WO2004099136A1 - ピロリジン誘導体の製造方法 - Google Patents

ピロリジン誘導体の製造方法 Download PDF

Info

Publication number
WO2004099136A1
WO2004099136A1 PCT/JP2004/006471 JP2004006471W WO2004099136A1 WO 2004099136 A1 WO2004099136 A1 WO 2004099136A1 JP 2004006471 W JP2004006471 W JP 2004006471W WO 2004099136 A1 WO2004099136 A1 WO 2004099136A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound represented
reaction
substituent
Prior art date
Application number
PCT/JP2004/006471
Other languages
English (en)
French (fr)
Inventor
Atsushi Nakayama
Nobuo Machinaga
Yoshiyuki Yoneda
Masaki Setoguchi
Original Assignee
Daiichi Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co., Ltd. filed Critical Daiichi Pharmaceutical Co., Ltd.
Priority to JP2005506035A priority Critical patent/JPWO2004099136A1/ja
Priority to US10/556,043 priority patent/US7345179B2/en
Priority to EP04731729A priority patent/EP1623975A4/en
Publication of WO2004099136A1 publication Critical patent/WO2004099136A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/12Oxygen or sulfur atoms

Definitions

  • the present invention relates to a method for producing a compound useful as an intermediate for producing a compound having excellent VLA-4 inhibitory activity and safety, and a novel useful intermediate. Itoda
  • the compound represented by the following general formula (1) exhibits an anti-inflammatory effect based on an excellent VLA-4 inhibitory effect and is expected as a highly safe pharmaceutical compound (WO 2002/2002). No. 053534 bread fret).
  • a methyl ether structure is formed by a Mitsunobu reaction with a primary hydroxyl group of hydroxypurine, and a benzoic acid unit is introduced after converting a carboxylic acid moiety into a hydroxymethyl group. Subsequent reduction of the benzene ring at the benzoic acid site The 1,4-cyclohexanecarboxylic acid ester obtained in a large number of cis-forms obtained by the reaction was synthesized by carrying out an isomerization reaction via an enolate (International Publication No. No. 3 5 3 4 bread fret).
  • the Mitsunobu reaction requires the use of azo reagents, which have the danger of explosion, and requires a purification process to remove large amounts of unnecessary substances derived from the reagents used. There are difficulties during synthesis.
  • the reduction reaction of the benzene ring generates many cis-forms, so an isomerization step was necessary to obtain the trans-form.
  • the ester hydrolysis treatment proceeds under the isomerization reaction conditions and carboxylic acid is by-produced. Had occurred.
  • a cis-form compound which is predominantly formed in the reduction reaction of compound (V) requires an isomerization step to a trans-form compound, but the conventional method (International Publication No. (See No. pamphlet) required a long time. But It was found that the isomerization reaction was completed in a very short time by using an aprotic polar solvent such as N, N-dimethylformamide as a solvent. This not only shortened the reaction time, but also clarified that carboxylic acid by-products due to ester hydrolysis can be suppressed and re-esterification can be omitted.
  • an aprotic polar solvent such as N, N-dimethylformamide
  • the present invention has been completed by finding a method for more efficiently producing an intermediate compound (VI-trans) which is important as an intermediate for producing the compound (1).
  • the present invention provides a compound of the formula (I)
  • R 11 represents a protecting group for an amino group
  • R 2 represents a protecting group for a hydrogen atom or a hydroxyl group. However, when both are protecting groups, they are not the same protecting group.
  • R 11 and R 2 have the same meanings as above, and R 3 is an arylsulfonyl group which may have a substituent or an alkylsulfonyl group which may have a substituent Means.
  • R 4 represents an alkyl group which may have a substituent or an aralkyl group which may have a substituent
  • M represents an alkali metal atom.
  • the present invention relates to each of the following:
  • R 3 is a paratoluenesulfonyl group or a methanesulfonyl group
  • R 4 is a methyl group or an ethyl group
  • R 1 represents a hydrogen atom or an amino protecting group
  • R 4 has the same meaning as above. You.
  • the present invention also relates to a method for producing the compound represented by the formula:
  • the present invention relates to each of the following:
  • R 1 is a tertiary butoxycarbonyl group
  • R 4 is a methyl group or an ethyl group
  • aprotic polar solvent is N, N-dimethylformamide, N-methyl-2-pyrrolidone, or dimethylsulfoxide;
  • R 4 represents an alkyl group which may have a substituent or an aralkyl group which may have a substituent.
  • R 4 represents an alkyl group which may have a substituent or a substituent It also means a aralkyl group.
  • One preferred example of the process of the present invention comprises the following steps starting from hydroxyproline.
  • the method shown here is a method carried out without protecting the hydroxyl group of hydroxyproline. That is, according to the method of the present invention, the hydroxyl group of hydroxyproline can be converted without protection. However, it goes without saying that a similar conversion step can be carried out by protecting this hydroxyl group.
  • the protecting group to be employed may be selected from those commonly used in this field. More preferably, a protecting group different from the protecting group on the nitrogen atom of the ring is employed.
  • This step is a step of converting the carbonyl group of compound (2a) into a hydroxymethyl group.
  • R 11 is a protecting group for a nitrogen atom (an amino group) (for example, “Protecting group” is described in “Protecti ve Gr oup sin Or anic Synthesis, eds. By TW Greene and PG Wu. ts, John William & Sons, Inc., New York, 1991)).
  • the protecting group include carbonate-based, acyl-based, aralkyl-based and aralkyl-based protecting groups, and may be a substituted or unsubstituted benzyloxycarbonyl group or a tert-butoxycarbonyl group.
  • the compound (2b) can be obtained by applying a well-known reduction method (for example, WO2002 / 053534 pamphlet) which is generally used as a method for converting a hydroxyl group into a hydroxymethyl group.
  • a reducing agent may be reacted, but dipolane can be suitably used as the reducing agent. Dipolane may be generated during the reaction, but using a commercially available poran-dimethyl sulfide complex (Fieser and Fiesers Reagents for Organic Synthesis, 15, 44., etc.) and other polan complexes. Is also good.
  • the solvent used for the dipolane reduction is not particularly limited as long as it does not inhibit the reaction.
  • hydrocarbon solvents such as toluene and ether solvents such as getyl ether and tetrahydrofuran can be mentioned, and ether solvents such as tetrahydrofuran are preferred.
  • the reaction temperature may be between 178 ° C and the boiling point of the solvent, preferably between 0 ° C and the boiling point of the solvent.
  • the reaction time may be between 5 minutes and 24 hours, but usually completes in about 30 minutes to 5 hours.
  • the compound (2a) produced after the reaction can be isolated and produced by treating the reaction solution by a commonly used method and further by a usual method.
  • This step is a step of converting a hydroxymethyl group into a substituted sulfonyloxy group, and is a step of converting a hydroxyl group into a leaving group for a substitution reaction.
  • the leaving group is not limited to a substituted sulfonyloxy group, and is not particularly limited as long as it functions as a leaving group such as a halogen atom.Other substituents may be used, but a substituted sulfonyloxy group is used. It is convenient and most preferred.
  • R 11 has the same meaning as described above.
  • R 3 is a substituted sulfonyl group, which means a substituted or unsubstituted arylsulfonyl group or a substituted or unsubstituted alkylsulfonyl group.
  • the substituted sulfonyl group a p-toluenesulfonyl group and a methanesulfonyl group are preferable.
  • the starting compound (2b) has one secondary and one primary hydroxyl group, but by adjusting the amount of reagent used and the reaction temperature, the primary hydroxyl group present in the hydroxymethyl group can be reduced.
  • Selective conversion to a substituted sulfonyloxy group Can be.
  • the reaction may be carried out by reacting a substituted sulfonyl halide, preferably chloride in the presence of a salt group. Specifically, the reaction can be carried out by the following method.
  • the substituted sulfonyl halide used is selected from those corresponding to the sulfonyl employed. Examples thereof include p-toluenesulfonyl chloride and methanesulfonyl chloride. It is preferable to use these in an amount of 1 to 2.5 moles, preferably 1 to 1.5 moles, per 1 mole of the compound (2b).
  • Examples of the base to be used include alkylamines such as triethylamine, N, N-dimethylaniline, pyridin, and 4-dimethylaminopyridine; aromatic bases; and organic bases such as nitrogen-containing heterocyclic compounds; or Alkali metal, alkaline earth metal carbonate, hydrogen carbonate and the like, and inorganic bases such as anhydrous potassium carbonate, anhydrous sodium carbonate and sodium hydrogen carbonate may be used.
  • organic bases such as triethylamine and 4-dimethylaminopyridine. These may be used in an amount of 1 to 10 equivalents, preferably 1 to 2.5 equivalents, relative to the compound (2b), and may be used in an equimolar amount to the substituted sulfonyl halide used. No.
  • the reaction solvent is not particularly limited as long as it does not inhibit the reaction, but a hydrocarbon solvent such as toluene, an ether solvent such as getyl ether and tetrahydrofuran, and a chlorine solvent such as methylene chloride and 1,2-dichloroethane.
  • a hydrocarbon solvent such as toluene
  • an ether solvent such as getyl ether and tetrahydrofuran
  • a chlorine solvent such as methylene chloride and 1,2-dichloroethane.
  • Preferred solvents include chlorinated solvents such as methylene chloride and 1,2-dichloroethane.
  • the reaction temperature may be in the range of 178 ° C to the boiling point of the solvent, but preferably in the range of 0 ° C to room temperature.
  • the reaction time may be between 5 minutes and 24 hours, but is usually completed in about 30 minutes to 6 hours.
  • Compound (3) is usually an unstable compound, but is not isolated and purified. Both can be used in the next step with sufficient purity after confirmation of their production with equipment.
  • This step is a step of introducing a benzoic acid unit into compound (3).
  • the benzoic acid unit 4-hydroxybenzoic acid ester may be used.
  • methyl esters and ethyl esters are commercially available.
  • This benzoic acid compound may be converted to a sodium, potassium, or lithium phenolate derivative, or further to a calcium phenolate derivative, and a coupling reaction with the compound (3) may be carried out.
  • This reaction is a general reaction of phenol anion, and is known as a reaction for forming an aryl ether bond. Therefore, in the compound of the formula (III), the metal atom (cation) represented by M may be a metal atom selected from an alkali metal atom or an alkaline earth metal atom. Of these, an alkali metal atom is preferable, and lithium, sodium, or potassium is preferable, and sodium or potassium is more preferable.
  • the solvent used for the reaction is not particularly limited as long as it does not inhibit the reaction, but a hydrocarbon solvent such as toluene, an ether solvent such as getyl ether or tetrahydrofuran, or N, N-dimethylformamide, N- Non-protonic polar solvents such as methyl-2-piperidone and dimethyl sulfoxide can be mentioned. Of these, tetrahydrofuran, N, N-dimethylformamide and the like are preferred, and those which are anhydrous within a commonly used range are preferred.
  • 4-hydroxybenzoic acid esters are added to anhydrous potassium carbonate and anhydrous sodium carbonate such as alkali metal and alkaline earth metal carbonates and bicarbonates.
  • the reaction may be carried out by adding an inorganic base such as aluminum, sodium bicarbonate and the like, and the compound (3).
  • a method may be used in which 4-hydroxybenzoic acid ester is treated with a metal hydride to prepare a phenolate in advance, and then the compound (3) is added.
  • the reaction temperature ranges from 0 ° C to the boiling point of the solvent, preferably from 20 ° C to 120 ° C.
  • the reaction time may be between 30 minutes and 24 hours, but usually completes in about 30 minutes to 4 hours.
  • This reaction is preferably carried out under anhydrous conditions in order to avoid hydrolysis of the ester group and decomposition of the sulfonyloxy compound (3).
  • This step is a step of converting the coordination of a hydroxyl group present as a substituent on the ring to hikara / 3 (or changing the coordination of the carbon atom to which the hydroxyl group is bonded from the R coordination to the S coordination). Convert to.)
  • This step is hydroxyl group of the compound (4) into ester or formyl body reactions using accompanied by steric inversion of the hydroxyl group Mitsunobu (5) [step then R 2 2 is a substituent (protecting group)
  • step e This is the step of selectively desorbing [step e].
  • a compound (6) in which the coordination of the hydroxyl group is inverted from a to / 3 can be obtained.
  • Such a series of conversion reactions can be easily carried out by a known method (International Publication No. WO 2001/002 006 Pamphlet and International Publication WO 02/053534). Bread fried).
  • R 11 and R 4 are as defined above.
  • R 2 2 denotes an unsubstituted or substituted ⁇ b I group, Arukaroiru group or formyl group, preferably 4-Nitorobe Examples include benzoyl group, benzoyl group, acetyl group, and formyl group. Of these, 4-nitrobenzoyl, acetyl, and formyl groups are particularly preferred.
  • Examples of the carboxylic acid used in [Step d] include 4-nitrobenzoic acid, benzoic acid, acetic acid, and formic acid, and among them, 412-nitrobenzoic acid and formic acid are preferable.
  • Examples of the phosphine reagent used for the reaction include triphenylphosphine and the like.
  • the reaction solvent is not particularly limited as long as it does not hinder the reaction, and examples thereof include hydrocarbon solvents such as toluene and ether solvents such as dimethyl ether and tetrahydrofuran. Of these, tetrahydrofuran Is preferred.
  • the azo reagent to be used include commercially available azodicarboxylates, for example, diisopropyl azodicarbonate and getyl azodicarbonate.
  • the reaction temperature may range from 0 ° C. to the boiling point of the solvent.
  • the compound (5) can be purified by column chromatography using silica gel or the like, but may be separated and purified after the subsequent [Step e] without purifying at this stage.
  • Step e is a deesterification or deformylation step, which may be performed by a known method which is easily distinguished from the carboxylate group present in the molecule and selectively carried out.
  • ester cleavage may be performed using an alcoholic solvent such as ethanol or methanol, an ethereal solvent such as tetrahydrofuran, or the like, preferably using tetrahydrofuran or ethanol. If necessary, water may be added to the solvent in an amount equivalent to a stoichiometric equivalent to 10-fold molar amount.
  • an alcoholic solvent such as ethanol or methanol
  • an ethereal solvent such as tetrahydrofuran, or the like
  • water may be added to the solvent in an amount equivalent to a stoichiometric equivalent to 10-fold molar amount.
  • the reaction can be carried out at a temperature in the range of 0 to the boiling point of the solvent. It is preferable to carry out in a range.
  • the reaction time may be between 5 minutes and 24 hours, but is usually completed in about 30 minutes to 4 hours.
  • This step is a step of introducing a methyl group into a hydroxyl group on the ring to convert it into a methoxy group.
  • This step may be performed using a general method for methylating a hydroxyl group, that is, treatment with a methylating reagent in the presence of a base.
  • Methylation reagents include methyl halides, with methyl iodide being most preferred.
  • the base to be used is preferably a metal hydride, and sodium hydride or lithium hydride can be suitably used.
  • the reaction solvent is not particularly limited as long as it does not inhibit the reaction.
  • hydrocarbon solvents such as toluene, ether solvents such as getyl ether and tetrahydrofuran, or N, N-dimethylformamide, N-methyl- — Aprotic polar solvents such as pyrrolidone and dimethyl sulfoxide; and tetrahydrofuran, N, N-dimethylformamide and the like are preferable.
  • the solvent is preferably anhydrous as long as it is generally available.
  • the reaction can be carried out at a temperature ranging from 178 ° C to the boiling point of the solvent, preferably from 120 ° C to room temperature.
  • reaction time may be between 30 minutes and 24 hours, but usually completes in about 1-5 hours.
  • this step is preferably performed under anhydrous conditions and further under a nitrogen stream to prevent cleavage of the ester and decomposition of R 1 which is a protecting group for the pyrrolidine ring nitrogen atom.
  • This step is a step of removing the protecting group on the nitrogen atom.
  • This elimination of the protective group is particularly preferred when the protective group present in compound (7) is a protective group containing an aromatic ring. This is because if the aromatic ring contained in the protecting group is reduced by the reduction reaction of the aromatic ring in the benzoic acid portion carried out in the subsequent step, the subsequent reaction becomes complicated.
  • This step is performed by a known method for removing a protecting group on a nitrogen atom, depending on the protecting group selected (for example, Protective Group Organic Compound, eds. By TW Gr e. ene and PG Products, John Wiley & Sons, Inc., New York, 1991).
  • R 11 and R 4 are as defined above.
  • R 11 is a benzyloxycarbonyl group
  • deprotection may be carried out under neutral conditions by catalytic hydrogenation, but the catalyst used may be palladium such as palladium monocarbon or palladium (II) hydroxide.
  • a catalyst or a platinum catalyst such as platinum dioxide can be used.
  • the solvent to be used is not particularly limited as long as it does not inhibit the reaction.
  • examples of the solvent include alcohol solvents such as ethanol and methanol, and ether solvents such as tetrahydrofuran. Ethanol is good Good.
  • the hydrogen pressure can be in the range of normal pressure to 1 OMpa, preferably in the range of normal pressure to IMpa.
  • This step is a step of reducing the benzene ring part in the unit introduced as a benzoic acid unit and converting it into a cyclohexane ring.
  • R 4 has the same meaning as described above.
  • a method known as a mild condition may be applied.
  • a method such as WM Pear 1 man (Organic Synthesis, Collective vevolume 5, p 670-672, John Wiley & Sons, Inc.) is exemplified. be able to. It is stated that this reduction reaction has high cis selectivity, and that 1,4-cis isomers can be obtained predominantly.
  • the catalyst poison-free nitrogen atom which hinders the progress of the reaction in the catalytic reduction step, is converted into a salt by adding an acid in advance, and then the reaction is carried out.
  • a tertiary butoxycarbonyl group is advantageous for protecting the nitrogen atom and improving the operability of the next step (isomerization and separation and purification of isomers).
  • the protecting group to be introduced is not limited to a tertiary butoxycarbonyl group, and other protective groups that perform the same function as the tertiary butoxycarbonyl group are introduced. Needless to say, it may be a group.
  • a benzyloxycarbonyl group which may have a substituent may be employed.
  • the catalyst used in the step of hydrogenating the ring may be a commercially available palladium carbon catalyst, a platinum oxide catalyst, a strontium carbonate catalyst, a rhodium-alumina catalyst, or the like. Rhodium-alumina catalyst is most preferred.
  • the amount of catalyst used can range from 1% to 50%, preferably from 3% to 20%, based on the weight of the substrate to be reduced.
  • the solvent is not particularly limited as long as it does not inhibit the reaction.
  • Alcohol solvents such as ethanol and methanol, and ether solvents such as tetrahydrofuran and dioxane can be used, and preferably an alcohol solvent. Yes, methanol or ethanol.
  • Acetic acid or trifluoroacetic acid is preferably added as a co-solvent to this solvent in a volume ratio of 5% to 20%.
  • the hydrogen pressure for the reaction can be carried out in the range of normal pressure to 10 MPa, but is preferably in the range of normal pressure to 1.5 MPa.
  • the reaction temperature may range from 0 ° C to 100, preferably from 20 ° C to 60 ° C.
  • the reaction time may be between 1 hour and 72 hours, but is usually completed in about 2 hours to 48 hours.
  • the subsequent step of introducing a tertiary butoxycarbonyl group or another protecting group may be carried out by a known method for protecting a nitrogen atom (an amino group) (see above, Protecti V e Group sin Organic Synthesis). eds. by TW Greene and PG Wuts, John Wiley and Sons, Inc., New York, 1991).
  • This step is a step of converting the predominantly generated cis isomer into the trans isomer in the benzene ring reduction step.
  • R 4 has the same meaning as described above.
  • This step comprises the step of increasing the ratio of the trans-isomer of the desired relative configuration by isomerizing the compound (10) via enolate, and separating and purifying these two isomers.
  • the carboxylic acid compound by-produced during the isomerization can be easily converted to the desired ester compound (11) by performing the esterification again.
  • a methyl ester compound (10) in which R 4 is a methyl group In methanol, sodium methoxide was used as a base, and heating was carried out under reflux with stirring for 15 hours to several days.
  • reaction temperature was reduced to 50 ° C. or lower and the amount of the solvent varied depending on the substrate when the reaction was performed in place of the aprotic polar solvent N, N-dimethylformamide or the like. It was found that the isomerization reaction reached a steady state in a very short reaction time of 5 minutes to 1 hour, albeit with a small difference.
  • the carboxylic acid by-product of the hydrolyzed product can be suppressed to a small amount, and the re-esterification step can be omitted, which is advantageous. It becomes.
  • the reaction may be carried out by dissolving the starting material in an aprotic polar solvent such as N, N-dimethylformamide, N-methyl-2-pyrrolidone, or dimethylsulfoxide.
  • an aprotic polar solvent such as N, N-dimethylformamide, N-methyl-2-pyrrolidone, or dimethylsulfoxide.
  • 1 to 3 moles of the compound (10) is coexisted with the corresponding alcohol. Is preferred.
  • Examples of the base used include sodium hydride.
  • Reaction temperatures may range from 0 to 50 ° C, preferably 0. ⁇ , et al. 25 ° C. While maintaining the temperature, the above base is added, and while the progress of the reaction is being monitored, the mixture is further stirred at room temperature to 50 ° C for 5 minutes to 1 hour, and then diluted with diluted hydrochloric acid and neutralized. The reaction can be terminated.
  • An aprotic polar solvent such as N, N-dimethylformamide and N-methyl-2-pyrrolidone, preferably N, N-dimethylformamide, is used as a reaction solvent, and anhydrous potassium carbonate and anhydrous sodium carbonate are used as bases. Then, the corresponding R 4 -bromide or R 4 -chloride may be reacted as an alkylating agent. If the ester is a methyl ester, carry out the esterification using a commercially available trimethylsilyldiazomethane in a mixture of getyl ether, benzene and methanol (4: 1, v / v). It is also possible.
  • the method for separating and purifying the trans compound (11) can be carried out by ordinary column chromatography using silica gel, and higher separation efficiency can be achieved by using a commercially available medium pressure preparative column separation device. can get. Separation can also be performed by using other methods, for example, HPLC.
  • This step is a step of deprotecting a protecting group on a nitrogen atom.
  • R 4 has the same meaning as described above.
  • This step is performed by a known method for removing a tertiary butoxycarbonyl group, which is a protecting group on the nitrogen atom (Protecti V e Group Synthetic Synthesis, eds. By TW Greene and PG Wu ts , John Wiley & Sons, Inc., New York, 1991), and the same applies to other protecting groups.
  • compound (12) can be deprotected using a commercially available 4N hydrochloric acid-dioxane or trifluoroacetic acid.
  • a chlorine-based solvent such as salted methylene may be used as an auxiliary solvent.
  • the reaction can be performed at a temperature ranging from 0 ° C to the boiling point of the solvent.
  • the reaction time may be between 5 minutes and 24 hours, but usually completes in about 30 minutes to 5 hours.
  • the reaction solvent is distilled off, and the compound (12) is isolated as a salt with the acid used, for example, a hydrochloride or trifluoroacetate.
  • the acid used for example, a hydrochloride or trifluoroacetate.
  • These salts can be used as they are in the next reaction, but they can also be neutralized using saturated aqueous sodium hydrogen carbonate and isolated as the free amine compound (12).
  • the compound (12) thus produced is a compound which can be produced by the method described in this publication, similarly to a known method, for example, the method described in WO 2002/053534 pamphlet. It can be used in the condensation reaction with (20) to convert to compound (13).
  • Compound (13) can also be produced by the method shown below (
  • R 5 represents a linear or branched alkyl group, a substituted or unsubstituted arylalkyl group, preferably a methyl group, an ethyl group, a tertiary butyl group, a benzyl group, -Methoxybenzyl group, of which a methyl group or an ethyl group is preferable.
  • This step is a general reaction for hydrolyzing an ester to a free carboxylic acid, and is a general method for converting an alkoxyl group into a carboxylic acid (Protective Group Organic Organism). Synt hesis, eds. By TW Greene and PG Wuts, John Wiley & Sons, Inc., New 'York, 1991).
  • R 4 has the same meaning as described above. This step is for condensing the compound (12) and the compound (20) and can be easily carried out by a known reaction.
  • the solvent to be used is not particularly limited as long as it does not inhibit the reaction.
  • Halogenated hydrocarbon solvents such as methylene chloride, hydrocarbon solvents such as toluene, ether solvents such as tetrahydrofuran, or N , N-dimethylformamide, N-methyl
  • Aprotic polar solvents such as 2-pyrrolidone; Of these, methylene chloride or N, N-dimethylformamide is preferred.
  • 1-ethyl-3- (3-dimethylaminopropyl) propyldiimide hydrochloride, N, N-dicyclohexylcarbodiimide, N, N-carbonyldiimidazole, or the like The reaction may be carried out using a condensing agent which is a product.
  • a condensing agent which is a product.
  • the reaction is preferably carried out using (3-dimethylaminopropyl) carbopimide hydrochloride and N, N-dicyclohexyl carbopimide.
  • the reaction temperature may be in the range of 120 ° C to the boiling point of the solvent, and preferably in the range of 0 ° C to room temperature.
  • this reaction is carried out based on the catalytic amount of an organic amine base such as triethylamine or N, N-dimethylaminopyridine, or an organic amine base, and an active esterification reagent such as 1-hydroxybenzotriazole. It may be carried out in the presence of a quantity.
  • an organic amine base such as triethylamine or N, N-dimethylaminopyridine, or an organic amine base
  • an active esterification reagent such as 1-hydroxybenzotriazole
  • R 4 has the same meaning as described above.
  • the compound (13) is obtained by converting the compound (19) or the compound into a reactive derivative such as an acid halide (eg, acid chloride), and then subjecting the compound (21) to a known condensation reaction. And condensed.
  • a reactive derivative such as an acid halide (eg, acid chloride)
  • Solvents used for converting commercially available 1-methyl-3-indolecarboxylic acid (19) to, for example, acid chloride include methylene chloride, chlorinated solvents such as 1,2-dichlorobenzene, toluene, benzene and the like.
  • chlorinated solvents such as 1,2-dichlorobenzene, toluene, benzene and the like.
  • the solvent include hydrocarbon solvents and ether solvents such as tetrahydrofuran, and preferred are chlorine solvents such as methylene chloride and 1,2-dichlorobenzene.
  • the reaction temperature may range from 0 to the boiling point of the solvent.
  • chlorinating reagent usually used when converting a carboxylic acid to an acid chloride, such as salted oxalyl and thionyl chloride, may be used.
  • the solvent used in the step of condensing the acid chloride of compound (19) with compound (21) is a chlorinated solvent such as methylene chloride and 1,2-dichloroethane, and a carbonic acid such as toluene and benzene.
  • a chlorinated solvent such as methylene chloride and 1,2-dichloroethane
  • a carbonic acid such as toluene and benzene.
  • examples thereof include a hydrogen solvent and an ether solvent such as tetrahydrofuran, and preferably a chlorine solvent such as dimethylene salt.
  • the reaction temperature may range from 0 to the boiling point of the solvent, preferably from room temperature to the boiling point of the solvent.
  • Examples of the base used include stoichiometric organic bases such as triethylamine.
  • This step is used when synthesizing a derivative in which the 1-methyl-3-indolecarboxylic acid moiety is isotope-labeled, or when synthesizing an active metabolite, or 1-methyl-3-indolcarboxylic acid. It is effective when synthesizing a compound having a modified indolecarboxylic acid moiety.
  • Compound (21) is a novel compound, and useful compounds such as compounds (1) and compounds having VLA-4 inhibitory activity, for example, compounds (1a) to (1f) shown below. It is useful as a synthetic intermediate for active substances.
  • ester of compound (13) is subjected to a known method such as hydrolysis, catalytic hydrogenation, etc. (ProtetechtiVeGroupsinOrganic)
  • Triethylamine (133. lml, 0.956mo1) and 4-dimethylaminopyridine (5.84g, 47.8mmo1) were added to the mixture, and then cooled to -10 ° C and p-toluenesulfonylk was added. Mouth lid (100.24 g, 0.526 mol 1) was added slowly. After completion of the addition, the reaction solution was stirred at the same temperature for 1 hour and further at 5 ° C for 18 hours. Under cooling, 1NHC 1 (500 ml) was added to the reaction solution, and the mixture was extracted with a black hole form.
  • 1NHC 1 500 ml
  • reaction solution was diluted with ethyl acetate (2000 ml), washed successively twice with cooling water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained residue was purified by column chromatography using silica gel (4 kg), and the title compound (76.3) was obtained from n-hexane-ethyl acetate (2: 1 to 2: 3, v / v) stream.
  • 65 g, 40.1%, (4R) -hydroxy- (2S) -hydroxymethylpyrrolidine-one yield from benzyl rubonic acid in 2 steps) was obtained as a pale orange oil.
  • the obtained residue was purified by column chromatography using silica gel (1.5 kg), and the title compound (70.68) was purified from n-hexane monoethyl acetate (2: 1, v / v) stream. g, 96.9%) as a pale orange oil.
  • the extract was washed with saturated saline and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained residue was dissolved in DMF (300 ml), and anhydrous potassium carbonate (34.21 g, 0.248 mol) and iodide chill (6.60 ml, 82.5 mmol) were added with stirring at room temperature. The mixture was stirred for 13 hours.
  • the reaction solution was diluted with ethyl acetate (1000 ml), washed with cooling water, and dried over anhydrous sodium sulfate.
  • the precipitated insoluble material was separated by filtration under reduced pressure, and washed with chloroform-methanol (200 ml, 10: 1, v / v). The filtrate was washed with saturated aqueous sodium hydrogen carbonate and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was purified by column chromatography using silica gel (1.2 kg), and the title compound (45.35 g, 99%) was obtained from a stream of formyl ethyl monoacetate (4: 1, v / v). .8%) as a pale yellow amorphous.
  • reaction solution was poured into ice water (100 ml) and extracted with ethyl acetate.
  • the extract was washed with saturated saline (twice), dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the obtained residue was purified by column chromatography using silica gel.
  • Transform form ethyl acetate (9: 1 to 4: 1, V / v) was used to obtain trans-1-([2S , 4 S) — 1— (4-amino-1,2,5-dichlorophenyl) acetyl-1-methoxypyrrolidine—2-yl] methoxycyclohexane—one-potency ethyl ester of rubonic acid (2 1) (2.48 g, 94%) as a colorless solid.
  • Trans-1 4 ((2 S, 4 S) — 1— ⁇ 2,5-dichloro-4— [(1-methylindole—3-yl) carpoxamide] phenyl ⁇ acetyl—4-methoxy Pyrrolidine-1-yl) Methoxycyclohexane-11-Ethyl ester of rubonate (13)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)

Description

ピロリジン誘導体の製造方法
技術分野
本発明は、 優れた VL A— 4阻害作用と安全性を有する化合物の製造中間体と して有用な化合物の製造方法および新規有用中間体に関するものである。 糸田
背景技術
下記の一般式 (1) で表わされる化合物は、 優れた VL A— 4阻害作用に基づ く抗炎症作用を示し、 かつ高い安全性を有する医薬品化合物として期待されてい る (国際公開第 2002/053534号パンフレツト) 。
Figure imgf000003_0001
この化合物 (1) の製造中間体として、 下式の化合物 (12) [化合物 (VI - t r an s) において、 R1が水素原子である化合物] は重要である。
Figure imgf000003_0002
(12) この化合物の従来の製造方法は、 ヒドロキシプリンの一級の水酸基に光延反応 によってメチルエーテル構造を形成し、 さらにカルボン酸部分をヒドロキシメチ ル基に変換後、 安息香酸単位を導入する。 その後安息香酸部位ベンゼン環の還元 反応を行い、 得られる、 シス体が多い 1 , 4ーシクロへキサンカルボン酸エステ ル体を、 エノラート経由の異性化反応を実施することによって合成されていた (国際公開第 2 0 0 2 / 0 5 3 5 3 4号パンフレツト) 。
しかしながら、 光延反応は爆発の危険性を伴うァゾ試薬を使用する必要があ り、 また用いる試薬に由来する大量の不要物が生成するためこれらを除去する精 製工程が必要である等、 大量合成時には難点がある。 一方、 ベンゼン環の還元反 応においてはシス体が多く生成するため、 トランス体を得るためには異性化工程 が必要であった。 しかしながら、 この異性化反応工程に長時間を要していたた め、 異性化反応条件下においてエステルの加水分解反応が進行してカルボン酸が 副生するため、 カルボン酸を再度エステル化処理する必要が生じていた。
このように、 従来の反応では、 化合物 (1 ) を得るまでに、 大量合成に不適な 複数回の光延反応の工程が必要であり、 さらに異性化反応時に加水分解による副 生成物を生じること等から工業的製造方法としては、 改良の余地があった。 発明の開示
本発明者は鋭意研究を重ねた結果、 重要な中間体である式 (V I — t r a n s ) で表わされる化合物の製造に関して;
R1 1の保護基としてベンジルォキシカルポ二ル基を選択することにより、 塩基 存在下、 R3がパラトルエンスルホニル基またはメタンスルホニル基である化合 物 (I I ) に変換し、 これを化合物 (I I I ) との S N—2反応に附すことで所 望の化合物 (I V) に変換できることを見いだし、 この結果、 光延反応を回避で きること、 またこの反応では R2が保護基でなくともよいことを見出し、 保護基 の使用も回避できることを見出した。
さらに、 化合物 (V) の還元反応において優位に生成するシス体化合物につい てトランス体化合物への異性化工程が必要であるが、 従来法 (国際公開第 2 0 0 2 Z 0 5 3 5 3 4号パンフレツト参照) では長時間が必要であった。 しかしなが ら溶媒として非プロトン性極性溶媒、 例えば N, N—ジメチルホルムアミド等、 を用いることにより極めて短時間で異性化反応が終了することを見出した。 これ によって、 単に反応時間の短縮だけでなく、 エステルの加水分解によるカルボン 酸の副生を抑え、 再エステル化を省略できることも明らかとなった。
これらの優れた改良によって、 化合物 (1 ) 製造の中間体として重要な中間体 化合物 (V I— t r a n s ) を、 より効率的に製造できる方法を見出して本発明 は完成に至ったものである。
すなわち本発明は、 式 (I )
Figure imgf000005_0001
(式中、 R1 1は、 ァミノ基の保護基を意味し、 R2は、 水素原子または水酸基の 保護基を意味するが、 両者が保護基である場合は同一の保護基とはならない。 ) で表わされる化合物に、 塩基存在下、 置換基を有していてもよいァリ一ルスルホ ニルクロリドまたは置換基を有していてもよいアルキルスルホニルクロリドを反 応させ、 得られる式 (I I )
Figure imgf000005_0002
(式中、 R1 1および R2は、 先と同義であり、 R3は、 置換基を有していてもよい ァリールスルホニル基または置換基を有していてもよいアルキルスルホ二ル基を 意味する。 )
で表わされる化合物に、 式 (I I I )
Figure imgf000006_0001
(式中、 R4は、 置換基を有していてもよいアルキル基または置換基を有してい てもよぃァラルキル基を意味し、 Mは、 アルカリ金属原子を意味する。 ) で表わされる化合物を反応させることを特徴とする式 (I V)
Figure imgf000006_0002
(式中、 R 、 R2および R4は先と同義である。 )
で表わされる化合物の製造方法に関するものである。
さらに本願発明は以下の各々にも関するものである;
R1 1が、 ベンジルォキシカルポニル基である上記の製造方法;
R2が、 水素原子である上記の各製造方法;
R3が、 パラトルエンスルホニル基またはメタンスルホニル基である上記の各製 造方法;
R4が、 メチル基またはェチル基である上記の各製造方法;
等である。
さらに本願発明は、 式 (V)
Figure imgf000006_0003
(式中、 R1は、 水素原子またはァミノ基の保護基を意味し、 R4は先と同義であ る。 )
で表わされる化合物を還元し、 得られる式 (VI)
Figure imgf000007_0001
(式中、 R1および R4は先と同義である。 )
で表わされる化合物を、 非プロトン性極性溶媒中、 金属水素化物で処理した後 に、 異性体を分離することを特徴とする式 (V I — t r a n s )
(VI -trans)
Figure imgf000007_0002
(式中、 R1および R4は先と同義である。 )
で表わされる化合物の製造方法にも関するものである。
さらに本願発明は、 以下の各々にも関するものである;
R1が、 第三級ブトキシカルポニル基である上記の製造方法;
R4が、 メチル基またはェチル基である上記の各製造方法;
金属水素化物が、 水素化ナ卜リゥムまたは水素化リチウムである上記の各製造方 法;
非プロトン性極性溶媒が、 N, N—ジメチルホルムアミド、 N—メチルー 2—ピ ロリドン、 またはジメチルスルホキシドである上記の各製造方法;
等である。
また本発明は、 式 (1 2 )
Figure imgf000008_0001
(12)
(式中、 R4は、 置換基を有していてもよいアルキル基または置換基を有してい てもよぃァラルキル基を意味する。 )
で表わされる化合物に、 式 (20)
Figure imgf000008_0002
(20)
で表わされる化合物を縮合させ、 得られる式 (21)
Figure imgf000008_0003
(式中、 R4は、 先と同義である。 )
で表わされる化合物に、 次式 (19)
Figure imgf000008_0004
(19) で表わされる化合物又はその反応性誘導体を反応させ、 得られる式 (1 3 )
Figure imgf000009_0001
(13)
(式中、 R4は、 先と同義である。 )
で表わされる化合物のエステルを切断することを特徴とする式 ( 1 )
Figure imgf000009_0002
(1)
で表わされる化合物の製造方法に関するものである。
さらに本発明は、 下記式 (2 1 )
Figure imgf000009_0003
(式中、 R4は、 置換基を有していてもよいアルキル基または置換基を有してい てもよぃァラルキル基を意味する。 )
で表わされる化合物に関するものである。 本発明の製造方法および製造中間体を提供することにより、 優れた V L A— 4 阻害作用と高い安全性を有する化合物 (1 ) を医薬品として高い純度で高率的に 製造することが可能となる。 発明を実施するための最良の形態
以下に本発明を詳細に説明する。
本発明の製法の好適な例の一つは、 ハイドロキシプロリンを出発物質とする次 の工程からなっている。 ここに示した方法は、 ハイドロキシプロリンの水酸基を 保護せずに実施する方法である。 すなわち、 本発明の方法によればハイドロキシ プロリンの水酸基を保護せずに変換することができることも特徴である。 しかし ながら、 この水酸基を保護して同様の変換工程が実施できることは言うまでもな レ^ この場合、 採用すべき保護基は、 この分野において通常使用される保護基か ら選択すればよいが、 ハイドロキシプロリンの環の窒素原子上にある保護基とは 異なる保護基を採用することがより好ましい。
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
(7) (8) (9) TFA salt (11)
TFA: トリフルォロ酢酸 Boc: t一ブトキシカルボニル
( 1
01
Figure imgf000012_0001
Figure imgf000012_0002
T.l7900/l700Zdf/X3d 9£I660請 OAV これらの各工程について以下に詳細に説明する。
[工程 a]
Figure imgf000013_0001
( ) (2b) 本工程は、 化合物 (2 a) の力ルポキシル基をヒドロキシメチル基に変換する 工程である。
式中、 R11は、 窒素原子 (ァミノ基) の保護基である (保護基としては例え は、 『 P r o t e c t i ve Gr oup s i n Or an i c S y n t h e s i s, e d s. by T. W. Gr e ene and P. G. Wu t s , J ohn Wi l ey & S on s, I nc. , New Yo r k, 1991』参照) 。保護基の例としては、 カーボネート系、 ァシル系、 ァ ルキル系、 またはァラルキル系等の保護基を挙げることができるが、 置換もしく は無置換のベンジルォキシカルポニル基、 または第三級ブトキシカルポ二ル基等 のアルキルォキシ力ルポニル基等、 カーボネート系の保護基が好ましい。 これら のうちではべンジルォキシカルポニル基が最も好ましい。
力ルポキシル基をヒドロキシメチル基に変換する方法は、 通常用いられる公知 の還元方法 (例えば、 国際公開第 2002/053534号パンフレツト) を適 用することで化合物 (2b) を得ることができる。 最も簡便には還元剤を反応さ せればよいが、 還元剤としてはジポランを好適に使用することができる。 ジポラ ンは反応時に発生させてもよいが、 市販のポラン一ジメチルスルフィド錯体 (F i e s e r and F i e s e r s Re agen t s f o r Or g a n i c Syn t he s i s, 15, 44. 等) 等のポラン錯体類を使用し てもよい。
このジポラン還元に使用する溶媒としては、 反応を阻害しないものであれば特 に制限はないが、 トルエン等の炭化水素系溶媒、 あるいはジェチルエーテル、 テ トラヒドロフラン等のエーテル系溶媒を挙げることができるが、 好ましくはテト ラヒドロフラン等のエーテル系溶媒である。
反応温度は、 一 7 8 °Cから溶媒の沸点の間でよく、 好ましくは 0 °Cから溶媒の 沸点の間である。
反応時間は、 5分から 2 4時間の間でよいが、 通常は 3 0分から 5時間程度で 完結する。
反応後生成した化合物 (2 a ) は、 通常行われる方法によって反応液を処理 し、 さらに通常の方法によって単離生成できる。
[工程 b ]
Figure imgf000014_0001
(2b) (3) 本工程は、 ヒドロキシメチル基を置換スルホニルォキシ基に変換する工程であ り、 置換反応のために水酸基を脱離基に変換する工程である。 脱離基は置換スル ホニルォキシ基には限定されず、 ハロゲン原子等、 脱離基としての機能を果たす のであれば特に制限はなく、 他の置換基でもよいのであるが、 置換スルホニルォ キシ基を使用するのが簡便であり、 最も好ましい。
式中、 R 1 1は、 前記と同義である。 R3は、 置換スルホニル基であり、 置換も しくは無置換のァリ一ルスルホニル基、 または置換もしくは無置換のアルキルス ルホニル基を意味する。 置換スルホニル基としては p—トルエンスルホニル基、 メタンスルホニル基が好ましい。
出発物質である化合物 (2 b ) は、 二級および一級の水酸基各々 1個を有して いるが、 使用する試薬の量および反応温度を調整することによって、 ヒドロキシ メチル基に存在する一級水酸基を選択的に置換スルホニルォキシ基に変換するこ とができる。 反応は、 置換スルホニルハロゲナイド、 好ましくはクロライドを塩 基存在下に反応させればよいが、 具体的には次に示す方法によってこれを行うこ とができる。
置換スルホニルハロゲナイドは、 採用するスルホニルに対応するものを使用す る力 例えば、 p—トルエンスルホニルクロリド、 メタンスルホニルクロリドを 挙げることができる。これらを、 化合物 (2 b ) に対して 1から 2 . 5倍モルの 範囲、 好ましくは 1から 1 . 5倍モル量を使用するのが好ましい。
用いる塩基としては、 トリェチルァミン、 N, N—ジメチルァニリン、 ピリジ ン、 4—ジメチルァミノピリジン等のアルキルアミン類、 芳香族ァミン類、 また は含窒素複素環化合物類等の有機塩基、 あるいは、 アルカリ金属、 アルカリ土類 金属の炭酸塩、 炭酸水素塩等であって、 無水炭酸カリウム、 無水炭酸ナトリウ ム、 炭酸水素ナトリウム等の無機塩基を使用すればよい。 好ましくは、 トリエヂ ルァミン、 4ージメチルァミノピリジン等の有機塩基である。 これらの使用量 は、 化合物 (2 b ) に対して 1から 1 0当量の範囲でよく、 好ましくは 1から 2 . 5当量で、 使用する置換スルホニルハロゲナイドと当モル量を使用すればよ い。
反応溶媒は、 反応を阻害しないものであれば特に制限はないが、 トルエン等の 炭化水素系溶媒、 ジェチルエーテル、 テトラヒドロフラン等のエーテル系溶媒、 塩化メチレン、 1 , 2—ジクロロェ夕ン等の塩素系溶媒を挙げることができる が、 好ましい溶媒として塩化メチレン、 1, 2—ジクロロェタン等の塩素系溶媒 を挙げることができる。
反応温度は一 7 8 °Cから溶媒の沸点の範囲でよいが、 0 °Cから室温の範囲で実 施するのが好ましい。
反応時間は、 5分から 2 4時間の間でよいが、 通常は 3 0分から 6時間程度で 完結する。
化合物 (3 ) は、 通常、 不安定な化合物であることが多いが、 単離精製しなく とも、 機器等で生成を確認後、 十分な純度で次の工程に用いることができる。
[工程 C ]
Figure imgf000016_0001
本工程は、 化合物 (3 ) に安息香酸ユニットを導入する工程である。
この安息香酸ュニッ卜の導入には 4ーヒドロキシ安息香酸エステルを使用すれ ばよい。 例えば、 メチルエステルおよびェチルエステルを市販品として入手可能 である。 この安息香酸化合物をナトリウム、 カリウム、 あるいはリチウムフエノ ラート体誘導体、 さらにはカルシウムフエノラート誘導体に変換し、 これと先の 化合物 (3 ) とのカップリング反応を実施すればよい。この反応は一般的なフエ ノラ一トァニオンの反応であり、 ァリールエーテル結合を形成する反応として公 知である。 したがって、 式 (I I I ) の化合物において、 Mで表わされる金属原 子 (陽イオン) はアルカリ金属原子またはアルカリ土類金属原子から選ばれる金 属原子であればよい。 また、 これらのうちではアルカリ金属原子が好ましく、 リ チウム、 ナトリウム、 あるいはカリウムが好ましく、 より好ましくはナトリウム またはカリウムである。
反応に用いる溶媒としては、 反応を阻害しないものであれば特に制限はない が、 トルエン等の炭化水素系溶媒、 ジェチルエーテル、 テトラヒドロフラン等の エーテル系溶媒、 あるいは N, N—ジメチルホルムアミド、 N—メチルー 2—ピ 口リドン、 ジメチルスルホキシド等の非プロトン製極性溶媒を挙げることができ る。 これらの中ではテトラヒドロフラン、 N, N—ジメチルホルムアミド等が好 ましく、 また、 一般的に用いられる範囲で無水であるものが好ましい。
これらの溶媒中、 市販の 4ーヒドロキシ安息香酸エステルにアルカリ金属、 ァ ルカリ土類金属の炭酸塩、 炭酸水素塩等の、 無水炭酸カリウム、 無水炭酸ナ卜リ ゥム、 炭酸水素ナトリウム等の無機塩基、 そして化合物 (3 ) を添加して反応を 実施すればよい。 この他、 水素化金属類によって 4ーヒドロキシ安息香酸エステ ルを処理して予めフエノラートを調製し、 次いで化合物 (3 ) を添加する方法で もよい。
反応温度は、 0 °Cから溶媒の沸点の範囲、 好ましくは 2 0 °Cから 1 2 0 °Cの範 囲である。
反応時間は、 3 0分から 2 4時間の間でよいが、 通常は 3 0分から 4時間程度 で完結する。
また、 本反応はエステル基の加水分解、 スルホニルォキシ体 (3 ) の分解を回 避するために、 無水の条件下で実施するのが好ましい。
一 [工程 d ] および [工程 e ]
Figure imgf000017_0001
本工程は、 環上の置換基として存在する水酸基の配位を、 ひから /3に変換する 工程である (あるいは、水酸基の結合している炭素原子の配位を R配位から S配 位に変換する。 ) 。 本工程は化合物 (4 ) の水酸基を、 光延反応を用いて水酸基 の立体反転を伴ったエステル体あるいはホルミル体 ( 5 ) に変換し [工程 、 次いで置換基 (保護基) である R2 2を選択的に脱離させる工程 [工程 e ] であ る。 これらによって水酸基の配位を aから /3に反転させた化合物 (6 ) を得るこ とができる。 これら一連の変換反応は、 公知の方法で容易に実施可能である (国 際公開第 2 0 0 1 / 0 0 2 0 6号パンフレツト及び国際公開第 2 0 0 2 / 0 5 3 5 3 4号パンフレツト) 。
式中、 R1 1および R4は前記と同義である。 R2 2は、 無置換もしくは置換のァロ ィル基、 アルカロィル基、 またはホルミル基を意味し、 好ましくは 4—ニトロべ ンゾィル基、 ベンゾィル基、 ァセチル基、 ホルミル基を挙げることができる。 こ れらのうちでは特に 4—ニトロベンゾィル基、 ァセチル基、 ホルミル基が好まし レ^
[工程 d ] において用いるカルボン酸としては、 4 _ニトロ安息香酸、 安息香 酸、 酢酸あるいはギ酸等を挙げることができるが、 その中で 4一二トロ安息香 酸、 またはギ酸が好ましい。
反応に用いるホスフィン試薬としてはトリフエニルホスフィン等を挙げること ができる。
反応溶媒としては、 反応を阻害しないものであれば特に制限はないが、 トルェ ン等の炭化水素系溶媒、 ジェチルェ一テル、 テトラヒドロフラン等のエーテル系 溶媒等を挙げることができ、 これらのうちではテトラヒドロフランが好ましい。 用いるァゾ試薬としては、 市販のァゾジカルボン酸エステル類、 例えばジイソ プロピルァゾジカルポン酸エステル、 ジェチルァゾジカルポン酸エステルを挙げ ることができる。
反応温度は、 0 °Cから溶媒の沸点の範囲でよい。
化合物 (5 ) はシリカゲル等を用いるカラムクロマトグラフィーで精製するこ とが可能であるが、 この段階で精製することなしに、 引き続く [工程 e ] の終了 後に分離精製してもよい。
[工程 e ] は脱エステルあるいは脱ホルミル化工程であり、 分子内に存在する カルボン酸エステル基と容易に区別して選択的に実施する公知の方法き適用すれ ばよい。
すなわち、 エタノール、 メタノール等のアルコール系溶媒、 テトラヒドロフラ ン等のエーテル系溶媒、 好ましくはテトラヒドロフランあるいはエタノールを使 用してエステルの切断を実施すればよい。なお、 所望により溶媒中に化学論的等 量から 1 0倍モル量相当の水を添加してもよい。
反応の温度は 0 から溶媒の沸点の範囲で実施可能であるが、 0 °Cから室温の 範囲で実施するのが好ましい。
反応時間は、 5分から 2 4時間の間でよいが、 通常は 3 0分から 4時間程度で 完結する。
[工程 ]
Figure imgf000019_0001
(6) (7) 本工程は、 環上の水酸基にメチル基を導入してメトキシ基に変換する工程であ る。
この工程は、 水酸基をメチル化する一般的な方法を用いて実施すればよく、 す なわち、 塩基存在下、 メチル化試剤で処理すればよい。
メチル化試剤はハロゲン化メチルを挙げることができ、 ヨウ化メチルが最も好 ましい。
使用する塩基は、 金属水素化物が好ましく、 水素化ナトリウムまたは水素化リ チウムを好適に使用することができる。
反応溶媒は、 反応を阻害しないものであれば特に制限はないが、 トルエン等の 炭化水素系溶媒、 ジェチルエーテル、 テトラヒドロフラン等のエーテル系溶媒、 あるいは N, N—ジメチルホルムアミド、 N—メチル一 2—ピロリドン、 ジメチ ルスルホキシド等の非プロトン性極性溶媒を挙げることができ、 この中でテ卜ラ ヒドロフラン、 N, N—ジメチルホルムアミド等が好ましい。 溶媒は一般的に入 手可能な範囲で無水のものが好ましい。
反応温度は一 7 8 °Cから溶媒の沸点の範囲で実施できるが、 一 2 0 °Cから室温 の範囲が好ましい。
反応時間は、 3 0分から 2 4時間の間でよいが、 通常は 1時間から 5時間程度 で完結する。 · また本工程はエステルの切断、 さらにピロリジン環窒素原子の保護基である R 1の分解を防ぐために、 無水条件下、 さらには窒素気流下で実施するのが好まし い。
[工程 g]
Figure imgf000020_0001
(7) (8) 本工程は、 窒素原子上の保護基を脱離する工程である。この保護基の脱離は、 化合物 (7) において存在する保護基が芳香環を含む保護基であるときには特に 脱離することが好ましい。 これは、 引き続く工程において実施される安息香酸部 分の芳香環の還元反応によって、 保護基に含まれる芳香環が還元されるとそれ以 降の反応が煩雑になるからである。 本工程は、 選択した保護基に応じて、 窒素原 子上の保護基を除去する公知の方法 (例えば、 P r o t e c t i ve Gr ou p s i n O r an i c Syn t he s i s, e d s. by T. W. Gr e ene and P. G. Wu t s , J ohn Wi l ey & Son s, I nc. , New Yo r k, 1991) にしたがって実施す ればよい。
式中、 R11および R4は前記と同義である。
例えば、 R11がべンジルォキシカルポニル基である場合、 接触水素化による中 性条件下で脱保護すればよいが、 使用する触媒としてはパラジウム一炭素、 水酸 化パラジウム (I I) 等のパラジウム触媒、 あるいは二酸化白金等の白金触媒等 を挙げることができる。
また、 使用する溶媒としては、 反応を阻害するものでなければ特に制限はない が、 エタノール、 メタノール等のアルコール系溶媒、 テトラヒドロフラン等のェ 一テル系溶媒を挙げることができ、 この中でメタノールあるいはエタノ一ルが好 ましい。
水素圧は、 常圧から 1 OMp aの範囲で実施でき、 常圧から IMp aの範囲が 好ましい。
「工程 h] および [工程 i]
Figure imgf000021_0001
(8) (9) TFA salt (10) 本工程は、 安息香酸ユニットとして導入されたュニット中のベンゼン環部分を 還元して、 シクロへキサン環に変換する工程である。
式中、 R4は前記と同義である。
本工程は、 ベンゼン環を水素添加してシクロへキサン環に変換する方法として 一般的に知られている方法のうちで、 緩和な条件として知られている方法を適用 すればよい。 例えば、 W. M. Pe a r 1 ma n等の方法 (Or gan i c S yn t he s i s, Co l l e c t i ve vo l ume 5, p 670— 672, J ohn Wi l ey & S on s, I nc. ) を挙げることが できる。 この還元反応はシス選択性が高く、 1, 4一シス体が優位に得られるこ とが述べられている。 また本工程は、 接触還元工程で反応進行の妨げとなる触媒 毒のフリーな窒素原子を、 あらかじめ酸を加えることにより塩に変換した後に実 施することによって円滑に反応を進行させることができる。
また、 引き続く第三級ブトキシカルボニル基の導入は、 窒素原子を保護して次 の工程 (異性化および異性体の分離精製) の操作性を向上させるために有利であ る。 なお、 ここでは第三級ブトキシカルポニル基の導入が説明されているが、 導 入される保護基としては第三級ブトキシカルポニル基に限定されることはなく、 これと同じ機能を果たす他の保護基であればよいことはいうまでもない。 例え ば、 置換基を有していてもよいベンジルォキシカルポ二ル基を採用してもよい。 '環を水素添加する工程で使用する触媒は、 商業的に入手可能なパラジ ゥムー炭素触媒、 酸化白金触媒、 炭酸ストロンチウム触媒、 ロジウム一アルミナ 触媒等を使用すればよいが、 これらのう.ちではロジウム一アルミナ触媒が最も好 ましい。
使用する触媒の量は、 還元される基質の重量に対して 1 %から 50 %で実施で きるが、 3 %から 20%の範囲が好ましい。
溶媒は、 反応を阻害するものでなければ特に制限はないが、 エタノール、 メタ ノール等のアルコール系溶媒、 テ卜ラヒドロフラン、 ジォキサン等のエーテル系 溶媒を使用することができ、 好ましくはアルコール系溶媒であり、 メタノールあ るいはエタノールを挙げることができる。この溶媒中に、 容積割合で 5%から 2 0%の範囲で酢酸またはトリフルォロ酢酸を共存溶媒として添加するのが好まし い。
反応の水素圧は常圧から 10 MP aの範囲で実施できるが、 好ましくは常圧か ら 1. 5MPaの範囲である。
反応温度は 0°Cから 100 の範囲でよく、 好ましくは 20°Cから 60°Cの範 囲である。
反応時間は、 1時間から 72時間の間でよいが、 通常は 2時間から 48時間程 度で完結する。
引き続く第三級ブトキシカルポニル基、 あるいは他の保護基、 を導入する工程 は、 窒素原子 (ァミノ基) を保護する公知の方法 (前記の、 P r o t e c t i V e Gr oup s i n Or gan i c Syn t he s i s, e d s. by T. W. Gr e ene and P. G. Wu t s , J ohn Wi 1 e y & Son s, I nc. , New Yo r k, 1991) にしたが つて実施することができる。
[工程 j ]
Figure imgf000023_0001
(10) (11)
本工程は、 先のベンゼン環の還元工程において、 優位に生成するシスの異性体 をトランスの異性体に変換する工程である。
式中、 R4は前記と同義である。
本工程は、 化合物 (1 0 ) をエノレート経由の異性化によって、 所望の相対配 位のトランス体割合を向上させ、 さらにこれら 2つの異性体を分離精製する工程 からなる。 なお、 異性化の際に副生するカルボン酸化合物は、 再度エステル化を 実施することで容易に所望のエステル化合物 (1 1 ) に変換することができる。 本工程と同様の異性化反応は、 国際公開第 2 0 0 2 / 0 5 3 5 3 4号パンフレ ットに記載された方法では、 R4がメチル基であるメチルエステル体 (1 0 ) を、 メタノール中、 塩基としてナトリウムメトキシドを用い、 1 5時間から数日 間、 攪拌下に加熱還流するとの条件で実施していた。しかしながら本願発明者ら が検討した結果、 溶媒を非プロトン性極性溶媒である N, N—ジメチルホルムァ ミド等に代えて実施することで、 反応温度を 5 0 °C以下とし、 かつ基質により多 少の差はあるが 5分から 1時間以内との極めて短い反応時間で異性化反応が定常 状態に達することを見出したのである。
これによつて次の点、 すなわち、 短時間で異性化反応を終結することにより加 水分解成績体のカルボン酸の副生が少量に抑えられ、 再エステル化の工程を省略 できることになり有利となるのである。
改良した反応条件としては、 出発物質を、 N, N—ジメチルホルムアミド、 N ーメチルー 2—ピロリドン、 あるいはジメチルスルホキシド等の非プロトン性極 性溶媒等に溶解させて反応を実施すればよい。 また、 反応を促進させるために、 化合物 (1 0 ) の 1から 3倍モルの、 こ対応するアルコールを共存させるの が好ましい。
使用する塩基は、 水素化ナトリゥムを挙げることができる。
反応温度は 0でから 5 0 °Cの範囲でよく、 好ましくは 0。ΟΛ、ら 2 5 °Cである。 この温度に保ちながら、 上記塩基を加え、 反応の進行を確認しながらさらに室 温から 5 0 °Cの範囲で 5分から 1時間撹拌した後、 希塩酸等を冷却下に加えて中 和することによって反応を終結できる。
また、 副生するカルボン酸をエステル体 ( 1 1 ) に変換する処理として以下の 処理を挙げることができる。
反応溶媒として、 N, N—ジメチルホルムアミド、 N—メチルー 2—ピロリド ン等の非プロトン性極性溶媒、 好ましくは N, N—ジメチルホルムアミドを使用 し、 塩基として無水炭酸カリウム、 無水炭酸ナトリウムを使用して、 アルキル化 剤として対応する R4—ブロミドまたは R4—クロリドを反応させればよい。 また、 エステルがメチルエステルの場合は、 ジェチルエーテル、 ベンゼン—メ 夕ノール (4 : 1、 v/ v ) 混合溶媒中、 市販の卜リメチルシリルジァゾメタン を用いてエステル化を実施することも可能である。
本異性化反応では加水分解成績体のカルボン酸の副生が少ないためエステル化 工程を省いても化合物 (1 1 ) の単離収率の低下は 1 0 %以下であった。 トラン ス体の化合物 (1 1 ) を分離精製する方法は、 通常のシリカゲルを用いるカラム クロマトグラフィ一で実施でき、 商業的に入手可能な中圧分取型カラム分離装置 を用いるとより高い分離効率が得られる。 また、 分離はその他の、 例えば H P L C等を用いても可能である。
[工程 k]
Figure imgf000024_0001
(11) (12) 本工程は、 窒素原子上の保護基の脱保護工程である。
式中、 R4は前記と同義である。
本工程は、 窒素原子上の保護基である第三級ブトキシカルポ二ル基を除去する 公知の方法 (P r o t e c t i V e Gr oup s i n Or an i c S yn t h e s i s, e d s . by T. W. Gr e e n e and P. G. Wu t s , J ohn Wi l ey & Son s, I nc. , New Yo r k, 1991) にしたがって実施すればよく、 またこれ以外の保護基 であっても同様である。 例えば第三級ブトキシカルポニル基であれば、 化合物 (12) を、 市販の 4N塩酸—ジォキサンまたはトリフルォロ酢酸を用いて脱保 護が可能である。 また、 トリフルォロ酢酸を用いる場合は補助溶媒として塩ィ匕メ チレン等の塩素系溶媒を用いてもよい。
反応温度は 0 °Cから溶媒の沸点の範囲で実施可能である。
反応時間は、 5分から 24時間の間でよいが、 通常は 30分から 5時間程度で 完結する。
脱保護反応終了後、 反応溶媒を留去すると化合物 (12) が、 用いた酸との 塩、 例えば塩酸塩あるいはトリフルォロ酢酸塩として単離される。 これら塩はこ のままで次の反応に用いることが可能であるが、 飽和重曹水等を用いて中和し、 遊離のァミン体の化合物 (12) として単離することも可能である。
このようにして製造された化合物 (12) は、 公知の方法、 例えば国際公開第 2002/053534号パンフレツ卜に記載された方法、 にしたがって、 同じ くこの公報に記載された方法によって製造可能な化合物 (20) との縮合反応に 使用し、 化合物 (13) に変換することができる。
また、 化合物 (13) から化合物 (1) への工程は、 エステル体を切断する公 知の方法 (P r o t e c t i ve Gr oup s i n Or gan i c S y n t he s i s, e d s . by T. W. Gr e ene nd P. G. Wu t s , J ohn Wi l ey & Son s, I nc. , New Y o r k, 1991) で、 遊離カルボン酸に変換可能である。
また、 以下に示す方法によっても化合物 (13) を製造することができる (
Figure imgf000026_0001
(14) (20) 式中、 R5は直鎖又は分枝状アルキル基、 置換あるいは無置換ァリールアルキ ル基を意味し、 好ましくはメチル基、 ェチル基、 第三級ブチル基、 ベンジル基、 4ーメトキシベンジル基を挙げることができ、 その中ではメチル基、 ェチル基で あるものが好ましい。 本工程は、 エステルを加水分解して遊離のカルボン酸にす る一般的な反応であり、 アルコキシ力ルポ二ル基をカルボン酸に変換する一般的 な方法 (P r o t e c t i ve Gr oup s i n Or gan i c S y n t he s i s, e d s . by T. W. Gr e ene and P. G. W u t s , J ohn Wi l ey & Son s, I nc. , New' Yo r k, 1991) で実施できる。
Figure imgf000027_0001
式中、 R4は前記と同義である。 本工程は、 化合物 (1 2 ) と化合物 (2 0 ) を縮合するものであるが、 公知の反応で容易に実施できる。
用いる溶媒は、 反応を阻害するものでなければ特に制限はないが、 塩化メチレ ン等のハロゲン化炭化水素系溶媒、 トルエン等の炭化水素系溶媒、 テ卜ラヒドロ フラン等のエーテル系溶媒、 または N, N—ジメチルホルムアミド、 N—メチル
—2—ピロリドン等の非プロトン性極性溶媒を挙げることができる。 これらの中 で、 好ましくは塩化メチレンまたは N, N—ジメチルホルムアミドである。 これらの溶媒中で、 1 _ェチル— 3— ( 3—ジメチルァミノプロピル) 力ルポ ジイミド塩酸塩、 N, N—ジシクロへキシルカルポジイミド、 N, N—カルボ二 ルジイミダゾ一ル、 またはそれらの同類物である縮合剤を使用して反応を実施す ればよい。 好ましくは、 N, N—ジメチルホルムアミド中で、 1一ェチル _ 3—
( 3—ジメチルァミノプロピル) カルポジイミド塩酸塩、 N, N—ジシクロへキ シルカルポジイミドを用いて反応を実施するのがよい。
反応温度は、 一 2 0 °Cから溶媒の沸点の範囲でよく、 好ましくは 0 °Cから室温 の範囲の温度でよい。
また、 この反応は、 トリェチルァミンまたは N, N—ジメチルァミノピリジン 等の有機アミン系塩基、 または有機アミン系塩基、 および 1ーヒドロキシベンゾ トリァゾール等の活性エステル化試薬の触媒量から化学量論的等量の共存下に実 施してもよい。
Figure imgf000028_0001
式中、 R4は前記と同義である。
化合物 (1 3 ) は、 化合物 (1 9 ) 、 または当該化合物を酸ハライド (例え ば、 酸クロリド) 等の反応性誘導体に変換した後、 これと化合物 (2 1 ) を公知 の縮合反応に従つて縮合することにより製造することができる。
市販の 1 —メチルー 3—インドールカルボン酸 (1 9 ) を、 例えば酸クロリド に変換する際に用いる溶媒は、 塩化メチレン、 1 , 2—ジクロ口ェ夕ン等の塩素 系溶媒、 トルエン、 ベンゼン等の炭化水素系溶媒、 テ卜ラヒドロフラン等のエー テル系溶媒を挙げることができるが、 好ましくは塩化メチレン、 1, 2—ジクロ 口ェ夕ン等の塩素系溶媒である。
この反応温度は 0でから溶媒の沸点の範囲でよい。
クロルイ匕剤としては塩ィ匕ォキザリル、 塩化チォニル等の、 カルボン酸を酸クロ リドに変換する際に通常使用される塩素化試薬を用いればよい。
次に、 化合物 (1 9 ) の酸クロリドと化合物 (2 1 ) との縮合工程に用いる溶 媒であるが、 塩化メチレン、 1, 2—ジクロロェタン等の塩素系溶媒、 トルェ ン、 ベンゼン等の炭化水素系溶媒、 テトラヒドロフラン等のエーテル系溶媒を挙 げることができるが、 好ましくは塩ィヒメチレン等の塩素系溶媒である。
反応温度は 0 から溶媒の沸点の範囲でよいが、 室温から溶媒の沸点の範囲が 好ましい。
使用する塩基としては、 例えば化学量論的なトリェチルァミン等の有機塩基を 挙げることができる。
本工程は 1ーメチルー 3—インドールカルボン酸部分をアイソトープ標識した 誘導体の合成、 あるいは活性代謝物等を合成する際、 または 1—メチルー 3—ィ ンドールカルボン酸部分を修飾した化合物を合成する時に有効である。 また、 化 合物 (21) は新規化合物であり、 化合物 (1) の他、 VLA— 4阻害活性を有 する化合物、 例えば以下に示す化合物 (1 a) 〜 (1 f ) 等の有用な生理活性物 質の合成中間体として有用である。
Figure imgf000029_0001
(1 c) (I d)
Figure imgf000029_0002
(1 e) (1 f) そして、 得られた化合物 (13) のエステルを、 例えば加水分解、 接触水素化 等の公知の方法 (P r o t e c t i V e Gr oup s i n Or gan i c
Syn t he s i s, e d s. by T. W. G r e e n e and P. G. Wu t s , J ohn Wi l ey & Son s, I nc. , N ew Yo r k, 1991 ) により切断して、 遊離カルボン酸に変換すること により、 化合物 (1) を得ることができる。 実施例
次に、 実施例を挙げて本発明を詳細に説明するが、 本発明はこれに限定される ものではない。
[参考例 13
2, 5—ジクロ口一 4一 〔 ( 1—メチルー 1 H—インドール一 3—ィル) 力ルポ キサミド〕 フエニル酢酸
Figure imgf000030_0001
1一メチル— 1 H—インド一ル— 3—カルボン酸 (794mg, 4. 53mm o 1 ) を塩化メチレン (25ml) に溶解し、 0°Cで攪拌下に塩化ォキザリル (0. 79ml, 9. lmmo l) を加えた。 反応液をさらに室温で 1時間攪拌 後、 減圧下に反応液を乾固した。 残留物を塩化メチレン (25ml) に溶解し、 0°Cで攪拌下にトリェチルァミン (0. 84ml, 9. Ommo l) および 4一 アミノー 2, 5—ジクロロフェニル酢酸ェチルエステル (75 Omg, 3. 02 mmo 1) の塩化メチレン (5ml) 溶液を添加した。 反応混合液を攪拌下に 1 8時間加熱還流した。 反応液を冷却後、 水 (30ml) に注ぎ、 クロ口ホルムに て抽出した。 抽出液を飽和食塩水洗浄、 無水硫酸マグネシウムで乾燥後、 減圧下 に溶媒を留去した。 得られた残留物を、 シリカゲルを用いたカラムクロマトダラ フィ一にて精製し (山善株式会社製、 中圧 HPLC;クロ口ホルム:メタノール (100 : 0〜95 : 5, v/v) ) 、 得られた 2, 5—ジクロロー 4— 〔 (1 —メチルー 1H—インドール _3_ィル) カルポキサミド〕 フエニル酢酸ェチル エステル体はこれ以上精製することなく、 テトラヒドロフラン (THF ; 45m 1) および 0. 25NNaOH (18m 1 , 4. 5 mmo 1 ) を加えて室温で 4 時間攪拌した。 反応液を冷却下、 1NHC 1を徐々に加えて弱酸性にして析出糸 i 晶を濾取し、 水洗後、 乾燥して標題化合物 (807mg, 71%) を結晶性粉末 として得た。
MS (ES I) ; m/z : 378 (M+ +2) . !H-NMR (DMSO - d6) (5 : 3. 72 (s, 2 H) , 3. 90 (s , 3 H) , 7. 22 ( t , J = 8. 1Hz, 1 H) , 7. 28 ( t , J = 8. 1 H z, 1H) , 7. 56 (d, J = 8. 3Hz, 1 H) , 7. 64 (s , 1H) , 7. 92 (s , 1 H) , 8. 1 5 (d, J = 7. 8 H z , 1 H) , 8. 3 1 (s, 1H) , 9. 39 (s, 1H) .
[実施例 1 ]
(4R) —ヒドロキシー (2S) —ヒドロキシメチルピロリジン一 1—カルボン 酸べンジルエステル
Figure imgf000031_0001
Cbz: ベンジルォキシカルボニル
N—ベンジルォキシカルポ二ルー (4R) —ヒドロキシ—L—プロリン (15 0 g, 0. 565mo 1 ) を THF (1. 5 L) に溶解し、 0°Cで攪拌下にボラ ンージメチルスルフイド錯体 (59. 0ml , 0. 622mo 1 ) を滴下した。 滴下終了後、 反応液を攪拌下に加熱還流した。 反応液を 3時間攪拌後、 再び 0°C に冷却し、 ボラン一ジメチルスルフイド錯体 (16. lml , 0. 17 Omo 1) を加えた後、 さらに 10時間攪拌した。 反応液を冷却後、 0°Cにて徐々に水 (500ml) を加えて過剰のポラン一ジメチルスルフイド錯体を分解後、 酢酸 ェチルおよびクロ口ホルム一メタノール (10 : 1, vZv) にて抽出した。 抽 出液を飽和食塩水洗浄、 無水硫酸ナトリウムで乾燥後、 減圧下に溶媒を留去して 標題化合物 (122. 06 g, 86%) を単黄色油状物として得た (本化合物は これ以上精製することなく次の反応に用いた。 ) 。
1 H-NMR (CDC 13) δ 1. 52- 1. 81 (m, 3 H) , 2. 06 (m、 lH) , 3. 40 - 3. 85 and 4. 04-4. 61 (s e r i e s o f m, t o t a 16H) , 5. 15 (s, 2H, Ar CH2 ) , 7. 2 0— 7. 44 (m, 5H, Ar) . (4R) —ヒドロキシー (2 S) — (P—トルエンスルホニルォキシメチル) ピ 口リジン一 1 _カルボン酸べンジルエステル ·
Figure imgf000032_0001
(4R) —ヒドロキシ一 (2 S) ーヒドロキシメチルピロリジン一 1一カルボ ン酸べンジルエステル (120. 11 g, 0. 478mo 1 ) を塩化メチレン (1 L) に溶解し、 0°Cで攪拌下にトリェチルァミン (133. lml , 0. 9 56mo 1 ) および 4ージメチルァミノピリジン (5. 84 g, 47. 8mmo 1 ) を加えた後、 さらに— 10°Cに冷却下、 p—トルエンスルホニルク口リド (100. 24 g, 0. 526mo 1) を徐々に加えた。 添加終了後、 反応液を 同温度で 1時間、 さらに 5°Cにて 18時間攪拌した。 反応液に冷却下、 1NHC 1 (500ml) を加え、 クロ口ホルムにて抽出した。 抽出液を飽和食塩水洗 浄、 無水硫酸ナトリウムで乾燥後、 減圧下に溶媒留去して標題化合物を淡褐色油 状物として得た (本化合物はこれ以上精製することなく次の反応に用いた。 ) 。 Ή-NMR (CDC 13) (3 : 1. 80 (s, 1 H, OH) , 1. 99-2. 2 0 (m, 2H) , 2. 41 a n d 2. 43 (2 X s , t o t a 1 3H, A r M e) , 3. 32 - 3. 67 (m, 2H) , 4. 04-4. 23 (m, 2 H) , 4. 35-4. 53 (m, 2 H) , 4. 88-5. 15 (m, 2H) , 7. 17 -7. 42 (m, 7H) , 7. 68 (d, J = 8. 0Hz, 1H) , 7. 74 (d, J = 8. 0Hz, 1H) .
MS (ES I) ; m/ z : 406 (M+ + 1 ) .
4一 (N—ベンジルォキシカルポ二ルー (4R) —ヒドロキシ— (2S) —ピロ リジニルメトキシ) 安息香酸ェチルエステル 0、
Cbz 、co2a 上記 (4R) ーヒドロキシ— (2 S) 一 (p—トルエンスルホニルォキシメチ ル) ピロリジン— 1—カルボン酸べンジルエステルを精製することなく N, N— ジメチルホルムアミド (DMF ; 900ml) に溶解し、 室温攪拌下に無水炭酸 カリウム (132. 13 g, 0. 956mo 1 ) および 4ーヒドロキシ安息香酸 ェチルエステル (87. 37 g, 0. 526mo 1) を加えた後、 反応混合液を 90°Cで 2時間攪拌した。 反応液を冷却後、 酢酸ェチル (2000ml) で希釈 し、 これを順次冷却水で 2回洗浄、 無水硫酸ナトリウムで乾燥後、 減圧下に溶媒 を留去した。 得られた残留物をシリカゲル (4kg) を用いたカラムクロマトグ ラフィ一にて精製し、 n—へキサン—酢酸ェチル (2 : 1〜2 : 3, v/v) 流 分より標題化合物 (76. 65 g, 40. 1 %、 (4R) —ヒドロキシ— (2 S) —ヒドロキシメチルピロリジン— 1一力ルボン酸べンジルエステルから 2ェ 程での収率) を淡橙色油状物として得た。
Ή-NMR (CDC 13) (5 : 1. 38 (t, J = 7. 2Hz, 3 H) , 1. 6 6 (b r s, 1H) , 2. 17 (m, 1 H) , 2. 27 (m, 1 H) , 3. 58 (m, 1H) , 3. 69 and4. 02-4. 23 (s e r i e s o f m, t o t a 1 2H) , 4. 26-4. 44 (m, 2 H) , 4. 34 (q, J = 7.
2Hz, 2H) , 4. 58 (m, 1 H) , 5. 05 - 5. 27 (m, 2 H) ,
6. 72 - 6. 96 (m, 2 H) , 7. 33 (m, 5 H) , 7. 95 (m, 2 H) .
MS (ES I) ; m/z : 400 (M+ + 1) .
4- (N—ベンジルォキシカルポ二ルー (4S) —ヒドロキシー (2S) —ピロ リジニルメトキシ) 安息香酸ェチルエステル
Figure imgf000034_0001
4一 (N—べンジルォキシカルボ二ルー (4R) ーヒドロキシー (2 S) ーピ ロリジニルメトキシ) 安息香酸ェチルエステル (76. 65 g, 0. 192mo 1) を THF (1. 5L) に溶解し、 ギ酸 (14. 5ml, 0. 384mo 1 ) およびトリフエニルホスフィン (55. 36 g, 0. 21 lmo 1 ) を加えた。 反応混合液に 0 で攪拌下にァゾジカルボン酸ジイソプロピルエステル (41. 6ml, 0. 21 lmo 1) を滴下した。 滴下終了後、 反応混合液を室温で 2. 5時間攪拌した。 反応混合液を減圧下に乾固し、 得られた残留物をシリカゲル (1. 0 kg) を用いたカラムクロマトグラフィーにて精製した。 n—へキサン 一酢酸ェチル (1 : 1, v/v) 流分より 4— (N_ベンジルォキシカルボニル - (4S) —ホルミルォキシ— (2 S) —ピロリジニルメトキシ) 安息香酸ェチ ルエステル (不純物として光延反応試薬由来の不純物を含む。 本化合物はこれ以 上精製することなく次の反応に用いた。 ) を含む画分を得た。 これを、 エタノー ル (500ml) で希釈し、 0°Cで攪拌下に無水炭酸カリウム (26. 52 g, 0. 1 92mo 1 ) および水 (500m l ) を加え、 室温で 2. 5時間攪拌し た。 反応液を減圧下に約半量まで濃縮後、 クロ口ホルムにて抽出した。 抽出液を 無水硫酸ナトリウムで乾燥後、 減圧下に溶媒を留去した。 得られた残留物をシリ 力ゲル (1. 5 kg) を用いたカラムクロマトグラフィーにて精製し、 n—へキ サン一酢酸ェチル (3 : 1〜1 : 2, v/v) 流分より標題化合物 (70. 50 g, 92. 0%; 2工程での収率) を淡黄色油状物として得た。
Ή-NMR (CDC 13) δ : 1. 38 (t, J = 7. 2Hz, 3 H) , 2. 1 3 (m, 1H) , 2. 36 (m, 1 H) , 3. 24 and 3. 54—3. 78 (s e r i e s o f m t o t a 1 2 H) , 4. 15 (m, 1 H) , 4. 2 2-4. 62 (s e r i e s o f m, i n c l ud i n g q a t δ 4. 35, J = 7. 2H z , t o t a l 5 H) , 5. 08- 5. 24 (m, 2 H) , 6. 83 (m, 1H) , 6. 95 (d, J = 8. 0Hz, 1 H) , 7. 3 4 (m, 5H) , 7. 92 (m, 1 H) , 7. 99 (d, J = 8. 0Hz, 1
H) .
MS (ES I) ; m/z : 400 (M+ +1) .
4一 (N—ベンジルォキシカルポ二ルー (4S) —メトキシー (2 S) —ピロリ ジニルメトキシ) 安息香酸ェチルエステル
Figure imgf000035_0001
4— (N—ベンジルォキシカルポニル— (4S) —ヒドロキシ一 (2 S) —ピ ロリジニルメトキシ) 安息香酸ェチルエステル (70. 50 g, 0. 176mo
I) に DMF (1. 0 L) およびヨウ化メチル (16. 5ml , 0. 265mo 1 ) を加え、 0°Cで攪拌下に水素化ナトリウム (60% o i l d i s p e r s i on) (8. 47 g, 0. 212mo 1 ) を徐々に加えた。 反応液を攪拌下 に徐々に室温に戻し、 さらに室温で 3. 5時間攪拌した。 反応液を再び 0°Cに冷 却し、 水 (1. 0 L) および 1 NHC 1 (50 0m l ) を加え、 酢酸ェチル (1. 0LX 3) にて抽出した。 抽出液を無水硫酸ナトリウムで乾燥後、 減圧 下に溶媒を留去した。 得られた残留物をシリカゲル (1. 5 kg) を用いたカラ ムクロマトグラフィーにて精製し、 n—へキサン一酢酸ェチル (2 : 1, v/ v) 流分より標題化合物 (70. 68 g, 96. 9%) を淡橙色油状物として得 た。
Ή-NMR (CDC 13) (5 : 1. 38 (t, J =7. 2Hz, 3 H) , 2. 0 7 (m, 1 H) , 2. 3 2 (b r d, J = 14. 4Hz , 1 H) , 3. 2 9 (s, 3 H, OMe) , 3. 5 1— 3. 69 (m, 2 H) , 3. 97 (m, 1 H) , 4. 04 (m, 1H) , 4. 17-4. 47 (s e r i e s o f m, i n c l ud i ng q a t (5 4. 34, J = 7. 2Hz , t o t a 1 4
H) , 5. 16 (m,. 2H) , 6. 81 (d, J = 8. 8Hz, 1 H) , 6. 9
7 (d, J = 8. 8Hz, 1 H) , 7. 37 (m, 5H) , 7. 87 (d, J H . 8Hz, 1H) , 7. 98 (d, J = 8. 8Hz, 1 H) .
MS (ES I) ; m/ z : 414 (M+ + 1 ) .
4- ( (4S) —メトキシー (2 S) —ピロリジニルメトキシ) 安息香酸ェチル エステル
Figure imgf000036_0001
4- (N—ベンジルォキシカルポ二ルー (4S) —メトキシ— (2 S) —ピロ リジニルメトキシ) 安息香酸ェチルエステル (70. 68 g, 0. 1 7 lmo
I) をエタノール (500m l) に溶解し、 10%パラジウム Z炭素 (we t, 7. 1 g) を加え、 室温攪拌下に 18時間接触水素化を行った。 反応混合液をろ 過して不溶物を濾別後、 減圧下に溶媒を留去した。 残留物をさらにエタノール
(500ml) および 10%水酸化パラジウムノ炭素 (7. 1 g) を加え、 室温 攪拌下に 1. 5時間接触水素化を行った。 反応液をろ過にて不溶物を濾別後、 減 圧下に溶媒を留去して標題化合物 (48. 47 g) を淡褐色油状物として得た
(本ィ匕合物はこれ以上精製することなく次の反応に用いた。 ) 。
Ή-NMR (CDC 13) (5 : 1. 37 (t, J = 7. 2Hz , 3 H) , 1. 7
8 (m, 1H) , 2. 22 (ddd, J = 6. 4, 7. 6, 14. 0 H z , 1 H) , 3. 06 (dd, J = 4. 8, 12. 0Hz, 1 H) , 3. 22 (d d, J = l. 2, 12. 0Hz, 1H) , 3. 30 (s , 3 H, OMe) , 3. 66
(m, 1H) , 3. 72 (m, 1 H) , 3. 99 (m, 1 H) , 4. 09 (m, 1H) , 4. 34 (q, J = 7. 2Hz, 2 H) , 6. 92 (m, 2 H) , 7. 97 (m, 2H) .
MS (ES I) ; m/z : 280 (M+ + 1 ) . 4- ( (4 S) ーメトキシ一 (2 S) —ピロリジニルメトキシ) シクロへキサン カルボン酸ェチルエステル · 卜リフルォロ酢酸塩
Figure imgf000037_0001
trifluoroacetic acid salt
4- ( (4S) ーメトキシ一 (2S) —ピロリジニルメトキシ) 安息香酸ェチ ルエステルをメタノール (500ml ) およびトリフルォロ酢酸 (26. 3m 1 , 0. 342mo 1 ) に溶解し、 ロジウム—アルミナ粉末 (ロジウム 5%) (9. 6 g) を加え、 水素ガス雰囲気下 (10〜7. 5MP a) 、 室温で 2日間 攪拌した。 反応液をろ過して不溶物を濾別し、 減圧下に溶媒を留去して標題化合 物 (73. 97 g) を固形物として得た (本化合物はこれ以上精製することなく 次の反応に用いた。 ) 。
Ή-NMR (CDC 13) δ : 1. 24 a n d 1. 25 ( t , J = 7. 2Hz, t o t a l 3H) , 1. 36-2. 40 (s e r i e s o f m, t o t a 1 11 H) , 3. 31 (s , 3H) , 3. 35— 3. 76 (s e r i e s o f m, t o t a 1 5H) , 3. 97 (m, 1 H) , 4. 05-4. 16 (m, 1 H) , 4. 11 (q, J = 7. 2Hz, 2 H) , 7. 95 (b r s , 1 H, N H) , 10. 80 (b r s , 1 H, C F 3 C 02 H) .
LC-MS ; m/z : 286 (M+ + 1) .
4一 (N—第三級ブトキシカルポ二ルー (4S) —メトキシー (2S) —ピロリ ジニルメトキシ) シクロへキサンカルボン酸ェチルエステル
Figure imgf000038_0001
4- ( (4S) ーメトキシー (2 S) 一ピロリジニルメトキシ) シクロへキサ ンカルボン酸ェチルエステル · トリフルォロ酢酸塩に塩化メチレン (500m
1) を加え、 0°Cで攪拌下にトリェチルァミン (47. 7ml , 0. 342mo
1 ) および第三級プチルジカーボネート (41. 05 g, 0. 188mo 1 ) を 加えて 70分間攪拌した。 反応液を減圧下に乾固し、 酢酸ェチル (500ml) で希釈した。 これを 0. 5NHC 1、 次いで飽和食塩水洗浄後、 無水硫酸ナトリ ゥムで乾燥した。 減圧下に溶媒留去して得られた残留物をシリカゲル (700 g) を用いたカラムクロマトグラフィーにて精製し、 n—へキサン一酢酸ェチル
(3 : 1〜2 : 1, vZv) 流分より標題化合物 (63. 68 g, 96. 6%,
3工程) を油状物として得た。
1 H-NMR (CDC 13) δ : 1. 24 a n d 1. 25 ( t , J = 7. 2Hz, t o t a l 3H) , 1. 28-2. 38 (s e r i e s o f m, i n c 1 ud i ng s a t δ 1. 46, t o t a l 20 H) , 3. 14-4. 16 (s e r i e s o f m, i nc l ud i n s a t δ 3. 3 0, t o t a l 12H) .
LC-MS ; m/z : 286 (M+— Bo c + l) , 408 (M+ +Na) . 卜ランス一 4一 (N—第三級ブトキシカルポニル— (4S) —メトキシー (2 S) 一ピロリジニルメトキシ) シクロへキサンカルボン酸ェチルエステル
Figure imgf000038_0002
4- (N—第三級ブトキシカルボ二ルー (4S) —メトキシ— (2S) —ピロ リジニルメトキシ) シクロへキサンカルボン酸ェチルエステル (63. 68 g, 0. 165mo 1 ) に DMF (500ml) およびエタノール (20ml) を加 え、 0。Cで攪拌下に水素化ナトリウム (60% i n o i l d i s p e r s i on ; 9. 91 g, 0. 248mo 1) を加えた。 反応液をさらに 50°Cで 1時 間攪拌後、 再び 0でに冷却し、 0. 5NHC 1 (600ml) を加えて酸性にし た。 反応混合液を酢酸ェチルにて抽出した。 抽出液を飽和食塩水洗浄、 無水硫酸 ナトリウムで乾燥後、 減圧下に溶媒を留去した。 得られた残留物を DMF (30 0ml ) に溶解し、 室温攪拌下に無水炭酸カリウム (34. 21 g, 0. 248 mo 1 ) およびヨウ化工チル (6. 60ml , 82. 5mmo l) を加え、 1 3 時間攪拌した。 反応液を酢酸ェチル (1000ml) で希釈し、 冷却水洗浄後、 無水硫酸ナトリゥムで乾燥した。 減圧下に溶媒留去して得られた残留物をシリ力 ゲル (150 g) を用いたカラムクロマトグラフィーにて精製し、 n—へキサン 一酢酸ェチル (1 : 1, v/v) 流分よりシスおよびトランス異性体の混合物の 標題化合物を得た。 これをさらにフラッシュカラムクロマトグラフィー (B i o t a g e F l u s h c o l umn c h r oma t o g r aphy s y s y t ems) にて精製し、 n—へキサン—酢酸ェチル (6 : 1, v/v) 流分よ り標題化合物 (27. 16 g, 42. 7%) を淡黄色油状物として得た。
Ή-NMR (CDC 13) δ : 1. 18— 1. 33 (m, i n c l ud i ng t a t δ 1. 24, 1 =7. 2Hz, t o t a l 6H) , 1. 37 - 1. 53 (m, i n c 1 u d i n g s a t δ 1. 46, t o t a l 1 1 H) , 1. 9 1 - 2. 1 1 (m, 4 H) , 2. 1 5- 2. 29 (m, 2 H) , 3. 23 (m, 1H) , 3. 30 (s , 3 H, OMe) , 3. 32-3. 45 (m, 2H) , 3. 46-4. 01 (s e r i e s o f m, t o t a l 4 H) , 4. 11 (q, J = 7. 2Hz, 2 H) .
MS (ES I) ; m/z : 286 (M+ - Bo c + l) , 386 (M+ +1) . トランス一 4一 ( (4S) ーメトキシー (2 S) —ピロリジニルメトキシ) シク 口へキサンカルボン酸ェチルエステル
Figure imgf000040_0001
トランス一 4一 (N—第三級ブトキシカルポ二ルー (4S) —メトキシー (2 S) 一ピロリジニルメトキシ) シクロへキサンカルボン酸ェチルエステル (2 7. 16 g, 0. 070mo l) を 1, 4—ジォキサン (100ml) 中、 0°C で攪拌下に 4 NHC 1/1, 4一ジォキサン (200ml) を加えた。 反応混合 液をさらに室温で 3時間攪捽後、 減圧下に溶媒留去した。 残留物をクロ口ホルム (500ml) で希釈し、 飽和重曹水で中和後、 クロ口ホルム一メタノール (1 0 : 1, v/v) で抽出した。 抽出液を無水硫酸ナトリウムで乾燥後、 減圧下に 溶媒留去して標題化合物 (22. 27 g, c r ude) を淡黄色油状物として得 た (本化合物はこれ以上精製することなく次の反応に用いた。 ) 。
'H-NMR (CDC 13) (5 : 1. 19— 1. 32 (m, i nc l ud i ng t a t δ 1. 24, J = 7. 6Hz, t o t a l 5 H) , 1. 38- 1. 52 (m, 3H) , 1. 83 (b r s, 1 H, NH) , 1. 95— 2. 1 3 (m, 5H) , 2. 25 (m, 1H) , 2. 87 (d d, J = 5. 2, 11. 6Hz, 1H) , 3. 06 (dd, J = 1. 6, 11. 6Hz, 1 H) , 3. 1 5— 3. 32 (m, i nc l ud i ng s a t <5 3. 27, t o t a 1 5H) , 3. 45 (dd, J = 7. 2, 9. 2Hz, 1 H) , 3. 51 (d d, J =4. 8, 9. 2Hz, 1H) , 3. 89 (m, 1 H) , 4. 11 (q, J = 7. 6Hz, 2H) .
MS (ES I) ; m/z : 286 (M+ + 1 ) .
[参考例 2]
トランス一 4— ( (2 S, 4S) 一 1一 {2, 5—ジクロロー 4— [ (1ーメチ ルインドール— 3—ィル) カルポキサミド] フエ二ル} ァセチルー 4ーメトキシ ピロリジン _ 2 _ィル) メトキシへキサン— 1一力ルボン酸ェチルエステル
Figure imgf000041_0001
トランス一 4— ( (4S) ーメトキシー (2 S) —ピロリジニルメトキシ) シ クロへキサンカルボン酸ェチルエステル (20. 1 g, 70. 47mmo l) を DMF (400ml) 中、 室温で攪拌下に 2, 5—ジクロロ— 4一 〔 (1ーメチ ルー 1H—インド一ル— 3—ィル) カルポキサミド〕 フエニル酢酸 (26. 58 g, 70. 47mmo l ) 、 1 -ヒドロキシベンゾトリアゾール ( 1— H〇 B t) (1. 90 g, 14. 09mmo l) 、 4—ジメチルァミノピリジン (0. 86 g, 7. 047mmo 1) および 1—ェチル— 3— (3—ジメチルアミノプ 口ピル) カルポジイミド塩酸塩 (20. 26 g, 0. 106mmo l) を加え、 反応混合液を室温でさらに 18時間攪拌した。 反応液を酢酸ェチル (1000m 1) で希釈し、 1NHC 1で洗浄した。 析出した不溶物を減圧下に濾別、 クロ口 ホルム—メタノール (200ml , 10 : 1, v/v) で洗浄した。 濾液を飽和 重曹水洗浄、 無水硫酸ナトリウムで乾燥後、 減圧下に溶媒を留去した。 得られた 残留物をシリカゲル (1. 2kg) を用いたカラムクロマトグラフィーにて精製 し、 クロ口ホルム一酢酸ェチル (4 : 1, v/v) 流分より標題化合物 (45. 35 g, 99. 8%) を淡黄色アモルファスとして得た。
1 H-NMR (CDC 13) (5 : 1. 14— 1. 33 (m, 6H) , 1. 36 - 1. 55 (m, 2H) , 1. 92-2. 14 (m, 4H) , 2. 15-2. 43 (m, 2H) , 3. 18-3. 35 (m, i nc l ud i n 2 s , a t δ 3. 30, 3. 33, t o t a l 8 H) , 3. 44- 3. 58 (m, 2 H) , 3. 62-4. 03 (s e r i e s o f m, i nc l ud i ng s a t δ 3. 86, t o t a l 8 H) , 4. 09 (q, J = 6. 8Hz , 2H) , 4. 25 (m, 1H) , 7. 19— 7. 45 (s e r i e s o f m, t o t a l 4H) , 7. 78 (s, 1 H) , 8. 13 (m, 1 H) 8. 22 (b r d, J = 3. 2Hz, 1 H) , 8. 77 (d, J = 7. 2Hz 1H) .
MS (ES I) ; mZz : 644 (M+ + 1 ) .
[参考例 3]
トランス一 4— ( (2 S, 4 S) —1— {2, 5—ジクロロ一 4— [ (1—メチ ルインドール—3 _ィル) 力ルポキサミド] フエ二ル} ァセチルー 4—メトキシ ピロリジン— 2—ィル) メトキシへキサン— 1一力ルボン酸
Figure imgf000042_0001
トランス一 4— ( (2 S, 4 S) —1— {2, 5—ジクロロ一 4一 [ (1ーメ チルインド一ルー 3 _ィル) カルボキサミド] フエ二ル} ァセチルー 4ーメトキ シピロリジン— 2—ィル) メトキシへキサン一 1—カルボン酸ェチルエステル (45. 35 g, 70. 4mm 01 ) に THF (250ml) およびメタノール (50ml) および INN a OH (250ml) を加え、 反応混合液を 18時間 攪拌し、 さらに 50°Cで 1時間攪拌した。 反応液を 0°Cで冷却し、 弱酸性になる まで 1NHC 1を加えた。 混合液をクロ口ホルム一メタノール (10 : 1, vZ V) にて抽出した。 抽出液を無水硫酸ナトリウムで乾燥後、 減圧下に溶媒を留去 した。 得られた粗結晶を酢酸ェチルーメタノール (1. 5L, 2 : 1, v/v) から再結晶し、 標題化合物 (30. 1 g, 69. 1%) を微細針状結晶として得 た。
I R (ATR) cm -1 : 2940, 1727, 1598.
'H— NMR (DMSO-d6) (5 : 1. 09— 1. 43 (m, 4H) , 1. 80 — 2. 22 (m, 7H) , 3. 10-4. 30 (s e r i e s o f m, i n e l ud i ng s a t δ 3. 89, t o t a l 12 H) , 7. 21 (d d, J =7. 6, 7. 6Hz, 1 H) , 7. 28 (dd, J = 7. 6, 7. 6Hz, 1H) , 7. 49 an d 7. 52 (2S, t o t a l 1 H) , 7. 5 6 (d, J = 7. 6Hz, 1H) , 7. 89 and 7. 90 (2 S, t o t a l 1 H) , 8. 15 (d, J = 7. 6Hz, 1 H) , 8. 30 (s, 1 H) , 9. 37 (s, 1H) , 12. 04 (b r s , 1 H, C02 H) .
MS (ES I) ; m/z : 616 (M+ + 1) .
An a 1 ;
Ca l c d. f o r C31H35 C 12N306 - 0. 75 H20 : C, 59. 1 0 ; H, 5. 84 ; N, 6. 67 ; C 1 , 11. 25.
Found : C, 58. 93 ; H, 5. 45 ; N, 6. 70 ; C 1 , 1 1. 64. 〔参考例 4〕
(4_アミノー 2, 5—ジクロロフエニル) 酢酸 (20)
Figure imgf000043_0001
(14) (20)
( 4 _アミノー 2, 5—ジクロロフエニル) 酢酸ェチルエステル (14) (4. 36 g, 17. 57mmo 1) にエタノール (30ml) および INNa OH (35ml) を加え、 室温で 1時間撹捽した。 反応液に水 (30ml) を加 え、 反応液がおよそ半量になるまで減圧下で濃縮した。 これに、 冷却下に 1NH C 1 (36ml) を加え、 析出結晶を減圧下に濾取した。 結晶を水洗後、 風乾し た。 得られた粗結晶を酢酸ェチル:クロ口ホルム:メタノール (5 : 5 : 2, V /Y/ , 120ml) に溶解し、 これを減圧下にろ過後、 濾液を減圧下に濃縮 した。 析出結晶をへキサンで洗浄し、 減圧乾燥して (4一アミノー 2, 5—ジク ロロフエニル) 酢酸 (20) (3. 69 g, 96%) を微細プリズム結晶として 得た。
融点 (未補正) : 153— 163 .
I R (ATR) cm— 1 : 3373, 3249, 1697, 1599.
1 H-NMR (DMSO— d6) δ 5. 33 (2H, s ) , 6. 86 (1 H, s) , 7. 16 (1H, s) .
MS (ES I -Ne g a. ) m/z : 218 (M+ — 1 ) .
Ana l.
Ca l c d. f o r C8H7 C 12N02: C, 43. 66 ; H, 3. 21 ; N, 6. 37.
Found : C, 43. 54 ; H, 3. 21 ; N, 6. 37. 〔参考例 5〕
トランス一 4— [ (2 S, 4 S) - 1 - (4ーァミノ一 2, 5—ジクロロフエ二 ル) ァセチル— 4ーメトキシピロリジン一 2—ィル] メトキシシクロへキサン— 1—カルボン酸ェチルエステル (21)
Figure imgf000044_0001
トランス一 4一 [ (2S, 4S) —4—メトキシピロリジン一 2—ィル] メト キシシクロへキサン一 1一力ルボン酸ェチルエステル (12) (1. 21 g, 5. 45mmo l) 、 (4—アミノー 2, 5—ジクロロフエニル) 酢酸 (20) (1. 2 g, 5. 45mmo l) 、 4ージメチルァミノピリジン ( 700 mg, 5. 7 3mmo 1 ) および触媒量の 1—ヒドロキシベンゾトリアゾールを DMF (5 0m l ) 中、 室温攪拌中、 1 _ェチル— 3— (3—ジメチルァミノプロピ ル) カルポジイミド塩酸塩 (1. 2 5 g, 6. 54mmo 1 ) を加え、 反応混合 液を室温で 1 5時間撹拌した。 反応液を氷水 (1 00m l ) に注ぎ、 酢酸ェチル にて抽出した。 抽出液を飽和食塩水洗浄 (2回) 、 無水硫酸ナトリウムで乾燥 後、 減圧下に溶媒を留去した。 得られた残留物を、 シリカゲルを用いたカラムク 口マトグラフィ一にて精製し、 クロ口ホルム:酢酸ェチル (9 : 1〜4 : 1, V /v) 流分よりトランス一 4一 [ (2 S, 4 S) — 1— (4ーァミノ一 2, 5— ジクロロフエニル) ァセチル一 4ーメトキシピロリジン— 2—ィル] メトキシシ クロへキサン一 1一力ルボン酸ェチルエステル (2 1) (2. 48 g, 94%) を無色固形物として得た。
融点 (未補正) : 1 1 3— 1 1 8°C
1 R (ATR) cm-1 : 3464, 3 3 0 3, 3 1 82, 1 726, 1 6 33.
1 H-NMR (CDC 13) δ : 1. 2 2 - 1. 2 6 (5 H, m) , 1. 42 - 1. 48 (2H, m) , 1. 9 5 - 1. 9 9 (5H, m) , 2. 0 3 - 2. 0 8 (2H, m) , 3. 2 2 -4. 1 2 (14H, m) , 6. 7 8 (1 H, m) , 7. 1 8 (1H, m) .
MS (ES I) ; m/ z : 48 8 (M+ - 1) .
An a 1. ;
C a 1 c d f o r C23H32 C 12N205 : C, 56. 8 8 ; H, 6. 6
2 ; N, 5. 7 5.
F ou n d : C, 56. 5 7 ; H, 6. 6 2 ; N, 5. 64.
〔参考例 6〕
トランス一 4一 ( (2 S, 4 S) — 1— {2, 5—ジクロロー 4— [ (1—メチ ルインドール— 3—ィル) カルポキサミド] フエ二ル} ァセチルー 4—メトキシ ピロリジン一 2—ィル) メトキシシクロへキサン一 1一力ルボン酸ェチルエステ ル (13)
Figure imgf000046_0001
1 _メチルインドールー 3—力ルポン酸 (19) (15 Omg, 0. 86mm o 1) および 1, 2—ジクロロェタン (3ml) を氷水浴で冷却攪拌下に塩化ォ キザリル (0. 095ml, 1. 07mmo 1 ) を加え、 同温度で 1時間攪拌し た。 反応液を減圧下に乾固した。 得られた結晶を 1, 2—ジクロロエタン (3m 1 ) に溶解し、 これをトランス一 4一 [ (2 S, 4 S) - 1 - (4一アミノー 2, 5—ジクロ口フエニル) ァセチルー 4ーメトキシピロリジン— 2—ィル] メ トキシシクロへキサン _ 1一力ルボン酸ェチルエステル (21) (348mg, 0. 714mmo l) の 1, 2—ジクロロェタン ( 15m 1 ) 溶液に冷却攪拌下 で加えた。 添加終了後、 反応混合液を 10時間攪拌下に加熱還流した。 反応液を 冷却後、 水洗、 無水硫酸ナトリウムで乾燥後、 減圧下に溶媒を留去した。 得られ た残留物を、 シリカゲルを用いたカラムクロマトグラフィーにて精製し、 クロ口 ホルム:酢酸ェチル (9 : 1〜3 : 1, v/v) 流分より標題化合物 (350m g, 76%) を結晶性粉末として得た。 本方法で得られた化合物の各種スぺクト ラルデ一夕は先に示した方法で得たものと一致した。
〔参考例 7〕
(2, 5—ジクロロー 4—ニトロフエニル) 酢酸ェチルエステル (23)
Figure imgf000046_0002
(22) (23) (2, 5—ジクロロー 4一二トロフエニル) 酢酸 (22) (Va l e r i e K. Chamb e r l a i n and R. L. Wa i n. Ann. a p p 1. B i o l . (1971), 69, 65 - 72.) (50 Omg, 2. Ommo 1) をエタノール (10m l) に溶解し、 p -トルエンスルフォン酸 · 1水和物 (5 Omg, 0. 26mmo 1 ) を加えて 60°Cで 2時間攪拌した。 反応液を室 温に冷却後、 減圧下に濃縮乾固して得られる残渣に飽和重曹水 (30ml) を加 え、 クロ口ホルムにて抽出した。 抽出液を無水硫酸ナトリウムで乾燥後、 減圧下 に溶媒を留去した。 得られた残渣をシリカゲルを用いるカラムクロマトグラフィ 一にて精製し、 クロ口ホルム流分より標題物 (505mg, 91 %) を淡黄色 結晶性粉末として得た。
融点 (未補正) 洗浄: 50— 55°C
I R (ATR) cm"1 : 3095, 1716, 152.5, 1473, 136 5, 1329, 1083.
XH-NMR (CDC 13) (5 : 1. 30 (3 H, t) , 3. 80 (2 H, s) , 4. 21 (2H, m) , 7. 53 and 7. 98 (e ac h 1 H, e a c h s ) .
MS (ES I— Ne ga. ) m/z : 278 (M+ - 1) .
An a 1. ;
C a 1 c d f o r C10H9C 12N〇4 : C, 43. 19 ; H, 3. 2 6 ; N, 5. 04.
Found : C, 42. 97 ; H, 3. 15 ; N, 5. 13.
〔参考例 8〕
(4—アミノー 2, 5—ジクロ口 _ 4—ニトロフエニル) 酢酸ェチルエステル (1 )
Figure imgf000048_0001
(23) (14)
(2, 5—ジクロ口 _ 4一二トロフエニル) 酢酸ェチルエステル (23) (40 0m g, 1. 44mmo 1 )、 酢酸ナトリウム · 3水和物 (196mg, 1. 4 4mmo 1 ) および酢酸 (0. 535m l, 9. 35 mm o 1 ) にエタノール
(10ml), 水 (5ml ) および鉄粉 (262mg, 4. 67mmo 1 ) を加 え、 100°Cで 1時間撹拌した。 反応液を室温に冷却し、 減圧下にセライトを用 いて不溶物をろ別し、 ろ液を減圧下に溶媒を留去した。 残渣に酢酸ェチル (50 m 1 ) を加え、 順次 0. 2 NHC 1, 飽和食塩水洗浄、 無水硫酸ナトリゥムにて 乾燥後、 減圧下に溶媒を留去した。 得られる残渣をシリカゲルを用いるカラムク 口マトグラフィ一にて精製し、 クロ口ホルム:酢酸ェチル (3 : 1, vXv) 流 分より標題物 (278mg, 78%) を飴状物として得た。
:H-NMR (CDC 13) (5 : 1. 26 (3H, t) , 3. 61 (2Η, s) , 4. 17 (2H, m) , 6. 79 and 7. 16 (e ac h 1 H, e ac h d) .

Claims

請求の範囲 式 (I )
Figure imgf000049_0001
(式中、 R1 1は、 ァミノ基の保護基を意味し、 R2は、 水素原子または水酸基の 保護基を意味するが、 両者が保護基である場合は同一の保護基とはならない。 ) で表わされる化合物に、 塩基存在下、 置換基を有していてもよいァリールスルホ ニルクロリドまたは置換基を有していてもよいアルキルスルホニルクロリドを反 応させ、 得られる式 (I I )
Figure imgf000049_0002
(式中、 R1 1および R2は、 先と同義であり、 R3は、 置換基を有していてもよい ァリ一ルスルホニル基または置換基を有していてもよいアルキルスルホ二ル基を 意味する。 )
で表わされる化合物に、 式 (I I I )
Figure imgf000049_0003
(式中、 R4は、 置換基を有していてもよいアルキル基または置換基を有してレ てもよぃァラルキル基を意味し、 Mは、 アルカリ金属原子を意味する。 ) で表わされる化合物を反応させることを特徴とする式 (I V)
Figure imgf000050_0001
(式中、 Ru、 R2および R4は先と同義である。 )
で表わされる化合物の製造方法。
2 . R1 1が、 ベンジルォキシカルポニル基である請求項 1に記載の製造方法。
3 . R2が、 水素原子である請求項 1または 2に記載の製造方法。
4. R3が、 パラトルエンスルホニル基またはメタンスルホニル基である請求 項 1から 3のいずれか一項に記載の製造方法。
5 . R4が、 メチル基またはェチル基である請求項 1から 4のいずれか一項に 記載の製造方法。
6 . 式 (V)
Figure imgf000050_0002
(式中、 R1は、 水素原子またはァミノ基の保護基を意味し、 R4は、 置換基を有 していてもよいアルキル基または置換基を有していてもよいァラルキル基を意味 する。 )
で表わされる化合物を還元し、 得られる式 (VI)
Figure imgf000051_0001
(式中、 R1および R4は先と同義である。 )
で表わされる化合物を、 非プロトン性極性溶媒中、 金属水素化物で処理した後 に、 異性体を分離することを特徴とする式 (V I— t r an s)
(VI -trans)
Figure imgf000051_0002
(式中、 R1および R4は先と同義である。 )
で表わされる化合物の製造方法。
7. R1が、 第三級ブトキシカルボニル基である請求項 6に記載の製造方法。
8. R4が、 メチル基またはェチル基である請求項 6または 7に記載の製造方 法。
9. 金属水素化物が、 水素化ナトリウムまたは水素化リチウムである請求項 6 から 8のいずれか一項に記載の製造方法。
10. 非プロトン性極性溶媒が、 N, N—ジメチルホルムアミド、 N—メチル 一 2—ピロリドン、 またはジメチルスルホキシドである請求項 6から 9のいずれ か一項に記載の製造方法。
11. 式 (12)
Figure imgf000052_0001
(12)
(式中、 R4は、 置換基を有していてもよいアルキル基または置換基を有してい てもよぃァラルキル基を意味する。 )
で表わされる化合物に、 式 (20)
Figure imgf000052_0002
(20) で表わされる化合物を縮合させ、 得られる式 (21)
Figure imgf000052_0003
(式中、 R4は、 先と同義である。 )
で表わされる化合物に、 次式 (19)
Figure imgf000052_0004
(19) で表わされる化合物又はその反応性誘導体を反応させ、 得られる式 (13)
Figure imgf000053_0001
(13)
(式中、 R4は、 先と同義である。 )
で表わされる化合物のエステルを切断することを特徴とする式 ( 1 )
Figure imgf000053_0002
(1)
で表わされる化合物の製造方法。
12. 下記式 (21)
Figure imgf000053_0003
(式中、 R4は、 置換基を有していてもよいアルキル基または置換基を有してい てもよぃァラルキル基を意味する。 ) で表わされる化合物。
PCT/JP2004/006471 2003-05-09 2004-05-07 ピロリジン誘導体の製造方法 WO2004099136A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005506035A JPWO2004099136A1 (ja) 2003-05-09 2004-05-07 ピロリジン誘導体の製造方法
US10/556,043 US7345179B2 (en) 2003-05-09 2004-05-07 Process for producing pyrrolidine derivative
EP04731729A EP1623975A4 (en) 2003-05-09 2004-05-07 PROCESS FOR PREPARING A PYRROLIDINE DERIVATIVE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003131978 2003-05-09
JP2003-131978 2003-05-09
JP2003-144430 2003-05-22
JP2003144430 2003-05-22
JP2003209579 2003-08-29
JP2003-209579 2003-08-29

Publications (1)

Publication Number Publication Date
WO2004099136A1 true WO2004099136A1 (ja) 2004-11-18

Family

ID=33436999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006471 WO2004099136A1 (ja) 2003-05-09 2004-05-07 ピロリジン誘導体の製造方法

Country Status (4)

Country Link
US (1) US7345179B2 (ja)
EP (1) EP1623975A4 (ja)
JP (1) JPWO2004099136A1 (ja)
WO (1) WO2004099136A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1698611A1 (en) * 2003-12-26 2006-09-06 Daiichi Pharmaceutical Co., Ltd. Process for producing phenylacetic acid derivative
WO2007069635A1 (ja) * 2005-12-13 2007-06-21 Daiichi Sankyo Company, Limited Vla-4阻害薬

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691894B2 (en) * 2003-07-24 2010-04-06 Daiichi Pharmaceutical Co., Ltd. Cyclohexanecarboxylic acid compound
JPWO2005066124A1 (ja) * 2003-12-26 2007-12-20 第一三共株式会社 ピロリジン誘導体の製造法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251635A (ja) * 1985-04-30 1986-11-08 Fuji Photo Film Co Ltd エ−テルの製造方法
JPH06306025A (ja) * 1992-11-30 1994-11-01 Sankyo Co Ltd ジアリールアルカン誘導体
WO2002053534A1 (fr) * 2000-12-28 2002-07-11 Daiichi Pharmaceutical Co., Ltd. Inhibiteurs de vla-4

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA01013406A (es) 1999-06-30 2003-09-04 Daiichi Seiyaku Co Compuestos inhibidores de vla-4.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251635A (ja) * 1985-04-30 1986-11-08 Fuji Photo Film Co Ltd エ−テルの製造方法
JPH06306025A (ja) * 1992-11-30 1994-11-01 Sankyo Co Ltd ジアリールアルカン誘導体
WO2002053534A1 (fr) * 2000-12-28 2002-07-11 Daiichi Pharmaceutical Co., Ltd. Inhibiteurs de vla-4

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1623975A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1698611A1 (en) * 2003-12-26 2006-09-06 Daiichi Pharmaceutical Co., Ltd. Process for producing phenylacetic acid derivative
EP1698611A4 (en) * 2003-12-26 2007-10-31 Daiichi Seiyaku Co PROCESS FOR PRODUCING A PHENYLACETIC ACID DERIVATIVE
WO2007069635A1 (ja) * 2005-12-13 2007-06-21 Daiichi Sankyo Company, Limited Vla-4阻害薬
US8129366B2 (en) 2005-12-13 2012-03-06 Daiichi Sankyo Company, Limited VLA-4 inhibitory drug

Also Published As

Publication number Publication date
EP1623975A4 (en) 2008-07-02
US20070105935A1 (en) 2007-05-10
US7345179B2 (en) 2008-03-18
EP1623975A1 (en) 2006-02-08
JPWO2004099136A1 (ja) 2006-07-13

Similar Documents

Publication Publication Date Title
JP2021530505A (ja) フェニルピペリジニルインドール誘導体を調製する化学的プロセス
WO2019043724A1 (en) PROCESSES FOR THE PREPARATION OF (S) -2- (2- (BENZOFURAN-6-CARBONYL) -5,7-DICHLORO-1,2,3,4-TETRAHYDROISOQUINOLINE-6-CARBOXAMIDO) -3- (3) - (METHYLSULFONYL) PHENYL) PROPANOIC AND POLYMORPHS THEREOF
WO2004067494A1 (ja) グルタミン酸誘導体及びピログルタミン酸誘導体の製造方法並びに新規製造中間体
RU2730006C1 (ru) Способ получения 5r-[(бензилокси)амино]пиперидин-2s-карбоновой кислоты или её производного
TWI438188B (zh) 用於合成醫藥品之中間化合物的製造方法
EP2057145B1 (en) Synthesis of (2s,5r)-5-ethynyl-1-{n-(4-methyl-1-(4-carboxy-pyridin-2-yl)piperidin-4-yl)glycyl}pyrrolidine-2-carbonitrile
KR101030202B1 (ko) 퀴놀론 중간체의 제조를 위한 수소화물 환원 방법
WO2008059782A1 (fr) Procédé de production efficace d&#39;un composé d&#39;acide mugineique
JP2000053642A (ja) 3―アミノ―ピロリジン誘導体の製造方法
WO2004099136A1 (ja) ピロリジン誘導体の製造方法
KR100649175B1 (ko) 거울상 이성질체적으로 순수한 n-메틸-n-[(1s)-1-페닐-2-((3s)-3-히드록시피롤리딘-1-일)에틸]-2,2-디페닐아세트아미드의 제조 방법
JP4294121B2 (ja) ピリドンカルボン酸誘導体の製造方法およびその中間体
AU2011204131B2 (en) Method for producing 3,4-disubstituted pyrrolidine derivative and production intermediate thereof
TW200403222A (en) Process for the preparation of amino-pyrrolidine derivatives
EP1930321A1 (en) Process for preparation of tetrasubstituted 5-azaspiro[2.4]- heptane derivatives and optically active intermediates thereof
JP2012116775A (ja) エクチナサイジンの製造方法
JP4181233B2 (ja) ピロリジン−2,4−ジオン誘導体の製法
JP5704763B2 (ja) トランス−4−アミノシクロペンタ−2−エン−1−カルボン酸誘導体の製造
EP1698621A1 (en) Method for producing pyrrolidine derivative
WO2005000810A1 (ja) 含窒素複素環化合物の製造方法
JP2002255932A (ja) 3−アルキルアミノアゼチジンの製造方法
KR20190037172A (ko) 의약품 합성용 중간체 화합물의 제조 방법
JP2002053536A (ja) スピロアミノピロリジン誘導体およびその製造法
JP2001328993A (ja) 光学活性ホスフィン化合物
WO1992013837A1 (en) A process for the preparation of 3-acylamino-4-carbamoyloxymethyl-2-azetidinone-1-sulphonic acids and intermediates for the preparation thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506035

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004731729

Country of ref document: EP

Ref document number: 2007105935

Country of ref document: US

Ref document number: 10556043

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004731729

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10556043

Country of ref document: US