthe invention employ multiple doses ofthe amphetamine compound (1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1), wherein each dose ofthe multiple dose is between about 0.0015 mg/kg to about 2 mg/kg; or between about 0.015 mg/kg to about 2 mg/kg. In still another embodiment, the methods ofthe invention employ multiple doses, wherein each does ofthe multiple dose is about 0.04 mg/kg, about 0.07 mg/kg, about 0.15 mg/kg, about 0.20 mg/kg, about 0.40 mg/kg, about 0.65 mg/kg, about 1 mg/kg, about 1.50 mg/kg, about 1.80 mg/kg or about 3.5 mg/kg of 1- amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1. The cumulative dose ofthe amphetamine compound (1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1) employed in the methods ofthe invention, regardless of whether the amphetamine is administered in a single dose or in multiple doses is between about 0.2 mg to about 250 mg; or between about 1 mg to about 1250 mg ofthe amphetamine compound. In a particular embodiment, the cumulative dose is about 2 mg, about 10 mg, about 20 mg, about 30 mg, about 50 mg, about 60 mg, about 90 mg, about 100 mg, about 150 mg, about 200 mg, about 250 mg, about 450 mg, about 750 mg, about 1000 mg, about 1250 mg, about 2500 mg or about 5000 mg. In certain embodiments, the invention features a method for enhancing memory in an animal, a method of treating a human with an impairment in memory consolidation or an impairment in short term memory or an impairment in working memory comprising administering to the animal a composition of an amphetamine compound in an amount sufficient to enhance long-term memory or improve memory consolidation in the animal (human), wherein the composition includes at least about 51 percent (w/w or mole percent), about 60 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent), about 95 percent (w/w or mole percent), about 99 percent (w/w or mole percent) ofthe eutomers relative to the distomers ofthe amphetamine or about 100 % (w/w or mole percent) of compound represented by Formula I, or pharmaceutically acceptable salt, solvate, metabolite or pro-drug thereof, relative to the distomer of that amphetamine compound:
Figure imgf000035_0001
wherein, as valence and stability permit, Rl5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido. In certain preferred embodiments, one occurrence of Rl represents hydrogen, the second occurrence of R., represents hydrogen, or lower alkyl; R2 represents hydrogen or lower alkyl, R3 represents hydrogen or lower alkyl, and R4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl. In certain preferred embodiments, R4 represents hydrogen and at least one of Rj, R2, and R3 represents hydrogen. In certain preferred embodiments, R4 represents hydrogen and at least two of Ri, R2, and R3 represent hydrogen. In certain preferred embodiments, both occurrences of Rλ represent independently hydrogen, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In certain preferred embodiments, one occurrence of Rx represents hydrogen, the second occurrence of R1 represents methyl, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In most preferred embodiments, Rl5 independently and for each occurrence, represents hydrogen, R2 represents methyl, and R3 and R4 independently and for each occurrence represent hydrogen. In certain embodiments, the invention features a method for enhancing memory in an animal or a method for treating a human with an impairment in memory consolidation, comprising administering to the animal a composition of an amphetamine compound in an amount sufficient to enhance long-term memory or improve memory consolidation in the animal (human), wherein the composition includes at least about 51 percent (w/w or mole percent), about 60 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent, about 95 percent (w/w or mole percent), or about 99 percent (w/w or mole percent) ofthe eutomers relative to the distomers ofthe amphetamine compound, wherein the amphetamine compound is a pharmaceutically acceptable salt represented by Formula II:
Figure imgf000037_0001
wherein, as valence and stability permit, Rls independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or , cycloalkylalkyl; R4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido; and L is a non-toxic organic or inorganic acid. In certain preferred embodiments, one occurrence of R} represents hydrogen, the second occurrence of R, represents hydrogen, or lower alkyl; R2 represents hydrogen or lower alkyl, R3 represents hydrogen or lower alkyl, and R4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl. In certain preferred embodiments, R4 represents hydrogen and at least one of Rj, R2, and R3 represents hydrogen. In certain preferred embodiments, R4 represents hydrogen and at least two of Rj, R2, and R3 represent hydrogen. In certain preferred embodiments, both occurrences of R, represent independently hydrogen, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In certain preferred embodiments, one occurrence of R^ represents hydrogen, the second occurrence of Rt represents methyl, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In most preferred embodiments, Rl5 independently and for each occurrence, represents hydrogen, R2 represents methyl, and R3 and R4 independently and for each occurrence represent hydrogen. In certain embodiments, the invention features a method for enhancing memory in an animal or a method of treating a human with an impairment in memory consolidation, comprising administering to the animal a composition of an amphetamine compound in an amount sufficient to enhance long-term memory or improve memory consolidation in the animal (human), wherein the composition includes at least about 51 percent (w/w or mole percent), about 60 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent), about 95 percent (w/w or mole percent), or about 99 percent (w/w or mole percent) ofthe eutomers relative to the distomers ofthe amphetamine compound, wherein the amphetamine compound is an amphetamine metabolite represented by Formula III, or pharmaceutically acceptable salt, solvate, or pro-drug thereof:
Figure imgf000039_0001
wherein, as valence and stability permit, Rl5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R2 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R3 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R4 represents from 1 to 3 substituents on the ring to which it is attached, e.g., selected from hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido; R5 independently for each occurrence, represents hydrogen or hydroxy. In certain preferred embodiments, one occurrence of Rj represents hydrogen, the second occurrence of Rj represents hydrogen, or lower alkyl; R2 represents hydrogen or lower alkyl, R3 represents hydrogen or lower alkyl, and R4 represents hydrogen or from 1 to 2 substituents on the ring to which it is attached, selected from halogen, trifluoromethyl, hydroxy, amino, cyano, nitro, and lower alkyl. In certain preferred embodiments, R4 represents hydrogen and at least one of Rl5 R2, and R3 represents hydrogen. In certain preferred embodiments, R4 represents hydrogen and at least two of Rl5 R2, and R3 represent hydrogen. In certain preferred embodiments, both occurrences of Rj represent independently hydrogen, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In certain preferred embodiments, one occurrence of Rx represents hydrogen, the second occurrence of Rr represents methyl, R2 represents methyl, R3 represents hydrogen and R4 represents hydrogen. In most preferred embodiments, Rl5 independently and for each occurrence, represents hydrogen, R2 represents methyl, and R3 and R4 independently and for each occurrence represent hydrogen. In certain embodiments, the invention features a kit comprising an amphetamine compound formulation, e.g., as described herein and preferably provided in single oral dosage form or as a transdermal patch for enhancing memory in a patient (preferably a human), and in association with instructions (written and/or pictorial) describing the use ofthe formulation for enhancing memory, and optionally, warnings of possible side effects and drug-drug or drug-food interactions. Another aspect ofthe invention relates to a method for conducting a pharmaceutical business, which includes: (a) manufacturing the kits, preparations, and compositions ofthe present invention; and (b) marketing to healthcare providers the benefits of using the kits, preparations, and compositions ofthe present invention to enhance memory of treated patients. Another aspect ofthe invention relates to a method for conducting a pharmaceutical business, comprising: (a) providing a distribution network for selling the kits, preparations, and compositions ofthe present invention; and (b) providing instruction material to patients or physicians for using the kits, preparations, and compositions ofthe present invention to enhance memory of treated patients. Yet another aspect ofthe invention relates to a method for conducting a pharmaceutical business, comprising: (a) determining an appropriate dosage of an amphetamine compound to enhance memory function in a class of patients; (b) conducting therapeutic profiling of one or more formulations ofthe amphetamine compound identified in step (a), for efficacy and toxicity in animals; and (c) providing a distribution network for selling the formulations identified in step (b) as having an acceptable therapeutic profile. For instance, the subject business method can include an additional step of providing a sales group for marketing the preparation to healthcare providers. Another aspect ofthe invention relates to a method for conducting a pharmaceutical business, comprising: (a) determining an appropriate dosage of an amphetamine compound to enhance memory function in a class of patients; and (b) licensing, to a third party, the rights for further development and sale ofthe amphetamine compound for enhancing memory. In certain embodiments ofthe method, the class of patients suffer from memory impairment. In preferred embodiments ofthe method, the memory impairment results from one or more of anxiety, depression, age-associated memory impairment, minimal cognitive impairment, amnesia, dementia, learning disabilities, memory impairment associated with toxicant exposure, brain injury, brain aneurysm, Parkinson's disease, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, stroke, schizophrenia, epilepsy, mental retardation, Alzheimer's disease, age, age-associated memory impairment, Mild Cognitive Impairment, attention deficit disorder, attention deficit hyperactivity disorder, Multiple Sclerosis, Anterior Communicating Artery Syndrome, AIDS-related dementia, chronic fatigue syndrome, fibromyalgia syndrome, traumatic brain injury, chemotherapy. In other preferred embodiments ofthe method, the class of patients are normal individuals. Another aspect ofthe invention features solid dosage form comprising a eutomer of an amphetamine compound represented by Formula I, or a pharmaceutically acceptable salt, solvate, metabolite or pro-drug thereof, in an amount of 25 mg or less:
Figure imgf000042_0001
wherein, as valence and stability permit, Rl5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido. Another aspect ofthe invention features solid dosage form comprising a pharmaceutically acceptable salt of a eutomer of an amphetamine compound employed in the methods ofthe invention, for example, represented by Formula II, solvate, metabolite or pro-drug thereof, in an amount of 25 mg or less:
Figure imgf000042_0002
wherein, as valence and stability permit, Rj, independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R2 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R3 represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl; R4 represents from 1 to 3 substituents on the ring to which it is attached, selected from the group consisting of hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, ester, amidino, sulfonyl, sulfoxido, sulfamoyl, and sulfonamido; and L is a non-toxic organic or inorganic acid. Another aspect ofthe invention features solid dosage form comprising a eutomer of an amphetamine metabolite represented by Formula III, solvate or pro-drug thereof, in an amount of about 25 mg or less:
Figure imgf000043_0001
wherein, as valence and stability permit, Rl5 independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R2 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R3 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy; R4 represents from 1 to 3 substituents on the ring to which it is attached, e.g., selected from hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, sulfonamido; R5 independently for each occurrence, represents hydrogen or hydroxy. In another embodiment, the invention is a method of treating mild cognitive impairment in a human, comprising the step of administering an effective amount of an amphetamine to the human, wherem the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine. In an additional embodiment, the invention is a method of treating mild cognitive impairment in a human, comprising the step of administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1- methamphetamine. In a further embodiment, the invention is a method of treating mild cognitive impairment in a human, comprising the step of administering an effective amount of an amphetamine to the human, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of between about a 2 mg dose and about a 60 mg dose per day. In still another embodiment, the invention is a method of treating mild cognitive impairment in a human, comprising the step of orally administering an effective amount of an amphetamine to the human, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 95 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of between about a 2 mg dose and about a 60 mg dose per day. Another embodiment ofthe invention is a method of treating mild cognitive impairment in a human, comprising the step of administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of between about a 2 mg dose and about a 60 mg dose per day. An additional embodiment ofthe invention is a method of treating mild cognitive impairment in a human, comprising the step of orally administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 95 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of between about a 2 mg dose and about a 60 mg dose per day. In yet another embodiment, the invention is a method of treating Alzheimer's disease in a human, comprising the step of administering an effective amount of an amphetamine to the human, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine. In still another embodiment, the invention is a method of treating Alzheimer's disease in a human, comprising the step of administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine. A further embodiment ofthe invention is a method of treating Alzheimer's disease in a human, comprising the step of administering an effective amount of an amphetamine to the human, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of at least about a 2 mg and about a 60 mg dose per day. Another embodiment ofthe invention is a method of treating Alzheimer's disease in a human, comprising the step of orally administering an effective amount of an amphetamine to the human, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 95 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of at least about a 2 mg and about a 60 mg dose per day. In still another embodiment, the invention is a method of treating Alzheimer's disease in a human, comprising the step of administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of at least about a 2 mg and about a 60 mg dose per day. A yet another embodiment, the invention is a method of treating Alzheimer's disease in a human, comprising the step of orally administering an effective amount of a methamphetamine to the human, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 95 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of at least about a 2 mg and about a 60 mg dose per day. Another embodiment ofthe invention is a method of treating mild cognitive impairment in a human, comprising the step of orally administering an effective amount of amphetamine to the human, wherein the amphetamine is at least about 95 mole percent 1-amphetamine relative to the total amphetamine content ofthe composition. In yet an additional embodiment, the invention is a method of treating mild cognitive impairment in the human, comprising the step of orally administering an effective amount of methamphetamine to the human, wherein the methamphetamine is at least about 95 mole percent 1-methamphetamine relative to the total methamphetamine content ofthe composition. In a further embodiment, the invention is a method of treating Alzheimer's disease in a human, comprising the step of orally administering an effective amount of amphetamine to the human, wherein the amphetamine is at least about 95 mole percent 1-amphetamine relative to the total amphetamine content ofthe composition. In an additional embodiment, the invention is a method of treating Alzheimer's disease in the human, comprising the step of orally administering an effective amount of methamphetamine to the human, wherein the methamphetamine is at least about 95 mole percent 1-methamphetamine relative to the total methamphetamine content ofthe composition. In yet another embodiment, the invention is a method of treating a human for a memory impairment, comprising the step of administering an amphetamine ' composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in memory associated with multiple sclerosis. In still another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having impairment in a cognitive function associated with multiple sclerosis. In an additional embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive unction associated with a brain aneurysm. In still another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with mental retardation. In another embodiment, the invention includes a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the human does not have an impairment in memory, attention and learning. In yet another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the human does not have an impairment in memory, attention and learning. In still another embodiment, the invention includes a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of between about a 1 mg dose and about a 150 mg dose per day and wherein the human does not have an impairment in memory, attention and learning. In an additional embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of between about a 1 mg dose and about a 150 mg dose per day and wherein the human does not have an impairment in memory, attention and learning. In a further embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of between about a 1 mg dose and about a 150 mg dose per day and wherein the human does not have an impairment in memory, attention and learning. In still another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 85 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the human does not have an impairment in memory, attention and learning. In another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-methamphetamine and wherein the human does not have an impairment in memory, attention and learning. In another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 95 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the amphetamine is administered at a dose of at least about a 1 mg and about a 150 mg dose per day and wherein the human does not have an impairment in memory, attention and learning. In an additional embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering 05/000203 -49-
an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine, wherein at least about 95 mole percent ofthe total methamphetamine and amphetamine content ofthe composition is 1-methamphetamine and wherein the methamphetamine is administered at a dose of at least about a 1 mg and about a 150 mg dose per day and wherein the human does not have an impairment in memory, attention and learning. In yet another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of amphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the amphetamine is at least about 95 mole percent 1-amphetamine relative to the total amphetamine content ofthe composition and wherein the human does not have an impairment in memory, attention and learning. In still another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of methamphetamine to a human having an impairment in a cognitive function associated with Mild Cognitive Impairment, wherein the methamphetamine is at least about 95 mole percent 1-methamphetamine relative to the total methamphetamine content ofthe composition and wherein the human does not have an impairment in memory, attention and learning. In a further embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of amphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the amphetamine is at least about 95 mole percent 1-amphetamine relative to the total amphetamine content of the composition and wherein the human does not have an impairment in memory, attention and learning. In still another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of orally administering an effective amount of methamphetamine to a human having an impairment in a cognitive function associated with Alzheimer's disease, wherein the methamphetamine is at least about 95 mole percent 1-methamphetamine relative to the total methamphetamine content ofthe composition and wherein the human does not have an impairment in memory, attention and learning. In still another embodiment, the invention is a method of treating a human for a memory impairment, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in memory associated with multiple sclerosis. In another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with multiple sclerosis. In a further embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with a brain aneurysm and wherein the human does not have an impairment in memory, attention and learning. In yet another embodiment, the invention is a method of treating an impairment in a cognitive function in a human, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with mental retardation and wherein the impairment is not an impairment in memory, attention and learning. In another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine to a human having an impairment in a cognitive function associated with Parkinson's disease, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1-amphetamine and wherein the human does not have an impairment in memory, attention and learning. In still another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Parkinson's disease, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine wherein at least about 85 mole percent ofthe total methamphetamine in amphetamine content ofthe composition is 1-methamphetamine and wherein the human does not have an impairment in memory, attention and learning. In still another embodiment, the invention is a method of treating a human for a memory impairment, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in memory associated with chronic fatigue syndrome. In another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to human having an impairment in a cogmtive function associated with chronic fatigue syndrome. In still another embodiment, the invention is a method of treating a human for a memory impairment, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in memory associated with fibromyalgia syndrome. An additional embodiment ofthe invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to human having impairment in a cognitive function associated with fibromyalgia syndrome. In still another embodiment, the invention is a method of treating a human for a memory impairment, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine,
1-methamphetamine or a combination of both to a human having an impairment in memory associated with chemotherapy treatment. In a further embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with a brain injury and wherein the human does not have an impairment in memory, attention and learning. In still another embodiment, the invention is a method of treating a human for an impairment in a cognitive function, comprising the step of administering an amphetamine composition selected from the group consisting of 1-amphetatmine, 1-methamphetamine or a combination of both to a human having an impairment in a cognitive function associated with a stroke and wherein the human does not have an impairment in memory, attention and learning. In another embodiment, the invention includes a method of treating a human for memory impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before', concomitantly with and subsequent to exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the memory impairment consequent to the exposure to the muscarinic cholinergic receptor antagonist is at least partially attenuated. In yet another embodiment, the invention includes a method of treating a human for cognitive impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- ) threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the cognitive impairment consequent to the exposure to the muscarinic cholinergic receptor antagonist is at least partially attenuated. In an additional embodiment, the invention includes a method of treating a human for memory impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to atropine, whereby the memory impairment consequent to the exposure to atropine is at least partially attenuated. In yet another embodiment, the invention includes a method of treating a human for memory impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to scopolamine, whereby the memory impairment consequent to the exposure to scopolamine is at least partially attenuated. In still another embodiment, the invention includes a method of treating a human for cognitive impairment, comprising administering to the human at least one member selected the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to atropine, whereby the cognitive impairment consequent to the exposure to atropine is at least partially attenuated. In a further embodiment, the invention includes a method of treating a human for cognitive impairment, comprising administering to the human at least one member selected the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to scopolamine, whereby the cognitive impairment consequent to the exposure to scopolamine is at least partially attenuated. In another embodiment, the invention includes a method of treating a human, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to a memory impairment that is a consequence of exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the memory impairment is at least partially attenuated. An additional embodiment ofthe invention includes a method of treating a human, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphemdate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil before, concomitantly with, or subsequent to a cognitive impairment that is a consequence of exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the cognitive impairment is at least partially attenuated. In still another embodiment, the invention includes a method of treating a human, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine and modafinil before, concomitantly with, or subsequent to a memory impairment is a consequence of exposure ofthe human to atropine, whereby the memory impairment is at least partially attenuated. In yet another embodiment, the invention includes a method of treating a human, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil before, concomitantly with, or subsequent to a memory impairment is a consequence of exposure ofthe human to scopolamine, whereby the memory impairment is at least partially attenuated. The practice ofthe present invention will employ, unless otherwise indicated, conventional techniques of synthetic chemistry, organic chemistry, inorganic chemistry, organometallic chemistry, pharmaceutical chemistry, and behavioral science, which are within the skill ofthe art. Such techniques are described in the literature. See, for example, Advanced Organic Chemistry: Reactions, Mechanisms, And Structure by J. March (John Wiley and Sons, N.Y., 1992); The Chemist's Companion: A Handbook Of Practical Data, Techniques, And References by A. J. Gordon and R. A. Ford (Wiley, NY, 1972); Synthetic Methods Of Organometallic And Inorganic Chemistry by W.A. Herrmann and Brauer (Georg Thieme Verlag, N.Y., 1996); Experimental Organic Chemistry by D. Todd (Prentice-Hall, N.J., 1979); Experimental Organic Chemistry: Standard And Microscale by L. M. Harwood (BlackweU Science, M.A., 1999); Experimental Analysis Of Behavior by I. H. Iversen and K. A. Lattal (Elsevier, N.Y., 1991); A Practical Guide To Behavioral Research: Tools And Techniques R. Sommer and B. Sommer (Oxford University Press, N. Y., 2002); Advances In Drug Discovery Techniques by A. L. Harvey (Chichester, N.Y., 1998); Quantitative Calculations In Pharmaceutical Practice And Research by T. P. Hadjiioannou (NCH, Ν.Y., 1993); Drug Fate And Metabolism: Methods And Techniques by E. R. Garrett and J. L. Hirtz (M. Dekker, N. Y, 1977); Behavioral Science Techniques: An Annotated Bibliography For Health Professionals by M. K. Tichy (Praeger Publishers, N.Y., 1975). The invention described herein provides methods of treating a human having an impairments in a cognitive function (e.g., attention, executive function, reaction time, learning information processing, conceptualization, problem solving, verbal fluency) and memory (e.g., memory consolidation, short term memory, working memory, long term memory, declarative memory or procedural memory). Advantages ofthe claimed invention include, for example, the treatment of humans suffering an impairment in a cognitive function or memory in a cost effective manner and without significant side affects, especially in individuals who have had a condition or disease for an extended period of time and where clinical management strategies are difficult to implement. Of particular importance, are conditions which require long-term treatment where addictive and potent side effects would be considerably undesirable. The claimed methods provide an efficient way to treat and reduce the severity of an impairment in a cognitive function (also referred to herein as "cognition") and memory in humans. The invention described herein also provides a method for treating an individual, in particular a human individual, having an impairment in a cognitive function (e.g., an impairment in attention, an impairment in alertness, an impairment in wakefulness, and impairment in arousal, an impairment in executive function, an impairment in reaction time, an impairment in vigilance, an impairment in information processing, an impairment in conceptualization, an impairment in problem solving, an impairment in verbal fluency) and/or a memory process (e.g., impairment in memory consolidation, impairment in short-term memory, an impairment in working memory, an impairment in declarative memory, an impairment in procedural memory). The individual can have an impairment in a cognitive or memory processes as a consequence of exposure to a muscarinic cholinergic receptor antagonist. The claimed methods provide an efficient way to treat a human by preventing, reducing, diminishing, attenuating, minimizing or reversing the onset or severity of impairments in cognitive and memory processes in humans as, for example, a consequence of exposure to muscarinic cholinergic receptor antagonists or as associated with mild cognitive impairment, Alzheimer's disease, multiple sclerosis, mental retardation, brain aneurysm, chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy, traumatic brain injury, stroke or Parkinson's disease. In addition, the invention described herein provides methods for improving memory and cognition in subjects who do not have an impairment in memory or a cognitive function (also referred to herein as "normal" subjects). Thus, treatment with 1-amphetamine (e.g., C105) or 1-methamphetamine (e.g., SN522, SN522-HC1) can halt, reverse or diminish the progression ofthe impairment in cognition and memory, thereby increasing the quality of life without adverse side affects, such as addiction, alterations in blood pressure and heart rate. In addition, treatment with at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil can potentially prevent, halt, reverse, diminish, attenuate or minimize the initiation or progression of an impairment in cognitive and memory processes as a consequence of exposure to muscarinic cholinergic receptor antagonists, thereby increasing the ability to execute, form or maintain cognitive and memory processes, which can improve the quality of life. Optionally, methods, kits, compositions or other subject matter disclosed and/or claimed in co-pending U.S. Application Nos. 10/003,740 (publication no.: 20020115725) and/or 10/139,606 (publication no.: 20030119884), and/or Patent Cooperation Treaty (PCT) Application No.: PCTJUS01/45793 (publication no.: WO02/39998) and/or any national or regional patent filing derived therefrom are excluded from the scope ofthe claims ofthe present invention. For example, methods of treating memory consolidation, short-term memory, long-term memory, attention, learning and anxiety for conditions or diseases as disclosed and claimed in U.S. Application Nos. 10/003,740, and/or 10/139,606, and/or PCTJUS01/45793, are optionally excluded from the scope of method claims in the present invention. Methods, kits, compositions or other subject matter not disclosed and/or not claimed in U.S. Application Nos. 10/003,740 and/or 10/139,606, and/or PCT/US01/45793 and/or any national or regional patent filing derived therefrom are not excluded from the scope ofthe claims ofthe present invention.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 presents the effectiveness of various doses of S-(+)-amphetamine on Performance in the Inhibitory Avoidance Task. Figure 2 demonstrates the effect of 2 mg/kg of S-(+)-amphetamine on Performance in the Inhibitory Avoidance Task. Figure 3 shows the varying effect of S-(+)-amphetamine depending on the time between administration and inception of training. Figure 4 illustrates the effect of S-(+)-amphetamine on memory retention one week after the initial training. Figure 5 depicts the effects of S-(+)-amphetamine on normal and fornix-lesioned animals. Figure 6 shows the effect of S-(+)-amphetamine (2.0 mg/kg) on Performance in Inhibitory Avoidance . Figures 7A, 7B, 7C, 7D, 7E and 7F show the effect of S-(+)-amphetamine on Activity Levels. Figure 8 shows the effectiveness of various doses of R-(-)-amphetamine on memory retention. Figure 9 shows the effectiveness of R-(-)-amphetamine on memory retention. Figure 10 shows the effect of R-(-)-amphetamine (0.5 mg/kg) on Performance in the Inhibitory Avoidance Task. Figure 11 shows the effect of Post Training Administration of R-(-)-amphetamine (0.5 mg/kg) on Performance in the Inhibitory Avoidance Task. Figure 12 shows the effect of R-(-)-amphetamine (1.0 mg/kg) on Inhibitory
Avoidance Performance in Fornix Lesion Rats. Figures 13 A, 13B, 13C and 13D show the effect of R-(-)-amphetamine on Performance in the Object Recognition Task in Normal and Fornix Lesion Rats. Figures 14 A, 14B, 14C, 14D, 14E and 14F show the effect of R-(-)-amphetamine (0.5 mg/kg) on Activity Levels. Figures 15A, 15B, 15C, 15D, 15E and 15F shows the effect of S-(+)-amphetamine (2 mg/kg) on Activity Levels. Figure 16 shows the effect of R-(-)-amphetamine on Tail-Flick Analgesia. Figure 17 shows an exemplary sustained release device. Figure 18 depicts the pharmacokinetics of R-(-)-amphetamine and Memory
Assessments and PK. Figure 19 shows that administration of R-(-)-amphetamine to human patients can improve verbal memory. Figure 20 depicts the Step-Through Latency (sec) for rats treated with control/vehicle (veh), d-amphetamine (d-amph), 1-amphetamine (C105) or 1- methamphetamine (SN522). Figure 21 depicts the Step-Through Latency (sec) for rats treated with control (0) or varying doses of 1-methamphetamine (SN522). The asterisk indicates a significant difference from the control (p<0.05). Figure 22 depicts the Escape Latency (sec) for rats treated with saline control or 1-methamphetamine (SN522). Figure 23 depicts the Activity Measure (% increase from control) for rats treated with 1-methamphetamine (SN522). \ Figure 24 depicts the Activity Measure (% increase from control) for rats treated with D-amphetamine (d-amph). Figure 25 depicts the Memory Score, as assessed by the Rey Auditory and
Nerbal Learning Test, following a 30 minute (min) and a 24 hour (hr) recall time for humans treated with 1-amphetamine (C105). The asterisk depicts significant differences. Figure 26 compares individual subject's memory scores, as assessed by the Rey Auditory and Nerbal Learning Test (RANLT Score (0-15)), following placebo treatment to their best score following treating with 1-amphetamine (C105). Figure 27 illustrates the keyboard proficiency for subjects diagnosed with mild cognitive impairment treated with 1-amphetamine (5 mg, 15 mg, 30 mg) and subjects diagnosed with mild cognitive impairment receiving placebo. Figure 28 illustrates improvements in learning in subjects diagnosed with mild cognitive impairment following treatment with 1-amphetamine compared to placebo controls. Figure 29 illustrates improvements in memory in subjects diagnosed with mild cognitive impairments following treatment with 1-amphetamine compared to placebo controls. Figure 30 illustrates improvements in executive function in subjects diagnosed with mild cognitive impairment following treatment with 1-amphetamine compared to placebo controls. Figure 31 illustrates improvement in memory and learning, as depicted by Z scores, in subjects diagnosed with mild cognitive impairment following treatment with 1-amphetamine (30 mg) compared to placebo controls. Figure 32 depicts the Step-Through Latency (sec) for rats treated with saline control (Sal); and scopolamine rats treated with varying doses of 1-methamphetamine (SN522) or no 1-methamphetamine (0). Figure 33 depicts the Step-Through Latency (sec) for rats treated with saline alone (sal-sal); and scopolamine rats treated with varying doses of 1-amphetamine (C105) or saline (sal). The asterisk indicates a significant difference between group means (p<0.05). Figure 34 depicts an improvement in memory in humans following the administration of 1-methamphetamine (SN522). Figure 35 depicts an improvement in total speed score from baseline following the administration of 1-methamphetamine to humans. Figure 36 depicts improvements in Picture Recognition/Sensitivity Index following the administration of 1-methamphetamine to humans. Figure 37 depicts an improvement of 1-methamphetamine in Information
Processing-Targets Detected following the administration of 1-methamphetamine to humans. Figure 38 depicts an improvement in Information Processing-False Alarms following the administration of 1-methamphetamine to humans.
DETAILED DESCRIPTION OF THE INVENTION The features and other details ofthe invention, either as steps ofthe invention or as combinations of parts ofthe invention, will now be more particularly described and pointed out in the claims. It will be understood that the particular embodiments ofthe invention are shown by way of illustration and not as limitations ofthe invention. The principal features of this invention can be employed in various embodiments without departing from the scope ofthe invention. The present invention relates to the discovery that the amphetamine class of compounds (collectively referred to herein as "amphetamine compounds") can be used to enhance and/or restore cognitive or memory function and performance, e.g., to improve attention, executive function, reactive time, learning, short-term memory, working memory, long-term memory, declarative memory, or procedural memory in animal subjects. More particularly, the invention relates to the discovery that particular stereoisomers of amphetamine compounds are the most effective for therapeutic use. The amphetamine compounds ofthe invention (e.g., R-(-)- amphetamine and R-(-)-methamphetamine) improve cognitive processes and memory (e.g., memory consolidation or the process of storing new information in long-term memory) in a human. Furthermore, the present invention relates to the discovery that the amphetamine compounds can be used to enhance and/or restore cognitive processes such as attention span, focus, executive function, reaction time or learning in animal subjects. The compounds can be useful in improving the attention span of normal individuals, as well as improving the attention span of individuals characterized by a deficit in attention span and/or focus (e.g., individuals diagnosed with an attention deficit disorder). Lack of attentiveness may lead to a failure to process new information and accordingly commit such new information to memory. Lack of focus may also lead to difficulties in later recalling previously processed information. Thus, deficits in attentiveness and/or focus may affect learning and memory. In addition to memory and learning difficulties, lack of attentiveness has many other negative social and behavioral consequences. Accordingly, the subject amphetamine compounds may be used to enhance and/or restore at least one of memory, learning, attentiveness, or focus. In a particular embodiment , compositions of 1-amphetamine or 1- methamphetamine are employed to treat impairments in cognitive and memory processes in a human having Alzheimer's disease or mild cognitive impairment. Amphetamine is a nervous system stimulant that may mildly increase blood pressure and decreases appetite. Abuse of amphetamine has been shown to cause severe side effects including dependence and possibly induced psychosis. Amphetamine is synonymous with actedron; actemin; adderall; adipan; akedron; allodene; alpha-methyl-(±)-benzeneethanamine; alpha-methylbenzeneethanamine; alpha-methylphenethylamine; amfetamine; amphate; anorexine; benzebar; benzedrine; benzyl methyl carbinamine; benzolone; beta-amino propylbenzene; beta-phenylisopropylamine; biphetamine; desoxynorephedrine; dieta ine; DL-amphetamine; elastonon; fenopromin; finam; isoamyne; isomyn; mecodrin; monophos; mydrial; norephedrane; novydrine; obesin; obesine; obetrol; octedrine; oktedrin; phena ine; phenedrine; phenethylamine, alpha-methyl-; percomon; profamina; profetamine; propisamine; racephen; raphetamine; rhinalator; sympamine; simpatedrin; simpatina; sympatedrine; and weckamine. The present invention contemplates, in part, the use of an amphetamine composition which is enriched for eutomers of amphetamine compounds. In particular, the use of pharmaceutical preparations for improving memory consolidation in humans, include (R)-(-)-amphetamine or a derivative thereof. (R)-(-)-amphetamine (1-amphetamine, levo-amphetamine, C105) is effective at a dose one-fourth (1/4) the dose of he (S)-(+) enantiomer (d-amphetamine, dexo- amphetamine) of amphetamine. In addition, unlike (S)-(+)-amphetamine, the ®)-(-) enantiomer has not been shown to be addictive and does not produce undesirable side effects such as increased activity, increased blood pressure or increased heart rate. In certain embodiments, a mixture of enantiomers ofthe subject compounds may be employed, e.g., a racemic mixture containing both enantiomers of a chosen compound, e.g., with each enantiomer being present in equal amounts, or in differing amounts. In certain embodiments, the therapeutic preparation may be enriched to provide predominantly one enantiomer of a subject compound. In one embodiment, an enantiomerically enriched mixture can comprise an amphetamine compound that is at least about 51 w/w or mole percent, about 60 w/w or mole percent, about 75 w/w or mole percent, about 80 w/w or mole percent, about 85 w/w or mole percent, about 90 w/w or mole percent, about 95 w/w or mole percent or about 99 w/w or mole percent 1-amphetamine relative to d-amphetamine. In another embodiment, the amphetamine compound employed in the methods is about 100 w/w or mole percent 1-amphetamine. In preferred embodiments, the amphetamine compound provided in the formulation is at least about 60 percent (w/w or mole percent) ofthe eutomer relative to the distomer ofthe amphetamine compound, and more preferably at least about 75 w/w or mole percent, about 80 w/w or mole percent, about 85 w/w or mole percent, about 90 w/w or mole percent, about 95 w/w or mole percent or about 99 w/w or mole percent. Furthermore, the present invention is based on using the subject compounds for enhancing or restoring attention span and/or focus. The effects ofthe subject compounds on attention span may have secondary consequences on the ability to process and/or recall information, and therefore may also enhance memory and/or learning. The amphetamine compounds can also be provided in the form of pharmaceutical salts and as prodrugs. In certain embodiments, the method includes administering, conjointly with the pharmaceutical preparation, one or more of a neuronal growth factor, a neuronal survival factor, and a neuronal trophic factor. Additionally or alternatively, a subject compound may be administered in conjunction with a cholinergic, adrenergic, nonadrenergic, dopaminergic, or glutaminergic modulator. Other agents directed at modulating GABA, NMDA, cannabinoid, AMP A, kainate, phosphodiesterase (PDE), PKA, PKC, CREB or nootropic systems may be important to the improvement of cognitive function and may be administered in conjunction with a subject compound. An agent to be administered conjointly with a subject compound may be formulated together with a subject compound as a single pharmaceutical preparation, e.g., as a pill or other medicament including both agents, or may be administered as a separate pharmaceutical preparation. In another aspect, the present invention provides pharmaceutical preparations comprising, as an active ingredient, an enantiomerically enriched preparation of R-(-) amphetamine or a derivative thereof. The amphetamine compound is formulated in an amount sufficient to improve memory consolidation in an animal. The preparations and methods can be treatments using amphetamine compounds effective for human and/or animal subjects. In addition to humans, other animal tα which the invention is applicable extend to both domestic animals and livestock, raised either as pets or for commercial purposes. Examples are dogs, cats, cattle, horses, sheep, hogs, and goats. Still another aspect ofthe invention relates to the use of enantiomerically enriched preparations of amphetamine compounds for lessening the severity or prophylactically preventing the occurrence of learning and/or memory defects in an animal, and thus, altering the learning ability and/or memory capacity ofthe animal. As a result, the compounds ofthe present invention may be useful for treating and/or preventing memory impairment, e.g., due to toxicant exposure, brain injury, brain aneurysm, age-associated memory impairment, mild cognitive impairment, epilepsy, mental retardation in children, and dementia resulting from a disease, such as
Parkinson's disease, Alzheimer's disease, AIDS, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, age-associated memory impairment, Mild Cognitive Impairment, Multiple Sclerosis, Anterior Communicating Artery Syndrome, chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy, traumatic brain injury, stroke or Parkinson's disease. In addition, the compounds of the invention may be useful in enhancing memory in normal individuals. The invention also relates to the conjoint use of an amphetamine compound with agents that mimic or stimulate PKC and/or PKA pathways. In another embodiment, the invention is a method of treating an impairment in cognitive processes. Cognition is also referred to herein as a cognitive process or a cognitive function. Using standard cognition testing criteria, one of skill in the art would be capable of determining whether a person has an impairment in a cognitive process, the degree of cognitive impairment and an improvement in cognition following treatments by the methods described herein. The impairment in a cognitive process can be in a human having mild cognitive impairment, Alzheimer's disease, multiple sclerosis, chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy, traumatic brain injury, stroke or Parkinson's disease. In another embodiment, methods ofthe invention are employed to improve a cognitive function in a human having an impairment in a cognitive function associated with a brain aneurysm (e.g., anterior communicating artery brain aneurysm) or a human having an impairment in a cognitive function associated with mental retardation. Impairment in a cognitive function treated by the methods described herein can be an impairment in attention, which is the capacity or process of selecting out of the totality of available sensory or affective stimuli, those stimuli that are most appropriate or desirable for focus at a given time (Kinchla, R.A., et al, Annu. Rev. Psychol. 43:111-142 (1992)). The impairment in a cognitive process can be an impairment in executive function, which are neuropsychological functions such as decision making, planning, initiative, assigning priority, sequencing, motor control, emotional regulation, inhibition, problem solving, planning, impulse control, establishing goals, monitoring results of action and self-correcting (Elliott, R., Br. Med. Bull. 65:49-59 (2003)). The cognitive impairment can be an impairment in alertness, wakefulness, arousal, vigilance, and reaction time information processing, conceptualization, problem solving and/or verbal fluency. One of skill in the art would be capable of identifying and evaluating the impairment in a cognitive function in the individual. In a particular embodiment, impairments in cognitive processes are treated by the methods described herein in humans having a mild cognitive impairment or Alzheimer's disease.
Definitions For convenience, certain terms employed in the specification, examples, and appended claims are collected here. As used herein, the term "amphetamine compounds" is meant to include amphetamine, analogs of amphetamine, enantiomerically or isomerically enriched amphetamine, and enantiomerically or isomerically enriched analogs of amphetamine, as well as pharmaceutically acceptable salts of such compounds and prodrugs. In particular, amphetamine compounds ofthe invention, or analogs thereof which are administered to the human having an impairment in memory (impairment in memory consolidation, impairment in short-term memory, an impairment in working memory), include compounds having the structure as given in Formulas I, II, III, IN, N and NI above. The term "amphetamine," such as is used when referring to "1-amphetamine" and "d-amphetamine," means a compound having Formula Nil, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof. "An amphetamine" can be in the form ofthe free base, salt, acid, ester, amide, carbamate, Schiff base, prodrug and other structural and functional derivatives of amphetamine or any combination thereof. In a preferred embodiment, the amphetamine is the compound represented by Formula Nil including salts, acids, esters, amides, carbamates and Schiff bases. In another preferred embodiment, the amphetamine is the compound represented by Formula Nil, including its salts and acids. In still another preferred embodiment, the amphetamine is the compound of Formula Nil:
Figure imgf000068_0001
The term "methamphetamine," such as is used when referring to "1- methamphetamine" and "d-methamphetamine," means a compound having Formula NIII, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof. "A methamphetamine" can be in the form ofthe free base, salt, acid, ester, amide, carbamate, Schiff base, prodrug and other structural and functional derivatives of methamphetamine or any combination thereof. In a preferred embodiment, the methamphetamine is the compound represented by Formula NIII including salts, acids, esters, amides, carbamates and Schiff bases. In another preferred embodiment, the methamphetamine is the compound represented by Formula NIII, including its salts and acids. In still another preferred embodiment, the methamphetamine is the compound represented by Formula NIII:
Figure imgf000069_0001
The dextro enantiomer of amphetamine is referred to in the art as the d, (+), D or S isomer and is represented by the general formula:
Figure imgf000069_0002
The levo enantiomer of amphetamine is referred to in the art as the 1, (-), L or
R isomer and is represented by the general formula:
Figure imgf000069_0003
The racemic mixtures may be referred to as d,l or (+,-) or (±) or DL or (R)(S). The term "ED50" means the dose of a drug which produces 50% of its maximum response or effect. An "effective amount" of, e.g., an amphetamine compound, with respect to the subject method of treatment, refers to an amount ofthe activator in a pharmaceutical preparation which, when applied as part of a desired dosage regimen brings about enhanced memory (memory consolidation, short term memory, working memory, declarative memory, or procedural memory) according to clinically acceptable standards. The term "LD50" means the dose of a drug which is lethal in 50% of test subjects. A "patient" or "subject" to be treated by the subject method can mean either a human or non-human animal. The term "prodrug" represents compounds which are rapidly transformed in vivo, for example, by hydrolysis in blood into the therapeutically active agents ofthe present invention. A common method for making a prodrug is to include selected moieties which are converted under physiologic conditions (enzymatic or nonenzymatic) to reveal the desired molecule. A thorough discussion is provided in
T. Higuchi and N. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 ofthe A.C.S.
Symposium Series, and in Edward B. Roche, ed., Bioreversible Carriers in Drug
Design, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incoφorated herein by reference. The term "therapeutic index" refers to the therapeutic index of a drug defined as LD50/ED50. By "transdermal patch" is meant a system capable of delivery of a drug to a patient via the skin, or any suitable external surface, including mucosal membranes, such as those found inside the mouth. Such delivery systems generally comprise a flexible backing, an adhesive and a drug retaining matrix, the backing protecting the adhesive and matrix and the adhesive holding the whole on the skin ofthe patient.
On contact with the skin, the drug-retaining matrix delivers drug to the skin, the drug then passing through the skin into the patient's system. The term "adrenergic" refers to neurotransmitters or neuromodulators chemically related to adrenaline (epinephrine) or to neurons which release such adrenergic mediators. Examples are dopamine, norepinephrine, epinephrine. Such agents are also referred to as catecholamines, which are derived from the amino acid tyrosine. The term "biogenic amines" refers to a class of neurotransmitters which include catecholamines (e.g., dopamine, norepinephrine, and epinephrine) and serotonin. The term "catecholamines" refers to neurotransmitters that have a catechol ring (e.g., a 3,4-dihydroxylated benzene ring). Examples are dopamine, norepinephrine, and epinephrine. The term "cholinergic" refers to neurotransmitters or neuromodulators chemically related to choline or to neurons which release such cholinergic mediators. The term "dopaminergic" refers to neurotransmitters or neuromodulators chemically related to dopamine or to neurons which release such dopaminergic mediators. The term "dopamine" refers to an adrenergic neurotransmitter, as is known in the art. Herein, the term "aliphatic group" refers to a straight-chain, branched-chain, or cyclic aliphatic hydrocarbon group and includes saturated and unsaturated aliphatic groups, such as an alkyl group, an alkenyl group, and an alkynyl group. The terms "alkenyl" and "alkynyl" refer to unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double or triple bond respectively. The terms "alkoxyl" or "alkoxy" as used herein refers to an alkyl group, as defined above, having an oxygen radical attached thereto. Representative alkoxy groups include methoxy, ethoxy, propyloxy, tert-butoxy and the like. An "ether" is two hydrocarbons covalently linked by an oxygen. Accordingly, the substituent of an alkyl that renders that alkyl an ether is or resembles an alkoxyl, such as can be represented by one of -O-alkyl, -O-alkenyl, -O-alkynyl, -O-(CH2)m-R8, where R8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8 The term "alkyl" refers to the radical of saturated aliphatic groups, including straight-chain alkyl groups, branched-chain alkyl groups, cycloalkyl (alicyclic) groups, alkyl-substituted cycloalkyl groups, and cycloalkyl-substituted alkyl groups. In preferred embodiments, a straight chain or branched chain alkyl has 8 or fewer carbon atoms in its backbone (e.g., Cj-C8 for straight chains, C3-C8 for branched chains), and more preferably 5 or fewer. Likewise, preferred cycloalkyls have from 3-10 carbon atoms in their ring structure, and more preferably have 5, 6 or 7 carbons in the ring structure. Moreover, the term "alkyl" (or "lower alkyl") as used throughout the specification, examples, and claims is intended to include both "unsubstituted alkyls" and "substituted alkyls", the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons ofthe hydrocarbon backbone. Such substituents can include, for example, a halogen, a hydroxyl, a carbonyl (such as a carboxyl, an alkoxycarbonyl, a formyl, or an acyl), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an alkoxyl, a phosphoryl, a phosphate, a phosphonate, a phosphinate, an amino, an amido, an amidine, an imine, a cyano, a nitro, an azido, a sulfhydryl, an alkylthio, a sulfate, a sulfonate, a sulfamoyl, a sulfonamido, a sulfonyl, a heterocyclyl, an aralkyl, or an aromatic or heteroaromatic moiety. It will be understood by those skilled in the art that the moieties substituted on the hydrocarbon chain can themselves be substituted, if appropriate. For instance, the substituents of a substituted alkyl may include substituted and unsubstituted forms of amino, azido, imino, amido, phosphoryl (including phosphonate and phosphinate), sulfonyl (including sulfate, sulfonamido, sulfamoyl and sulfonate), and silyl groups, as well as ethers, alkylthios, carbonyls (including ketones, aldehydes, carboxylates, and esters), -CF3, -CΝ and the like. Exemplary substituted alkyls are described below. Cycloalkyls can be further substituted with alkyls, alkenyls, alkoxys, alkylthios, aminoalkyls, carbonyl-substituted alkyls, -CF3, -CΝ, and the like. Unless the number of carbons is otherwise specified, "lower alkyl" as used herein means an alkyl group, as defined above, but having from one to eight carbons, more preferably from one to five carbon atoms in its backbone structure. Likewise, "lower alkenyl" and "lower alkynyl" have similar chain lengths. Throughout the application, preferred alkyl groups are lower alkyls. In preferred embodiments, a substituent designated herein as alkyl is a lower alkyl. The term "alkylthio" refers to an alkyl group, as defined above, having a sulfur radical attached thereto. In preferred embodiments, the "alkylthio" moiety is represented by one of -S-alkyl, -S-alkenyl, -S-alkynyl, and -S-(CH2)m-R8, wherein R8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8. Representative alkylthio groups include methylthio, ethylthio, and the like. The terms "amine" and "amino" are art-recognized and refer to both unsubstituted and substituted amines, e.g., a moiety that can be represented by the general formula: / -N \ R 10
wherein R9 and R10 each independently represent a hydrogen, an alkyl, an alkenyl, -(CH2)m-R8, or R9 and R10 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure; R8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8. In preferred embodiments, R9 and R10 each independently represent a hydrogen, an alkyl, an alkenyl, or -(CH2)m-R8, wherein R8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8. Thus, the term "alkylamine" as used herein means an amine group, as defined above, having a substituted or unsubstituted alkyl attached thereto, i.e., at least one of R9 and R10 is an alkyl group. The term "amido" is art-recognized as an amino-substituted carbonyl and includes a moiety that can be represented by the general formula:
Figure imgf000073_0001
wherein R9, R10 are as defined above. Preferred embodiments ofthe amide will not include imides which may be unstable. The term "aralkyl", as used herein, refers to an alkyl group substituted with an aryl group (e.g., an aromatic or heteroaromatic group). The term "aryl" as used herein includes 5-, and 6-membered single-ring aromatic groups that may include from zero to four heteroatoms, for example, benzene, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like. Those aryl groups having heteroatoms in the ring structure may also be referred to as "aryl heterocycles", "heteroaryls", or "heteroaromatics." The aromatic ring can be substituted at one or more ring positions with such substituents as described above, for example, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino, nitro, sulfhydryl, imino, amido, phosphate, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, sulfonamido, ketone, aldehyde, ester, heterocyclyl, aromatic or heteroaromatic moieties, -CF3, -CN, or the like. The term "aryl" also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings (the rings are "fused rings") wherein at least one ofthe rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls. The term "carbocycle" or "cyclic alkyl", as used herein, refers to an aromatic or non-aromatic ring in which each atom ofthe ring is carbon. The term "carbonyl" is art-recognized and includes such moieties as can be represented by the general formula:
Figure imgf000074_0001
wherein X is a bond or represents an oxygen or a sulfur, and Rn represents a hydrogen, an alkyl, an alkenyl, -(CH2)m-R8 or a pharmaceutically acceptable metal or aminergic counterion, R'u represents a hydrogen, an alkyl, an alkenyl or -(CH2)m-R8, wherein R8 represents an aryl, a cycloalkyl, a cycloalkenyl, a heterocycle or a polycycle; and m is zero or an integer in the range of 1 to 8. Where X is an oxygen and Ru or R'π is not hydrogen, the formula represents an "ester". Where X is an oxygen, and Rn is as defined above, the moiety is referred to herein as a carboxyl group, and particularly when Rn is a hydrogen, the formula represents a "carboxylic acid". Where X is an oxygen, and R'π is hydrogen, the formula represents a
"formate". In general, where the oxygen atom ofthe above formula is replaced by sulfur, the formula represents a "thiocarbonyl" group. Where X is a sulfur and Rn or R'π is not hydrogen, the formula represents a "thioester." Where X is a sulfur and Rn is hydrogen, the formula represents a "thiocarboxylic acid." Where X is a sulfur and Rπ' is hydrogen, the formula represents a "thioformate." On the other hand, where X is a bond, and Rπ is not hydrogen, the above formula represents a "ketone" group. Where X is a bond, and Ru is hydrogen, the above formula represents an "aldehyde" group. The term "heteroatom" as used herein means an atom of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen and sulfur. The terms "heterocyclyl" or "heterocyclic group" refer to 3- to 10-membered ring structures, more preferably 3- to 7-membered rings, whose ring structures include one to four heteroatoms. Heterocycles can also be polycycles. Heterocyclyl groups include, for example, thiophene, thianthrene, furan, pyran, isobenzofuran, chromene, xanthene, phenoxafhiin, pyrrole, imidazole, pyrazole, isothiazole, isoxazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, pyrimidine, phenanthroline, phenazine, phenarsazine, phenothiazine, furazan, phenoxazine, pyrrolidine, oxolane, thiolane, oxazole, piperidine, piperazine, morpholine, lactones, lactams such as azetidinones and pyrrolidinones, sultams, sultones, and the like. The heterocyclic ring can be substituted at one or more positions with such substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphate, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, ketone, aldehyde, ester, a heterocyclyl, an aromatic or heteroaromatic moiety, -CF3, -CN, or the like. The term "metabolites" refers to active derivatives produced upon introduction of a compound into a biological milieu, such as a patient. L- amphetamine and 1-methamphetamine employed in the methods ofthe invention are not metabolites resulting from the administration of 1-deprenyl. The oral administration of 1-amphetamine or 1-methamphetamine means ingestion of 1- amphetamine and/or 1-methamphetamine by the subject (e.g., human) not a metabolite of another ingested compound such as 1-deprenyl. Humans with impairments in a cognitive function or memory are treated with amphetamine and/or methamphetamine, wherein the amphetamine and/or methamphetamine is enantiomerically enriched for 1-amphetamine of 1-methamphetamine relative to the total content of amphetamine and/or methamphetamine in the composition, wherein the 1-amphetamine and/or 1-methamphetamine is not administered as 1-deprenyl or a result ofthe metabolism of 1-deprenyl in the human. As used herein, the term "nitro" means -NO2; the term "halogen" designates -F, -CI, -Br or -I; the term "sulfhydryl" means -SH; the term "hydroxyl" means -OH; and the term "sulfonyl" means -SO2-. The terms "polycyclyl" or "polycyclic group" refer to two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls) in which two or more carbons are common to two adjoining rings, e.g., the rings are "fused rings". Rings that are joined through non-adjacent atoms are termed "bridged" rings. Each ofthe rings ofthe polycycle can be substituted with such substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphate, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, ketone, aldehyde, ester, a heterocyclyl, an aromatic or heteroaromatic moiety, -CF3, -CN, or the like. The phrase "protecting group" as used herein means temporary substituents which protect a potentially reactive functional group from undesired chemical transformations. Examples of such protecting groups include esters of carboxylic acids, silyl ethers of alcohols, and acetals and ketals of aldehydes and ketones, respectively. The field of protecting group chemistry has been reviewed (Greene, T.W.; Wuts, P.G.M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991). As used herein, the term "substituted" is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds. Illustrative substituents include, for example, those described herein above. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this invention, the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences ofthe heteroatoms. This invention is not intended to be limited in any manner by the permissible substituents of organic compounds. It will be understood that "substitution" or "substituted with" includes the implicit proviso that such substitution is in accordance with permitted valence ofthe substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. The term "statistically significant" as used herein means that the obtained results are not likely to be due to chance fluctuations at the specified level of probability. The two most commonly specified levels of significance are 0.05 (p=0.05) and 0.01 (ρ=0.01). The level of significance equal to 0.05 and 0.01 means that the probability of error is 5 out of 100 and 1 out of 100, respectively. The term "sulfamoyl" is art-recognized and includes a moiety that can be represented by the general formula:
Figure imgf000077_0001
in which Rc, and R10 are as defined above. The term "sulfate" is art recognized and includes a moiety that can be represented by the general formula:
Figure imgf000077_0002
in which R41 is an electron pair or represents a metal or aminergic counterion, hydrogen, alkyl, cycloalkyl, or aryl. The term "sulfonamido" is art recognized and includes a moiety that can be represented by the general formula:
Figure imgf000078_0001
in which Rc, and R'n are a s defined above. The term "sulfonate" is art-recognized and includes a moiety that can be represented by the general formula:
Figure imgf000078_0002
in which R41 is an electron pair or represents a metal or aminergic counterion, hydrogen, alkyl, cycloalkyl, or aryl. The terms "sulfoxido" or "sulfinyl", as used herein, refers to a moiety that can be represented by the general formula:
Figure imgf000078_0003
in which R4-4 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aralkyl, or aryl. The term "sulfonyl", as used herein, refers to a moiety that can be represented by the general formula:
Figure imgf000079_0001
in which R44 is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl. Analogous substitutions can be made to alkenyl and alkynyl groups to produce, for example, aminoalkenyls, aminoalkynyls, amidoalkenyls, amidoalkynyls, iminoalkenyls, iminoalkynyls, thioalkenyls, thioalkynyls, carbonyl-substituted alkenyls or alkynyls. As used herein, the definition of each expression, e.g., alkyl, m, n, etc., when it occurs more than once in any structure, is intended to be independent of its definition elsewhere in the same structure. Contemplated equivalents ofthe compounds described above include compounds which otherwise correspond thereto, and which have the same general properties thereof (e.g., the ability to effect long-term memory), wherein one or more simple variations of substituents are made which do not adversely affect the efficacy ofthe compound. In general, the compounds ofthe present invention may be prepared by the methods described below, or by modifications thereof, using readily available starting materials, reagents and conventional synthesis procedures. In these reactions, it is also possible to make use of variants which are in themselves known, but are not mentioned here. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table ofthe Elements, CAS version, Handbook of Chemistry and Physics, 67th Ed., 1986-87, inside cover. Also for purposes of this invention, the term "hydrocarbon" is contemplated to include all permissible compounds having at least one hydrogen and one carbon atom. In a broad aspect, the permissible hydrocarbons include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic organic compounds which can be substituted or unsubstituted.
Exemplary Compounds ofthe Invention In preferred embodiments ofthe invention, a compound useful in the compositions and methods described herein has a structure of Formula IX:
Figure imgf000080_0001
wherein, as valence and stability permit, R„ independently for each occurrence, represents H or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy, etc.; R2 represents H or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy, etc.; R3 represents H or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy, etc.; R4 is absent, or represents from 1 to 3 substituents on the ring to which it is attached, e.g., selected from halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, sulfonamido, and phosphonate, etc. In certain embodiments, at least one occurrence of Rj represents hydrogen. In certain embodiments, both occurrences of Rj represent hydrogen. In other embodiments, one occurrence of Rt represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc. In certain embodiments, R2 represents hydrogen, while in other embodiments, R2 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc. In certain embodiments, R3 represents hydrogen, while in other embodiments, R3 represents lower alkyl, such as methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, etc., hydroxy, amino, or carbonyl. In certain embodiments, R4 represents hydrogen, while in other embodiments, R4 represents from 1 to 3 substituents on the ring to which it is attached selected from halogen, hydroxy, amino, sulfhydryl, cyano, nitro, and lower alkyl. In certain embodiments, R4 represents hydrogen and at least one of Rl5 R2, and R3 represents hydrogen. In certain embodiments, R4 is absent and at least two of Ri, R2, and R3 represent hydrogen. In certain embodiments, R4 represents hydrogen and at least three of Rl5 R2, and R3 represent hydrogen. In certain embodiments, R4 represents hydrogen and all four of Rl5 R2, and R3 represent hydrogen. As set out above, certain embodiments of compounds of Formula IX may contain a basic functional group, such as amino or alkylamino, and thus, can be utilized in a free base form or as pharmaceutically acceptable salt forms derived from pharmaceutically acceptable organic and inorganic acids. The pharmaceutically acceptable salts ofthe subject compounds represented by Formula IX include the conventional non-toxic salts ofthe compounds, e.g., from non-toxic orgamc or inorganic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric, and the like; and the salts prepared from organic acids such as acetic, 2-acetoxybenzoic, ascorbic, benzene sulfonic, benzoic, chloroacetic, citric, ethane disulfonic, ethane sulfonic, formic, fumaric, gluconic, glutamic, glycolic, hydroxymaleic, isothionic, lactic, maleic, malic, methanesulfonic, oxalic, palmitic, phenylacetic, propionic, salicyclic, stearic, succinic, sulfanilic, tartaric, toluenesulfonic, and the like. In particular, the sulfate saly of 1-amphetamine represented by Formula IV (CIO 5) and the hydrochloride salt of 1-methamphetamine represented by Formula V (SN522) are employed in the methods described herein. In certain embodiments, such salts have a structure represented by the general Formula X:
Figure imgf000082_0001
wherein, as valence and stability permit, Rj, R2, R3, and R4 are defined as above; L is a non-toxic organic or inorganic acid. In certain embodiments, L is selected from the following inorganic acids: hydrochloric, hydrobromic, nitric, phosphoric, sulfamic, and sulfuric, or from the following organic acids: 2-acetoxybenzoic, ascorbic, benzene sulfonic, benzoic, chloroacetic, citric, ethane disulfonic, ethane sulfonic, formic, fumaric, gluconic, glutamic, glycolic, hydroxymaleic, isothionic, lactic, maleic, malic, methanesulfonic, oxalic, palmitic, phenylacetic, propionic, salicyclic, stearic, succinic, sulfanilic, tartaric, and toluenesulfonic. The compounds ofthe present invention further include metabolites ofthe subject amphetamine compounds, included but not limited to the following: p-hydroxyamphetamine, benzyl methyl ketone, l-phenylpropan-2-ol, benzoic acid, glycine, hippuric acid, p-hydroxynorephedrine, and N-hydroxylamphetamine. In certain embodiments, these metabolites have a structure represented by the general Formula XI:
Figure imgf000082_0002
wherein, as valence and stability permit, Rj, independently for each occurrence, represents hydrogen or substituted or unsubstituted lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy, etc.; R2 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy, etc.; R3 represents hydrogen or lower alkyl, lower alkenyl, lower alkynyl, aralkyl, aryl, heteroaralkyl, heteroaryl, cycloalkyl, or cycloalkylalkyl, e.g., optionally substituted by one or more substitutents such as halogen, hydroxy, alkoxy, etc.; R4 represents from 1 to 3 substituents on the ring to which it is attached, e.g., selected from hydrogen, halogen, hydroxy, alkoxy, amino, alkylamino, sulfhydryl, alkylthio, cyano, nitro, ester, ketone, formyl, amido, acylamino, acyloxy, lower alkyl, lower alkenyl, sulfonate ester, amidino, sulfonyl, sulfoxido, sulfamoyl, sulfonamido, and phosphonate, etc.; R5 independently for each occurrence, represents hydrogen or hydroxy. In certain embodiments, the method includes administering, conjointly with the pharmaceutical preparation, one or more of a neuronal growth factor, a neuronal survival factor, and a neuronal trophic factor. Additionally or alternatively, a subject compound may be administered in conjunction with a cholinergic, adrenergic, noradrenergic, dopaminergic, glutaminergic or other modulators. Other agents directed at modulating GABA, NMD A, cannabinoid, AMP A, kainate, phosphodiesterase (PDE), PKA, PKC, CREB or nootropic systems may be important to the improvement of cognitive function and may be administered in conjunction with a subject compound. An agent to be administered conjointly with a subject compound may be formulated together with a subject compound as a single pharmaceutical preparation, e.g., as a pill or other medicament including both agents, or may be administered as a separate pharmaceutical preparation. In another aspect, the present invention provides pharmaceutical preparations comprising, as an active ingredient amphetamine or a derivative thereof. The subject amphetamine compound is formulated in an amount sufficient to improve LTP in an animal. The subject preparations and methods can be treatments using amphetamine compounds effective for human and/or animal subjects. In addition to humans, other animal subjects to which the invention is applicable extend to both domestic animals and livestock, raised either as pets or for commercial purposes. Examples are dogs, cats, cattle, horses, sheep, hogs, and goats. Still another aspect ofthe invention relates to the use of amphetamine compounds for lessening the severity or prophylactically preventing the occurrence of cognitive, learning and/or memory defects in an animal, and thus, altering the cognitive, learning ability and/or memory capacity ofthe animal. As a result, the compounds ofthe present invention may be useful for treating and/or preventing cognitive or memory impairment, e.g., due to toxicant exposure, brain injury, brain aneurysm, age-associated memory impairment, mild cognitive impairment, epilepsy, Multiple Sclerosis, age-associated memory impairment, Mild Cognitive Impairment, mental retardation in children, and dementia resulting from a disease, such as Parkinson's disease, Alzheimer's disease, AIDS, head trauma, Huntington's disease, Pick's disease, Creutzfeldt- Jakob disease, Anterior Communicating Artery Syndrome, hypoxia, post cardiac surgery, Downs Syndrome, stroke, as a consequence of exposure to muscarinic cholinergic receptor antagonists. In addition, the compounds ofthe invention may be useful in enhancing cognition or memory in normal individuals. The present invention also relates to treatment with at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphenidate, d-threo-methylphenidate, methylphemdate, atomoxetine (also referred to as STRATTERA® or tomoxetine) and modafinil (also referred to as PRO VIGIL®) to improve cognitive and memory processes in individuals exposed to a muscarinic cholinergic receptor antagonist. As described herein, levo-amphetamine and levo-methamphetamine have been demonstrated to reduced impairment in memory that is a consequence of exposure to a muscarinic cholinergic receptor antagonist. Specifically, levo- amphetamine or levo-methamphetamine improves memory in rats that have an impairment in the ability to form new long term memory as a consequence of exposure to a muscarinic cholinergic receptor antagonist. The ability to form new long term memory is the process of memory consolidation ("Neuroscience:
Exploring The Brain," Bear, M.F. et al, Williams & Wilkins, Baltimore, Maryland, Ch. 19, pp. 517-545 (1996); McGaugh, J.L. Science 287: 248-251 (2000)). A human individual can have an impairment in cognitive and memory processes as a consequence of exposure to a muscarinic cholinergic receptor antagonist (agents or drugs). An embodiment ofthe invention includes a method of reducing a potential impairment in memory or cognition in a human who will be exposed to a muscarinic cholinergic receptor antagonist. A "potential" impairment in memory or cognition, as used herein, refers to a possible effect ofthe muscarinic cholinergic receptor antagonist in the human which results in a diminished capacity in memory or cognition in the human as a consequence of exposure to the muscarinic cholinergic receptor. In one embodiment, the invention includes a method of treating a human, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphemdate, methylphemdate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to a memory and/or cognitive impairment that is a consequence of exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the memory and/or cognitive impairment is at least partially attenuated. The amphetamine (e.g., 1-amphetamine, d-amphetamine, 1-methamphetamine, d-methamphetamine or any combination thereof), threo-methylphenidate (e.g., d- threo-methylphenidate, 1-threo-methylphenidate, or any combination therof), methylphemdate, atomoxetine and modofinil are referred to herein, with respect to the methods of treating as a consequence of exposure of a human to a muscarinic cholinergic receptor antagonist, as "compounds," "compounds ofthe invention," or "compounds employed in the methods." "Before" exposure to the muscarinic cholinergic receptor antagonist, as used herein, refers to the administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil at a time (e.g., minutes, hours, days, weeks, months) preceding exposure ofthe individual to the muscarinic cholinergic receptor antagonist. "Prior to" is used interchangeably with "before." For example, at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil can be administered hours (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 12 hours), days (e.g., about 1, 2, 3, 4, 5, 6, 7 days) or weeks (e.g., 1, 2, 3, 4, 5, 6, 7, 8 weeks) before the individual being exposed to the muscarinic cholinergic receptor antagonist. In another embodiment, at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil can be administered concomitantly (also referred to herein as "at about the same point in time" or "during") with exposure ofthe human to a muscarinic cholinergic receptor antagonist. "Concomitantly," as used herein, refers to the simultaneous or sequential administration of at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil to the human and exposure o the human to the muscarinic cholinergic receptor antagonist. Concomitant administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil and exposure to the muscarinic cholinergic receptor antagonist can occur by administering a single formulation, which contains both at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil; and the muscarinic cholinergic receptor antagonist, to the human. The single formulation results in simultaneous administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil; and exposure to the muscarinic cholinergic receptor antagonist. Additionally, or alternatively, at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil can be administered concomitantly to the human by sequential administration of a formulation of at least one member selected from the group consisting of 1-amphetamine, 1- methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil and a separate formulation ofthe muscarinic cholinergic receptor antagonist. Both the formulation of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil and the separate muscarinic cholinergic receptor antagonist formulation are concomitantly administered to the human by sequential administration. The sequential administration can be the administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d- threo-methylphemdate, methylphenidate, atomoxetine and modafinil followed by exposure to the muscarinic cholinergic receptor antagonist at about the same time; or exposure to the muscarinic cholinergic receptor antagonist followed by the administration of at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil to the human at about the same time. In yet another embodiment, at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil is administered subsequent to a memory and/or cognitive impairment that is a consequence of exposure ofthe human to a muscarinic cholinergic receptor antagonist. "Subsequent to," as used herein, refers to the administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil to the human after the human is exposed to the muscarinic cholinergic receptor antagonist. For example, at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil can be administered hours (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 12 hours), days (e.g., about 1, 2, 3, 4, 5, 6, 7 days), weeks (e.g., about 1, 2, 3, 4, 5, 6, 7, 8 weeks), months (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 months) or years (e.g., about 1, 2, 3, 4, 5 years) subsequent to exposure ofthe individual to the muscarinic cholinergic receptor antagonist. The amphetamine ofthe invention can be administered to a individual acutely (briefly or short-term) or chronically (prolonged or long-term) before, concomitantly with or subsequent to exposure ofthe individual to a muscarinic cholinergic receptor antagonist. The compounds employed in the methods ofthe invention can be administered before, concomitantly with, subsequent to or any combination thereof (e.g., before; before and concomitantly with; concomitantly with; concomitantly with and subsequent to; before and subsequent to; subsequent to) ofthe human to exposure ofthe muscarinic cholinergic receptor antagonist. Administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil to the human before, concomitantly with and/or subsequent to a memory and/or cognition impairment that is a consequence of exposure to the muscarinic cholinergic receptor antagonist can prevent, reduce or at least partially attenuate the impairment that can occur as a consequence of subsequent exposure to a muscarinic cholinergic receptor antagonist. "At least partially attenuated," as used herein, refers to any decrease or diminution in the severity, amount or intensity ofthe memory and/or cognitive impairment in the human exposed to a muscarinic cholinergic receptor antagonist, as a consequence of administration ofthe compounds. Exposure to the muscarinic cholinergic receptor antagonist can be intentional exposure or unintentional exposure. Intentional exposure can be by administration (e.g., self administration) of a muscarinic cholinergic receptor antagonist to an individual. For example, intentional exposure of an individual can be administered through the application (e.g., transdermal), injection (e.g., intramuscular, intravenous) or ingestion (e.g., oral) of a muscarinic cholinergic receptor antagonist (e.g., scopolamine, atropine) to the individual. Unintentional exposure ofthe individual to a muscarinic cholinergic receptor antagonist can be by any route of exposure other than intentional exposure. For example, unintentional exposure of an individual can result from environmental or airborne exposure to a muscarinic cholinergic receptor antagonist. In one embodiment, the muscarinic cholinergic receptor antagonist is an exogenous (originating or produced outside ofthe individual) muscarinic cholinergic receptor antagonist. In another embodiment, the muscarinic cholinergic receptor antagonist is an endogenous (originating or produced inside the individual) muscarinic cholinergic receptor antagonist. In another embodiment, the invention includes a method of treating a human for memory impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo- methylphemdate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the memory impairment consequent to the exposure to the muscarinic cholinergic receptor antagonist is at least partially attenuated. In yet another embodiment, the invention includes a method of treating a human for cognitive impairment, comprising administering to the human at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the cognitive impairment consequent to the exposure to the muscarinic cholinergic receptor antagonist is at least partially attenuated. The cognitive and/or memory processes and impairments in cognitive and/or memory processes can be assessed or determined by established techniques. For example, memory can be assessed before, concomitantly with or after treatment of the individual with at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil by one or more well established tests known to one of skill in the art. Such tests include the Rey Auditory Verbal Learning Test (RAVLT); Cambridge Neuropsychological Test Automated Battery (CANTAB); a Children's Memory Scale (CMS); a Contextual Memory Test; a Continuous Recognition Memory Test (CMRT); a Denman Neuropsychology Memory Scale; a Fuld Object Memory Evaluation (FOME); a Graham-Kendall Memory for Designs Test; a Guild Memory Test; a Learning and Memory Battery (LAMB); a Memory Assessment Clinic Self-Rating Scale (MAC-S); a Memory Assessment Scales (MAS); a Randt Memory Test; a Recognition Memory Test (RMT); a Rivermead Behavioral Memory Test; a Russell's Version ofthe Wechsler Memory Scale (RWMS); a Test of Memory and Learning (TOMAL); a Vermont Memory Scale (VMS); a Wechsler Memory Scale; a Wide Range Assessment of Memory and Learning (WRAML); First-Last Name Association (Youngjohn J.R., et al, Archives of Clinical Neuropsychology 6:287-300 (1991)); Name-Face , Association; Wechsler Memory Scale-Revised (Wechsler, D., Wechsler Memory Scale-Revised Manual, NY, NY, The Psychological Corp. (1987)); California Verbal Learning Test-Second Edition (Delis, D.C., et al, The Califomian Verbal Learning Test, Second Edition, Adult Version, Manual, San Antonio, TX: The Psychological Corporation (2000)); Facial Recognition (delayed non-matching to sample); Cognitive Drug Research (CDR) Computerized Assessment Battery- Wesnes; Buschke' s Selective Reminder Test (Buschke, H., et al, Neurology 24: 1019-1025 (1974)); Telephone Dialing Test; Brief Visuospatial Memory Test-Revised; and Test of Everyday Attention (Perry, R.J., et al, Neuropsychologia 38: 252-271 (2000)). In a particular embodiment, the memory ofthe human before, during or after administration of at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil is assessed or determined by a word recall test such as RAVLT. A muscarinic cholinergic receptor antagonist includes any substance which blocks, diminishes, attenuates, inhibits, binders, limits, decreases, reduces, restricts or interferes with the action of acetylcholine (ACh) thereby disrupting ACh-mediated cell signaling between presynaptic and postsynaptic neurons. The antagonist can, for example, oppose the action of ACh by acting in a manner which prevents ACh from binding to a muscarinic receptor on a postsynaptic neuron, from mediating postsynaptic events following binding of ACh to a muscarinic receptor, interfere with ACh degradation by acetycholinesterase in the synaptic cleft or interfere with release of ACh from presynaptic neurons. For example, interaction ofthe muscarinic cholinergic receptor with an ACh receptor can prevent ACh from activating a Gq protein on post-synaptic neurons which in turn can prevent activation of phospholipase C (PLC) and the subsequent generation ofthe second messengers diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). Failure to generate intracellular DAG can prevent activation of protein kinase C (PKC) which can disrupt subsequent cellular events such as phosphorylation of substrates implicated in the formation of memory. Likewise, failure to generate IP3 can prevent a mobilization of calcium from internal stores which can disrupt subsequent cellular events such as long-term potentiation (LTP), which may be a cellular mechanism of memory (Malenka, R:C, Science 285:1870-1874 (1999)). Additionally, or alternatively, a muscarinic cholinergic receptor antagonist can prevent ACh from activating Gαi/o protein on presynaptic neurons which in turn can lead to increased levels of cAMP by preventing inhibition of adenylcyclase. Increased cAMP levels can lead to activation of cyclic- AMP -dependent protein kinase A (PKA) which can modulate subsequent cellular events such as phosphorylation of alpha-amino-3-hydroxy-5-methylisoxazoleproprionic acid
(AMP A) receptors and the regulation of LTP. Phosphorylation of AMP A receptors can increase the inflow of sodium (Na+) ions thereby increasing the cell depolarization and/or increasing the number of AMP A receptors at the synapse. It is envisioned that the muscarinic cholinergic receptor antagonists can oppose the action of ACh in any one or more ofthe above-referenced manners. A muscarinic cholinergic receptor antagonist is also referred to as a muscarinic cholinergic antagonist. As a consequence of exposure to a muscarinic cholinergic receptor antagonist, the individual can have deficiencies or disruptions in signaling pathways which can lead to impairments in cognitive and memory processes. "As a consequence of muscarinic cholinergic receptor antagonist" as used herein, refers to an impairment in cognition and/or memory processes that follows exposure of an individual to a muscarinic cholinergic receptor antagonist. In one embodiment, the individual (also referred to herein as a "subject") can have an impairment in memory. The impairment in memory can be an impairment in memory consolidation, the process of storing new information in long term memory ("Neuroscience: Exploring The Brain," Bear, M.F. et al, Williams & Wilkins, Baltimore, Maryland, Ch. 19, pp. 517-545 (1996); McGaugh, J.L. Science 287: 248- 251 (2000)). Alternatively, or additionally, the impairment in memory can be an impairment in short-term memory or an impairment in working memory. Short-term memory and working memory are processes whereby newly acquired information is maintained for short periods of time and the newly acquired information is made available for further information processing ("Neuroscience: Exploring The Brain," Bear, M.F. et al, Williams & Wilkins, Baltimore, Maryland, Ch. 19, pp. 517-545 (1996); McGaugh, J.L. Science 287: 248-251 (2000); Becker, J.T., et al, Brain and Cognition 41Λ-S (1999)). The impairment in memory can also be an impairment in declarative memory, which is the memory of facts and events ("Neuroscience: Exploring The Brain," Bear, M.F. et al, Williams & Wilkins, Baltimore, Maryland, Ch. 19, pp. 517-545 (1996); McGaugh, J.L. Science 287: 248-251 (2000); Tulving, E., et al, Science 247: 301-306 (1990); Squire, L.R., et al, Proc. Natl. Acad. Sci. 93: 13515-13522 (1996)). The impairment in memory can also be an impairment in procedural memory (also referred to as "tacit knowledge" or "implicit knowledge"), which is the memory for skills or behavior ("Neuroscience: Exploring The Brain," Bear, M.F. et al, Williams & Wilkins, Baltimore, Maryland, Ch. 19, pp. 517-545 (1996); McGaugh, J.L. Science 287: 248-251 (2000)). The impairment can also be an impairment in attention, acquisition, retrieval or retention. One of skill in the art would be capable of identifying and evaluating the impairment in memory in the individual. In a particular embodiment, at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil is administered to a human having an impairment in memory consolidation as a consequence of exposure to a muscarinic cholinergic receptor antagonist. In another embodiment, the individual can have an impairment in a cognitive process (Carlson, N.R., Physiology of Behavior, Allyn and Bacon, Boston, MA (1986); Cognition on Cognition, eds., Mehler, J. et al, Bradford Books (1995)). The impairment in a cognitive process can be an impairment in attention, which is the capacity or process of selecting out ofthe totality of available sensory or affective stimuli, those stimuli that are most appropriate or desirable for focus at a given time (Kinchla, R.A., et al, Annu. Rev. Psychol. 43: 711-742 (1992)). The impairment in a cognitive process can be an impairment in executive function, which are neuropsychological functions such as decision making, planning, initiative, assigning priority, sequencing, motor control, emotional regulation, inhibition, problem solving, planning, impulse control, establishing goals, monitoring results of action and self-correcting (Elliott, R., Rr. Med. Bull 65:49-59 (2003)). The cognitive impairment can be an impairment in alertness, wakefulness, arousal, vigilance, reaction time, attention, information processing, conceptualization, and verbal fluency. One of skill in the art would be capable of identifying and evaluating the impairment in cognition in the individual. In an embodiment ofthe invention, the impairment in memory or cognition in an individual is a consequence of exposure to scopolamine (also referred to herein as hyoscine). In another embodiment, the impairment in memory or cognition can be a consequence of exposure to atropine. In yet another embodiment, the impairment in memory or cognition in an individual is a consequence of exposure to homatropine. In still another embodiment, the muscarinic cholinergic receptor antagonist is trihexyphenidyl. Muscarinic cholinergic receptor antagonism by, for example, scopolamine, atropine, homatropine and trihexyphenidyl can result in an impairment in memory (impairment in memory consolidation, impairment in short term memory, impairment in working memroy) and/or cognition (e.g., alertness, executive function, arousal, wakefulness, attention, vigilance, reaction time, information processing, conceptualization, problem solving and verbal fluency) that can be ameliorated, diminished, attenuated, reversed, prevented or reduced by treatment with at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil. The term "threo-methylphenidate," such as is used when referring to "1-threo- methylphenidate" and "d-threo-methylphenidate," means a compound represented by Formula XII, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof. In a preferred embodiment, the threo-methylphenidate is the compound represented by Formula XII including salts, acids, esters, amides, carbamates and Schiff bases. In another preferred embodiment, the threo-methylphenidate is the compound represented by Formula XII, including its salts and acids. In still another preferred embodiment, the threo-methylphenidate is the compound represented by Formula XII:
Figure imgf000094_0001
The dextro enantiomer of threo-methylphenidate is referred to as the d, (+), or
D enantiomer and is represented by the following structural formula:
Figure imgf000095_0001
The levo enantiomer of threo-methylphenidate is referred to as the 1, (-), or L enantiomer and is represented by the following structural formula:
Figure imgf000095_0002
Racemic mixtures of d-threo-methylphenidate and 1-threo-methylphenidate are referred to as d,l, (+,-), (±), or DL. The term "methylphenidate," as used herein, means a compound represented by Formula XV, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof. In a preferred embodiment, methylphemdate is the compound represented by Formula XV including salts, acids, esters, amides, carbamates and Schiff bases. In another preferred embodiment, methylphenidate is the compound represented by Formula XV, including its salts and acids. In still another preferred embodiment, methylphenidate is the compound represented by Formula XV:
Figure imgf000096_0001
The term "atomoxetine," as used herein, means a compound represented by Formula XNI, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof. In a preferred embodiment, atomoxetine is the compound represented by Formula XVI including salts, acids, esters, amides, carbamates and Schiff bases. In another preferred embodiment, atomoxetine is the compound represented by Formula XVI, including its salts and acids. In still another preferred embodiment, atomoxetine is the compound represented by Formula XVI:
Figure imgf000096_0002
The term "modafinil," as used herein, means a compound represented by
Formula XNII, including its salts, acids, esters, amides, carbamates, Schiff bases, prodrugs and other structural and functional derivatives thereof. In a preferred embodiment, modafinil is the compound represented by Formula XNII including salts, acids, esters, amides, carbamates and Schiff bases. In another preferred embodiment, modafinil is the compound represented by Formula XVII, including its salts and acids. In still another preferred embodiment, modafinil is the compound represented by Formula XVII:
Figure imgf000097_0001
The amphetamine, threo-methylphenidate and methylphenidate, compounds employed in methods of treating a human having an impairment in memory and/or cognition as a consequence of exposure to a muscarinic cholinergic receptor antagonist can comprise at least about 51 percent (w/w (weight/weight) or mole percent), about 60 percent (w/w or mole percent), about 70 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent), about 90 percent (w/w or mole percent), about 95 percent (w/w or mole percent), or about 99 percent (w/w or mole percent) of one enantiomer relative to another enantiomer (e.g., 1-amphetamine relative to d-amphetamine; or 1-threo-methylphenidate to d-threo-methylphenidate). For example, an amphetamine compound employed in the methods ofthe invention can be 1-amphetamine, wherein the 1-amphetamine is administered as a component of a composition that includes at least about 80 percent (w/w or mole percent) 1- amphetamine or 1-methamphetamine relative to a total amphetamine or methamphetamine, respectively, content ofthe composition. Likewise, a threo- methylphenidate compound employed in the methods ofthe invention can be 1-threo- methylphenidate, wherein the 1-threo-methylphenidate is administered as a component of a composition that includes at least about 80 percent (w/w or mole percent) 1-threo-methylphenidate relative to a total threo-methylphenidate content of the composition. In another embodiment, the amphetamine, threo-methylphenidate and methylphenidate compounds employed are about 100 percent (w/w or mole percent) 1-amphetamine relative to d-amphetamine; or 1-threo-methylphenidate relative to d- threo-methylphenidate is about 100 percent (w/w or mole percent). An amphetamine or threo-methylphenidate compound that is "about 100 percent"
1-amphetamine, 1-methamphetamine or 1-threo-methylphenidate is a composition that includes about 100 percent (w/w or mole percent) 1-amphetamine, 1- methamphetamine or 1-threo-methylphenidate relative to a total content ofthe composition. An amphetamine or threo-methylphenidate compound that is "about 100 percent" can have insignificant traces of other components, such as d- amphetamine, d-threo-methylphenidate. Atomoxetine and modafinil can be at least about 51 percent (w/w (weight/weight) or mole percent), about 60 percent (w/w or mole percent), about 70 percent (w/w or mole percent), about 75 percent (w/w or mole percent), about 80 percent (w/w or mole percent), about 85 percent (w/w or mole percent), about 90 percent (w/w or mole percent), about 95 percent (w/w or mole percent), or about 99 percent (w/w or mole percent) ofthe total composition administered to the individual. In yet another embodiment, the atomoxetine and modafinil employed in the methods ofthe invention are about 100 percent (w/w or mole percent) atomoxetine or about 100 percent (w/w or more percent) modafinil. An atomoxetine or modafinil that is "about 100 percent" atomoxetine or modafinil can contain insignificant trace amounts of other compounds. The compounds employed in the methods ofthe invention can be the free base or can exist as salts with pharmaceutically acceptable acids. Examples of such salts include hydrochlorides, hydrobromides, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, tartrates (e.g., (+)-tartrates, (-)-tartrates or mixtures thereof including racemic mixtures), succinates, benzoates and salts with amino acids such as glutamic acid. In another embodiment, the compounds employed in the methods can be a percent ofthe total composition administered to the human. The amphetamine, threo-methylphenidate, methylphenidate, atomoxetine and/or modafinil component ofthe composition can be about 50 percent (w/w), about 60 percent (w/w), about 75 percent (w/w), about 80 percent (w/w), about 85 percent (w/w), about 90 percent (w/w), about 95 percent (w/w) and about 100 percent (w/w) ofthe total composition administered to the human. For example, the human can be administered a composition which comprises about 80 weight or volume percent amphetamine and/or threo-methylphenidate and about 20 weight or volume percent, respectively, of an inert excipient. Likewise, the human can be administered a composition which comprises about 80 weight or volume percent modafinil and/or atomoxetine and about 20 weight or volume percent, respectively, of an inert excipient. Similarly, the human can be administered a composition which comprises about 80 weight or volume percent of an amphetamine, a threo-methylphenidate, a methylphenidate, atomoxetine and/or modafinil and about 20 weight or volume percent, respectively, of an inert excipient. Another embodiment ofthe invention relates to assessing the degree of impairment in cognitive and/or memory processes in a human having an impairment in a cognitive and/or memory process as a consequence of exposure to a muscarinic cholinergic receptor antagonist. The improvement in cognitive or memory processes after administering at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil to the human can be determined at one or more time points following administration of at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil. The method can further include comparing the impairment in memory or cognition in the human before administering at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d- threo-methylphenidate, methylphenidate, atomoxetine and modafinil to the improvement in memory in the human after administering the compound. In a particular embodiment, memory is assessed prior to administration ofthe at least one member selected from the group consisting of 1-amphetamine, 1- methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil and determined after administration of at least one member selected from the group consisting of 1-amphetamine, 1- methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil by a word recall test such as RANLT (Rey, A. (1941). L'examen psychologique dans les cas d'encephalopathie traumatique. Archives de Psychologie, 28, 21, Lezak, M.D. (1995). Neuropsychological Assessment (3rd ed.). New York: Oxford University Press). In yet another embodiment, the invention is a method of improving an impaired memory and/or cognition in a human. A human is exposed to a muscarinic cholinergic receptor antagonist and, as a consequence of exposure to the muscarinic cholinergic receptor antagonist, the human has an impairment in memory or cognition. The human with an impaired memory or impaired cognition is administered at least one member selected from the group consisting of 1- amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil to improve the impairment in memory and/or cognition. In the methods ofthe invention, the human can be administered at least one member selected from the group consisting of 1-amphetamine, 1-methamphetamine, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil concomitantly with and/or subsequent to the memory and/or cognitive impairment that is a consequence of exposure to the muscarinic cholinergic receptor antagonist. For example, a human undergoing treatment with atropine in anticipation of a nerve gas attack or to counteract the effects of nerve gas exposure can be treated with at least one member selected from the group consisting of 1-amphetamine, 1- methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil, concomitantly with or subsequent to exposure ofthe human to the atropine to prevent, minimize, alleviate or improve an impairment in memory or cognition as a consequence of exposure to the atropine. The compounds employed in the methods ofthe invention can be administered as a single dose or as multiple doses. Additional doses ofthe compounds ofthe invention can be administered to the human, as needed, to improve cognition and/or memory or to sustain an improvement in cognition and/or memory. Cognition and/or memory can be assessed and determined before, concomitantly with or after treatment with the compounds to determine the progress of improvement in memory and the need for further doses. In one embodiment ofthe methods ofthe invention, the compound(s) employed in the methods ofthe invention (e.g., 1-amphetamine, 1-methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) is administered as a single oral dosage formulation of at least about 2.5 mg to about 25 mg, about 50 mg, about 75 mg, about 100 mg or about 125 mg ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) and a pharmaceutically acceptable carrier. In another embodiment, the single dosage formulation is at least about 0.001 mg, about 0.01 mg, about 0.1 mg, about 1 mg, about 2.5 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 750 mg, or about 1000 mg ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil). In still another embodiment, the methods ofthe invention employ multiple doses ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil). Each dose ofthe multiple dose is at least about 0.001 mg, about 0.01 mg, about 0.1 mg, about 1 mg, about 2.5 mg, about 5 mg, about 10 mg, about 15 mg, about 20 mg, about 25 mg, about 30 mg, about 35 mg, about 40 mg, about 45 mg, about 50 mg, about 55 mg, about 60 mg, about 75 mg, about 80 mg, about 85 mg, about 90 mg, about 95 mg, about 100 mg, about 125 mg, about 150 mg, about 200 mg, about 300 mg, about 400 mg, about 500 mg, about 750 mg or about 1000 mg ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil). The multiple doses can be administered for a day, days, a week, weeks, a month, months or years. The compounds employed in the methods ofthe invention can be administered to a human acutely (briefly or short-term) or chronically (prolonged or long-term). For example, the compounds, (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil) ofthe invention can be used in methods to treat a human by administering the compound to the human once a day, multiple times (e.g., 2, 3, 4) in a day, for a day, days, a week, weeks, a month, months or years. In yet another embodiment ofthe invention, the methods employ a single oral dosage formulation of between about 0.001 mg to about 125 mg; between about 0.001 mg to about 250 mg; between 0.001 mg to 500 mg; between about 0.01 mg to about 125 mg; between about 0.1 mg to about 125 mg; between about 1 mg to about 125 mg; between about 1 mg to about 250 mg; between about 1 mg to about 500 mg; or between about 1 mg to about 1000 mg ofthe compound employed in the methods (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo- methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) and, optionally, a pharmaceutically acceptable carrier. In a further embodiment, the methods ofthe invention employ multiple doses ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522- HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil), wherein each ofthe multiple doses ofthe compound is between about 0.001 mg to about 125 mg; or between about 0.001 mg to about 250 mg; or between about 0.001 mg to about 500 mg; or between about 0.01 mg to about 125 mg; or between about 0.1 mg to about 125 mg; or between about 0.01 mg; to about 500 mg; or between about 1 mg to about 125 mg; or between about 1 mg to about 500 mg; or between about 2.5 mg to about 25 mg, about 50 mg, about 75 mg, about 100 mg, about 125 mg, about 250 mg, about 500 mg or about 1000 mg ofthe compound(s) (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) and, optionally, a pharmaceutically acceptable carrier. In a further embodiment, the methods ofthe invention employ a single dose ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522- HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) between about 0.0015mg/kg to about 2 mg/kg; or between about 0.015 mg/kg to about 2 mg/kg. In yet another embodiment, the methods ofthe invention employ a single dose about 0.04 mg/kg, about 0.07 mg/kg, about 0.15 mg/kg, about 0.20 mg/kg, about 0.40 mg/kg, about 0.65 mg kg, about 1 mg/kg, about 1.50 mg/kg, about 1.80 mg/kg or about 3.5 mg/kg ofthe compound (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil). In an additional embodiment, the methods ofthe invention employ multiple doses ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522,
SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil), wherein each dose ofthe multiple dose is between about
0.0015 mg/kg to about 2 mg/kg; or between about 0.015 mg/kg to about 2 mg/kg. In still another embodiment, the methods ofthe invention employ multiple doses, wherein each does ofthe multiple dose is about 0.04 mg/kg, about 0.07 mg/kg, about 0.15 mg/kg, about 0.20 mg/kg, about 0.40 mg/kg, about 0.65 mg/kg, about 1 mg/kg, about 1.50 mg/kg, about 1.80 mg/kg or about 3.5 mg/kg ofthe compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1- τhreo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil). The cumulative dose ofthe compounds (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil) employed in the methods ofthe invention, regardless of whether the compound is administered in a single dose or in multiple doses is between about 0.2 mg to about 250 mg; or between about 1 mg to about 1250 mg ofthe compound(s). In a particular embodiment, the cumulative dose is about 2 mg, about 10 mg, about 20 mg, about 30 mg, about 50 mg, about 60 mg, about 90 mg, about 100 mg, about 150 mg, about 200 mg, about 250 mg, about 450 mg, about 750 mg, about 1000 mg, about 1250 mg, about 2500 mg, or about 5000 mg. The multiple doses or cumulative dose ofthe compound can be any combination of a compound ofthe invention (e.g., 1-amphetamine, C105, 1- methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil) in any combination of dose or doses. An "effective amount" or "amount effective," when referring to the amount of the compound (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) administered to the individual, is defined as that amount, or dose, ofthe compound that, when administered to an individual having an impairment in memory as a consequence of exposure to a muscarinic cholinergic receptor antagonist, is sufficient for therapeutic efficacy (e.g., an amount sufficient to improve memory in an individual having an impairment in memory; an amount sufficient to improve cognition in an individual having an impairment in cognition). The methods ofthe present invention can be accomplished by the administration ofthe compounds (e.g., 1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) ofthe invention by enteral or parenteral means. Specifically, the route of administration can be by oral ingestion (e.g., tablet, capsule form) or injection (e.g., intramuscular) ofthe compound. Other routes of administration are also encompassed by the present invention including intravenous, intraarterial, intraperitoneal, subcutaneous routes or nasal administration. Suppositories or transdermal patches can also be employed. The compounds employed in the methods ofthe invention can be administered alone or can be coadministered to the human. Coadminstration is meant to include simultaneous or sequential administration of one or more ofthe compounds (1-amphetamine, C105, 1-methamphetamine, SN522, SN522-HC1, 1- threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine and modafinil) individually or in combination. The simultaneous or sequential administration of compounds ofthe invention is conducted so that the mode of administration and the timing of administration results in a maximal improvement in memory (memory consolidation, short term memory, working memory) or cognition (e.g., attention, executive function, alertness, wakefulness, arousal, conceptualization, information processing, problem solving, verbal fluency) with minimal side effects (e.g., addiction, increases in heart rate, increases in blood pressure). It is also envisioned that multiple routes of administration (e.g., oral, transdermal, suppository, intramuscular) can be used to administer 1-amphetamine, C 105, 1-methamphetamine, SN522, SN522-HC1, 1-threo-methylphenidate, d-threo- methylphenidate, methylphenidate, atomoxetine and modafinil or any combination thereof. The dosage and frequency (single or multiple doses) administered to an individual can vary depending upon a variety of factors, including the duration of exposure to the muscarinic cholinergic receptor antagonist and severity ofthe impairment in memory (e.g., impairment in memory consolidation, impairment in short- term memory, an impairment in working memory) or cognition (e.g., attention, alertness, executive function, wakefulness, arousal, vigilance, executive function, reaction time); size, age, sex, health, body weight, body mass index and diet ofthe human; nature and extent of symptoms ofthe impairment in memory or cognition, kind of concurrent treatment (e.g., atropine, scopolamine), complications from exposure to the muscarinic cholinergic receptor antagonist, or other health-related problems ofthe human being treated. Other therapeutic regimens or agents can be used in conjunction with the methods and compounds employed in the methods ofthe invention. Adjustment and manipulation of established dosages (e.g., frequency and duration) are well within the -li¬
ability of those skilled in the art. The invention also relates to the conjoint use of a amphetamine compound with agents that mimic or stimulate PKC and/or PKA pathways.
A. Synthesis of Amphetamine compounds As described in further detail below, it is contemplated that the subject methods can be carried out using a stereomerically enriched preparation in a eutomer of amphetamine comρound(s), particularly R-(-)-amphetamine, or a variety of different derivatives thereof. The suitability of use of a particular amphetamine compound can be readily determined, for example, by such drug screening assays as described herein. The subject amphetamine compounds, and derivatives thereof, can be prepared readily by employing known synthetic methodology. As is well known in the art, these coupling reactions are carried out under relatively mild conditions and tolerate a wide range of "spectator" functionality. Additional compounds may be synthesized and tested in a combinatorial fashion, to facilitate the identification of additional amphetamine compounds which may be employed in the subject method. Numerous methods for synthesizing amphetamine and for resolving the enantiomers of amphetamine have been described in the art, see for example: US Patent No. 5,075,338 to Knoll et al.; US Patent No. 2,828,343 to Tindall; US Patent No. 3,458,576 to Bryan; UK Patent No. GB 2,122,617; US Patent No. 3,996,381 to Florvall et al.; Croce et al., 1996, Gazz. Chim. Ital. 126:107-109; Mastagli et. al., 1950, Bull. Soc. Chim. Fr. 1045-1047; Smith et al., 1988, J. Med. Chem. 31 :1558-1566; Bobranskii et al., 1941, J. Applied Chem. (U.S.S.R.) 14:410-414; Magidson, 1941, J. Gen. Chem. (U.S.S.R.) 11 :339-343. The contents of these publications are incorporated herein by reference. In one embodiment, a subject amphetamine compound can be synthesized according to the methods set forth in US Patent 5,075,338. Briefly, amphetamine compounds ofthe general formula:
Figure imgf000107_0001
can be prepared by reacting a ketone ofthe formula:
Figure imgf000107_0002
with an amine ofthe formula: R"NH2 and reducing the ketimine intermediate formed without or after isolation. The reduction can be carried out by methods known per se, e.g., by catalytic hydrogenation (preferably in the presence of a palladium or Raney-nickel catalyst) or by using a complex metal hydride (e.g. sodium borohydride) or with the aid of a conventional reducing agent (e.g. sodium dithionite or amalgamated aluminum). R-(-)-amphetamine and S-(+)-amphetamine may be obtained by optical resolution of racemic mixtures of R- and S-enantiomers of amphetamine. Such a resolution can be accomplished by any conventional resolution methods well known to a person skilled in the art, such as those described in J. Jacques, A. Collet and S. Wilen, "Enantiomers, Racemates and Resolutions," Wiley, N.Y. (1981). For example, the resolution may be carried out by preparative chromatography on a chiral column. Another example of a suitable resolution method is the formation of diastereomeric salts with a chiral acid such as tartaric, malic, mandelic acid or N-acetyl derivatives of amino acids, such as N-acetyl leucine, followed by recrystallization to isolate the diastereomeric salt ofthe desired R enantiomer. In one embodiment, a subject R-(-)-amphetamine may be resolved according to the methods set forth in J. Med. Chem, 1988, 31 :1558:1570. Briefly, racemic amphetamine is combined with a hot ethanol solution of D-(-)-tartaric acid. The solution is allowed to cool to room temperature and the white crystals are collected and recrystallized twice more from ethanol to give D-tartaric acid salt of R-(-)-amphetamine. To recover R-(-)-amphetamine, the D-tartaric acid salt of R-(-)-amphetamine is treated with sodium hydroxide in water and extracted with diethyl ether. The compounds ofthe present invention may also be provided in the form of prodrugs, e.g., to protect a drug from being altered while passing through a hostile environment, such as the digestive tract. Prodrugs can be prepared by forming covalent linkages between the drug and a modifier. See, for example, Balant at al., Eur. J. Drug Metab. Pharmacokinetics, 1990, 15(2), 143-153. The linkage is usually designed to be broken under defined circumstances, e.g., pH changes or exposure to specific enzymes. The covalent linkage ofthe drug to a modifier essentially creates a new molecule with new properties such as an altered log P value and/or as well as a new spatial configuration. The new molecule can have different solubility properties and be less susceptible to enzymatic digestion. For general references on prodrug design and preparation, see: Bundraard, Design of Prodrugs, Elsevier Science Pub. Co., N.Y. (1985), and Prodrugs as Novel Drug Delivery Systems Symposium,
168.sup.th Annual Meeting, -American Chemical Society, Atlantic City, N.J., Eds. T. Higuchi and V. Stella, ACS Symposium Series 14, 1975, which are herein incorporated by reference. Prodrugs of amine-containing compounds are well known in the art and have been prepared, e.g., by reacting the amine moiety of a drug with a carboxylic acid, acid chloride, chloroformate, or sulfonyl chloride modifiers, and the like, resulting in the formation of amides, sulfonamides, carboxyamides, carbamates, Schiff bases and similar compounds. See, for example, Abuchowski et al., J. Biol. Chem. 1977, 252, 3578-358; Senter et al., J. Org. Chem., 1990, 55, 2975-2978; Amsberry et al., J. Org. Chem., 1990, 55, 5867-5877; Klotz, Clin. Pharmacokinetics, 1985, 10, 285-302, which are herein incorporated by reference. Similar and other protocols may be followed for the formation of prodrugs ofthe compounds ofthe present invention. The compounds ofthe present invention, particularly libraries of amphetamine analogs having various representative classes of substituents, are amenable to combinatorial chemistry and other parallel synthesis schemes (see, for example, PCT WO 94/08051). The result is that large libraries of related compounds, e.g., a variegated library of compounds represented above, can be screened rapidly in high throughput assays in order to identify potential amphetamine analogs, as well as to refine the specificity, toxicity, and/or cytotoxic-kinetic profile of a lead compound. Simply for illustration, a combinatorial library for the purposes ofthe present invention is a mixture of chemically related compounds which may be screened together for a desired property. The preparation of many related compounds in a single reaction greatly reduces and simplifies the number of screening processes which need to be carried out. Screening for the appropriate physical properties can be done by conventional methods. Diversity in the library can be created at a variety of different levels. For instance, the substrate aryl groups used in the combinatorial reactions can be diverse in terms ofthe core aryl moiety, e.g., a variegation in terms ofthe ring structure, and/or can be varied with respect to the other substituents. A variety of techniques are available in the art for generating combinatorial libraries of small organic molecules such as the subject amphetamine compounds. See, for example, Blondelle et al. (1995) Trends Anal. Chem. 14:83; the Affymax U.S. Patents 5,359,115 and 5,362,899: the Ellman U.S. Patent 5,288,514: the Still et al. PCT publication WO 94/08051; the ArQule U.S. Patents 5,736,412 and 5,712,171; Chen et al. (1994) JACS 116:2661: Kerr et al. (1993) JACS 115:252; PCT publications WO92/10092, WO93/09668 and WO91/07087; and the Lerner et al. PCT publication WO93/20242). Accordingly, a variety of libraries on the order of about 100 to 1,000,000 or more diversomers ofthe subject amphetamine compounds can be synthesized and screened for particular activity or property. In an exemplary embodiment, a library of candidate amphetamine compound diversomers can be synthesized utilizing a scheme adapted to the techniques described in the Still et al. PCT publication WO 94/08051, e.g., being linked to a polymer bead by a hydrolyzable or photofyzable group, optionally located at one of the positions ofthe candidate regulators or a substituent of a synthetic intermediate. According to the Still et al. technique, the library is synthesized on a set of beads, each bead including a set of tags identifying the particular diversomer on that bead. The bead library can then be "plated" with cells for which an amphetamine compound is sought. The diversomers can be released from the bead, e.g., by hydrolysis. Many variations on the above and related pathways permit the synthesis of widely diverse libraries of compounds which may be tested as amphetamine compounds.
B. Generation of Animal Models to Test Agents Applicants have previously described an animal model for studying fornix-mediated memory consolidation. See, for example, Taubenfield et al., supra. The fornix-lesioned animals can be used for drug screening, e.g., to identify dosages ofthe subject compositions which enhance memory consolidation. The lesioned mammal can have a lesion ofthe fornix or a related brain structure that disrupts memory consolidation (e.g., perirhinal cortex, amygdala, medial septal nucleus, locus coeruleus, hippocampus, mammallary bodies). Lesions in the mammal can be produced by mechanical or chemical disruption. For example, the fornix lesion can be caused by surgical ablation, electrolytic, neurotoxic and other chemical ablation techniques, or reversible inactivation such as by injection of an anesthetic, e.g., tetrodotoxin or lidocaine, to temporarily arrest activity in the fornix. To further illustrate, fimbrio-fornix (rodents) and fornix (primates) lesions can be created by stereotactic ablation. In particular, neurons ofthe fornix structure are axotomized, e.g., by transection or aspiration (suction) ablation. A complete transection ofthe fornix disrupts adrenergic, cholinergic and GABAergic function and electrical activity, and induces morphological reorganization in the hippocampal formation. In general, the fornix transection utilized in the subject method will not disconnect the parahippocampal region from the neocortex. In those embodiments, the fornix transection will not disrupt functions that can be carried out by the parahippocampal region independent of processing by the hippocampal formation, and hence would not be expected to produce the full-blown amnesia seen following more complete hippocampal system damage. In one embodiment, the animal can be a rat. Briefly, the animals are anesthetized, e.g., with intraperitoneal injections of a ketamine-xylazine mixture and positioned in a Kopf® stereotaxic instrument. A sagittal incision is made in the scalp and a craniotomy is performed extending 2.0 mm posterior and 3.0 mm lateral from Bregma. An aspirative device, e.g., with a 20 gauge tip, is mounted to a stereotaxic frame (Kopf® Instruments) and fimbria-fornix is aspirated by placing the suction tip at the correct sterotaxic location in the animal's brain. Unilateral aspirative lesions are made by suction through the cingulate cortex, completely transecting the fimbria fornix unilaterally, and (optionally) removing the dorsal tip ofthe hippocampus as well as the overlying cingulate cortex to inflict a partial denervation on the hippocampus target. See also, Gage et al., (1983) Brain Res. 268:27 and Gage et al. (1986) Neuroscience 19:241. In another exemplary embodiment, the animal can be a monkey. The animal can be anesthetized, e.g., with isoflurane (1.5-2.0%). Following pretreatment with mannitol (0.25 g/kg, iv), unilateral transections ofthe left fornix can be performed, such as described by Kordower et al. (1990) J. Comp. Neural., 298:443. Briefly, a surgical drill is used to create a parasagittal bone flap which exposes the frontal superior sagittal sinus. The dura is retracted and a self-retaining retractor is used to expose the interhemispheric fissure. The corpus callosum is longitudinally incised. At the level ofthe foramen of Monro, the fornix is easily visualized as a discrete 2-3 mm wide white fiber bundle. The fornix can be initially transected using a ball dissector. The cut ends ofthe fornix can then be suctioned to ensure completeness of the lesion. In still other illustrative embodiments, the fornix lesion can be created by excitotoxicity, or by other chemical means, inhibiting or ablating fornix neurons, or the cells ofthe hippocampus which are innervated by fornix neurons. In certain preferred embodiments, the fornix lesion is generated by selective disruption of particular neuronal types, such as fornix cholinergic and adrenergic neurons. For instance, the afferant fornix signals to the hippocampus due to cholinergic neurons can be ablated by atropine blockade. Another means for ablation of the cholinergic neurons is the use of 192IgG-saporin (192IgG-sap), e.g., intraventricularly injection into the fornix and hippocampus. The agents such as 6-OHDA and ibotenic acid can be used to selectively destroy fornix dopamine neurons as part ofthe ablative regimen. In one embodiment, the animal is a non-human mammal, such as a dog, cat, horse, cow, pig, sheep, goat, chicken, monkey, ape, rat, rabbit, etc. In another embodiment, the animal is a non-human primate. In still another embodiment, the subject is a human. There are a variety of tests for cognitive function, especially learning and memory testing, which can be carried our using the lesioned and normal animals. Learning and/or memory tests include, for example, Inhibitory Avoidance Test (also referred to herein as "Passive Avoidance Test"), contextual fear conditioning, visual delay non-match to sample, spatial delay non-match to sample, visual discrimination, Barnes circular maze, Morris water maze, radial arm maze tests, Ray Auditory-Visual Learning Test, the Wechsler Logical Memory Test, and the Providence Recognition Memory Test. An exemplary Inhibitory Avoidance Test utilizes an apparatus that consists of a lit chamber that can be separated from a dark chamber by a sliding door. At training, the animal is placed in the lit chamber for some period of time, and the door is opened. The animal moves to the dark chamber after a short delay - the step- through latency - which is recorded. Upon entry into the dark chamber, the door is shut closed and a foot shock is delivered. Retention ofthe experience is determined after various time intervals, e.g., 24 or 48 hours, by repeating the test and recording the latency. The protocol is one of many variants ofthe passive avoidance procedures (for review, see Rush (1988) Behav. Neural. Biol. 50:255). An exemplary maze testing embodiment is the water maze working memory test. In general, the method utilizes an apparatus which consists of a circular water tank. The water in the tank is made cloudy by the addition of milk powder. ' A clear plexiglass platform, supported by a movable stand rest on the bottom ofthe tank, is submerged just below the water surface. Normally, a swimming rat cannot perceive the location ofthe platform but it may recall it from a previous experience and training, unless it suffers from some memory impairment. The time taken to locate the platform is measured and referred to as the latency. During the experiment, all orientational cues such as ceiling lights, etc., remain unchanged. Longer latencies are generally observed with rats with some impairment to their memory. Another memory test includes the eyeblink conditioning test, which involves the administration of white noise or steady tone that precedes a mild air puff which stimulates the subject's eyeblink. Still another memory test which can be used is fear conditioning, e.g., either "cued" and "contextual" fear conditioning. In one embodiment, a freeze monitor administers a sequence of stimuli (sounds, shock) and then records a series of latencies measuring the recovery from shock induced freezing ofthe animal. Another memory test for the lesioned animals is a holeboard test, which utilizes a rotating holeboard apparatus containing (four) open holes arranged in a 4-corner configuration in the floor ofthe test enclosure. A mouse is trained to poke its head into a hole and retrieve a food reward from a "baited" hole which contains a reward on every trial. There is a food reward (e.g., a Fruit Loop) in every exposed hole which is made inaccessible by being placed under a screen. The screen allows the odor ofthe reward to emanate from the hole, but does not allow access to the reinforcer. When an individual hole is baited, a reward is placed on top ofthe screen, where it is accessible. The entire apparatus rests on a turntable so that it may be rotated easily to eliminate reliance on proximal (e.g., olfactory) cues. A start tube is placed in the center ofthe apparatus. The subject is released from the tube and allowed to explore for the baited ("correct") hole. As set out above, one use for the fornix-lesioned animals is for testing amphetamine compounds for ability to modulate memory consolidation, as well as for side effects and toxicity. In general, the subject method utilizes an animal which has been manipulated to create at least partial disruption of fornix-mediated signalling to the hippocampus, the disruption affecting memory consolidation and learned behavior in the animal. The animal is conditioned with a learning or memory regimen which results in learned behavior in the mammal in the absence ofthe fornix lesion. Amphetamine compounds are admimstered to the animal in order to assess their effects on memory consolidation. An increase in learned behavior, relative to the absence ofthe test agents, indicates that the administered combination enhances memory consolidation. Another memory test especially developed for use in pharmaceutical studies is the Providence Recognition Memory Test. This test consists of one pictorial and one verbal assessment of long-term declarative memory. In each ofthe two modes, the patient views stimuli on a computer screen and is later asked to recognize those stimuli in a two-alternative forced-choice format. The pictorial assessment mode consists of two parts: a study phase and a recognition phase. In the study phase, patients view a series of 120 pictures, for 3 seconds each. They are told to look at the pictures and remember them, so that they can recognize them later. In the recognition phase, patients view pictures two at a time and are asked to indicate by button press which ofthe two pictures they saw in a study phase. Recognition memory testing occurs at ten minutes, one hour, and 24 hours after the end ofthe study phase. The verbal assessment mode consists of two parts: a study phase and a recognition phase. In the study phase, patients view a series of 60 sentences one at a time. They are asked to read the sentences aloud and remember them, so that they can recognize them later. Each sentence remains on the computer screen until the patient has finished reading it aloud. If patients read words incorrectly, the examiner supplies the correct word or words. In the recognition phase, patients view sentences two at a time and are asked to indicate by button press which ofthe two sentences they saw in the study phase. Recognition memory testing occurs at ten minutes, one hour, and 24 hours after the end ofthe study phase. In the methods ofthe present invention, retention ofthe learned behavior can be determined, for example, after at least about 12-24 hours, 14-22 hours, 16-20 hours and or 18-19 hours after completion ofthe learning phase to determine whether the agents promote memory consolidation. In a particular embodiment, retention of the learned behavior can be determined 24 hours after completion ofthe learning phase. In addition to models for studying memory consolidation, models to assess side effects of amphetamine compounds on behavior have been utilized including locomotor activity models. An exemplary locomotor activity test utilizes an apparatus that consists of photocell activity cages with a grid of photocell beams placed around the cage. The animals are placed in individual activity cages some period of time prior to administration of agents. Locomotor activity is measured by the number of interruptions ofthe photoelectric beam during a given period of time. As used herein, a "control mammal" can be an untreated lesion mammal (i.e., a lesion animal receiving no agents or not the same combinations to be assessed), a trained control mammal (i.e., a mammal that undergoes training to demonstrate a learned behavior without any lesion) and/or an untrained control mammal (i.e., a mammal with or without a lesion, that receives no training to demonstrate a learned behavior).
C. Pharmaceutical preparations of amphetamine compounds In another aspect, the present invention provides pharmaceutical preparations comprising the subject amphetamine compounds. The amphetamine compounds for use in the subject method may be conveniently formulated for administration with a biologically acceptable, non-pyrogenic, and/or sterile medium, such as water, buffered saline, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol and the like) or suitable mixtures thereof. The optimum concentration ofthe active ingredient(s) in the chosen medium can be determined empirically, according to procedures well known to behavioral scientists. As used herein, "biologically acceptable medium" includes any and all solvents, dispersion media, and the like which may be appropriate for the desired route of administration ofthe pharmaceutical preparation. The use of such media for pharmaceutically active substances is known in the art. Except insofar as any conventional media or agent is incompatible with the activity ofthe amphetamine compounds, its use in the pharmaceutical preparation ofthe invention is contemplated. Suitable vehicles and their formulation inclusive of other proteins are described, for example, in the book Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences. Mack Publishing Company, Easton, Pa., USA 1985). These vehicles include injectable "deposit formulations". Pharmaceutical formulations ofthe present invention can also include veterinary compositions, e.g., pharmaceutical preparations ofthe amphetamine compounds suitable for veterinary uses, e.g., for the treatment of livestock or domestic animals, e.g., dogs. Methods of introduction may also be provided by rechargeable or biodegradable devices. Various slow release polymeric devices have been developed and tested in vivo in recent years for the controlled delivery of drugs. A variety of biocompatible polymers (including hydrogels), including both biodegradable and non-degradable polymers, can be used to form an implant for the sustained release of a amphetamine compound at a particular target site. In accordance with the practice of this invention, it has been found that a dosage form and a method can be provided that administers a amphetamine compound in a program that substantially lessens or completely compensates for tolerance in a patient. Tolerance, as defined in Pharmacology in Medicine, by Brill, p. 227 (1965) McGraw-Hill, is characterized as a decrease in effect followed by administering a drug. When tolerance develops following a single dose or a few doses over a very short time, it is referred to as acute tolerance. When the drug is administered over a more protracted period of time to show a demonstrable degree of tolerance, it is referred to as chronic tolerance. The medical literature, as exemplified in, The Pharmacological Bases of Therapeutics, by Goodman and Gilman, 8th Ed., p. 72 (1990) Pergamon Press, reported tolerance may be acquired to the effects of many drugs and this literature classifies tolerance as acute or chronic based on when it is acquired. That is, acute tolerance develops during a dosing phase of one dose or on one day, and chronic tolerance is acquired due to chronic administration typically weeks, months, and years. In certain embodiments, particularly where the selected amphetamine compound is one which may produce tolerance, e.g., acute tolerance, in the patient, it may desirable to formulate the compound for variable dosing, and preferably for use in a dose-escalation regimen. In preferred embodiments, the subject amphetamine compounds are formulated to deliver a sustained and increasing dose, e.g., over at least 4 hours, and more preferably over at least 8 or even 16 hours. In certain embodiments, representative dosage forms include hydrogel matrix containing a plurality of tiny pills. The hydrogel matrix comprises a hydrophilic polymer, such as selected from the group consisting of a polysaccharide, agar, agarose, natural gum, alkali alginate including sodium alginate, carrageenan, fucoidan, furcellaran, laminaran, hypnea, gum arabic, gum ghatti, gum karaya, gum tragacanth, locust bean gum, pectin, amylopectin, gelatin and a hydrophilic colloid. The hydrogel matrix comprises a plurality of tiny pills (such as 4 to 50), each tiny pill comprising an increasing dose population of from 100 ng ascending in dose such as 0.5 mg, 1 mg, 1.2 mg, 1.4 mg, 1.6 mg, 1.8 mg, etc. The tiny pills comprise a release rate controlling wall of 0.0 mm to 10 mm thickness to provide for the timed ascending release of drug. Representative of wall-forming materials include a triglyceryl ester selected from the group consisting of glyceryl tristearate, glyceryl monostearate, glyceryl dipalmitate, glyceryl laureate, glyceryl didecenoate and glyceryl tridecenoate. Other wall forming materials comprise polyvinyl acetate phthalate, methylcellulose phthalate, and microporous vinyl olefins. Procedures for manufacturing tiny pills are disclosed in U.S. Pat. Nos. 4,434,153; 4,721,613; 4,853,229; 2,996,431; 3,139,383 and 4,752,470, which are incorporated by reference herein. In certain embodiments, the drug releasing beads are characterized by a dissolution profile wherein 0 to 20% ofthe beads undergo dissolution and release the drug in 0 to 2 hours, 20 to 40% undergo dissolution and release the drug in 2 to 4 hours, 40 to 60% exhibit dissolution and release in 4 to 6 hours, 60 to 80% in 6 to 8 hours, and 80 to 100% in 8 to 10 hours. The drug releasing beads can include a central composition or core comprising a drug and pharmaceutically acceptable composition forming ingredients including a lubricant, antioxidant, and buffer. The beads comprise increasing doses of drug, for example, 1 mg, 2 mg, 5 mg, and so forth to a high dose, in certain preferred embodiments, of 15 to 100 mg. The beads are coated with a release rate controlling polymer that can be selected utilizing the dissolution profile disclosed above. The manufacture ofthe beads can be adapted from, for example, Liu et al. (1994) Inter. J. of Pharm., 112:105-116; Liu et al. (1994) Inter. J. of Pharm., 112:117-124; Pharm. Sci., by Remington, 14th Ed. pp. 1626-1628 (1970); Fincher et al. (1968) J. Pharm. Sci., 57:1825-1835; and U.S. Pat. No. 4,083,949. Another exemplary dosage form provided by the invention comprises a concentration gradient of amphetamine compound from 1 mg to 15-600 mg coated from the former low dose to the latter high dose on a polymer substrate. The polymer can be erodible or a nonerodible polymer. The coated substrate is rolled about itself from the latter high dose at the center ofthe dosage form, to the former low dose at the exposed outer end ofthe substrate. The coated substrate is rolled from the high dose to the low dose to provide for the release of from low to high dose as the substrate unrolls or erodes. For example, 1 mg to 600 mg of amphetamine is coated onto an erodible polymer such as an polypeptide, collagen, gelatin, or polyvinyl alcohol, and the substrate rolled concentrically from the high dose rolled over and inward to adapt a center position, and then outward towards the low dose to form an outer position. In operation, the dosage form erodes dispensing an ascending dose of amphetamine that is released over time. Another dosage form provided by the invention comprises a multiplicity of layers, wherein each layer is characterized by an increasing dose of drug. The phrase "multiplicity of layers" denotes 2 to 6 layers in contacting lamination. The multiplicity of layers are positioned consecutively, that is, one layer after another in order, with a first exposed layer, the sixth layer in contact with the fifth layer and its exposed surface coated with a drug impermeable polymer. The sixth layer is coated with a drug impermeable polymer to insure release ofthe amphetamine compound from the first layer to the sixth layer. The first layer comprises, for example, 1 to 50 mg of drug and each successive layer comprises an additional 1 to 50 mg of drug. The biodegradable polymers undergo chemical decomposition to form soluble monomers or soluble polymer units. The biodegradation of polymers usually involves chemically or enzymatically catalyzed hydrolysis. Representative of biodegradable polymers acceptable for an increase drug loading in each layer of from 5 to 50 wt % over the first and successive layers wherein the first layer comprises 100 ng. Representative biodegradable polymers comprise a member selected from the group consisting of biodegradable poly(amides), poly(amino acids), poly(esters), poly(lactic acid), poly(glycolic acid), poly(orthoesters), poly(anhydrides), biodegradable poly(dehydropyrans), and poly(dioxinones). The polymers are known to the art in Controlled Release of Drugs, by Rosoff, Ch. 2, pp. 53-95 (1989); and in U.S. Pat. Nos. 3,811,444; 3,962,414; 4,066,747; 4,070,347; 4,079,038; and 4,093,709. In still other embodiments, the invention employs a dosage form comprising a polymer that releases a drug by diffusion, flux through pores, or by rupture of a polymer matrix. The drug delivery polymeric system comprises a concentration gradient, wherein the gradient is an ascent in concentration from a beginning or initial concentration to a final, or higher concentration. The dosage form comprises an exposed surface at the beginning dose and a distant nonexposed surface at the final dose. The nonexposed surface is coated with a pharmaceutically acceptable material impermeable to the passage of drug. The dosage form structure provides for a flux increase delivery of drug ascending from the beginning to the final delivered dose. Figure 17 illustrates such an embodiment, where the amphetamine compound is contained within a nonabsorbable shell that releases the drug at a controlled rate. The dosage form matrix can be made by procedures known to the polymer art. In one manufacture, 3 to 5 or more casting compositions are independently prepared wherein each casting composition comprises an increasing dose of drug with each composition overlayered from a low to the high dose. This provides a series of layers that come together to provide a unit polymer matrix with a concentration gradient. In another manufacture, the higher does is cast first followed by laminating with layers of decreasing dose to provide a polymer matrix with a drug concentration gradient. An example of providing a dosage form comprises blending a pharmaceutically acceptable carrier, like polyethylene glycol, with a known dose of a amphetamine compound and adding it to a silastic medical grade elastomer with a cross-linking agent, like stannous octanoate, followed by casting in a mold. The step is repeated for each successive layer. The system is allowed to set, for 1 hour, to provide the dosage form. Representative polymers for manufacturing the dosage form comprise a member selected from the group consisting of olefin and vinyl polymers, condensation polymers, carbohydrate polymers, and silicon polymers as represented by poly(ethylene), poly(propylene), poly(vinyl acetate), poly(methyl acrylate), poly(isobutyl methacrylate), poly(alginate), poly(amide), and poly(silicone). The polymers and manufacturing procedures are known in Polymers, by Coleman et al., Vol. 31, pp. 1187-1230 (1990); Drug Carrier Systems, by
Roerdink et al., Vol. 9, pp. 57-109 (1989); Adv. Drug Delivery Rev., by Leong et al., Vol. 1, pp. 199-233 (1987); Handbook of Common Polymers, Compiled by Roff et al., (1971) published by CRC Press; and U.S. Pat. No. 3,992,518. In still other embodiments, the subject formulations can be a mixture of different prodrug forms of one or more different amphetamine compounds, each prodrug form having a different hydrolysis rate, and therefore activation rate, to provide an increasing serum concentrationof the active amphetamine compounds. In other embodiments, the subject formulations can be a mixture different amphetamine compounds, each compound having a different rate of adsorption (such as across the gut or epithelia) and/or serum half-life. The dose-escalation regimen o the present invention can be used to compensate for the loss of a therapeutic effect of a amphetamine compound, if any, by providing a method of delivery that continually compensates for the development of acute tolerance, by considering the clinical effect (E) of a drug at time (t) as a function ofthe drug concentration (C) according to Equation 1 :
Effect = f (t, C)
In addition, the rate of drug delivered (A), in mg per hour is inversely proportional to the concentration times the clearance ofthe drug. As the effect varies with time and the functionality is expressed, then according to this invention (A) can be governed to ensure the therapeutic effect is maintained at a clinical value. If the effect from a drug is found clinically to decrease with time, this decline could be linear as expressed by Equation 2:
Effect(t) = Effect(ini) -keffeot *t wherein, Effect(ini) is the clinical effect observed initially at the start of drug administration and Effect(t) is the effect observed at time (t) hours, keffect is a proportionality constant ascertained by measuring the clinical effect (El) at time (tl) hours and (E2) at time (t2) hours while maintaining a constant plasma concentration followed by dividing (El) minus (E2) by (tl) minus (t2). In order to maintain a constant effect, (A) must be adjusted with the same functionality according to Equation 3:
A(t) A(ini) + keffect *t
wherein A(ini) is the initial drug input in mg per hour at the start ofthe therapy and A(t) is the drug input at time (t) hours, and keffect is the proportionality constant presented above. If the therapeutic effect is found to decline exponentially with time, this relationship is expressed by Equation 4:
Effect(t) = Effect(ini) *exp (-keffect*t)
wherein Effect(ini) and Effect(t) are as defined before, keffect (or keffect) is a rate constant (h-1), a unit of reciprocal hours, ascertained by measuring the clinical effect (El) at time (tl) hours and (E2) at time (t2) hours while maintaining a constant plasma concentration followed by dividing natural log of (El) minus natural log of (E2) by (tl) minus (t2). To maintain a constant effect, (A) must be adjusted according to Equation 5: ffect*t)
Figure imgf000121_0001
wherein A(ini) and A(t) are as defined before, keffect is the rate constant (h-1) presented above. The equations are presented in Holford et al. (1982) Pharmac. Ther., 16:143-166. The preparations ofthe present invention may be given orally, parenterally, topically, or rectally. They are of course given by forms suitable for each administration route. For example, they are administered in tablets or capsule form, by injection, infusion, inhalation, rectal suppository, or controlled release patch. Oral and controlled release patch administrations are preferred. In a particular embodiment, 1-amphetamine and/or 1-methamphetamine are orally administered to a human. The oral administration ofthe 1-amphetamine and/or 1-methamphetamine means that the 1-amphetamine and/or 1-methamphetamines is ingested by the human and is not a metabolite of another ingested compound such as 1-deprenyl. In certain preferred embodiments, the subject therapeutic is delivered by way of a transdermal patch. A patch is generally a flat hollow device with a permeable membrane on one side and also some form of adhesive to maintain the patch in place on the patient's skin, with the membrane in contact with the skin so that the medication can permeate out ofthe patch reservoir and into and through the skin. The outer side the patch is formed of an impermeable layer of material, and the membrane side and the outer side are joined around the perimeter ofthe patch, forming a reservoir for the medication and carrier between the two layers. Patch technology is based on the ability to hold an active ingredient in constant contact with the epidermis. Over substantial periods of time, drug molecules, held in such a state, will eventually find their way into the bloodstream. Thus, patch technology relies on the ability ofthe human body to pick up drug molecules through the skin. Transdermal drug delivery using patch technology has recently been applied for delivery of nicotine, in an effort to assist smokers in quitting, the delivery of nitroglycerine to angina sufferers, the delivery of replacement hormones in post menopausal women, etc. These conventional drug delivery systems comprise a patch with an active ingredient such as a drug incorporated therein, the patch also including an adhesive for attachment to the skin so as to place the active ingredient in close proximity to the skin. Exemplary patch technologies are available from Ciba-Geigy Corporation and Alza Corporation. Such transdermal delivery devices can be readily adapted for use with the subject amphetamine compounds. The flux ofthe subject amphetamines across the skin can be modulated by changing either (a) the resistance (the diffusion coefficient), or (b) the driving force (the solubility ofthe drug in the stratum corneum and consequently the gradient for diffusion). Various methods can be used to increase skin permeation by the subject amphetamines, including penetration enhancers, use of pro-drug versions, superfluous vehicles, iontophoresis, phonophoresis and thermophoresis. Many enhancer compositions have been developed to change one or both of these factors. See, for example, U.S. Pat. Nos. 4,006,218; 3,551,154; and 3,472,931, for example, respectively describe the use of dimethylsulfoxide (DMSO), dimethyl formamide (DMF), and N,N-dimethylacetamide (DMA) for enhancing the absorption of topically applied drugs through the stratum corneum. Combinations of enhancers consisting of diethylene glycol monoethyl or monomethyl ether with propylene glycol monolaurate and methyl laurate are disclosed in U.S. Pat. No. 4,973,468 . A dual enhancer consisting of glycerol monolaurate and ethanol for the transdermal delivery of drugs is shown in U.S. Pat. No. 4,820,720. U.S. Pat. No. 5,006,342 lists numerous enhancers for transdermal drug administration consisting of fatty acid esters or fatty alcohol ethers of C2 to C4 alkanediols, where each fatty acid/alcohol portion ofthe ester/ether is of about 8 to 22 carbon atoms. U.S. Pat. No. 4,863,970 shows penetration-enhancing compositions for topical application comprising an active permeant contained in a penetration-enhancing vehicle containing specified amounts of one or more cell-envelope disordering compounds such as oleic acid, oleyl alcohol, and glycerol esters of oleic acid; a C2 or C3 alkanol; and an inert diluent such as water. Other examples are included in the teachings of U.S. Pat. No. 4,933,184 which discloses the use of menthol as a penetration enhancer; U.S. Pat. No. ,229,130 discloses the use of vegetable oil (soybean and/or coconut oil) as a penetration enhancer; and U.S. Pat. No. 4,440,777 discloses the use of eucalyptol as a penetration enhancer. The phrases "parenteral administration" and "administered parenterally" as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, franstracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion. The phrases "systemic administration," "administered systemically," "peripheral administration" and "administered peripherally" as used herein mean the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration. These compounds may be administered to humans and other animals for therapy by any suitable route of administration, including orally, nasally, as by, for example, a spray, rectally, mtravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually. Regardless ofthe route of administration selected, the compounds ofthe present invention, which may be used in a suitable hydrated form, and/or the pharmaceutical compositions ofthe present invention, are formulated into pharmaceutically acceptable dosage forms such as described below or by other conventional methods known to those of skill in the art. Actual dosage levels ofthe active ingredients in the pharmaceutical compositions of this invention may be varied so as to obtain an amount ofthe active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient. The selected dosage level will depend upon a variety of factors including the activity ofthe particular compound ofthe present invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion ofthe particular compound being employed, the duration ofthe treatment, other drugs, compounds and/or materials used in combination with the particular amphetamine compounds employed, the age, sex, weight, condition, general health and prior medical history ofthe patient being treated, and like factors well known in the medical arts. A physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount ofthe pharmaceutical composition required. For example, the physician or veterinarian could start doses ofthe compounds ofthe invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. In general, a suitable daily dose of a compound ofthe invention will be that amount ofthe compound which is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above. Generally, intravenous, infracerebroventricular and subcutaneous doses ofthe compounds of this invention for a patient will range from about 0.0001 mg to about 100 mg per kilogram (kg) of body weight per day; about 0.0001 mg/kg to about 500 mg/kg; or 0.0001 mg/kg to about 1000 mg/kg. If desired, the effective daily dose ofthe active compound may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms. The term "treatment" is intended to encompass also prophylaxis, therapy and cure. The patient receiving this treatment is any animal in need, including primates, in particular humans, and other mammals such as equines, cattle, swine and sheep; and poultry and pets in general. The compound ofthe invention can be administered as such or in admixtures with pharmaceutically acceptable carriers and can also be administered in conjunction with other psychoactive drugs such as stimulants, antidepressants, modulators of neurotransmittors and anticonvulsants. Conjunctive therapy thus includes sequential, simultaneous and separate administration ofthe active compound in a way that the therapeutic effects ofthe first administered one is not entirely disappeared when the subsequent is administered. While it is possible for a compound ofthe present invention to be administered alone, it is preferable to administer the compound as a pharmaceutical formulation (composition). The amphetamine compounds according to the invention may be formulated for administration in any convenient way for use in human or veterinary medicine. Thus, another aspect ofthe present invention provides pharmaceutically acceptable compositions comprising a therapeutically effective amount of one or more ofthe compounds described above, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents. As described in detail below, the pharmaceutical compositions ofthe present invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension; (3) topical application, for example, as a cream, ointment or spray applied to the skin; or (4) intravaginally or intrarectally, for example, as a pessary, cream or foam. However, in certain embodiments the subject compounds may be simply dissolved or suspended in sterile water. The phrase "pharmaceutically acceptable carrier" as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filter, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject regulators from one organ, or portion ofthe body, to another organ, or portion ofthe body. Each carrier must be "acceptable" in the sense of being compatible with the other ingredients ofthe formulation and not injurious to the patient. Some examples of materials which can serve as pharmaceutically acceptable carriers include (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations. As set out above, certain embodiments ofthe present amphetamine compounds may contain a basic functional group, such as amino or alkylamino, and are, thus, capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable acids. The term "pharmaceutically acceptable salts" in this respect, refers to the relatively non-toxic, inorganic and organic acid addition salts of compounds of the present invention. These salts can be prepared in situ during the final isolation and purification ofthe compounds ofthe invention, or by separately reacting a purified compound ofthe invention in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. Representative salts include but are not limited to following: 2-hydroxyethanesulfonate, 2-naphthalenesulfonate, 3-hydroxy-2-naphthoate, 3-phenylpropionate, acetate, adipate, alginate, amsonate, aspartate, benzenesulfonate, benzoate, besylate, bicarbonate, bisulfate, bitartrate, borate, butyrate, calcium edetate, camphorate, camphorsulfonate, camsylate, carbonate, citrate, clavulariate, cyclopentanepropionate, digluconate, dodecylsulfate, edetate, edisylate, estolate, esylate, ethanesulfonate, fumarate, gluceptate, glucoheptanoate, gluconate, glutamate, glycerophosphate, glycollylarsanilate, hemisulfate, heptanoate, hexafluorophosphate, hexanoate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroiodide, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, laurylsulphonate, malate, maleate, mandelate, mesylate, methanesulfonate, methylbromide, methylnifrate, methylsulfate, mucate, naphthylate, napsylate, nicotinate, nitrate, N-methylglucamine ammonium salt, oleate, oxalate, palmitate, pamoate, pantothenate, pectinate, persulfate, phosphate, phosphate/diphosphate, picrate, pivalate, polygalacturonate, propionate, p-toluenesulfonate, salicylate, stearate, subacetate, succinate, sulfate, sulfosaliculate, suramate, tannate, tartrate, teoclate, thiocyanate, tosylate, triethiodide, undecanoate, and valerate salts, and the like. (See, for example, Berge et al. (1977) "Pharmaceutical Salts", J. Pharm. Sci. 66:1-19) In certain embodiments, the pharmaceutically acceptable salts ofthe subject compounds include the conventional non-toxic salts ofthe compounds, e.g., from non-toxic organic or inorganic acids. Particularly suitable are salts of weak acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, hydriodic, cinnamic, gluconic, sulfuric, sulfamic, phosphoric, nitric, and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, maleic, tartaric, citric, ascorbic, palmitic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicyclic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isothionic, and the like. In other cases, the compounds ofthe present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases. The term "pharmaceutically acceptable salts" in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of compounds ofthe present invention. These salts can likewise be prepared in situ during the final isolation and purification ofthe compounds, or by separately reacting the purified compound in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like. (See, for example, Berge et al., supra) Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions. -• Examples of pharmaceutically acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like. Formulations ofthe present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount ofthe compound which produces a therapeutic effect. Generally, out of one hundred per cent, this amount will range from about 1 per cent to about ninety-nine percent of active ingredient, preferably from about 5 per cent to about 70 per cent, most preferably from about 10 per cent to about 30 per cent. Methods of preparing these formulations or compositions include the step of bringing into association a compound ofthe present invention with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a compound ofthe present invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product. Formulations ofthe invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a compound ofthe present invention as an active ingredient. A compound ofthe present invention may also be administered as a bolus, electuary or paste. In solid dosage forms ofthe invention for oral administration (capsules, tablets, pills, dragees, powders, granules and the like), the active ingredient is mixed with one or more pharmaceutically acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any ofthe following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, cetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like. A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture ofthe powdered compound moistened with an inert liquid diluent. The tablets, and other solid dosage forms ofthe pharmaceutical compositions ofthe present invention, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release ofthe active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion ofthe gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more ofthe above-described excipients. Liquid dosage forms for oral administration ofthe compounds ofthe invention include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tefrahycfrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents. Suspensions, in addition to the active compounds, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof. Formulations ofthe pharmaceutical compositions ofthe invention for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more compounds ofthe invention with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active amphetamine compound. Formulations ofthe present invention which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate. Dosage forms for the topical or transdermal administration of a compound of this invention include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active compound may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required. The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof. Powders and sprays can contain, in addition to a compound of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane. In certain embodiments, the subject compound(s) are formulated as part of a transdermal patch. Transdermal patches have the added advantage of providing controlled delivery of a compound ofthe present invention to the body. Such dosage forms can be made by dissolving or dispersing the amphetamine compounds in the proper medium. Absorption enhancers can also be used to increase the flux ofthe amphetamine compounds across the skin. The rate of such flux can be controlled by either providing a rate-controlling membrane or dispersing the compound in a polymer matrix or gel. The "free base form" of amphetamine relates to a form in which amphetamine is not complexed with an acid, e.g., is not an ammonium salt. Such forms may be incorporated into a patch. It will be appreciated that the amphetamine compounds may be complexed, for example, with elements ofthe drug-retaining matrix ofthe patch and, as such, the amphetamine compounds may not necessarily be in the form ofthe free base, when actually retained by the patch. The patch preferably comprises a drug-impermeable backing layer. Suitable examples of drug-impermeable backing layers which may be used for transdermal or medicated patches include films or sheets of polyolefins, polyesters, polvurethanes, polyvinyl alcohols, polyvinyl chlorides, polyvinylidene chloride, polyamides, ethylene-vinyl acetate copolymer (EVA), ethylene-ethylacrylate copolymer (EEA), vinyl acetate-vinyl chloride copolymer, cellulose acetate, ethyl cellulose, metal vapour deposited films or sheets thereof, rubber sheets or films, expanded synthetic resin sheets or films, non-woven fabrics, fabrics, knitted fabrics, paper and foils. Preferred drug-impermeable, elastic backing materials are selected from polyethylene tereplithalate (PET), polyurethane, ethylene-vinyl acetate copolymer (EVA), plasticized polyvinylchloride, woven and non-woven fabric. Especially preferred is non- woven polyethylenetereplithalate (PET). Other backings will be readily apparent to those skilled in the art. The term 'block copolymer', in the preferred adhesives ofthe invention, refers to a macromolecule comprised of two or more chemically dissimilar polymer structures, terminally connected together (Block Copolymers: Overview and Critical Survey, Noshay and McGrath, 1977). These dissimilar polymer structures, sections or segments, represent the 'blocks' ofthe block copolymer. The blocks may generally be arranged in an A-B structure, an A-B-A structure, or a multi-block -(A-B)n- system, wherein A and B are the chemically distinct polymer segments ofthe block copolymer. It is generally preferred that the block copolymer is of an A-B-A structure, especially wherein one of A and B is an acrylic-type polymeric unit. It will be appreciated that the present invention is also applicable using block copolymers which possess three or more different blocks, such as an A-B-C block copolymer. However, for convenience, reference hereinafter to block copolymers will assume that there are only A and B sub-units, but it will be appreciated that such reference also encompasses block copolymers having more than two different sub-units, unless otherwise specified. It will be appreciated that the properties of block copolymers are very largely determined by the nature ofthe A and B blocks. Block copolymers commonly possess both 'hard' and 'soft' segments. A 'hard' segment is a polymer that has a glass transition temperature (Tg) and/or a melting temperature (Tm) that is above room temperature, while a 'soft' segment is a polymer that has a Tg (and possibly a Tm) below room temperature. The different segments are thought to impart different properties to the block copolymer. Without being constrained by theory, it is thought that association ofthe hard segments of separate block copolymer units result in physical cross-links within the block copolymer, thereby promoting cohesive properties ofthe block copolymer. It is particularly preferred that the hard segments ofthe block copolymers form such physical close associations. The block copolymers useful in the present invention preferably are acrylic block copolymers. In acrylic block copolymers, at least one ofthe blocks ofthe block copolymer is an acrylic acid polymer, or a polymer of an acrylic acid derivative. The polymer may be composed of just one repeated monomer species. However, it will be appreciated that a mixture of monomeric species may be used to form each ofthe blocks, so that a block may, in itself, be a copolymer. The use of a combination of different monomers can affect various properties ofthe resulting block copolymer. In particular, variation in the ratio or nature ofthe monomers used allows properties such as adhesion, tack and cohesion to be modulated, so that it is generally advantageous for the soft segments ofthe block copolymer to be composed of more than one monomer species. It is preferred that alkyl acrylates and alkyl methacrylates are polymerized to form the soft portion ofthe block copolymer. Alkyl acrylates and alkyl methacrylates are thought to provide properties of tack and adhesion. Suitable alkyl acrylates and alkyl methacrylates include n-butyl acrylate, n-butyl methacrylate, hexyl acrylate, 2-ethylbutyl acrylate, isooctyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, decyl acrylate, decyl methacrylate, dodecyl acrylate, dodecyl methacrylate, tridecylacrylate and tridecyl methacrylate, although other suitable acrylates and methacrylates will be readily apparent to those skilled in the art. It is preferred that the acrylic block copolymer comprises at least 50% by weight of alkyl acrylate or alkyl methacrylate(co)polymer. Variation in the components ofthe soft segment affects the overall properties ofthe block copolymer, although the essential feature remains the cross-linking of the soft segments. For example, soft segments essentially consisting of diacetone acrylamide with either butyl acrylate and/or 2-ethylhexyl acrylate, in approximately equal proportions, work well, and a ratio by weight of about 3 : 4 : 4 provides good results. It is preferred that diacetone acrylamide, or other polar monomer, such as hydroxyethylmethacrylate or vinyl acetate, be present in no more than 50% w/w of the monomeric mix ofthe soft segment, as this can lead to reduced adhesion, for example. The acrylate component may generally be varied more freely, with good results observed with botb-2-ethylhexyl acrylate and butyl acrylate together or individually. As noted above, ratios ofthe various monomers are generally preferred to be approximately equal. For adhesives, this is preferred to be with a polar component of 50% or less ofthe soft segment, with the apolar portion forming up to about 85% w/w, but preferably between about 50 and 70% w/w. In the example above, this is about 72% (4+4) a polar to about 18% (3) polar. In general, it is particularly preferred that any apolar monomer used does not confer acidity on the adhesive. Adhesives ofthe invention are preferably essentially neutral, and this avoids any unnecessary degeneration ofthe amphetamine compounds. Limiting active functionalities, especially those with active hydrogen, is generally preferred, in order to permit wide use of any given formulation of adhesive without having to take into account how it is likely to interact, chemically, with its environment. Thus, a generally chemically inert adhesive is preferred, in the absence of requirements to the contrary. As discussed above, polymers suitable for use as the hard portion ofthe block copolymer possess glass transition temperatures above room temperature. Suitable monomers for use in forming the hard segment polymer include styrene, (x-methylstyrene, methyl methacrylate and vinyl pyrrolidone, although other suitable monomers will be readily apparent to those skilled in the art. Styrene and polymethylmethacrylate have been found to be suitable for use in the formation of the hard segment ofthe block copolymers. It is preferred that the hard portion ofthe block copolymer forms from 3-30% w/w ofthe total block copolymer, particularly preferably from 5-15% w/w. The block copolymer is further characterized in that the soft portions contain a degree of chemical cross-linking. Such cross-linking may be effected by any suitable cross-linking agent. It is particularly preferable that the cross-linking agent be in the form of a monomer suitable for incorporation into the soft segment during polymerization. Preferably the cross-linking agent has two, or more, radically polymerizable groups, such as a vinyl group, per molecule ofthe monomer, at least one tending to remain unchanged during the initial polymerization, thereby to permit cross-linking ofthe resulting block copolymer. Suitable cross-linking agents for use in the present invention include divinylbenzene, methylene bis-acrylamide, ethylene glycol di(meth)acrylate, ethyleneglycol tetra(meth)acrylate, propylene glycol di(meth)acrylate, butylene glycoldi(meth)acrylate, or trimethylolpropane tri(meth)acrylate, although other suitable cross-linking agents will be readily apparent to those skilled in the art. A preferred cross-linking agent is tetraethylene glycol dimethacrylate. It is preferred that the cross-linking agent comprises between about 0.01 to about 0.6% by weight ofthe block copolymer, with between about 0.1 to about 0.4% by weight being particularly preferred. Methods for the production of block copolymers from their monomeric constituents are well known. The block copolymer portions ofthe present invention may be produced by any suitable method, such as step growth, anionic, cationic and free radical methods (Block Copolymers, supra). Free radical methods are generally preferred over other methods, such as anionic polymerization, as the solvent and the monomer do not have to be purified. Suitable initiators for polymerization include polymeric peroxides with more than one peroxide moiety per molecule. An appropriate choice of reaction conditions is well within the skill of one in the art, once a suitable initiator has been chosen. The initiator is preferably used in an amount of about 0.005 to about 0.1%) by weight ofthe block copolymer, with about 0.01 to about 0.05% by weight being particularly preferred, although it will be appreciated that the amount chosen is, again, well within the skill of one in the art. In particular, it is preferred that the amount should not be so much as to cause instant gelling ofthe mix, nor so low as to slow down polymerization and to leave excess residual monomers. A preferred level of residual monomers is below about 2000 ppm. It will also be appreciated that the amount of initiator will vary substantially, depending on such considerations as the initiator itself and the nature ofthe monomers. The block copolymers are adhesives, and preferably are pressure sensitive adhesives. Pressure sensitive adhesives can be applied to a surface by hand pressure and require no activation by heat, water or solvent. As such, they are particularly suitable for use in accordance with the present invention. The block copolymers may be used without tackifiers and, as such, are particularly advantageous. However, it will be appreciated that the block copolymers may also be used in combination with a tackifier, to provide improved tack, should one be required or desired. Suitable tackifiers are well known and will be readily apparent to those skilled in the art. Without being constrained by theory, it is thought that the combination of chemical cross-links between the soft segments ofthe copolymer combined with the, generally, hydrophobic interaction, or physical cross-linking, between the hard portions results in a "matrix-like" structure. Copolymers having only physical cross-linking ofthe hard segments are less able to form such a matrix. It is believed that the combination of both forms of cross-linking ofthe block copolymers provides good internal strength (cohesion) and also high drug storage capacity. More particularly, it is believed that the hard segments associate to form
"islands", or nodes, with the soft segments radiating from and between these nodes. There is a defined physical structure in the "sea" between the islands, where the soft segments are cross-linked, so that there is no necessity for extensive intermingling ofthe soft segments. This results in a greater cohesion ofthe whole block copolymer while, at the same time, allowing shortened soft segment length and still having as great, or greater, distances between the islands, thereby permitting good drug storage capacity. The block copolymer preferably cross-links as the solvent is removed, so that cross-linking can be timed to occur after coating, this being the preferred method. Accordingly, not only can the block copolymer easily be cøated onto a surface, but the complete solution can also be stored for a period before coating. Accordingly, in the manufacturing process ofthe patches, the process preferably comprises polymerizing the monomeric constituents of each soft segment in solution, then adding the constituents ofthe hard segment to each resulting solution and polymerizing the resulting mix, followed by cross-linking by removal of any solvent or solvent system, such as by evaporation. If the solution is to be stored for any length of time, it may be necessary to keep the polymer from precipitating out, and this may be achieved by known means, such as by suspending agents or shaking. It may also be necessary to select the type of polymers that will be subject to substantially no cross-linking until the solvent is evaporated. In general, it is preferred that the adhesive possesses a minimum number of functionalities having active hydrogen, in order to avoid undesirable reactions/interactions, such as with any drug that it is desired to incorporate into the adhesive material. It will be appreciated that this is only a preferred restriction, and that any adhesive may be tailored by one skilled in the art to suit individual requirements. Suitable monomers for use in forming the hard segment include styrene, a-methylstyrene, methyl methacrylate and vinyl pyrrolidone, with the preferred proportion ofthe hard segment being between about 5 to about 15 percent (w/w). In particular, it is advantageous to use the compounds of WO 99/02141, as it is possible to load over about 30 percent of drug into such a system. Thus, in the patches ofthe present invention, it is generally possible to calculate the amount of drug required and determine the appropriate patch size with a given drug loading in accordance with a patient's body weight, and this can be readily calculated by those skilled in the art. In certain embodiments, small amounts of plasticizer, such as isopropyl myristate (IPM), are incorporated. This has the advantage of helping to solubilize the amphetamine as well as rendering the adhesive less rough on the skin. Levels of between about 2 to about 25%, by weight, are generally useful, with levels of between about 3 to about 20% being more preferred and levels of about 5 to about 15%, especially about 10%, being most preferred. Other plasticizers may also be used, and suitable plasticizers will be readily apparent to those skilled in the art. Plasticizers generally take the form of oily substances introduced into the adhesive polymer. The effect ofthe introduction of such oily substances is to soften the physical structure ofthe adhesive whilst, at the same time, acting at the interface between the adhesive and the skin, thereby helping to somewhat weaken the adhesive, and to reduce exfoliation. The free base oil may be obtained by basifying amphetamine salts, or any other suitable salt, with a suitable base, in the presence of a hydrophilic solvent, especially water, and an organic solvent. For instance, water and ethyl acetate, in approximately equal proportions, work well, with ammonia serving as the basifying agent. The water may then be removed and the preparation washed with further water, or other aqueous preparation, after which the preparation may be suitably extracted with ether, for example, after having removed the ethyl acetate. It is preferred to keep the preparation under an inert atmosphere, especially after completion. Whilst it will be appreciated that patches ofthe present invention may be removed from the patient at any time, once it is desired to terminate a given dose, this can have the disadvantage of providing an opportunity for potential drug abuse ofthe partially discharged patch. Abuse of amphetamines is highly undesirable. In certain embodiments, it may be advantage to use a patch tailored to have delivered the majority ofthe amphetamine that it is capable of delivering, in a 24 hour period, by about 8 hours after application, so that a patch can be left in place, and levels of drug still diminish appreciably. It is advantageous that the drug delivery profile has first order kinetics, so that the majority ofthe drug is delivered during the main part ofthe day and, even if the patient omits to remove the patch, the drug is moving towards exhaustion by the end ofthe day, and the amount of drug is dropping rapidly. It will be appreciated that patches ofthe invention may be constructed in any suitable manner known in the art for the manufacture of transdermal patches. The patches may simply comprise adhesive, drug and backing, or may be more complex, such as having edging to prevent seepage of drug out ofthe sides ofthe patch. Patches may also be multi-layered. Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention. Pharmaceutical compositions of this invention suitable for parenteral administration comprise one or more compounds ofthe invention in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood ofthe intended recipient or suspending or thickening agents. Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions ofthe invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance ofthe required particle size in the case of dispersions, and by the use of surfactants. These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention ofthe action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption ofthe injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin. In some cases, in order to prolong the effect of a drug, it is desirable to slow the absorption ofthe drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption ofthe drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices ofthe subject compounds in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature ofthe particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue. When the compounds ofthe present invention are administered as pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, about 0.1 to about 99.5% (more preferably, about 0.5 to about 90%) of active ingredient in combination with a pharmaceutically acceptable carrier. The addition ofthe active compound ofthe invention to animal feed is preferably accomplished by preparing an appropriate feed premix containing the active compound in an effective amount and incorporating the premix into the complete ration. Alternatively, an intermediate concentrate or feed supplement containing the active ingredient can be blended into the feed. The way in which such feed premixes and complete rations can be prepared and administered are described in reference books (such as "Applied Animal Nutrition", W.H. Freedman and Co., San Francisco, U.S.A., 1969 or "Livestock Feeds and Feeding" O and B books, Corvallis, Ore., U.S.A., 1977).
Exemplary Uses ofthe Compounds ofthe Invention. In various embodiments, the present invention contemplates modes of treatment and prophylaxis which utilize one or more ofthe amphetamine compounds. These agents may be useful for increasing the occurrence of memory consolidation or decreasing or preventing the effects of defects in an animal which mitigate memory consolidation. In other embodiments, the preparations ofthe present invention can be used simply to enhance normal memory function. In various other embodiments, the present invention contemplates modes of treatment and prophylaxis which utilize one or more ofthe subject amphetamine compounds to alter defects in attention span and/or focus in an organism. The enhancement and/or restoration of attention span in an organism has positive behavioral, social, and psychological consequences. Additionally, enhancement of attention span can improve memory and learning. In certain embodiments, the subject method can be used to treat patients who have been diagnosed as having or at risk of developing disorders in which diminished declarative memory is a symptom, e.g., as opposed to procedural memory. The subject method can also be used to treat normal individuals for whom improved declarative memory is desired. Memory disorders which can be treated according to the present invention may have a number of origins: a functional mechanism (anxiety, depression), physiological aging (age-associated memory impairment, mild cognitive impairment, etc.), drugs, or anatomical lesions (dementia), associated with multiple sclerosis, chronic fatigue syndrome, fibromyalgia syndrome, chemotherapy, traumatic brain injury, stroke or Parkinson's disease. Indications for which such preparations may be useful include learning disabilities, memory impairment, e.g., due to toxicant exposure, brain injury, brain aneurysm, age, schizophrenia, epilepsy, mental retardation in children, and senile dementia, including Alzheimer's disease. In certain embodiments, the invention contemplates the treatment of amnesia.
Amnesias are described as specific defects in declarative memory. Faithful encoding of memory requires a registration, rehearsal, and retention of information. The first two elements appear to involve the hippocampus and medial temporal lobe structures. The retention or storage appears to involve the heteromodal association areas. Amnesia can be experienced as a loss of stored memory or an inability to form new memories. The loss of stored memories is known as retrograde amnesia. The inability to form new memories is known as anterograde amnesia. Complaints of memory problems are common. Poor concentration, poor arousal and poor attention all may disrupt the memory process to a degree. The subjective complaint of memory problems therefore must be distinguished from true amnesias. This is usually done at the bedside in a more gross evaluation and through specific neuropsychological tests. Defects in visual and verbal memory can be separated through such tests. In amnesias there is by definition a preservation of other mental capacities such as logic. The neurobiologic theory of memory described above would predict that amnesias would have relatively few pathobiologic variations. Clinically the problem of amnesias often appears as a result of a sudden illness in an otherwise healthy person. Exemplary forms of amnesias which may be treated by the subject method include amnesias of short duration, alcoholic blackouts, Wernicke-Korsakoff s (early), partial complex seizures, transient global amnesia, those which are related to medication, such as triazolam (Halcion), and basilar artery migraines. The subject method may also be used to treat amnesias of longer duration, such as post concussive or as the result of Herpes simplex encephalitis. In certain embodiments, this invention contemplates the treatment ofthe Anterior Communicating Artery Syndrome. This syndrome is prevalent among survivors of Anterior Communicating artery aneurysms and often includes anterograde amnesia, a specific deficit in new memory formation, with relative sparing of older memories as well as intelligence and attention. The Anterior Communicating Artery Syndrome may also include some personality changes and confabulation. There is a considerable anatomic and clinical evidence that the Anterior Communicating Artery Syndrome in man is a result of a focal lesion in the basal forebrain area (particularly the medial septal area), secondary to combined damage from the aneurysm and the surgical or endovascular treatment ofthe aneurysm. In addition, the compounds ofthe invention enhance memory in normal individuals, in particular, memory consolidation in humans. The present invention is further illustrated by the following examples, which are not intended to be limiting in any way.
EXEMPLIFICATION The invention now being generally described, it will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments ofthe present invention, and are not intended to limit the invention. The Inhibitory Avoidance (IA) task (also referred to herein as "Passive Avoidance") (Bammer, G., Neurosci & Biobev. Rev. 6:247-296 (1982)) and the Spontaneous Object Recognition (SOR) task (Ennaceur, A., et al, Psychopharmacol. 109:321-330 (1992); Ennaceur, A., etal, Behav. Brain Res. 33:197-207 (1989)) are well-studied behavioral paradigms which can provide the researcher with a consistent and long lasting measure of memory. The paradigms consists of one training trial and one retention trial. Test substances may be administered to the rats either before or after training. Improved memory, as a result of test substance administration, is evident on the retention trial. The objective ofthe following experiments was to investigate the effects of amphetamine on IA and SOR memory in the rat.
General Experimental Procedures Inhibitory Avoidance The Inhibitory Avoidance apparatus (Coulbourn Instruments) consisted of a light chamber and a dark chamber, which were joined by means of a sliding guillotine door. The floor ofthe dark compartment consisted of 2.4 mm diameter steel rods, through which a foot-shock could be administered to the animal by a constant current 18-pole shock scrambler. The test apparatus was enclosed in a ventilated, sound-attenuating cabinet, and was controlled by Graphic State™ Notation Software (Version 1.013) and a Hewlett Packard Pavilion Computer. Training involved the rat being placed in the light chamber for a ten second period, after which time the sliding door was opened, allowing the rat access to the dark chamber. Two seconds after entering the dark chamber, a continuous 0.46 mA foot-shock was delivered through the floor grid for two seconds. The animal was then removed from the apparatus and returned to the home cage. The animals received a retention test 24 hours following training. The retention test was identical to training except that no foot-shock was delivered. Latency to enter the dark chamber was recorded, and the animals were then returned to their home cages. Data was collected by the Graphic State™ Notation software, and was recorded onto an appropriate data sheet.
Spontaneous Object Recognition Apparatus for Object Recognition testing consisted of a plexiglass open field activity chamber, measuring 30 by 30 cm. A video camera was mounted on the wall above the chamber. Three plastic objects served as stimuli for the experiment. Two ofthe objects were identical to one another, and the third was different. Rats were individually habituated to the open-field box for three consecutive days. Habituation sessions were six minutes in duration. Twenty-four hours after the last day of habituation, a training session was conducted, in which two identical objects were placed in the open-field box, 10 cm from the back wall. The animal was placed into the box and was allowed to explore freely for a period of four minutes. Twenty-four hours after the training session, retention testing was conducted. During retention testing, the rat was placed back into the same activity box with one ofthe familiar objects used during the training session and a novel object that the rat had not seen before. The rat was allowed to explore the box and objects for a period of four minutes. Testing was conducted at the same time each day, and was videotaped for off-line analysis. Two discrimination indices, Dl and D2 were calculated in order to measure the strength of recognition memory. Dl reflects the amount of time spent exploring the novel object minus the amount of time spent exploring the familiar object, and D2 reflects Dl divided by total exploration time.
Activity Monitoring Activity monitoring was conducted in a Plexiblas open-field box. Activity levels were measured by a grid of infrared light beams that traversed the cage from left to right and back to front. The location ofthe animal was detected by breaks in the infrared light beams. General behavior and activity levels were recorded by a computerized monitoring system for a period often minutes. The analyzed behaviors included but were not limited to; horizontal activity, total distance moved, movement time, number of movements, number of rears, number of stereotyped movements, and time spent resting. Data was collected on-line using Versa Max (Version 1.83) computer software and a Hewlett Packard Pavilion computer.
Tail Flick For Tail-Flick Analgesia Testing, the animal was placed on top ofthe Tail-Flick monitor and gently held in place with a cotton towel. The tail ofthe animal was placed in a shallow groove lying between two sensors and over the top of a radiant heat wire. The Tail Flick monitor was activated, and the latency for the animal to flick its tail out ofthe groove and away from the heat source was recorded. The animal was returned to its home cage immediately following testing.
Fornix Lesions Rats were anesthetized with Nembutal (55 mg/kg) and prepared for surgery. The rat was placed in the stereotaxic apparatus, a midline incision made, and the scalp retracted to expose the skull. The skull was cleaned and dried using sterile saline and cotton swabs, and four stereotaxically determined holes were drilled in the skull at the following coordinates: 0.3 and 0.8 mm posterior to Bregma, and 0.5 and 0.7 mm lateral to the midline. An electrode (Teflon-coated wire, 125 μm in diameter) was lowered into the brain to a depth of 4.6 mm, and DC current at 1.0 mA was passed through the electrodes for a duration of 10 seconds. The electrodes were then removed, and the wound was sutured. Animals were removed from the stereotaxic apparatus and received postoperative care and monitoring until fully conscious. The rats were left to recover for a period of seven days prior to behavioral testing. The health status ofthe animals was checked on a daily basis during the recovery period. EXAMPLE 1: DOSE RESPONSE TESTING
Effects of (S)-(+)-amphetamine on Inhibitory Avoidance In this experiment, rats were injected with three different doses of (S)-(+) amphetamine thirty minutes prior to being trained on the IA task. As can be seen from Figure 1, a dose of about 2 mg/kg of amphetamine improved retention ofthe task, while doses of about 0.25, about 0.50 and about 1.0 mg/kg had no effect. In order to verify this result, a second experiment was conducted. Rats were injected with about 2.0 mg/kg of amphetamine and trained on the IA task. As can be seen from Figure 2, this dose of (S)-(+)-amphetamine significantly improved retention of the task. An unpaired t-test demonstrated that this enhancement was statistically significant (p < 0.01).
Effects of (R)-(-)-amphetamine (C105) on Inhibitory Avoidance The first experiment to be conducted using C105 was a dose response experiment, in which different doses of C 105 (about 0.4, about 0.5, about 0.75, 1.0 and about 2.0 mg/kg) were administered to the rats one hour prior to training on the Inhibitory Avoidance task. Retention for the task was tested 24-hours later. A one way ANOVA was conducted on the data, and the results revealed a statistically significant difference between the dose level groups (F(5,59) = 3.368, p < 0.01). Subsequent post hoc analysis (Student Newman Keuls) demonstrated that the 1.0 mg/kg group performed significantly better than saline injected controls (p < 0.05). The 0.5 mg/kg dose also appeared to be effective in enhancing the animals performance, however, this trend did not reach statistical significance. This experiment was subsequently replicated using 0.5 mg/kg as the target dose in order to verify this result (see section 9.1.4). Dose Response data is presented individually in Table 3.
Effects of (R)-(-)-amphetamine (C105) on Inhibitory Avoidance In this experiment, four groups of 10 rats were injected with different doses (0.5 mg/kg, 1.0 mg/kg, 2.0 mg/kg or 4.0 mg/kg) ofthe R-(-) enantiomer of amphetamine one hour prior to being trained on the IA task. The experiments were conducted with a 24 hour retention interval and a 0.46 mA shock intensity. As can be seen in Figure 8, a much lower dose of (R)-(-)-amphetamine is required for the same improved retention effect as obtained with (S)-(+)-amphetamine (compare to Figure 1). Increasing the dose above 0.5 kg/mg did not further improve the retention results obtained with this dose possibly indicating a saturation effect.
Effects of (R)-(-)-amphetamine (C105) on Inhibitory Avoidance In order to investigate whether doses of C 105 lower than 0.5 mg/kg enhanced performance, rats were injected with 0.1, 0.25 or 0.5 mg/kg of C105 one hour prior to training. Retention was tested 24-hours later. This experiment revealed that doses of C105 lower than 0.5 mg/kg were not effective in improving the mnemonic performance ofthe rats. In contrast, the 0.5 mg/kg dose significantly enhanced performance on the task (F(3,39) = 67450, p < 0.0477). These data are presented individually in Table 4.
EXAMPLE 2: TIME COURSE OF EFFECTIVENESS In this experiment, the time of drug administration was varied in order to determine the optimal pre-training drug administration time. Figure 3 shows that (S)-(+) amphetamine (2.0 mg/kg) is effective when administered to the rats between 0 and 2 hours prior to training.
EXAMPLE 3: LONG TERM RETENTION This experiment was conducted in order to determine whether the enhanced retention observed in Experiment 2 was long-lasting. Rats received a second retention test one week after the first retention test. No additional training or drug was administered to the animals in the interim period. Figure 4 illustrates that rats that had received (S)-(+)-amphetamine the previous week performed significantly better than rats that had received control injections of vehicle solution (F(4,47) = 3.688, < 0.01). EXAMPLE 4: EFFECTS ON LESIONED ANIMALS Effects of (-)(+)-amphetamine on Lesioned Animals The findings ofthe above experiments are important, as they identify the most effective dose and time of administration for this compound. Moreover, the results demonstrate that (S)-(+)-amphetamine improves memory in normal rats, and that this improvement is long-lasting. In the next experiment, we investigated whether the performance of amnesic rats could be improved by administration of d- amphetamine. In this experiment, control rats and rats with lesions ofthe fornix received injections of either saline or d-amphetamine (2.0 mg/kg), and one hour later, were tested on the IA task. As Figure 5 illustrates, (S)-(+)-amphetamine dramatically enhanced the performance of normal rats and in addition, appeared to improve the performance of the fornix lesion rats. A one way ANOVA demonstrated that there was a significant difference between the performance ofthe four groups (F(3,36) = 8.687, p < 0.002). Student-Newman-Keuls post hoc tests revealed firstly that the performance of normal rats that received (S)-(+)-amphetamine was significantly enhanced relative to all other experimental groups (p < 0.05). In addition, the performance of fornix animals that received (S)-(+)-amphetamine was not significantly different from normal, saline injected animals. These results demonstrate that amphetamine is capable of enhancing memory in normal rats and has beneficial effects in brain damaged, amnesic rats.
Effects of (R)-(-)-amphetamine on Lesioned Animals Rats with bilateral lesions ofthe fornix were tested on the Inhibitory Avoidance task. All rats were injected with test (0.5, 1.0, 2.0 and 4.0 mg/kg) or control article one hour prior to testing. A one-way ANOVA demonstrated that there was a significant main effect of dose (F(4,45) = 15580, p < 0.0316). A dose of 1.0 mg/kg of C 105 appeared to be most effective in improving the performance ofthe fornix lesion animals. Data from this experiment are illustrated in Figure 12 and presented individually in Table 7. Rats with lesions ofthe fornix were also tested on the Object Recognition task. Rats received I.P injections of C105 (1.0 mg/kg) or saline immediately after the training session, and were tested for retention 24-hours later. As can be seen from Figure 13, when compared with controls, lesions ofthe fornix had a detrimental effect on performance of this task. Administration of C 105 produced a trend towards improving discrimination performance in Dl (p = 0.0685), and slightly improved performance in D2.
EXAMPLE 5: EFFECTS OF (R)-(-) VS. (S)-(+) AMPHETAMINE ENANTIOMERS ON STIMULATION OF MEMORY CONSOLIDATION The effects ofthe (R)-(-)-amphetamine and the (S)-(+) amphetamine enantiomers on stimulation of memory consolidation and motor stimulation were compared. The (R)-(-) enantiomer of amphetamine is referred to as C 105 in the figures.
Effects of (S)-(+)-amphetamine on Inhibitory Avoidance An experiment was conducted in which different doses of
(S)-(+)-amphetamine were administered to rats one hour before training on the Inhibitory Avoidance task and were compared to a control group of rats injected with saline. Retention for the task was tested 24 hours later with a 0.46 m-A shock intensity. Results for this experiment are presented individually in Tables 1 and 2, and demonstrated that (S)-(+)-amphetamine appeared to enhance performance when administered at a dose of 2.0 mg/kg. The experiment was subsequently replicated several times using a test-article dose of 2.0 mg/kg. Results from these experiments are represented in Figure 6, and demonstrate that (S)-(+)-amphetamine significantly enhanced memory for the Inhibitory Avoidance task (t (16) — 3.416, p < 0.001). These results are in agreement with previous research and help to demonstrate the effectiveness of (S)-(+)-amphetamine as a memory-enhancing drug. Effects of (R)-(-)-amphetamine (C105) on Inhibitory Avoidance In order to verify the results from the dose response test, a second experiment with (R)-(-)-amphetamine was conducted. Eighteen rats were injected with a dose of 0.5 mg/kg of (R)-(-)-amphetamine one hour prior to being trained on the IA task. 5 The (R)-(-) amphetamine treated rats were compared to control rats injected with saline. The experiments were conducted with a 24 hour retention interval and a 0.46 m-A shock intensity. As can be seen in Figure 9, this dose of (R)-(-)-amphetamine significantly improved retention ofthe task. An unpaired t-test demonstrated that this enhancement was statistically significant (p<0.002). 10 Based on the results obtained from the experiments described above, several more experiments were conducted investigating the effects of a 0.5 mg/kg dose of C 105 on Inhibitory Avoidance. The data presented in Figure 10, and individually in Table 5, represent a summary of all such experiments. The results of these experiments clearly demonstrate a memory enhancing effect as measured by the 15 Inhibitory Avoidance task. Rats that had been injected with C105 (0.5 mg/kg) one hour prior to training performed significantly better than control animals on the 24-hour retention test (t (132) = 3.438, j? < 0.0008).
Effects of (R)-(-)-amphetamine (C105) on Object Recognition In order to investigate the effects of C 105 on recognition memory, rats were 20 trained on the Spontaneous Object Recognition task. Normal rats were injected with 0.5 mg/kg C105 immediately following the training session, and were tested for retention 24-hours later. The results ofthe experiment indicate that C105 significantly improved recognition memory. Rats that had received injections of test article immediately after the training session, performed significantly better than their
25 saline injected counterparts, as they spent more time exploring the novel object during retention testing. Both discrimination indices, Dl and D2, which reflect discrimination between the familiar and novel object, were significantly higher in C105 treated animals [(t(51) = 2.526, p < 0.0147) and (t(51) = 3.197, p< 0.0024) respectively]. These results are particularly interesting, as recognition memory is the , 30 process by which a subject is aware that a stimulus has previously been experienced. This process requires that incoming stimuli be identified and compared with representations of previously encountered stimuli stored in memory. Recognition memory is used during everyday life and failures of recognition memory undoubtedly contribute to the problems encountered by amnesic patients. Results from this experiment are presented in Figure 13, and individual data are presented in Table 8. It is interesting at this point to compare the results obtained with (R)-(-)-amphetamine (C105) to those obtained with (S)-(+)-amphetamine. (S)-(+)-Amphetamine had a memory enhancing effect at a dose of 2.0 mg/kg, while (R)-(-)-amphetamine had a memory enhancing effect on the same task at a dose of 0.5 mg/kg. Although definitive dose-response relationship experiments between these two compounds have not been conducted, it seems likely that C 105 is a more potent memory enhancer for this particular task in rats. It should be noted however, that the maximal efficacy ofthe two compounds are the same.
EXAMPLE 6: EFFECTS OF (R)-(-) VS. (S)-(+)-AMPHETAMINE ON MOTOR STIMULATION
Effects of (S)-(+)-amphetamine on Activity Levels In order to provide a comparison point for the results described above, a second experiment was conducted in which rats were injected with 2 mg/kg of
(S)-(+)-amphetamine prior to activity testing. Results for this experiment are presented in Figure 7. The results demonstrated that (S)-(+)-amphetamine produced a clear and significant enhancement in locomotor activity for the entire 10 minute session. Significant main effects for the variables of total distance (F(9, 70) =
1514000, p < 0.0001); number of movements (F(9,70) = 45.89, p < 0.0001); movement time (F(9,70) = 53.07, p< 0.0001); rears (F(9,70) = 49.47, p< 0.0001), stereotyped movements (F(9,70) - 24.65, p< 0.0001) and rest time (F(9,70) = 44.34, p< 0.0001) were observed. No significant effects of time or time-drug interactions were observed. Effects of (R)-(-)-amphetamine (C105) on Activity Levels In this experiment, rats were injected with 0.5 mg/kg of (R)-(-)-amphetamine (C105) and compared to a control group of rats injected with saline. Rat activity was monitored for a 10 minute period one hour after (R)-(-)-amphetamine injection. As can be seen in Figure 14, treatment with (R)-(-)-amphetamine had no significant effects on the activity levels ofthe rats as compared to the control group. This data indicates that (R)-(-)-amphetamine can provide improved memory consolidation without producing the motor stimulatory effects observed in the (S)-(+)-amphetamine treated rats (compare to Figure 7). A comparison ofthe results obtained for (S)-(+)- versus (R)-(-)-amphetamine indicates that (S)-(+)-amphetamine produced a larger locomotor effect than (R)-(-)-amphetamine, at doses that are equally effective in enhancing memory. This observation is consistent with previous research, which has repeatedly demonstrated that (S)-(+)-amphetamine is between 4 and 10 times more potent than (R)-(-)-amphetamine in producing elevated locomotor responses.
EXAMPLE 7: TAIL FLICK Tail Flick Analgesia data is presented in Figure 16, and individual data in Table 12. Administration of 1.0, 2.0, 4.0 or 8.0 mg/kg of C 105 one hour prior to testing resulted in varying degrees of analgesia. 1.0 and 2.0 mg/kg had no analgesic properties, while 4.0 and 8.0 did. Statistical significance was observed at the 4.0 mg/kg dose (F(4,39) = 43.18, p < 0.0117). This experiment indicates that the therapeutic dose of (R)-(-)-amphetamine had no effect on analgesia, as measured by the tail-flick analgesiometer.
EXAMPLE 8: POST TRAINING ADMINISTRATION While the results described above provide evidence to suggest that C105 enhances memory, it is possible that these results are due to non-mnemonic factors. Because the drug was administered prior to training, it is possible that learning or acquisitional processes were affected by drug administration. For this reason, a post training experiment was conducted in which C105 was administered to the rats immediately after the training session. Injecting the drug after the training session affects memory consolidation rather than acquisition, primarily because the drug is not on board at the time of training. The results of this experiment are represented in Figure 11 and presented individually in Table 6. As can be seen from Figure 11, post training administration of 0.5 mg/kg of C 105 significantly enhanced performance on the rnhibitory Avoidance task (t(26) = 2.160, p< 0.0402). This experiment therefore, provides strong evidence that C105 works by selectively enhancing memory consolidation.
Table 1: Effects of Different Doses of S-(+) -Amphetamine on Inhibitory Avoidance
Figure imgf000154_0001
Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal (10 animals per treatment group). Data is rank-ordered.
Table 2: Summary of Effects of S-(+)-Amphetamine (2.0 mg/kg) on Inhibitory Avoidance
10
15
20
25
3.0
35
40
Figure imgf000155_0001
Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal (39 animals per treatment group). Data is rank-ordered. Table 3: Effects of Different Doses of C 105 on Inhibitory Avoidance
Figure imgf000156_0001
Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal (10 animals per treatment group). Data is rank-ordered.
Table 4: Effects of Low Doses of C 105 on Inhibitory Avoidance
Figure imgf000156_0002
Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal (10 animals per treatment group). Data is rank-ordered. Table 5: Summary ofthe Effects ofC105 (0.5 mg/kg) or Saline on Inhibitory Avoidance
Figure imgf000157_0001
Figure imgf000158_0001
Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal. This table reflects data gathered from all experiments conducted using C105. The numbers of animals in the saline (n = 77) and drug conditions (n = 57) differ because in several experiments, extra control animals were run. Data is rank-ordered.
Table 6: Effects of Post-Training Administration of C 105 on Inhibitory Avoidance
Figure imgf000159_0001
Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal (14 animals per treatment group). Data is rank-ordered.
Table 7: Effects of C 105 on Inhibitory Avoidance in Control and Fornix Lesion Rats
Figure imgf000160_0001
Data are expressed as latency to enter the dark side ofthe apparatus in seconds for each animal (10 animals per treatment group). Data is rank-ordered.
* animal died during surgery - no data available
** data from these subjects excluded from analysis as they were outliers: more than two SD's away from the mean
-159-
Table 8: Effects of C 105 on Spontaneous Object Recognition: Control Data, Discrimination Index Dl
Figure imgf000161_0001
* data for one subject in the C105 excluded as it was an outlier - more than two SD's away from the mean. Data is rank-ordered. Table 9: Effects of C 105 on Spontaneous Object Recognition: Fornix Data, Discrimination Index Dl
Figure imgf000162_0001
* animal died during surgery: no data collected ** data for these two animals not videotaped Data is rank-ordered.
Table 10: Effects of C 105 on Spontaneous Object Recognition: Control Data, Discrimination Index D2
Figure imgf000163_0001
* data excluded because it was more than 2 SD's away from the mean Data is rank-ordered. Table 11 : Effects of C 105 on Spontaneous Object Recognition: Fornix Data, Discrimination Index D2
Figure imgf000164_0001
* animal died during surgery: no data collected ** data for these two animals not videotaped Data is rank-ordered.
Table 12: Effects of C105 on Tail-Flick Analgesia
Figure imgf000165_0001
* no data for this subject was collected Data is rank-ordered.
EXAMPLE 9: COMPARISON OF D-AMPHETAMINE, L-AMPHETAMINE AND L-METHAMPHETAMINE
Materials and Methods
Animals Male, Long-Evans rats (3-5 months of age) obtained from Charles River
Laboratories weighing between 250 and 350 grams at the time of arrival served as subjects in these experiments. The rats were housed two to a cage in plastic cages with corncob bedding. The rats were maintained on a 12/12 light dark cycle with ad libitum access to food and water.
Drugs L-methamphetamine (SN522), 1-amphetamine (C105) and d-amphetamine were dissolved in saline and administered to the rats via intraperitoneal (i.p.) injections, in a volume of 1 ml/kg body weight.
Experiment 1 : Passive Avoidance Test The Passive Avoidance apparatus (Coulbourn Instruments) consisted of a light chamber and a dark chamber, which were joined by means of a sliding guillotine door. The floor ofthe dark compartment consisted of 2.4 mm diameter steel rods, through which a foot-shock could be administered to the animal by a constant current 18-pole shock scrambler. The test apparatus was enclosed in a ventilated, sound-attenuating cabinet, and was controlled by Graphic State ™ Software (Version 1.013) and a Hewlett Packard Pavilion Computer. Training involved placing the rat inside the light chamber with its head facing away from the door. Ten seconds later, the sliding door was opened, and the latency to enter the dark chamber was recorded (100 second maximum). When the rat entered the dark chamber, it received a continuous foot-shock (0.4 mA) through the metal grid floor until it returned in the light chamber for a period of 100 consecutive seconds or until a maximum of 5 foot-shocks had been received. Retention testing was conducted 24 hours later. The rat was placed into the light chamber with its head facing away from the door. Ten seconds later, the door was opened, alloweing the rat access to the dark chamber. No foot-shock was administered during retention testing. Latency to enter the dark chamber was recorded (900 seconds maximum) and used as a measure of memory. In this experiment, rats were injected (ip) immediately after training with saline (control/vehicle), SN522 (0.25 and 0.5 mg/kg), C105 (0,5 and 1.0 mg/kg) or d- amphetamine (1.0 and 2.0 mg/kg). Retention was tested 24 hours after training. The results from this experiment are illustrated in Figure 20 and demonstrate that the different doses ofthe three drugs differ in terms of their potency. Figure 20 depicts a comparison of d-amphetamine, C105 and SN522 administered immediately after training in inhibitory avoidance. Data show the mean (±SEM) step-through latency (seconds) on a test 24 hours following training. Separate groups of animals (n = 10 for each treatment group) were injected (ip) with vehicle (0.9% saline), d- amphetamine (1.0, or 2.0 mg/kg), C105 (0.5 or 1.0 mg/kg) or SN522 (0.25 or 0.5 mg/kg) immediately after training. Data were analyzed using Cox regression within a Kaplan-Meier survival analysis (p<0.05). A Kaplan Meier Survival Analysis demonstrated that doses of 0.5 mg/kg of C105, 2.0 mg/kg -i-amphetamine and 0.5 mg/kg SN522 significantly improved performance on this task (p values = 0.007, 0.0004, and 0.03 respectively). Thus, 1- methamphetamine and 1-amphetamine significantly improve memory consolidation. EXAMPLE 10: L-METHAMPHETAMINE AND MEMORY
Materials and Methods Animals Male, Long-Evans rats (3-5 months of age) obtained from Charles River Laboratories weighing between 250 and 350 grams at the time of arrival served as subjects in these experiments. The rats were housed two to a cage in plastic cages with corncob bedding. The rats were maintained on a 12/12 light dark cycle with ad libitum access to food and water.
Drugs L-methamphetamine (SN522) was dissolved in saline and administered to the rats via intraperitoneal (i.p.) injections, in a volume of 1 ml/kg body weight.
Results and Discussion Experiment 1 : Passive Avoidance The Passive Avoidance apparatus (Coulbourn Instruments) consisted of a light chamber and a dark chamber, which were joined by means of a sliding guillotine door. The floor ofthe dark compartment consisted of 2.4 mm diameter steel rods, through which a foot-shock could be administered to the animal by a constant current 18-pole shock scrambler. The test apparatus was enclosed in a ventilated, sound- attenuating cabinet, and was controlled by Graphic State™ Software (Version 1.013) and a Hewlett Packard Pavilion Computer. Training involved placing the rat inside the light chamber with its head facing away from the door. Ten seconds later, the sliding door was opened, and the latency to enter the dark chamber was recorded (100 second maximum). When the rat entered the dark chamber, it received a continuous foot-shock (0.4 mA) though the metal grid floor until it returned to the light chamber. This sequence of events was continued until the rat remained in the light chamber for a period of 100 consecutive seconds or untilo a maximum of 5 foot-shocks had been received. Retention testing was conducted 24 hours later. The rat was placed into the light chamber with its head facing away from the door. Ten seconds later, the door was opened, allowing the rat access to the dark chamber. No foot-shock was administered during retention testing. Latency to enter the dark chamber was recorded (900 seconds maximum) and used as a measure of memory. In this experiment, the effects of SN522 on consolidation ofthe passive avoidance task were investigated. Rats were injected with saline (contol, no or zero drug) or six different doses (0, 0.10, 0.25, 5.0, 0.75 or 1.0 mg/kg, i.p.) of SN522 immediately after the training session. Retention for the task was tested 24 hours later. The results from this experiment are illustrated in Figure 21. Figure 21 depicts the effects of SN522 administered immediately after training in inhibitory avoidance. Data show the mean (±SEM) step-through latency (seconds) on a test 24 hours following training. Separate groups of animals (number of animals in each treatment group indicated inside bars) were injected with vehicle (0.9% saline) or one of five doses of SN522 (0.1, 0.25, 0.5, 0.75, or 1.0 mg/kg). Data were analyzed usine Cox regression within a Kapaln-Meier survival analysis (p<0.05). The step-through latency in response to SN522 is an inverted U-shaped dose response curve. A Kaplan Meier survival analysis with cox regression confirmed significant improvement in memory performance relative to the saline group at doses of 0.25, 0.5, and 0.75 mg/kg (p <0.05).
Experiment 2: Water Maze Water Maze testing (Morris, R., J. Neurosci Methods 11 :47-60 (1984)) was conducted in a galvanized steel pool, painted white, measuring 180 cm in diameter and 60 cm in height. The pool was equipped with a removable circular platform (10 cm in diameter) made of clear Plexiglas. The pool was filled with water (26°C) to a level of 1 cm above the surface ofthe platform. Nontoxic white paint was added to the water to obscure the platform's appearance. The pool was divided conceptually into four quadrants and the platform was located in the NW quadrant 30 cm from the pool wall. Extramaze cues were provided by large geometric shapes adhered to curtains that surrounded two sides ofthe pool, and by shelving units, a sink, and posters on the visible walls. The training procedure involved placing the rat into the water, with the rat's head facing the wall ofthe pool, at one of four different starting points. The rat was allowed 60 seconds to locate the hidden platform. If the rat did not find the platform within 60 seconds, it was gently guided to the platform. After 15 seconds spent on the platform at the end of each trial, the rat was removed from the pool and injected with saline or SN522 (0.25 and 0.5 mg/kg, i.p.). The rat was dried, and returned to its home cage. One trail was conducted each day for 10 days. The latency to reach the platform (escape latencey) was recorded on each days training trial. An ANOVA show a significant enhancement in acquisition rate in animals administered 0.25 mg/kg SN522 relative to confrols (See Figure 22; Fu 17 =10.245, p<0.005). Figure 22 depicts the effect of SN522 on acquisition ofthe water maze task. Data are the mean (±SEM) latency to locate a hidden platform by three separate groups of rats (n = 10 for each freatment group). Animals were given a single learning trial each day. Immediately following the learning trial, vehicle (saline) or SN522 (0.25 or 0.5 mg/kg) were administered IP. The data show that while all groups learned to find the platform during the 10 training days indicated by the decrease in escape latency, animals that were treated with 0.25 mg/kg SN522 after each trial learned to find the platform more quickly than rats in the saline treated group. The comparison between the control (saline) group and the group administered the higher dose of SN522 did not reveal any statistical differences (p>0.05). These data confirm that SN522 has potent effects on mnemonic processing. Figure 23 depicts the effect of SN522 on activity levels measured by an automated motion detector. Data are the mean activity (±SEM) of four separate groups of rats (n = 7 or 8 per group) treated with SN522 (0.25, 0.5, 2.5, and 5.0 mg/kg, ip) as measured by an activity monitor system, tracking beam breaks around an open field. Data are shown as a percent change from a control group treated with vehicle (0.9% saline). The data show that doses of 1-methamphetamine (SN522) have profound effects on memory processes produce no or modest changes in motor behavior (0.25 and 0.5 mg/kg). Doses of SN522 ten times over the therapeutic doses yielded only mild increases in activity. Thus, 1-methamphetamine has no or minimal side effects.
Experiment 3: Locomotor Activity Activity monitoring was conducted in a Plexiglas open-field box measuring 30 by 30 cm. Activity levels were measured via a grid of infrared light beams that traversed the cage from left to right and back to front. The location ofthe animal within the cage was detected by breaks in the infrared light beams. Light beams status information was collected and rapidly analyzed by a computerized activity monitoring system (VersaMax System, Accuscan Instruments.) In order to determine whether SN522 had any adverse effects on locomotor or exploratory activity, rats were injected with saline or 0.25, 0.5, 2.5 and 5.0 mg/kg of SN522 and immediately afterwards placed into the activity monitoring chambers for a period of three hours. Data was collected on-line using Versa Max (Version 1.83) computer software and a Hewlett Packard Pavilion computer. Analyzed behaviors included; horizontal activity, total distance moved, movement time, number of movements, number of rears, number of stereotyped movements, and time spent resting. Figure 24 depicts the effect of d-amphetamine on activity levels measured by an automated motion detector. Data are the mean activity (±SEM) of four separate groups of rats treated with SN522 Mean activity (±SEM) of four separate groups of rats (n = 7 or 8 per group) treated with d-amphetamine sulfate (0.25, 0.5, 2.5, and 5.0 mg/kg, ip). Data are shown as a percent change from a control group treated with vehicle (0.9% saline). The data show that even very low doses of d-amphetamine have effects on activity. These effects are significant even at the very lowest dose tested (0.25 mg/kg), with profound increases in activity at the higher doses all p's,0.05. As can be seen in Figure 24 (data are shown as a percent increase relative to the saline control), low doses SN522 resulted in no increase in activity at doses that were efficacious in the memory assays (0.25 mg/kg, p>0.05), and produced only modest increases in activity at a slightly higher dose (0.5 mg/kg;F8 U2= 2.303, p=0.028). Relatively high doses of SN522 (2.5 and 5.0 mg/kg) resulted in small, but significant increases in activity relative to the saline control (0.25 mg/kg; F8 112=10.936, p<0.001;5.0 mg/kg;F8 112=8.749, pθ.001). However, when compared with activity produced by similar doses of -amphetamine, the increases in activity levels after administration of SN522 are minimal indicating minimal side effects from SN522.
Experiment 4: Tailflick Test of Analgesia The tail-flick response was assessed using a radiant heat tail flick monitor (Accuscan Instruments model TFS) equipped with a radiant heat element and two light beam sensors to detect tail movement. In order to determine whether SN522 has any analgesic properties, rats (n=10 per treatment group) were injected with saline or SN522 (0.25, 0.5, 2.5 and 5.0 mg/kg, i.p.) and tested at four time points: immediately prior to injection, and again 15, 30, and 60 minutes following drug administration for a tail flick response (D'Amour, F.E., et al, J. Pharmacol. Exp. Ther. 72:174-179 (1941)). To test the tail- flick, the animal was placed on top ofthe Tail-Flick monitor and gently held in place with a cotton towel. The tail ofthe animal was placed in a shallow groove lying between the two sensors and over the top ofthe radiant heat wire. The heat element was activated, and the latency for the animal to flick its tail out ofthe groove and away from the heat source was automatically recorded via activation ofthe sensors. The intensity ofthe heat source was adjusted so that the animal flicked its tail within 3-4 seconds. A 10 second cutoff was imposed to avoid tissue damage. The animal was returned to its home cage immediately following testing. The results of an ANOVA over the five drug treatments and four test intervals did not reveal any differences in tail flick latency. Thus, SN522 does not alter pain sensitivity in this test. EXAMPLE 11 : L-METHAMPHETAMINE IMPROVES MEMORY IN SUBJECTS WITH A -MEMORY IMPAIRMENT
Materials and Methods Animals Male, Long-Evans rats (3-5 months of age), obtained from Charles River
Laboratories and weighing between 250 and 350 grams, served as subjects in these experiments. The rats were housed two to a cage in plastic cages with corncob bedding and were maintained on a 12/12 light dark cycle with ad libitum access to food and water.
Drugs L-methamphetamine (SN522) was dissolved in saline and administered to the rats via intraperitoneal (i.p.) injections, in a volume of 1 ml/kg body weight.
Passive Avoidance Testing The Passive Avoidance apparatus (Coulbourn Instruments) consisted of a light chamber and a dark chamber, which were joined by means of a sliding guillotine door. The floor ofthe dark compartment consisted of 2.4 mm diameter steel rods, through which a foot-shock could be administered to the animal by a constant current 18-pole shock scrambler. The test apparatus was enclosed in a ventilated, sound-attenuating cabinet, and was controlled by Graphic State™ Software (Version 1.013) and a Hewlett Packard Pavilion Computer. Training involved placing the rat inside the light chamber with its head facing away from the door. Ten seconds later, the sliding door was opened, and the latency to enter the dark chamber was recorded (100 second maximum). When the rat entered the dark chamber, it received a continuous foot-shock (0.4 mA) through the metal grid floor until it returned to the light chamber. This sequence of events was continued until the rat remained in the light chamber for a period of 100 consecutive seconds or until a maximum of 5 foot-shocks had been received. Retention testing was conducted 24 hours later. The rat was placed into the light chamber with its head facing away from the door. Ten seconds later, the door was opened, allowing the rat access to the dark chamber. No foot-shock was administered during retention testing. Latency to enter the dark chamber was recorded (900 seconds maximum) and used as a measure of memory. In order to determine whether 1-methamphetamine (SN522) reverses memory deficiencies (also referred to herein as a "memory impairment"), separate groups of rats were injected with scopolamine hydrochloride (0.75 mg/kg, i.p.) 30 minutes before training. Rats were then trained on the passive avoidance task and immediately afterwards, injected with either saline or SN522 (0.12, 0.25, 0.5 and 1.0 mg/kg, i.p.). Retention was tested 24 hours after training.
Results and Discussion Figure 32 depicts the effects of SN522 on memory deficiencies, in particular, as a consequence of exposure to scopolamine (the number of animals in each group are indicated inside bars). The data shown represent the mean (±SEM) step-through latency (sees) 24 hours following training. A Kaplan Meier survival analysis demonstrated that SN522 was effective at alleviating the impairment in the scopolamine-injected animals (log rank statistic c2(6) = 14.73 p = 0.02). As shown in Figure 32, scopolamine treated rats receiving 0.25, 0.5 and 1.0 mg/kg SN522 performed significantly better than animals treated with scopolamine and saline (p values = 0.01, 0.04 and 0.007 respectively). There was no significant difference between control rats who received injections of saline, and scopolamine treated rats who received injections of SN522 at the 0.25, 0.5 and 1.0 mg/kg doses (p > 0.05). These results show that 1-methamphetamine improves memory in subjects with a memory impairment. EXAMPLE 12: L-AMPHETAMINE IMPROVES MEMORY IN SUBJECTS WITH A MEMORY IMPAIRMENT
Materials and Methods Animals Male, Long-Evans rats (3-5 months of age), obtained from Charles River
Laboratories and weighing between 250 and 350 grams, served as subjects in these experiments. The rats were housed two to a cage in plastic cages with corncob bedding and were maintained on a 12/12 light dark cycle with ad libitum access to food and water.
Drugs L-amphetamine (C105) was dissolved in saline and administered to the rats via intraperitoneal (i.p.) injections, in a volume of 1 ml/kg body weight.
Passive Avoidance Testing In order to determine whether 1-amphetamine (C105) reverses memory deficiencies (also referred to herein as a "memory impairment"), separate groups of animals (the number of animals in each treatment group are indicated inside bars) were injected with either vehicle (0.9% saline; SAL) or scopolamine (0.75 mg/kg) 30 min prior to training. Rats were then trained on the passive avoidance task and immediately afterwards were injected with saline (SAL) or C105 (0.12, 0.25, 0.5 and 1.0 mg/kg, i.p.) and an additional group was treated with physostigmine (0.075 mg/kg, i.p.) as a positive control. Retention was tested 24 hours after training. Data were analyzed using Cox regression within a Kaplan-Meier survival analysis.
Results and Discussion Figure 33 depicts the effects of 1-amphetamine (C105) memory deficiencies, in particular, as a consequence of exposure to scopolamine. Data shown represent the mean (±SEM) step-through latency (sees) 24 hours following training. A Kaplan Meier survival analysis demonstrated that C105 was effective at alleviating the impairment in the scopolamine-injected animals (log rank statistic c2(6) = 14.73 p = 0.02). As shown in Figure 33, scopolamine treated rats receiving 1.0 mg/kg of C 105 performed significantly better than animals treated with scopolamine and saline (p > 0.05). There was no significant difference between saline only treated rats, and scopolamine freated rats who received 1.0 mg/kg of C105 (p > 0.05). These results show that 1-amphetamine improves memory in subjects with a memory impairment.
EXAMPLE 13: STUDY OF (R)-(-)-AMPHETAMINE IN HUMANS Sixteen (n=16) healthy adult male/female subjects, ages 20-72, took part in the study. Subjects were selected from a volunteer database. Study-related procedures were carried out after informed consent had been given. Figure 18 shows a pharmacokinetic measure, in the form of serum levels, for (R)-(-)-amphetamine up to 6 hours after administration. In the ascending dose portion ofthe dose curve, the Brief Visuospatial Memory Test (BVMT) and Rey Auditory and Verbal learning Test (RAVLT) tests were performed and observed to be stastistically significantly higher when compared to controls, having a p < 0.01. Higher BVMT and RAVLT scores indicate an improvement in memory, in particular memory consolidation. On the other hand, patients were assessed using the Providence Recognition Memory Test (Pictoral) after 3 hours, e.g., after the ascending arm ofthe dose curve, and the PRMT scores (both for words and pictures) were both not observed to be statistically significant from controls. These experiments demonstrate that (R)-(-)-amphetamine can enhance memory in patients, and is more effective during the ascending portion ofthe plasma curve. Figure 19 shows a dose response curve for acute dosing with (R)-(-)-amphetamine. Statistically signifcant differences, e.g., as illustrated by the p values, were observed between pacebo and dosages of about 30 mg and about 45 mg per day. In particular, at 30 min: p = 0.004 for placebo vs about 30 mg, and p = 0.03 for placebo vs. about 45 mg. At 24 hour, p = 0.002 for placebo vs about 30 mg, and p = 0.05 for placebo vs about 45 mg. EXAMPLE 14: IMPROVEMENT IN MEMORY IN HUMANS WITH L- AMPHETAMINE Two (2) Phase 1 randomized, double-blind, placebo-controlled clinical studies of 1-amphetamine (C105) were conducted in normal healthy adult male and female subjects. The first trial was conducted in eight (8) Caucasian subjects (3 male and 5 female) with a mean age of 35.1 years (range 21-49 years), and the second trial was conducted in eight (8) Caucasian subjects (1 male and 7 female) with a mean age of 65.4 years (range 60-72 years). The studies were intended to identify the maximum tolerated dose (MTD) and dose-limiting side effects of C 105, to assess the effects of C 105 on quantitative memory scores, to assess the perceived central nervous system (CNS) effects following C105 administration, to assess the effects of C 105 on the cardiovascular system, to explore the relationship between dose, tolerability, safety and pharmacological effects of C105, and to define the pharmacokinetics (PK) of C105. There were five (5) treatment periods in each Phase 1 trial. Each treatment period was one (1) week in duration and consisted of two (2) consecutive days of treatment ("treatment period") with C105 (5 mg, 15 mg, 30 mg, 45 mg) or placebo, followed by five (5) consecutive days without C 105 or placebo ("washout period"). The design is a ascending dose safety design with a placebo dose randomly inserted iinto the sequence. Each subject was randomly administered a single dose of one of the C105 doses (5 mg, 15 mg, 30 mg, 45 mg) or a randomly assigned dose of placebo during each treatment period on the two consecutive treatment days. Each subsequent treatment group would included whatever dose of C 105 (or placebo) had not previously been administered, until the patient had received each ofthe four C105 doses (5 mg, 15 mg, 30 mg, 45 mg) or single placebo treatment to conclude the five week treatment period. Safety data were reviewed after each dose prior to advancement to the next dose level. The Rey Auditory Visual Learning Test (RAVLT, Rey, A. (1941). L'examen psychologique dans les cas d'encephalopathie traumatique. Archives de Psychologie, 28, 21, Lezak, M.D. (1995). Neuropsychological Assessment (3rd ed.). New York: Oxford University Press) was conducted during each ofthe two consecutive days when the patent received C 105 or placebo. RAVLT was not conducted during the washout period. The RAVLT assessment for word recall was made at two (2) different times following C 105 or placebo treatment during each ofthe five treatment periods. The first RAVLT assessment was made on the first day of freatment in each freatment period and consisted of two parts. Fifteen (15) nouns were read aloud to the patient by an Examiner, followed by an interference or distraction frial, which is then followed by a free-recall test ofthe 15 nouns. After a additional 30-minute delay period, the subject was again required to recall the first set of 15 nouns and also complete a 50-word recognition test. The second RAVLT assessment was made on the second day of treatment in each treatment period and consisted of a repeat ofthe Recall test and the 50-word Recognition test given on the previous day. The second RAVLT assessment evaluated word recall 24 hours (± 2 hours) after the first RAVLT assessment and did not consist of another exposure to nouns by an Examiner, but rather a recall ofthe nouns given to the subject 24 hours earlier. Safety and tolerability assessments were changes in vital signs, ECGs, Hotter monitoring, laboratory tests, physical examination and adverse events. Serial blood and urine samples were collected up to 24 hours after dosing for subsequent determination of C 105 plasma concentrations and calculation of pharmacokinetic parameters. C105 was well tolerated when administered in single oral doses ranging from 5 to 45 mg. Reported adverse events were minor. The most frequently reported adverse events were dizziness, headache, insomnia, sinus tachycardia, supraventricular tachycardia and aptyalism. Reported adverse events were generally mild in severity and resolved without requiring treatment. There were no reported serious adverse events and no subject was discontinued from the study due to an adverse event. There were no clinically meaningful findings with respect to C 105 administration on physical examinations, laboratory tests, vital signs, 12-lead ECGs or Hotter recordings. For each patient, RAVLT data showed that all dose groups have mean values higher than the placebo at 30 minutes. The two highest doses (30 mg and 45 mg) exhibited the greatest improvement (highest values) compared to placebo testing. The benefit observed at 30 minutes was maintained at 24 hours, with the recalled number of words slightly lower at 24 hours for each dose compared to the corresponding results at 30 minutes. The recall scores were approximately 10 words following administration ofthe 45 mg dose, compared to approximately 7-8 words recalled when the placebo dose had been administered. Figure 25 shows a pooled statistical analysis ofthe 30-minute and 24-hour RAVLT memory scores for all subjects. The scores showed an overall statistically significant (p<0.05) improvement in RAVLT score with respect to C 105 dose at both 30 minutes and 24 hours post-treatment. In addition, improvements in RAVLT scores observed with the 30 mg and 45 mg doses of C 105 were statistically significant (p<0.05), based on the Wilcoxon signed rank test, when compared to placebo at both 30 minutes and 24 hours post-dose. The difference is also significant (p=0.0559) at the 5 mg dose for the 24-hour recall scores. A comparison of each individual subject's placebo score to their best score on any dose of C 105 showed that RAVLT memory performance for all subject (except for one subject who had a perfect RAVLT score under both conditions) improved following C105 treatment (see Figure 26). These data demonstrate that 1-amphetamine (C105) enhance memory, in particular memory consolidation.
EXAMPLE 15: IMPROVEMENT IN COGNITIVE PROCESSES FOLLOWING
L-AMPHETAMINE ADMINISTRATION A computerized cognitive screening tool (HeadMinder, Inc. (New York, NY)), was employed for the assessment and longitudinal tracking of cognitive functioning (Erlanger, D.M., et al, J. Head Trauma Rehabil. 17:458-476 (2002);
US2003/0073885A1 (2003); WO 01/54650 (2001); WO 01/72217 (2001); WO
01/54559 (2001), the entire teachings of which are hereby incorporated by reference in their entirety). Mild cognitive impairment in subjects was diagnosed based on conventional neuropsychiatric testing parameters - scoring below the age- and educational- adjusted cutoff on the Logical Memory II subscale from the Wechsler Memory Scale. A single test score was used to define subjects with mild cognitive impairment. In addition, the subjects used in this study did not score higher than 0.5 on the Clinical Dementia Rating scale. Some subjects with a Clinical Dementia Rating of 0.5 can have early Alzheimer's disease. Some subjects enrolled in this study scored in the Alzheimer's disease range of some cognitive assessments. Thus, some subjects classified as having mild cognitive impairment may actually have early Alzheimer's disease. In populations of humans with mild cognitive impairment and early Alzheimer's disease, neuropsychiatric tests typically measure a continuum (bell- shaped curve) and the definitions are relatively arbifrary cut points for the abnormal population - typically 1 or 1.5 standard deviations below the norm adjusted for age and education. The battery of nine (9) tests completed by the subjects included two (2) "warm-up" tasks. The remaining seven (7) subtests were included to evaluate cognitive abilities, such as learning and memory, attention, reaction time, and executive function.
TEST FACTORS AND SUBTEST DESCRIPTIONS Keyboard Proficiency - Warm-up Tasks • Keyboard Proficiency 1 A green ball appears on the screen. The subject presses the space bar as quickly as possible until the ball turns red. • Keyboard Proficiency 2 Numbers from 0-9 appear. The subject presses the number that appears on the screen on the keyboard as quickly as possible.
Learning and Memory • Memory Cabinet 1 Subjects learn the placement of nine (9) household objects placed in a cabinet over three (3) learning trials. • Memory Cabinet 2 - Delayed Memory Following intervening tasks, one (1) recall trial ofthe Memory Cabinet is administered to the subject.
The following depicts the memory cabinet employed in the study:
Figure imgf000180_0001
Attention and Executive Function • Response Direction 1 - Simple Attention (a low demand task) Numbers are presented. The subject presses the "1" key when a 1 is presented and presses the "0" key when a 0 is presented. The following depicts a schematic of this task:
STIMULUS: ® ® ~*®
RESPONSE: ;I7|
Response Direction 2 - Response Reversal (a high demand task) Numbers are presented one at a time. The subject presses the "1" key when a 0 is presented and presses the "0" key when a 1 is presented. The following depicts a schematic of this task: STIMULUS: 0 ~* ® ""* © ®
RESPONSE: 1— — — -F
Supplemental Tests The subject places his or her fingers on 4 keys, each representing a box on the screen. • Visuo-Motor Speed 1 Boxes light up one at a time. The subject presses the corresponding key as quickly as possible.
Figure imgf000181_0001
Visuo-Motor Speed 2 Instructions appear in the center ofthe screen. The subject presses the corresponding key as quickly as possible (e.g., "UPPER RIGHT" appears in the middle).
Visuo-Motor Speed 3 Instructions are presented on the screen in the wrong location. The subject presses keys according to each instruction while ignoring the location of the instruction (e.g., "UPPER RIGHT" appears in the lower right).
Figure imgf000182_0001
SUBJECTS Thirteen (13) patients (age 64-88 years old, mean age 77 years old) completed the study. One subject was not included in the analyses because he was unable to conform to the protocol. In the 1-amphetamine treated group, there were 5 females and 3 males. The placebo group included 1 female and 4 males. Gender did not have an effect on cognitive performance at intake, optimal titrated dose, and washout. All participants were Caucasian. The groups differed in age (F = 4.44, df = 1, 11, p = 0.05) and marginally in level of education (F = 4.2, df = 1, 11, p = 0.06) at time of testing. Groups did not differ significantly on any cognitive test variable at screening for inclusion in the study or washout assessment.
Age and Education ofthe two groups
Figure imgf000182_0002
Subjects were randomly assigned to receive either 1-amphetamine or a placebo. Subjects treated with 1-amphetamine (n=8) received 5 mg of 1-amphetamine per day for the first seven (7) days ofthe study, following by 15 mg per day for the next seven (7) days ofthe study, followed by 30 mg per day for the next fourteen (14) days ofthe study. Subjects receiving placebo received identical dosages of placebo pills for the duration ofthe study. Cognitive functions were assessed at baseline (day 0) and on days 1, 8, 15 and 28 of treatment or placebo.
RESULTS To demonstrate equivalent keyboard and general cognitive skills, an
ANCONA (Analysis of Co-Nariance) exploring the treatment condition (treatment = 1-amphetamine administration at 5 mg, 15 mg, 30 mg) was performed with Keyboard Proficiency 2 as the dependent variable and age as the covariate. As expected, 1- amphetamine and placebo subjects did not differ in performance on this task at any test instance, indicating they were roughly equivalent (Figure 27). Higher scores in the keyboard proficiency indicate slower performance.
Keyboard Proficiency 2: Age Scaled Scores and Contrast Statistics
Figure imgf000183_0001
To determine whether the subjects receiving 1-amphetamine had improved memory function, two AΝCONAS exploring the treatment condition were performed with learning and memory as the dependent variables and age as the covariate. Learning (Figures 28 and 31) and memory (Figures 29 and 31) were improved in subjects receiving 1-amphetamine. Significant improvements (p≤ .05) in the learning and memory at 30 mg doses (days 15 and 29) were observed in subjects receiving 1- amphetamine compared to subjects receiving placebo. Placebo freated subjects showed no improvement in learning and memory.
Figure imgf000184_0001
Improvements in executive function following freatment with 1-amphetamine or placebo were assessed by determining the difference between performance on Response Direction 1 (Low Demand Task) and Response Direction 2 (High Demand Task). Maintained learning efficiency is associated with a stable difference score across repeated assessments. Decreased learning efficiency, which is expected in a subject with mild cognitive impairment, is associated with increased differences across repeated assessments since inefficient subjects make greater improvements due to practice effects on the low demand task than on the high demand task, while efficient subjects improve on both tasks at a similar rate. An ANCONA showed significant differences between subjects treated with 1- amphetamine (30 mg, day 15) and placebo. A linear contrast of difference scores between the low and high demand tasks across repeated assessments was not significant for participants in the 1-amphetamine group (F = .20, p = .65) and was significant for participants in the placebo group (F = 2.98, p = .05, one-tailed test). This indicated that those in the 1-amphetamine group maintained learning efficiency and that those in the placebo group did not. The placebo group's performance improved on the low demand task, but not on the high demand task, causing the differences to increase in a linear manner. In contrast, the 1-amphetamine group improved equally on both the low and high demand tasks, so that the differences remain roughly the same. These differences are shown in Figure 30 and the following Table. A higher score in Figure 30 indicates a greater inefficiency. In the 1-amphetamine group, a large decrease in learning efficiency at the final assessment - when the medication is no long active - was observed.
Executive Function Scores: Raw Scores and Group Contrast Statistics
Figure imgf000185_0001
CONCLUSIONS Prior to treatment with 1-amphetamine, mild cognitive impairment and early Alzheimer's disease subjects had cognitive impairments. Treatment of subjects with placebo did not improve cognitive function. In contrast, subjects treated with 1- amphetamine had improved performance on tests for learning, memory and executive function to the extent (one standard deviation or more) such that subjects treated with 1-amphetamine were scoring within the normal range on tests assessing learning, memory and executive function. The magnitude of improvement in learning, memory and executive function following 1-amphetamine treatment is considered to be clinically significant and efficaciously statistically significant (p < 0.05) for each ofthe learning, memory and executive function assessments. Figure 31 illustrates the performance of subjects treated with 1-amphetamine at a peak dose of 30 mg per day compared to placebos controls. A Z-score of 0 represents average performance for healthy individuals and a standard deviation equals 1. At baseline (prior to treatment) both groups were about equivalent and scored in ranges clearly consistent with mild cognitive impairment and early Alzheimer's disease. At a peak dose of 30 mg per day of 1-amphetamine, subject's scores improved by approximately 1 standard deviation to within normal limits. No change was observed in the control, placebo group. Improvements in memory, learning and executive function by treatment with 1- amphetamine can have profound implications for improvement in the clinical symptoms of mild cogmtive impairment, early Alzheimer's disease and in performances of everyday tasks ranging from managing medications to grocery shopping and operating a vehicle.
EXAMPLE 16
IMPROVEMENT IN MEMORY IN HUMANS TREATED WITH L- METHAMPHETAMINE Two (2) Phase I randomized, double-blind, placebo-controlled clinical studies were conducted in healthy adult male and female subjects who were administered 1- methamphetamine (SN522). The first clinical trial was conducted with sixteen (16) healthy subjects, who did not have memory or cognitive impairments (also referred to herein as "normal subjects"), ranging in age from 20-60 years (n=8) and 61-80 years (n=8) who were administered placebo or 1 mg, 4 mg, 16 mg or 32 mg of 1- methamphetamine. A second Phase I clinical trial was conducted with eight (8) normal subjects with an age range of 50-64 years. In the second Phase I clinical trial, the eight (8) subjects received 25 mg, 50 mg, 100 mg of 1-methamphetamine; of these eight (8) subjects, five (5) subjects also received placebo (0 mg of 1- methamphetamine) and three (3) subjects received 150 mg of 1-methamphetamine. The Phase I studies were designed to identify a maximum tolerated dose and dose-limiting side effects of 1-methamphetamine; to assess the effects of 1- methamphetamine on quantitative memory scores for example, by the California Verbal Learning Test (CVLTII) or RAVLT; to assess the perceived CNS effects following the administration of 1-methamphetamine on the cardiovascular system; to explore the relationship between dose, tolerability, safety and pharmacological effects of 1-methamphetamine; and to define the pharmacokinetics of 1- methamphetamine . There were six (6) treatment periods in the first Phase I clinical trial. There were four (4) treatment periods in the second Phase I clinical trial. Each treatment period was one (1) week in duration and consisted of two (2) consecutive days of freatment with 1-methamphetamine (1, 4, 16 or 32 mg for the first Phase I study and 25, 50 or 100 mg for the second Phase I study) or a placebo, followed by five (5) consecutive days without 1-methamphetamine or a placebo. Each subject was randomly administered a single dose of one ofthe 1-methamphetamine doses or randomly assigned a dose of placebo during each treatment period. Each subsequent treatment group would include whatever dose of 1-methamphetamine had not previously been administered, until the patient had received each ofthe 1- methamphetamine doses or a single placebo treatment to conclude the treatment period. Safety data were reviewed after each dose prior to advancement to the next dose level. The RAVLT assessment for word recall was performed as described above and made at two different times following the adminisfration of 1- methamphetamine or a placebo during each ofthe treatment periods. The initial RAVLT training was conducted approximately two and a half hours after administration ofthe 1-methamphetamine or a placebo. After a 30-minute delay period, the subject was required to recall a first set of 15 nouns. The second RAVLT assessment was made approximately 24-hours following treatment with 1- methamphetamine. Safety and tolerability assessments were as described for freatment with Phase I clinical study with 1-amphetamine and consisted of assessments in vital signs, ECGs, physical examination and the noting of any adverse events. L-methamphetamine was generally well tolerated in the first and second Phase
I trials. In a few subjects in the second Phase I frial, a 150 mg dose was not well tolerated and this dose was not continued. As shown in Figure 34, RAVLT data from the second Phase I study show that all dose groups have mean values greater than placebo at 30 minutes and 24 hours. Thus, the benefit in improving memory following the administration of 1- methamphetamine observed at 30 minutes was maintained at 24 hours. No difference in memory scores was observed in subjects in the first Phase I study. These data show that adminisfration of 1-methamphetamine can enhance memory in subjects who do not have any known impairment in memory or cognition.
EXAMPLE 17 IMPROVEMENT IN COGNITIVE PROCESSES FOLLOWING L-
METHAMPHETAMINE ADMINISTRATION A randomized, double-blind, placebo-controlled, dose escalation study in human subjects, who were not suffering from an impairment in a memory or cognitive process ("normal subjects"), was conducted to assess the safety, tolerability and pharmacokinetics and improvement in cognitive processes, including memory, following the administration of 1-methamphetamine (25 mg, 50 mg, 100 mg, 150 mg). Eight (8) subjects received 25 mg, 50 mg, 100 mg of 1-methamphetamine; of these eight (8) subjects, five (5) subjects also received placebo and three (3) subjects received 150 mg of 1-methamphetamine. The studies were conducted employing a battery of cognitive tests developed by Cognitive Drug Research (CDR) in the United
States. A selection of tasks from the CDR computerized cognitive assessment system was administered and parallel forms ofthe tests were presented on each testing session. The CDR tasks are well-established assessments of cognition and known to one of skill in the art. All tasks were computer-controlled, the information was presented on high resolution screens, and the responses recorded via a response module containing two buttons, one marked "NO' and the other YES'. The tracking task additionally involved the use of a joystick. The test battery takes about 20-25 minutes to perform. The tests were administered in the following order: • Picture Presentation: A series of 20 pictures was presented on the screen at the rate of 1 every 3 seconds for the subject to remember. No data were recorded from this task.
• Simple Reaction Time: The subject was instructed to press the 'YES' response button as quickly as possible every time the word 'YES' is presented on the screen. Fifty stimuli were presented with a varying inter-stimulus interval.
• Digit Vigilance: A target digit was randomly selected and constantly displayed to the right ofthe screen. A series of digits was then presented in the center of the screen at the rate of 150 per minute and the subject was required to press the 'YES' button as quickly as possible every time the digit in the series matches the target digit. There were 45 targets in the series. The task lasted for 3 minutes.
• Choice Reaction Time: Either the word "NO' or the word YES' was presented on the screen and the subject was instructed to press the corresponding button as quickly as possible. There were 50 trials for which each stimulus word was chosen randomly with equal probability and there was a varying inter-stimulus interval.
• Rapid Visual Information Processing: A series of digits was presented on the screen at the rate of 100 per minute. The subject had to detect targets consisting of consecutive sequences of either three odd digits or three even digits, and to report them by pressing the 'YES' button as quickly as possible. There were 32 targets. The task lasted for 4 minutes.
• Tracking: The subject used a joystick to track a randomly moving target on the screen for one minute. The distance off-target per second was recorded. • Spatial Working Memory: A picture of a house was presented on the screen with four of its nine windows lit. The subject had to memorize the position of the lit windows. For each ofthe 36 subsequent presentations ofthe house, the subject was required to decide whether or not the one window that was lit was also lit in the original presentation. The subject responded by pressing the 'YES' or 'NO' buttons as appropriate, as quickly as possible. • Numeric Working Memory: A series of five digits was presented for the subject to hold in memory. This was followed by a series of 30 probe digits for each of which the subject had to decide whether or not it was in the original series and press the YES' or 'NO' response button as appropriate, as quickly as possible. This procedure was repeated twice more, using two different series and probes.
• Picture Recognition: The original pictures plus 20 distracter pictures were presented one at a time in a randomized order. For each picture the subject had to indicate whether or not the subject recognized it as being from the original series by pressing the YES' or 'NO' button as appropriate, as quickly as possible.
Summary statistics were calculated for the unadjusted scores, and the difference from baseline (pre-dose) data collected. Repeated measures analysis of variance (ANOVA) was conducted on the difference from baseline data fitting terms for dose, time, period and the dose-time interaction. A random effect of subjects was fitted to the model. As shown in Figure 35, 1-methamphetamine (SN522) had a dose-dependent effect on speed of response. This dose dependent pattern indicates a post-dose decline with placebo treatment, and increasing post-dose improvements in response speed with active dosing as shown using a combined Total Speed score, which combines the reaction time measures from all the CDR tasks, except the Tracking task. The data shown in Figure 35 compares the score obtained after 1- methamphetamine treatment with a pre-dose score. Subjects receiving placebo take a longer time to respond with a dose-response reduction in the total response time. A dose dependent pattern was evident in the LSmean difference from baseline, as shown in Figure 35. A pattern for dose dependent benefit was evident on several ofthe reaction time measures, as shown in Figure 35. Total speed tasks assess cognitive functions. As shown in Figure 36, administration of 1-methamphetamine (25 mg, 150 mg) improved the Picture Recognition - Sensitivity Index, a task that assesses memory. A significant effect of treatment was seen from the ANOVA (p^O.004). The LSmean comparisons showed significant benefits for 25 mg (p=0.0177) and 150 mg (p=0.0254) over placebo. Three (3) subjects received 150 mg dose of 1- methamphetamine. Figure 36 shows a pattern for dose dependent improvement for 50 mg, 100 mg and 150 mg of 1-methamphetamine. A possible explanation for the lack of fit ofthe 25 mg dose was that the pre-dose baseline for 25 mg was poor, leading to a post-dose improvement. Thus, the relative pre-dose performance ofthe dose groups should be considered. As shown in Figures 37 and 38, a significant effect of dose was observed for Information Processing Targets Detected (p=0.0005), an assessment of cognition, following administration of 1-methamphetamine. The LSmean comparisons showed significant benefits for 100 mg (p=0.0002) and 150 mg (p=0.0001) over placebo (Figure 37). This pattern was improved with a 100 and 150 mg dose and was in contrast to a pattern for a dose dependent increase in False Alarms, which also showed a significant main effect of dose (p=0.0001). The LSmean comparisons showed significant decrements against placebo for 50 mg (p=0.0002), 100 mg (p=0.0001) and 150 mg (p=0.0001) doses (Figure 38). In summary, these data show a dose dependent effect of 1-methamphetamine on reaction time (speed of response) on the CDR task measures. A dose of 25 mg and 150 mg of 1-methamphetamine improved Picture Recognition - Sensitivity Index (accuracy), an assessment of memory. A dose dependent benefit of 1- methamphetamine on Information Processing Targets Detected (accuracy) was also observed, which is an assessment of cognition. This benefit was also associated with increased False Alarms on the task, which may indicate a change in response strategy (increased responding), rather than a direct benefit to accuracy. However, when the False Alarms measures was used as a covariate in the analysis ofthe Targets Detected (accuracy) measure, the benefits following 1-methamphetamine administration remained, indicating a benefit to accuracy following 1- methamphetamine adminisfration. Therefore, 1-methamphetamine has dose dependent effects benefiting response speed, and beneficial effects, on memory and information processing accuracy. These beneficial effects observed in normal healthy subjects support the beneficial effects for use ofthe amphetamine compounds ofthe invention in subjects having cognitive impairments.
EQUIVALENTS While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope ofthe invention as defined by the appended claims. All patents, publications, and other references cited above are hereby incorporated by reference in their entirety.

Claims

CLA SWhat is claimed is:
1. A method of treating a human for a memory impairment, comprising the step of administering an effective amount of an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine, or a combination of both to a human having an impairment in memory associated with multiple sclerosis.
2. The method of Claim 1, wherein 1-amphetamine is administered, and wherein the 1-amphetamine is administered as a component of a composition that includes at least about 80 mole percent 1-amphetamine relative to a total amphetamine content ofthe composition.
3. The method of Claim 1, wherein 1-methamphetamine is administered, and wherein the 1-methamphetamine is administered as a component of a composition that includes at least about 80 mole percent 1-methamphetamine relative to a total methamphetamine content ofthe composition.
4. The method of Claim 1, wherein the impairment and an improvement in memory in the human is determined by a Rey Auditory Verbal Learning Test.
5. The method of Claim 1, wherein at least one member selected from the group consisting of short-term memory, working memory, long-term memory, memory consolidation, procedural memory and declarative memory is improved in the human following administration ofthe amphetamine.
6. The method of Claim 1 , wherein the 1-amphetamine is administered at a dose of between about a 1 mg dose and about a 150 mg dose per day.
7. The method of Claim 1, wherein the 1-methamphetamine is administered at a dose of between about a 1 mg dose and about a 150 mg dose per day.
8. A method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine composition selected from the group consisting of 1-amphetamine, 1- methamphetamine, or a combination of both to a human having an impairment in a cognitive function associated with multiple sclerosis.
9. The method of Claim 8, wherein 1-amphetamine is administered, and wherein the 1-amphetamine is administered as a component of a composition that includes at least about 80 mole percent 1-amphetamine relative to a total amphetamine content ofthe composition.
10. The method of Claim 8, wherein 1-methamphetamine is administered, and wherein the 1-methamphetamine is administered as a component of a composition that includes at least about 80 mole percent 1-methamphetamine relative to a total methamphetamine content ofthe composition.
11. The method of Claim 8, wherein at least one member selected from the group consisting of attention, executive function, reaction time, learning, information processing, conceptualization, problem solving and verbal fluency is improved in the human following administration ofthe amphetamine.
12. The method of Claim 8, wherein the 1-amphetamine is administered at a dose of between about a 1 mg dose and about a 150 mg dose per day.
13. The method of Claim 8, wherein the 1-methamphetamine is administered at a dose of between about a 1 mg dose and about a 150 mg dose per day.
14. A method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine composition selected from the group consisting of 1-amphetamine, 1- methamphetamine, or a combination of both to a human having an impairment in a cognitive function associated with a brain aneurysm and wherein the human does not have an impairment in memory, attention and learning.
15. The method of Claim 14, wherein the brain aneurysm is an anterior communication artery brain aneurysm.
16. A method of treating an impairment in a cognitive function in a human, comprising the step of administering an effective amount of an amphetamine composition selected from the group consisting of 1-amphetamine, 1- methamphetamine, or a combination of both to a human having an impairment in a cognitive function associated with mental retardation and wherein the impairment is not an impairment in memory, attention and learning.
17. The method of Claim 16, wherein at least one member selected from the group consisting of attention, executive function, reaction time, learning, information processing, conceptualization, problem solving and verbal fluency is improved in the human following administration ofthe amphetamine.
18. A method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine to a human having an impairment in a cognitive fiinction associated with Parkinson's disease, wherein the amphetamine is administered as a component of a composition that includes amphetamine and, optionally, a methamphetamine, wherein at least about 85 mole percent ofthe total amphetamine and methamphetamine content ofthe composition is 1- amphetamine and wherein the human does not have an impairment in memory, attention and learning.
19. The method of Claim 18, wherein at least one member selected from the group consisting of executive function, reaction time, information processing, conceptualization, problem solving and verbal fluency is improved in the human following administration ofthe amphetamine.
20. A method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of a methamphetamine to a human having an impairment in a cognitive function associated with Parkinson's disease, wherein the methamphetamine is administered as a component of a composition that includes methamphetamine and, optionally, an amphetamine wherein at least about 85 mole percent ofthe total methamphetamine in amphetamine content ofthe composition is 1- methamphetamine and wherein the human does not have an impairment in memory, attention and learning.
21. A method of treating a human for a memory impairment, comprising the step of administering an effective amount of an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine, or a combination of both to a human having an impairment in memory associated with chronic fatigue syndrome.
22. The method of Claim 21 , wherein at least one member selected from the group consisting of short term memory, long term memory, memory consolidation, working memory, procedural memory and declarative memory is improved in the human following administration ofthe amphetamine.
23. A method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine composition selected from the group consisting of 1-amphetamine, 1- methamphetamine, or a combination of both to human having an impairment in a cognitive function associated with chronic fatigue syndrome.
24. The method of Claim 23, wherein at least one member selected from the group consisting of attention, executive function, reaction time, learning, information processing, conceptualization, problem solving and verbal fluency is improved in the human following administration ofthe amphetamine.
5 25. A method of freating a human for a memory impairment, comprising the step of administering an effective amount of an amphetamine composition selected from the group consisting of 1-amphetamine, 1-methamphetamine, or a combination of both to a human having an impairment in memory associated with fibromyalgia syndrome.
10 26. The method of Claim 25, wherein at least one member selected from the group consisting of short term memory, long term memory, memory consolidation, working memory, procedural memory and declarative memory is improved in the human following administration ofthe amphetamine.
27. A method of treating a human for an impairment in a cognitive function,
15 comprising the step of administering an effective amount of an amphetamine composition selected from the group consisting of 1-amphetamine, 1- methamphetamine, or a combination of both to human having impairment in a cognitive function associated with fibromyalgia syndrome.
28. The method of Claim 27, wherein at least one member selected from the group 0 consisting of attention, executive function, reaction time, learning, information processing, conceptualization, problem solving and verbal fluency is improved in the human following administration ofthe amphetamine.
29. A method of freating a human for a memory impairment, comprising the step of administering an effective amount of an amphetamine composition selected 5 from the group consisting of 1-amphetamine, 1-methamphetamine, or a combination of both to a human having an impairment in memory associated with chemotherapy treatment.
30. A method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine composition selected from the group consisting of 1-amphetamine, 1- methamphetamine, or a combination of both to a human having an impairment in a cognitive function associated with a brain injury and wherein the human does not have an impairment in memory, attention and learning.
31. The method of Claim 30, wherein the brain injury is a traumatic brain injury.
32. A method of treating a human for an impairment in a cognitive function, comprising the step of administering an effective amount of an amphetamine composition selected from the group consisting of 1-amphetatmine, 1- methamphetamine, or a combination of both to a human having an impairment in a cognitive function associated with a stroke and wherein the human does not have an impairment in memory, attention and learning.
33. A method of freating a human for a memory impairment, comprising administering an effective amount of to the human an amphetamine composition selected from the group consisting of 1-amphetamine, 1- methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine, modafinil, or a combination thereof at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the memory impairment consequent to the exposure to the muscarinic cholinergic receptor antagonist is at least partially attenuated.
34. The method of Claim 33, wherein the muscarinic cholinergic receptor antagonist is at least one member selected from the group consisting of afropine, scopolamine, homatropine and trihexyphenidyl.
35. The method of Claim 33, wherein the human is administered at least one member selected from the group consisting of 1-amphetamine and 1- methamphetamine .
36. The method of Claim 35, wherein 1-amphetamine is administered as a component of a composition, wherein the 1-amphetamine includes at least about 80 mole percent 1-amphetamine relative to a total amphetamine content ofthe composition and 1-methamphetamine is administered as a component of a composition, wherein the 1-methamphetamine includes at least about 80 mole percent 1-methamphetamine relative to a total methamphetamine content ofthe composition.
37. A method of treating a human for a cognitive impairment, comprising administering to the human an effective amount of an amphetamine composition selected from the group consisting of 1-amphetamine, 1- methamphetamine, 1-threo-methylphenidate, d-threo-methylphenidate, methylphenidate, atomoxetine, modafinil, or a combination thereof at one or more points in time selected from the group consisting of before, concomitantly with and subsequent to exposure ofthe human to a muscarinic cholinergic receptor antagonist, whereby the cognitive impairment consequent to the exposure to the muscarinic cholinergic receptor antagonist is at least partially attenuated.
38. The method of Claim 37, wherein the muscarinic cholinergic receptor antagonist is at least one member selected from the group consisting of atropine, scopolamine, homatropine and trihexyphenidyl.
39. The method of Claim 37, wherein the human is administered at least one member selected from the group consisting of 1-amphetamine and 1- methamphetamine .
40. The method of Claim 31, wherein 1-amphetamine is administered as a component of a composition, wherein the 1-amphetamine includes at least about 80 mole percent 1-amphetamine relative to a total amphetamine content ofthe composition and 1-methamphetamine is administered as a component of a composition, wherein the 1-methamphetamine includes at least about 80 mole percent 1-methamphetamine relative to a total methamphetamine content ofthe composition.
PCT/US2004/015974 2000-11-01 2004-05-21 Methods for treating cognitive impairment and improving cognition WO2005000203A2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CN2004800211168A CN1826105B (en) 2003-05-23 2004-05-21 Use of amphetamine composition in producing medicine for treating cognitive impairment
US10/557,095 US20070117869A1 (en) 2000-11-01 2004-05-21 Methods for treating coginitive impairment and improving cognition
AU2004251596A AU2004251596B2 (en) 2003-05-23 2004-05-21 Methods for treating cognitive impairment and improving cognition
CA002567746A CA2567746A1 (en) 2003-05-23 2004-05-21 Methods for treating cognitive impairment and improving cognition
EP04752902.9A EP1635851B1 (en) 2003-05-23 2004-05-21 Methods for treating cognitive impairment and improving cognition
JP2006533278A JP2007502863A (en) 2003-05-23 2004-05-21 Methods for treating and improving cognitive impairment
MXPA05012614A MXPA05012614A (en) 2003-05-23 2004-05-21 Methods for treating cognitive impairment and improving cognition.
US11/133,144 US7619005B2 (en) 2000-11-01 2005-05-19 Methods for treating cognitive impairment in humans with Multiple Sclerosis
US11/636,644 US20070099999A1 (en) 2000-11-01 2006-12-08 Methods of treating depression
US11/636,702 US20070100000A1 (en) 2000-11-01 2006-12-08 Methods of providing neuroprotection
US11/636,703 US20070197663A1 (en) 2000-11-01 2006-12-08 Methods of treating memory and cognitive impairments in humans following stroke and traumatic brain injury
AU2008202794A AU2008202794A1 (en) 2003-05-23 2008-06-24 Methods for treating cognitive impairment and improving cognition
US12/221,776 US20100022658A1 (en) 2000-11-01 2008-08-06 Methods for treating cognitive impairment in humans

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US37400101A 2001-10-31 2001-10-31
US10/139,606 US20030119884A1 (en) 2000-11-01 2002-05-02 Methods and compositions for regulating memory consolidation
US47316803P 2003-05-23 2003-05-23
US10/444,970 2003-05-23
US10/444,970 US20030232890A1 (en) 2000-11-01 2003-05-23 Methods for treating an impairment in memory consolidation
US60/473,168 2003-05-23
US10/791,223 US20050059743A1 (en) 2000-11-01 2004-03-02 Methods for treating mild cognitive impairment and alzheimer's disease
US10/791,223 2004-03-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/791,223 Continuation-In-Part US20050059743A1 (en) 2000-11-01 2004-03-02 Methods for treating mild cognitive impairment and alzheimer's disease

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US11/133,144 Continuation-In-Part US7619005B2 (en) 2000-11-01 2005-05-19 Methods for treating cognitive impairment in humans with Multiple Sclerosis
US11/636,703 Continuation US20070197663A1 (en) 2000-11-01 2006-12-08 Methods of treating memory and cognitive impairments in humans following stroke and traumatic brain injury
US11/636,644 Continuation US20070099999A1 (en) 2000-11-01 2006-12-08 Methods of treating depression
US11/636,702 Continuation US20070100000A1 (en) 2000-11-01 2006-12-08 Methods of providing neuroprotection

Publications (2)

Publication Number Publication Date
WO2005000203A2 true WO2005000203A2 (en) 2005-01-06
WO2005000203A3 WO2005000203A3 (en) 2005-12-29

Family

ID=33556727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/015974 WO2005000203A2 (en) 2000-11-01 2004-05-21 Methods for treating cognitive impairment and improving cognition

Country Status (1)

Country Link
WO (1) WO2005000203A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076485B2 (en) 2005-01-20 2011-12-13 Institute For Molecular Medicine, Inc. Methylphenidate derivatives and uses of them
WO2012178014A1 (en) * 2011-06-24 2012-12-27 K-Pax Pharmaceuticals, Inc. Compositions and methods for treatment of chronic fatigue
US20140107140A1 (en) * 2011-06-24 2014-04-17 K-Pax Pharmaceuticals, Inc. Compositions and methods for treatment of gulf war illness
KR101494675B1 (en) * 2006-08-23 2015-02-23 더 유니버시티 오브 몬타나 Method of reducing neuronal cell damage
US9040082B2 (en) 2011-06-24 2015-05-26 K-Pax Pharmaceuticals, Inc. Compositions and methods for treatment of chronic fatigue
US20150290148A1 (en) * 2006-08-23 2015-10-15 The University Of Montana Method of reducing brain cell damage, inflammation or death

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2300011A4 (en) 2008-05-27 2012-06-20 Dmi Life Sciences Inc Therapeutic methods and compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992518A (en) 1974-10-24 1976-11-16 G. D. Searle & Co. Method for making a microsealed delivery device
US5075338A (en) 1986-09-25 1991-12-24 Chinoin Gyogyszer- Es Vergyeszeti Termekek Gyara Rt. Method of treatment of learning deficiency
WO2001039998A1 (en) 1999-12-04 2001-06-07 Dunlop Tyres Ltd. Motor-cycle radial tyre

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151449A (en) * 1990-08-31 1992-09-29 Deprenyl Animal Health, Inc. Use of L-deprenyl for retention of specific physiological functions
AU1105800A (en) * 1998-10-09 2000-05-01 L. Sai Latha Shankar Methods for treating multiple sclerosis
US6635675B2 (en) * 2001-11-05 2003-10-21 Cypress Bioscience, Inc. Method of treating chronic fatigue syndrome

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992518A (en) 1974-10-24 1976-11-16 G. D. Searle & Co. Method for making a microsealed delivery device
US5075338A (en) 1986-09-25 1991-12-24 Chinoin Gyogyszer- Es Vergyeszeti Termekek Gyara Rt. Method of treatment of learning deficiency
WO2001039998A1 (en) 1999-12-04 2001-06-07 Dunlop Tyres Ltd. Motor-cycle radial tyre

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
BAMMER, G., NEUROSCI & BIOBEV. REV., vol. 6, 1982, pages 247 - 296
BUSCHKE, H. ET AL., NEUROLOGY, vol. 24, 1974, pages 1019 - 1025
COLEMAN ET AL., POLYMERS, vol. 31, 1990, pages 1187 - 1230
DELIS, D.C. ET AL.: "The Californian Verbal Learning Test", 2000, TX: THE PSYCHOLOGICAL CORPORATION
ELLIOTT, R., BR. MED. BULL., vol. 65, 2003, pages 49 - 59
ENNACEUR, A. ET AL., BEHAV. BRAIN RES., vol. 33, 1989, pages 197 - 207
ENNACEUR, A. ET AL., PSYCHOPHARNIACOL., vol. 109, 1992, pages 321 - 330
GELOWITZ D, PHARACOLOGY BIOCHEMISTRY AND BEHAVIOR, vol. 47, 1994, pages 41 - 45
KINCHLA, RA. ET AL., ANNU. REV. PSYCHOL., vol. 43, 1992, pages 711 - 742
LEONG ET AL., ADV. DRUG DELIVERY REV., vol. 1, 1987, pages 199 - 233
LIU ET AL., INTER. J. OF PHARM., vol. 112, 1994, pages 117 - 124
LIU ET AL., INTER. J. OFPHARM., vol. 112, 1994, pages 105 - 116
PERRY, R.J. ET AL., NEUROPSYCHOLOGIA, vol. 38, 2000, pages 252 - 271
REMINGTON: "Pharm. Sci."
ROERDINK ET AL., DRUG CARRIER SYSTEMS, vol. 9, 1989, pages 57 - 109
ROFF ET AL.: "Handbook of Common Polymers", 1971, CRC PRESS
See also references of EP1635851A4
WECHSLER, D.: "Wechsler Memory Scale-Revised Manual", 1987, THE PSYCHOLOGICAL CORP.
YASAR S, J NEURAL TRANSM, vol. 48, 1996, pages 61 - 73
YOUNGJOHN J.R. ET AL., ARCHIVES OF CLINICAL NEUROPSYCHOLOGY, vol. 6, 1991, pages 287 - 300

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076485B2 (en) 2005-01-20 2011-12-13 Institute For Molecular Medicine, Inc. Methylphenidate derivatives and uses of them
US9463187B2 (en) 2005-01-20 2016-10-11 Ampio Pharmaceuticals, Inc. Methylphenidate derivatives and uses of them
KR101494675B1 (en) * 2006-08-23 2015-02-23 더 유니버시티 오브 몬타나 Method of reducing neuronal cell damage
US20150290148A1 (en) * 2006-08-23 2015-10-15 The University Of Montana Method of reducing brain cell damage, inflammation or death
WO2012178014A1 (en) * 2011-06-24 2012-12-27 K-Pax Pharmaceuticals, Inc. Compositions and methods for treatment of chronic fatigue
US20140107140A1 (en) * 2011-06-24 2014-04-17 K-Pax Pharmaceuticals, Inc. Compositions and methods for treatment of gulf war illness
US9040082B2 (en) 2011-06-24 2015-05-26 K-Pax Pharmaceuticals, Inc. Compositions and methods for treatment of chronic fatigue

Also Published As

Publication number Publication date
WO2005000203A3 (en) 2005-12-29

Similar Documents

Publication Publication Date Title
US7244769B2 (en) Methods for treating an impairment in memory consolidation
US20070100000A1 (en) Methods of providing neuroprotection
US7619005B2 (en) Methods for treating cognitive impairment in humans with Multiple Sclerosis
US20070197663A1 (en) Methods of treating memory and cognitive impairments in humans following stroke and traumatic brain injury
CA2427388C (en) Pharmaceutical compositions and uses for improving memory and learning impairments
US20100022658A1 (en) Methods for treating cognitive impairment in humans
US20130231395A1 (en) Methods for treating alzheimer&#39;s disease
AU2002239464A1 (en) Methods and compositions for regulating memory consolidation
US20060167112A1 (en) Methods and compositions for regulating memory consolidation
US20020132793A1 (en) Use of methylphenidate compounds to enhance memory
US20020103162A1 (en) Use of threo-methylphenidate compounds to enhance memory
WO2002053104A2 (en) Use of catecholamine reuptake inhibitors to enhance memory
WO2005000203A2 (en) Methods for treating cognitive impairment and improving cognition
AU2004251596B2 (en) Methods for treating cognitive impairment and improving cognition
EP1743631A2 (en) Use of an amphetamine composition for regulating memory consolidation
US20030229122A1 (en) Use of methylphenidate compounds to enhance memory
CN109640975A (en) The combination of histamine-3-receptor inverse agonist and acetylcholinesterase inhibitor
CN109562180A (en) Three recombinations of histamine-3-receptor inverse agonist, acetylcholinesterase inhibitor and nmda receptor antagonist
NO318387B1 (en) Use of a combination of a beta-receptor blocker and an opioid in the treatment of pain.
WO1996012481A1 (en) Autism remedy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021116.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11133144

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006533278

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/012614

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 543759

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2004251596

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004752902

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004251596

Country of ref document: AU

Date of ref document: 20040521

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004251596

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007117869

Country of ref document: US

Ref document number: 10557095

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004752902

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11133144

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2567746

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 10557095

Country of ref document: US