WO2004113580A1 - 成形性に優れた高強度鋼板およびその製造方法 - Google Patents

成形性に優れた高強度鋼板およびその製造方法 Download PDF

Info

Publication number
WO2004113580A1
WO2004113580A1 PCT/JP2003/008006 JP0308006W WO2004113580A1 WO 2004113580 A1 WO2004113580 A1 WO 2004113580A1 JP 0308006 W JP0308006 W JP 0308006W WO 2004113580 A1 WO2004113580 A1 WO 2004113580A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
mass
strength steel
formability
strength
Prior art date
Application number
PCT/JP2003/008006
Other languages
English (en)
French (fr)
Inventor
Toshiki Nonaka
Hirokazu Taniguchi
Masaaki Mizutani
Nobuhiro Fujita
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to BRPI0318364-5A priority Critical patent/BR0318364B1/pt
Priority to US10/560,989 priority patent/US7922835B2/en
Priority to CA2529736A priority patent/CA2529736C/en
Priority to ES03733561.9T priority patent/ES2660402T3/es
Priority to EP03733561.9A priority patent/EP1642990B1/en
Priority to AU2003243961A priority patent/AU2003243961A1/en
Publication of WO2004113580A1 publication Critical patent/WO2004113580A1/ja
Priority to US13/066,223 priority patent/US8262818B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a high-strength steel sheet excellent in formability, chemical conversion treatment properties, and zinc adhesion, and a method for producing the same.
  • TRIP steels steel sheets that utilize work-induced transformation of retained austenite to improve elongation have been invented.
  • Japanese Patent Application Laid-Open No. 61-1575765 Gazette disclosed in Japanese Patent Application Laid-Open No. 10-130776.
  • an invention aimed at reducing the Si of the residual austenitic TRIP steel was disclosed in Japanese Unexamined Patent Publication No. Hei. Although it is disclosed in Japanese Patent Application Publication No. 0 34 45 28 88, the present invention is intended to improve the chemical conversion treatment property, the molten zinc plating property and the ductility. Although the above can be expected, the improvement in weldability described above cannot be expected, and the TR IP steel sheet with a tensile strength of 98 OMPa or more has a very high yield stress, so the shape freezing property during pressing etc. deteriorates There was a problem of doing.
  • high-strength steel sheets with a tensile strength of 98 OMPa or more may cause delayed fracture. Since the TRIP steel sheet has a large amount of retained austenite, a large amount of voids and dislocations are generated at the interface between the martensite phase formed by the induced transformation during processing and the surrounding phases, and hydrogen is generated in such places. There is also the problem of accumulation and delayed blasting.
  • Dua 1 P hase steel (hereinafter, referred to as DP steel) containing a fluoride, as disclosed in Japanese Patent Application Laid-Open No. 57-155,329, is disclosed.
  • DP steel Dua 1 P hase steel
  • a cooling rate after recrystallization annealing of 30 ° C / s or more is required, and a general hot-dip galvanizing line is insufficient.
  • the target of the steel sheet is a tensile strength of up to 100 kg Z mm 2 , and a high-strength steel sheet having sufficient formability has not always been realized. Disclosure of the invention
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and to realize a high-strength steel sheet excellent in formability, chemical treatment property, and zinc stickability, and a method for manufacturing the same on an industrial scale.
  • the present inventors have conducted intensive studies on high-strength steel sheets excellent in formability, and as a result, optimized steel composition, that is, the specific range of Si, Al content and TS [target strength value], In particular, it was found that by adjusting the amount of A 1 added, it is possible to industrially produce high-strength steel sheets that can secure even greater elongation in DP steels with low yield stress by adjusting the amount of A1 added.
  • the steel sheet of the present invention has improved ductility to a degree equivalent to or equivalent to that of the conventional residual austenitic steel, and has a chemical conversion treatment by reducing Si.
  • the DP steel was allowed to contain unavoidable residual austenite of 5% or less and contained substantially no residual austenite.
  • the high-strength steel sheet of the present invention can realize a tensile strength of 590 MPa, and has a remarkable effect with a high-strength steel sheet of 980 MPa or more.
  • the present invention is based on the technical idea described above, and the gist is as follows.
  • a high-strength steel sheet with excellent formability characterized by satisfying the above conditions and having a metal structure containing ferrite and martensite.
  • [TS target value] is the strength design value of the steel sheet, and the unit is Mp a
  • [S i] is the mass of S i 0 / o (2) Furthermore, at mass 0 / o, V: 0.01 to 0.1%, Ti: 0.01 to 0.1%, Nb: 0.005 to 0.0 One of 5% or
  • the high-strength steel sheet excellent in formability according to (1) characterized by containing two or more types.
  • [B] is the mass of B 0 /.
  • [M n] is the mass of Mn 0/0
  • [A 1 ] is the mass of A 1 0/0
  • a high-strength steel sheet excellent in formability wherein the high-strength steel sheet according to any one of (1) to (5) is a hot-rolled steel sheet or a cold-rolled steel sheet.
  • a high-strength steel sheet excellent in formability according to any one of (1) to (6), wherein the steel sheet is subjected to a zinc plating surface treatment.
  • FIG. 1 is a diagram showing the range of A 1 and S i according to the TS target value.
  • Figure 2 (a) is a diagram showing the relationship between Mn and B and the chemical conversion property and molten zinc plating property in the case of A1: 0.4%, and (b) is A1: 1.2.
  • 5 is a graph showing the relationship between Mn and B and the chemical conversion property and molten zinc plating property in the case of%.
  • FIG. 3 is a diagram showing the relationship between the cooling rate and the components that can ensure ductility.
  • C is an essential component from the viewpoint of securing strength and as a basic element for stabilizing martensite. If C is less than 0.03%, the strength is not satisfactory, and no martensite phase is formed. On the other hand, if it exceeds 0.2%, the strength becomes too high, the ductility becomes insufficient, and the weldability deteriorates, so that it cannot be used as an industrial material. Therefore, the range of C in the present invention is from 0.03 to 0.2%, preferably from 0.06 to 0.15%.
  • Mn is an element that needs to be added from the viewpoint of securing strength, and is an element that delays the formation of carbides and is an element that is effective in forming ferrite. If ⁇ 11 is less than 1.0%, the strength is not satisfactory, and the formation of ferrite is insufficient, resulting in poor ductility. On the other hand, if the amount of Mn exceeds 3.1%, the hardenability is unnecessarily increased, so that a large amount of martensite is generated, which leads to an increase in strength, thereby increasing product variation and ductility. Insufficient and cannot be used as industrial material. Therefore, the range of Mn in the present invention is set to 1.0 to 3.1%.
  • Si is an element that is usually added to ensure ductility in addition to being added from the viewpoint of ensuring strength.However, addition of more than 0.3% deteriorates chemical conversion treatment and molten zinc plating. Resulting in. Therefore, the range of S i in the present invention is set to 0.3% or less, and more preferably 0.1% or less when importance is attached to the molten zinc plating property. Si is added for the purpose of improving the deoxidizing property and hardenability. However, if the content is less than 0.05%, the deoxidizing effect is not sufficient, so the lower limit is set to 0.05%.
  • P is added according to the required strength level as an element to increase the strength of the steel sheet.
  • the amount of addition is large, segregation to grain boundaries deteriorates local ductility. It also deteriorates weldability. Therefore, the upper limit of P is 0. 0 6%.
  • the lower limit was set to 0.001%, because further reduction would lead to higher costs during refining in the steelmaking stage.
  • the upper limit is set to 0.01%.
  • the lower limit is set to 0.001% because, like P, a further reduction leads to a cost reduction at the steelmaking stage.
  • a 1 is the most important element in the present system.
  • A1 is an element that promotes the formation of fly by addition and effectively acts to improve ductility, and also does not deteriorate the chemical conversion treatment property and the molten zinc tackiness even when added in a large amount. It also acts as a deoxidizing element. To improve the ductility, it is necessary to add 0.2% or more of A1.On the other hand, even if A1 is added excessively, the above effect is saturated, and the steel becomes brittle. Was set to 1.2%.
  • N is an element inevitably contained, but if it is contained in an excessively large amount, not only the aging property is deteriorated, but also the effect of the addition of A 1 is reduced by increasing the amount of A 1 N deposited. . 0.1% or less is preferred. Unnecessarily reducing N increases the cost in the steelmaking process, so it is usually preferable to control and control it to about 0.005% or more. Element addition is required, and ferrite generation is suppressed. For this reason, the ferrite fraction of the structure is reduced and the fraction of the second phase is increased, so that the elongation is remarkably reduced especially in DP steel of 980 MPa or more. In order to improve this, Si addition and Mn reduction are often used. It cannot be used in the steel sheet intended for the invention. Thus, the present inventors have conducted intensive studies and found the effect of A 1, and when Al, Si, and TS balance satisfying the relationship of equation (1), secure a sufficient ferrite fraction. And can secure excellent growth.
  • [TS target value] is the strength design value of the steel sheet, and the unit is MPa.
  • [S i] is the mass 0/0 S i.
  • the metal structure of the present invention contains ferrite and martensite is that such a structure results in a steel sheet having excellent strength-ductility.
  • ferrite refers to polygonal refractite and bainetic ferrite
  • manoretenite is tempered at a temperature of 600 ° C or less, in addition to martensite obtained by normal quenching. The effect remains the same in the martensite.
  • austenite remains in the structure, secondary working brittleness and delayed fracture characteristics deteriorate, so the present invention allows the inevitably present residual austenite of 3% or less, and substantially retains residual austenite. Not included.
  • M 0 is an element effective for securing strength and hardenability. Excessive addition of Mo suppresses the formation of fly in DP, causes deterioration of ductility, and may also deteriorate chemical conversion treatment and hot-dip zinc plating. Therefore, the upper limit was set to 0.5%.
  • V, Ti, and Nb are V: 0.01 to 0.1%, Ti: 0.01 to 0.1%, Nb: 0.05 to 0, for the purpose of securing strength. It may be added in the range of 0.5%.
  • B may be added in the range of B: 0.0005 to 0.002% for the purpose of securing hardenability and increasing effective A1 by BN.
  • B By increasing the ferrite fraction, excellent elongation can be secured, but a layered structure may be formed and local ductility may decrease.
  • the inventors have found that it is possible to prevent this by adding B.
  • the oxide of B deteriorates chemical conversion treatment and hot-dip zinc adhesion.
  • Mn or A1 also deteriorated the chemical conversion treatment and the molten zinc plating property.
  • Fig. 2 (a) and (b) when B, Mn, and A1 satisfying the relationship of equation (2), sufficient chemical conversion property and hot-dip galvanizing property are obtained. I found that I got it.
  • [beta] is the mass of beta 0 /.
  • [ ⁇ ⁇ ] is the mass of ⁇ ⁇ 0 /.
  • [A 1] is the mass% of A 1
  • C a and R EM are for the purpose of controlling inclusions and improving hole expansion.
  • C a 0.0005% to 0.05%
  • REM 0.0005% to 0.05% % May be added.
  • hot rolling In hot rolling, hot rolling is performed at Ar 3 or higher to prevent excessive strain on ferrite grains and deterioration of workability.
  • the temperature since the recrystallized grain size and Mg composite precipitation or extruded material after annealing become coarser than necessary, it is desirable that the temperature be less than 940 ° C.
  • the coiling temperature a higher temperature promotes recrystallization and grain growth, and it is desirable to improve workability. Since C and non-uniformly diffused due to the formation of layer and pearlite, the temperature is set to 550 ° C or less. On the other hand, if the temperature is too low, it will harden, increasing the load during cold rolling. Therefore, the temperature is set to 400 ° C. or more.
  • the lower limit is set to 30% because a low reduction rate makes it difficult to correct the shape of the steel sheet. If rolling is performed at a rolling reduction exceeding 70%, the upper limit is set to 70% due to the occurrence of cracks at the edge of the steel sheet and disorder of the shape.
  • the annealing step A C l or more, annealed at A c 3 + 1 0 0 ° C or lower. Below this, the organization becomes uneven. On the other hand, at temperatures higher than this, ferrite formation is suppressed due to coarsening of austenite, and elongation is degraded. From the economical viewpoint, the annealing temperature is desirably 900 ° C or lower. At this time, it is necessary to maintain the structure for 30 seconds or more in order to eliminate the stratified organization, but if the time exceeds 30 minutes, the effect is saturated and the productivity is reduced. Therefore, it is set to 30 seconds or more and 30 minutes or less.
  • the cooling end temperature is set to a temperature of 600 ° C. or less. If the temperature exceeds 600 ° C., austenite tends to remain, and problems such as secondary workability and delayed fracture easily occur. If the cooling rate is slow, pearlite is generated during cooling. Since perlite reduces elongation, it is necessary to avoid its formation. As shown in FIG. 3, it was found that by satisfying the expression (3), the growth was secured.
  • a c 3 is the unit.
  • [C] is the mass of C 0 /.
  • [M n] is the mass of Mn 0 /.
  • [M o] is the mass of Mo 0/0
  • the effect remains the same even if tempering treatment at a temperature of 600 ° C. or less is performed after the heat treatment for the purpose of improving hole expandability and brittleness.
  • a steel having the component composition shown in Table 1 was produced in a vacuum melting furnace, cooled, solidified, reheated to 1200 ° C, subjected to finish rolling at 880 ° C, and cooled to 50 ° C. By maintaining the temperature at 0 ° C for 1 hour, the heat treatment for hot rolling was reproduced. The obtained hot-rolled sheet was scale-removed by grinding and cold-rolled by 60%. Thereafter, using a continuous annealing simulator, annealing was performed at 770 ° C for 60 seconds, cooled to 350 ° C, maintained at that temperature for 10 to 600 seconds, and further cooled to room temperature. .
  • Tensile properties were evaluated by L-direction tension of a JIS No. 5 tensile test piece, and a product of T S (MP a) X E L (%) was determined to be good when the product was at least 1,600 M Pa%.
  • the metal structure was observed with an optical microscope. Ferrite was observed by nitrile etching, and martensite was observed by repeller etching.
  • the hot-dip zinc plating was performed, and the adhesion of the hot-dip was checked visually. % When it was uniformly adhered over an area equal to or more than “%”, and “X” when it was partially defective.
  • the chemical conversion treatment is performed using standard phosphate chemicals (Bt3800: manufactured by Nippon Parker Rising Co., Ltd.), which is a standard automotive chemical, according to standard specifications. 8006 After the treatment, the properties of the chemical conversion coating were observed with the naked eye and a scanning electron microscope, and those with a fine coating on the steel sheet substrate were rated " ⁇ ", and those with a partial defect in the chemical conversion coating were rated "X".
  • the steel sheet according to the present invention can produce a high-strength steel sheet having excellent hot-dip zinc plating properties and chemical conversion treatment properties, and also having excellent strength and ductility balance.
  • the comparative examples in which the component ranges in Table 2 are out of the range of the present invention and the comparative examples (61, 62) in which the range of A 1 does not satisfy the expression (1) are TSXEL showing strength and ductility balance. Is less than 1800 Mpa%, or the evaluation of the plating and the evaluation of the chemical conversion treatment are X. In Comparative Examples (63, 64) that do not satisfy Eq. (2), the evaluation of the plating and the evaluation of the chemical conversion treatment are X. In Comparative Examples (65, 66) manufactured at a cooling rate that does not satisfy Equation (3), the value of TSXEL indicating strength-ductility balance is less than 180,000 Mpa%.
  • the present invention 0.063 0.006 1.40 0.030 0.008 0.0033 1.190 0.11 —— —— —— ——— ——— 612 29.8 18238 ⁇
  • the present invention 0.079 0.130 1.21 0.016 0.001 0.0040 0.748 0.05 —— —— —— 0.003 —— ——— 638 28.5 18183 o
  • the present invention 0.142 0.100 2.95 0.001 0.003 0.0085 1.180 0.31 —— 0.03 —— —— —— — 953 19.2 18298
  • the present invention 0.173 0.100 1.24 0.050 0.005 0.0063 1.100 0.15 0.05 —— one——one—one one 1005 18.0 18090 ⁇

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

成形性に優れた高強度鋼板およびその製造方法
技術分野
本発明は、 成形性と化成処理性及び亜鉛メ ッキ性に優れた高強度 鋼板およびその製造方法に関明する。 田
背景技術
近年、 自動車の燃費向上のため、 車体の軽量化がよ り一層要求さ れている。 車体の軽量化のためには、 強度の高い鋼材を使用すれば 良いが、 強度が高くなるほど、 プレス成形が困難となる。 これは、 一般に鋼材の強度が高くなるほど、 鋼材の降伏応力が増大し、 更に 伸びが低下するからである。
これに対し、 伸びの改善に対しては残留オーステナイ トの加工誘 起変態を利用した鋼板 (以下 T R I P鋼) などが発明されており、 例えば、 特開昭 6 1 _ 1 5 7 6 2 5号公報ゃ特開平 1 0— 1 3 0 7 7 6号公報に開示されている。
しかし、 通常の T R I P鋼板は、 多量の S i添加が必須であり鋼 板表面の化成処理性や溶融亜鉛メ ッキ性が悪化するため適用可能な 部材は制限される。 更に、 残留オーステナイ ト鋼において高強度を 確保するためには多量の C添加が必要であり、 ナゲッ ト割れ等の溶 接上の問題がある。
鋼板表面の化成処理性や溶融亜鉛メ ツキ性については、 残留ォー ステナイ ト T R I P鋼の S i低減を目的と した発明が特開平 5— 2 4 7 5 8 6号公報ゃ特開 2 0 0 0一 3 4 5 2 8 8号公報に開示され ているが、 この発明では化成処理性や溶融亜鉛メ ツキ性と延性の向 上は望めるものの、 前述の溶接性の改善は望めないうえ、 引張り強 度 9 8 O MP a以上の TR I P鋼板では、 非常に高い降伏応力とな るためプレス時等での形状凍結性が悪化するという問題点があった 。 また、 引張り強さ 9 8 O MP a以上の高強度鋼板には遅れ破壊発 生の懸念がある。 T R I P鋼板は残留オーステナイ ト量が多いため 、 加工時に誘起変態して生成されたマルテンサイ ト相とその周囲の 相との界面に、 ポイ ド及び転位が多く発生し、 このよ うな場所に水 素が集積し、 遅れ破壌が発生するという問題点もある。
また、 降伏応力を低減させる技術と して、 特開昭 5 7— 1 5 5 3 2 9号公報に開示されているよ うな、 フヱライ トを含む D u a 1 P h a s e鋼 (以下 D P鋼という) が従来から知られているが、 再 結晶焼鈍後の冷却速度が 3 0 °C/ s以上が必要であり、 一般的な溶 融亜鉛めつきラインでは不十分である。 また、 鋼板の対象が引張り 強さで 1 0 0 k g Z m m 2 までであり、 必ずしも十分な成形性を有 する高強度鋼板は実現していなかった。 発明の開示
本発明は、 前述のような従来技術の問題点を解決し、 成形性と化 成処理性及び亜鉛メ ッキ性に優れた高強度鋼板およびその製造方法 を工業的規模で実現することを課題とする。
本発明者らは、 成形性に優れた高強度鋼板を鋭意検討した結果、 鋼成分の最適化、 すなわち、 S i 、 A l量と T S [狙いの強度値] のパラ ンスを特定範囲とし、 特に A 1添加量を調整することで、 降 伏応力の低い D P鋼において、 これまで以上の伸びが確保できる高 強度鋼板を工業的に製造できることを見出した。
本発明の鋼板は従来の残留オーステナイ ト鋼と同等かそれに準ず る程度に延性が向上し、 また、 S i を低減することにより化成処理 T/JP2003/008006 性や溶融亜鉛メ ツキ性を向上させ、 さらに合金化メ ツキをおこなつ ても特性が劣化することが少ない高強度鋼板を実現した。
さらに、 遅れ破壊や二次加工脆性の問題が生じないよ うに、 不可 避的に含まれる 5 %以下の残留オーステナイ トを許容し、 実質的に 残留オーステナイ トを含まない D P鋼と した。
本発明の高強度鋼板は、 5 9 0Mp aカゝら 1 5 0 0 Mp aの引張 強度が実現できるが、 9 8 0Mp a以上の高強度鋼板にて著しい効 果を奏する。
本発明は、 以上のような技術思想に基づく ものであり、 その要旨 は以下のとおりである。
( 1 ) 質量%で、
C : 0. 0 3〜 0. 2 0 %、
S i : 0. 0 0 5〜 0. 3 %、
M n : 1 . 0〜 3. 1 %、
P : 0. 0 0 1〜 0. 0 6 %、
S : 0. 0 0 1 ~ 0. 0 1 %、
N : 0. 0 0 0 5〜 0. 0 1 %、
A 1 : 0. 2〜 1. 2 %
M o ≤ 0. 5 %を含有し、 残部 F eおよび不可避不純物か らなり、 さ らに、 S i 、 Mn、 A l の質量%と狙いの強度値 (T S ) が、 下記 ( 1 ) 式を満足し、 かつ金属組織がフェライ ト とマルテ ンサイ トを含有することを特徴とする成形性に優れた高強度鋼板。
( 0. 0 0 1 2 X [T S狙い値] 一 0. 2 9— [ S i ] ) / 2. 4 5 < A 1 < 1. 5 - 3 X [ S i ] · · · ( 1 ) 式 ここに、 [T S狙い値] は鋼板の強度設計値で単位は Mp a
[ S i 」 は S i の質量0 /o ( 2 ) さ らに、 質量0 /oで、 V : 0. 0 1〜 0. 1 %、 T i : 0. 0 1〜 0. l %、 N b : 0. 0 0 5〜 0. 0 5 %のうち 1種または
2種以上を含有することを特徴とする ( 1 ) に記載の成形性に優れ た高強度鋼板。
( 3 ) さ らに、 質量%で、 B : 0. 0 0 0 5〜 0. 0 0 2 %を含 有し、 下記 ( 2 ) 式を満足することを特徴とする ( 1 ) または ( 2 ) に記載の成形性に優れた高強度鋼板。
5 0 0 X [ B ] + [M n ] + 0. 2 [A 1 ] < 2. 9 - · ·
( 2 ) 式
ここに [B] は Bの質量0 /。、 [M n ] は Mnの質量0 /0、 [ A 1 ] は A 1 の質量0 /0
( 4 ) さ らに、 質量0 /。で、 C a : 0. 0 0 0 5〜 0. 0 0 5 %、 R EM : 0. 0 0 0 5〜 0. 0 0 5 %のうち 1種または 2種を含有 することを特徴とする ( 1 ) 〜 ( 3 ) のいずれかの項に記載の成形 性に優れた高強度鋼板。
( 5 ) ( 1 ) 〜 ( 4) のいずれかの項に記載の高強度鋼板であつ て、 フヱライ ト粒の中で、 粒径の短径ノ長径の値が 0. 2以上のも のが 5 0 %以上を占めることを特徴とする成形性に優れた高強度鋼 板。
( 6 ) ( 1 ) 〜 ( 5 ) のいずれかの項に記載の高強度鋼板が熱延 鋼板または冷延鋼板であることを特徴とする成形性に優れた高強度 鋼板。
( 7 ) 鋼板に亜鉛メ ツキの表面処理を施したことを特徴とする ( 1 ) 〜 ( 6 ) のいずれかの項に記載の成形性に優れた高強度鋼板。
( 8 ) ( 1 ) 〜 ( 7 ) のいずれかの項に記載の高強度鋼板の製造 方法であって、 A r 3 点以上の仕上温度で熱間圧延を施し、 4 0 0 °C〜 5 5 0 °Cで捲取り、 次いで通常の酸洗の後、 圧下率を 3 0〜 7 0 %と して一次冷間圧延後、 連続焼鈍工程で再結晶焼鈍を施し、 次 いで調質圧延を施したことを特徴とする成形性に優れた高強度鋼板 の製造方法。
( 9 ) ( 8 ) に記載の高強度鋼板の製造方法であって、 焼鈍工程 において A c 1 以上 A c 3 + 1 0 0 °C以下の温度域に加熱し、 3 0 秒以上 3 0分以下保持した後、 ( 3 ) 式を満たす X°C/ s以上の冷 却速度で 6 0 0 °C以下の温度域まで冷却することを特徴とする成形 性に優れた高強度鋼板の製造方法。
X≥ (A c 3 - 5 0 0 ) / 1 0 a · · · ( 3 ) 式
a = 0. 6 [ C ] + 1. 4 [M n ] + 3. 7 [M o ] — 0.
8 7
ここに、 Xは冷却速度で単位は。 CZ s
A c 3 の単位は。 C
[ C ] は Cの質量%、 [Mn ] は Mnの質量%、 [ M o ] は M oの質量% 図面の簡単な説明
図 1は、 T S狙い値による A 1 と S i の範囲を示す図である。 図 2 ( a ) は、 A 1 : 0. 4 %の場合の化成処理性や溶融亜鉛メ ツキ性と M n, Bの関係を示した図であり、 ( b ) は A 1 : 1. 2
%の場合の化成処理性や溶融亜鉛メ ツキ性と Mn, Bの関係を示し た図である。
図 3は、 延性を確保できる冷却速度と成分の関係を示した図であ る。 発明を実施するための最良の形態
以下に本発明の実施の形態を詳細に説明する。 まず、 本発明の高強度鋼板の成分および金属組織の限定理由を説 明する。
Cは、 強度確保の観点から、 またマルテンサイ トを安定化する基 本元素として、 必須の成分である。 Cが 0. 0 3 %未満では強度が 満足せず、 またマルテンサイ ト相が形成されない。 また、 0. 2 % を超えると、 強度が上がりすぎ、 延性が不足するほか、 溶接性の劣 化を招くため工業材料と して使用できない。 従って、 本発明におけ る Cの範囲は、 0. 0 3〜 0. 2 %と し、 好ましくは、 0. 0 6〜 0. 1 5 %である。
M nは強度確保の観点で添加が必要であることに加え、 炭化物の 生成を遅らせる元素であり フェライ トの生成に有効な元素である。 ]^ 11が 1. 0 %未満では、 強度が満足せず、 またフェライ トの形成 が不十分となり延性が劣化する。 また、 Mn添加量が 3. 1 %を超 えると、 焼入れ性が必要以上に高まるため、 マルテンサイ トが多く 生成し、 強度上昇を招きこれによ り、 製品のバラツキが大きくなる ほか、 延性が不足し工業材料と して使用できない。 従って、 本発明 における M nの範囲は、 1 . 0〜 3. 1 %と した。
S i は強度確保の観点で添加することに加え、 通常、 延性の確保 のために添加される元素であるが、 0. 3 %を超える添加により、 化成処理性や溶融亜鉛メ ツキ性が劣化してしまう。 従って、 本発明 における S i の範囲は、 0. 3 %以下と し、 さ らに溶融亜鉛メ ツキ 性を重視する場合には 0. 1 %以下が好ましい。 また S i は脱酸剤 や焼入れ性向上のために添加されるが、 0. 0 0 5 %未満では脱酸 効果が十分でないため、 下限を 0. 0 0 5 %とする。
Pは鋼板の強度を上げる元素と して必要な強度レベルに応じて添 加する。 しかし、 添加量が多いと粒界へ偏析するために局部延性を 劣化させる。 また、 溶接性を劣化させる。 従って、 P上限値は 0. 0 6 %とする。 下限を 0 . 0 0 1 %と したのは、 これ以上低減させ ることは、 製鋼段階での精鍊時のコス トアップに繋がるためである
Sは、 M n Sを生成することで局部延性、 溶接性を劣化させる元 素であり、 鋼中に存在しない方が好ましい元素である。 従って、 上 限を 0 . 0 1 %とする。 下限を 0 . 0 0 1 %と したのは、 P と同様 に、 これ以上低減させることは、 製鋼段階での精鍊時のコス トアツ プに繋がるためである。
A 1 は、 本発系において最も重要な元素である。 A 1 は添加によ り フ ライ トの生成を促進し、 延性向上に有効に作用する他、 多量 添加によつても化成処理性や溶融亜鉛メ ッキ性を劣化させない元素 である。 また、 脱酸元素と しても作用する。 延性を向上させるため には 0 . 2 %以上の A 1添加が必要である、 一方、 A 1 を過度に添 加しても上記効果は飽和し、 かえって鋼を脆化させるため、 その上 限を 1 . 2 %とした。
Nは、 不可避的に含まれる元素であるが、 あまり多量に含有する 場合は、 時効性を劣化させるのみならず、 A 1 N析出量が多くなつ て A 1添加の効果を減少させるので、 0 . 0 1 %以下の含有が好ま しい。 また、 不必要に Nを低減することは製鋼工程でのコス トが増 大するので通常 0 . 0 0 0 5 %程度以上に制御,することが好ましい 高強度鋼板とするためには一般に多量の元素添加が必要となり、 フェライ ト生成が抑制される。 このため、 組織のフェライ ト分率が 低減し、 第 2相の分率が増加するため、 特に 9 8 0 M P a以上の D P鋼においては伸びが著しく低下する。 この改善のために、 S i 添 加、 M n低減が多く用いられるが、 前者は化成処理性や溶融亜鉛メ ツキ性が劣化すること、 後者は強度確保が困難となることから、 本 発明の目的とする鋼板においては利用できない。 そこで、 本発明者 らは鋭意検討した結果、 A 1 の効果を見出し、 ( 1 ) 式の関係を満 たす A l 、 S i 、 T Sパランスを有するとき、 十分なフェライ ト分 率を確保することができ、 優れた伸びを確保できることを見出した
( 0. 0 0 1 2 X [T S狙い値] 一 0. 2 9 - [ S i ] ) Z 2. 4 5 < A 1 < 1 . 5 - 3 X [ S i ] · · · ( 1 ) 式 ここに、 [T S狙い値] は鋼板の強度設計値で単位は MP a 。 [ S i ] は S i の質量0 /0である。
図 1に示したように、 A 1 添加量が ( 0. 0 0 1 2 X [T S狙い 値] — 0. 2 9— [ S i ] ) / 2. 4 5未満となると、 延性を向上 させるために十分でなく、 1. 5— 3 X [ S i ] を超えてしまう と 、 化成処理性や溶融亜鉛メ ツキ性が悪化する。
本発明の金属組織がフェライ ト とマルテンサイ トを含有すること を特徴とする理由は、 このような組織をとる場合は、 強度延性パラ ンスに優れた鋼板となるからである。 ここでいう、 フェライ トは、 ポリ ゴナノレフヱライ ト、 ベイネティ ックフェライ トを差し、 マノレテ ンサイ トは通常の焼き入れによ り得られるマルテンサイ トの他、 6 0 0 °c以下の温度にて焼戻しを行ったマルテンサイ トにおいても効 果は変わらない。 また、 組織中にオーステナイ トが残存すると 2次 加工脆性や遅れ破壊特性が悪化するため、 本発明では不可避的に存 在する 3 %以下の残留オーステナイ トを許容し、 実質的に残留ォー ステナイ トを含まない。
M 0は強度確保と焼入れ性に効果のある元素である。 過多の M o の添加は D Pにおけるフ ライ ト生成を抑制し、 延性の劣化を招く ほか、 化成処理性や溶融亜鉛メ ツキ性を劣化させることがあるので 、 上限を 0. 5 %と した。 V、 T i 、 N bは、 強度確保の目的で V : 0. 0 1〜 0. 1 %、 T i : 0. 0 1〜 0. l %、 N b : 0. 0 0 5〜 0. 0 5 %の範囲 で添加してもよい。
Bは、 焼入れ性確保と B Nによる有効 A 1 の増大を目的と して、 B : 0. 0 0 0 5〜 0. 0 0 2 %の範囲で添加してもよい。 フェラ イ ト分率を高くすることで優れた伸びは確保できるが、 層状組織と なり局部延性が低下することがある。 Bを添加することでこれを防 ぐことが可能となることを発明者らは見出した。 しかし、 Bの酸化 物は化成処理や溶融亜鉛メ ッキ性を悪化させる。 同様に Mnや A 1 も添加量が多いと化成処理や溶融亜鉛メ ツキ性を悪化させることが 分かった。 そこで検討した結果、 図 2 ( a ) , ( b ) に示すように 、 ( 2 ) 式の関係を満たす B, Mn , A 1 を有するとき、 十分な化 成処理性や溶融亜鉛めつき性を得ることを見出した。
5 0 0 X [ B ] + [Mn] + 0. 2 [ A 1 ] < 2. 9 · · · ( 2 ) 式
ここに [ Β ] は Βの質量0 /。、 [Μ η ] は Μ ηの質量0 /。、 [ A 1 ] は A 1 の質量%
C aおよび R EMは、 介在物制御、 穴拡げ改善の目的で、 C a : 0. 0 0 0 5〜 0. 0 0 5 %、 R EM : 0. 0 0 0 5〜 0. 0 0 5 %の範囲で添加してもよい。
不可避的不純物と して、 例えば、 S nなどがあるがこれら元素を 0. 0 1質量%以下の範囲で含有しても本発明の効果を損なう もの ではない。
次に、 本発明による高強度鋼板を得るための製造方法における条 件の限定理由は次の通りである。
熱間圧延ではフェライ ト粒にひずみが過度に加わり加工性が低下 するのを防ぐために熱間圧延を A r 3 以上で行い、 また、 高温すぎ ても焼鈍後の再結晶粒径および M gの複合析出または昇出物が必要 以上に粗大化するため、 9 4 0 °C以下が望ましい。 卷き取り温度に ついては、 高温にすれば再結晶や粒成長が促進され、 加工性の向上 が望まれるが、 熱間圧延時に発生するスケール生成も促進され酸洗 性が低下する点や、 フェライ ト とパーライ トが層状に生成すること により Cが不均一に拡散するので、 5 5 0 °C以下とする。 一方で低 温になりすぎると硬化するため、 冷間圧延時での負荷が高くなる。 このため、 4 0 0 °C以上とする。
酸洗後の冷間圧延は、 圧下率が低いと鋼板の形状矯正が難しくな るため下限値を 3 0 %とする。 また、 7 0 %を超える圧下率で圧延 すると、 鋼板のエッジ部に割れの発生及び形状の乱れのため上限値 を 7 0 %とする。
焼鈍工程では、 A C l 以上、 A c 3 + 1 0 0 °C以下の温度で焼鈍 する。 これ未満では組識が不均一となる。 一方、 これ以上の温度で は、 オーステナイ トの粗大化によ り フェライ ト生成が抑制されるた め伸びの劣化を招く。 また、 経済的な点から焼鈍温度は 9 0 0 °C以 下が望ましい。 この際、 層状の組識を解消するためには 3 0秒以上 の保持が必要であるが、 3 0分を超えても効果は飽和し生産性も低 下する。 従って、 3 0秒以上 3 0分以下とする。
続いて、 冷却終了温度を 6 0 0 °C以下の温度とする。 6 0 0 °Cを 超えるとオーステナイ トが残留しやすくなり、 2次加工性、 遅れ破 壊の問題が生じ易くなる。 冷却速度が遅い場合、 冷却中にパーライ トが生成される。 パーライ トは伸びを低下するため、 生成を回避す ることが必要である。 図 3に示すように、 ( 3 ) 式を満たすことで 、 伸びを確保することを見出した。
X≥ ( A c 3 - 5 0 0 ) / 1 03 · · · ( 3 ) 式
a = 0. 6 [ C ] + 1 . 4 [Mn] + 3. 7 [M o ] - 0. 6
8 7
ここに、 Xは冷却速度で単位は。 CZ s
A c 3 は単位は。 C
[ C ] は Cの質量0/。、 [M n ] は Mnの質量0/。、 [ M o ] は M oの質量0 /0
本発明は、 この熱処理の後、 穴拡げ性、 脆性の改善を目的とした 、 6 0 0 °C以下の焼戻し処理を行っても効果は変わらない。 実施例
表 1に示した成分組成を有する鋼を真空溶解炉にて製造し、 冷却 凝固後 1 2 0 0 °Cまで再加熱し、 8 8 0 °Cにて仕上圧延を行い、 冷 却後 5 0 0 °Cで 1時間保持することで、 熱延の卷取熱処理を再現し た。 得られた熱延板を研削によ りスケールを除去し、 6 0 %の冷間 圧延した。 その後連続焼鈍シミ ュレータを用い、 7 7 0 °C X 6 0秒 の焼鈍を行い、 3 5 0 °Cまで冷却した後、 1 0〜6 0 0秒その温度 で保持したあと、 さらに室温まで冷却した。
引張特性は、 J I S 5号引張試験片の L方向引張にて評価し、 T S (MP a ) X E L (%) の積が 1 6 0 0 0 M P a %以上を良好と した。 金属組織は、 光学顕微鏡で観察した。 フェライ トはナイター ルエッチング、 マルテンサイ トはレペラ一エッチングによ り観察し た。
メ ッキ性能は溶融亜鉛メ ツキシミ ュレータ一により、 上記同様の 焼鈍条件を施した後、 溶融亜鉛メ ツキを行い、 目視にてメ ツキの付 着状況を確認し、 メ ツキ面の内 9 0 %以上の面積で均一に付着して いる場合を良好 「〇」 、 部分的に欠陥があるものを 「X」 と した。 化成処理性は、 通常の自動車用薬剤である、 りん酸塩処理薬剤 (B t 3 0 8 0 : 日本パーカーライジング社製) を用いて標準仕様にて 8006 処理したのち、 化成被膜の性状を肉眼、 および走査型電子顕微鏡に て観察し、 鋼板下地を緻密に被覆しているものを 「〇」 、 化成被膜 に部分的に欠陥があるものを 「X」 とした。
表 2の結果から認められるように、 本発明による鋼板は溶融亜鉛 メ ツキ性や化成処理性が優れ、 かついずれも強度 · 延性パランスに 優れる高強度鋼板を製造できる。
一方、 表 2の成分範囲が本発明の範囲から外れる比較例、 および 、 A 1 の範囲が ( 1 ) 式を満足しない比較例 ( 6 1, 6 2 ) は、 強 度 . 延性パランスを示す T S X E Lの値が 1 8 0 0 0 M p a %未満 である、 もしく は、 メ ツキ評価及び化成処理評価が Xとなっている 。 また、 ( 2 ) 式を満足しない比較例 ( 6 3, 6 4) は、 メ ツキ評 価及び化成処理評価が Xとなっている。 また、 ( 3 ) 式を満足しな い冷却速度で製造した比較例 ( 6 5, 6 6 ) は、 強度 ' 延性パラン スを示す T S X E Lの値が 1 8 0 0 0 M p a %未満である。
表 1
亜鉛メツキ性 鋼種
C Si Mn P S N Al Mo V Ti Nb Ca B REM TS EL TSXEL 及び化成 記号
処理性
1 本発明 0.031 0.131 1.74 0.006 0.002 0.0051 1.012 0.22 —— —— —— —— —— 577 33.2 19156 〇
2 本発明 0.035 0.122 2.67 0.015 0.002 0.0064 0.749 0.+05 —— —— —— —— —— —— 576 32.5 18720 〇
3 本発明 0.049 0.161 2.50 0.012 0.006 0.0061 0.457 0.15 —— —— —— —— —— 585 31.2 18252 o
4 本発明 0.060 0.068 1.01 0.003 0.007 0.0020 0.426 —— —— —— —— —— 1 —— 622 29.5 18349 〇
5 本発明 0.063 0.006 1.40 0.030 0.008 0.0033 1.190 0.11 —— —— —— —— —— —— 612 29.8 18238 〇
6 本発明 0.068 0.180 1.69 0. Oil 0.010 0.0087 0.952 0.22 —— 一— —— —— —— —— 635 29.4 18669 〇
7 本発明 0.076 0.033 1.05 0.023 0.005 0.0078 1.185 0.15 —— —一 —一 —一 622 30.1 18722 〇
8 本発明 0.079 0.130 1.21 0.016 0.001 0.0040 0.748 0.05 —— —— —— 0.003 —— —— 638 28.5 18183 o
9 本発明 0.080 0.070 1.23 0.057 0.002 0.0009 1.179 0.00 —— —— —— —— — —— 652 28.1 18321 〇
10 本発明 0.081 0.117 1.34 0.009 0.005 0.0090 1.041 0.25 —— —— —— —— — —— 685 27.2 18632 〇
11 本発明 0.088 0.205 1.18 0.056 0.003 0.0015 0.677 0.11 —— —— —— —— —— —— 734 26.4 19378 〇
12 本発明 0.095 0.150 2.09 0.008 0.007 0.0029 0.892 0.21 —— —— —— —— — —— 795 24.5 19478 〇
13 本発明 0.100 0.120 0.53 0.022 0.004 0.0022 0.567 0.12 —— —— —— —— —— 789 24.2 19094 〇
14 本発明 0.101 0.100 2.68 0.006 0.- 008 0.0080 1.189 0.23 —— —— — — —— 825 22.2 18315 〇
15 本発明 0.102 0.157 1.02 0.060 0.007 0.0034 0.639 0.31 —— —— —— —— —— 一— 788 23.5 18518 〇
16 本発明 0.118 0.128 2.99 0.054 0.001 0.0024 0.962 0.05 —— —— 一一 853 21.5 18340 〇
17 本発明 0.119 0.179 1.15 0.041 0.006 0.0037 0.880 0.11 —— —— 0.01 —— 0.0010 —— 832 22.4 18637 〇
18 本発明 0.128 0.244 2.03 0.027 0.004 0.0041 0.442 0.15 —— —— 0.01 —— —— —— 874 21.2 18529 〇
19 本発明 0.128 0.213 1.93 0.036 0.007 0.0036 0.828 0.12 —— —— —— —— —— 0.0020 873 20.1 17547 〇
20 本発明 0.142 0.100 2.95 0.001 0.003 0.0085 1.180 0.31 —— 0.03 —— —— —— —― 953 19.2 18298 〇
21 本発明 0.160 0.100 2.41 0.059 0.009 0.0064 1.190 0.00 — —— —— 0.0008 —— 987 18.5 18260 〇
22 本発明 0.163 0.048 2.19 0.042 0.005 0.0007 1.190 0.00 —— —— —— — —— —— 979 17.2 16849 〇
23 本発明 0.164 0.114 1.54 0.013 0.009 0.0023 1.163 0.11 —— 0.08 —— —— —— 一— 988 16.5 16302 〇
24 本発明 0.166 0.170 2.35 0.026 0.007 0.0090 0.527 0.00 —— —— —— —— —― 一一 993 18.3 18172 〇
25 本発明 0.173 0.100 1.24 0.050 0.005 0.0063 1.100 0.15 0.05 —― 一— —一 —一 一一 1005 18.0 18090 〇
26 本発明 0.174 0.070 2.02 0.053 0.005 0.0065 1.170 0.22 —— —— —— 一— —― 一— 1012 17.9 18115 〇
27 本発明 0.192 0.149 2.37 0.038 0.003 0.0085 0.360 0.31 一一 一一 0.02 —― 一一 —一 1033 17.5 18078 〇
表 1つづき
亜鉛メクキ性 鋼種
C Si Mn P S N Al Mo V Ti Nb Ca B REM TS EL TSXEL 及び化成 記号
処理性
28 比較例 0.009 0.202 1.03 0.007 0.010 0.0063 1.178 0.05 —— —— —— —— —— —― 335 33.2 11122 〇
29 比較例 0.320 0.113 2.92 0.003 0.006 0.0007 0.462 0.12 — —— —— —— —— —— 1623 9.2 14932 〇
30 比較例 0.166 0.323 2.64 0.056 0.009 0.0049 0.894 0.15 —— —— 0.0006 —一 985 19.5 19208 X
31 比較例 0.113 0.315 0.09 0.049 0.001 0.0006 0.527 0.13 —— —— —— —— —— —— 885 16.4 14514 X
32 比較例 0.164 0.285 3.14 0.020 0.004 0.0041 1.147 0.21 —— —— —— —— —— 1235 10.2 12597 〇
33 比較例 0.125 0.267 2.06 0.070 0.003 0.0009 0.337 0.16 —— —— 0.01 —— —— —— + 795 20.1 15980 〇
34 比較例 0.058 0.131 2.50 0.002 0.020 0.0059 0.377 0.23 —— —— — —— —— —— 587 26.5 15556 〇
35 比較例 0.031 0.145 1.15 0. Oil 0.010 0.0200 0.273 —— —— —— 0.02 —— —— —— 557 28.4 15819 〇
36 比較例 0.196 0.187 1.95 0.018 0.004 0.0093 0.190 0.15 —— —— —— —— —— —— 1470 7.1 10437 〇
37 比較例 0.193 0.220 2.78 0.005 0.003 0.0022 1.810 0.22 —一 —― 一一 _一 —一 —― 1480 11.2 16576 X
表 2
鋼種 TS
C Si Mn P S N Al Mo V Ti Nb Ca B REM 記号 狙い
38 実施例 550 0.030 0.177 1.11 0.016 0.009 0.005 0.953 0.02
39 560 0.032 0.186 2.58 0.029 0.006 0.003 0.930 0.01
40 570 0.044 0.100 2.34 0.039 0.002 0.008 0.299 0.15
41 580 0.058 0.171 2.06 0.056 0.007 0.003 0.970 0.21 — 0.01
42 580 0.058 0.160 1.10 0.033 0.002 0.008 0.896 0.16
43 590 0.071 0.196 1. 2 0.037 0.003 0.005 0.547 0.23 0.0010
44 640 0.082 0.089 1.15 0.016 0.004 0.005 1.139 0.14 —
45 680 0.082 0.081 2.63 0.040 0.001 0.003 1.049 0.31
46 700 0.093 0.055 1.84 0.007 0.006 0.007 0.500 0.28 0.01 —
47 760 0.100 0.013 1.10 0.002 0.008 0.004 0.815 0.31
48 780 0.110 0.122 2.64 0.057 0.009 0.002 0.731 0.15 —一
49 800 0.120 0.084 1.17 0.010 0.010 0.866 0.13
50 840 -0.120 0.148 1.19 0.016 0.008 0.006 1.000 0.28
51 900 0.134 0.047 1.19 0.042 0.010 0.007 1.114 0.15 — 一一
52 920 0.140 0.042 1.71 0.021 0.006 0.005 0.780 —- 0.02 —― —― —―
53 950 0.142 0.116 1.27 0.046 0.007 0.006 0.850 —―
54 980 0.150 0.107 1.76 0.059 0.006 0.009 0.880 ― —一 一 ―— ― — _ —一
55 1280 0.210 0.153 1.20 0.025 0.005 0.002 0.780 0.21 —― 一一 —一
56 1320 0.235 0.176 2.73 0.051 0, 008 0.004 0.850 0.15 — 一— —― —― 0.0008 —―
57 950 0.122 0.275 1.27 0.046 0.007 0.006 0.650 0.02 0.05 一一 ―— 一— —― ―
58 1180 0.150 0.107 2.65 0.059 0.006 0.009 0.880 0.15 — ' ——— —一 —一
59 1200 0.210 0.299 1.20 0.025 0.005 0.00 o2 0.600 0.25 —一 一一 -一
60 1480 0.289 0.186 2.06 0.052 0.004 0.008 0.910 0.23 一一 一— ―— —一 ―— 一一
61 比較例 720 0.099 0.005 1.55 0.046 0.002 0.003 0.210 0.12 — 一— —― 一一
62 880 0.130 0.186 2.39 0.051 0.006 0.003 1.100 0.02 —一 0.01 —一 ― 一一
63 980 0.121 0.120 2.68 0.005 0.003 0.003 0.700 0.03 —― —一 一一 —― 0.0010 一一
64 980 0.118 0.114 2.23 0 0.008 0.004 1.100 0.15 —- ―— ― 0.0018 —-
65 980 0.150 0. Ill 1.12 0 0.008 0.004 0.512 0.08 — —― 0.02 一一 —一 ―
66 980 0.115 0.050 1.84 0.030 0.005 0.003 0.456 —― —― —― 一— —一 —― 一一
表 2つづき
鋼種 (1)式 (1)式 (2)式 (2)式 (3)式 冷却 亜鉛 キ性及び
A1 判定 判定 判定 TS EL TSXEL
記号 左辺 右辺 左辺 右辺 左辺 速度 化成処理性
38 0.079 0.953 〇 0.970 1.30 O 2.9 124.7 〇 180 549 33.1 18172 〇
39 0.080 0.930 〇 0.941 2.77 O 2.9 1.1 〇 11 568 32.5 18460 〇
40 0.120 0.299 〇 1.199 2.40 O 2.9 0.5 〇 4 582 31.9 18566 〇
41 0.096 0.970 〇 0.987 2.26 〇 2.9 1.1 〇 10 591 30.9 18262 〇
42 0.100 0.896 〇 1.019 1.28 〇 2.9 36.4 o 156 584 31.2 18221 〇
43 0.091 0.547 〇 0.912 1.53 〇 2.9 5.6 〇 71 605 29.9 18090 〇
44 0.159 1.139 〇. 1.232 1.38 O 2.9 38.8 .〇 152 632 30.1 19023 〇
45 0.182 1.049 〇 1.258 2.84 〇 2.9 0.1 〇 10 688 28.7 19746 〇
46 0.202 0.500 〇 1.334 1.94 〇 2.9 0.8 〇 12 695 27.2 18904 o
47 0.249 0.815 〇 1.462 1.26 〇 2.9 8.6 〇 152 743 24.8 18426 〇
48 0.214 0.731 〇 1.135 2.78 〇 2.9 0.2 〇 3 812 23.2 18838 〇
49 0.239 0.866 O 1.247 1.34 〇 2.9 31.8 〇 154 825 22.8 18810 〇
50 0.233 1.000 〇 1.057 1.39 〇 2.9 9.1 〇 156 852 21.5 18318 〇
51 0.303 1.114 〇 1.360 1.41 〇 2.9 28.9 〇 142 905 20.1 18191 〇
52 0.315 0.780 〇 1.374 1.86 〇 2.9 15.3 〇 71 899 20.5 18430 〇
53 0.300 0.850 〇 1.153 1.44 〇 2.9 68.3 〇 102 934 19.5 18213 o
54 0.318 0.880 〇 1.180 1.94 〇 2.9 14.0 〇 75 1024 18.2 18637 〇
55 0.446 0.780 〇 1.041 1.36 〇 2.9 11.9 〇 152 1320 14.9 19668 o
56 0.456 0.850 〇 0.972 3.30 〇 2.9 0.1 〇 4 1400 13.5 18900 〇
57 0.235 0.650 〇 0.675 1.40 〇 2.9 52.9 〇 124 965 19.9 19204 〇
58 0.416 0.880 O 1.180 2.83 〇 2.9 0.2 o 5 1230 15.8 19434 〇
59 0.347 0.600 〇 0.603 1.32 〇 2.9 7.6 〇 71 1220 15.3 18666 〇
60 0.531 0.910 O 0.942 2.24 〇 2.9 0.6 〇 75 1520 12.2 18544 〇
61 0.232 0.210 1.485 1.59 〇 2.9 6.6 〇 71 750 18.1 13575 o
62 0.237 1.100 → 0.941 2.61 〇 2.9 1.7 〇 5 899 20.2 18160 X
63 0.313 0.700 〇 1.140 3.32 X 2.9 0.5 〇 5 992 19.1 18947 X
64 0.315 1.100 〇 1.158 3.35 X 2.9 1.0 〇 c 8 1011 18.0 18198 X
65 0.316 0.512 〇 1.167 1.22 〇 2.9 42.2 X 31 1006 12.6 12676 〇
66 0.341 0.456 〇 1.350 1.93 〇 2.9 8.3 X 4 1022 14.5 14819 〇
産業上の利用可能性
本発明によれば、 S i 、 A 1 、 T s のパランスを特定範囲と し、 特に A 1添加量を調整することで、 降伏応力の低い D P鋼において 、 これまで以上の伸びが確保できる成形性に優れた溶融亜鉛メ ツキ 高強度鋼板およびその製造方法を工業的規模で実現することができ る。

Claims

請 求 の 範 囲
1. 質量%で、
C : 0. 0 3〜 0. 2 0 %、
S i : 0. 0 0 5〜 0. 3 %、
M n : 1. 0〜 3. 1 %、
P : 0. 0 0 1〜 0. 0 6 %、
S : 0. 0 0 1〜 0. 0 1 %、
N : 0. 0 0 0 5〜 0. 0 1 %、
A 1 : 0. 2〜 1. 2 %
M o≤ 0. 5 %を含有し、 残部 F eおよび不可避不純物か らなり、 さ らに、 S i 、 A 1 の質量%と、 狙いの強度値 (T S ) と が、 下記 ( 1 ) 式を満足し、 かつ金属組織がフヱライ トとマルテン サイ トを含有することを特徴とする成形性に優れた高強度鋼板。
( 0. 0 0 1 2 X [T S狙い値] 一 0. 2 9— [ S i ] ) Z 2. 4 5 < A 1 < 1. 5 - 3 X [ S i ] · · · ( 1 ) 式 ここに、 [T S狙い値] は鋼板の強度設計値で単位は M p a
[ S i ] は S i の質量0 /o
2. さ らに、 質量%で、
V : 0. 0 1〜 0. 1 %、
T i : 0. 0 1〜 0. 1 %、
N b : 0. 0 0 5〜 0. 0 5 %のうち 1種または 2種以上 を含有することを特徴とする請求項 1 に記載の成形性に優れた高強 度鋼板。
3. さらに、 質量0 /0で、 B : 0. 0 0 0 5〜 0. 0 0 2 %を含有 し、 下記 ( 2 ) 式を満足することを特徴とする請求項 1または 2に 記載の成形性に優れた高強度鋼板。
5 0 0 X [B] + [M n ] + 0. 2 [ A 1 ] く 2. 9 . · ·
( 2 ) 式
ここに [ B ] は Bの質量0 /0、 [M n ] は M nの質量0 /0、 [ A 1 ] は A 1 の質量0 /0
4. さ らに、 質量%で、
C a : 0. 0 0 0 5〜 0. 0 0 5 %、
R EM : 0. 0 0 0 5〜 0. 0 0 5 %のうち 1種または 2 種を含有することを特徴とする請求項 1〜 3のいずれかの項に記載 の成形性に優れた高強度鋼板。
5. 請求項 1〜 4のいずれかの項に記載の高強度鋼板であって、 フェライ ト粒の中で、 粒径の短径 /長径の値が 0. 2以上のものが 5 0 %以上を占めることを特徵とする成形性に優れた高強度鋼板。
6. 請求項 1〜 5のいずれかの項に記載の高強度鋼板が熱延鋼板 または冷延鋼板であることを特徴とする成形性に優れた高強度鋼板
7. 鋼板に亜鉛メ ツキの表面処理を施したことを特徴とする請求 項 1〜 6のいずれかの項に記載の成形性に優れた高強度鋼板。
8. 請求項 1〜 7のいずれかの項に記載の高強度鋼板の製造方法 であって、 A r 3 点以上の仕上温度で熱間圧延を施し、 4 0 0 °C〜 5 5 0 °Cで捲取り、 次いで通常の酸洗の後、 圧下率を 3 0〜 7 0 % と して一次冷間圧延後、 連続焼鈍工程で再結晶焼鈍を施し、 次いで 調質圧延を施したことを特徴とする成形性に優れた高強度鋼板の製 造方法。
9. 請求項 8に記載の高強度鋼板の製造方法であって、 焼鈍工程 において A c 1 以上 A c 3 + 1 0 0 °C以下の温度域に加熱し、 3 0 秒以上 3 0分以下保持した後、 ( 3 ) 式を満たす X°CZ s以上の冷 却速度で 6 0 0 °C以下の温度域まで冷却することを特徴とする成形 性に優れた高強度鋼板の製造方法。
X≥ ( A c 3 - 5 0 0 ) / 1 0 a . · · ( 3 ) 式
a = 0. 6 [ C ] + 1 . 4 [M n ] + 3. 7 [M o ] — 0.
8 7
ここに、 Xは冷却速度で単位は。 CZ s
A c 3 は単位は °C
[ C ] は Cの質量0/。、 [Mn ] は Mnの質量%、 [ M o ] は M oの質量%
PCT/JP2003/008006 2003-06-19 2003-06-24 成形性に優れた高強度鋼板およびその製造方法 WO2004113580A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0318364-5A BR0318364B1 (pt) 2003-06-19 2003-06-24 folha de aÇo de alta resistÊncia excelente em conformabilidade e mÉtodo de produÇço da mesma.
US10/560,989 US7922835B2 (en) 2003-06-19 2003-06-24 High strength steel sheet excellent in formability
CA2529736A CA2529736C (en) 2003-06-19 2003-06-24 High strength steel sheet excellent in formability and method for producing the same
ES03733561.9T ES2660402T3 (es) 2003-06-19 2003-06-24 Lámina de acero de alta resistencia con excelente capacidad de conformado y método para producir la misma
EP03733561.9A EP1642990B1 (en) 2003-06-19 2003-06-24 High strength steel plate excellent in formability and method for production thereof
AU2003243961A AU2003243961A1 (en) 2003-06-19 2003-06-24 High strength steel plate excellent in formability and method for production thereof
US13/066,223 US8262818B2 (en) 2003-06-19 2011-04-08 Method for producing high strength steel sheet excellent in formability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-175093 2003-06-19
JP2003175093A JP4214006B2 (ja) 2003-06-19 2003-06-19 成形性に優れた高強度鋼板およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/560,989 A-371-Of-International US7922835B2 (en) 2003-06-19 2003-06-24 High strength steel sheet excellent in formability
US13/066,223 Division US8262818B2 (en) 2003-06-19 2011-04-08 Method for producing high strength steel sheet excellent in formability

Publications (1)

Publication Number Publication Date
WO2004113580A1 true WO2004113580A1 (ja) 2004-12-29

Family

ID=33534809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008006 WO2004113580A1 (ja) 2003-06-19 2003-06-24 成形性に優れた高強度鋼板およびその製造方法

Country Status (12)

Country Link
US (2) US7922835B2 (ja)
EP (1) EP1642990B1 (ja)
JP (1) JP4214006B2 (ja)
KR (1) KR100727496B1 (ja)
CN (1) CN100471972C (ja)
AU (1) AU2003243961A1 (ja)
BR (1) BR0318364B1 (ja)
CA (1) CA2529736C (ja)
ES (1) ES2660402T3 (ja)
PL (1) PL204391B1 (ja)
RU (1) RU2322518C2 (ja)
WO (1) WO2004113580A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273392A1 (en) * 2010-12-17 2013-10-17 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet and manufacturing method thereof

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068676A1 (ja) * 2004-01-14 2005-07-28 Nippon Steel Corporation めっき密着性および穴拡げ性に優れた溶融亜鉛めっき高強度鋼板とその製造方法
JP4510488B2 (ja) * 2004-03-11 2010-07-21 新日本製鐵株式会社 成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板およびその製造方法
JP5167487B2 (ja) 2008-02-19 2013-03-21 Jfeスチール株式会社 延性に優れる高強度鋼板およびその製造方法
CN101960038B (zh) * 2008-03-07 2013-01-23 株式会社神户制钢所 冷轧钢板
EP2123786A1 (fr) * 2008-05-21 2009-11-25 ArcelorMittal France Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites
DE102008038865A1 (de) * 2008-08-08 2010-02-11 Sms Siemag Aktiengesellschaft Verfahren zur Herstellung von Halbzeug, insbesondere Stahlband, mit Dualphasengefüge
FI20095528A (fi) * 2009-05-11 2010-11-12 Rautaruukki Oyj Menetelmä kuumavalssatun nauhaterästuotteen valmistamiseksi sekä kuumavalssattu nauhaterästuote
KR101149117B1 (ko) * 2009-06-26 2012-05-25 현대제철 주식회사 저항복비 특성이 우수한 고강도 강판 및 그 제조방법
JP5779847B2 (ja) * 2009-07-29 2015-09-16 Jfeスチール株式会社 化成処理性に優れた高強度冷延鋼板の製造方法
CA2810167C (en) * 2010-09-03 2017-01-17 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having improved resistance to fracture and to hic
ES2733452T3 (es) * 2011-07-29 2019-11-29 Nippon Steel Corp Lámina de acero galvanizada de alta resistencia y lámina de acero de alta resistencia con moldeabilidad superior, y método para producirlas
CN102953001B (zh) * 2011-08-30 2015-04-22 宝山钢铁股份有限公司 一种抗拉强度900MPa以上冷轧钢板及制造方法
EP2762590B1 (en) 2011-09-30 2018-12-12 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method of manufacturing same
US9617614B2 (en) * 2011-10-24 2017-04-11 Jfe Steel Corporation Method for manufacturing high strength steel sheet having excellent formability
KR20140099544A (ko) * 2011-12-26 2014-08-12 제이에프이 스틸 가부시키가이샤 고강도 박강판 및 그의 제조 방법
JP6228741B2 (ja) * 2012-03-27 2017-11-08 株式会社神戸製鋼所 板幅方向における中央部と端部の強度差が少なく、曲げ加工性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、およびこれらの製造方法
CN102876967B (zh) * 2012-08-06 2014-08-13 马钢(集团)控股有限公司 一种600MPa级铝系热镀锌双相钢钢板
BR112015002312A2 (pt) 2012-08-06 2017-07-04 Nippon Steel & Sumitomo Metal Corp chapa de aço laminada a frio e método para produção da mesma, e elememento conformado por estampagem a quente
CA2879069C (en) * 2012-08-07 2016-08-16 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet for hot forming
RU2499060C1 (ru) * 2012-09-20 2013-11-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства холоднокатаной стали для глубокой вытяжки
RU2505619C1 (ru) * 2012-11-23 2014-01-27 Открытое акционерное общество "Научно-производственное объединение "Прибор" Малоуглеродистая легированная сталь
US9970074B2 (en) 2013-07-01 2018-05-15 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet, galvanized cold-rolled steel sheet and method of manufacturing the same
MX2017015325A (es) * 2015-05-29 2018-03-16 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para fabricar la misma.
WO2017085841A1 (ja) * 2015-11-19 2017-05-26 新日鐵住金株式会社 高強度熱延鋼板及びその製造方法
RU2602585C1 (ru) * 2015-11-20 2016-11-20 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Плакированная высокопрочная коррозионно-стойкая сталь
CN106811678B (zh) * 2015-12-02 2018-11-06 鞍钢股份有限公司 一种淬火合金化镀锌钢板及其制造方法
BR112018073110A2 (pt) * 2016-08-08 2019-03-06 Nippon Steel & Sumitomo Metal Corp chapa de aço
DE102017209982A1 (de) 2017-06-13 2018-12-13 Thyssenkrupp Ag Hochfestes Stahlblech mit verbesserter Umformbarkeit
KR20200123473A (ko) 2018-03-30 2020-10-29 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
MX2020010210A (es) 2018-03-30 2020-11-09 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para fabricar la misma.
CN109554611A (zh) * 2018-10-25 2019-04-02 舞阳钢铁有限责任公司 一种耐高温熔盐腐蚀用钢板及其生产方法
CN116497274A (zh) * 2023-04-19 2023-07-28 邯郸钢铁集团有限责任公司 一种低成本易轧制600MPa级热轧双相钢及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345288A (ja) * 1999-06-10 2000-12-12 Nippon Steel Corp 成形性、溶接性の優れた高強度鋼板及びその製造方法
JP2001234281A (ja) * 2000-02-21 2001-08-28 Nippon Steel Corp 亜鉛メッキ密着性および成形性の優れた高強度薄鋼板とその製造方法
JP2003193192A (ja) * 2001-12-26 2003-07-09 Nippon Steel Corp 成形性と化成処理性に優れた高強度鋼板およびその製造方法
JP2003239090A (ja) * 2002-02-18 2003-08-27 Ntn Corp 防錆グリースおよび転がり軸受

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155329A (en) 1981-07-20 1982-09-25 Nippon Steel Corp Production of high-strength cold-rolled steel sheet excellent in strain age-hardenability
JPS61157625A (ja) 1984-12-29 1986-07-17 Nippon Steel Corp 高強度鋼板の製造方法
JPH0345288A (ja) * 1989-07-13 1991-02-26 Takashimaya Nippatsu Kogyo Kk 表皮接着シートの製造方法
JP2738209B2 (ja) 1992-03-02 1998-04-08 日本鋼管株式会社 めっき密着性に優れた高強度高延性溶融亜鉛めっき鋼板
EP0748874A1 (de) 1995-06-16 1996-12-18 Thyssen Stahl Aktiengesellschaft Mehrphasiger Stahl, Erzeugung von Walzprodukten und Verwendung des Stahls
EP0750049A1 (de) 1995-06-16 1996-12-27 Thyssen Stahl Aktiengesellschaft Ferritischer Stahl und Verfahren zu seiner Herstellung und Verwendung
DE19610675C1 (de) 1996-03-19 1997-02-13 Thyssen Stahl Ag Mehrphasenstahl und Verfahren zu seiner Herstellung
JP3498504B2 (ja) 1996-10-23 2004-02-16 住友金属工業株式会社 高延性型高張力冷延鋼板と亜鉛メッキ鋼板
JP2000256788A (ja) 1999-03-10 2000-09-19 Kobe Steel Ltd 加工性の優れた合金化溶融亜鉛めっき鋼板およびその製造方法
NL1015184C2 (nl) * 2000-05-12 2001-11-13 Corus Staal Bv Multi-phase staal en werkwijze voor de vervaardiging daarvan.
JP3898924B2 (ja) * 2001-09-28 2007-03-28 新日本製鐵株式会社 外観と加工性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP3908964B2 (ja) 2002-02-14 2007-04-25 新日本製鐵株式会社 成形性に優れた溶融亜鉛メッキ高強度鋼板およびその製造方法
EP1431406A1 (en) 2002-12-20 2004-06-23 Sidmar N.V. A steel composition for the production of cold rolled multiphase steel products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345288A (ja) * 1999-06-10 2000-12-12 Nippon Steel Corp 成形性、溶接性の優れた高強度鋼板及びその製造方法
JP2001234281A (ja) * 2000-02-21 2001-08-28 Nippon Steel Corp 亜鉛メッキ密着性および成形性の優れた高強度薄鋼板とその製造方法
JP2003193192A (ja) * 2001-12-26 2003-07-09 Nippon Steel Corp 成形性と化成処理性に優れた高強度鋼板およびその製造方法
JP2003239090A (ja) * 2002-02-18 2003-08-27 Ntn Corp 防錆グリースおよび転がり軸受

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1642990A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273392A1 (en) * 2010-12-17 2013-10-17 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet and manufacturing method thereof
US10280475B2 (en) * 2010-12-17 2019-05-07 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet and manufacturing method thereof
US10927428B2 (en) 2010-12-17 2021-02-23 Nippon Steel Corporation Hot-dip galvanized steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP4214006B2 (ja) 2009-01-28
RU2006101392A (ru) 2006-06-27
CN1788099A (zh) 2006-06-14
EP1642990A4 (en) 2006-11-29
BR0318364B1 (pt) 2013-02-05
CN100471972C (zh) 2009-03-25
PL204391B1 (pl) 2010-01-29
US20070095444A1 (en) 2007-05-03
RU2322518C2 (ru) 2008-04-20
AU2003243961A1 (en) 2005-01-04
EP1642990A1 (en) 2006-04-05
PL379099A1 (pl) 2006-07-10
ES2660402T3 (es) 2018-03-22
EP1642990B1 (en) 2017-11-29
CA2529736A1 (en) 2004-12-29
BR0318364A (pt) 2006-07-25
KR100727496B1 (ko) 2007-06-13
CA2529736C (en) 2012-03-13
US7922835B2 (en) 2011-04-12
US20110186185A1 (en) 2011-08-04
KR20060018270A (ko) 2006-02-28
JP2005008961A (ja) 2005-01-13
US8262818B2 (en) 2012-09-11

Similar Documents

Publication Publication Date Title
JP4214006B2 (ja) 成形性に優れた高強度鋼板およびその製造方法
US7919194B2 (en) High strength steel sheet having superior ductility
US10927428B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP4860784B2 (ja) 成形性に優れた高強度鋼板及びその製造方法
JP4542515B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板、並びに、高強度冷延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法、高強度合金化溶融亜鉛めっき鋼板の製造方法
CN111433380A (zh) 高强度镀锌钢板及其制造方法
JP5305149B2 (ja) 成形性に優れた溶融亜鉛めっき高強度鋼板およびその製造方法
JP4772431B2 (ja) 伸びと穴拡げ性に優れた溶融亜鉛めっき高強度鋼板の製造方法
JP4500197B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4265152B2 (ja) 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP4265153B2 (ja) 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP5397141B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2521553B2 (ja) 焼付硬化性を有する深絞り用冷延鋼板の製造方法
JP3908964B2 (ja) 成形性に優れた溶融亜鉛メッキ高強度鋼板およびその製造方法
JP2000265244A (ja) 強度と延性に優れる溶融亜鉛めっき鋼板およびその製造方法
JP4848722B2 (ja) 加工性に優れた超高強度冷延鋼板の製造方法
JP3762700B2 (ja) 成形性と化成処理性に優れた高強度鋼板およびその製造方法
JP4818710B2 (ja) 深絞り用高強度冷延鋼板、深絞り用高強度溶融めっき鋼板及びその製造方法
KR20230016218A (ko) 열처리 냉연 강판 및 그 제조 방법
WO2023073411A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
WO2023073410A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
CN113631736A (zh) 热浸镀Zn-Al-Mg系钢板及其制造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 5626/DELNP/2005

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2003733561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003733561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007095444

Country of ref document: US

Ref document number: 10560989

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2529736

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057024117

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003826661X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006101392

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 1020057024117

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003733561

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0318364

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10560989

Country of ref document: US