WO2004112119A1 - Method and apparatus for etching silicon and etched silicon body - Google Patents

Method and apparatus for etching silicon and etched silicon body Download PDF

Info

Publication number
WO2004112119A1
WO2004112119A1 PCT/JP2004/008126 JP2004008126W WO2004112119A1 WO 2004112119 A1 WO2004112119 A1 WO 2004112119A1 JP 2004008126 W JP2004008126 W JP 2004008126W WO 2004112119 A1 WO2004112119 A1 WO 2004112119A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
etching
flow rate
silicon
plasma
Prior art date
Application number
PCT/JP2004/008126
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuya Chikama
Yoshiyuki Nozawa
Original Assignee
Sumitomo Precision Products Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co., Ltd. filed Critical Sumitomo Precision Products Co., Ltd.
Priority to JP2005506920A priority Critical patent/JP4781106B2/en
Publication of WO2004112119A1 publication Critical patent/WO2004112119A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00626Processes for achieving a desired geometry not provided for in groups B81C1/00563 - B81C1/00619
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0132Dry etching, i.e. plasma etching, barrel etching, reactive ion etching [RIE], sputter etching or ion milling

Definitions

  • the present invention relates to a method and an apparatus for plasma-etching a silicon material in a tapered shape
  • etching a silicon material As a method for etching a silicon material, a dry etching process using plasma has been widely used.
  • dry etching using plasma low-pressure process gas plasma is generated in a reduced-pressure atmosphere, and silicon is etched by the generated plasma.
  • an etching gas for example, SF
  • a deposition gas for example, CF
  • a silicon body tapered by etching is used for a minute flow path of a liquid in a system called a micro TAS (Total Analysis System).
  • a silicon body with a V-shaped groove is used as a base on which a fine optical fiber is mounted.
  • a desired taper angle and smoothness of the tapered surface are required. Therefore, when a tapered silicon body is manufactured by plasma etching, it is necessary to satisfy this demand. There is.
  • Patent Document 1 JP-A-61-247033
  • Patent Document 1 since the taper shape is formed by the deposition gas, there is a problem that the reproducibility is lacking, such as a decrease in the etching rate or an excessive stop of the etching due to excessive progress of the deposition process. . Further, only oxygen gas is added for the purpose of destroying the polymer of the deposition gas, and control for forming a desired taper angle cannot be performed.
  • the present invention has been made in view of such circumstances, and a silicon etching method that can easily achieve a desired taper angle, can realize a smooth taper surface, and does not generate an overhang shape. And an apparatus, and an etched silicon body produced by the apparatus.
  • a silicon material to be etched having an etching mask formed thereon is placed in an atmosphere into which a process gas is introduced, and the process gas is pumped.
  • a process gas it is preferable to use, as the process gas, a mixture of a first gas for etching, a fluorocarbon-based second gas for deposition, and oxygen gas.
  • a silicon material to be etched on which an etching mask is formed is placed in a reactor into which a process gas has been introduced, and the silicon material is tapered by the plasma of the process gas.
  • first gas introducing means for introducing a first gas for etching into the reactor and second gas introducing means for introducing a second fluorocarbon-based gas for deposition into the reactor.
  • third gas introducing means for introducing oxygen gas into the reactor wherein the mixed gas of the first gas, the second gas, and the oxygen gas introduced into the reactor is mixed with the process gas.
  • a first gas for etching a second gas of a fluorocarbon type (for example, CF), and an oxygen gas are used as process gases when plasma etching a silicon material.
  • a fluorocarbon type for example, CF
  • the silicon etching method according to the present invention is characterized in that a taper angle of a silicon material after etching is controlled by adjusting a flow rate of a second gas and / or an oxygen gas.
  • the taper angle is controlled by adjusting the flow rate of the added second gas and / or oxygen gas.
  • the flow rate of the first gas and the oxygen gas are constant, the flow rate of the second gas is increased when the taper angle is close to 85 ° (the taper surface is nearly vertical), and the taper angle is away from 85 ° (taper surface).
  • the inclination of the second gas is large, decrease the flow rate of the second gas.
  • the flow rates of the first gas and the second gas are constant, the flow rate of the oxygen gas is reduced when the taper angle is close to 85 °, and the flow rate of the oxygen gas is reduced when the taper angle is 85 °. Do more. Therefore, a desired taper angle can be easily realized, and more specifically, the taper angle can be easily controlled to 55 ° to 85 ° by adjusting the flow rate of these gases.
  • the silicon etching method according to the present invention may be configured such that the oxygen gas with respect to the flow rate of the second gas is adjusted.
  • the ratio of the flow rate of the gas is set to 0.5 or more.
  • the flow rate of the oxygen gas is set to 0.5 times or more of the flow rate of the second gas. By doing so, the roughness of the tapered surface can be reduced to less than 50 nm.
  • the silicon etching method according to the present invention is characterized in that the ratio of the flow rate of the oxygen gas to the flow rate of the second gas is 2 or more.
  • the silicon etching apparatus includes control means for controlling an amount of the second gas introduced into the reactor and an amount of the oxygen gas introduced into the reactor.
  • the ratio of the introduction amount of the oxygen gas to the introduction amount of the second gas is set to 2 or more.
  • the flow rate of the oxygen gas is at least twice the flow rate of the second gas. By doing so, an overhang shape does not occur at the interface between the silicon material and the etching mask.
  • the silicon etching method according to the present invention is characterized in that the area force in contact with the etching mask of the silicon material after etching is smaller than the area of the etching mask.
  • the polymer of the second gas for deposition is destroyed by plasma of oxygen gas to form a tapered shape. Therefore, the polymer of the second gas is destroyed by the oxygen plasma, and the area of the etched silicon material becomes smaller than the area of the etching mask in contact with the etching mask.
  • the etched silicon body according to the present invention has a taper angle of 55 ° or more and 85 ° or less and a tapered surface roughness of less than 50 nm in an etched silicon body manufactured by plasma-etching a silicon material in a tapered shape. It is characterized by being.
  • an etched silicon body having a taper angle of 55 ° or more and 85 ° or less and a tapered surface having a roughness of less than 50 nm.
  • Such an etched silicon body can be used as a member such as a fine flow path of a liquid or a mounting table for a fine optical fiber.
  • a mixed gas of a first gas for etching, a second gas of a fluorocarbon-based gas for deposition, and an oxygen gas is used as a process gas when plasma etching a silicon material. Therefore, a tapered shape having a small surface roughness can be easily formed. Further, in the present invention, since the taper angle is controlled by adjusting the flow rate of the added oxygen gas and / or the second gas for deposition, a desired taper angle can be easily realized. .
  • the ratio of the flow rate of the oxygen gas to the flow rate of the second gas is set to 0.5 times or more, so that the roughness of the tapered surface can be reduced to less than 50 nm.
  • the ratio of the flow rate of the oxygen gas to the flow rate of the second gas is set to be twice or more, it is possible to prevent an overhang shape at the interface between the silicon material and the etching mask.
  • an etched silicon body having a taper angle of 55 ° or more and 85 ° or less and a taper surface roughness of less than 50 nm can be provided. It can be used as a member such as a fiber mounting table.
  • FIG. 1 is a diagram showing a state in which an overhang shape is formed.
  • FIG. 2 is a configuration diagram of an example of a plasma etching apparatus for performing a silicon etching method according to the present invention.
  • FIG. 3 is a view showing a step of silicon etching.
  • FIG. 4 is a configuration diagram of another example of a plasma etching apparatus for performing the silicon etching method according to the present invention.
  • FIG. 5 is a view showing one example of an etched silicon body produced by the present invention.
  • FIG. 2 is a configuration diagram of an example of a plasma etching apparatus for performing the silicon etching method according to the present invention.
  • the plasma etching apparatus shown in FIG. 2 is an inductively coupled plasma (ICP) apparatus that independently controls plasma generation and plasma attraction.
  • ICP inductively coupled plasma
  • reference numeral 1 denotes a reactor
  • the reactor 1 includes an upper plasma generation chamber 2 a for generating plasma by energizing the coil 3, and a plasma 20 drawn into the sample 20. And a lower reaction chamber 2b for performing plasma etching.
  • the plasma generation chamber 2a has the shape of a hollow cylinder made of ceramic, and a coil 3 is concentrically surrounded on the peripheral surface.
  • a high frequency power supply 8 is connected to the coil 3 via a matching circuit 7.
  • a gas introduction pipe 4 for introducing a process gas into the reactor 1 is connected to the center of the upper wall of the plasma generation chamber 2a so as to penetrate therethrough. Then, by applying an AC voltage to the coil 3, plasma of the process gas is generated in the plasma generation chamber 2a.
  • the gas introduction pipe 4 is branched into three gas pipes 14a, 14b, and 14c, and each of the gas pipes 14a, 14b, and 14c has an SF gas source, a CF gas source, and an O gas source (all of them). (Not shown)
  • a mixed gas of the CF gas as the two gases and the NO gas is introduced into the reactor 1 as the process gas.
  • a mass flow controller (MFC) 15a, 15b, 15c for controlling the flow rate of each gas is provided in the middle of each gas pipe 14a, 14b, 14c.
  • MFC mass flow controller
  • An exhaust port 5 to which an exhaust device (not shown) is connected is opened in a side wall of the reaction chamber 2b.
  • a platen 6 having a substrate electrode 11 on which a sample 20 to be etched is placed is arranged at the bottom of the reaction chamber 2b.
  • a high frequency power supply 10 is connected to the platen 6 via a matching circuit 9. Then, by applying an AC voltage to the substrate electrode 11, the plasma generated in the plasma generation chamber 2a is drawn into the reaction chamber 2b, and the sample 20 is etched by the drawn plasma. .
  • FIG. 3 is a diagram showing a silicon etching process.
  • a sample 20 as shown in FIG. 3A is prepared.
  • a photoresist serving as a mask material is applied on the silicon material 21 and an exposure mask is used to form an etching mask 22 in a pattern other than the region to be etched.
  • a sample 20 having an etching mask 22 formed on a silicon material 21 is placed on a platen 6.
  • the inside of the reactor 1 is depressurized by an exhaust device (not shown) through the exhaust port 5, and a process gas (a mixed gas of SF, CF and O) is introduced into the plasma generation chamber 2 a from the gas introduction pipe 4. Introduce.
  • a process gas a mixed gas of SF, CF and O
  • the mass flow controllers 15a, 15b and 15c control the flow rates of SF gas, CF gas and ⁇ gas, respectively.
  • the pressure of the mixed gas is about 4 ⁇ OPa.
  • the flow rate of the O gas is set to 0.5 times or more, more preferably, 2 times or more of the flow rate of the CF gas.
  • the roughness of the tapered surface can be reduced to less than 50 nm by setting the flow rate of the gas to 0.5 times or more of the flow rate of the CF gas, and the flow rate of the O gas can be reduced to twice the flow rate of the CF gas. By doing so, it is possible to prevent the overhang shape from occurring at the interface between the silicon material and the etching mask.
  • an AC voltage (applied power: about 1700 W) is applied to the coil 3 from the high-frequency power supply 8 via the matching circuit 7 to generate plasma of the process gas in the plasma generation chamber 2a, and at the same time, the substrate electrode
  • An AC voltage (applied power: about 50 W) is applied from a high-frequency power supply 10 to a power supply 11 through a matching circuit 9, and the generated plasma is drawn into the reaction chamber 2 b.
  • the silicon material 21 of the sample 20 having the etching mask 22 formed in the region is etched. At this time, the silicon material 21 The thickness of the etched region is, for example, 5 ⁇ m to several hundred ⁇ m.
  • an etching silicon body 30 having a taper angle ⁇ can be manufactured as shown in FIG. 2 (b). Further, in the manufactured etched silicon body 30, no overhang shape is observed at the interface between the silicon material 21 and the etching mask 22, and a smooth tapered surface is obtained as a whole.
  • the area of the upper surface of the etched silicon body 30 (the surface in contact with the etching mask 22) is smaller than the area of the etching mask 22.
  • the area of the upper surface of the etched silicon body (the surface in contact with the etching mask) is larger than the area of the etching mask.
  • SF 70 sccm
  • CF 200 sccm
  • O 0 sccm
  • An etched silicon body 30 having an angle of 85 ° and a roughness of the tapered surface of less than 50 nm was produced. However, an overhang shape was observed at the interface between the silicon material 21 and the etching mask 22.
  • An etched silicon body 30 having an angle of 85 ° and a roughness of the tapered surface of less than 10 nm was produced. However, an overhang shape was observed at the interface between the silicon material 21 and the etching mask 22.
  • the taper angle ⁇ can be controlled by adjusting the flow rate of the gas. Specifically, by changing the flow rate of O gas from Osccm to 500sccm, the taper angle can be changed from 85 ° to 65 °. Therefore, a desired taper angle can be realized by adjusting the flow rate of the O gas.
  • the taper angle ⁇ is set to 65 by changing the flow rate of the CF gas from 200 sccm to 350 sccm while setting the flow rate of the gas to a constant 500 sccm. Power, can power up to 85 °. Therefore, a desired taper angle can be realized by adjusting the flow rate of the CF gas while adding a predetermined amount of the negative gas.
  • the roughness of the tapered surface can be controlled to less than 50 nm by setting it to 5 or more. Further, in Examples 2-4 in which the flow rate ratio was further increased, the roughness of the tapered surface could be reduced to less than 20 nm. Therefore, if the ratio of O flow rate / CF flow rate is set to 0.5 or more, the taper surface can be constantly smoothed even if the taper angle is freely controlled. [0049] Further, from the results of Examples 1-4, the ratio of the flow rate of the O gas to the flow rate of the CF gas was set to 2 or less.
  • the above setting can prevent the occurrence of the overhang shape.
  • a favorable linear tapered surface can be formed.
  • the taper angle can be easily controlled to achieve a desired taper angle, and the surface of the present invention is small and smooth, and no overhang is observed.
  • An etched silicon body having such a tapered shape can be manufactured. Specifically, an etched silicon body having a taper angle of not less than 65 ° and not more than 85 ° and having no overhang hang shape such that the roughness of the tapered surface is less than 50 nm can be produced. Also, the gas flow
  • FIG. 4 is a configuration diagram of another example of a plasma etching apparatus for performing the silicon etching method according to the present invention.
  • the plasma etching apparatus shown in FIG. 4 is a plasma apparatus that performs plasma generation and etching processing in one room (in the reactor 1).
  • the same or similar parts as in FIG. 2 are denoted by the same reference numerals.
  • the reactor 1 has the shape of a hollow cylinder made of ceramic, and the coil 3 is concentrically surrounded on the peripheral surface.
  • a high frequency power supply 8 is connected to the coil 3 via a matching circuit 7.
  • a gas introduction pipe 4 for introducing a process gas into the reactor 1 is connected to the center of the upper wall of the reactor 1 so as to penetrate therethrough. Then, a plasma of the process gas is generated in the reactor 1 by applying an AC voltage to the coil 3.
  • the gas introduction pipe 4 is branched into three gas pipes 14a, 14b, and 14c, and each of the gas pipes 14a, 14b, and 14c has an SF gas source, a CF gas source, and an O gas source (all of them). (Not shown) .
  • SF gas as the first gas for etching and fluorocarbon-based second gas for deposition
  • a mixed gas of the CF gas as the two gases and the NO gas is introduced into the reactor 1 as the process gas.
  • a mass flow controller (MFC) 15a, 15b, 15c for controlling the flow rate of each gas is provided in the middle of each gas pipe 14a, 14b, 14c.
  • MFC mass flow controller
  • Each of these mass flow controllers 15a, 15b, 15c controls the flow rate of each corresponding gas based on a control signal from the control unit 16.
  • An exhaust port 5 to which an exhaust device (not shown) is connected is opened in a side wall of the reactor 1.
  • a platen 6 having a substrate electrode 11 on which a sample 20 to be etched is placed is arranged.
  • the platen 6 is connected to a high-frequency power supply 10 via a matching circuit 9. Then, by the application of the AC voltage to the substrate electrode 11, the plasma generated in the reactor 1 is drawn downward, and the sample 20 is etched by the drawn plasma.
  • the etching process is performed in two stages.
  • an etching gas for example, SF
  • a deposition gas for example, SF
  • CF only gas
  • the second stage is used for etching.
  • a gas mixture of gas for example, SF
  • deposition gas for example, CF
  • O gas By using a gas mixture of gas (for example, SF), deposition gas (for example, CF) and O gas, the lower part 30a does not taper and the upper part 30b becomes tapered as shown in FIG.
  • An etched silicon body 30 having an etched shape having the following shape can be manufactured.
  • SF is used as the etching gas and CF is used as the deposition gas
  • CF is used as the deposition gas
  • the present invention is not limited to this.
  • a gas for etching other than SF, a gas represented by a general formula SF such as SF can be used.
  • a deposition gas in addition to C F, a gas represented by a general formula C F such as C F
  • CHF CHF
  • other gases represented by the general formula CHF can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

The pressure within a reaction chamber is reduced, and a process gas (a gas mixture of SF6, C4F8 and O2) is introduced into a plasma generation chamber through a gas feeding pipe. A plasma of the process gas is generated in the plasma generation chamber by applying an alternating current voltage to a coil, and the thus-generated plasma is drawn into the reaction chamber by applying the alternating current voltage to a substrate electrode at the same time. A sample of silicon material mounted on a platen is etched into a tapered shape by the plasma drawn into the reaction chamber. The taper angle is controlled by adjusting the flow rate of C4F8 gas and/or O2 gas introduced into the plasma generation chamber. The ratio of the O2 gas flow rate to the C4F8 gas flow rate is set at 0.5 or more for making the tapered surface smooth. Further, the ratio of the O2 gas flow rate to the C4F8 gas flow rate is set at 2 or more for preventing an overhang.

Description

明 細 書  Specification
シリコンエッチング方法及び装置並びにエッチングシリコン体  Silicon etching method and apparatus, and etched silicon body
技術分野  Technical field
[0001] 本発明は、シリコン材をテーパ状にプラズマエッチングする方法及び装置、並びに The present invention relates to a method and an apparatus for plasma-etching a silicon material in a tapered shape, and
、その方法及び装置により作製されるエッチングシリコン体に関する。 , An etching silicon body manufactured by the method and the apparatus.
背景技術  Background art
[0002] シリコン材のエッチング手法としては、従来から、プラズマを用いたドライエッチング 処理が広く利用されている。プラズマを用いたドライエッチング処理では、減圧雰囲 気中で低圧プロセスガスのプラズマを発生させ、発生したプラズマによってシリコン材 をエッチング加工する。また、エッチングの異方性を高めるために、プロセスガスとし てエッチング用ガス(例えば SF )と堆積用ガス (例えば C F )とを同時に導入してプ  [0002] As a method for etching a silicon material, a dry etching process using plasma has been widely used. In dry etching using plasma, low-pressure process gas plasma is generated in a reduced-pressure atmosphere, and silicon is etched by the generated plasma. In addition, in order to increase the anisotropy of the etching, an etching gas (for example, SF) and a deposition gas (for example, CF) are simultaneously introduced as process gases and the process gas is introduced.
6 4 8  6 4 8
ラズマ化させる手法も知られている。  There is also known a method of rasma.
[0003] ところで、シリコン体に対する MEMS (Micro Electro Mechanical System)技 亍を適 用した加工技術にあっては、エッチング面が垂直であることよりもむしろテーパ状をな すようなエッチング力卩ェが望まれる場合も多くなつている。このような例としては、マイ クロ TAS (Total Analysis System)と呼ばれるシステムにおける液体の微小な流路に、 テーパエッチングカ卩ェしたシリコン体が使用されている。また、微細な光ファイバを載 置するための基台として、 V溝カ卩ェされたシリコン体が使用されている。このようなシリ コン体にあっては、所望のテーパ角度とテーパ表面の平滑さとが要望されるため、プ ラズマエッチングによってテーパ状のシリコン体を作製する場合には、この要望を満 たす必要がある。  [0003] By the way, in a processing technology that applies MEMS (Micro Electro Mechanical System) technology to a silicon body, an etching force that forms a tapered shape rather than a vertical etching surface is produced. There are many cases where it is desired. In such an example, a silicon body tapered by etching is used for a minute flow path of a liquid in a system called a micro TAS (Total Analysis System). In addition, a silicon body with a V-shaped groove is used as a base on which a fine optical fiber is mounted. In such a silicon body, a desired taper angle and smoothness of the tapered surface are required. Therefore, when a tapered silicon body is manufactured by plasma etching, it is necessary to satisfy this demand. There is.
[0004] シリコン材をテーパ状にエッチングする技術として種々のものが提案されてレ、る(例 えば、特許文献 1参照)。特許文献 1のエッチング手法では、エッチング用ガスとして の塩素ガスと、堆積用ガスとしてのメタンガスと、酸素ガスとの混合ガスを用いており、 メタンガス(堆積用ガス)によってテーパ形状を作成している。また、エッチングマスク のパターンサイズに起因するテーパ形状の差異を解消するために、酸素ガスを加え ている。 特許文献 1 :特開昭 61 - 247033号公報 [0004] Various techniques have been proposed for etching a silicon material into a tapered shape (for example, see Patent Document 1). In the etching method of Patent Document 1, a mixed gas of chlorine gas as an etching gas, methane gas as a deposition gas, and oxygen gas is used, and a tapered shape is formed with methane gas (deposition gas). . Oxygen gas is added to eliminate the difference in the taper shape due to the pattern size of the etching mask. Patent Document 1: JP-A-61-247033
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems the invention is trying to solve
[0005] プロセスガスとして SFガスを用いて、表面にエッチングマスクを形成したシリコン材 にプラズマエッチングを施した場合には、等方的なエッチングが強いので、テーパ面 と平坦面との境界が丸みを帯びてしまレ、、また、テーパ表面の粗さも 200nmを超え た。なお、テーパ表面の粗さとは、テーパ表面の凹凸度を表しており、具体的には最 上面と最下面との距離(peak to valley)を示すものである。また、プロセスガスとしてェ ツチング用ガスと堆積用ガスとの混合ガスを用いて、表面にエッチングマスクを形成し たシリコン材にプラズマエッチングを施した場合、例えば SF = 130sccm, C F = 3[0005] When plasma etching is performed on a silicon material having an etching mask formed on its surface using SF gas as a process gas, the boundary between the tapered surface and the flat surface is rounded because isotropic etching is strong. In addition, the roughness of the tapered surface exceeded 200 nm. The roughness of the tapered surface indicates the degree of unevenness of the tapered surface, and specifically indicates the distance (peak to valley) between the uppermost surface and the lowermost surface. Further, when a silicon material having an etching mask formed on its surface is subjected to plasma etching using a mixed gas of an etching gas and a deposition gas as a process gas, for example, SF = 130 sccm, C F = 3
Osccmの流量条件にてテーパ角度が 65° となる鋭角的なテーパ形状は形成できた が、テーパ角度を所望の角度に制御することが難しぐまた、テーパ表面の粗さも 20 Onmを超えた。このように従来の技術では、テーパ角度を所望の値に制御することが 困難であり、テーパ表面の粗さを低減することができないという問題がある。更に、従 来の技術では、図 1に示すように、シリコン材 21とマスク 22との界面にオーバーハン グ形状が形成されるという問題もある。 Although an acute taper shape with a taper angle of 65 ° could be formed under the flow rate condition of Osccm, it was difficult to control the taper angle to a desired angle, and the roughness of the taper surface exceeded 20 Onm. As described above, in the conventional technique, it is difficult to control the taper angle to a desired value, and there is a problem that the roughness of the tapered surface cannot be reduced. Further, the conventional technique has a problem that an overhanging shape is formed at the interface between the silicon material 21 and the mask 22, as shown in FIG.
[0006] 特許文献 1では、堆積用ガスによってテーパ形状を作成しているため、エッチング 速度の低下をもたらしたり、堆積処理が進行しすぎてエッチング停止をもたらすなど、 再現性に欠けるという問題がある。また、堆積用ガスの重合体を破壊する目的で酸素 ガスを加えているだけであり、所望のテーパ角度を形成するような制御は行えていな レ、。 [0006] In Patent Document 1, since the taper shape is formed by the deposition gas, there is a problem that the reproducibility is lacking, such as a decrease in the etching rate or an excessive stop of the etching due to excessive progress of the deposition process. . Further, only oxygen gas is added for the purpose of destroying the polymer of the deposition gas, and control for forming a desired taper angle cannot be performed.
[0007] 本発明は斯かる事情に鑑みてなされたものであり、所望のテーパ角度を容易に達 成すると共に、テーパ表面の平滑化を実現でき、またオーバーハング形状が生じな いシリコンエッチング方法及び装置並びにそれによつて作製したエッチングシリコン 体を提供することを目的とする。  The present invention has been made in view of such circumstances, and a silicon etching method that can easily achieve a desired taper angle, can realize a smooth taper surface, and does not generate an overhang shape. And an apparatus, and an etched silicon body produced by the apparatus.
課題を解決するための手段  Means for solving the problem
[0008] 本発明に係るシリコンエッチング方法は、エッチングマスクが形成されたエッチング 対象のシリコン材を、プロセスガスを導入した雰囲気に設置し、前記プロセスガスのプ ラズマにより前記シリコン材をテーパ状にエッチングする方法において、前記プロセス ガスとして、エッチング用の第 1ガスと堆積用のフッ化炭素系の第 2ガスと酸素ガスと を混合させたものを用いることを特徴とする。 [0008] In the silicon etching method according to the present invention, a silicon material to be etched having an etching mask formed thereon is placed in an atmosphere into which a process gas is introduced, and the process gas is pumped. In the method of etching the silicon material in a tapered shape by plasma, it is preferable to use, as the process gas, a mixture of a first gas for etching, a fluorocarbon-based second gas for deposition, and oxygen gas. Features.
[0009] 本発明に係るシリコンエッチング装置は、エッチングマスクが形成されたエッチング 対象のシリコン材を、プロセスガスを導入した反応器内に設置し、前記プロセスガスの プラズマにより前記シリコン材をテーパ状にエッチングする装置において、エッチング 用の第 1ガスを前記反応器内へ導入する第 1ガス導入手段と、堆積用のフッ化炭素 系の第 2ガスを前記反応器内へ導入する第 2ガス導入手段と、酸素ガスを前記反応 器内へ導入する第 3ガス導入手段とを備え、前記反応器内に導入された前記第 1ガ ス、前記第 2ガス及び前記酸素ガスの混合ガスを前記プロセスガスとして用いるように したことを特徴とする。 In the silicon etching apparatus according to the present invention, a silicon material to be etched on which an etching mask is formed is placed in a reactor into which a process gas has been introduced, and the silicon material is tapered by the plasma of the process gas. In an etching apparatus, first gas introducing means for introducing a first gas for etching into the reactor, and second gas introducing means for introducing a second fluorocarbon-based gas for deposition into the reactor. And third gas introducing means for introducing oxygen gas into the reactor, wherein the mixed gas of the first gas, the second gas, and the oxygen gas introduced into the reactor is mixed with the process gas. The feature is that it is used as.
[0010] 本発明にあっては、シリコン材をプラズマエッチングする際のプロセスガスとして、ェ ツチング用の第 1ガスと堆積用のフッ化炭素系の第 2ガス (例えば C F )と酸素ガスと  [0010] In the present invention, a first gas for etching, a second gas of a fluorocarbon type (for example, CF), and an oxygen gas are used as process gases when plasma etching a silicon material.
4 8  4 8
の混合ガスを使用する。第 2ガスにて形成されるフッ化炭素系の重合体を酸素プラズ マにて破壊して、シリコン材をテーパ状にエッチングする。よって、表面粗さが少ない テーパを容易に形成できる。  Use a mixed gas of The fluorocarbon polymer formed by the second gas is destroyed by oxygen plasma, and the silicon material is etched into a tapered shape. Therefore, a taper having a small surface roughness can be easily formed.
[0011] 本発明に係るシリコンエッチング方法は、第 2ガス及び/または酸素ガスの流量を 調整することにより、エッチング後のシリコン材のテーパ角度を制御することを特徴と する。  The silicon etching method according to the present invention is characterized in that a taper angle of a silicon material after etching is controlled by adjusting a flow rate of a second gas and / or an oxygen gas.
[0012] 本発明にあっては、加える第 2ガス及び/または酸素ガスの流量を調整して、テー パ角度を制御する。第 1ガス及び酸素ガスの流量を一定とした場合、テーパ角度が 8 5° に近い(テーパ面が垂直に近い)ときには第 2ガスの流量を多くし、テーパ角度が 85° から離れる(テーパ面が大きく傾斜する)ときには第 2ガスの流量を少なくする。 また、第 1ガス及び第 2ガスの流量を一定とした場合、テーパ角度が 85° に近いとき には酸素ガスの流量を少なくし、テーパ角度が 85° 力、ら離れるときには酸素ガスの 流量を多くする。よって、所望のテーパ角度を容易に実現でき、具体的には、これら のガスの流量調整によって、テーパ角度を 55° 85° まで容易に制御できる。  [0012] In the present invention, the taper angle is controlled by adjusting the flow rate of the added second gas and / or oxygen gas. When the flow rates of the first gas and the oxygen gas are constant, the flow rate of the second gas is increased when the taper angle is close to 85 ° (the taper surface is nearly vertical), and the taper angle is away from 85 ° (taper surface). When the inclination of the second gas is large, decrease the flow rate of the second gas. When the flow rates of the first gas and the second gas are constant, the flow rate of the oxygen gas is reduced when the taper angle is close to 85 °, and the flow rate of the oxygen gas is reduced when the taper angle is 85 °. Do more. Therefore, a desired taper angle can be easily realized, and more specifically, the taper angle can be easily controlled to 55 ° to 85 ° by adjusting the flow rate of these gases.
[0013] 本発明に係るシリコンエッチング方法は、前記第 2ガスの流量に対する前記酸素ガ スの流量の比を 0· 5以上とすることを特徴とする。 [0013] The silicon etching method according to the present invention may be configured such that the oxygen gas with respect to the flow rate of the second gas is adjusted. The ratio of the flow rate of the gas is set to 0.5 or more.
[0014] 本発明にあっては、酸素ガスの流量を第 2ガスの流量の 0. 5倍以上とする。このよう にすることにより、テーパ表面の粗さを 50nm未満に低減できる。 In the present invention, the flow rate of the oxygen gas is set to 0.5 times or more of the flow rate of the second gas. By doing so, the roughness of the tapered surface can be reduced to less than 50 nm.
[0015] 本発明に係るシリコンエッチング方法は、前記第 2ガスの流量に対する前記酸素ガ スの流量の比を 2以上とすることを特徴とする。 [0015] The silicon etching method according to the present invention is characterized in that the ratio of the flow rate of the oxygen gas to the flow rate of the second gas is 2 or more.
[0016] 本発明に係るシリコンエッチング装置は、前記第 2ガスの前記反応器内への導入量 及び前記酸素ガスの前記反応器内への導入量を制御する制御手段を備え、該制御 手段は前記第 2ガスの導入量に対する前記酸素ガスの導入量の比を 2以上とするよ うにしたことを特徴とする。 [0016] The silicon etching apparatus according to the present invention includes control means for controlling an amount of the second gas introduced into the reactor and an amount of the oxygen gas introduced into the reactor. The ratio of the introduction amount of the oxygen gas to the introduction amount of the second gas is set to 2 or more.
[0017] 本発明にあっては、酸素ガスの流量を第 2ガスの流量の 2倍以上とする。このように することにより、シリコン材とエッチングマスクとの界面にオーバーハング形状が発生 しない。 [0017] In the present invention, the flow rate of the oxygen gas is at least twice the flow rate of the second gas. By doing so, an overhang shape does not occur at the interface between the silicon material and the etching mask.
[0018] 本発明に係るシリコンエッチング方法は、エッチング後のシリコン材のエッチングマ スクに接する面積力 エッチングマスクの面積より狭レ、ことを特徴とする。  [0018] The silicon etching method according to the present invention is characterized in that the area force in contact with the etching mask of the silicon material after etching is smaller than the area of the etching mask.
[0019] 本発明にあっては、堆積用の第 2ガスの重合体を酸素ガスのプラズマにて破壊して テーパ形状を作成する。よって、第 2ガスの重合体が酸素プラズマにて破壊されて、 エッチング後のシリコン材のエッチングマスクに接する面積力 エッチングマスクの面 積より狭くなる。  In the present invention, the polymer of the second gas for deposition is destroyed by plasma of oxygen gas to form a tapered shape. Therefore, the polymer of the second gas is destroyed by the oxygen plasma, and the area of the etched silicon material becomes smaller than the area of the etching mask in contact with the etching mask.
[0020] 本発明に係るエッチングシリコン体は、シリコン材をテーパ状にプラズマエッチング して作製されるエッチングシリコン体において、テーパ角度が 55° 以上 85° 以下で あり、テーパ表面の粗さが 50nm未満であることを特徴とする。  [0020] The etched silicon body according to the present invention has a taper angle of 55 ° or more and 85 ° or less and a tapered surface roughness of less than 50 nm in an etched silicon body manufactured by plasma-etching a silicon material in a tapered shape. It is characterized by being.
[0021] 本発明にあっては、テーパ角度が 55° 以上 85° 以下であって、テーパ表面の粗 さが 50nm未満であるエッチングシリコン体を提供する。このようなエッチングシリコン 体は、液体の微小な流路、微細な光ファイバの載置台などの部材として利用できる。 発明の効果  According to the present invention, there is provided an etched silicon body having a taper angle of 55 ° or more and 85 ° or less and a tapered surface having a roughness of less than 50 nm. Such an etched silicon body can be used as a member such as a fine flow path of a liquid or a mounting table for a fine optical fiber. The invention's effect
[0022] 本発明では、シリコン材をプラズマエッチングする際のプロセスガスとして、エツチン グ用の第 1ガスと堆積用のフッ化炭素系の第 2ガスと酸素ガスとの混合ガスを使用す るようにしたので、表面粗さが小さいテーパ形状を容易に形成することができる。 [0023] また、本発明では、加える酸素ガス及び/または堆積用の第 2ガスの流量を調整し て、テーパ角度を制御するようにしたので、所望のテーパ角度を容易に実現すること ができる。 In the present invention, a mixed gas of a first gas for etching, a second gas of a fluorocarbon-based gas for deposition, and an oxygen gas is used as a process gas when plasma etching a silicon material. Therefore, a tapered shape having a small surface roughness can be easily formed. Further, in the present invention, since the taper angle is controlled by adjusting the flow rate of the added oxygen gas and / or the second gas for deposition, a desired taper angle can be easily realized. .
[0024] また、本発明では、第 2ガスの流量に対する酸素ガスの流量の比を 0. 5倍以上とす るようにしたので、テーパ表面の粗さを 50nm未満に低減することができる。  In the present invention, the ratio of the flow rate of the oxygen gas to the flow rate of the second gas is set to 0.5 times or more, so that the roughness of the tapered surface can be reduced to less than 50 nm.
[0025] また、本発明では、第 2ガスの流量に対する酸素ガスの流量の比を 2倍以上とする ようにしたので、シリコン材とエッチングマスクとの界面におけるオーバーハング形状 の発生を防止できる。  In the present invention, since the ratio of the flow rate of the oxygen gas to the flow rate of the second gas is set to be twice or more, it is possible to prevent an overhang shape at the interface between the silicon material and the etching mask.
[0026] 更に、本発明では、テーパ角度が 55° 以上 85° 以下であって、テーパ表面の粗 さが 50nm未満であるエッチングシリコン体を提供できるため、液体の微小な流路、 微細な光ファイバの載置台などの部材として利用することができる。  Further, according to the present invention, an etched silicon body having a taper angle of 55 ° or more and 85 ° or less and a taper surface roughness of less than 50 nm can be provided. It can be used as a member such as a fiber mounting table.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
[0027] [図 1]オーバーハング形状が形成される状態を示す図である。  FIG. 1 is a diagram showing a state in which an overhang shape is formed.
[図 2]本発明に係るシリコンエッチング方法を実施するためのプラズマエッチング装置 の一例の構成図である。  FIG. 2 is a configuration diagram of an example of a plasma etching apparatus for performing a silicon etching method according to the present invention.
[図 3]シリコンエッチングの工程を示す図である。  FIG. 3 is a view showing a step of silicon etching.
[図 4]本発明に係るシリコンエッチング方法を実施するためのプラズマエッチング装置 の他の例の構成図である。  FIG. 4 is a configuration diagram of another example of a plasma etching apparatus for performing the silicon etching method according to the present invention.
[図 5]本発明で作製されるエッチングシリコン体の一例を示す図である。  FIG. 5 is a view showing one example of an etched silicon body produced by the present invention.
符号の説明  Explanation of reference numerals
[0028] 1 反応器 [0028] 1 reactor
2a プラズマ発生室  2a Plasma generation chamber
2b 反応室  2b Reaction chamber
3 コイル  3 coils
4 ガス導入管  4 Gas inlet pipe
6 プラテン  6 Platen
8, 10 高周波電源  8, 10 High frequency power supply
11 基板電極 14a, 14b, 14c ガス管 11 Substrate electrode 14a, 14b, 14c Gas pipe
15a, 15b, 15c マスフローコントローラ(MFC)  15a, 15b, 15c Mass flow controller (MFC)
20 試料  20 samples
21 シリコン材  21 Silicon material
22 エッチングマスク  22 Etching mask
30 エッチングシリコン体  30 etched silicon body
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。  Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments.
図 2は、本発明に係るシリコンエッチング方法を実施するためのプラズマエッチング 装置の一例の構成図である。図 2に示すプラズマエッチング装置は、プラズマ発生と プラズマ引き込みとを独立的に制御する誘導結合型プラズマ装置 (ICP (Inductively し oupled Plasma)装]^)である。  FIG. 2 is a configuration diagram of an example of a plasma etching apparatus for performing the silicon etching method according to the present invention. The plasma etching apparatus shown in FIG. 2 is an inductively coupled plasma (ICP) apparatus that independently controls plasma generation and plasma attraction.
[0030] 図 2において、 1は反応器であり、反応器 1は、コイル 3への通電によってプラズマを 発生させる上方側のプラズマ発生室 2aと、発生されたプラズマを引き込んで試料 20 に対してプラズマエッチングを行う下方側の反応室 2bとを有する。  In FIG. 2, reference numeral 1 denotes a reactor, and the reactor 1 includes an upper plasma generation chamber 2 a for generating plasma by energizing the coil 3, and a plasma 20 drawn into the sample 20. And a lower reaction chamber 2b for performing plasma etching.
[0031] プラズマ発生室 2aは、セラミック製の中空円筒の形状を有しており、その周面には 同心状にコイル 3が囲繞されている。コィノレ 3には、マッチング回路 7を介して高周波 電源 8が接続されている。また、プラズマ発生室 2aの上部壁中央には、反応器 1内へ プロセスガスを導入するガス導入管 4が、貫通する態様で連結されている。そして、コ ィル 3への交流電圧の印加によって、プラズマ発生室 2a内にてプロセスガスのプラズ マを発生させるようになってレヽる。  [0031] The plasma generation chamber 2a has the shape of a hollow cylinder made of ceramic, and a coil 3 is concentrically surrounded on the peripheral surface. A high frequency power supply 8 is connected to the coil 3 via a matching circuit 7. Further, a gas introduction pipe 4 for introducing a process gas into the reactor 1 is connected to the center of the upper wall of the plasma generation chamber 2a so as to penetrate therethrough. Then, by applying an AC voltage to the coil 3, plasma of the process gas is generated in the plasma generation chamber 2a.
[0032] ガス導入管 4は、 3本のガス管 14a, 14b, 14cに分枝されており、各ガス管 14a, 1 4b, 14cは SF ガス源, C F ガス源, O ガス源(何れも図示せず)に接続されている [0032] The gas introduction pipe 4 is branched into three gas pipes 14a, 14b, and 14c, and each of the gas pipes 14a, 14b, and 14c has an SF gas source, a CF gas source, and an O gas source (all of them). (Not shown)
。これにより、エッチング用の第 1ガスとしての SFガスと、堆積用のフッ化炭素系の第. As a result, SF gas as the first gas for etching and fluorocarbon-based second gas for deposition
2ガスとしての C Fガスと、〇 ガスとの混合ガスがプロセスガスとして反応器 1内へ導 入されるようになっている。各ガス管 14a, 14b, 14cの中途には各ガスの流量を制御 するマスフローコントローラ(MFC) 15a, 15b, 15cが設けられている。これらのマス フローコントローラ 15a, 15b, 15c夫々は、制御部 16からの制御信号に基づいて、 対応する各ガスの流量を制御する。 A mixed gas of the CF gas as the two gases and the NO gas is introduced into the reactor 1 as the process gas. In the middle of each gas pipe 14a, 14b, 14c, a mass flow controller (MFC) 15a, 15b, 15c for controlling the flow rate of each gas is provided. Each of these mass flow controllers 15a, 15b, 15c, based on a control signal from the control unit 16, Control the flow rate of each corresponding gas.
[0033] 反応室 2bの側部壁には、図示しない排気装置を接続した排気口 5が開口されてい る。反応室 2bの底部には、エッチング対象の試料 20を載置する基板電極 11を有す るプラテン 6が配設されている。プラテン 6には、マッチング回路 9を介して高周波電 源 10が夫々接続されている。そして、基板電極 11への交流電圧の印加によって、プ ラズマ発生室 2a内で発生されたプラズマが反応室 2b内に引き込まれ、その引き込ま れたプラズマにより試料 20がエッチングされるようになっている。  An exhaust port 5 to which an exhaust device (not shown) is connected is opened in a side wall of the reaction chamber 2b. At the bottom of the reaction chamber 2b, a platen 6 having a substrate electrode 11 on which a sample 20 to be etched is placed is arranged. A high frequency power supply 10 is connected to the platen 6 via a matching circuit 9. Then, by applying an AC voltage to the substrate electrode 11, the plasma generated in the plasma generation chamber 2a is drawn into the reaction chamber 2b, and the sample 20 is etched by the drawn plasma. .
[0034] 次に、このような構成のプラズマエッチング装置を用いた本発明によるシリコンエツ チングについて説明する。図 3は、シリコンエッチングの工程を示す図である。  Next, the silicon etching according to the present invention using the plasma etching apparatus having such a configuration will be described. FIG. 3 is a diagram showing a silicon etching process.
[0035] まず、図 3 (a)に示すような試料 20を準備する。シリコン材 21上にマスク材となるフ オトレジストを塗布し、露光処理によってエッチングマスク 22をエッチング対象以外の 領域にパターン形成する。シリコン材 21にエッチングマスク 22を形成した試料 20を プラテン 6に載置する。  First, a sample 20 as shown in FIG. 3A is prepared. A photoresist serving as a mask material is applied on the silicon material 21 and an exposure mask is used to form an etching mask 22 in a pattern other than the region to be etched. A sample 20 having an etching mask 22 formed on a silicon material 21 is placed on a platen 6.
[0036] 排気口 5を介して排気装置(図示せず)により反応器 1内を減圧し、ガス導入管 4か らプロセスガス(SF , C F及び O の混合ガス)をプラズマ発生室 2a内に導入する。 この際、マスフローコントローラ 15a, 15b, 15cにより、 SF ガス, C F ガス, 〇 ガス の流量を夫々制御する。混合ガスの圧力は、 4· OPa程度である。なお、本発明では 、 O ガスの流量を C F ガスの流量の 0. 5倍以上、より好ましくは 2倍以上とする。こ れは、〇 ガスの流量を C Fガスの流量の 0. 5倍以上とすることにより、テーパ表面 の粗さを 50nm未満に低減でき、また、 O ガスの流量を C Fガスの流量の 2倍以上 とすることにより、更にシリコン材とエッチングマスクとの界面にオーバーハング形状が 発生しなレ、ようにできるからである。  The inside of the reactor 1 is depressurized by an exhaust device (not shown) through the exhaust port 5, and a process gas (a mixed gas of SF, CF and O) is introduced into the plasma generation chamber 2 a from the gas introduction pipe 4. Introduce. At this time, the mass flow controllers 15a, 15b and 15c control the flow rates of SF gas, CF gas and 〇 gas, respectively. The pressure of the mixed gas is about 4 · OPa. In the present invention, the flow rate of the O gas is set to 0.5 times or more, more preferably, 2 times or more of the flow rate of the CF gas. This is because the roughness of the tapered surface can be reduced to less than 50 nm by setting the flow rate of the gas to 0.5 times or more of the flow rate of the CF gas, and the flow rate of the O gas can be reduced to twice the flow rate of the CF gas. By doing so, it is possible to prevent the overhang shape from occurring at the interface between the silicon material and the etching mask.
[0037] そして、コイル 3にマッチング回路 7を介して高周波電源 8から交流電圧(印加電力: 1700W程度)を印加し、プラズマ発生室 2a内にてプロセスガスのプラズマを発生さ せ、同時に基板電極 11にマッチング回路 9を介して高周波電源 10から交流電圧(印 加電力: 50W程度)を印加して、発生させたそのプラズマを反応室 2b内に引き込み、 その引き込んだプラズマにより、エッチング対象以外の領域にエッチングマスク 22を 形成した試料 20のシリコン材 21をエッチングする。この際、シリコン材 21における被 エッチング領域の厚さは、例えば 5 μ m—数百 μ mである。 Then, an AC voltage (applied power: about 1700 W) is applied to the coil 3 from the high-frequency power supply 8 via the matching circuit 7 to generate plasma of the process gas in the plasma generation chamber 2a, and at the same time, the substrate electrode An AC voltage (applied power: about 50 W) is applied from a high-frequency power supply 10 to a power supply 11 through a matching circuit 9, and the generated plasma is drawn into the reaction chamber 2 b. The silicon material 21 of the sample 20 having the etching mask 22 formed in the region is etched. At this time, the silicon material 21 The thickness of the etched region is, for example, 5 μm to several hundred μm.
[0038] このようなエッチングにより、図 2 (b)に示すように、テーパ角度 Θを有するエツチン グシリコン体 30を作製できる。また、作製されるエッチングシリコン体 30では、シリコン 材 21とエッチングマスク 22との界面にオーバーハング形状が見られず、全体に平滑 なテーパ面が得られている。本発明では、 O プラズマが C F重合体を破壊するよう に作用するため、エッチングシリコン体 30の上面(エッチングマスク 22に接する側の 面)の面積はエッチングマスク 22の面積よりも狭くなる。これに対して、特許文献 1の エッチング手法では、エッチングシリコン体の上面(エッチングマスクに接する側の面 )の面積はエッチングマスクの面積よりも広くなる。 [0038] By such etching, an etching silicon body 30 having a taper angle Θ can be manufactured as shown in FIG. 2 (b). Further, in the manufactured etched silicon body 30, no overhang shape is observed at the interface between the silicon material 21 and the etching mask 22, and a smooth tapered surface is obtained as a whole. In the present invention, since the O plasma acts to destroy the CF polymer, the area of the upper surface of the etched silicon body 30 (the surface in contact with the etching mask 22) is smaller than the area of the etching mask 22. On the other hand, in the etching method of Patent Document 1, the area of the upper surface of the etched silicon body (the surface in contact with the etching mask) is larger than the area of the etching mask.
[0039] 以下、 SF ガスの流量は一定として、具体的に C F ガス, O ガスの流量を制御し てシリコン材 21のエッチングを行った本発明の実施例及び比較例につレ、て説明する [0040] (比較例 1) Hereinafter, specific examples of the present invention in which the silicon material 21 is etched by controlling the flow rates of the CF gas and the O gas while keeping the flow rate of the SF gas constant will be described. (Comparative Example 1)
プロセスガスとして、 SF = 70sccm、 C F = 200sccm、 O = 0sccmの混合ガス を用いてエッチングを行った場合、テーパ角度 θ = 90° 、テーパ表面の粗さが 10η m未満であるエッチングシリコン体 30が作製された。つまり、垂直な側壁を有するエツ チングシリコン体 30が作製された。 When etching is performed using a mixed gas of SF = 70 sccm, CF = 200 sccm, and O = 0 sccm as a process gas, an etched silicon body 30 having a taper angle θ = 90 ° and a tapered surface roughness of less than 10ηm is obtained. Was made. That is, an etching silicon body 30 having vertical side walls was manufactured.
[0041] (実施例 1) (Example 1)
プロセスガスとして、 SF = 70sccm、 C F = 200sccm、 O = 100sccmの混合ガ ス(O 流量/ C F流量 = 0. 5)を用いてエッチングを行った場合、テーパ角度 Θ = When etching is performed using a mixed gas of SF = 70 sccm, CF = 200 sccm, and O = 100 sccm (O flow rate / CF flow rate = 0.5) as the process gas, the taper angle Θ =
85° 、テーパ表面の粗さが 50nm未満であるエッチングシリコン体 30が作製された。 但し、シリコン材 21とエッチングマスク 22との界面にオーバーハング形状が見られた An etched silicon body 30 having an angle of 85 ° and a roughness of the tapered surface of less than 50 nm was produced. However, an overhang shape was observed at the interface between the silicon material 21 and the etching mask 22.
[0042] (実施例 2) (Example 2)
プロセスガスとして、 SF = 70sccm、 C F = 200sccm、 O = 500sccmの混合ガ ス(O 流量/ C F流量 = 2. 5)を用いてエッチングを行った場合、テーパ角度 Θ = When etching is performed using a mixed gas of SF = 70 sccm, CF = 200 sccm, and O = 500 sccm (O flow rate / CF flow rate = 2.5) as the process gas, the taper angle Θ =
65° 、テーパ表面の粗さが 10nm未満であるエッチングシリコン体 30が作製された。 シリコン材 21とエッチングマスク 22との界面にオーバーハング形状が見られなかった [0043] (実施例 3) An etched silicon body 30 having 65 ° and a tapered surface roughness of less than 10 nm was produced. No overhang shape was seen at the interface between silicon material 21 and etching mask 22 (Example 3)
プロセスガスとして、 SF = 70sccm、C F = 250sccm、 O = 500sccmの混合ガ ス(O 流量/ C F流量 = 2)を用いてエッチングを行った場合、テーパ角度 Θ = 75 When etching is performed using a mixed gas (O flow rate / CF flow rate = 2) of SF = 70 sccm, CF = 250 sccm, and O = 500 sccm as the process gas, the taper angle Θ = 75
° 、テーパ表面の粗さが 20nm未満であるエッチングシリコン体 30が作製された。シ リコン材 21とエッチングマスク 22との界面にオーバーハング形状が見られなかった。 At this point, an etched silicon body 30 having a tapered surface roughness of less than 20 nm was produced. No overhang shape was observed at the interface between the silicon material 21 and the etching mask 22.
[0044] (実施例 4) (Example 4)
プロセスガスとして、 SF = 70sccm、C F = 350sccm、 O = 500sccmの混合ガ ス(O 流量/ C F流量 = 1. 4)を用いてエッチングを行った場合、テーパ角度 Θ = When etching is performed using a mixed gas of SF = 70 sccm, CF = 350 sccm, and O = 500 sccm (O flow rate / CF flow rate = 1.4) as the process gas, the taper angle Θ =
85° 、テーパ表面の粗さが 10nm未満であるエッチングシリコン体 30が作製された。 但し、シリコン材 21とエッチングマスク 22との界面にオーバーハング形状が見られた An etched silicon body 30 having an angle of 85 ° and a roughness of the tapered surface of less than 10 nm was produced. However, an overhang shape was observed at the interface between the silicon material 21 and the etching mask 22.
[0045] なお、上記比較例及び実施例 1一 4において、 O の流量の大小によるエッチングレ ートの変動はほとんどなかった。 In the comparative example and the examples 14 to 14, there was almost no change in the etching rate due to the flow rate of O 2.
[0046] 比較例及び実施例 1 , 2の結果から、〇 ガスの流量を調整することにより、テーパ角 度 Θを制御できることが分かる。具体的には、 O ガスの流量を Osccmから 500sccm まで変化させることによって、テーパ角度を 85° 力 65° まで変えることができる。よ つて、 Oガスの流量を調整して、所望のテーパ角度を実現することができる。  From the results of the comparative example and Examples 1 and 2, it can be seen that the taper angle Θ can be controlled by adjusting the flow rate of the gas. Specifically, by changing the flow rate of O gas from Osccm to 500sccm, the taper angle can be changed from 85 ° to 65 °. Therefore, a desired taper angle can be realized by adjusting the flow rate of the O gas.
[0047] 実施例 2— 4の結果から、 C F ガスの流量を調整することにより、テーパ角度 Θを 制御できること力分力る。具体的には、〇 ガスの流量を一定の 500sccmとして C F ガスの流量を 200sccmから 350sccmまで変化させることによって、テーパ角度を 65 。 力、ら 85° まで変えること力できる。よって、所定量の〇 ガスを加えた状態で C F ガスの流量を調整することにより、所望のテーパ角度を実現することができる。  [0047] From the results of Examples 2-4, it is possible to control the taper angle Θ by adjusting the flow rate of the CF gas. Specifically, the taper angle is set to 65 by changing the flow rate of the CF gas from 200 sccm to 350 sccm while setting the flow rate of the gas to a constant 500 sccm. Power, can power up to 85 °. Therefore, a desired taper angle can be realized by adjusting the flow rate of the CF gas while adding a predetermined amount of the negative gas.
[0048] また、実施例 1一 4の結果から、 C F ガスの流量に対する O ガスの流量の比を 0. Further, from the results of Examples 14 to 14, the ratio of the flow rate of the O gas to the flow rate of the C F gas was set to 0.3.
5以上とすることにより、テーパ表面の粗さを 50nm未満に制御できることが分かる。ま た、上記流量の比を更に大きくした実施例 2— 4にあっては、テーパ表面の粗さを 20 nm未満に低減できている。よって、 O 流量/ C F流量の比を 0. 5以上としておけ ば、テーパ角度を自由に制御してもテーパ表面を常に平滑にすることができる。 [0049] また、実施例 1一 4の結果から、 C Fガスの流量に対する Oガスの流量の比を 2以 It can be seen that the roughness of the tapered surface can be controlled to less than 50 nm by setting it to 5 or more. Further, in Examples 2-4 in which the flow rate ratio was further increased, the roughness of the tapered surface could be reduced to less than 20 nm. Therefore, if the ratio of O flow rate / CF flow rate is set to 0.5 or more, the taper surface can be constantly smoothed even if the taper angle is freely controlled. [0049] Further, from the results of Examples 1-4, the ratio of the flow rate of the O gas to the flow rate of the CF gas was set to 2 or less.
4 8 2  4 8 2
上とすることにより、オーバーハング形状の発生を防止できることが分かる。更なる実 験の結果、コィノレ 3への印カロ電圧を 1200Wとし、プロセスガスとして、 SF = 20sccm  It can be seen that the above setting can prevent the occurrence of the overhang shape. As a result of further experiments, the applied calo voltage to Coinole 3 was set to 1200 W, and SF = 20 sccm as process gas.
6 6
、C F =40sccm、O = 90sccmの混合ガス(O 流量/ C F流量 = 2. 3)を用い, C F = 40sccm, O = 90sccm using a mixed gas (O flow rate / CF flow rate = 2.3)
4 8 2 2 4 8 4 8 2 2 4 8
てエッチングを行った場合、オーバーハング形状が見られないテーパ角度 θ = 65° 、テーパ表面の粗さ 20nm未満のエッチングシリコン体 30が作製された。一方、〇 流 When etching was performed, an etched silicon body 30 having a taper angle θ = 65 ° where no overhang shape was observed and a tapered surface roughness of less than 20 nm was produced. On the other hand,
2 量/ C F流量 = 0. 5の場合、及び、 O 流量 ZC F流量 = 1. 5の場合には何れも 2 volume / CF flow = 0.5, and O flow ZCF flow = 1.5
4 8 2 4 8 4 8 2 4 8
オーバーハング形状が見られるエッチングシリコン体 30が作製された。よって、 O 流  An etched silicon body 30 having an overhang shape was produced. Therefore, O flow
2 量/ C F流量の比を 2以上とすることにより、オーバーハング形状が見られない良 By setting the ratio of 2 flow / CF flow to 2 or more, no overhang shape is observed.
4 8 4 8
好な直線性のテーパ面を形成することができる。  A favorable linear tapered surface can be formed.
[0050] 以上のことから、本発明では、テーパ角度の制御を容易に行えて所望のテーパ角 度をなすと共に、その表面の粗さが小さくて平滑であってオーバーハングが見られな レ、ようなテーパ形状を有するエッチングシリコン体を作製できる。具体的には、テーパ 角度が 65° 以上 85° 以下であり、テーパ表面の粗さが 50nm未満であるようなォー バーハングハング形状がないエッチングシリコン体を作製できる。また、〇 ガスの流 [0050] From the above, in the present invention, the taper angle can be easily controlled to achieve a desired taper angle, and the surface of the present invention is small and smooth, and no overhang is observed. An etched silicon body having such a tapered shape can be manufactured. Specifically, an etched silicon body having a taper angle of not less than 65 ° and not more than 85 ° and having no overhang hang shape such that the roughness of the tapered surface is less than 50 nm can be produced. Also, the gas flow
2 量を多くすることにより、テーパ表面の粗さを 10nm未満に低減することも可能である  2 Increasing the amount can also reduce the roughness of the tapered surface to less than 10 nm
[0051] 図 4は、本発明に係るシリコンエッチング方法を実施するためのプラズマエッチング 装置の他の例の構成図である。図 4に示すプラズマエッチング装置は、プラズマ発生 とエッチング処理とを一つの室内(反応器 1内)で行うプラズマ装置である。図 4にお いて、図 2と同様または同一の部分には同一の符号を付している。 FIG. 4 is a configuration diagram of another example of a plasma etching apparatus for performing the silicon etching method according to the present invention. The plasma etching apparatus shown in FIG. 4 is a plasma apparatus that performs plasma generation and etching processing in one room (in the reactor 1). In FIG. 4, the same or similar parts as in FIG. 2 are denoted by the same reference numerals.
[0052] 反応器 1は、セラミック製の中空円筒の形状を有しており、その周面には同心状に コイル 3が囲繞されている。コィノレ 3には、マッチング回路 7を介して高周波電源 8が 接続されている。また、反応器 1の上部壁中央には、反応器 1内へプロセスガスを導 入するガス導入管 4が、貫通する態様で連結されている。そして、コイル 3への交流電 圧の印加によって、反応器 1内にてプロセスガスのプラズマが発生される。  [0052] The reactor 1 has the shape of a hollow cylinder made of ceramic, and the coil 3 is concentrically surrounded on the peripheral surface. A high frequency power supply 8 is connected to the coil 3 via a matching circuit 7. A gas introduction pipe 4 for introducing a process gas into the reactor 1 is connected to the center of the upper wall of the reactor 1 so as to penetrate therethrough. Then, a plasma of the process gas is generated in the reactor 1 by applying an AC voltage to the coil 3.
[0053] ガス導入管 4は、 3本のガス管 14a, 14b, 14cに分枝されており、各ガス管 14a, 1 4b, 14cは SF ガス源, C F ガス源, O ガス源(何れも図示せず)に接続されている 。これにより、エッチング用の第 1ガスとしての SFガスと、堆積用のフッ化炭素系の第[0053] The gas introduction pipe 4 is branched into three gas pipes 14a, 14b, and 14c, and each of the gas pipes 14a, 14b, and 14c has an SF gas source, a CF gas source, and an O gas source (all of them). (Not shown) . As a result, SF gas as the first gas for etching and fluorocarbon-based second gas for deposition
2ガスとしての C Fガスと、〇 ガスとの混合ガスがプロセスガスとして反応器 1内へ導 入されるようになっている。各ガス管 14a, 14b, 14cの中途には各ガスの流量を制御 するマスフローコントローラ(MFC) 15a, 15b, 15cが設けられている。これらのマス フローコントローラ 15a, 15b, 15c夫々は、制御部 16からの制御信号に基づいて、 対応する各ガスの流量を制御する。 A mixed gas of the CF gas as the two gases and the NO gas is introduced into the reactor 1 as the process gas. In the middle of each gas pipe 14a, 14b, 14c, a mass flow controller (MFC) 15a, 15b, 15c for controlling the flow rate of each gas is provided. Each of these mass flow controllers 15a, 15b, 15c controls the flow rate of each corresponding gas based on a control signal from the control unit 16.
[0054] 反応器 1の側部壁には、図示しない排気装置を接続した排気口 5が開口されている 。反応器 1の底部には、エッチング対象の試料 20を載置する基板電極 11を有するプ ラテン 6が配設されている。プラテン 6には、マッチング回路 9を介して高周波電源 10 が夫々接続されている。そして、基板電極 11への交流電圧の印加によって、反応器 1内で発生されたプラズマが下方に引き込まれ、その引き込まれたプラズマにより試 料 20がエッチングされるようになっている。  An exhaust port 5 to which an exhaust device (not shown) is connected is opened in a side wall of the reactor 1. At the bottom of the reactor 1, a platen 6 having a substrate electrode 11 on which a sample 20 to be etched is placed is arranged. The platen 6 is connected to a high-frequency power supply 10 via a matching circuit 9. Then, by the application of the AC voltage to the substrate electrode 11, the plasma generated in the reactor 1 is drawn downward, and the sample 20 is etched by the drawn plasma.
[0055] このような構成のプラズマ装置を用いてシリコンエッチングを行った一例について説 明する。排気口 5を介して排気装置(図示せず)により反応器 1内を減圧し、ガス導入 管 4からプロセスガス(SFガス:流量 50sccm, C Fガス:流量 40sccm及び〇 ガス An example in which silicon etching is performed using a plasma apparatus having such a configuration will be described. The inside of the reactor 1 is depressurized by an exhaust device (not shown) through an exhaust port 5, and process gas (SF gas: flow rate 50 sccm, CF gas: flow rate 40 sccm and 〇 gas) is supplied from the gas introduction pipe 4.
:流量 85sccmの混合ガス)を反応器 1内に導入する。そして、コイル 3にマッチング 回路 7を介して高周波電源 8から交流電圧(印加電力: 900W程度)を印加し、反応 器 1内にてプロセスガスのプラズマを発生させ、同時に基板電極 11にマッチング回 路 9を介して高周波電源 10から交流電圧(印加電力: 25W程度)を印加して、発生さ せたそのプラズマを下方に引き込み、その引き込んだプラズマにより、エッチング対 象以外の領域にエッチングマスク 22を形成した試料 20のシリコン材 21をエッチング した。この結果、テーパ角度 Θ = 55° 、テーパ表面の粗さが 20nm未満であってォ 一バーハング形状が見られないエッチングシリコン体 30が作製された。 : Mixed gas at a flow rate of 85 sccm) is introduced into the reactor 1. Then, an AC voltage (applied power: about 900 W) is applied to the coil 3 from the high-frequency power supply 8 through the matching circuit 7 to generate a plasma of the process gas in the reactor 1, and at the same time, the matching circuit to the substrate electrode 11. An AC voltage (applied power: about 25 W) is applied from a high-frequency power supply 10 via the power supply 9, the generated plasma is drawn downward, and the drawn-in plasma causes an etching mask 22 to be formed in a region other than the etching target. The silicon material 21 of the formed sample 20 was etched. As a result, an etched silicon body 30 having a taper angle Θ = 55 ° and a taper surface roughness of less than 20 nm and no overhang shape was observed.
[0056] 上述した例では、断面視で台形状をなすようにエッチングをする場合について説明 したが、 V溝状にエッチングを行う場合にも本発明を同様に適用できる。  In the example described above, the case where etching is performed so as to form a trapezoidal shape in a cross-sectional view has been described. However, the present invention can be similarly applied to the case where etching is performed in a V-groove shape.
[0057] また、 Oガスを加えることによって、テーパ形状にエッチング可能であるため、エツ チングの処理工程を 2段階とし、第 1段階ではエッチング用のガス (例えば SF )及び 堆積用のガス(例えば C F )のみの混合ガスを使用し、第 2段階ではエッチング用の ガス(例えば SF ) ,堆積用のガス(例えば C F )及び O ガスの混合ガスを使用する ことにより、図 5に示すように、下側部分 30aがテーパをなさず、上側部分 30bがテー パ面を持つようなエッチング形状を有するエッチングシリコン体 30を作製できる。 なお、上述した例では、エッチング用のガスとして SF 、堆積用のガスとして C F を 用いる場合について説明したが、本発明はこれに限定されるものではない。エツチン グ用のガスとしては、 SF 以外に SFなどの一般式 SFで示されるガスを使用できる[0057] In addition, since the etching can be performed into a tapered shape by adding O gas, the etching process is performed in two stages. In the first stage, an etching gas (for example, SF) and a deposition gas (for example, SF) are used. CF) only gas, and the second stage is used for etching. By using a gas mixture of gas (for example, SF), deposition gas (for example, CF) and O gas, the lower part 30a does not taper and the upper part 30b becomes tapered as shown in FIG. An etched silicon body 30 having an etched shape having the following shape can be manufactured. In the above-described example, the case where SF is used as the etching gas and CF is used as the deposition gas has been described, but the present invention is not limited to this. As a gas for etching, other than SF, a gas represented by a general formula SF such as SF can be used.
。また、堆積用のガスとしては、 C F 以外に C Fなどの一般式 C Fで示されるガス. In addition, as a deposition gas, in addition to C F, a gas represented by a general formula C F such as C F
、 CHF , CH Fなどの一般式 C H Fで示されるガスを使用できる。 , CHF, CHF and other gases represented by the general formula CHF can be used.

Claims

請求の範囲 The scope of the claims
エッチングマスクが形成されたエッチング対象のシリコン材を、プロセスガスを導入 した雰囲気に設置し、前記プロセスガスのプラズマにより前記シリコン材をテーパ状 にエッチングする方法において、前記プロセスガスとして、エッチング用の第 1ガスと 堆積用のフッ化炭素系の第 2ガスと酸素ガスとを混合させたものを用いることを特徴と
Figure imgf000015_0001
In a method in which a silicon material to be etched on which an etching mask is formed is placed in an atmosphere into which a process gas is introduced, and the silicon material is etched into a tapered shape by the plasma of the process gas, the process gas may be used as a second etching gas. It is characterized by using a mixture of 1 gas, a fluorocarbon-based second gas for deposition, and oxygen gas.
Figure imgf000015_0001
[2] 前記第 2ガス及び/または前記酸素ガスの流量を調整することにより、エッチング後 の前記シリコン材のテーパ角度を制御することを特徴とする請求項 1記載のシリコン エッチング方法。  2. The silicon etching method according to claim 1, wherein a taper angle of the silicon material after etching is controlled by adjusting a flow rate of the second gas and / or the oxygen gas.
[3] 前記第 2ガスの流量に対する前記酸素ガスの流量の比を 0. 5以上とすることを特徴 とする請求項 1または 2記載のシリコンエッチング方法。  3. The silicon etching method according to claim 1, wherein a ratio of a flow rate of the oxygen gas to a flow rate of the second gas is set to 0.5 or more.
[4] 前記第 2ガスの流量に対する前記酸素ガスの流量の比を 2以上とすることを特徴と する請求項 1または 2記載のシリコンエッチング方法。 4. The silicon etching method according to claim 1, wherein a ratio of a flow rate of the oxygen gas to a flow rate of the second gas is 2 or more.
[5] エッチング後の前記シリコン材の前記エッチングマスクに接する面積力 前記エツ チングマスクの面積より狭いことを特徴とする請求項 1乃至 4のいずれかに記載のシリ コンエッチング方法。 5. The silicon etching method according to claim 1, wherein an area force of the silicon material after the etching in contact with the etching mask is smaller than an area of the etching mask.
[6] エッチングマスクが形成されたエッチング対象のシリコン材を、プロセスガスを導入 した反応器内に設置し、前記プロセスガスのプラズマにより前記シリコン材をテーパ 状にエッチングする装置において、エッチング用の第 1ガスを前記反応器内へ導入 する第 1ガス導入手段と、堆積用のフッ化炭素系の第 2ガスを前記反応器内へ導入 する第 2ガス導入手段と、酸素ガスを前記反応器内へ導入する第 3ガス導入手段とを 備え、前記反応器内に導入された前記第 1ガス、前記第 2ガス及び前記酸素ガスの 混合ガスを前記プロセスガスとして用いるようにしたことを特徴とするシリコンエツチン グ装置。  [6] A silicon material to be etched on which an etching mask is formed is placed in a reactor into which a process gas has been introduced, and the silicon material is etched in a tapered shape by plasma of the process gas. (1) first gas introducing means for introducing a gas into the reactor, second gas introducing means for introducing a fluorocarbon-based second gas for deposition into the reactor, and oxygen gas in the reactor. And a third gas introducing means for introducing the mixed gas of the first gas, the second gas and the oxygen gas introduced into the reactor as the process gas. Silicon etching equipment.
[7] 前記第 2ガスの前記反応器内への導入量及び前記酸素ガスの前記反応器内への 導入量を制御する制御手段を備え、該制御手段は前記第 2ガスの導入量に対する 前記酸素ガスの導入量の比を 2以上とするようにしたことを特徴とする請求項 6記載 のシリコンエッチング装置。 シリコン材をテーパ状にプラズマエッチングして作製されるエッチングシリコン体に おいて、テーパ角度が 55° 以上 85° 以下であり、テーパ表面の粗さが 50nm未満 であることを特徴とするエッチングシリコン体。 [7] Control means for controlling the amount of the second gas introduced into the reactor and the amount of the oxygen gas introduced into the reactor, wherein the control means controls the amount of the second gas with respect to the amount of the second gas introduced 7. The silicon etching apparatus according to claim 6, wherein a ratio of an oxygen gas introduction amount is set to 2 or more. An etched silicon body manufactured by plasma etching a silicon material in a tapered shape, wherein the tapered angle is 55 ° or more and 85 ° or less and the roughness of the tapered surface is less than 50 nm. .
PCT/JP2004/008126 2003-06-13 2004-06-10 Method and apparatus for etching silicon and etched silicon body WO2004112119A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506920A JP4781106B2 (en) 2003-06-13 2004-06-10 Silicon etching method and apparatus, and etched silicon body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003168913 2003-06-13
JP2003-168913 2003-06-13

Publications (1)

Publication Number Publication Date
WO2004112119A1 true WO2004112119A1 (en) 2004-12-23

Family

ID=33549347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008126 WO2004112119A1 (en) 2003-06-13 2004-06-10 Method and apparatus for etching silicon and etched silicon body

Country Status (2)

Country Link
JP (2) JP4781106B2 (en)
WO (1) WO2004112119A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190845A (en) * 2005-01-06 2006-07-20 Sumitomo Precision Prod Co Ltd Silicon etching method and etching silicon object
JP2007027349A (en) * 2005-07-15 2007-02-01 Sumitomo Precision Prod Co Ltd Etching method and etching device
WO2010047308A1 (en) * 2008-10-20 2010-04-29 東京エレクトロン株式会社 Plasma etching method and plasma etching device
JP2013069848A (en) * 2011-09-22 2013-04-18 Spp Technologies Co Ltd Plasma etching method
CN105565257A (en) * 2014-10-13 2016-05-11 北京北方微电子基地设备工艺研究中心有限责任公司 Etching method for inclined hole
CN106276770A (en) * 2016-09-29 2017-01-04 苏州工业园区纳米产业技术研究院有限公司 Substrate, chip of micro-electro-mechanical system and preparation method for chip of micro-electro-mechanical system
CN110668393A (en) * 2018-07-02 2020-01-10 北京北方华创微电子装备有限公司 Method for etching substrate
WO2021205643A1 (en) * 2020-04-10 2021-10-14 コニカミノルタ株式会社 Method for manufacturing nozzle substrate
CN114590773A (en) * 2022-03-16 2022-06-07 胡玉龙 Manufacturing process of silicon-based nano microneedle array for transdermal drug delivery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102231996B1 (en) * 2019-08-05 2021-03-25 서울시립대학교 산학협력단 Etching apparatus for optical fiber, method of manufacturing etching apparatus for optical fiber and method of manufacturing long-period fiber grating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260424A (en) * 1989-03-30 1990-10-23 Matsushita Electric Ind Co Ltd Dry etching
JP2002093776A (en) * 2000-09-14 2002-03-29 Tokyo Electron Ltd HIGH SPEED ETCHING METHOD OF Si
JP2002531946A (en) * 1998-12-03 2002-09-24 アプライド マテリアルズ インコーポレイテッド Plasma etching of polycrystalline silicon using fluorinated gas mixtures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247033A (en) * 1985-04-24 1986-11-04 Toshiba Corp Taper etching method
JPH06196451A (en) * 1992-12-24 1994-07-15 Hitachi Ltd Dry etching method for amorphous silicon, and manufacture of thin film transistor using thereof
JP4127064B2 (en) * 2003-01-28 2008-07-30 富士電機デバイステクノロジー株式会社 Manufacturing method of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260424A (en) * 1989-03-30 1990-10-23 Matsushita Electric Ind Co Ltd Dry etching
JP2002531946A (en) * 1998-12-03 2002-09-24 アプライド マテリアルズ インコーポレイテッド Plasma etching of polycrystalline silicon using fluorinated gas mixtures
JP2002093776A (en) * 2000-09-14 2002-03-29 Tokyo Electron Ltd HIGH SPEED ETCHING METHOD OF Si

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190845A (en) * 2005-01-06 2006-07-20 Sumitomo Precision Prod Co Ltd Silicon etching method and etching silicon object
JP2007027349A (en) * 2005-07-15 2007-02-01 Sumitomo Precision Prod Co Ltd Etching method and etching device
JP4512529B2 (en) * 2005-07-15 2010-07-28 住友精密工業株式会社 Etching method and etching apparatus
WO2010047308A1 (en) * 2008-10-20 2010-04-29 東京エレクトロン株式会社 Plasma etching method and plasma etching device
JP2013069848A (en) * 2011-09-22 2013-04-18 Spp Technologies Co Ltd Plasma etching method
CN105565257A (en) * 2014-10-13 2016-05-11 北京北方微电子基地设备工艺研究中心有限责任公司 Etching method for inclined hole
CN106276770A (en) * 2016-09-29 2017-01-04 苏州工业园区纳米产业技术研究院有限公司 Substrate, chip of micro-electro-mechanical system and preparation method for chip of micro-electro-mechanical system
CN110668393A (en) * 2018-07-02 2020-01-10 北京北方华创微电子装备有限公司 Method for etching substrate
CN110668393B (en) * 2018-07-02 2023-01-17 北京北方华创微电子装备有限公司 Method for etching substrate
WO2021205643A1 (en) * 2020-04-10 2021-10-14 コニカミノルタ株式会社 Method for manufacturing nozzle substrate
JP7480839B2 (en) 2020-04-10 2024-05-10 コニカミノルタ株式会社 Manufacturing method of nozzle substrate
CN114590773A (en) * 2022-03-16 2022-06-07 胡玉龙 Manufacturing process of silicon-based nano microneedle array for transdermal drug delivery

Also Published As

Publication number Publication date
JPWO2004112119A1 (en) 2006-07-20
JP2011187988A (en) 2011-09-22
JP5256325B2 (en) 2013-08-07
JP4781106B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP5256325B2 (en) Silicon etching method and apparatus, and etched silicon body
CN101606232B (en) Pulsed ultra-high aspect ratio dielectric etch
CN100514570C (en) Plasma etching method
US8790489B2 (en) Substrate processing apparatus and substrate processing method
TWI559393B (en) Etch process for 3d flash structures
KR100590370B1 (en) Plasma etching method
CN108231578B (en) Method for smoothing surfaces
US20100105208A1 (en) Silicon etch with passivation using chemical vapor deposition
KR100702723B1 (en) Dry-etching method
TWI550707B (en) The processing method of the object to be processed, and the computer-readable memory medium
CN101461072B (en) Methods for minimizing mask undercuts and notches for plasma processing system
CN101523567A (en) De-fluoridation process
JP5623323B2 (en) Substrate plasma processing method
TW200847270A (en) Plasma etching method, plasma etching device, control program and computer storage medium
CN112908843A (en) Method of plasma etching features, substrate formed thereby and apparatus for plasma etching
CN101882580B (en) Strip with reduced low-K dielectric damage
CN102723270A (en) Method for flattening surface of flexible material layer
CN102129983B (en) Etching method and etching apparatus
JP2002110650A (en) Plasma etching method and plasma etching apparatus
JP2002158214A (en) Silicon anisotropically etching method and apparatus thereof
KR100867174B1 (en) Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, control program and computer storage medium
JP2006190845A (en) Silicon etching method and etching silicon object
CN110668393B (en) Method for etching substrate
CN111916349A (en) Silicon etching method
CN105720003B (en) Deep silicon hole lithographic method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506920

Country of ref document: JP

122 Ep: pct application non-entry in european phase