WO2004105062A1 - ボンド磁石の製造方法 - Google Patents

ボンド磁石の製造方法 Download PDF

Info

Publication number
WO2004105062A1
WO2004105062A1 PCT/JP2004/006013 JP2004006013W WO2004105062A1 WO 2004105062 A1 WO2004105062 A1 WO 2004105062A1 JP 2004006013 W JP2004006013 W JP 2004006013W WO 2004105062 A1 WO2004105062 A1 WO 2004105062A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
powder
compound
cavity
thermosetting resin
Prior art date
Application number
PCT/JP2004/006013
Other languages
English (en)
French (fr)
Inventor
Yoshinobu Honkura
Hironari Mitarai
Kenji Noguchi
Hiroshi Matsuoka
Original Assignee
Aichi Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corporation filed Critical Aichi Steel Corporation
Publication of WO2004105062A1 publication Critical patent/WO2004105062A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Definitions

  • Such permanent magnets include sintered magnets, but recently, bonded magnets that are excellent in moldability, physical properties, handleability, etc. are frequently used. Pond magnets are obtained by solidifying isotropic magnet powder or anisotropic magnet powder with resin or the like. When high magnetic properties are required, anisotropic magnet powder is often used.
  • Patent Documents 1 and 2 below disclose such a method for producing a bond magnet, for example.
  • Patent Document 1 discloses a single-stage molding method in which a compound composed of anisotropic magnet powder and a thermosetting resin is supplied, oriented, and compression-molded in the same molding die heated to 150 ° C. Is disclosed.
  • Patent Document 2 roughly divides the production method of Patent Document 1 into two parts, and performs powdering, orientation, and light compression molding in a first molding die heated to 150
  • a two-stage molding method is disclosed which comprises a preforming step of manufacturing a preform and a main molding step of strongly compressing and densifying the preformed body in a second molding die heated to 150 ° C. ing.
  • the compound is directly fed (weighed and filled) to the cavity of the molding die heated to 150 ° C.
  • the temperature of 150 ° C. is a temperature at which the thermosetting resin of the compound melts, as is clear from the above-mentioned patent document.
  • the thermosetting resin in the compound is at least partially softened or melted, and most of the compound adheres to the cavity wall of the molding die.
  • the filling passage of the compound becomes narrow, and it becomes difficult to sufficiently fill a predetermined amount of the compound into the cavity.
  • the weighing of the compound varies from product to product, and the filling of the compound becomes uneven even in one to three products.
  • Patent Document 3 since the magnetic field orientation and the pressure molding are performed at the same time during the secondary molding, the molding pressure is too high from the viewpoint of the magnetic field orientation, and the pressure molding is viewed from the viewpoint of the pressure molding. If molding pressure is low. As a result, the anisotropic magnetic powder is not sufficiently oriented, the density of the obtained secondary molded body is low, and the magnetic properties of the pound magnet after the hardening treatment are sufficient. It will be insufficient without being exhibited.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a bonded magnet capable of obtaining uniform and stable magnetic characteristics.
  • the present inventor has conducted intensive research to solve this problem, and as a result of repeated trial and error, first, when powdering the compound to the cavity, when the wall surface temperature of the cavity is set near room temperature, the compound is applied to the wall surface. Does not adhere, evenly fills the cavity
  • the present inventor has newly found that the present invention has been developed and completed the present invention.
  • a compound comprising anisotropic magnet powder and a thermosetting resin is weighed and filled into a cavity having a wall surface temperature lower than the softening point of the thermosetting resin. Applying an orientation magnetic field while heating the thermosetting resin to a softened or molten state by heating the weighed-filled compound or the powder compact of the compound to a temperature higher than the softening point.
  • a dense bonding step of forming a bonded magnet molded body tightly bonded by the method described above.
  • the compound in the weighing and filling step, the compound is weighed and filled into a cavity whose wall surface temperature is lower than the softening point of the thermosetting resin in the compound.
  • the thermosetting resin in the compound is not softened in the weighing and filling step, and the compound is prevented from adhering to the wall surface of the cavity.
  • the compound is smoothly filled into the cavity, the filling amount is stabilized, and the distribution of the compound in the cavity is almost uniform. Therefore, high-quality bonded magnets with excellent density and high density can be stably mass-produced with good yield without density and magnetic characteristics.
  • the deposition start temperature is the temperature at which the compound begins to deposit on the wall of the cavity. the above It can be said that the softening point is an index of the adhesion start temperature.
  • the attachment start temperature is not always uniformly determined depending on the type of the thermosetting resin, and cannot be said to be equal to the softening point. In order to specifically specify the deposition start temperature, a complicated test or the like may have to be actually performed. Therefore, in the present invention, in order to avoid such annoyance, the wall surface temperature is considered based on the above “softening point”.
  • the measurement position of the wall surface temperature of the cavity is not particularly limited. This is because the entire wall usually has a substantially uniform temperature. However, the temperature around the inlet opening (for example, the upper opening) of the cavity has a major effect on the filling of the compound into the cavity. Therefore, it is advisable to use the temperature near the inlet opening of the cavity as an index.
  • the above three processes are performed separately in dedicated molding machines. Preferably. Thereby, for example, it is not necessary to change the temperature of the mold for each process, and the life of the mold can be extended.
  • the operating rate of each molding machine is correspondingly improved, and mass production of bonded magnets can be performed in a short time.
  • each molding machine can be put into a running state, and mass productivity can be further improved. According to the present invention, even in such mass production, bonded magnets of stable quality having excellent magnetic properties and shape accuracy can be efficiently obtained with a high yield (with a low defect rate).
  • the minimum width of the cavity is determined in consideration of the direction in which the compound is filled. That is, the minimum width along the filling direction of the compound is preferably set to the minimum width (W).
  • W minimum width
  • the minimum width (W) may be measured along the moving direction (filling direction) of the powder box.
  • the molding die where the weighed and filled compound is subjected to the alignment step etc. It is necessary to transfer to In this case, there is no meaning in the same compound state as at the time of filling. Therefore, as in the case of general powder molding, the weighed compound is lightly compression-molded in a cavity into powder compacts (Darine compact, molded compacts, plank compacts), and so on. It is convenient.
  • the weighing and filling step is not limited to mere weighing of the compound and filling into the cavity, but also includes a powder molding step of compression-molding the compound filled in the cavity and forming the powder compact to be subjected to the orientation step. It is preferable to include it.
  • the degree of compaction of the powder compact may be such that the compressed compound does not collapse and can be handled.
  • the molding pressure may be, for example, about 70 to 294 MPa.
  • the transfer of the powder compact from the weighing and filling step to the orientation step may be performed manually or via a jig (a cassette or the like). Through a jig, the powder compact has good shape retention and is suitable for automation.
  • a transfer jig is not limited to the above case, and the same applies to the case where the preform is transferred from the orientation step to the close bonding step.
  • thermosetting resin In the orientation step according to the present invention, “softened state” and “molten state” are not strictly distinguished. In short, it is enough if the thermosetting resin is heated and its viscosity is reduced so that the anisotropic magnet powder can be rotated and moved.
  • the degree of orientation of the anisotropic magnet powder also depends on the strength of the applied orientation magnetic field. If the strength of the alignment magnetic field is applied in a state where the viscosity of the thermosetting resin is appropriately reduced, it may be set to, for example, 320 to 800 kA / m.
  • thermosetting resin Even if the thermosetting resin is heated, it first softens and melts, and its viscosity is greatly reduced, reaching a peak in viscosity reduction. After that, when the peak is exceeded, a cross-linking reaction between the molecules is accelerated, and the viscosity decreases and the resin is cured. By this curing, a bonded magnet made of oriented anisotropic magnet powder is obtained. As long as the thermosetting resin is heated at a temperature at which the curing reaction proceeds, the curing of the thermosetting resin gradually progresses from the orientation step to the close bonding step described below.
  • the curing of the thermosetting resin may proceed from the weighing and filling step. From such a viewpoint, it is indispensable to control the curing reaction of the thermosetting resin by appropriately adjusting the heating temperature of the compound and the holding time thereof in order to effectively perform each step. For example, in the orientation step, as described above, a stage where this curing reaction has not progressed much is used. In addition, although the thermosetting resin has not lost its fluidity in the close bonding step described below, the thermosetting resin has a degree such that the oriented anisotropic magnet powder is maintained in a compacted state by compression molding. Utilizes the stage of curing.
  • the oriented anisotropic magnet powder and the like are densely coupled. It is necessary to transfer to the forming die for performing the process. Therefore, as in the case of the mass filling step, in the case of the orientation step, the oriented anisotropic magnet powder and the thermosetting It is preferable to include a preforming step in which the curable resin is heated and compression-molded, the curing reaction proceeds to a limit where the orientation state of the magnet powder is preserved, and a preformed body to be subjected to the dense bonding step is formed. By forming the preformed body in the preforming step in this way, the transfer from the orientation step to the dense bonding step becomes easy.
  • the molding pressure during this pre-molding step may be, for example, about 147-343 MPa, which is higher than the molding pressure during the powder molding step (weighing and filling step) described above, and the subsequent dense bonding step. It is preferably lower than the medium molding pressure.
  • the bonded magnet molded body obtained by the dense bonding step may be a bonded magnet in which the thermosetting resin is completely cured, or may be a thermosetting resin in which the curing of the thermosetting resin is incomplete. . Since it takes a long time to completely cure the thermosetting resin, a large number of bonded magnet moldings whose thermosetting resin has not been completely cured are subjected to heat curing (curing heat treatment). It is more efficient.
  • the present invention further includes, before the orientation step, a lubricant applying step of applying a lubricant to at least the surface of the powder molded body obtained after the weighing and filling step.
  • a lubricant applying step of applying a lubricant to at least the surface of the powder molded body obtained after the weighing and filling step.
  • the method for manufacturing a bonded magnet of the present invention can be performed in a single D mold. However, in consideration of mass productivity, it is efficient to perform each process in a separate mold.
  • the weighing and filling step is performed in a first mold
  • the orientation step is performed in a second mold different from the first mold
  • the close coupling step is performed in the first mold. It is preferable to perform the third mold different from the second mold.
  • materials having excellent wear resistance such as cemented carbide and tool steel, are used. These materials do not have very high magnetic permeability, but in the first place, in the dense coupling step, it is not necessary to apply an orientation magnetic field, or even if it is applied, a weak orientation magnetic field is sufficient, so these materials are sufficient.
  • a non-magnetic material having no influence of remanence or the like at least on the outer and inner peripheral wall surfaces of the cavity in order to improve the filling property of the compound.
  • composition, type, and the like of the anisotropic magnet powder are not limited, and any known magnet powder can be used. Regardless of the method of producing each of these magnet powders, a so-called rapid solidification method or a hydrogenation method (d-HDDI ⁇ I, HDDR method) may be used.
  • the anisotropic magnet powder contained in the compound is not limited to a single type of magnet powder, but may be a mixture of a plurality of types of magnet powders and kneaded. As the anisotropic magnet powder is finer, it can be moved in the orientation step and is more easily oriented. However, it is also possible to use appropriately granulated magnet powder.
  • Thermosetting resins include epoxy resins, phenolic resins, and melamine resins. These thermosetting resins may be attached in powder form around the anisotropic magnet powder, or may be coated in a film around the anisotropic magnet powder.
  • Additives include lubricants such as zinc stearate, aluminum stearate, and alcohol-based lubricants, titanate-based or silane-based coupling agents, curing agents such as 4.4'-diaminodiphenylmethane (DDM), and TPP.
  • lubricants such as zinc stearate, aluminum stearate, and alcohol-based lubricants
  • titanate-based or silane-based coupling agents such as 4.4'-diaminodiphenylmethane (DDM), and TPP.
  • curing accelerators such as S (trade name of Hokuko Chemical Co., Ltd.), which may be added in small amounts in the compound.
  • the mixing ratio of the anisotropic magnet powder and the thermosetting resin is about 80 to 90% by volume of the anisotropic magnet powder and about 10 to 20% by volume of the thermosetting resin by volume ratio.
  • anisotropic magnet powder about 95 to 99% by mass
  • thermosetting resin about 1 to 5% by mass.
  • the additive may be added in an amount of about 0.1 to 0.5% by volume or about 0.2 to 0.5% by mass.
  • the compound can be obtained by, for example, uniformly mixing and mixing these anisotropic magnet powders and thermosetting resin with a kneader.
  • the average particle size of the compound is a particle size including the thermosetting resin, and is preferably 2 12 ⁇ or less.
  • the lower limit of the average particle size varies depending on the composition of the anisotropic magnetic powder, it cannot be specified unconditionally. In the case of N d Fe e ⁇ -based anisotropic magnetic powder, it is better to be 3 ⁇ or more.
  • the pound magnet obtained by the production method of the present invention is not limited in its use, shape, size, magnetic properties and the like.
  • an annular thin pound magnet, an arc-shaped thin pound magnet, or a plate-shaped thin bonded magnet may be used.
  • the orientation or magnetization direction may be any of the longitudinal direction, the lateral direction, the axial direction (axial direction), and the radial direction (radial direction).
  • the size does not matter, a size that enhances the orientation is preferable. For example, in the case of an annular thin pod magnet oriented in the radial direction, if it is long in the axial direction with respect to its diameter, the orientation in the axial direction will vary.
  • the annular thin-walled bonded magnets shortened in the axial direction may be laminated and lengthened in the axial direction.
  • the bonded magnet molded body obtained by the present invention is appropriately magnetized according to the use of the bonded magnet. ⁇
  • the compound used in this example was a mixture of NdFe ⁇ -based coarse powder, which is an anisotropic magnetic powder, and SmFeN-based fine powder in a Henschel mixer, and a thermosetting resin.
  • the epoxy resin powder was added, and the mixture was heated and mixed at 110 ° C by a bumper mixer.
  • the compounding ratios of the NdF eB-based coarse powder, the SmF eN-based fine powder, and the epoxy resin are 78% by mass, 20% by mass, and 2% by mass, respectively.
  • the SmF eN fine powder is present around the Nd Fe B coarse powder, and the SmF eN fine powder and the epoxy resin surround the NdFe B coarse powder. 2004/006013
  • the above NdFeB-based coarse powder and SmFeN-based fine powder were produced as follows.
  • the alloy ingot having the balance of Fe was subjected to d-HDDR treatment. Specifically, first, an alloy ingot (30 kg) having the above composition was melted and manufactured. The ingot was homogenized in an argon gas atmosphere at 1140 to 1150 ° C for 40 hours. Furthermore, the ingot was ground by a jaw crusher into coarse powder having an average particle size of 1 Omm or less. This coarsely pulverized product was subjected to a d-HDDR treatment including a low-temperature hydrogenation step, a high-temperature hydrogenation step, a first exhaustion step, and a second exhaustion step under the following conditions.
  • NdFeB-based anisotropic magnet powder was obtained per batch.
  • the average particle size of the obtained anisotropic magnetic powder was classified by sieving, and the weight of each class was measured to determine the sticking average.
  • the average particle size was 106 ⁇ .
  • the surface of the obtained NdFeB-based anisotropic magnetic powder was coated with a surfactant.
  • the surfactant was coated by adding a surfactant solution to the NdFeB-based anisotropic magnetic powder, stirring the mixture, and drying the mixture under vacuum (coating step).
  • the surfactant solution was prepared by diluting a silane coupling agent (NUC Silicone A-187, manufactured by Nippon Yurika Co., Ltd.) twice with ethanol.
  • NdFeB-based anisotropic magnetic powder coated with this coating is called NdFeB-based coarse powder.
  • SmFeN-based anisotropic magnet powder Surfactant in the same manner as in the case of the NdFeB-based coarse powder.
  • This coated SmFeN-based anisotropic magnet powder is referred to as SmFeN-based fine powder in this embodiment.
  • the average particle size of the SmFeN-based anisotropic magnet powder is 2-3 ⁇ .
  • the weighing and filling step was performed using the first molding device 30 shown in FIG.
  • the upper punch base 38 fixed to the upper end of 6, the lower punch base 39 fixed to the lower end of the lower punch 37, and the upper core 34 and the lower core 35 are pressed close to each other and pressed. It comprises a core drive device 20 and a punch drive device 21 for pressing the upper punch base 38 and the lower punch base 39 in close proximity to each other.
  • the mold temperature is room temperature (30.C) because no heater is provided on the forming die 32 or the like. At least the forming die 32, the lower core 35, and the lower punch 37, which come into contact with the compound when the compound is filled, are at about room temperature. For this reason, the epoxy resin in the compound does not soften at the time of filling, and does not adhere to the wall surfaces 32a and 35a of the cavity C1. Therefore, the compound is smoothly filled into the narrow cavity C1. More specifically, the compound is evenly and uniformly filled into the portions A, B, A, and the like of the cavity C1.
  • the shaped body obtained after the above-mentioned mass filling step was taken out from the cavity C1 of the first molding apparatus 30. Then, the molded body was immersed in the mixed lubricant for 2 seconds.
  • the mixed lubricant used was a solid lubricant and polyalkyl glycol mixed and mixed in a mass ratio of 2:98 in order.
  • the following orientation step was directly performed after the weighing and filling step without performing the lubricant applying step.
  • a solid lubricant ratio of about 1 to 30 can be used.
  • the orientation step was performed using a second molding device 50 shown in FIG.
  • the orienting magnetic field device 40 includes electromagnetic coils 41 and 42 formed so as to face each other in the axial direction with the forming die 52 as a center.
  • the forming die 52, the upper punch 56 and the lower punch 57 are made of a non-magnetic material, and the upper core 54, the lower core 55, the upper punch base 58 and the lower punch base 59 are made of a magnetic material. .
  • the lines of magnetic force emitted from the electromagnetic coils 41 and 42 of the orienting magnetic field device 40 pass through those magnetic materials, change radially from the vicinity of the center of the cavity C2 to the outer peripheral side, and reappear. ⁇ ⁇ Return to each electromagnetic coil 4 1 and 4 2. Due to the formation of this magnetic circuit, a radial magnetic field is formed in the cavity C2, and each magnet powder is radially oriented (see FIG. 5).
  • the molded body impregnated with the mixed lubricant was placed on the cavity C2 of the second molding device 50, and subjected to heating, orientation, and compression molding to produce a preformed body.
  • heating was performed while maintaining the mold temperature: 140 ° C. for 5 seconds.
  • the epoxy resin in the compound became soft and molten.
  • an alignment magnetic field was applied for 3 seconds by the alignment magnetic field device 40.
  • compression molding was performed at 196 MPa to obtain a preform (preliminary molding step).
  • the mold temperature was kept constant at 140 ° C. during each of these steps.
  • the preform was placed on the cavity C3 of the third molding device 70, and was subjected to heat compression molding to produce a pound magnet molded body.
  • This heat compression molding was performed while maintaining the mold temperature: 150 ° C. and the molding pressure: 784 MPa for 5 seconds.
  • the preformed body was further densified, and the epoxy resin was cured, and a pound magnet molded body having high dimensional accuracy was obtained. It took a total of 8 seconds from the transfer of the preformed body to the cavity C3 to the production of the bonded magnet formed body.
  • the third molding die according to the present invention includes a molding die 72, an upper core 74, a lower core 75, an upper punch 76 and a lower punch 77.
  • each molded body was automatically transferred while being held in a cassette.
  • the bonded magnet molded body was placed in a furnace at 150 ° C. for 30 minutes and subjected to a thermosetting treatment.
  • a ring-shaped bonded magnet similar to that of the example was manufactured by two-stage molding described in Patent Document 2 (Japanese Patent Application Laid-Open No. H10-22153), and the magnetic properties were measured. Shown.
  • a compound having a mold temperature of 140 ° C was filled with the compound, and preforming was performed at the same temperature.
  • the same pound magnet as that of the test piece No. 4 was manufactured by setting the mold temperature during the weighing and filling step to 60 ° C.
  • Table 2 shows the results of measuring the magnetic properties.
  • Table 2 also shows test piece No. 4 and test piece No. C4 for comparison.
  • test pieces No. C1 and C2 in the case of a thin-walled bonded magnet having a relative width ratio of 4 or less, the conventional manufacturing method could not form the molding itself.
  • the production method of the present invention was adopted as in the test pieces No. 1 and No. 2 of the examples, the thin pound magnet could be formed without any problem without generating cracks or the like.
  • the variation in magnetic properties was very small.
  • the lubricant application step improves the surface magnetic flux, although the fluctuation width of the surface magnetic flux does not change. It became clear that. By the way, according to the study of the present Kakiakisha, it is clear that the surface magnetic flux is improved by 5 to 10% by performing this lubricant applying step.
  • Bonded magnet outer diameter ⁇ 30mm x inner diameter ⁇ 28mmx height: 20mm (thickness W: 1mm)
  • Average particle size of compound d 0.1mm

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明のボンド磁石の製造方法は、異方性磁石粉末と熱硬化性樹脂とからなるコンパウンドを、壁面温度が熱硬化性樹脂の軟化点未満であるキャビティに秤量充填する秤量充填工程と、秤量充填されたコンパウンドまたはコンパウンドの粉末成形体を軟化点以上に加熱し熱硬化性樹脂を軟化状態または溶融状態としつつ、配向磁場を印加して異方性磁石粉末を配向させる配向工程と、配向工程後に、異方性磁石粉末および熱硬化性樹脂を加熱圧縮成形して、配向した異方性磁石粉末を熱硬化性樹脂によって緻密に結合させたボンド磁石成形体とする緻密結合工程とを備えることを特徴とする。本発明の秤量充填工程によって、コンパウンドがキャビティの壁面に付着等せずにスムーズに充填される。

Description

明細書 ポンド磁石の製造方法 技術分野
本発明は、 ボンド磁石の製造方法に関するものであり、 特に、 磁気特性に優れ た薄肉ボンド磁石等に好適な製造方法に関するものである。 背景技術
各種ァクチユエータゃモータ等の高性能小型化の要請により、 小型で強力な永 久磁石が求められている。 このような永久磁石には、 焼結磁石等もあるが、 最近 では、 成形性、 物理的性質、 取扱性等に優れたボンド磁石が多用される。 ポンド 磁石は、 等方性磁石粉末や異方性磁石粉末を樹脂等で固めたものであるが、 高い 磁気特性が求められる場合には、 異方性磁石粉末が多用される。
異方性磁石粉末からなるボンド磁石の場合、 磁場中で十分に配向させて緻密な 成形体とすることがその磁気特性を高める上で重要である。 このようなボンド磁 石の製造方法を開示したものとして、 例えば、 下記特許文献 1または特許文献 2 がある。
特許文献 1には、 1 5 0 °Cに加熱した同一成形金型中で、 異方性磁石粉末と熱 硬化性樹脂とからなるコンパゥンドを給粉、 配向およぴ圧縮成形する一段成形方 法が開示されている。
特許文献 2には、 特許文献 1の製造方法を大きく 2つに分けて、 1 5 0 °Cに加 熱した第 1成形金型中で給粉、 配向および軽い圧縮成形を行って予備成形体を製 造する予備成形工程と、 この予備成形体を 1 5 0 °Cに加熱した第 2成形金型中で 強く圧縮成形して緻密化する本成形工程とからなる二段成形方法が開示されてい る。
特許文献 1 :特開平 8— 3 1 6 7 7号公報
特許文献 2 :特開平 1 0— 2 2 1 5 3号公報
特許文献 3 :特開平 9一 3 1 2 2 3 0号公報 発明の開示
(解決課題)
ところで、 上記いずれの場合も、 1 5 0 °Cに加熱された成形金型のキヤビティ へコンパウンドを直接給粉 (秤量、 充填) している。 1 5 0 °Cという温度は、 上 記特許文献からも明らかなように、 コンパウンドの熱硬化性樹脂が溶融する温度 である。 このような高温となった成形金型へコンパウンドを給粉すると、 コンパ ゥンド中の熱硬化性樹脂は少なくとも部分的に軟化または溶融して、 多くのコン パウンドは成形金型のキヤビティ壁面に付着してしまう。 このようなコンパゥン ドの壁面付着が生じると、 コンパウンドの充填通路が狭まり、 所定量のコンパゥ ンドがキヤビティ内へ十分に充填され難くなる。 そして、 製品毎にコンパウンド の秤量がばらつき、 一^ 3の製品中でもコンパウンドの充填が不均一となる。 これ は、 ポンド磁石の磁気特性の低下ゃ不均一となって現れる。 特に、 このような現 象は、 キヤビティの入口開口が狭い薄肉ボンド磁石を製造する場合に生じ易い。 さらに、 上記特許文献 3には、 異方性磁石粉末と樹脂との混合物を、 その榭脂 の軟化開始温度以下で 1次成形した後、 その 1次成形体を前記樹脂の軟化開始温 度以上、 硬化開始温度以下の加熱磁場中で 2次成形して 2次成形体を得る 2段成 形方法が開示されている。 そして、 得られた 2次成形体を単に加熱処理 (キュア 処理) することで最終的に硬化させている。
ところが、 この特許文献 3では、 その 2次成形中に磁場配向と加圧成形とを同 時に行っているため、 磁場配向の立場から観れば成形圧力が髙すぎ、 加圧成形と いう立場から観れば成形圧力が低い。 このため、 異方性磁性粉末が十分に配向さ れず、 得られた 2次成形体の密度も低くなり、 硬化処理後のポンド磁石の磁気特 性も異方性磁性粉末の磁気特性が十分に発揮されずに不十分なものとなる。 本発明は、 このような事情に鑑みて為されたものであり、 均一で安定した磁気 特性が得られるボンド磁石の製造方法を提供することを目的とする。
(解決手段および作用効果)
本発明者はこの課題を解決すべく鋭意研究し、 試行錯誤を重ねた結果、 先ず、 キヤビティへコンパウンドを給粉する際に、 そのキヤビティの壁面温度を室温付 近にすると、 コンパウンドがその壁面に付着せず、 キヤビティへ均一に充填され ることを新たに知見し、 これを発展させて本発明を完成するに至った。
すなわち、 本発明のポンド磁石の製造方法は、 異方性磁石粉末と熱硬化性樹脂 とからなるコンパウンドを、 壁面温度が該熱硬化性樹脂の軟化点未満であるキヤ ビティに秤量充填する秤量充填工程と、 該秤量充填されたコンパウンドまたは該 コンパゥンドの粉末成形体を該軟化点以上に加熱し該熱硬化性樹脂を軟化状態ま たは溶融状態としつつ、 配向磁場を印加して該異方性磁石粉末を配向させる配向 工程と、 該配向工程後に、 該異方性磁石粉末おょぴ該熱硬化性樹脂を加熱圧縮成 形して、 該配向した異方性磁石粉末を該熱硬化性樹脂によつて緻密に結合させた ボンド磁石成形体とする緻密結合工程と、 を備えることを特徴とする。
本発明の場合、 秤量充填工程で、 壁面温度がコンパウンド中の熱硬化性樹脂の 軟化点未満であるキヤビティへ、 コンパウンドを秤量、 充填している。 これによ り、 秤量充填工程で、 コンパウンド中の熱硬化性樹脂が軟化せず、 コンパウンド がキヤビティの壁面に付着等するのが抑止される。 その結果、 コンパウンドのキ ャビティへの充填がスムーズになされ、 その充填量も安定し、 さらに、 キヤビテ ィ中におけるコンパウンドの分布もほぼ均一となる。 従って、 密度や磁気特性に 疎密がなく、 形状精度に優れた高品質のボンド磁石が歩留り良く安定して量産で きる。
ここで、 熱硬化性樹脂の 「軟ィヒ点」 とは、 基本的に加熱履歴を受けていない熱 硬化性樹脂のパージン材の軟化点を意味する。 加熱履歴を受けた後は、 その後の 軟化点を意味する。 この軟化点は、 熱硬化性樹脂の種類 (分子構造、 組成等) か ら一義的に定るものである。 コンパウンドは、 異方性磁石粉末おょぴ熱硬化性樹 脂以外に、 硬化剤、 硬化促進剤、 界面活性剤等を含有していることも多いが、 上 記軟化点は使用する熱硬化性樹脂単体 (モノマー) での軟化点である。
キヤビティの壁面温度の一例を挙げると、 例えば、 室温とすれば良い。 また、 熱硬化性樹脂の種類にも依るが、 ボンド磁石に使用される熱硬化性樹脂の軟化点 は通常 9 0 °C前後であるため、 例えば、 壁面温度を 3 0〜6 0 °C程度にすれば十 分である。
なお、 この軟化点に替えて、 「付着開始温度」 を使用することもできる。 付着 開始温度は、 コンパウンドがキヤビティの壁面に付着し始める温度である。 上記 軟化点は、 この付着開始温度を指標するものといえる。 但し、 厳密にいうと、 付 着開始温度が必ずしも熱硬化性樹脂の種類によつて一律的に規定されるとは限ら ず、 また、 軟化点に一致するともいえない。 この付着開始温度を具体的に特定す るためには、 煩雑な試験等を実際に行わなければならないこともあり得る。 そこ で、 本発明ではそのような煩わしさ回避するために、 壁面温度を上記 「軟化点」 を基準に考えることとした。
キヤビティの壁面温度の測定位置は特に限定されない。 壁面全体がほぼ均一な 温度となっているのが通常だからである。 もっとも、 コンパウンドのキヤビティ への充填に大きく影響するのは、 キヤビティの入口開口 (例えば、 上部開口) 付 近の温度である。 そこで、 敢ていうなら、 壁面温度はキヤビティの入口開口付近 の温度を指標とすれば良い。
本発明のボンド磁石の製造方法は、 大きく分けて秤量充填工程と、 配向工程と、 緻密結合工程とからなる。 これらの各工程は、 一つの成形機中で行っても、 適宜、
2つまたは 3つの成形機中で行っても良い。 もっとも、 成形型の温度管理の簡便 性、 成形型の材質選択の自由度、 配向磁場装置や加圧装置の稼働率等の観点から、 上記 3工程は、 それぞれ専用の成形機中で別々に行われるのが好ましい。 これに より、 例えば、 成形型の温度を工程毎に変化させたりする必要もなく、 成形型の 高寿命化等も図れる。 また、 当然ながら、 上記 3工程を別々の成形機中で行うた め、 その分、 各成形機の稼働率も向上して、 短いタクトでボンド磁石が量産され る。 特に、 一工程あたりの生産タクトゃ各工程で必要とする成形機の数を調整す ることで、 各成形機をフノレ稼働状態とでき、 一層量産性を向上させ得る。 そして、 本発明によれば、 このような量産時でも、 磁気特性および形状精度等に優れた安 定した品質のボンド磁石が、 歩留り良く (不良率が少なく) 効率的に得られる。 図面の簡単な説明
図 1は、 本発明の秤量充填工程に使用した第 1成形装置の概略断面図である。 図 2は、 その第 1成形装置のキヤビティ周辺を拡大した拡大断面図である。 ' 図 3は、 本発明の配向工程に使用した第 2成形装置の概略断面図である。
図 4は、 本発明の微密結合工程に使用した第 3成形装置の概略断面図である。 図 5は、 ラジアル配向させたリング状薄肉ボンド磁石を示す斜視図である 発明を実施するための最良の形態
A. 実施形態
実施形態を以下に挙げ、 本発明をより詳しく説明する。
( 1 ) 枰量充填工程
秤量充填工程は、 コンパウンドをキヤビティに所定量充填する工程である。 コ ンパウンドの秤量は、 その充填時のすり切り等によって行われる。 本発明の場合、 このキヤビティの壁面温度が熱硬化性樹脂の軟ィヒ点未満であり、 充填性に優れる のは、 前述した通りである。
ところで、 本発明の効果がより顕著に発揮されるのは、 コンパウンドが充填さ れるキヤビティの入口 (開口) が狭い場合である。 より具体的には、 そのキヤビ ティの最小幅 (w) 1 コンパウンドの平均粒径 ( d ) に対する相対幅比 (WZ d ) で:!〜 1 5程度の場合である。 この上限が 1 0、 9、 8、 7、 6となる程、 本発明の効果が際立つ。 また、 その下限は、 ボンド磁石の現実的な厚みやコンパ ゥンドの充填性を考慮して、 2、 3、 4、 5程度とするのが好ましい。
なお、 相対幅比が上記範囲よりも大きい場合であっても、 コンパウンドの充填 性の向上等、 本発明の効果は勿論ある。 但し、 相対幅比が相当大きい場合、 キヤ ビティの壁面温度が軟化点以上でコンパゥンドが壁面に付着するようなときでも、 コンパウンドの充填通路が多かれ少なかれ確保され易い。 このため、 コンパゥン ドの充填時または充填後に、 適宜、 加振等を施すことで、 コンパウンドはキヤビ ティへほぼ均一に充填され得る。 従って、 本発明は、 相対幅比が上記のように小 さい範囲で特に有効である。
ところで、 上記キヤビティの最小幅は、 コンパウンドが充填される方向をも考 慮して決定するのが好ましい。 つまり、 コンパウンドの充填方向に沿った最小幅 を、 上記最小幅 (W) とするのが良い。 コンパウンドの充填方向に対向するキヤ ビティの壁面にコンパゥンドが付着し易く、 そこでコンパゥンドの流れが阻害さ れ易いからである。 例えば、 前記秤量充填工程が、 前記コンパウンドを内部に蓄 えて底部が開口した粉箱を前記キヤビティの開口上を水平移動する工程である場 合、 前記最小幅 (W) は、 この粉箱の移動方向 (充填方向) に沿って測定したも のとすれば良い。 例えば、 そのキヤビティが有底円筒状の場合、 キヤビティの内 外周の半径差が最小幅 (W) となる。 なお、 キヤビティの形状は、 最終的なボン ド磁石の形状に応じて決定される。 その形状は、 上記円筒状の他、 板状、 ブロッ ク状、 円弧状等何れでも良い。
コンパゥンドを秤量充填した同一の成形型中で後続の配向工程等を行う場合は 別として、 配向工程等を他の成形型中で行う場合、 その秤量充填したコンパゥン ドを配向工程等を行う成形型へ移送することが必要となる。 この際、 充填時と同 じコンパウンドの状態では意味が無い。 そこで、 一般的な粉末成形と同様に、 秤 量充填したコンパウンドをキヤビティ中で軽く圧縮成形して粉末成形体 (ダリー ンコンパクト、 素形体、 プランク成形体) 等にすると、 上記移送を行う上で便利 である。 すなわち、 秤量充填工程は、 単なるコンパウンドの秤量やキヤビティへ の充填に留まらず、 前記キヤビティに充填されたコンパウンドを圧縮成形して前 記配向工程に供される前記粉末成形体とする粉末成形工程を含むものであると好 適である。 この粉末成形体の成形度合は、 圧縮されたコンパウンドが崩壊せず、 取扱いできる程度であれば良い。 この成形圧力は、 例えば、 7 0〜2 9 4 M P a 程度とすれば良い。
この粉末成形体の秤量充填工程から配向工程への移送は、 手作業による他、 治 具 (カセット等) を介して行っても良い。 治具を介することで、 粉末成形体の形 状保持性が良く、 また、 自動化等にも適する。 なお、 このような移送治具の使用 は、 上記場合に限らず、 配向工程から緻密結合工程へ予備成形体を移送する場合 でも同様である。
( 2 ) 配向工程
配向工程は、 秤量充填工程後のコンパウンド等を加熱して熱硬化性樹脂を溶融 状態等として磁場を印加する工程である。 この配向工程により、 異方性磁石粉末 の各粒子は特定方向に配向して、 ボンド磁石の磁気特性が向上する。 この配向ェ 程も所定の成形型のキヤビティ内で行われる。 この成形型は、 熱硬化性樹脂の種 類および工程時間等に応じて、 所定の温度に保持される。 その温度は、 例えば、 1 2 0〜1 8 0 °C程度である。 この加熱により、 コンパゥンド中の熱硬化性樹脂は軟ィヒまたは溶融して粘性が 低下する。 異方性磁石粉末はその溶融等した熱硬化性樹脂の流体中にまるで浮遊 しているかのような状態となって流動性を増す。 そして、 この状態で配向磁場が 印加されると、 異方性磁石粉末は移動、 回転等を生じて所定の極性方向に配向す る。 この配向を効率良く確実に行うために、 少なくとも、 熱硬化性樹脂の粘性が 最も低下する点で配向磁場が印加されるのが好ましい。
本発明でいう配向工程では、 「軟化状態」 と 「溶融状態」 とを厳密に区別して いない。 要するに、 熱硬化性樹脂が加熱されてその粘性が低下し、 異方性磁石粉 末の回転、 移動等が可能な状態となれば十分だからである。 勿論、 異方性磁石粉 末の配向の程度は、 印加する配向磁場の強さにも依る。 この配向磁場の強さは、 熱硬化性樹脂の粘性が適度に低下した状態で印加されるのであれば、 例えば、 3 2 0〜8 0 0 k A/mとすれば良い。
なお、 熱硬化性樹脂であっても、 加熱により、 先ず、 軟化、 溶融し、 その粘性 が大きく低下して、 粘性低下のピークを迎える。 その後、 そのピークを越えると、 分子間の架橋反応が促進され、 粘度が低下して硬化する。 この硬化により、 配向 した異方性磁石粉末からなるボンド磁石が得られる。 硬化反応の進行する温度で 熱硬化性榭脂を加熱する限り、 配向工程から後述の緻密結合工程にかけて熱硬化 性榭脂の硬化は徐々に進行している。 前述の秤量充填工程を軟化点に近い温度で 行う場合、 その秤量充填工程から熱硬化性樹脂の硬化が進行する場合もある。 このような観点から、 各工程を有効に行うには、 コンパウンドの加熱温度およ びその保持時間を適切に調整して、 熱硬化性樹脂の硬化反応を制御することが欠 かせない。 例えば、 配向工程では、 前述のように、 この硬化反応があまり進行し ていない段階を利用している。 また、 後述の緻密結合工程は、 熱硬化性樹脂が流 動性を失ってはいないが、 配向した異方性磁石粉末が圧縮成形によって緻密化し た状態が維持される程度に、 熱硬化性樹脂が硬化する段階を利用している。
ところで、 配向工程を行った同一の成形型中で後続の緻密結合工程を行う場合 は別として、 緻密結合工程を他の成形型中で行う場合、 その配向した異方性磁石 粉末等を緻密結合工程を行う成形型へ移送することが必要となる。 そこで、 枰量 充填工程の場合と同様、 配向工程の場合も、 配向した異方性磁石粉末および熱硬 化性樹脂を加熱圧縮成形して、 硬化反応を磁石粉末の配向状態が保存される限度 まで進行させて、 前記緻密結合工程に供する予備成形体とする予備成形工程を含 むものとすると良い。 このように予備成形工程で予備成形体を成形することで、 配向工程から緻密結合工程への移送が容易となる。
この予備成形工程中の成形圧力は、 例えば、 1 4 7〜3 4 3 M P a程度とすれ ば良く、 前述の粉末成形工程 (秤量充填工程) 中の成形圧力よりも高く、 後続の 緻密結合工程中の成形圧力よりも低いのが好ましい。 また、 異方性磁性粉末の配 向から成形へ移行する際には、 磁場印加後から少なくとも 1秒程度保持した後に 行うのが良い。 異方性磁性粉末を十分に配向させるためである。
( 3 ) 緻密結合工程
緻密結合工程は、 配向工程後の異方性磁石粉末および熱硬化性樹脂を圧縮成形 して、 配向した異方性磁石粉末を緻密に結合させたボンド磁石成形体とする工程 である。 この工程により、 上記配向工程後の異方性磁石粉末および熱硬化性樹脂 の中に存在していた気泡が排出されたり空孔が押潰されたりして、 高密度で磁気 特性および寸法精度に優れたボンド磁石成形体が得られる。 この緻密結合工程も 所定の成形型のキヤビティ内で行われる。 この成形型は、 熱硬化性樹脂の種類お よび工程時間等に応じて、 所定の温度に保持される。 その温度は、 例えば、 1 2 0〜1 8 0 °C程度である。 また、 成形圧力は、 例えば、 6 8 6〜8 8 2 MP a程 度である。 この成形圧力は、 前述したように、 予備成形工程 (配向工程) 中の成 形圧力よりも高いのが好ましい。
なお、 この緻密結合工程により得られたボンド磁石成形体は、 熱硬化性樹脂が 完全に硬化したボンド磁石であっても良いが、 熱硬化性樹脂の硬化が未完全なも のであっても良い。 熱硬ィヒ性榭脂の完全な硬化には長時間を要することから、 熱 硬化性樹脂の硬化が未完全なボンド磁石成形体を多数まとめて加熱硬化処理 (キ ユア熱処理) をパッチ処理するとより効率的である。
( 4 ) 潤滑剤付与工程
本発明は、 さらに、 前記配向工程前に、 前記秤量充填工程後に得られた粉末成 形体の少なくとも表面へ潤滑剤を付与する潤滑剤付与工程を備えると好適である。 これにより、 先ず、 配向工程 (特に予備成形工程) や緻密結合工程で、 異方性磁 性粉末 (またはその成形体) と成形型との間での焼付きを防止できる。 さらに、 潤滑剤付与工程は配向工程前に行われるので、 少なくとも成形型の壁面付近に存 在するコンパウンド (異方性磁性粉末) の粒子間の摩擦が低減されて、 異方性磁 性粉末の配向が促進される。 このため、 一層高く配向した成形体が得られ、 ボン ド磁石の磁気特性がさらに向上する。 勿論、 潤滑剤の前記粉末成形体への付与形 態、 付与時間、 その粉末成形体のサイズ等によって、 潤滑剤は粉末成形体の表面 付近に留まらず、 さらにその内部へ含浸し得る。 潤滑剤が内部に含浸する程、 上 述した異方性磁性粉末の配向が一層高まり易い。
潤滑剤が付与される粉末成形体の形状は問わないが、 それが薄肉であれば有る 程、 潤滑剤が短時間で内部まで含浸され易くなる。 本発明によると、 このような 薄肉の粉末成形体を安定した品質で容易に得ることができるので、 好都合である。 潤滑剤付与工程の具体的な方法は問わないが、 例えば、 粉末成形体を潤滑剤中 に浸漬 (ディップ) したり、 粉末成形体へ潤滑剤を噴霧 (スプレー) または塗布 したりすることで行える。 浸漬した場合、 短時間で、 潤滑剤が粉末成形体へ十分 に付与され易い。 噴霧等した場合、 均一に、 潤滑剤が粉末成形体の表面へ付与さ れ易い。
使用される潤滑剤は、 粉末成形体への付与性、 内部含浸による高配向性等の観 点から液状の方が好ましい。 一方、 粉末成形体 (異方性磁性粉末) と成形型 (金 型) との焼付きを抑止する観点からは、 高温域でも焼付き防止効果の高い固体潤 滑剤が好ましい。 そこで、 液状のオイルを分散剤として焼付き防止効果の高い固 体潤滑剤を均一に分散させたものを使用すると好ましい。 すなわち、 前記潤滑剤 は、 オイル中に固体潤滑剤を混合した混合潤滑剤であると好適である。 このとき 使用するオイルは、 ポリアルキルダリコール、 鉱物油等の異方性磁性粉末の磁気 特性を劣化させず、 配向工程等の高温加熱中 (例えば、 1 2 0〜1 8 0 °C) でも 変質しない化合物が好ましい。 また、 このとき使用する固体潤滑剤は、 無機物で も有機物でも良い。
また、 潤滑剤は、 揮発性潤滑剤でも良く、 例えば、 配向工程中に揮発して緻密 結合工程で残存していなくても良い。 この場合でも、 高配向性や予備成形工程中 の焼付き防止を図れる。 また、 その潤滑剤が揮発性オイルと前記固体潤滑剤との 混合潤滑剤である場合、 分散剤であるオイルが揮発しても固体潤滑剤は残存する ため、 配向工程 (予備成形工程) や緻密結合工程で焼付き防止効果が得られる。 なお、 緻密結合工程後にも残存した潤滑剤は、 自然放置やァスピレータなどに よる吸引等によつて適宜除去可能である。
( 5 ) 成形型 ·
本発明のボンド磁石の製造方法は、 前述したように、 一^ Dの成形型中で行うこ とが可能である。 し力 し、 量産性等を考慮すれば、 各工程を別々の成形型で行う のが効率的である。
すなわち、 前記秤量充填工程は、 第 1成形型で行い、 前記配向工程は、 該第 1 成形型とは別の第 2成形型で行い、 前記緻密結合工程は、 該第 1成形型おょぴ該 第 2成形型とは別の第 3成形型で行うと好適である。
また、 各工程毎に専用の成形型を用いることで、 成形型の設計自由度や成形型 の長寿命化等も向上する。 例えば、 配向工程は、 配向磁場を印加することから、 上記第 2成形型の少なくとも一部に、 透磁率の高い磁性材料の使用が望まれ、 実 際に純鉄やパーメンジュール等が使用される。 このような型材料は、 耐摩耗性が 比較的乏しく、 本来金型材料としては不向きである。 し力 し、 配向工程での成形 圧力は前述のように比較的小さいため、 型摩耗等はあまり問題とはならなレ、。 逆に、 緻密結合工程では、 比較的大きな成形圧力が印加されるため、 金型寿命 が問題となり、 実際には超硬合金や工具鋼等の耐摩耗性に優れた材料が使用され る。 これらの材料は、 透磁率があまり大きくないが、 そもそも緻密結合工程では 配向磁場を印加しなくても良いか印加するにしても弱い配向磁場で良いため、 そ れらの材料で十分である。
さらに、 秤量充填工程では、 コンパウンドの充填性を向上させるため、 残磁等 の影響のない非磁性材料を少なくともキヤビティの外内周壁面に使用すると好適 である。
このように、 各工程毎に別々の成形型を使用することで、 各工程に適した成形 型を設定し易くなる。 このため、 型寿命が延びて設備費の低減が図られる。 勿論、 秤量充填工程と配向工程とで成形型を別々にすることで、 上述したように、 各ェ 程中の温度差が大きい場合の対応も容易となる。 ( 6 ) コンパウンド
コンパウンドは、 異方性磁石粉末と熱硬化性樹脂とから主になるが、 この他、 潤滑剤、 硬化剤、 硬化助剤、 界面活性剤等の添加剤も含み得る。 前述したコンパ ゥンドの平均粒径は、 これらの熱硬化性樹脂等を含めた粒径である。 また、 平均 粒径は、 粒度分布に基づく重量平均である。 前述の相対幅比が小さいキヤビティ へコンパウンドを充填するような場合は、 篩い分け等によって粒度分布を狭めた (つまり、 粒度の揃った) コンパウンドを使用すると良い。
異方性磁石粉末の組成、 種類等は限定されず、 公知のいずれの磁石粉末をも採 用し得る。 これらの各磁石粉末の製造方法も問わず、 いわゆる急冷凝固法であつ ても、 水素化処理法 (d—H D D I^¾、 H D D R法) であっても良い。
さらに、 コンパウンド中に含まれる異方性磁石粉末は、 単種の磁石粉末みに限 られず、 複数種の磁石粉末を混合、 混練したものであっても良い。 異方性磁石粉 末は微粒である程、 配向工程での移動が可能となり配向し易いが、 適宜造粒した 磁石粉末を使用することも可能である。
熱硬化性樹脂には、 エポキシ樹脂、 フエノール樹脂、 メラミン樹脂などがある。 これらの熱硬化性樹脂は、 異方性磁石粉末の周囲に粉末状に付着していても良い し、 異方性磁石粉末の周囲を膜状にコーティングしていても良い。
添加剤には、 ステアリン酸亜鉛、 ステアリン酸アルミニウム、 アルコール系潤 滑剤等の潤滑剤、 チタネート系もしくはシラン系のカップリング剤、 4 . 4 ' 一 ジアミノジフエ二ルメタン (D DM) 等の硬化剤や T P P— S (北興化学工業製 の商品名) 等の硬化促進剤等があり、 これがコンパウンド中に少量添加されてい ても良い。 これらの添加剤により、 成形体の離型性、 成形タイミングの調整、 磁 石粉末と溶融榭脂との濡れ性や密着性等が改善される。
異方性磁石粉末と熱硬化性樹脂との混合割合は、 体積比で異方性磁石粉末: 8 0〜9 0体積%、 熱硬化性樹脂: 1 0〜2 0体積%程度である。 質量比でいえば、 異方性磁石粉末: 9 5〜9 9質量%、 熱硬化性樹脂: 1〜5質量%程度でぁる。 添加剤は、 0 . 1〜0 . 5体積%または 0 . 2〜0 . 5質量%程度添加すれば良 い。 なお、 上記コンパウンドは、 例えば、 これらの異方性磁石粉末と熱硬化性樹 脂等を混練機により均一に混合、 混鍊等して得られる。 コンパウンドの平均粒径は、 熱硬化性樹脂も含めた粒径であって、 2 1 2 πι 以下が好ましい。 大きすぎると、 配向工程中での移動、 回転等が困難となり、 磁 気特性の向上を図り難いからである。 その平均粒径の下限は、 異方性磁性粉末の 組成によって異なるため、 一概には特定できない。 N d F e Β系異方性磁性粉末 の場合なら、 3 μπι以上とするのが良い。
(7) ボンド磁石
本発明の製造方法により得られるポンド磁石は、 その用途、 形状、 サイズ、 磁 気特性等を問わない。 前述したように、 環状薄肉ポンド磁石であっても良いし、 円弧状薄肉ポンド磁石でも、 板状薄肉ボンド磁石であっても良い。 勿論、 薄肉に は限らない。 配向や磁化の方向も、 縦方向、 横方向、 軸方向 (アキシャル方向) 、 径方向 (ラジアル方向) 等のいずれでも良い。 また、 サイズも問わないが、 配向 性が高くなるサイズが好ましい。 例えば、 ラジアル方向に配向させた環状薄肉ポ ンド磁石の場合、 その径に対して軸方向に長いと、 軸方向での配向がパラつく。 その際は、 軸方向に短くした環状薄肉ボンド磁石を積層して、 軸方向に長くして も良い。 この場合、 特開平 1 1— 186027号公報にあるように、 配向工程後 の成形体を積層して、 本成形工程で一体ィヒするのが磁気特性上好ましい。 なお、 本発明により得られたボンド磁石成形体は、 ボンド磁石の用途に応じて適宜、 着 磁がなされる。 ·
Β. 実施例
実施例を挙げて、 本発明をより具体的に説明する。
(コンパウンドの製造)
本実施例で使用したコンパゥンドは、 異方性磁性粉末である N d F e Β系粗粉 末と SmF eN系微粉末とをへンシェエルミキサーで混合したものに、 熱硬化性 樹脂であるエポキシ樹脂粉末を加えて、 バンパリ一ミキサーにより、 1 10°Cで 加熱混鍊したものである。 NdF e B系粗粉末、 SmF e N系微粉末およびェポ キシ樹脂の配合比は、 それぞれ、 78質量%、 20質量%および 2質量%である。 このコンパウンドは、 N d F e B系粗粉末の周囲に SmF e N系微粉末が存在し、 この SmF eN系微粉末とエポキシ榭脂が NdF e B系粗粉末を囲繞したように 2004/006013
なっている。
上記 N d F e B系粗粉末おょぴ SmF e N系微粉末は、 次のようにして製造し た。
(1) NdF e B系粗粉末
原子0 /。で、 Nd : 12. 5%、 B : 6. 4%、 Ga : 0. 3%、 Nb : 0· 2
%、 残部 F eの組成をもつ合金インゴットに、 d— HDDR処理を施した。 具体 的には、 先ず、 上記組成の合金インゴット (30 k g) を溶解 '铸造して製造し た。 このインゴットに、'アルゴンガス雰囲気中で 1 140〜1 150°Cx 40時 間の均質化処理を施した。 さらに、 そのインゴットをジョークラッシャにより平 均粒径が 1 Omm以下の粗粉碎物に粉砕した。 この粗粉砕物に、 次の条件の低温 水素化工程、 高温水素化工程、 第 1排気工程および第 2排気工程とからなる d— HDDR処理を施した。 すなわち、 室温、 水素圧力 100 k P aの水素ガス雰囲 気下で、 各試料合金へ十分に水素を吸収させた (低温水素化工程) 。 次に、 80 0°Cで 30 k P a (水素圧力) の水素ガス雰囲気下で、 480分間の熱処理を施 した (高温水素化工程) 。 引き続き、 800°Cに保持したまま、 水素圧力 0. 1 〜20 k P aの水素ガス雰囲気下で、 160分間の熱処理を施した (第 1排気ェ 程) 。 最後に、 60分間、 ロータリポンプおよび拡散ポンプで真空引きして、 1 0一1 Pa以下の真空雰囲気下で冷却した (第 2排気工程) 。
こうして、 1バッチ当たり各 10 k g程度の Nd F e B系異方性磁石粉末を得 た。 得られた異方性磁性粉末の平均粒径を、 ふるい分級し、 各級の重量を測定し ておもみつき平均を求めたところ、 平均粒径は 106 μπιであった。
さらに、 得られた N d F e B系異方性磁性粉末の表面には、 界面活性剤を被覆 した。 界面活性剤の被覆は、 NdF eB系異方性磁性粉末に界面活性剤の溶液を 加え、 攪拌させならがら真空乾燥させて行った (被覆工程) 。 界面活性剤の溶液 は、 シラン系カップリング剤 (日本ユリカー株式会社製、 NUCシリコーン A— 187) をエタノールで 2倍に稀釈したものである。 この被覆を施した NdF e B系異方性磁性粉末を本実施例では N d F e B系粗粉末と呼んでいる。
(2) SmF e N系微粉末
原子%で、 Sm: 10%、 N: 13%、 残部 F eからなる市販の SmF e N系 異方性磁石粉末 (住友金属鉱山株式会社製) に、 N d F e B系粗粉末の場合と同 様に界面活性剤を被覆した。 この被覆を施した S m F e N系異方性磁石粉末を本 実施例では S m F e N系微粉末と呼んでいる。 S m F e N系異方性磁石粉末の平 均粒径は 2〜 3 μ πιである。
(ボンド磁石の製造)
上記コンパウンド (平均粒径 d = 0 . 1 mm) を用いて、 最終的に外径 0 3 0 X高さ 2◦ mmのリング状薄肉ポンド磁石を製造した。 これに先立ち、 後述の各 工程によって着磁前のポンド磁石成形体を製造した。 本実施例では、 その内径
(厚み) を種々変更して、 複数種の試験片を試作した。 それらの内径は表 1に示 した。
( 1 ) 秤量充填工程
秤量充填工程は、 図 1に示す第 1成形装置 3 0を用いて行った。
この第 1成形装置 3 0は、 中央に貫通した成形孔 3 3をもつ筒状の成形ダイ 3 2と、 この成形孔 3 3の軸芯上方に延びる円柱状の上コア 3 4と、 成形孔 3 3の 軸芯下方に延びて上コア 3 4の下端面に当接し得る円柱状の下コア 3 5と、 上コ ァ 3 4または下コア 3 5の外周面と成形孔 3 3の内周面との間に形成された筒状 のキヤビティ C 1の上側に位置する円筒状の上パンチ 3 6と、 このキヤビティ C 1の下側に位置する筒状の下パンチ 3 7と、 上パンチ 3 6の上端側に固定された 上パンチ基部 3 8と、 下パンチ 3 7の下端側に固定された下パンチ基部 3 9と、 上コア 3 4および下コア 3 5を相互に近接させて加圧するコア駆動装置 2 0と、 上パンチ基部 3 8およぴ下パンチ基部 3 9を相互に近接させて加圧するパンチ駆 動装置 2 1とからなる。
コンパウンドの秤量おょぴキヤビティ C 1への充填は次のようにして行った。 上パンチ 3 6および上パンチ基部 3 8と、 上コア 3 4とを上方に退避させる。 次に、 下コア 3 5の上端面が成形ダイ 3 2の上端面と面一かそれよりも僅かに低 い状態に保持する。 そして、 下パンチ 3 7の上端面が成形ダイ 3 2の上端面より も低くなるように、 下パンチ 3 7および下パンチ基部 3 9を下げる。 こうして、 コンパウンドを充填する有底円筒状のキヤビティ C 1が形成される。 この状態を 図 2に示す。 なお、 このキヤビティ C 1の内外径は、 表 1に示したものと同じで ある。 そして、 このときのキヤビティ C 1の容積が、 コンパウンドの充填量を決 定する。 言換えるなら、 そのキヤビティ C 1の容積によって充填されるコンパゥ ンド量が秤量される。
次に、 図 2に示したように、 この状態の成形ダイ 3 2等の上面に、 コンパゥン ドの入った粉箱 1 1を配置する。 そして、 底部が開口した粉箱 1 1を水平移動さ せる。 粉箱 1 1がキヤビティ C 1上に来ると、 その底部開口からコンパウンドは キヤビティ C 1へ落下しキヤビティ C 1を充填する。 粉箱 1 1は、 キヤビティ C 1にコンパウンドが満たされるまでその上を往復動する。 そして、 最終的にすり 切りがなされて、 キヤビティ C 1に規定のコンパウンドが充填される。 こうして、 コンパウンドの枰量、 充填が完了する。
本実施例では、 成形ダイ 3 2等に加熱ヒータを設けていないので、 金型温度は 室温 (3 0。C) である。 少なくとも、 コンパウンドの充填時にコンパウンドの接 触する成形ダイ 3 2、 下コア 3 5および下パンチ 3 7は室温程度である。 このた め、 充填時にコンパウンド中のエポキシ樹脂は軟化等せず、 キヤビティ C 1の壁 面 3 2 aや壁面 3 5 aに付着等することもなレ、。 従って、 コンパウンドは狭いキ ャビティ C 1内にもスムーズに充填される。 具体的には、 キヤビティ C 1の A部、 B部、 A, 部等のいずれにもコンパウンドが均等に粗密なく充填される。
なお、 本発明でいう第 1成形型は、 少なくとも成形ダイ 3 2、 下コア 3 5およ ぴ下パンチ 3 7によって構成される。 勿論、 第 1成形型に、 上コア 3 4、 上パン チ 3 6を加えても良い。
ここで、 コンパウンドを充填する際に、 仮に、 成形ダイ 3 2、 下コア 3 5およ び下パンチ 3 7が高温 (エポキシ榭脂の軟化点以上の温度) であ た場合、 コン パウンド中のエポキシ樹脂が軟化、 溶融してキヤビティ C 1の壁面 3 2 aや壁面 3 5 aに付着する。 その結果、 キヤビティ C 1の上部入口が部分的に閉塞状態と なって、 コンパウンドのスムーズな充填が妨げられる。 このような事態が特に発 生し易いのは、 上記図 2 ( a ) の A部若しくは A, 部である。 これは、 粉箱 1 1 の進行方向に対しての幅 Wが狭いからである。 一方、 B部等は、 壁面 3 2 aや壁 面 3 5 aにコンパウンドが付着等したとしても、 粉箱 1 1の移動方向にコンパゥ ンドの入口が実質的に広がっているため、 A部等に比較すればコンパウンドが充 填され易い。 このように、 同一リング状のキヤビティ C 1であっても、 成形ダイ 3 2等が高温となっていると、 コンパウンドの充填のされ方がキヤビティ C 1の 位置で異なってしまう。 その結果、 例えば、 上記 A部や A, 部ではコンパウンド が粗に充填され、 B部では密に充填されるといった密度の不均一が生じる。 この ような密度の不均一は、 キヤビティ C 1の幅 Wが狭い場合、 その後の加振等によ つても補正され得るものではないので、 本実施例のように、 金型温度を低温 (ェ ポキシ樹脂の軟化点未満の温度) に保持しておくことが非常に有効となる。 次に、 こうしてキヤビティ C 1に充填されたコンパゥンドを圧縮成形した。 こ の圧縮成形は、 先ず、 図 1に示すように、 コア駆動装置 2 0により上コア 3 4と 下コア 3 5とを当接させる。 そして、 パンチ駆動装置 2 1によって上パンチ 3 6 と下パンチ 3 7とを接近させて、 キヤビティ C 1内のコンパウンドを上下方向か ら加圧する。 こうして、 素形体 (粉末成形体) を得た (粉末成形工程) 。 なお、 このときの成形圧力は、 7 0 M P aとした。 また、 キヤビティ C 1へのコンパゥ ンドの充填から素形体が得られるまでに合計で 5秒要した。
( 2 ) 潤滑剤付与工程
上記枰量充填工程後に得られた素形体を第 1成形装置 3 0のキヤビティ C 1か ら取出した。 そして、 この素形体を混合潤滑剤に 2秒浸漬した。 使用した混合潤 滑剤は、 固体潤滑剤おょぴポリアルキルグリコールを順に 2 : 9 8の質量比で配 合し混合したものである。 なお、 表 1に示した試験片 N o . 8については、 この 潤滑剤付与工程を行わずに、 秤量充填工程後、 次の配向工程を直接行った。 固体 潤滑剤比は 1〜 3 0程度で使用できる。
( 3 ) 配向工程
配向工程は、 図 3に示す第 2成形装置 5 0を用いて行った。
この第 2成形装置 5 0は、 加熱源 5 1を備え中央に貫通した成形孔 5 3をもつ 筒状の成形ダイ 5 2と、 この成形孔 5 3の軸芯上方に延びる円柱状の上コア 5 4 と、 成形孔 5 3の軸芯下方に延びて上コア 5 4の下端面に当接し得る円柱状の下 コア 5 5と、 上コア 5 4または下コア 5 5の外周面と成形孔 5 3の内周面との間 に形成された筒状のキヤビティ C 2の上側に位置する円筒状の上パンチ 5 6と、 このキヤビティ C 2の下側に位置する筒状の下パンチ 5 7と、 上パンチ 5 6の上 端側に固定された上パンチ基部 5 8と、 下パンチ 5 7の下端側に固定された下パ ンチ基部 5 9と、 上コア 5 4および下コア 5 5を相互に近接させて加圧するコア 駆動装置 6 0と、 上パンチ基部 5 8およぴ下パンチ基部 5 9を相互に近接させて 加圧するパンチ駆動装置 6 1と、 さらに配向磁場装置 4 0とからなる。
ここで配向磁場装置 4 0は、 成形ダイ 5 2を中心に軸方向に対向して形成され た電磁コイル 4 1、 4 2からなる。 そして、 成形ダイ 5 2、 上パンチ 5 6および 下パンチ 5 7は非磁性材料で、 上コア 5 4、 下コア 5 5、 上パンチ基部 5 8およ ぴ下パンチ基部 5 9は磁性材料からなる。 そして、 配向磁場装置 4 0の電磁コィ ル 4 1、 4 2から出た磁力線は、 それらの磁性材料を通過して、 キヤビティ C 2 の中央付近から外周側に向けて放射状に向きを変え、 再ぴ各電磁コイル 4 1、 4 2に戻る。 この磁気回路の形成により、 キヤビティ C 2にはラジアル方向の磁場 が形成されて、 各磁石粉末はラジアル配向される (図 5参照) 。
ところで、 上記第 2成形装置 5 0のキヤビティ C 2に、 上記混合潤滑剤を浸透 させた素形体を載置し、 加熱、 配向および圧縮成形を施して予備成形体を製造し た。 先ず、 加熱は、 金型温度: 1 4 0 °Cで 5秒間保持して行った。 これにより、 コンパウンド中のエポキシ樹脂は軟化および溶融状態となった。 そして、 ェポキ シ樹脂の粘性が最も低下する前後から、 配向磁場装置 4 0によって配向磁場を 3 秒間印加した。 続いて、 1 9 6 M P aで圧縮成形して予備成形体を得た (予備成 形工程) 。 これらの各工程の間、 金型温度は 1 4 0 °Cで一定とした。 また、 キヤ ビティ C 2へ素形体を移送してから予備成形体が得られるまでに、 合計で 1 0秒 要した。 なお、 本発明でいう第 2成形型は、 本実施例の場合、 成形ダイ 5 2、 上 コア 5 4、 下コア 5 5、 上パンチ 5 6およぴ下パンチ 5 7により構成される。
( 4 ) 緻密結合工程
緻密結合工程は、 図 4に示す第 3成形装置 7 0を用いて行った。
この第 3成形装置 7 0は、 中央に貫通した成形孔 7 3をもつ筒状の成形ダイ 7 2と、 この成形孔 7 3の軸芯上方に延びる円柱状の上コア 7 4と、 成形孔 7 3の 軸芯下方に延びて上コア 7 4の下端面に当接し得る円柱状の下コア 7 5と、 上コ ァ 7 4または下コア 7 5の外周面と成形孔 7 3の内周面との間に形成された筒状 のキヤビティ C 3の上側に位置する円筒状の上パンチ 7 6と、 このキヤビティ C 3の下側に位置する筒状の下パンチ 7 7と、 上パンチ 7 6の上端側に固定された 上パンチ基部 7 8と、 下パンチ 7 7の下端側に固定された下パンチ基部 7 9と、 上コア 7 4および下コア 7 5を相互に近接させて加圧するコア駆動装置 8 0と、 上パンチ基部 7 8および下パンチ基部 7 9を相互に近接させて加圧するパンチ駆 動装置 8 1とからなる。
ところで、 上記第 3成形装置 7 0のキヤビティ C 3に、 上記予備成形体を载置 して、 加熱圧縮成形を施してポンド磁石成形体を製造した。 この加熱圧縮成形は、 金型温度: 1 5 0 °C、 成形圧力: 7 8 4 M P aとして、 5秒間保持して行った。 これにより、 前記予備成形体はより緻密化されエポキシ樹脂が硬化して、 寸法精 度の高いポンド磁石成形体となった。 なお、 キヤビティ C 3への予備成形体を移 送してからボンド磁石成形体が得られるまでに、 合計で 8秒要した。
なお、 本発明でいう第 3成形型は、 本実施例の場合、 成形ダイ 7 2、 上コア 7 4、 下コア 7 5、 上パンチ 7 6および下パンチ 7 7により構成される。 また、 本 実施例では、 秤量充填工程から配向工程、 配向工程から緻密結合工程への移送は、 各成形体をカセットに保持させて自動的に移送させた。
( 5 ) その他
上記ボンド磁石成形体に対して、 エポキシ樹脂を十分に硬化させるために、 1 5 0 °Cの炉中に 3 0分間入れて熱硬化処理を施した。
さらに、 この処理後のポンド磁石成形体に対して、 内周側を S極、 外周側を N 極とする 8磁極の着磁を等間隔で施した。 この着磁は、 パルス着磁の条件で、 3 5 k A Tの起磁力で行った。 こうして、 図 5に示すようなラジアル配向した 8磁 極のリング状ボンド磁石が得られた。
(試験片の測定)
こうして得られた各リング状ポンド磁石について、 磁気特性を測定した。 その 結果を表 1に併せて示した。 磁気特性は、 ボンド磁石の周方向に沿って表面磁束 を連続的に測定して求めた。 表 1は、 そのときの表面磁束の最大値と、 この最大 値と表面磁束の最小値との差である表面磁束の変動幅を示した。 (比較例)
比較例として、 前記特許文献 2 (特開平 10— 221 53号公報) に示した 2 段成形により実施例と同様のリング状ボンド磁石を製造し、 その磁気特性を測定 した結果を表 1に併せて示した。 なお、 この比較例は、 金型温度: 140°Cのキ ャビティへコンパウンドを充填し、 同温度で予備成形を行ったものである。
(その他の実施例)
その他の実施例として、 上記秤量充填工程中の金型温度を 60°Cとして、 試験 片 No. 4と同様のポンド磁石を製造した。 その磁気特性を測定した結果を表 2 に示した。 なお、 表 2には、 比較のために、 試験片 No. 4および試験片 No. C 4についても併せて示した。
(評価)
(1) 表 1の試験片 No. 3〜7と試験片 No. C3〜7とを比較すると、 表面 磁束の最大値には大差がないものの、 表面磁束の変動幅は大きく異なった。 すな わち、 実施例のものは表面磁束のバラツキが全周に渡って非常に小さく、 磁気特 性が均一なものであった。 これに対し、 比較例のものは、 そのバラツキが非常に 大きいものであった。 特に、 リング状ボンド磁石の厚さ (W) が小さくなる程そ の傾向が強く、 例えば、 試験片 No. C 3のものは、 試験片 No. 3のものに対 して、 そのパラツキが約 10倍にもなつている。 逆に言えば、 実施例の場合、 磁 気特性のバラッキを従来の約 1 Z 1 0に抑止できたことになる。
さらに、 試験片 No. C l、 C 2を観れば明らかなように、 相対幅比が 4以下 の薄肉ボンド磁石の場合、 従来の製造方法ではそもそもその成形自体ができなか つた。 これに対し、 実施例の試験片 No. 1、 2のように、 本発明の製造方法を 採用した場合は、 割れ等を生じることもなく、 薄肉ポンド磁石の成形が何ら問題 なく行えた。 しかも、 試験片 No. 1、 2の場合も、 磁気特性のバラツキは非常 に小さいものであった。
もっとも、 試験片 N o. C 7を観れば解るように、 相対幅比が 20程度まで拡 大してくると、 コンパウンドの充填通路が確保されて、 表面磁束の変動幅も小さ くなっている。
また、 試験片 N o . 7と試験片 N o . 8とを比較すれば解るように、 潤滑剤付 与工程を行うことで、 表面磁束の変動幅に変化はないものの、 表面磁束が向上す ることが明らかとなった。 ちなみに、 本癸明者の研究に依ると、 この潤滑剤付与 工程を行うことで、 表面磁束が 5〜1 0 %向上することが明らかとなっている。
( 2 ) 表 2の試験片 N o . 8を観れば解るように、 上記秤量充填工程中の金型温 度が 6 0 °Cであっても、 金型温度が 3 0 °Cのときと大差なくボンド磁石の成形が 行えた。 さらに、 それらのボンド磁石の磁気特性も大差がないことが確認できた。 このことから、 熱硬化性樹脂 (エポキシ樹脂) の軟化点 (9 7 °C (加熱混練 後) ) より金型温度が小さい限り、 本発明の製造方法は十分に効果を発揮すると 考えられる。
ポンド磁石の内径 ポンド磁石の厚み 相対幅比 表面磁束の 表面磁束の変動幅
(キヤビティの内径) (W) (W/d) 最大値 (最大値一最小値)
N。 . 備考
mnru 、mm) (mT) (mT)
1 Φ29.6 0.2 2 70 1.5
2 Φ29.2 0.4 4 120 2.0 3段成形
3 Φ28.6 0.7 7 180 3.0 φ
τ 1景 _¾:ン^し Jja11
4 Φ28.0 1.0 10 230 2.5 金型温度: 30°C 施
例 5 Φ27.6 1.2 12 250 2.5
試験片 No. 8
6 Φ27.0 1.5 15 280 2.5 :潤滑剤付与工程な
7 Φ26.0 2.0 20 320 3.0 し
8 Φ26.0 2.0 20 300 3.0
C1 Φ29.6 0.2 2 成形不能 . —
C2 Φ29.2 0.4 4 ί —
2段成形 比 C3 Φ28.6 0.7 7 150 30.0
較 C4 Φ28.0 1.0 10 220 23-0 秤量充填中の 例 金型温度: 140°C
C5 Φ27.6 1.2 12 250 18.0
C6 Φ27.0 1.5 15 280 15.0
C7 Φ26.0 2.0 20 320 12.0
ポンド磁石の外径: 03Ommx高さ: 20mm
コンパウンドの平均粒径 d:0. 1mm
表 2
Figure imgf000024_0001
ボンド磁石の外径: φ 30mmx内径 φ 28mmx高さ: 20mm (厚み W: 1 mm) コンパウンドの平均粒径 d:0. 1mm
相対幅比 (WZd):10

Claims

請求の範囲
1 . 異方性磁石粉末と熱硬化性樹脂とからなるコンパウンドを、 壁面温度が該熱 硬化性樹脂の軟ィヒ点未満であるキヤビティに秤量充填する秤量充填工程と、 該秤量充填されたコンパゥンドまたは該コンパゥンドの粉末成形体を該軟化点 以上に加熱し該熱硬化性樹脂を軟化状態または溶融状態としつつ、 配向磁場を印 加して該異方性磁石粉末を配向させる配向工程と、
該配向工程後に、 該異方性磁石粉末およぴ該熱硬化性樹脂を加熱圧縮成形して、 該配向した異方性磁石粉末を該熱硬化性樹脂によって緻密に結合させたボンド磁 石成形体とする緻密結合工程と、
を備えることを特徴とするボンド磁石の製造方法。
2 . 前記秤量充填工程のキヤビティの最小幅 (W) は、 前記コンパウンドの平均 粒径 ( d ) に対する相対幅比 (W/ d ) が 1〜1 5であるクレーム 1に記載のポ ンド磁石の製造方法。
3 . 前記秤量充填工程は、 前記コンパウンドを内部に蓄えて底部が開口した粉箱 を、 前記キヤビティの開口上を水平移動させる工程であり、
前記最小幅 (W) は、 該粉箱の移動方向に沿ったものであるクレーム 2に記載 のボンド磁石の製造方法。
4. 前記秤量充填工程のキヤビティは有底円筒状であり、 該キヤビティの内外周 の半径差が前記最小幅 (W) であるクレーム 2に記載のボンド磁石の製造方法。
5 . 前記秤量充填工程のキヤビティは有底円筒状であり、 該キヤビティの内外周 の半径差が前記最小幅 (W) であるクレーム 3に記載のボンド磁石の製造方法。
6 . 前記秤量充填工程は、 前記キヤビティに充填されたコンパウンドを圧縮成形 して前記配向工程に供される前記粉末成形体とする粉末成形工程を含むクレーム 1に記載のボンド磁石の製造方法。
7 . 前記配向工程は、 さらに、 前記配向した異方性磁石粉末および前記熱硬化性 樹脂を加熱圧縮成形して、 前記緻密結合工程に供する予備成形体とする予備成形 工程を含むクレーム 1に記載のボンド磁石の製造方法。
8 . 前記秤量充填工程は、 第 1成形型で行い、
前記配向工程は、 該第 1成形型とは別の第 2成形型で行い、
前記緻密結合工程は、 該第 1成形型およぴ該第 2成形型とは別の第 3成形型で 行うクレーム 1に記載のボンド磁石の製造方法。
9 . 前記秤量充填工程は、 第 1成形型で行い、
前記配向工程は、 該第 1成形型とは別の第 2成形型で行い、
前記緻密結合工程は、 該第 1成形型および該第 2成形型とは別の第 3成形型で 行うクレーム 6に記載のボンド磁石の製造方法。
1 0 . 前記秤量充填工程は、 第 1成形型で行い、
前記配向工程は、 該第 1成形型とは別の第 2成形型で行い、
前記緻密結合工程は、 該第 1成形型およぴ該第 2成形型とは別の第 3成形型で 行うクレーム 7に記載のボンド磁石の製造方法。
1 1 . 前記配向工程前に、 前記秤量充填工程後に得られた粉末成形体の少なくと も表面へ潤滑剤を付与する潤滑剤付与工程を備えるクレーム 1に記載のボンド磁 石の製造方法。
1 2 . 前記潤滑剤は、 オイル中に固体潤滑剤を混合した混合潤滑剤であるクレー ム 1 1に記載のボンド磁石の製造方法。
1 3 . 前記オイルは、 少なくとも前記配向工程の加熱中に変質せず、 前記異方性 磁石粉末の磁気特性を劣化させない化合物であるクレーム 1 2に記載のボンド磁 石の製造方法。
2
5
PCT/JP2004/006013 2003-05-20 2004-04-26 ボンド磁石の製造方法 WO2004105062A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003142257A JP3675452B2 (ja) 2003-05-20 2003-05-20 ボンド磁石の製造方法
JP2003-142257 2003-05-20

Publications (1)

Publication Number Publication Date
WO2004105062A1 true WO2004105062A1 (ja) 2004-12-02

Family

ID=33475047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006013 WO2004105062A1 (ja) 2003-05-20 2004-04-26 ボンド磁石の製造方法

Country Status (2)

Country Link
JP (1) JP3675452B2 (ja)
WO (1) WO2004105062A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220059286A1 (en) * 2019-01-14 2022-02-24 Taiyuan Kaiyuan Intelligent Equipment Co., Ltd. Manufacturing method for anisotropic bonded magnet
EP4000766A1 (en) * 2020-11-24 2022-05-25 Siemens Gamesa Renewable Energy A/S Method of manufacturing a permanent magnet using a magnetic material mold

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100642218B1 (ko) 2005-02-23 2006-11-03 (주)대한특수금속 희토류계 자석 제조용 자장 프레스 장치
CN101593590B (zh) * 2009-04-10 2012-03-28 华中科技大学 一种温压成型酚醛树脂粘结Nd-Fe-B磁体的制备方法
JP6608643B2 (ja) * 2015-07-31 2019-11-20 日立化成株式会社 Nd−Fe−B系ボンド磁石用樹脂コンパウンド、Nd−Fe−B系ボンド磁石及びその製造方法
JP7461852B2 (ja) * 2020-10-22 2024-04-04 株式会社デンソー ボンド磁石の製造方法
WO2024028989A1 (ja) * 2022-08-02 2024-02-08 愛知製鋼株式会社 予成形体、予成形方法および圧縮ボンド磁石の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167513A (ja) * 1994-12-15 1996-06-25 Sumitomo Metal Ind Ltd ボンド型永久磁石とその製造方法
JPH09129465A (ja) * 1995-10-30 1997-05-16 Daido Steel Co Ltd Nd−Fe−B系磁石の製造方法
JPH09312230A (ja) * 1996-03-19 1997-12-02 Sumitomo Special Metals Co Ltd 異方性ボンド磁石の製造方法
JPH1022153A (ja) * 1996-07-04 1998-01-23 Aichi Steel Works Ltd 磁気異方性樹脂結合型磁石の製造方法
JP2003059030A (ja) * 2001-08-20 2003-02-28 Fuji Photo Film Co Ltd 六方晶系フェライト粉末及びそれを含む磁気記録媒体
WO2003038845A1 (fr) * 2001-10-31 2003-05-08 Sumitomo Special Metals Co., Ltd. Presse et procede de fabrication d'un aimant permanent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167513A (ja) * 1994-12-15 1996-06-25 Sumitomo Metal Ind Ltd ボンド型永久磁石とその製造方法
JPH09129465A (ja) * 1995-10-30 1997-05-16 Daido Steel Co Ltd Nd−Fe−B系磁石の製造方法
JPH09312230A (ja) * 1996-03-19 1997-12-02 Sumitomo Special Metals Co Ltd 異方性ボンド磁石の製造方法
JPH1022153A (ja) * 1996-07-04 1998-01-23 Aichi Steel Works Ltd 磁気異方性樹脂結合型磁石の製造方法
JP2003059030A (ja) * 2001-08-20 2003-02-28 Fuji Photo Film Co Ltd 六方晶系フェライト粉末及びそれを含む磁気記録媒体
WO2003038845A1 (fr) * 2001-10-31 2003-05-08 Sumitomo Special Metals Co., Ltd. Presse et procede de fabrication d'un aimant permanent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220059286A1 (en) * 2019-01-14 2022-02-24 Taiyuan Kaiyuan Intelligent Equipment Co., Ltd. Manufacturing method for anisotropic bonded magnet
EP4000766A1 (en) * 2020-11-24 2022-05-25 Siemens Gamesa Renewable Energy A/S Method of manufacturing a permanent magnet using a magnetic material mold
WO2022111876A1 (en) * 2020-11-24 2022-06-02 Siemens Gamesa Renewable Energy A/S Method of manufacturing a permanent magnet using a magnetic material mold

Also Published As

Publication number Publication date
JP3675452B2 (ja) 2005-07-27
JP2004349337A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
CN1129151C (zh) 磁各向异性的树脂结合型磁体的制造方法
CN102844826A (zh) 外壳一体型粘结磁铁及其制造方法
EP0452580A1 (en) A resin bound magnet and its production process
JP2004529508A (ja) 誘導素子とその製造方法
US9666361B2 (en) Rare-earth bond magnet manufacturing method
WO2004105062A1 (ja) ボンド磁石の製造方法
JP3554604B2 (ja) 圧粉体成形方法及び該方法に使用するゴムモールド
JP3060104B2 (ja) ラジアル配向した磁気異方性樹脂結合型磁石及びその製造方法
JPH10259403A (ja) 圧縮成形装置および圧縮成形方法
JP2021190706A (ja) 異方性結合磁石およびその作製方法
CN113539668A (zh) 一种电感的线圈封装制造方法
JP3883138B2 (ja) 樹脂ボンド磁石の製造方法
JPH104023A (ja) ボンド型永久磁石の製造方法
JPH0831677A (ja) 磁気異方性樹脂結合型磁石の製造方法および磁気異方性樹脂結合型磁石
JPH09186012A (ja) 磁気異方性樹脂結合型磁石
JP3417633B2 (ja) 磁場中押出成形方法とその成形機
JP2020009886A (ja) 焼結磁石の製造方法
JPH1145816A (ja) 環状Fe−B−R系樹脂磁石の製造方法
JP2002237406A (ja) 磁気異方性樹脂結合型磁石の製造方法
JPH1012472A (ja) 希土類ボンド磁石の製造方法
JPH0645167A (ja) 等方性ボンド磁石の製造方法
JP2005209947A (ja) プラスチック磁石及びその製造方法
JP2010262996A (ja) 希土類系永久磁石およびその製造方法
JP2021129064A (ja) 希土類ボンド磁石成形体の製造方法
JPH06302418A (ja) ボンド型永久磁石およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase