WO2004102703A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2004102703A1
WO2004102703A1 PCT/JP2004/006869 JP2004006869W WO2004102703A1 WO 2004102703 A1 WO2004102703 A1 WO 2004102703A1 JP 2004006869 W JP2004006869 W JP 2004006869W WO 2004102703 A1 WO2004102703 A1 WO 2004102703A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
negative electrode
electrode plate
positive electrode
secondary battery
Prior art date
Application number
PCT/JP2004/006869
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Shoji
Emiko Igaki
Masakazu Tanahashi
Toshikazu Nakamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005506258A priority Critical patent/JPWO2004102703A1/en
Publication of WO2004102703A1 publication Critical patent/WO2004102703A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to, for example, a lithium ion secondary battery.
  • the battery characteristics of non-aqueous electrolyte secondary batteries are determined by various factors.
  • One of the factors that affect battery characteristics is the variation in internal battery resistance (internal resistance).
  • the internal resistance is the resistance generated by the current collector, the active material, the electrolyte, etc. arranged inside the battery. If the variation of the internal resistance becomes large, the current distribution inside the battery becomes uneven, and there is a possibility that the battery characteristics (for example, charge and discharge cycle characteristics and high rate (charge rate) characteristics may be degraded. For this reason, it is required to suppress the variation in internal resistance as much as possible.
  • Japanese Patent Laid-Open No. 10-261441 discloses a technique of providing a plurality of leads attached to a current collector in order to suppress variations in internal resistance.
  • Japanese Patent Application Laid-Open No. 2000-21453 discloses a technique for reducing the thickness of the positive electrode active material as it is separated from the lead portion.
  • Japanese Patent Application Laid-Open No. 10-261441 when the number of leads attached to the current collector is increased, the active material disposed on the current collector corresponding to the area to which the leads are attached The area of the layer must be reduced. This may reduce the capacity of the battery.
  • the manufacturing process becomes more complicated because multiple leads are attached.
  • Japanese Patent Application Laid-Open No. 2000-21453 when the thickness of the positive electrode active material layer is changed, the manufacturing process may be complicated and the manufacturing cost may be increased.
  • the present invention relates to a non-aqueous electrolyte secondary battery having excellent battery characteristics represented by, for example, charge and discharge cycle characteristics and high rate charge and discharge characteristics by suppressing variation in internal resistance of the battery.
  • the purpose is to provide Disclosure of the invention
  • the non-aqueous electrolyte secondary battery of the present invention comprises an electrode plate group including a positive electrode plate, a negative electrode plate, and a separator, and a non-aqueous electrolyte, wherein the electrode plate group comprises the positive electrode plate and the negative electrode plate.
  • the positive electrode plate has a shape obtained by laminating and winding through the separator, and the positive electrode plate includes a strip-shaped first current collector, and a positive electrode active material layer disposed on the first current collector.
  • FIG. 1 is a cross-sectional view schematically showing an example of the non-aqueous electrolyte secondary battery of the present invention.
  • FIGS. 2A to 2C are schematic equivalent circuit diagrams for explaining the variation of the internal resistance of the battery.
  • FIG. 3A is a cross-sectional view schematically showing an example of a positive electrode plate used for the non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 3B is a plan view schematically showing an example of a positive electrode plate used for the non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 4A is a cross-sectional view schematically showing an example of a negative electrode plate used for the non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 4B is a plan view schematically showing an example of the negative electrode plate used for the non-aqueous electrolyte secondary battery of the present invention.
  • the non-aqueous electrolyte secondary battery 20 shown in FIG. 1 (hereinafter simply referred to as “second battery 20” or “battery 20”) is an electrode plate including a positive electrode plate 1, a negative electrode plate 3 and a separator 5. It is equipped with group 1 1 and a non-aqueous electrolyte (not shown). Both of the electrode group 11 and the non-aqueous electrolyte are housed inside the battery case 8.
  • the electrode plate group 11 has a shape in which a positive electrode plate 1 and a negative electrode plate 3 are stacked via a separator 5 and wound.
  • the positive electrode plate 1 includes a strip-shaped positive electrode current collector (first current collector), a positive electrode active material layer disposed on the positive electrode current collector, and a positive electrode lithium electrically connected to the positive electrode current collector.
  • the negative electrode plate 3 includes a strip-shaped negative electrode current collector (second current collector) and a negative electrode active material layer disposed on the negative electrode current collector. And a negative electrode lead (second lead) 4 electrically connected to the negative electrode current collector 4. Specific configuration examples of the positive electrode plate 1 and the negative electrode plate 3 will be described later.
  • the value of the ratio (R 2 / R 1) of the electric resistance value R 2 per unit may be in the range of 0.85 or more and 1.5 or less, and the value of the ratio is 0.9 or more and 1.14 or less. It is preferable to be in the range of
  • the units R 1 and R 2 are values given by, for example, ⁇ cm.
  • the electrical resistance values of the positive electrode current collector and the negative electrode current collector can be made substantially the same. Therefore, it is possible to suppress variations in internal resistance of the battery, and to obtain a secondary battery excellent in battery characteristics such as charge and discharge cycle characteristics and high rate charge and discharge characteristics.
  • R 2 in the negative electrode current collector tends to be smaller than that of R 1 in the positive electrode current collector.
  • a strip-shaped positive electrode current collector made of aluminum foil When the thickness and the width of the negative electrode current collector are the same as each other, the value of the ratio (R 2Z R 1) is about 0.63. This value can be determined from the volume resistance of aluminum (2. 7 X 1 0 6 ⁇ ⁇ cm) and the volume resistivity of copper (1. 7 X 1 0- 6 ⁇ ⁇ cm).
  • FIG. 2A An equivalent circuit representing the resistance component when the conduction path inside the secondary battery is schematically divided into seven is shown in FIG. 2A.
  • R p 1 to R p 7 reflect the resistance value of each portion of the positive electrode current collector 1 a.
  • R nl to R n 7 indicate the resistance value of each part of the negative electrode current collector 3 a
  • R s 1 to R s 7 indicate the respective electrolytes disposed between the positive electrode plate 1 and the negative electrode plate 3. It reflects the resistance value of the part.
  • R p 1 to R p 7 all have the same value
  • R n l to R n 7 all have the same value
  • R s 1 to R s 7 all have the same value.
  • the resistance value of the conductive path through the electrolyte resistance R s 1 is represented by the equation R nl + R s 1 + R p 1 + R p 2 + R p 3 + R p 4 as shown in FIG. 2B. It is approximated by + R p 5 + R p 6 + R p 7, ie by the formula R nl + R sl + 7 XR pl. Also, as shown in FIG.
  • the resistance per unit length in the longitudinal direction of the positive electrode current collector is greater than the resistance per unit length in the longitudinal direction of the negative electrode collector. If the value R 2 is smaller, then (resistance of the conductive path through R s 1)> (resistance of the conductive path through R s 7). Expressing in more detail including the conduction path through R s 2 to R s 6 (resistance of conduction path through R s 1)> (resistance of conduction path through R s 2)> (R s Resistance of the conduction path through 3)> ⁇ ⁇ ⁇ > (Conduction through R s 6 Resistance of the electrical path)> (resistance of the conductive path via R s 7).
  • FIG. 2A when the positive electrode lead and the negative electrode lead are disposed on the respective electrode plates so as to be most distant from each other (for example, as shown in FIG. 1, the positive electrode lead 2 is in the electrode plate group 11).
  • the negative electrode lead 4 is disposed at the outer peripheral portion of the electrode assembly 11 in the core portion.
  • the variation in internal resistance due to the conductive path is expected to be larger. Even in such a case, variation in internal resistance of the battery can be suppressed by setting the ratio of R 2 to R 1 (R 2 / R 1) in the above-mentioned range.
  • the positive electrode lead 2 is attached to the positive electrode plate 1 (positive electrode plate 1 positioned at the innermost periphery in the electrode plate group 11) of the core portion (unwound core portion) of the electrode plate group 11. Is arranged. More specifically, the positive electrode lead 2 is electrically connected to the end of the positive electrode plate 1 located at the core of the electrode plate group 11. Also, The negative electrode lead 4 is disposed on the negative electrode plate 3 (the negative electrode plate 3 located at the outermost periphery of the electrode plate group 11) in the outer peripheral portion of the electrode plate group 11. More specifically, the negative electrode lead 4 is electrically connected to the end of the negative electrode plate 3 located on the outer peripheral portion of the electrode plate group 11.
  • the positive electrode lead 2 is connected to the positive electrode plate 1 (the positive electrode plate 1 positioned on the outermost periphery of the electrode plate group 11) at the outer peripheral portion of the electrode plate group 11, the negative electrode lead 4 is connected to the electrode plate group 11 It may be disposed on the core negative electrode plate 3 (the negative electrode plate 3 located at the innermost periphery in the electrode plate group 11).
  • FIG. 3A, FIG. 3B, FIG. 4A and FIG. 4B Examples of the positive electrode plate 1 and the negative electrode plate 3 which realize such a configuration are shown in FIG. 3A, FIG. 3B, FIG. 4A and FIG. 4B.
  • 3A and 4A are cross-sectional views
  • FIGS. 3B and 4B are plan views.
  • the positive electrode plate 1 includes a strip-shaped positive electrode current collector 1a and an active material layer (positive electrode active material layer) 1b formed on both sides of the positive electrode current collector 1a.
  • the positive electrode lead 2 is electrically connected to one end of the positive electrode current collector 1 a in the longitudinal direction.
  • the negative electrode plate 3 includes a strip-like negative electrode current collector 3a and active material layers (negative electrode active material layers) 3b formed on both sides thereof.
  • the negative electrode lead 4 is electrically connected to one end of the negative electrode current collector 3 a in the longitudinal direction.
  • the width of the positive electrode current collector la (the width in the short direction) and the width of the negative electrode current collector 3 a (the width in the short direction) are substantially the same.
  • Such a positive electrode plate 1 and a negative electrode plate 3 are stacked via a separator so that the positive electrode lead 2 and the negative electrode lead 4 are farthest from each other, and are rolled up. It can be one.
  • FIG. 3A to 4B schematically show an example of the positive electrode plate 1 and the negative electrode plate 3, and the positive electrode plate and the negative electrode plate used in the secondary battery of the present invention are as shown in FIG. 3A to FIG. It is not limited to the example shown to 4B.
  • the positive electrode current collector la length The positive electrode lead 2 may be disposed at any place in the manual direction. The same applies to the relationship between the negative electrode current collector 3 a and the negative electrode lead 4.
  • the positive electrode lead 2 may not be disposed in the core portion or the outer peripheral portion, or the negative electrode lead 4 may not be disposed in the core portion or the outer peripheral portion. It is also good.
  • the value of the ratio (R 2 / R 1) changes the thickness of the current collector, and / or the material and material of the current collector (for example, the type or composition of the elements constituting the current collector), etc. Can be controlled by For example, the materials used between the positive electrode current collector and the negative electrode current collector are generally different from each other because the potentials (electrochemical potentials) that can be taken by the electrode plates are different.
  • the electrical resistivity (for example, volume resistivity) of the material used for the positive electrode current collector is different from the electrical resistivity of the material used for the negative electrode current collector, for example, the positive electrode current collector
  • the thickness of the current collector and the thickness of the negative electrode current collector may be different from each other (specifically, for example, the thickness of the current collector using a material having a relatively large volume resistivity is relatively small. It should be larger than the thickness of the current collector using the material). That is, the materials used for the positive electrode current collector and the negative electrode current collector may be different from each other, and the thickness of the positive electrode current collector may be different from the thickness of the negative electrode current collector.
  • the electrical resistivity of the material used for the positive electrode current collector may be substantially the same as the electrical resistivity of the material used for the negative electrode current collector. Specific examples will be described later.
  • the value of the ratio (R 2 // R 1) by changing the shape of the current collector.
  • at least one current collector selected from the positive electrode current collector and the negative electrode current collector has pores, and the porosity of the positive electrode current collector and the porosity of the negative electrode current collector are mutually different. It may be different. More specifically, for example, the at least one current collector is It is sufficient to have a plurality of through holes. As the porosity is increased, the electrical resistance value of the current collector can be increased. In addition, the porosity of the current collector may be changed by laser processing, etching, or the like.
  • the value of the ratio (R 2 ZR 1) satisfies the range of 0.8 or more and 1.5 or less (preferably 0.9 or more and 1.4 or less).
  • at least one selected from the thickness of the positive electrode current collector and the thickness of the negative electrode current collector, the porosity, and the material (material) to be used may be controlled.
  • 0 includes an upper insulating plate 6, a lower insulating plate 7, an insulating gasket 9, and a lid 10.
  • the open end of battery case 8 is sealed with insulation gasket 9 and lid 10.
  • the upper insulating plate 6 is disposed on the top of the plate group 11 in order to insulate the plate group 1 1 and the lid 10 from each other.
  • the lower insulating plate 7 is disposed below the plate group 11 in order to insulate the plate group 1 1 and the battery case 8 from each other.
  • the positive electrode lead 2 electrically connects the lid 10 serving as the positive electrode terminal and the positive electrode plate 1
  • the negative electrode lead 4 electrically connects the battery case 8 serving as the negative electrode terminal and the negative electrode plate 3. ing. These members may be provided as needed.
  • the type of the secondary battery 20 of the present invention is not particularly limited.
  • various secondary batteries such as a lithium secondary battery and a nickel hydrogen battery may be used.
  • the type of the secondary battery can be determined by selecting the types of the positive electrode active material used for the positive electrode plate 1, the negative electrode active material used for the negative electrode plate 3, and the non-aqueous electrolyte.
  • the positive electrode active material layer 1 b and the negative electrode active material layer 3 b may each include a positive electrode active material and a negative electrode active material capable of reversibly absorbing and desorbing lithium, and the non-aqueous electrolyte may have lithium conductivity.
  • the secondary battery 20 of the present invention can be a lithium secondary battery.
  • each member included in the secondary battery of the present invention will be described by taking a lithium secondary battery as an example.
  • the materials used for each member are not limited to the examples shown below, and materials generally used for secondary batteries may be used. However, depending on the type of secondary battery, it is necessary to select the material to be used.
  • the positive electrode current collector la for example, aluminum may be used.
  • the thickness of the positive electrode current collector is, for example, 1 0 ⁇ ! It is in the range of ⁇ 6 0 / X m.
  • the thickness of the negative electrode current collector 3a is 0.56 times the thickness of the positive electrode current collector 1a to 0.5. It should be 7 7 times range.
  • the value of the ratio (R 2 / R 1) can be in the range of 0.85 or more and 1.15 or less.
  • the thickness of copper as the negative electrode current collector 3a with respect to the thickness of the aluminum current collector 1a is not limited to the range of 0.56 times to 0.77 times as described above, For example, the width, shape, etc. of each current collector may be adjusted arbitrarily.
  • the value of the ratio (R 2 / R 1) should be within the range of 0.85 to 1.15.
  • brass When aluminum is used as the positive electrode current collector 1 a, for example, brass may be used as the negative electrode current collector 3 a.
  • Brass is an alloy containing copper and zinc, and the electrical resistance value can be changed by changing the composition ratio of zinc. Specifically, for example, by setting the zinc content in brass in the range of about 5 atomic% to 7 atomic%, it is possible to obtain brass having an electric resistance value substantially the same as the electric resistance value of aluminum aluminum. it can . That is, by using brass of the above composition as the negative electrode current collector 3a, the ratio of the thickness of the positive electrode current collector 1a to the thickness of the negative electrode current collector 3a is almost the same. The value of) can be in the above mentioned range.
  • the value of the ratio (R 2 R 1) is set to 0.85 or more and 1.15 or less (by adjusting the material and thickness used for the current collector). Preferably, it should be in the range of 0.90 to 1.14).
  • the constitution, structure and the like of the positive electrode active material layer lb are not particularly limited as long as the positive electrode active material layer lb contains a positive electrode active material capable of reversibly absorbing and desorbing lithium.
  • a positive electrode active material layer used in a general lithium secondary battery.
  • the material used for the positive electrode active material is not particularly limited as long as it can occlude and release lithium reversibly, and for example, lithium cobaltate (LiCoO 2 ) may be used.
  • lithium-transition metal compounds containing lithium ions as guest ions may be used.
  • lithium-transition metal compound for example, a composite oxide of lithium and at least one transition metal selected from cobalt, manganese, nickel, chromium, iron and vanadium may be used.
  • a composite oxide of lithium and at least one transition metal selected from cobalt, manganese, nickel, chromium, iron and vanadium may be used.
  • the structure, structure, and the like of the negative electrode active material layer 3 b are not particularly limited as long as the negative electrode active material layer 3 b includes a negative electrode active material capable of reversibly absorbing and desorbing lithium.
  • the negative electrode active material layer 3 b may be a negative electrode active material layer used for a general lithium secondary battery.
  • the material used for the negative electrode active material is not particularly limited as long as it can occlude and release lithium reversibly, for example, a carbon material, more specifically, for example, a carbon material obtained by firing Cotas or pitch, Graphite such as artificial graphite and natural graphite may be used.
  • the shape of the negative electrode active material is preferably spherical, flaky or massive.
  • the negative electrode active material in addition to the above-mentioned carbon material, for example, an alloy containing silicon, a silicon compound, tin, zinc or the like may be used.
  • the separator 5 can maintain the electrical insulation between the positive electrode plate 1 and the negative electrode plate 3 and can hold the non-aqueous electrolyte having lithium conductivity, the structure, material used, etc. It is not particularly limited.
  • a separator used for a general lithium secondary battery may be used.
  • a microporous polyolefin resin containing polyethylene resin, polypropylene resin and the like may be used.
  • the thickness of the separator 5 is, for example, in the range of 15 ⁇ to 30 ⁇ m.
  • the non-aqueous electrolyte is not particularly limited as long as it has lithium conductivity.
  • a non-aqueous electrolyte having lithium conductivity may be used.
  • an electrolyte obtained by dissolving an electrolyte containing lithium in a non-aqueous solvent may be used.
  • non-aqueous solvent for example, carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, jetyl carbonate and the like, or ⁇ -butyrolatan, 1,2-dimethoxetane, 1,2-dichloroethane, 1, 3-Dimethyoxypropane, 4-Methole-2-ylpentanone, 1, 4-Dioxane, Acetotrinole, Propioditrinole, Butyronitrinole, Norellonitrinole, Benzonitrinole, Snorolephoran, 3-Methinorace Norephora, Tetrahydriflophane, 2 -Methyl tetrahydrofuran, dimethyl formamide, dimethyl sulfoxide, dimethyl formamide, trimethyl phosphate, triethyl phosphate etc. may be used. Two or more of the non-aqueous solvents described above may be mixed and used.
  • a lithium salt having a high electron-withdrawing property may be used for the electrolyte to be dissolved in the non-aqueous solvent.
  • a lithium salt having a high electron-withdrawing property for example, L i PF 6 , L i BF 4 , L i C L O 4 , L i A s F L i CF 3 S 0 3 , L i N (SO 2 CF 3 ) 2 , L i N (SO 2 C 2 F 5 ) 2 , Li c (SO 2 CF 3 ) 3 or the like may be used. Just do it.
  • Two or more of the electrolytes described above may be combined and dissolved in a non-aqueous solvent.
  • the concentration of the electrolyte in the non-aqueous solvent is not particularly limited, and may be, for example, in the range of 0.50 mo 1/1 to 1 .5 mo 1 1.
  • the manufacturing method of the secondary battery of this invention is shown.
  • the manufacturing method described below is merely an example, and it is possible to manufacture the secondary battery of the present invention, for example, using a general method for manufacturing a secondary battery.
  • a negative electrode active material and a binder are dispersed in an organic solvent and kneaded to prepare a negative electrode paste.
  • the prepared negative electrode paste is applied to the surface of a strip-like negative electrode current collector and dried, and then the obtained sheet is rolled to obtain the surface of the negative electrode current collector (even on one side or both sides
  • the negative electrode plate 3 having the negative electrode active material layer formed thereon can be obtained.
  • the rolling process may be omitted.
  • the electrical resistance value R 2 per unit length in the longitudinal direction of the negative electrode current collector and the electrical resistance value R 1 per unit length in the longitudinal direction of the positive electrode current collector described later in the method of manufacturing the positive electrode plate The value of the ratio (R 2 / R 1) with respect to is preferably in the range of 0.85 or more and 1.55 or less (preferably 0.9 or more and 1.14 or less).
  • a carbon material for example, a carbon material obtained by firing an organic polymer compound (for example, phenol resin, polyacrylonitrile, cellulose etc.) may be prepared.
  • the carbon material and the fluorine-based binder are kneaded in an organic solvent to prepare a paste.
  • a fluorine-based binder for example, a fluorine-based binder may be used.
  • at least one material selected from binders other than fluorine-based materials for example, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), acrylic polymers and bule-based polymers is used. You may use.
  • Copolymers of the following may be used.
  • the fluorine-based binder for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, or polytetrafluoroethylene resin may be used.
  • the above-mentioned binder is usually used in the form of a dispersion (Dispersion).
  • a conductive additive or thickener may be added to the negative electrode paste, if necessary.
  • the conductive aid for example, at least one material selected from acetylene black, graphite and carbon fiber may be used.
  • the thickening agent for example, at least one material selected from ethylene-vinyl alcohol copolymer, carboxymethylcellulose and methylcellulose may be used.
  • a solvent capable of dispersing the binder for example, a solvent capable of dispersing the binder may be used.
  • an organic binder for example, N-methyl-2-pyrrolidone (NMP), N, N-dimethylforamide (DMF), tetrahydrofuran (THF), dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • DMF N-dimethylforamide
  • THF tetrahydrofuran
  • dimethylacetamide At least one organic solvent selected from dimethylsulfoxide, hexamethylsulfoamide, tetramethylurea, anaceton and methyl ethyl ketone may be used.
  • water may be used as the solvent, for example.
  • a planetary mixer, a homomixer, a pin mixer, a kneader, a homogenizer and the like may be used, and a plurality of these may be used in combination.
  • a dispersant, a surfactant, a stabilizer and the like may be added, if necessary.
  • a negative electrode paste When a negative electrode paste is applied to the surface of the negative electrode current collector, for example, a slit die coater, a single roll throat coater, a lip coater, a blade A coater, knife coater, gravure coater, dip coater or the like may be used. Drying after application is preferably drying in a state close to natural drying as much as possible, but in order to improve productivity, it is preferable that the temperature be in the range of 70 ° C. to 300 ° C. for about 1 minute to 5 hours. Drying may be performed in the range.
  • a roll press may be used for rolling the negative electrode sheet coated with the negative electrode paste. Rolling may be performed, for example, until the negative electrode sheet reaches a target thickness. More specifically, for example, rolling may be performed several times at a constant linear pressure in a linear pressure range of about 1000 kg Z cm to 200 kg z cm, or a line in the above linear pressure range You can also roll while changing the pressure appropriately.
  • the negative electrode plate 1 can be manufactured in the same manner as the negative electrode plate 3 by using a positive electrode active material instead of the negative electrode active material and a positive electrode current collector instead of the negative electrode current collector.
  • the binder, the solvent, the conductive aid, the thickener, the stabilizer, the dispersant, the surfactant and the like may be the same as in the case of the negative electrode plate 3.
  • the positive electrode lead 2 and the negative electrode lead 4 are attached to the positive electrode plate 1 and the negative electrode plate 3 produced as described above. Thereafter, the positive electrode plate 1 and the negative electrode plate 3 are stacked via the separator 5 and wound to produce a spirally wound electrode plate group 11.
  • the positive electrode lead 2 and the lid 10 are electrically connected, and the negative electrode lead 4 and the bottom of the battery case 8 are electrically connected.
  • a lower insulating plate 7 is disposed between the bottom of the battery case 8 and the electrode plate group 1 1, and an upper insulating plate 6 is disposed between the electrode plate group 1 1 and the lid 10.
  • the battery case 8 is sealed with the insulating gasket 9 and the lid 10.
  • the manufactured secondary battery is initially charged at a predetermined voltage after assembly. It will be.
  • the high rate discharge characteristics were evaluated by the following method. First, charge at a constant current of 2000 mA (1 CmA) until the battery voltage reaches 4.2 V at room temperature, and then the current value decays to 10 0 mA (0.55 CmA). I was charged at a constant voltage. Next, the battery was discharged to a final discharge voltage of 3.0 V at a constant current of 400 mA (0.2 C mA), and the capacity X (mAh) discharged at that time was measured. Next, charge the battery at a constant current of 2000 mA (1 CmA) until the battery voltage reaches 4.2 V at room temperature, and then reduce the current value to 100 mA (0.55 CmA).
  • the battery was charged at a constant voltage until it reached Next, the battery was discharged to a discharge termination voltage of 3.0 V at a constant current of 4000 mA (2 CmA), and the capacity Y (mA h) discharged at that time was measured.
  • a discharge termination voltage of 3.0 V at a constant current of 4000 mA (2 CmA) the capacity Y (mA h) discharged at that time was measured.
  • the capacity ratio (YZX * 100%) in mA) is expressed as an average value to obtain high-rate discharge characteristics.
  • the charge and discharge cycle characteristics are as follows: 500 times of charge and discharge cycles at room temperature After return, it was evaluated by measuring the capacity retention rate of the battery. In the above charging and discharging cycle, charging is performed with a constant current of 20 O mA (l CmA) until the battery voltage reaches 4.2 V, and then the current value is reduced to 100 mA (0.55 CmA). It was done by charging with a constant voltage until The discharge was performed by discharging at a constant current of 2000 mA to a discharge termination voltage of 3.0 V. After repeating such charge / discharge cycles 500 times, the discharge capacity at 500 cycles was measured.
  • the discharge capacity (initial discharge capacity) of the battery at the end of the third cycle was measured, and the discharge capacity after 500 cycles of the initial discharge capacity was 100% (discharge capacity at 500th cycle).
  • the ratio (capacity maintenance rate) was calculated. The charge and discharge cycle characteristics were evaluated using the average value of the capacity retention rates obtained in this manner.
  • Each battery sample was a cylindrical battery as shown in FIG.
  • a negative electrode plate was produced using the following method.
  • a graphite having a linear flake shape is prepared as a negative electrode active material, and 4 parts by weight (solid content) of a water-soluble dispersion of styrene butadiene rubber as a binder is prepared with 100 parts by weight of the above graphite.
  • As a thickener 0.8 parts by weight of carboxymethylcellulose was added in the form of an aqueous solution, and this was further kneaded using a planetary mixer to prepare a negative electrode paste.
  • the prepared negative electrode paste is applied to the surface of a negative electrode current collector made of strip copper foil (thickness 9 / xm) using a slit die coater and then dried, and then applied to the surface of the current collector.
  • a negative electrode sheet (thickness 230 / im) having a negative electrode active material layer formed was produced.
  • it was rolled three times at a linear pressure of 1 1 OK g / cm using a roll press machine to produce a negative electrode plate of 1 47 x m in thickness.
  • the negative electrode current collection in the prepared negative electrode plate The negative electrode lead was spot welded to the end of the body (area where the copper foil was exposed).
  • the positive electrode plate was produced using the following method.
  • Lithium cobaltate is prepared as a positive electrode active material, and 3 parts by weight of acetylene black carbon powder as a conductive assistant and 100 parts by weight of the lithium cobaltate and polytetrafluro as a binder. 4 parts by weight (solid content) of dimethyl ethylene resin and 0.8 parts by weight of carboxymethylcellulose as a thickener were added in the form of an aqueous solution, and this was further kneaded using a planetary mixer. The positive electrode paste was prepared. Next, the prepared positive electrode paste is applied to the surface of a positive electrode current collector made of a strip of aluminum foil (14 m in thickness) using a slit die coater and then dried.
  • a positive electrode sheet (thickness: 240 / xm) having a positive electrode active material layer formed on the surface was produced. Next, it was rolled three times at a linear pressure of 1000 Kg / cm using a roll press machine to produce a positive electrode plate of 143 m thick. Next, the positive electrode lead was spot-welded to the end of the positive electrode current collector (area where aluminum was exposed) in the produced positive electrode plate. Thereafter, it was further dried at 250 ° C. for 10 hours. The width of the positive electrode current collector and the width of the negative electrode current collector were substantially the same.
  • the positive electrode plate and the negative electrode plate produced as described above were laminated via a polypropylene separator (thickness 20 / im) and wound spirally to produce an electrode plate group.
  • a positive electrode lead was disposed at the core portion, and an electrode plate group was produced such that the negative electrode lead was disposed at the outer peripheral portion.
  • the electrode plate group was accommodated in the battery case provided with the lower insulating plate at the bottom.
  • the positive electrode lead was connected to the lid, and the negative electrode lead was connected to the bottom of the battery case.
  • the upper insulating plate was disposed above the electrode plate group, and a predetermined amount of non-aqueous electrolyte was injected into the battery case.
  • a battery was produced in the same manner as in Sample 1 except that the thickness of the negative electrode current collector was 6 ⁇ m (ratio to the thickness of the positive electrode current collector: 0.43), and the evaluation of the battery characteristics described above was carried out. went.
  • the value of the ratio (R2 // R1) in sample A was 1.52.
  • the battery characteristics were evaluated as described above with respect to sample A.
  • the capacity rate at high rate discharge was 92.8%, and the capacity retention rate after 500 charge and discharge cycles was 74.9%. there were.
  • a battery was produced in the same manner as in Sample 1 except that the thickness of the negative electrode current collector was 12 ⁇ (the ratio to the thickness of the positive electrode current collector: 0.86), and the evaluation of the above-described battery characteristics was carried out went.
  • the value of the ratio (R 2 / R 1) in the sample ⁇ was 0.76.
  • the thickness of the negative electrode current collector is 8 m (ratio to the thickness of the positive electrode current collector: 0.5 7
  • a battery was produced in the same manner as in Sample 1 except that the battery characteristics were evaluated as described above.
  • the value of the ratio (R 2 ZR 1) in sample 2 was 1.14.
  • the battery characteristics were evaluated as described above with respect to sample 2.
  • the capacity ratio at high rate discharge was 95. 1%, and the capacity maintenance ratio after 500 charge and discharge cycles was 79.7%. Met.
  • One sample 3-A battery was manufactured in the same manner as in Sample 1 except that the thickness of the negative electrode current collector was 10 / m (ratio to the thickness of the positive electrode current collector: 0.71), and the above-described battery The characteristics were evaluated. The value of the ratio (R 2 / R 1) in sample 3 was 0.91. The battery characteristics were evaluated as described above with respect to sample 3. The capacity ratio at high rate discharge was 95.2%, and the capacity retention ratio after 500 charge and discharge cycles was 80.1%. The A battery was produced in the same manner as in Sample 1 except that a yellow copper foil (14 m in thickness) having a zinc content of 6 at% was used as the negative electrode current collector, and the above-described battery characteristics were evaluated.
  • the value of the ratio (R 2 / R 1) in sample 4 was 0.98.
  • the capacity ratio at high rate discharge was 96.0%, and the capacity retention ratio after 500 charge and discharge cycles was 80.3%. .
  • a battery was produced in the same manner as in Sample 1 except that a yellow copper foil (14 ⁇ m thick) having a zinc content of 10 at% was used as the negative electrode current collector, and the evaluation of the above-mentioned battery characteristics was carried out. went.
  • the value of the ratio (R 2 / R 1) in sample C was 1.47.
  • the capacity rate at high rate discharge was 93.3%
  • the capacity retention rate after 500 charge and discharge cycles was 76.2%.
  • a battery was produced in the same manner as in Sample 1 except that a yellow copper foil (14 ⁇ m in thickness) having a zinc content of 2 at% was used as the negative electrode current collector, and the above-described battery characteristics were evaluated. .
  • the value of the ratio (R 2ZR 1) in sample D was 0.73.
  • Example 5-A battery was prepared in the same manner as in Sample 1 except that a yellow copper foil (thickness 14 ⁇ ⁇ ) having a zinc content of 5 at ° / 0 was used for the negative electrode current collector, and the battery characteristics described above
  • the evaluation of The value of the ratio (R 2 / R 1) in sample 5 was 0.90.
  • the capacity ratio at high rate discharge was 95.9%, and the capacity retention ratio after 500 charge and discharge cycles was 79.7%.
  • Example 6-A battery was prepared in the same manner as in Sample 1 except that a yellow copper foil (thickness 14 ⁇ ) containing 7 at% of zinc was used for the negative electrode current collector. I made an evaluation.
  • the value of the ratio (R 2 ZR 1) in sample 6 was 1.07. Evaluation of the battery characteristics described above with respect to sample 6 shows that the capacity ratio at high rate discharge is 95.6%, and the capacity retention ratio after 500 charge and discharge cycles is 79.8%. there were.
  • the ratio of the electrical resistance value R 2 per unit length in the longitudinal direction of the negative electrode current collector to the electrical resistance value R 1 per unit length in the longitudinal direction of the positive electrode current collector (R 2 ZR 1 Sample 1 to sample 6 in which the value of) is in the range of 0.85 or more and 1.15 or less range of the ratio (R 2 / R 1) is in the range of 0.85 or more and 1.15 or less.
  • a non-aqueous electrolyte secondary that is excellent in battery characteristics represented by, for example, charge / discharge cycle characteristics, high rate charge / discharge characteristics, etc. Can provide a battery.

Abstract

A nonaqueous electrolyte secondary battery is disclosed which has excellent battery characteristics such as charge/discharge cycle characteristics and high-rate charge/discharge characteristics by suppressing variations in the internal resistance of the battery. This nonaqueous electrolyte secondary battery comprises an electrode plate group comprising a positive electrode plate, a negative electrode plate and a separator, and a nonaqueous electrolyte. The electrode plate group has such a structure wherein the positive electrode plate and the negative electrode plate are joined and wound while having the separator interposed therebetween. The positive electrode plate comprises a band-like first collector, a positive electrode material layer arranged on the first collector, and a first lead electrically connected to the first collector. The negative electrode plate comprises a band-like second collector, a negative electrode material layer arranged on the second collector, and a second lead electrically connected to the second collector. The ratio of the electrical resistance (R2) of the second collector per unit length in the longitudinal direction to the electrical resistance (R1) of the first collector per unit length in the longitudinal direction (R2/R1) is not less than 0.85 but not more than 1.15.

Description

明 細 書 非水電解質二次電池 技術分野  Description Non-aqueous electrolyte secondary battery
本発明は、 非水電解質二次電池に関する。 より具体的には、 例えば、 リチウムイオン二次電池に関する。  The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to, for example, a lithium ion secondary battery.
Ura
近年、 電子機器の発達に伴って、 小型かつ軽量でエネルギー密度が高 く、 充放電特性に優れる二次電池の開発が要望されている。 このような 二次電池として、 非水電解質二次電池、 なかでもリチウムイオン二次電 池の研究、 開発が盛んに行われている。  In recent years, with the development of electronic devices, there has been a demand for the development of secondary batteries that are small and lightweight, have high energy density, and are excellent in charge and discharge characteristics. As such secondary batteries, research and development of non-aqueous electrolyte secondary batteries, especially lithium ion secondary batteries, are being actively conducted.
非水電解質二次電池 (以下、 単に 「二次電池」 あるいは 「電池」 とも いう) の電池特性は様々な要因によって決定される。 電池特性に影響を 与える要因の一つに、 電池内部の抵抗 (内部抵抗) のばらつきがある。 内部抵抗は、 電池内部に配置された集電体ゃ活物質、 電解質などによつ て生じる抵抗である。 内部抵抗のばらつきが大きくなると、 電池の内部 における電流分布が不均一となり、 電池特性 (例えば、 充放電サイクル 特性や、 ハイレート (Hi gh Rate) 充放電特性) が劣化する可能性があ る。 このため、 内部抵抗のばらつきをできるだけ抑制することが求めら れている。  The battery characteristics of non-aqueous electrolyte secondary batteries (hereinafter simply referred to as "secondary batteries" or "battery") are determined by various factors. One of the factors that affect battery characteristics is the variation in internal battery resistance (internal resistance). The internal resistance is the resistance generated by the current collector, the active material, the electrolyte, etc. arranged inside the battery. If the variation of the internal resistance becomes large, the current distribution inside the battery becomes uneven, and there is a possibility that the battery characteristics (for example, charge and discharge cycle characteristics and high rate (charge rate) characteristics may be degraded. For this reason, it is required to suppress the variation in internal resistance as much as possible.
内部抵抗のばらつきを抑制するために、 例えば、 集電体に取り付ける リ一ドを複数にする技術が、 特開平 10- 261441号公報に開示されている 。 また、 例えば、 正極活物質の厚さをリード部から遠ざかるに従って薄 くする技術が特開 2000- 21453号公報に開示されている。 しかしながら、 特開平 10- 261441号公報に開示されているように、 集 電体に取り付けるリ一ドの数を増やした場合、 リードを取り付ける面積 に対応して集電体上に配置される活物質層の面積を減少させなければな らない。 このため、 電池の容量が低下する可能性がある。 また、 複数の リ一ドを取り付けるために製造工程がより複雑となる。 特開 2000- 21453 号公報に開示されているように、 正極活物質層の厚さを変化させた場合 、 製造工程が複雑となり製造コス トが増大する可能性がある。 For example, Japanese Patent Laid-Open No. 10-261441 discloses a technique of providing a plurality of leads attached to a current collector in order to suppress variations in internal resistance. Further, for example, Japanese Patent Application Laid-Open No. 2000-21453 discloses a technique for reducing the thickness of the positive electrode active material as it is separated from the lead portion. However, as disclosed in Japanese Patent Application Laid-Open No. 10-261441, when the number of leads attached to the current collector is increased, the active material disposed on the current collector corresponding to the area to which the leads are attached The area of the layer must be reduced. This may reduce the capacity of the battery. In addition, the manufacturing process becomes more complicated because multiple leads are attached. As disclosed in Japanese Patent Application Laid-Open No. 2000-21453, when the thickness of the positive electrode active material layer is changed, the manufacturing process may be complicated and the manufacturing cost may be increased.
このような状況に鑑み、 本発明は、 電池の内部抵抗のばらつきを抑制 することによって、 例えば、 充放電サイクル特性、 ハイレート充放電特 性などに代表される電池特性に優れる非水電解質二次電池を提供するこ とを目的とする。 発明の開示  In view of such a situation, the present invention relates to a non-aqueous electrolyte secondary battery having excellent battery characteristics represented by, for example, charge and discharge cycle characteristics and high rate charge and discharge characteristics by suppressing variation in internal resistance of the battery. The purpose is to provide Disclosure of the invention
本発明の非水電解質二次電池は、 正極板と負極板とセパレータとを含 む極板群と、 非水電解質とを備え、 前記極板群は、 前記正極板と前記負 極板とを前記セパレータを介して積層し、 捲回した形状を有しており、 前記正極板は、 帯状の第 1の集電体と、 前記第 1の集電体上に配置され た正極活物質層と、 前記第 1の集電体と電気的に接続された第 1のリー ドとを含み、 前記負極板は、 帯状の第 2の集電体と、 前記第 2の集電体 上に配置された負極活物質層と、 前記第 2の集電体と電気的に接続され た第 2のリードとを含み、 前記第 1の集電体の長手方向における単位長 さ当たりの電気抵抗値 R 1に対する前記第 2の集電体の長手方向におけ る単位長さ当たりの電気抵抗値 R 2の比 (R 2 / R 1 ) の値が、 0 . 8 The non-aqueous electrolyte secondary battery of the present invention comprises an electrode plate group including a positive electrode plate, a negative electrode plate, and a separator, and a non-aqueous electrolyte, wherein the electrode plate group comprises the positive electrode plate and the negative electrode plate. The positive electrode plate has a shape obtained by laminating and winding through the separator, and the positive electrode plate includes a strip-shaped first current collector, and a positive electrode active material layer disposed on the first current collector. A first lead electrically connected to the first current collector, the negative electrode plate being disposed on a band-like second current collector, and the second current collector A negative electrode active material layer, and a second lead electrically connected to the second current collector, and the electrical resistance value per unit length in the longitudinal direction of the first current collector R 1 The ratio (R 2 / R 1) of the electrical resistance value R 2 per unit length in the longitudinal direction of the second current collector with respect to
5以上 1 . 1 5以下の範囲である。 図面の簡¾な説明 図 1は、 本発明の非水電解質二次電池の一例を模式的に示す断面図で ある。 The range is 5 or more and 1.5 or less. Brief description of the drawings FIG. 1 is a cross-sectional view schematically showing an example of the non-aqueous electrolyte secondary battery of the present invention.
図 2 A〜図 2 Cは、 電池の内部抵抗のばらつきを説明するための模式 的な等価回路図である。  FIGS. 2A to 2C are schematic equivalent circuit diagrams for explaining the variation of the internal resistance of the battery.
図 3 Aは、 本発明の非水電解質二次電池に用いる正極板の一例を模式 的に示す断面図である。  FIG. 3A is a cross-sectional view schematically showing an example of a positive electrode plate used for the non-aqueous electrolyte secondary battery of the present invention.
図 3 Bは、 本発明の非水電解質二次電池に用いる正極板の一例を模式 的に示す平面図である。  FIG. 3B is a plan view schematically showing an example of a positive electrode plate used for the non-aqueous electrolyte secondary battery of the present invention.
図 4 Aは、 本発明の非水電解質二次電池に用いる負極板の一例を模式 的に示す断面図である。  FIG. 4A is a cross-sectional view schematically showing an example of a negative electrode plate used for the non-aqueous electrolyte secondary battery of the present invention.
図 4 Bは、 本発明の非水電解質二次電池に用いる負極板の一例を模式 的に示す平面図である。 発明を実施するための最良の形態  FIG. 4B is a plan view schematically showing an example of the negative electrode plate used for the non-aqueous electrolyte secondary battery of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しながら本発明の実施の形態について説明する。 な お、 実施の形態の説明において、 同一の部材には同一の符号を付して重 複する説明を省略する場合がある。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the embodiments, the same members may be denoted by the same reference numerals and redundant description may be omitted.
本発明の非水電解質二次電池の一例を図 1に示す。 図 1に示す非水電 解質二次電池 2 0 (以下、 単に 「二次電池 2 0」 あるいは 「電池 2 0」 ともいう) は、 正極板 1と負極板 3とセパレータ 5とを含む極板群 1 1 と、 非水電解質 (図示せず) とを備えている。 極板群 1 1および非水電 解質は、 ともに電池ケース 8の内部に収容されている。 ここで、 極板群 1 1は、 正極板 1と負極板 3とをセパレータ 5を介して積層し、 捲回し た形状を有している。  An example of the non-aqueous electrolyte secondary battery of the present invention is shown in FIG. The non-aqueous electrolyte secondary battery 20 shown in FIG. 1 (hereinafter simply referred to as “second battery 20” or “battery 20”) is an electrode plate including a positive electrode plate 1, a negative electrode plate 3 and a separator 5. It is equipped with group 1 1 and a non-aqueous electrolyte (not shown). Both of the electrode group 11 and the non-aqueous electrolyte are housed inside the battery case 8. Here, the electrode plate group 11 has a shape in which a positive electrode plate 1 and a negative electrode plate 3 are stacked via a separator 5 and wound.
正極板 1は、 帯状の正極集電体 (第 1の集電体) と、 正極集電体上に 配置された正極活物質層と、 正極集電体と電気的に接続された正極リー ド (第 1のリード〉 2とを含んでいる。 また、 負極板 3は、 帯状の負極 集電体 (第 2の集電体) と、 負極集電体上に配置された負極活物質層と 、 負極集電体と電気的に接続された負極リード (第 2のリード) 4とを 含んでいる。 正極板 1および負極板 3の具体的な構成例は、 後述する。 The positive electrode plate 1 includes a strip-shaped positive electrode current collector (first current collector), a positive electrode active material layer disposed on the positive electrode current collector, and a positive electrode lithium electrically connected to the positive electrode current collector. The negative electrode plate 3 includes a strip-shaped negative electrode current collector (second current collector) and a negative electrode active material layer disposed on the negative electrode current collector. And a negative electrode lead (second lead) 4 electrically connected to the negative electrode current collector 4. Specific configuration examples of the positive electrode plate 1 and the negative electrode plate 3 will be described later.
ここで、 正極集電体の長手方向 (極板の捲回方向) における単位長さ あたりの電気抵抗値 R 1に対する負極集電体の長手方向 (極板の捲回方 向) における単位長さあたりの電気抵抗値 R 2の比 (R 2 / R 1 ) の値 が 0 . 8 5以上 1 . 1 5以下の範囲にあればよく、 上記比の値が 0 . 9 以上 1 . 1 4以下の範囲にあることが好ましい。 なお、 上記 R 1および R 2は、 その単位が、 例えば、 Ω Ζ c mで与えられる値である。  Here, the unit length in the longitudinal direction (direction of winding of the electrode plate) relative to the electrical resistance value R 1 per unit length in the longitudinal direction of the positive electrode current collector (direction of winding of the electrode plate) The value of the ratio (R 2 / R 1) of the electric resistance value R 2 per unit may be in the range of 0.85 or more and 1.5 or less, and the value of the ratio is 0.9 or more and 1.14 or less. It is preferable to be in the range of The units R 1 and R 2 are values given by, for example, ΩΖcm.
このような二次電池では、 正極集電体と負極集電体との電気的抵抗値 をほぼ同一にできる。 このため、 電池の内部抵抗のばらつきを抑制する ことができ、 例えば、 充放電サイクル特性、 ハイレート充放電特性など の電池特性に優れる二次電池とすることができる。  In such a secondary battery, the electrical resistance values of the positive electrode current collector and the negative electrode current collector can be made substantially the same. Therefore, it is possible to suppress variations in internal resistance of the battery, and to obtain a secondary battery excellent in battery characteristics such as charge and discharge cycle characteristics and high rate charge and discharge characteristics.
電池の内部抵抗のばらつきについて、 より具体的に説明する。  The variation in internal resistance of the battery will be described more specifically.
小型かつ軽量で高容量の二次電池とするために、 二次電池に用いる集 電体 (正極集電体、 負極集電体) には、 一般に、 非常に薄い金属箔が使 用されている。 このため、 二次電池の電池特性は、 集電体の電気抵抗値 に大きな影響を受けると考えられる。 しかしながら、 従来の二次電池で は、 正極集電体の電気抵抗値と負極集電体の電気抵抗値との間の関係に ついてほとんど検討がなされていなかった。 一般的な二次電池では、 正 極および負極のそれぞれの集電体に用いる材料 (材質) は異なっている 。 例えば、 一般的なリチウム二次電池では、 正極集電体にアルミニウム 箔を、 負極集電体に銅箔を用いる。 このため、 正極集電体における上記 R 1よりも、 負極集電体における上記 R 2の値の方が小さくなる傾向に ある。 例えば、 アルミニウム箔からなる帯状の正極集電体と、 銅箔から なる帯状の負極集電体との厚さおよび幅が同一である場合、 比 (R 2Z R 1 ) の値は、 0. 6 3程度となる。 この値は、 アルミニウムの体積抵 抗率 ( 2. 7 X 1 0 6 Ω · c m) および銅の体積抵抗率 ( 1. 7 X 1 0— 6 Ω · c m) から求めることができる。 Generally, very thin metal foils are used for current collectors (positive electrode current collector, negative electrode current collector) used in secondary batteries in order to make small size, light weight and high capacity secondary battery. . Therefore, the battery characteristics of the secondary battery are considered to be greatly affected by the electrical resistance value of the current collector. However, in the conventional secondary battery, little study has been made on the relationship between the electrical resistance value of the positive electrode current collector and the electrical resistance value of the negative electrode current collector. In general secondary batteries, the materials used for the current collectors of the positive and negative electrodes are different. For example, in a general lithium secondary battery, an aluminum foil is used as a positive electrode current collector, and a copper foil is used as a negative electrode current collector. For this reason, the value of R 2 in the negative electrode current collector tends to be smaller than that of R 1 in the positive electrode current collector. For example, a strip-shaped positive electrode current collector made of aluminum foil, When the thickness and the width of the negative electrode current collector are the same as each other, the value of the ratio (R 2Z R 1) is about 0.63. This value can be determined from the volume resistance of aluminum (2. 7 X 1 0 6 Ω · cm) and the volume resistivity of copper (1. 7 X 1 0- 6 Ω · cm).
二次電池内部の導電経路を模式的に 7分割したときの抵抗成分を表す 等価回路を図 2 Aに示す。 図 2 Aにおいて、 R p l〜R p 7は、 正極集 電体 1 aの各部分の抵抗値を反映している。 同様に、 R n l〜R n 7は 負極集電体 3 aの各部分の抵抗値を、 R s 1〜R s 7は正極板 1と負極 板 3との間に配置されている電解質の各部分の抵抗値を反映している。 ここで、 R p 1〜R p 7は全て同一の値であり、 R n l〜R n 7は全て 同一の値であり、 R s 1〜R s 7は全て同一の値であると仮定する。 ここで、 電解質抵抗 R s 1を介した導電経路の抵抗値は、 図 2 Bに示 すように、 式 R n l +R s 1 +R p 1 +R p 2 +R p 3 +R p 4 + R p 5 +R p 6 +R p 7、 即ち、 式 R n l +R s l + 7 XR p lによって近 似される。 また、 電解質抵抗 R s 7を介した導電経路の抵抗値は、 図 2 Cに示すように、 式 R n l +R n 2 + R n 3 +R n 4 + R n 5 + R n 6 + R n 7 + R s 7 + R p 7、 即ち、 式 7 XR n l +R s 7 + R p lによ つて近似される。 R s l =R s 7であるため、 両者の差は、 ( 6 R p 1 - 6 R n 1 ) である。  An equivalent circuit representing the resistance component when the conduction path inside the secondary battery is schematically divided into seven is shown in FIG. 2A. In FIG. 2A, R p 1 to R p 7 reflect the resistance value of each portion of the positive electrode current collector 1 a. Similarly, R nl to R n 7 indicate the resistance value of each part of the negative electrode current collector 3 a, and R s 1 to R s 7 indicate the respective electrolytes disposed between the positive electrode plate 1 and the negative electrode plate 3. It reflects the resistance value of the part. Here, it is assumed that R p 1 to R p 7 all have the same value, R n l to R n 7 all have the same value, and R s 1 to R s 7 all have the same value. Here, the resistance value of the conductive path through the electrolyte resistance R s 1 is represented by the equation R nl + R s 1 + R p 1 + R p 2 + R p 3 + R p 4 as shown in FIG. 2B. It is approximated by + R p 5 + R p 6 + R p 7, ie by the formula R nl + R sl + 7 XR pl. Also, as shown in FIG. 2C, the resistance value of the conductive path through the electrolyte resistance R s 7 is represented by the formula R nl + R n 2 + R n 3 + R n 4 + R n 5 + R n 6 + R It can be approximated by n 7 + R s 7 + R p 7, that is, by the equation 7 XR nl + R s 7 + R pl. Since R s l = R s 7, the difference between the two is (6 R p 1 −6 R n 1).
このとき、 上述した従来のリチウム二次電池のように、 正極集電体の 長手方向における単位長さあたりの抵抗値 R 1よりも、 負極集電体の長 手方向における単位長さあたりの抵抗値 R 2の方が小さい場合、 (R s 1を介した導電経路の抵抗) > (R s 7を介した導電経路の抵抗) とな る。 R s 2〜R s 6を介した導電経路を含めてより詳細に表現すると、 (R s 1を介した導電経路の抵抗) > (R s 2を介した導電経路の抵抗 ) > (R s 3を介した導電経路の抵抗) > · · · > (R s 6を介した導 電経路の抵抗) > ( R s 7を介した導電経路の抵抗) となる。 即ち、 導 電経路によって内部抵抗にばらつきが生じることになる。 R 1 と R 2と の大小関係が逆の場合 (R 1 < R 2 ) においても、 同様に、 導電経路に よってばらつきが生じることになる。 このように内部抵抗にばらつきが 生じることによって、 なかでもハイレートでの充放電時に、 電池内部に おける電流の分布が不均一となり、 電池特性が低下する可能性がある。 これに対して本発明の二次電池では、 R 1の値と R 2の値とがほぼ同 一、 即ち、 R p 1の値と R n 1の値とがほぼ同一であるため、 電解質抵 抗 R s 1を介した導電経路の抵抗値と、 電解質抵抗 R s 7を介した導電 経路の抵抗値との間に生じる差 (および、 R s 2〜R s 6の電解質抵抗 を介した導電経路の抵抗値との間に生じる差) を小さくすることが可能 である。 従って、 本発明の二次電池では、 電池の内部抵抗のばらつきを 抑制することができる。 At this time, as in the above-described conventional lithium secondary battery, the resistance per unit length in the longitudinal direction of the positive electrode current collector is greater than the resistance per unit length in the longitudinal direction of the negative electrode collector. If the value R 2 is smaller, then (resistance of the conductive path through R s 1)> (resistance of the conductive path through R s 7). Expressing in more detail including the conduction path through R s 2 to R s 6 (resistance of conduction path through R s 1)> (resistance of conduction path through R s 2)> (R s Resistance of the conduction path through 3)> · · ·> (Conduction through R s 6 Resistance of the electrical path)> (resistance of the conductive path via R s 7). That is, variations in internal resistance occur depending on the conductive path. Also in the case where the magnitude relationship between R 1 and R 2 is reversed (R 1 <R 2), similarly, variation occurs due to the conductive path. Such variations in internal resistance may result in non-uniform distribution of current inside the battery, especially during high-rate charging and discharging, which may degrade battery characteristics. On the other hand, in the secondary battery of the present invention, since the value of R 1 and the value of R 2 are substantially the same, that is, the value of R p 1 and the value of R n 1 are substantially the same. The difference between the resistance of the conduction path through the anti-RS1 and the resistance of the conduction path through the electrolyte resistor Rs7 (and the conduction through the electrolyte resistance of RS2 to Rs6) It is possible to reduce the difference between the resistance of the path and the resulting value. Therefore, in the secondary battery of the present invention, the variation in internal resistance of the battery can be suppressed.
なお、 図 2 Aでは、 正極リードと負極リードとが、 互いに最も離れる ようにそれぞれの極板に配置されている場合 (例えば、 図 1に示すよう に、 正極リード 2が極板群 1 1における芯部に、 負極リード 4が極板群 1 1における外周部に配置されている場合) を想定している。 正極リー ドおよび負極リードがより近接した位置に配置されている場合、 導電経 路による内部抵抗のばらつきはより大きくなることが予想される。 この ような場合においても、 R 1に対する R 2の比 (R 2 / R 1 ) を上述の 範囲にすることによって、 電池の内部抵抗のばらつきを抑制することが できる。  In FIG. 2A, when the positive electrode lead and the negative electrode lead are disposed on the respective electrode plates so as to be most distant from each other (for example, as shown in FIG. 1, the positive electrode lead 2 is in the electrode plate group 11). In the case where the negative electrode lead 4 is disposed at the outer peripheral portion of the electrode assembly 11 in the core portion). When the positive electrode lead and the negative electrode lead are disposed closer to each other, the variation in internal resistance due to the conductive path is expected to be larger. Even in such a case, variation in internal resistance of the battery can be suppressed by setting the ratio of R 2 to R 1 (R 2 / R 1) in the above-mentioned range.
図 1に示す二次電池 2 0では、 極板群 1 1の芯部 (卷き芯部) の正極 板 1 (極板群 1 1において最内周に位置する正極板 1 ) に正極リード 2 が配置されている。 より具体的には、 正極板 1のうち極板群 1 1の芯部 に位置する端部に正極リード 2が電気的に接続されている。 また、 同様 に、 極板群 1 1の外周部の負極板 3 (極板群 1 1において最外周に位置 する負極板 3 ) に負極リード 4が配置されている。 より具体的には、 負 極板 3のうち極板群 1 1の外周部に位置する端部に負極リード 4が電気 的に接続されている。 このような二次電池 2 0では、 上述したように、 電池の内部抵抗のばらつきをより抑制することができる。 なお、 正極リ ード 2が、 極板群 1 1の外周部の正極板 1 (極板群 1 1において最外周 に位置する正極板 1 ) に、 負極リード 4が、 極板群 1 1の芯部の負極板 3 (極板群 1 1において最内周に位置する負極板 3 ) に配置されていて もよい。 In the secondary battery 20 shown in FIG. 1, the positive electrode lead 2 is attached to the positive electrode plate 1 (positive electrode plate 1 positioned at the innermost periphery in the electrode plate group 11) of the core portion (unwound core portion) of the electrode plate group 11. Is arranged. More specifically, the positive electrode lead 2 is electrically connected to the end of the positive electrode plate 1 located at the core of the electrode plate group 11. Also, The negative electrode lead 4 is disposed on the negative electrode plate 3 (the negative electrode plate 3 located at the outermost periphery of the electrode plate group 11) in the outer peripheral portion of the electrode plate group 11. More specifically, the negative electrode lead 4 is electrically connected to the end of the negative electrode plate 3 located on the outer peripheral portion of the electrode plate group 11. In such a secondary battery 20, as described above, variations in the internal resistance of the battery can be further suppressed. The positive electrode lead 2 is connected to the positive electrode plate 1 (the positive electrode plate 1 positioned on the outermost periphery of the electrode plate group 11) at the outer peripheral portion of the electrode plate group 11, the negative electrode lead 4 is connected to the electrode plate group 11 It may be disposed on the core negative electrode plate 3 (the negative electrode plate 3 located at the innermost periphery in the electrode plate group 11).
このような構成を実現する正極板 1および負極板 3の一例を図 3 A、 図 3 B、 図 4 Aおよぴ図 4 Bに示す。 図 3 Aおよび図 4 Aは断面図であ り、 図 3 Bおよび図 4 Bは平面図である。  Examples of the positive electrode plate 1 and the negative electrode plate 3 which realize such a configuration are shown in FIG. 3A, FIG. 3B, FIG. 4A and FIG. 4B. 3A and 4A are cross-sectional views, and FIGS. 3B and 4B are plan views.
図 3 Aおよび図 3 Bに示すように、 正極板 1は、 帯状の正極集電体 1 aと、 正極集電体 1 aの両面に形成された活物質層 (正極活物質層) 1 bとを含んでおり、 正極集電体 1 aの長手方向の一端に正極リード 2が 電気的に接続されている。 また、 図 4 Aおよび図 4 Bに示すように、 負 極板 3は、 帯状の負極集電体 3 aと、 その両面に形成された活物質層 ( 負極活物質層) 3 bとを含んでおり、 負極集電体 3 aの長手方向の一端 に負極リード 4が電気的に接続されている。 通常、 正極集電体 l aの幅 (短手方向の幅) と負極集電体 3 aの幅 (短手方向の幅) とはほぼ同一 である。 このような正極板 1および負極板 3を、 正極リード 2と負極リ ード 4とが互いに最も遠くなるように、 セパレータを介して積層し、 捲 回すれば、 図 1に示す極板群 1 1とすることができる。  As shown in FIGS. 3A and 3B, the positive electrode plate 1 includes a strip-shaped positive electrode current collector 1a and an active material layer (positive electrode active material layer) 1b formed on both sides of the positive electrode current collector 1a. And the positive electrode lead 2 is electrically connected to one end of the positive electrode current collector 1 a in the longitudinal direction. Further, as shown in FIGS. 4A and 4B, the negative electrode plate 3 includes a strip-like negative electrode current collector 3a and active material layers (negative electrode active material layers) 3b formed on both sides thereof. The negative electrode lead 4 is electrically connected to one end of the negative electrode current collector 3 a in the longitudinal direction. Usually, the width of the positive electrode current collector la (the width in the short direction) and the width of the negative electrode current collector 3 a (the width in the short direction) are substantially the same. Such a positive electrode plate 1 and a negative electrode plate 3 are stacked via a separator so that the positive electrode lead 2 and the negative electrode lead 4 are farthest from each other, and are rolled up. It can be one.
なお、 図 3 A〜図 4 Bは、 正極板 1および負極板 3の一例を模式的に 示したものであり、 本発明の二次電池に用いる正極板および負極板は、 図 3 A〜図 4 Bに示す例に限定されない。 例えば、 正極集電体 l aの長 手方向における任意の場所に正極リード 2を配置してもよい。 負極集電 体 3 a と負極リード 4との関係においても同様である。 同じく、 図 1に 示す極板群 1 1において、 正極リード 2が芯部または外周部に配置され ていなくてもよいし、 あるいは、 負極リード 4が芯部または外周部に配 置されていなくてもよい。 3A to 4B schematically show an example of the positive electrode plate 1 and the negative electrode plate 3, and the positive electrode plate and the negative electrode plate used in the secondary battery of the present invention are as shown in FIG. 3A to FIG. It is not limited to the example shown to 4B. For example, the positive electrode current collector la length The positive electrode lead 2 may be disposed at any place in the manual direction. The same applies to the relationship between the negative electrode current collector 3 a and the negative electrode lead 4. Similarly, in the electrode plate group 11 shown in FIG. 1, the positive electrode lead 2 may not be disposed in the core portion or the outer peripheral portion, or the negative electrode lead 4 may not be disposed in the core portion or the outer peripheral portion. It is also good.
比 (R 2 / R 1 ) の値は、 集電体の厚さ、 および/または、 集電体の 材料 ·材質 (例えば、 集電体を構成する元素の種類、 あるいは、 組成) などを変化させることによって制御することができる。 例えば、 極板が 取り うる電位 (電気化学的な電位) が異なることから、 正極集電体と負 極集電体との間で用いる材料が互いに異なる場合が一般的である。 この とき、 正極集電体に用いる材料の電気的な抵抗率 (例えば、 体積抵抗率 ) と、 負極集電体に用いる材料の電気的な抵抗率とが異なる場合、 例え ば、 正極集電体の厚さと負極集電体の厚さとを互いに異なるようにすれ ばよい (具体的には、 例えば、 体積抵抗率が相対的に大きい材料を用い た集電体の厚さを、 相対的に小さい材料を用いた集電体の厚さよりも大 きくすればよい) 。 即ち、 正極集電体および負極集電体に用いる材料が 互いに異なり、 かつ、 正極集電体の厚さと負極集電体の厚さとが互いに 異なっていればよい。  The value of the ratio (R 2 / R 1) changes the thickness of the current collector, and / or the material and material of the current collector (for example, the type or composition of the elements constituting the current collector), etc. Can be controlled by For example, the materials used between the positive electrode current collector and the negative electrode current collector are generally different from each other because the potentials (electrochemical potentials) that can be taken by the electrode plates are different. At this time, when the electrical resistivity (for example, volume resistivity) of the material used for the positive electrode current collector is different from the electrical resistivity of the material used for the negative electrode current collector, for example, the positive electrode current collector The thickness of the current collector and the thickness of the negative electrode current collector may be different from each other (specifically, for example, the thickness of the current collector using a material having a relatively large volume resistivity is relatively small. It should be larger than the thickness of the current collector using the material). That is, the materials used for the positive electrode current collector and the negative electrode current collector may be different from each other, and the thickness of the positive electrode current collector may be different from the thickness of the negative electrode current collector.
また、 正極集電体に用いる材料の電気的な抵抗率と、 負極集電体に用 いる材料の電気的な抵抗率とをほぼ同一にしてもよい。 具体的な例は、 後述する。  In addition, the electrical resistivity of the material used for the positive electrode current collector may be substantially the same as the electrical resistivity of the material used for the negative electrode current collector. Specific examples will be described later.
また、 これらに加えて、 集電体の形状を変化させることによつても、 比 (R 2 // R 1 ) の値を制御することが可能である。 例えば、 正極集電 体および負極集電体から選ばれる少なく とも 1つの集電体が空孔を有し ており、 正極集電体の空孔率と負極集電体の空孔率とが互いに異なって いてもよい。 より具体的には、 例えば、 上記少なく とも 1つの集電体が 複数の貫通孔を有していればよい。 空孔率を大きくするほど、 集電体の 電気抵抗値を大きくすることができる。 また、 ラス加工やエッチング加 ェなどによって、 集電体の空孔率を変化させてもよい。 In addition to these, it is also possible to control the value of the ratio (R 2 // R 1) by changing the shape of the current collector. For example, at least one current collector selected from the positive electrode current collector and the negative electrode current collector has pores, and the porosity of the positive electrode current collector and the porosity of the negative electrode current collector are mutually different. It may be different. More specifically, for example, the at least one current collector is It is sufficient to have a plurality of through holes. As the porosity is increased, the electrical resistance value of the current collector can be increased. In addition, the porosity of the current collector may be changed by laser processing, etching, or the like.
このように、 本発明の二次電池では、 比 (R 2 Z R 1 ) の値が 0 . 8 5以上 1 . 1 5以下 (好ましくは、 0 . 9以上 1 . 1 4以下) の範囲を 満たすように、 正極集電体および負極集電体の厚さ、 空孔率、 および用 いる材料 (材質) から選ばれる少なく とも 1つが制御されていてもよい その他、 図 1に示す二次電池 2 0は、 上部絶縁板 6、 下部絶縁板 7、 絶縁ガスケッ ト 9および蓋体 1 0を備えている。 電池ケース 8の開口端 部は、 絶緣ガスケッ ト 9と蓋体 1 0とによって封口されている。 上部絶 縁板 6は、 極板群 1 1 と蓋体 1 0とを絶縁するために極板群 1 1の上部 に配置されている。 下部絶縁板 7は、 極板群 1 1 と電池ケース 8とを絶 縁するために極板群 1 1の下部に配置されている。 また、 正極リード 2 によって、 正極端子を兼ねる蓋体 1 0と正極板 1 とが電気的に接続され 、 負極リード 4によって、 負極端子を兼ねる電池ケース 8と負極板 3 と が電気的に接続されている。 これらの部材は、 必要に応じて備えていれ ばよい。  Thus, in the secondary battery of the present invention, the value of the ratio (R 2 ZR 1) satisfies the range of 0.8 or more and 1.5 or less (preferably 0.9 or more and 1.4 or less). Thus, at least one selected from the thickness of the positive electrode current collector and the thickness of the negative electrode current collector, the porosity, and the material (material) to be used may be controlled. 0 includes an upper insulating plate 6, a lower insulating plate 7, an insulating gasket 9, and a lid 10. The open end of battery case 8 is sealed with insulation gasket 9 and lid 10. The upper insulating plate 6 is disposed on the top of the plate group 11 in order to insulate the plate group 1 1 and the lid 10 from each other. The lower insulating plate 7 is disposed below the plate group 11 in order to insulate the plate group 1 1 and the battery case 8 from each other. In addition, the positive electrode lead 2 electrically connects the lid 10 serving as the positive electrode terminal and the positive electrode plate 1, and the negative electrode lead 4 electrically connects the battery case 8 serving as the negative electrode terminal and the negative electrode plate 3. ing. These members may be provided as needed.
本発明の二次電池 2 0の種類は特に限定されず、 例えば、 リチウム二 次電池やニッケル水素電池など、 様々な二次電池であってもよい。 二次 電池の種類は、 正極板 1に用いる正極活物質、 負極板 3に用いる負極活 物質、 非水電解質の種類を選択することによって決定することができる 。 例えば、 正極活物質層 1 bおよび負極活物質層 3 bがリチウムを可逆 的に吸蔵および放出できる正極活物質および負極活物質をそれぞれ含み 、 非水電解質がリチウム伝導性を有していてもよい。 この場合、 本発明 の二次電池 2 0をリチウムニ次電池とすることができる。 以下、 本発明の二次電池が備える各部材について、 リチウム二次電池 を例にして説明する。 なお、 各部材に用いる材料は以下に示す例に限定 されず、 二次電池に一般的に用いる材料を用いればよい。 ただし、 二次 電池の種類に応じて、 用いる材料を選択する必要がある。 The type of the secondary battery 20 of the present invention is not particularly limited. For example, various secondary batteries such as a lithium secondary battery and a nickel hydrogen battery may be used. The type of the secondary battery can be determined by selecting the types of the positive electrode active material used for the positive electrode plate 1, the negative electrode active material used for the negative electrode plate 3, and the non-aqueous electrolyte. For example, the positive electrode active material layer 1 b and the negative electrode active material layer 3 b may each include a positive electrode active material and a negative electrode active material capable of reversibly absorbing and desorbing lithium, and the non-aqueous electrolyte may have lithium conductivity. . In this case, the secondary battery 20 of the present invention can be a lithium secondary battery. Hereinafter, each member included in the secondary battery of the present invention will be described by taking a lithium secondary battery as an example. The materials used for each member are not limited to the examples shown below, and materials generally used for secondary batteries may be used. However, depending on the type of secondary battery, it is necessary to select the material to be used.
正極集電体 l aには、 例えば、 アルミニウムを用いればよい。 正極集 電体の厚さは、 例えば、 1 0 π!〜 6 0 /X mの範囲である。  For the positive electrode current collector la, for example, aluminum may be used. The thickness of the positive electrode current collector is, for example, 1 0 π! It is in the range of ~ 6 0 / X m.
負極集電体 3 aには、 例えば、 銅を用いればよい。 正極集電体 l aに アルミニウムを、 負極集電体 3 aに銅を用いた場合、 負極集電体 3 aの 厚さを正極集電体 1 aの厚さの 0. 5 6倍〜0. 7 7倍程度の範囲にす ればよい。 このとき、 比 (R 2/R 1 ) の値を、 0. 8 5以上 1. 1 5 以下の範囲にすることができる。 なお、 正極集電体 1 aであるアルミ二 ゥムの厚さに対する負極集電体 3 aである銅の厚さは、 上記 0. 5 6倍 〜0. 7 7倍の範囲に限られず、 例えば、 それぞれの集電体の幅、 形状 などに応じて任意に調整すればよい。 比 (R 2/R 1 ) の値が、 0. 8 5以上 1. 1 5以下の範囲に入ればよい。  For example, copper may be used for the negative electrode current collector 3a. When aluminum is used for the positive electrode current collector la and copper is used for the negative electrode current collector 3a, the thickness of the negative electrode current collector 3a is 0.56 times the thickness of the positive electrode current collector 1a to 0.5. It should be 7 7 times range. At this time, the value of the ratio (R 2 / R 1) can be in the range of 0.85 or more and 1.15 or less. The thickness of copper as the negative electrode current collector 3a with respect to the thickness of the aluminum current collector 1a is not limited to the range of 0.56 times to 0.77 times as described above, For example, the width, shape, etc. of each current collector may be adjusted arbitrarily. The value of the ratio (R 2 / R 1) should be within the range of 0.85 to 1.15.
また、 正極集電体 1 a としてアルミニウムを用いた場合、 負極集電体 3 a として、 例えば、 黄銅を用いてもよい。 黄銅とは、 銅と亜鉛とを含 む合金であり、 亜鉛の組成比を変化させることによって電気抵抗値を変 ィ匕させることができる。 具体的には、 例えば、 黄銅中における亜鉛の含 有率を 5原子%〜 7原子%程度の範囲とすることによって、 アルミユウ ムの電気抵抗値とほぼ同じ電気抵抗値を有する黄銅とすることができる 。 即ち、 上記組成の黄銅を負極集電体 3 aに用いることによって、 正極 集電体 1 aの厚さと負極集電体 3 aの厚さとをほぼ同一と したまま、 比 (R 2/R 1 ) の値を上述の範囲内にすることができる。  When aluminum is used as the positive electrode current collector 1 a, for example, brass may be used as the negative electrode current collector 3 a. Brass is an alloy containing copper and zinc, and the electrical resistance value can be changed by changing the composition ratio of zinc. Specifically, for example, by setting the zinc content in brass in the range of about 5 atomic% to 7 atomic%, it is possible to obtain brass having an electric resistance value substantially the same as the electric resistance value of aluminum aluminum. it can . That is, by using brass of the above composition as the negative electrode current collector 3a, the ratio of the thickness of the positive electrode current collector 1a to the thickness of the negative electrode current collector 3a is almost the same. The value of) can be in the above mentioned range.
なお、 電池内の環境においてリチウムと反応しない金属、 合金などで あれば、 その他の材料を用いて正極集電体 1 a、 負極集電体 3 aを形成 してもよい。 このような場合においても、 上述したように、 集電体に用 いる材料や厚さを調製することによって、 比 (R 2 R 1 ) の値を、 0 . 8 5以上 1. 1 5以下 (好ましくは、 0. 90以上 1. 1 4以下) の 範囲とすればよい。 In addition, if it is a metal, an alloy, etc. which do not react with lithium in the environment in the battery, other materials are used to form the positive electrode current collector 1a and the negative electrode current collector 3a. You may Even in such a case, as described above, the value of the ratio (R 2 R 1) is set to 0.85 or more and 1.15 or less (by adjusting the material and thickness used for the current collector). Preferably, it should be in the range of 0.90 to 1.14).
正極活物質層 l bは、 リチウムを可逆的に吸蔵および放出できる正極 活物質を含む限り、 その構成、 構造などは特に限定されない。 例えば、 一般的なリチウム二次電池に用いる正極活物質層であればよい。 正極活 物質に用いる材料は、 リチウムを可逆的に吸蔵および放出できる限り特 に限定されず、 例えば、 コバルト酸リチウム (L i C o 02) などを用 いればよい。 その他、 リチウムイオンをゲス トイオンとして含んだ、 リ チウムー遷移金属化合物を用いてもよい。 上記リチウム一遷移金属化合 物としては、 例えば、 コバルト、 マンガン、 ニッケル、 クロム、 鉄およ びバナジウムから選ばれる少なく とも 1種の遷移金属とリチウムとの複 合酸化物を用いればよい。 具体的には、 例えば、 L i C o O2、 L i M n O2、 L i N i 〇 2、 L i C o x N i ( 1_x) O 2 ( 0 < x < 1 ) 、 L i C r O2、 a— L i F e〇 2、 L i V O 2などを用いればよレ、。 The constitution, structure and the like of the positive electrode active material layer lb are not particularly limited as long as the positive electrode active material layer lb contains a positive electrode active material capable of reversibly absorbing and desorbing lithium. For example, it may be a positive electrode active material layer used in a general lithium secondary battery. The material used for the positive electrode active material is not particularly limited as long as it can occlude and release lithium reversibly, and for example, lithium cobaltate (LiCoO 2 ) may be used. In addition, lithium-transition metal compounds containing lithium ions as guest ions may be used. As the lithium-transition metal compound, for example, a composite oxide of lithium and at least one transition metal selected from cobalt, manganese, nickel, chromium, iron and vanadium may be used. Specifically, for example, L i C o O 2 , L i M n O 2 , L i N i 〇 2 , L i C o x N i (1 _ x) O 2 (0 <x <1), L i C r O 2, a- L i F E_〇 2, L i VO 2 yo the use of such records,.
負極活物質層 3 bは、 リチウムを可逆的に吸蔵および放出できる負極 活物質を含む限り、 その構成、 構造などは特に限定されない。 例えば、 一般的なリチウム二次電池に用いる負極活物質層であればよい。 負極活 物質に用いる材料は、 リチウムを可逆的に吸蔵および放出できる限り特 に限定されず、 例えば、 炭素材料、 より具体的には、 例えば、 コータス やピッチを焼成することによって得られる炭素材料や、 人造グラフアイ ト、 天然グラフアイ トなどのグラフアイ ト類などを用いればよい。 負極 活物質の形状は、 球状、 リン片状または塊状が好ましい。 また、 負極活 物質には、 上述した炭素材料以外にも、 例えば、 シリ コン、 シリ コン化 合物、 スズ、 亜鉛などを含む合金を用いてもよい。 セパレータ 5は、 正極板 1 と負極板 3との電気的な絶縁を保持するこ とができ、 かつ、 リチウム伝導性を有する非水電解質を保持することが できる限り、 その構造、 用いる材料などは特に限定されない。 一般的な リチウム二次電池に用いるセパレータを用いればよい。 例えば、 ポリエ チレン樹脂、 ポリプロピレン樹脂などを含む微多孔性のポリオレフイン 系樹脂を用いればよい。 セパレータ 5の厚さは、 例えば、 1 5 μ πι〜 3 0 μ mの範囲である。 The structure, structure, and the like of the negative electrode active material layer 3 b are not particularly limited as long as the negative electrode active material layer 3 b includes a negative electrode active material capable of reversibly absorbing and desorbing lithium. For example, it may be a negative electrode active material layer used for a general lithium secondary battery. The material used for the negative electrode active material is not particularly limited as long as it can occlude and release lithium reversibly, for example, a carbon material, more specifically, for example, a carbon material obtained by firing Cotas or pitch, Graphite such as artificial graphite and natural graphite may be used. The shape of the negative electrode active material is preferably spherical, flaky or massive. Further, as the negative electrode active material, in addition to the above-mentioned carbon material, for example, an alloy containing silicon, a silicon compound, tin, zinc or the like may be used. As long as the separator 5 can maintain the electrical insulation between the positive electrode plate 1 and the negative electrode plate 3 and can hold the non-aqueous electrolyte having lithium conductivity, the structure, material used, etc. It is not particularly limited. A separator used for a general lithium secondary battery may be used. For example, a microporous polyolefin resin containing polyethylene resin, polypropylene resin and the like may be used. The thickness of the separator 5 is, for example, in the range of 15 μπι to 30 μm.
非水電解質は、 リチウム伝導性を有する限り特に限定されない。 例え ば、 リチウム伝導性を有する非水電解液を用いればよい。 非水電解液に は、 例えば、 非水溶媒にリチウムを含む電解質を溶解させた電解液を用 いればよい。  The non-aqueous electrolyte is not particularly limited as long as it has lithium conductivity. For example, a non-aqueous electrolyte having lithium conductivity may be used. For the non-aqueous electrolyte, for example, an electrolyte obtained by dissolving an electrolyte containing lithium in a non-aqueous solvent may be used.
非水溶媒としては、 例えば、 エチレンカーボネート、 プロピレンカー ポネート、 ブチレンカーボネート、 ジメチルカーボネート、 ジェチルカ ーボネートなどのカーボネート類、 あるいは、 γ—ブチロラタ トン、 1 , 2—ジメ トキシェタン、 1 , 2—ジクロロェタン、 1 , 3—ジメ トキ シプロパン、 4ーメチノレ一 2—ペンタノン、 1 , 4一ジォキサン、 ァセ トニトリノレ、 プロピオ二トリノレ、 ブチロニトリノレ、 ノ レロニトリノレ、 ベ ンゾニトリノレ、 スノレホラン、 3—メチノレースノレホラン、 テトラヒ ドロフ ラン、 2—メチルテトラヒ ドロフラン、 ジメチルホルムァミ ド、 ジメチ ルスルホキシド、 ジメチルホルムアミ ド、 リン酸トリメチル、 リン酸ト リェチルなどを用いればよい。 上述した非水溶媒を 2種類以上混合して 用いてもよい。  As the non-aqueous solvent, for example, carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, jetyl carbonate and the like, or γ-butyrolatan, 1,2-dimethoxetane, 1,2-dichloroethane, 1, 3-Dimethyoxypropane, 4-Methole-2-ylpentanone, 1, 4-Dioxane, Acetotrinole, Propioditrinole, Butyronitrinole, Norellonitrinole, Benzonitrinole, Snorolephoran, 3-Methinorace Norephora, Tetrahydriflophane, 2 -Methyl tetrahydrofuran, dimethyl formamide, dimethyl sulfoxide, dimethyl formamide, trimethyl phosphate, triethyl phosphate etc. may be used. Two or more of the non-aqueous solvents described above may be mixed and used.
非水溶媒に溶解させる電解質には、 例えば、 電子吸引性が大きいリチ ゥム塩を用いればよい。 具体的には、 例えば、 L i P F 6、 L i B F 4 、 L i C l O4、 L i A s Fい L i C F 3 S 03、 L i N ( S O 2 C F 3 ) 2、 L i N ( S O 2 C 2 F 5) 2、 L i C (S O2C F 3) 3などを用いれ ばよい。 上述した電解質を 2種類以上組み合わせて非水溶媒に溶解して もよい。 非水溶媒中の電解質の濃度は特に限定されず、 例えば、 0 . 5 m o 1 / 1 ~ 1 . 5 m o 1 1 の範囲であればよい。 For the electrolyte to be dissolved in the non-aqueous solvent, for example, a lithium salt having a high electron-withdrawing property may be used. Specifically, for example, L i PF 6 , L i BF 4 , L i C L O 4 , L i A s F L i CF 3 S 0 3 , L i N (SO 2 CF 3 ) 2 , L i N (SO 2 C 2 F 5 ) 2 , Li c (SO 2 CF 3 ) 3 or the like may be used. Just do it. Two or more of the electrolytes described above may be combined and dissolved in a non-aqueous solvent. The concentration of the electrolyte in the non-aqueous solvent is not particularly limited, and may be, for example, in the range of 0.50 mo 1/1 to 1 .5 mo 1 1.
なお、 その他、 非水電解質として固体状の電解質を用いることも可能 である。  In addition, it is also possible to use a solid electrolyte as the non-aqueous electrolyte.
以下、 本発明の二次電池の製造方法の一例を示す。 なお、 以下に示す 製造方法はあくまでも一例であり、 例えば、 一般的な二次電池の製造方 法を用いて本発明の二次電池を製造することが可能である。  Hereinafter, an example of the manufacturing method of the secondary battery of this invention is shown. The manufacturing method described below is merely an example, and it is possible to manufacture the secondary battery of the present invention, for example, using a general method for manufacturing a secondary battery.
最初に、 負極活物質と結着剤とを有機溶媒に分散させ、 混練すること によって負極ペース トを作製する。 次に、 作製した負極ペーストを帯状 の負極集電体の表面に塗布し、 乾燥させた後、 得られたシートを圧延す ることによって、 負極集電体の表面 (片面であっても両面であってもよ い) に負極活物質層が形成された負極板 3を得ることができる。 圧延す る工程は省略してもよい。 このとき、 負極集電体の長手方向における単 位長さあたりの電気抵抗値 R 2と、 正極板の製造方法において後述する 正極集電体の長手方向における単位長さあたりの電気抵抗値 R 1との比 ( R 2 / R 1 ) の値が、 0 . 8 5以上 1 . 1 5以下 (好ましくは、 0 . 9以上 1 . 1 4以下) の範囲にあればよい。  First, a negative electrode active material and a binder are dispersed in an organic solvent and kneaded to prepare a negative electrode paste. Next, the prepared negative electrode paste is applied to the surface of a strip-like negative electrode current collector and dried, and then the obtained sheet is rolled to obtain the surface of the negative electrode current collector (even on one side or both sides The negative electrode plate 3 having the negative electrode active material layer formed thereon can be obtained. The rolling process may be omitted. At this time, the electrical resistance value R 2 per unit length in the longitudinal direction of the negative electrode current collector and the electrical resistance value R 1 per unit length in the longitudinal direction of the positive electrode current collector described later in the method of manufacturing the positive electrode plate The value of the ratio (R 2 / R 1) with respect to is preferably in the range of 0.85 or more and 1.55 or less (preferably 0.9 or more and 1.14 or less).
負極活物質として炭素材料を用いる場合、 例えば、 有機高分子化合物 (例えば、 フエノール樹脂、 ポリアク リ ロニ ト リル、 セルロースなど) を焼成することによって得た炭素材料を準備すればよい。 この炭素材料 とフッ素系結着剤とを有機溶剤に混練してペーストを作製する。  In the case of using a carbon material as the negative electrode active material, for example, a carbon material obtained by firing an organic polymer compound (for example, phenol resin, polyacrylonitrile, cellulose etc.) may be prepared. The carbon material and the fluorine-based binder are kneaded in an organic solvent to prepare a paste.
結着剤には、 例えば、 フッ素系結着剤を用いればよい。 また、 フッ素 系以外の他の結着剤、 例えば、 アク リルゴム、 変性アク リルゴム、 スチ レン一ブタジエンゴム (S B R ) 、 アク リル系重合体およびビュル系重 合体から選ばれる少なく とも 1種の材料を用いてもよい。 また、 これら の共重合体を用いてもよい。 フッ素系結着剤としては、 例えば、 ポリフ ッ化ビニリデンゃ、 フッ化ビニリデンと六フッ化プロピレンとの共重合 体、 あるいは、 ポリテトラフルォロエチレン樹脂などを用いればよい。 なお、 上述した結着剤は、 通常、 分散体 (デイスパージヨ ン) の形態で 用いられる。 As the binder, for example, a fluorine-based binder may be used. In addition, at least one material selected from binders other than fluorine-based materials, for example, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), acrylic polymers and bule-based polymers is used. You may use. Also, Copolymers of the following may be used. As the fluorine-based binder, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, or polytetrafluoroethylene resin may be used. The above-mentioned binder is usually used in the form of a dispersion (Dispersion).
負極ペース トには、 必要に応じて、 導電助剤や増粘剤を添加してもよ い。 導電助剤としては、 例えば、 アセチレンブラック、 グラフアイ トお よび炭素繊維から選ばれる少なく とも 1種の材料を用いればよい。 増粘 剤としては、 例えば、 エチレン一ビエルアルコール共重合体、 カルボキ シメチルセルロースおよぴメチルセルロースから選ばれる少なく とも 1 種の材料を用いればよい。  A conductive additive or thickener may be added to the negative electrode paste, if necessary. As the conductive aid, for example, at least one material selected from acetylene black, graphite and carbon fiber may be used. As the thickening agent, for example, at least one material selected from ethylene-vinyl alcohol copolymer, carboxymethylcellulose and methylcellulose may be used.
負極活物質と結着剤とを分散させる溶剤には、 例えば、 結着剤を分散 できる溶媒を用いればよい。 具体的には、 有機系結着剤を用いる場合、 例えば、 N—メチル _ 2—ピロリ ドン (N M P ) 、 N , N—ジメチルホ ルムァミ ド (D M F ) 、 テ トラヒ ドロフラン (T H F ) 、 ジメチルァセ トアミ ド、 ジメチルスルホキシド、 へキサメチルスルホルアミ ド、 テ ト ラメチル尿素、 ァセトンおよびメチルェチルケトンから選ばれる少なく とも 1種の有機溶媒を用いればよい。 水系ディスパージョンバインダー を用いる場合、 溶媒には、 例えば、 水を用いればよい。  As a solvent for dispersing the negative electrode active material and the binder, for example, a solvent capable of dispersing the binder may be used. Specifically, when an organic binder is used, for example, N-methyl-2-pyrrolidone (NMP), N, N-dimethylforamide (DMF), tetrahydrofuran (THF), dimethylacetamide, At least one organic solvent selected from dimethylsulfoxide, hexamethylsulfoamide, tetramethylurea, anaceton and methyl ethyl ketone may be used. When an aqueous dispersion binder is used, water may be used as the solvent, for example.
負極ペース トの混鍊には、 例えば、 プラネタリーミキサー、 ホモミキ サー、 ピンミキサー、 ニーダー、 ホモジナイザーなどを用いればよく、 これらを複数組み合わせて用いてもよい。 なお、 負極ペース トを混練す る際には、 必要に応じて、 分散剤、 界面活性剤、 安定剤などを添加して もよい。  For mixing of the negative electrode paste, for example, a planetary mixer, a homomixer, a pin mixer, a kneader, a homogenizer and the like may be used, and a plurality of these may be used in combination. When the negative electrode paste is kneaded, a dispersant, a surfactant, a stabilizer and the like may be added, if necessary.
負極集電体の表面に負極ペース トを塗布する際には、 例えば、 スリ ツ トダイ コーター、 リ ノく一スローノレコーター、 リ ップコーター、 ブレード コーター、 ナイフコーター、 グラビアコーター、 ディ ップコーターなど を用いればよい。 塗布後の乾燥は、 なるべく 自然乾燥に近い状態での乾 燥が好ましいが、 生産性を高めるために、 7 0 °C〜 3 0 0 °Cの範囲の温 度において 1分間〜 5時間程度の範囲で乾燥を行ってもよい。 When a negative electrode paste is applied to the surface of the negative electrode current collector, for example, a slit die coater, a single roll throat coater, a lip coater, a blade A coater, knife coater, gravure coater, dip coater or the like may be used. Drying after application is preferably drying in a state close to natural drying as much as possible, but in order to improve productivity, it is preferable that the temperature be in the range of 70 ° C. to 300 ° C. for about 1 minute to 5 hours. Drying may be performed in the range.
負極ペース トが塗布された負極板シー トの圧延は、 例えば、 ロールプ レス機を用いればよい。 圧延は、 例えば、 負極板シートが目標の厚さに なるまで行えばよい。 より具体的には、 例えば、 1 0 0 0 k g Z c m〜 2 0 0 0 k g Z c m程度の線圧の範囲において一定の線圧で数回圧延し たり、 あるいは、 上記線圧の範囲において線圧を適宜変更しながら圧延 したりしてもよレ、。  For rolling the negative electrode sheet coated with the negative electrode paste, for example, a roll press may be used. Rolling may be performed, for example, until the negative electrode sheet reaches a target thickness. More specifically, for example, rolling may be performed several times at a constant linear pressure in a linear pressure range of about 1000 kg Z cm to 200 kg z cm, or a line in the above linear pressure range You can also roll while changing the pressure appropriately.
芷極板 1は、 負極活物質の代わりに正極活物質、 負極集電体の代わり に正極集電体を用いて、 負極板 3と同様に製造することができる。 結着 剤や溶媒、 導電助剤、 増粘剤、 安定剤、 分散剤、 界面活性剤などは、 負 極板 3の場合と同様であればよい。 正極ペース ト作製や、 正極集電体の 表面への上記ペース トの塗布、 乾燥、 圧延などについても同様である。 次に、 上記のようにして作製した正極板 1および負極板 3に、 それぞ れ正極リード 2および負極リード 4を取り付ける。 その後、 正極板 1お よび負極板 3を、 セパレータ 5を介して積層し、 捲回することによって 渦巻状に捲回された極板群 1 1を作製する。  The negative electrode plate 1 can be manufactured in the same manner as the negative electrode plate 3 by using a positive electrode active material instead of the negative electrode active material and a positive electrode current collector instead of the negative electrode current collector. The binder, the solvent, the conductive aid, the thickener, the stabilizer, the dispersant, the surfactant and the like may be the same as in the case of the negative electrode plate 3. The same applies to the preparation of a positive electrode paste, and the application, drying, and rolling of the above-described paste on the surface of a positive electrode current collector. Next, the positive electrode lead 2 and the negative electrode lead 4 are attached to the positive electrode plate 1 and the negative electrode plate 3 produced as described above. Thereafter, the positive electrode plate 1 and the negative electrode plate 3 are stacked via the separator 5 and wound to produce a spirally wound electrode plate group 11.
次に、 正極リード 2と蓋体 1 0とを電気的に接続し、 負極リード 4と 電池ケース 8の底部とを電気的に接続する。 電池ケース 8の底部と極板 群 1 1 との間には下部絶縁板 7が配置され、 極板群 1 1 と蓋体 1 0との 間には上部絶縁板 6が配置される。 次に、 電池ケース 8に非水電解質を 注入する。 次に、 電池ケース 8を、 絶縁ガスケッ ト 9および蓋体 1 0に よって封口する。 このようにして本発明の二次電池を得ることができる 。 製造した二次電池は、 組立後に、 所定の電圧において初回の充電が行 われる。 Next, the positive electrode lead 2 and the lid 10 are electrically connected, and the negative electrode lead 4 and the bottom of the battery case 8 are electrically connected. A lower insulating plate 7 is disposed between the bottom of the battery case 8 and the electrode plate group 1 1, and an upper insulating plate 6 is disposed between the electrode plate group 1 1 and the lid 10. Next, inject non-aqueous electrolyte into the battery case 8. Next, the battery case 8 is sealed with the insulating gasket 9 and the lid 10. Thus, the secondary battery of the present invention can be obtained. The manufactured secondary battery is initially charged at a predetermined voltage after assembly. It will be.
(実施例)  (Example)
以下、 実施例によって本発明をさらに詳細に説明する。 なお、 本発明 は以下に示す実施例に限定されない。  Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the examples shown below.
本実施例では、 サイズが J I S C 8 7 1 1記載の I C R 1 8 6 5 0 (直径 1 8mm、 高さ 6 5 0mm) であり、 電池容量が 200 0 m A h の電池を作製して特性 (ハイ レー ト放電特性および充放電サイクル特性 ) の評価を行った。 電池の特性は、 各サンプルについて 50個の電池の 特性を測定し、 それらの平均値 (n = 5 0) をとつて評価した。 以下に 、 各特性の評価方法を説明する。  In this example, a battery having a size of ICR 1 8650 (diameter: 18 mm, height: 650 mm) according to JIS C 871 1 and a battery capacity of 200 m A h is produced. High-rate discharge characteristics and charge-discharge cycle characteristics were evaluated. The battery characteristics were evaluated by measuring the characteristics of 50 batteries for each sample, and calculating the average value (n = 50) of them. Below, the evaluation method of each characteristic is explained.
ハイレート放電特性は、 以下の方法によって評価した。 最初に、 室温 において、 電池電圧が 4. 2 Vに達するまで 2000 mA ( 1 CmA) の定電流で充電を行い、 その後、 電流値が減衰して 1 0 OmA (0. 0 5 CmA) になるまで定電圧で充電を行った。 次に、 400mA (0. 2 CmA) の定電流で 3. 0 Vの放電終止電圧まで放電させ、 その際に 放電した容量 X (mAh) を測定した。 次に、 室温において、 電池電圧 が 4. 2 Vに達するまで 2000 mA ( 1 CmA) の定電流で充電を行 レ、、 その後、 電流値が減衰して 1 00 mA (0. 0 5 CmA) になるま で定電圧で充電を行った。 次に、 4000mA ( 2 CmA) の定電流で 3. 0 Vの放電終止電圧まで放電させ、 その際に放電した容量 Y (mA h ) を測定した。 ここで、 ローレート (L o w R a t e ) 放電時 (放 電電流: 40 0 mA) における放電容量を 1 00 %とした場合の、 ハイ レー ト (H i g h R a t e ) 放電時 (放電電流: 40 00 mA) にお ける容量率 (YZX * 1 00%) を平均値で表してハイレート放電特性 とした。  The high rate discharge characteristics were evaluated by the following method. First, charge at a constant current of 2000 mA (1 CmA) until the battery voltage reaches 4.2 V at room temperature, and then the current value decays to 10 0 mA (0.55 CmA). I was charged at a constant voltage. Next, the battery was discharged to a final discharge voltage of 3.0 V at a constant current of 400 mA (0.2 C mA), and the capacity X (mAh) discharged at that time was measured. Next, charge the battery at a constant current of 2000 mA (1 CmA) until the battery voltage reaches 4.2 V at room temperature, and then reduce the current value to 100 mA (0.55 CmA). The battery was charged at a constant voltage until it reached Next, the battery was discharged to a discharge termination voltage of 3.0 V at a constant current of 4000 mA (2 CmA), and the capacity Y (mA h) discharged at that time was measured. Here, when the discharge capacity at low rate (Low Rate) discharge (discharge current: 40 0 mA) is 100%, high rate (High Rate) discharge (discharge current: 40 00) The capacity ratio (YZX * 100%) in mA) is expressed as an average value to obtain high-rate discharge characteristics.
充放電サイクル特性は、 室温において充放電サイクルを 5 00回繰り 返した後、 電池の容量維持率を測定することによって評価した。 上記充 放電サイクルにおいて、 充電は、 電池電圧が 4. 2 Vに達するまで 20 O OmA ( l CmA) の定電流で充電した後、 電流値が減衰して 1 00 mA (0. 0 5 CmA) になるまで定電圧で充電することによって行つ た。 また、 放電は、 2000 mAの定電流で 3. 0 Vの放電終止電圧ま で放電させることによって行った。 このような充放電サイクルを 5 0 0 回繰り返したのち、 5 00サイクル目の放電容量を測定した。 また、 3 度目のサイクル終了時における電池の放電容量 (初期放電容量) を測定 し、 初期放電容量を 1 00%としたときの充放電サイクル後の放電容量 ( 5 00サイクル目の放電容量) の割合 (容量維持率) を算出した。 充 放電サイクル特性は、 このようにして求めた容量維持率の平均値を用い て評価した。 The charge and discharge cycle characteristics are as follows: 500 times of charge and discharge cycles at room temperature After return, it was evaluated by measuring the capacity retention rate of the battery. In the above charging and discharging cycle, charging is performed with a constant current of 20 O mA (l CmA) until the battery voltage reaches 4.2 V, and then the current value is reduced to 100 mA (0.55 CmA). It was done by charging with a constant voltage until The discharge was performed by discharging at a constant current of 2000 mA to a discharge termination voltage of 3.0 V. After repeating such charge / discharge cycles 500 times, the discharge capacity at 500 cycles was measured. In addition, the discharge capacity (initial discharge capacity) of the battery at the end of the third cycle was measured, and the discharge capacity after 500 cycles of the initial discharge capacity was 100% (discharge capacity at 500th cycle). The ratio (capacity maintenance rate) was calculated. The charge and discharge cycle characteristics were evaluated using the average value of the capacity retention rates obtained in this manner.
以下に、 各電池サンプルの作製方法について説明する。 なお、 各電池 サンプルは、 図 1に示すような円筒状の電池とした。  The method for producing each battery sample is described below. Each battery sample was a cylindrical battery as shown in FIG.
—サンプノレ 1―  —Sampnore 1—
最初に、 以下の方法を用いて負極板を作製した。 負極活物質としてリ ン片状の形状を有する黒鉛を準備し、 上記黒鉛 1 00重量部に対して、 結着剤としてスチレンブタジエンゴムの水溶性デイスパージョンを 4重 量部 (固形分) と、 増粘剤としてカルボキシメチルセルロース 0. 8重 量部とを水溶液の形で加え、 さらにこれをプラネタリーミキサーによつ て混練して負極ペース トを作製した。 次に、 作製した負極ペース トを、 帯状の銅箔 (厚さ 9 /x m) からなる負極集電体の表面にスリ ッ トダイコ 一ターを用いて塗布した後に乾燥させ、 集電体の表面に負極活物質層が 形成された負極シート (厚さ 2 3 0 /i m) を作製した。 次に、 ロールプ レス機を用いて線圧 1 1 O K g/c mにおいて 3回圧延して、 厚さ 1 4 7 x mの負極板を作製した。 その後、 作製した負極板における負極集電 体の端部 (銅箔が露出した領域) に、 負極リードをスポッ ト溶接した。 正極板は以下の方法を用いて作製した。 正極活物質と してコバルト酸 リチウムを用意し、 上記コバルト酸リチウム 1 0 0重量部に対して、 導 電助剤としてアセチレンブラックの炭素粉末を 3重量部と、 結着剤とし てポリテトラフルォロエチレン樹脂のデイスパージヨンを 4重量部 (固 形分) と、 増粘剤と してカルボキシメチルセルロース 0 . 8重量部とを 水溶液の形で加え、 さらにこれをブラネタリーミキサーによって混練し て正極ペース トを作製した。 次に、 作製した正極ペース トを、 帯状のァ ノレミ ニゥム箔 (厚さ 1 4 m ) からなる正極集電体の表面にス リ ッ トダ イコーターを用いて塗布した後に乾燥させ、 集電体の表面に正極活物質 層が形成された正極シート (厚さ 2 4 0 /x m ) を作製した。 次に、 ロー ルプレス機を用いて線圧 1 0 0 0 K g / c mで 3回圧延して、 厚さ 1 4 3 mの正極板作製した。 次に、 作製した正極板における正極集電体の 端部 (アルミニウムが露出した領域) に正極リードをスポッ ト溶接した 。 その後、 2 5 0 °Cにおいて 1 0時間さらに乾燥させた。 なお、 正極集 電体の幅と負極集電体の幅とはほぼ同一と した。 First, a negative electrode plate was produced using the following method. A graphite having a linear flake shape is prepared as a negative electrode active material, and 4 parts by weight (solid content) of a water-soluble dispersion of styrene butadiene rubber as a binder is prepared with 100 parts by weight of the above graphite. As a thickener, 0.8 parts by weight of carboxymethylcellulose was added in the form of an aqueous solution, and this was further kneaded using a planetary mixer to prepare a negative electrode paste. Next, the prepared negative electrode paste is applied to the surface of a negative electrode current collector made of strip copper foil (thickness 9 / xm) using a slit die coater and then dried, and then applied to the surface of the current collector. A negative electrode sheet (thickness 230 / im) having a negative electrode active material layer formed was produced. Next, it was rolled three times at a linear pressure of 1 1 OK g / cm using a roll press machine to produce a negative electrode plate of 1 47 x m in thickness. Then, the negative electrode current collection in the prepared negative electrode plate The negative electrode lead was spot welded to the end of the body (area where the copper foil was exposed). The positive electrode plate was produced using the following method. Lithium cobaltate is prepared as a positive electrode active material, and 3 parts by weight of acetylene black carbon powder as a conductive assistant and 100 parts by weight of the lithium cobaltate and polytetrafluro as a binder. 4 parts by weight (solid content) of dimethyl ethylene resin and 0.8 parts by weight of carboxymethylcellulose as a thickener were added in the form of an aqueous solution, and this was further kneaded using a planetary mixer. The positive electrode paste was prepared. Next, the prepared positive electrode paste is applied to the surface of a positive electrode current collector made of a strip of aluminum foil (14 m in thickness) using a slit die coater and then dried. A positive electrode sheet (thickness: 240 / xm) having a positive electrode active material layer formed on the surface was produced. Next, it was rolled three times at a linear pressure of 1000 Kg / cm using a roll press machine to produce a positive electrode plate of 143 m thick. Next, the positive electrode lead was spot-welded to the end of the positive electrode current collector (area where aluminum was exposed) in the produced positive electrode plate. Thereafter, it was further dried at 250 ° C. for 10 hours. The width of the positive electrode current collector and the width of the negative electrode current collector were substantially the same.
上記のようにして作製した正極板と負極板とを、 ポリプロピレン製セ パレータ (厚さ 2 0 /i m ) を介して積層し、 渦巻状に卷回して極板群を 作製した。 このとき、 芯部に正極リードが配置され、 外周部に負極リー ドが配置されるように極板群を作製した。 次に、 下部絶縁板を底部に設 置した電池ケース内に極板群を収容した。 次に、 正極リードを蓋体に接 続し、 負極リードを電池ケースの底部に接続した。 次に、 極板群の上方 に上部絶縁板を配置し、 非水電解液を電池ケースに所定量注液した。 電 解液には、 エチレンカーボネートとェチルメチルカーボネートとを混合 した非水溶媒に、 電解質であるへキサフルォロリン酸リチウム (L i P F 6 ) を 1 . 2 5 m o 1 1の濃度で溶解させた溶液を用いた。 次に、 電池ケースと蓋体とを、 ポリプロピレン製ガスケッ トを介して 封口し、 図 1に示すような二次電池を作製した。 最後に、 作製した電池 を所定の電圧で初回充電してサンプル 1 とした。 なお、 サンプル 1にお いて、 正極集電体の厚さに対する負極集電体の厚さの比は 0. 64であ り、 即ち、 サンプル 1における比 (R 2ZR 1 ) の値は 1. 0 1であつ た。 The positive electrode plate and the negative electrode plate produced as described above were laminated via a polypropylene separator (thickness 20 / im) and wound spirally to produce an electrode plate group. At this time, a positive electrode lead was disposed at the core portion, and an electrode plate group was produced such that the negative electrode lead was disposed at the outer peripheral portion. Next, the electrode plate group was accommodated in the battery case provided with the lower insulating plate at the bottom. Next, the positive electrode lead was connected to the lid, and the negative electrode lead was connected to the bottom of the battery case. Next, the upper insulating plate was disposed above the electrode plate group, and a predetermined amount of non-aqueous electrolyte was injected into the battery case. In the electrolytic solution, a solution in which lithium hexafluoroboronate (L i PF 6 ), which is an electrolyte, is dissolved at a concentration of 1.2 5 mo 11 in a non-aqueous solvent in which ethylene carbonate and ethyl methyl carbonate are mixed. Was used. Next, the battery case and the lid were sealed with a polypropylene gasket to produce a secondary battery as shown in FIG. Finally, the prepared battery was initially charged at a predetermined voltage and used as sample 1. In the sample 1, the ratio of the thickness of the negative electrode current collector to the thickness of the positive electrode current collector is 0.64, that is, the value of the ratio (R 2 ZR 1) in sample 1 is 1.0. It was one.
サンプル 1に対して上述した電池特性の評価を行ったところ、 ハイレ 一ト放電特性であるハイレート放電時における容量率は 9 6. 1 %であ り、 充放電サイクル特性である 5 00回の充放電サイクル後の容量維持 率は 80. 2 %であった。  When the above-described battery characteristics were evaluated for Sample 1, the capacity ratio at high rate discharge, which is a high-rate discharge characteristic, was 96.1%, and 500 times of charge and discharge cycle characteristics were obtained. The capacity retention rate after the discharge cycle was 80.2%.
一サンプル A (比較例) 一  One sample A (comparative example) one
負極集電体の厚さを 6 μ m (正極集電体の厚さに対する比 : 0. 4 3 ) と した以外はサンプル 1 と同様にして電池を作製し、 上述した電池特 性の評価を行った。 なお、 サンプル Aにおける比 (R 2//R 1 ) の値は 1. 5 2であった。 サンプル Aに対して上述した電池特性の評価を行つ たところ、 ハイレート放電時における容量率は 9 2. 8%であり、 50 0回の充放電サイクル後の容量維持率は 74. 9 %であった。  A battery was produced in the same manner as in Sample 1 except that the thickness of the negative electrode current collector was 6 μm (ratio to the thickness of the positive electrode current collector: 0.43), and the evaluation of the battery characteristics described above was carried out. went. The value of the ratio (R2 // R1) in sample A was 1.52. The battery characteristics were evaluated as described above with respect to sample A. The capacity rate at high rate discharge was 92.8%, and the capacity retention rate after 500 charge and discharge cycles was 74.9%. there were.
一サンプル B (比較例) ―  One sample B (comparative example)-
負極集電体の厚さを 1 2 μ πι (正極集電体の厚さに対する比 : 0. 8 6 ) とした以外はサンプル 1 と同様にして電池を作製し、 上述した電池 特性の評価を行った。 なお、 サンプル Βにおける比 (R 2/R 1 ) の値 は 0. 7 6であった。 サンプル Βに対して上述した電池特性の評価を行 つたところ、 ハイレート放電時における容量率は 9 3. 5 %であり、 5 00回の充放電サイクル後の容量維持率は 7 5. 5 %であった。  A battery was produced in the same manner as in Sample 1 except that the thickness of the negative electrode current collector was 12 μπι (the ratio to the thickness of the positive electrode current collector: 0.86), and the evaluation of the above-described battery characteristics was carried out went. The value of the ratio (R 2 / R 1) in the sample Β was 0.76. When the above-mentioned battery characteristics were evaluated for the sample cell, the capacity rate at high rate discharge was 9 3.5%, and the capacity retention rate after 500 charge and discharge cycles was 75.5%. there were.
—サンプル 2—  —Sample 2—
負極集電体の厚さを 8 m (正極集電体の厚さに対する比 : 0. 5 7 ) とした以外はサンプル 1と同様にして電池を作製し、 上述した電池特 性の評価を行った。 なお、 サンプル 2における比 (R 2ZR 1 ) の値は 1. 14であった。 サンプル 2に対して上述した電池特性の評価を行つ たところ、 ハイレート放電時における容量率は 9 5. 1 %であり、 50 0回の充放電サイクル後の容量維持率は 7 9. 7%であった。 The thickness of the negative electrode current collector is 8 m (ratio to the thickness of the positive electrode current collector: 0.5 7 A battery was produced in the same manner as in Sample 1 except that the battery characteristics were evaluated as described above. The value of the ratio (R 2 ZR 1) in sample 2 was 1.14. The battery characteristics were evaluated as described above with respect to sample 2. The capacity ratio at high rate discharge was 95. 1%, and the capacity maintenance ratio after 500 charge and discharge cycles was 79.7%. Met.
一サンプル 3 - 負極集電体の厚さを 1 0 / m (正極集電体の厚さに対する比: 0. 7 1 ) にした以外はサンプル 1と同様にして電池を作製し、 上述した電池 特性の評価を行った。 なお、 サンプル 3における比 (R 2/R 1) の値 は 0. 9 1であった。 サンプル 3に対して上述した電池特性の評価を行 つたところ、 ハイレート放電時における容量率は 9 5. 2%であり、 5 00回の充放電サイクル後の容量維持率は 80. 1 %であった。 負極集電体に、 亜鉛の含有率が 6 a t %である黄銅箔 (厚さ 14 m ) を用いた以外はサンプル 1と同様にして電池を作製し、 上述した電池 特性の評価を行った。 なお、 サンプル 4における比 (R 2/R 1) の値 は 0. 9 8であった。 サンプル 4に対して上述した電池特性の評価を行 つたところ、 ハイレート放電時における容量率は 96. 0%であり、 5 00回の充放電サイクル後の容量維持率は 80. 3 %であった。  One sample 3-A battery was manufactured in the same manner as in Sample 1 except that the thickness of the negative electrode current collector was 10 / m (ratio to the thickness of the positive electrode current collector: 0.71), and the above-described battery The characteristics were evaluated. The value of the ratio (R 2 / R 1) in sample 3 was 0.91. The battery characteristics were evaluated as described above with respect to sample 3. The capacity ratio at high rate discharge was 95.2%, and the capacity retention ratio after 500 charge and discharge cycles was 80.1%. The A battery was produced in the same manner as in Sample 1 except that a yellow copper foil (14 m in thickness) having a zinc content of 6 at% was used as the negative electrode current collector, and the above-described battery characteristics were evaluated. The value of the ratio (R 2 / R 1) in sample 4 was 0.98. When the above-mentioned battery characteristics were evaluated on Sample 4, the capacity ratio at high rate discharge was 96.0%, and the capacity retention ratio after 500 charge and discharge cycles was 80.3%. .
—サンプル C (比較例) _  —Sample C (comparative example) _
負極集電体に、 亜鉛の含有率が 1 0 a t %である黄銅箔 (厚さ 14 μ m) を用いた以外はサンプル 1と同様にして電池を作製し、 上述した電 池特性の評価を行った。 なお、 サンプル Cにおける比 (R 2/R 1) の 値は 1. 47であった。 サンプル Cに対して上述した電池特性の評価を 行ったところ、 ハイレート放電時における容量率は 93. 3%であり、 500回の充放電サイクル後の容量維持率は 76. 2 %であった。 —サンプル D (比較例) 一 A battery was produced in the same manner as in Sample 1 except that a yellow copper foil (14 μm thick) having a zinc content of 10 at% was used as the negative electrode current collector, and the evaluation of the above-mentioned battery characteristics was carried out. went. The value of the ratio (R 2 / R 1) in sample C was 1.47. When the above-mentioned battery characteristics were evaluated on Sample C, the capacity rate at high rate discharge was 93.3%, and the capacity retention rate after 500 charge and discharge cycles was 76.2%. —Sample D (comparative example)
負極集電体に、 亜鉛の含有率が 2 a t %である黄銅箔 (厚さ 14 μ m ) を用いた以外はサンプル 1 と同様にして電池を作製し、 上述した電池 特性の評価を行った。 なお、 サンプル Dにおける比 (R 2ZR 1) の値 は 0. 7 3であった。 サンプル Dに対して上述した電池特性の評価を行 つたところ、 ハイレート放電時における容量率は 93. 4%であり、 5 00回の充放電サイクル後の容量維持率は 7 5. 4%であった。  A battery was produced in the same manner as in Sample 1 except that a yellow copper foil (14 μm in thickness) having a zinc content of 2 at% was used as the negative electrode current collector, and the above-described battery characteristics were evaluated. . The value of the ratio (R 2ZR 1) in sample D was 0.73. When the above-described battery characteristics were evaluated for Sample D, the capacity rate at high rate discharge was 93.4%, and the capacity retention rate after 500 charge and discharge cycles was 75.4%. The
—サンプル 5 - 負極集電体に、 亜鉛の含有率が 5 a t °/0である黄銅箔 (厚さ 14 μπι ) を用いた以外はサンプル 1と同様にして電池を作製し、 上述した電池 特性の評価を行った。 なお、 サンプル 5における比 (R 2/R 1 ) の値 は 0. 90であった。 サンプル 5に対して上述した電池特性の評価を行 つたところ、 ハイレート放電時における容量率は 95. 9%であり、 5 00回の充放電サイクル後の容量維持率は 7 9. 7 %であった。 -Sample 5-A battery was prepared in the same manner as in Sample 1 except that a yellow copper foil (thickness 14 μπ 厚) having a zinc content of 5 at ° / 0 was used for the negative electrode current collector, and the battery characteristics described above The evaluation of The value of the ratio (R 2 / R 1) in sample 5 was 0.90. When the battery characteristics were evaluated as described above with respect to sample 5, the capacity ratio at high rate discharge was 95.9%, and the capacity retention ratio after 500 charge and discharge cycles was 79.7%. The
—サンプノレ 6 - 負極集電体に、 亜鉛の含有率が 7 a t %である黄銅箔 (厚さ 14 μ πι ) を用いた以外はサンプル 1と同様にして電池を作製し、 上述した電池 特性の評価を行った。 なお、 サンプル 6における比 (R 2ZR 1) の値 は 1. 0 7であった。 サンプル 6に対して上述した電池特性の評価を行 つたところ、 ハイレート放電時における容量率は 9 5. 6%であり、 5 00回の充放電サイクル後の容量維持率は 7 9. 8 %であった。  -Sample 6-A battery was prepared in the same manner as in Sample 1 except that a yellow copper foil (thickness 14 μπι) containing 7 at% of zinc was used for the negative electrode current collector. I made an evaluation. The value of the ratio (R 2 ZR 1) in sample 6 was 1.07. Evaluation of the battery characteristics described above with respect to sample 6 shows that the capacity ratio at high rate discharge is 95.6%, and the capacity retention ratio after 500 charge and discharge cycles is 79.8%. there were.
サンプル 1〜 6および比較サンプル A〜Dの電池について、 負極集電 体の組成と電池特性とを以下の表 1に示す。 (表 1 ) The compositions of the negative electrode current collector and the battery characteristics of the batteries of Samples 1 to 6 and Comparative Samples A to D are shown in Table 1 below. (table 1 )
Figure imgf000024_0001
表 1に示すように、 正極集電体の長手方向における単位長さあたりの 電気抵抗値 R 1に対する負極集電体の長手方向における単位長さあたり の電気抵抗値 R 2の比 (R 2ZR 1 ) の値が、 0. 8 5以上 1. 1 5以 下の範囲にあるサンプル 1〜サンプル 6は、 比 (R 2/R 1 ) の値が 0 . 8 5以上 1. 1 5以下の範囲にはない比較サンプル Α〜比較サンプル Dに比べて、 ハイレート特性および充放電サイクル特性に優れる結果が 得られた。
Figure imgf000024_0001
As shown in Table 1, the ratio of the electrical resistance value R 2 per unit length in the longitudinal direction of the negative electrode current collector to the electrical resistance value R 1 per unit length in the longitudinal direction of the positive electrode current collector (R 2 ZR 1 Sample 1 to sample 6 in which the value of) is in the range of 0.85 or more and 1.15 or less range of the ratio (R 2 / R 1) is in the range of 0.85 or more and 1.15 or less As compared with Comparative Sample Α to Comparative Sample D, the results of which the high rate characteristics and the charge / discharge cycle characteristics are superior to those of Comparative Samples Α to D were obtained.
本発明は、 その意図および本質的な特徴から逸脱しない限り、 他の実 施形態に適用しうる。 この明細書に開示されている実施形態は、 あらゆ る点で説明的なものであってこれに限定されない。 本発明の範囲は、 上 記説明ではなく添付したクレームによって示されており、 クレームと均 等な意味および範囲にあるすベての変更はそれに含まれる。 産業上の利用可能性 The present invention can be applied to other embodiments without departing from the intention and essential features thereof. The embodiments disclosed in this specification are illustrative in all respects and not limiting. The scope of the present invention is indicated not by the above description but by the appended claims, and all changes that are equivalent in meaning and scope to the claims are included therein. Industrial applicability
以上説明したように、 本発明によれば、 電池の内部抵抗のばらつきを 抑制することによって、 例えば、 充放電サイクル特性、 ハイレート充放 電特性などに代表される電池特性に優れる非水電解質二次電池を提供す ることができる。  As described above, according to the present invention, by suppressing the variation in internal resistance of the battery, a non-aqueous electrolyte secondary that is excellent in battery characteristics represented by, for example, charge / discharge cycle characteristics, high rate charge / discharge characteristics, etc. Can provide a battery.

Claims

求 の 範 囲 Scope of request
1 . 正極板と負極板とセパレータとを含む極板群と、 非水電解質と、 を備え、 1. An electrode plate group including a positive electrode plate, a negative electrode plate and a separator, and a non-aqueous electrolyte,
前記極板群は、 前記正極板と前記負極板とを前記セパレータを介して 積層し、 捲回した形状を有しており、  The electrode plate group has a shape in which the positive electrode plate and the negative electrode plate are stacked via the separator and wound.
前記正極板は、 帯状の第 1の集電体と、 前記第 1の集電体上に配置さ れた正極活物質層と、 前記第 1の集電体と電気的に接続された第 1のリ 一ドとを含み、  The positive electrode plate includes: a strip-like first current collector; a positive electrode active material layer disposed on the first current collector; and a first current collector electrically connected to the first current collector. Including the reed of the
前記負極板は、 帯状の第 2の集電体と、 前記第 2の集電体上に配置さ れた負極活物質層と、 前記第 2の集電体と電気的に接続された第 2のリ 一ドとを含み、  The negative electrode plate includes: a strip-like second current collector; a negative electrode active material layer disposed on the second current collector; and a second current collector electrically connected to the second current collector. Including the reed of the
前記第 1の集電体の長手方向における単位長さ当たりの電気抵抗値 R 1に対する前記第 2の集電体の長手方向における単位長さ当たりの電気 抵抗値 R 2の比 (R 2 / R 1 ) の値が、 0 . 8 5以上1 . 1 5以下の範 囲である非水電解質二次電池。  Ratio of electric resistance R 2 per unit length in the longitudinal direction of the second current collector to electric resistance R 1 per unit length in the longitudinal direction of the first current collector (R 2 / R Non-aqueous electrolyte secondary battery having a value of 1) in the range of 0.85 to 1.55.
2 . 前記第 1のリードが前記第 1の集電体の一端に接続され、 かつ、 前記第 2のリードが前記第 2の集電体の一端に接続されており、 前記第 1のリードは、 前記極板群における芯部および外周部から選ば れるいずれか一方に配置されており、 前記第 2のリードは、 前記芯部お よび前記外周部から選ばれる前記一方とは異なる他方に配置されている 請求項 1に記載の非水電解質二次電池。 2. The first lead is connected to one end of the first current collector, and the second lead is connected to one end of the second current collector, and the first lead is connected to one end of the second current collector. A second lead is disposed at one of the core and the outer periphery of the electrode plate group, and the second lead is disposed at the other of the one selected from the core and the outer periphery. The non-aqueous electrolyte secondary battery according to claim 1.
3 . 前記第 1の集電体および前記第 2の集電体に用いる材料が互いに 異なり、 かつ、 前記第 1の集電体の厚さと前記第 2の集電体の厚さとが 互いに異なる請求項 1に記載の非水電解質二次電池。 3. The materials used for the first current collector and the second current collector are different from each other, and the thickness of the first current collector and the thickness of the second current collector are different. The non-aqueous electrolyte secondary battery according to claim 1, which is different from each other.
4. 前記第 1の集電体に用いる材料の電気的な抵抗率と、 前記第 2の 集電体に用いる材料の電気的な抵抗率とがほぼ同一である請求項 1に記 載の非水電解質二次電池。 4. The electrical resistivity of the material used for the first current collector and the electrical resistivity of the material used for the second current collector are substantially the same. Water electrolyte secondary battery.
5. 前記第 1の集電体および前記第 2の集電体から選ばれる少なく と も 1つが空孔を有しており、 5. At least one selected from the first current collector and the second current collector has a void,
前記第 1の集電体と前記第 2の集電体との空孔率が互いに異なる請求 項 1に記載の非水電解質二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein porosity of the first current collector and the second current collector are different from each other.
6. 前記比 (R 2/R 1 ) の値が 0. 8 5以上1. 1 5以下の範囲を 満たすように、 前記第 1および前記第 2の集電体の厚さ、 空孔率、 およ び材質から選ばれる少なく とも 1つが制御されている請求項 1に記載の 非水電解質二次電池。 6. Thickness and porosity of the first and second current collectors so that the value of the ratio (R 2 / R 1) satisfies the range of 0.55 to 1.15. The nonaqueous electrolyte secondary battery according to claim 1, wherein at least one selected from the materials and materials is controlled.
7. 前記正極活物質層および前記負極活物質層が、 リチウムを可逆的 に吸蔵および放出できる正極活物質および負極活物質をそれぞれ含み、 前記非水電解質がリチウム伝導性を有する請求項 1に記載の非水電解 質二次電池。 7. The positive electrode active material layer and the negative electrode active material layer each include a positive electrode active material and a negative electrode active material capable of reversibly absorbing and desorbing lithium, and the non-aqueous electrolyte has lithium conductivity. Non-aqueous electrolyte secondary battery.
8. 前記第 1の集電体がアルミニウムからなり、 8. The first current collector comprises aluminum,
前記第 2の集電体が銅からなる請求項 1に記載の非水電解質二次電池  The non-aqueous electrolyte secondary battery according to claim 1, wherein the second current collector is made of copper.
9. 前記第 1の集電体がアルミニウムからなり 前記第 2の集電体は、 亜鉛を 5原子%〜 7原子%の範囲で含む黄銅か らなる請求項 4に記載の非水電解液二次電池。 9. The first current collector is made of aluminum The non-aqueous electrolyte secondary battery according to claim 4, wherein the second current collector is made of brass containing zinc in a range of 5 atomic% to 7 atomic%.
PCT/JP2004/006869 2003-05-16 2004-05-14 Nonaqueous electrolyte secondary battery WO2004102703A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506258A JPWO2004102703A1 (en) 2003-05-16 2004-05-14 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-139346 2003-05-16
JP2003139346 2003-05-16

Publications (1)

Publication Number Publication Date
WO2004102703A1 true WO2004102703A1 (en) 2004-11-25

Family

ID=33447330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006869 WO2004102703A1 (en) 2003-05-16 2004-05-14 Nonaqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JPWO2004102703A1 (en)
WO (1) WO2004102703A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986876B1 (en) * 2007-03-27 2010-10-08 가부시끼가이샤 도시바 Non-Aqueous Battery, Battery Pack and Vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536401A (en) * 1991-07-30 1993-02-12 Japan Storage Battery Co Ltd Lithium secondary battery
JPH0822841A (en) * 1994-04-21 1996-01-23 Haibaru:Kk Secondary battery
JPH08236115A (en) * 1995-02-28 1996-09-13 Haibaru:Kk Secondary battery
JPH09102301A (en) * 1995-10-05 1997-04-15 Kanebo Ltd Organic electrolyte battery
JPH10199574A (en) * 1996-12-28 1998-07-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2002042889A (en) * 2000-07-21 2002-02-08 Toshiba Corp Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536401A (en) * 1991-07-30 1993-02-12 Japan Storage Battery Co Ltd Lithium secondary battery
JPH0822841A (en) * 1994-04-21 1996-01-23 Haibaru:Kk Secondary battery
JPH08236115A (en) * 1995-02-28 1996-09-13 Haibaru:Kk Secondary battery
JPH09102301A (en) * 1995-10-05 1997-04-15 Kanebo Ltd Organic electrolyte battery
JPH10199574A (en) * 1996-12-28 1998-07-31 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2002042889A (en) * 2000-07-21 2002-02-08 Toshiba Corp Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986876B1 (en) * 2007-03-27 2010-10-08 가부시끼가이샤 도시바 Non-Aqueous Battery, Battery Pack and Vehicle

Also Published As

Publication number Publication date
JPWO2004102703A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP6196329B2 (en) Secondary battery with improved cathode active material, electrode and lithium ion mobility and battery capacity
US10637097B2 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery including the same, and manufacturing method of the electrode-electrolyte assembly
US20080311471A1 (en) Non-aqueous electrolyte secondary battery and production method thereof
JP6754768B2 (en) Non-aqueous electrolyte secondary battery
KR102011253B1 (en) separator for lithium sulfur batteries with catalyst coating
KR101264485B1 (en) Positive electrode of lithium secondary battery and method for producing the same
JP2010092820A (en) Lithium secondary cell and its manufacturing method
JP2007035770A (en) Manufacturing method of electrode for electrochemical element and manufacturing method of electrochemical element
JP2009200302A (en) Method of manufacturing electricity storage device, and electricity storage device
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JP2015079752A (en) Coating-separation film, and electrochemical device including the same
WO2001063687A1 (en) Nonaqueous electrolyte secondary cell
JP6667122B2 (en) Storage element
JP6946694B2 (en) Lithium ion secondary battery
KR101504050B1 (en) Method for producing lithium ion secondary battery
JP6769334B2 (en) Method for manufacturing negative electrode for non-aqueous electrolyte storage element, negative electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element
JP6573150B2 (en) Electricity storage element
JP2000228199A (en) Nonaqueous electrolyte solution secondary battery
JP6848363B2 (en) Negative electrode and non-aqueous electrolyte power storage element
JP2021132020A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
WO2014128844A1 (en) Lithium ion secondary battery
WO2004102703A1 (en) Nonaqueous electrolyte secondary battery
JP2011171177A (en) Lithium ion secondary battery
US20160254547A1 (en) Underlayer for cell electrodes, current collector using the same, electrode, and lithium ion secondary cell
JP6832474B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005506258

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048006163

Country of ref document: CN

122 Ep: pct application non-entry in european phase