WO2004096719A1 - Verfahren zur reinigung von kokereiabwasser mit gasdurchlässiger membran - Google Patents

Verfahren zur reinigung von kokereiabwasser mit gasdurchlässiger membran Download PDF

Info

Publication number
WO2004096719A1
WO2004096719A1 PCT/EP2004/003353 EP2004003353W WO2004096719A1 WO 2004096719 A1 WO2004096719 A1 WO 2004096719A1 EP 2004003353 W EP2004003353 W EP 2004003353W WO 2004096719 A1 WO2004096719 A1 WO 2004096719A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste water
biofilm
liquid circuit
liquid
oxygen
Prior art date
Application number
PCT/EP2004/003353
Other languages
English (en)
French (fr)
Inventor
Holger Thielert
Original Assignee
Uhde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde Gmbh filed Critical Uhde Gmbh
Priority to JP2006504917A priority Critical patent/JP2006524562A/ja
Priority to MXPA05011489A priority patent/MXPA05011489A/es
Priority to EP04724283A priority patent/EP1618073A1/de
Priority to BRPI0409732 priority patent/BRPI0409732A/pt
Priority to CA 2523360 priority patent/CA2523360A1/en
Priority to US10/554,256 priority patent/US20070012619A1/en
Publication of WO2004096719A1 publication Critical patent/WO2004096719A1/de
Priority to NO20054903A priority patent/NO20054903L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2806Anaerobic processes using solid supports for microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23124Diffusers consisting of flexible porous or perforated material, e.g. fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23124Diffusers consisting of flexible porous or perforated material, e.g. fabric
    • B01F23/231244Dissolving, hollow fiber membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/102Permeable membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/208Membrane aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/18Cyanides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a process for the purification of coking plant wastewater which is contaminated with nitrogen compounds such as N -, NO 2 " -, NC» 3 - ions as well as cyanides and sulfides.
  • Organic carbon compounds can serve as hydrogen donors in denitrification.
  • a major disadvantage of conventional biological cleaning processes is that oxygen and substrate are transported in the same direction from the outside into the bacterial flakes.
  • the nitrification is therefore limited to oxygen and a large part of the nitrificants contained in the bacterial flakes do not participate in the turnover. This can be seen as an essential reason for the fact that the conventional biological cleaning processes require a lot of space and, as a result, large investment and operating costs.
  • the invention has for its object to provide a method for cleaning coke oven wastewater contaminated with nitrogen compounds, cyanides and sulfides, which allows low investment and operating costs.
  • the object of the invention and the solution to the problem is a process for the purification of coking plant wastewater which is contaminated with nitrogen compounds, cyanides and sulfides, wherein the coking plant wastewater flows through a reactor which is integrated in a liquid circuit and which contains at least one gas-permeable membrane hose to which an oxygen-containing compressed gas acts on the inside, and
  • the method according to the invention allows an effective breakdown of nitrogen-containing impurities.
  • the use of the described reactor ensures very high nitrification rates with very high denitrification rates. Due to the gas-permeable membrane hose, an independent supply of substrate and oxygen to the microorganisms of the biofilm is possible. While there is a low-oxygen environment on the outside of the biofilm, which allows very high denitrification rates in this area, very good nitrification rates can be achieved in the areas of the biofilm directly adjacent to the surface of the membrane tube due to the abundant supply of oxygen.
  • the separate nitrification and denitrification stages required in conventional biological purification processes can be combined into a single process step in the process according to the invention.
  • the compact design allows production-integrated use at significantly higher concentrations than in the final wastewater, which makes cleaning the wastewater considerably easier.
  • the reactor with gas-permeable membrane hose used in the process according to the invention is known per se. So far, however, such a reactor has only been used for experimental purposes with synthetic wastewater and organically contaminated wastewater from slaughterhouses. Surprisingly, however, the reactor is also suitable for cleaning coke oven wastewater, which is contaminated with cyanides and sulfides compared to previously known applications.
  • the biofilm adhering to the surface of the membrane tube arises when microorganisms accumulate at interfaces and grow there.
  • the biofilm can arise either from substances contained in the wastewater and / or from bio-sludge added to the wastewater.
  • Pore-free hoses for example silicone membrane hoses, are preferably used as membrane hoses.
  • a polyester yarn coated with silicon has proven particularly useful.
  • Elementary oxygen (0 2 ), but also carbon dioxide (CO 2 ) can be used as the oxygen-containing compressed gas.
  • a plurality of membrane hoses acted upon by an oxygen-containing compressed gas can also be arranged one behind the other in the flow direction.
  • the thickness of the biofilm is regulated by the flow rate of the liquid in the reactor. This prevents the denitrification layer from growing too rapidly, which can be associated with blockage of the reactor. From a thickness of 100 to 200 ⁇ m, biofilms no longer participate in the material turnover. The formation of too thick biofilms must therefore be prevented. By setting a suitable flow velocity, biofilm areas with a large thickness are sheared off and the formation of excessively large film thicknesses is prevented.
  • the compressed gas flow fed to the membrane hose is preferably regulated with the aid of analysis values of the waste water measured in the liquid circuit. This allows very high denitrification rates on the outside of the biofilm and at the same time very high nitrification rates in the inner area of the biofilm adjacent to the membrane tube.
  • Suitable measurement data are, for example, the O 2 -, NH 4 + -, NO 3 ⁇ -, N0 2 " -, C ⁇ 2 - and N 2 content in the liquid circuit.
  • the targeted regulation of the compressed gas flow supplied enables precise control and / or regulation the ongoing denitrification and nitrification processes.
  • this partial flow is preferably freed of biofilm particles with the aid of a clarifying device integrated in the liquid circuit.
  • a clarifier can be used as a clarifier, within which sedimentation of the biofilm particles takes place, or a centrifuge.
  • a supply of unpurified coke plant wastewater into the liquid circuit is preferably regulated or controlled with the aid of analysis values of the cleaned wastewater. This allows safe compliance with limit values with stable behavior in the reactor.
  • the analysis values in turn include, for example, the content of 0 2 , NH, N ⁇ 3 ⁇ , N ⁇ 2 ⁇ , CO 2 and N 2 in the liquid circuit. This enables a targeted setting of the dwell time of the wastewater in the liquid circuit.
  • the unpurified coke plant wastewater can be passed through a chemical precipitation stage before it is introduced into the liquid circuit.
  • This upstream first cleaning stage relieves the biological cleaning process.
  • FeC ⁇ for example, some of the nitrogen compounds are already removed from the waste water in the chemical precipitation stage.
  • the temperature of the waste water in the reactor is preferably set using a heat exchanger. This ensures a uniformly optimal temperature for the microorganisms.
  • the heat exchanger is integrated in the liquid circuit of the wastewater to be cleaned.
  • Fig. 2 shows a cross section through a pressurized gas-permeable, gas-permeable membrane hose in a reactor used according to the invention.
  • FIG. 1 shows a schematic structure of the biological process according to the invention for the purification of coking plant waste water contaminated with nitrogen compounds, cyanides and sulfides.
  • the coking plant waste water to be cleaned is fed from a template 1 into a liquid circuit 2, in which a reactor 3 through which the coking plant waste water flows is integrated.
  • the reactor 3 contains a plurality of gas-permeable membrane tubes 5 acted upon on the inside by an oxygen-containing pressure gas 4.
  • elemental oxygen is used as the oxygen-containing pressure gas 4.
  • a biofilm 6 is maintained on the outside of the membrane tubes 5 overflowing with liquid.
  • FIG. 2 shows a cross section through the biofilm 6 jacketed gas permeable membrane tube 5. While there is an abundant supply of oxygen in the area 7 of the biofilm 6 immediately adjacent to the surface of the membrane tube 5, which ensures very high nitrification rates there, there is a very low oxygen concentration on the outside 8 of the biofilm 6, which in turn is very high in this area 8 enables high denitrification rates.
  • both nitrification and denitrification processes can take place at very high rates in a very small space.
  • the process according to the invention is characterized by a very low outlay in terms of apparatus, a small space requirement and at the same time low investment and operating costs.
  • the membrane tube 5 used in the exemplary embodiment consists of a polyester yarn coated with silicon.
  • the outer diameter of the membrane hose is 3 mm with a wall thickness of 0.5 mm.
  • the specific surface area of the hose is between 20 and 200 m 2 / m 3 .
  • the biofilm 6 adhering to the membrane tube 5 arises from substances contained in the waste water and / or from bio-sludge added to the waste water. Here, microorganisms accumulate on the surface of the membrane tube and grow there.
  • the thickness of the biofilm 6 is regulated by means of a pump 9 via the flow rate of the liquid in the reactor 3. This prevents excessive growth of the denitrification layer 8, which can lead to blocking of the reactor 3. From a thickness of 100 to 200 ⁇ m, biofilms no longer participate in the material turnover.
  • the flow set with the aid of the pump 9 shears off areas of great thickness and thus prevents excessively large biofilm thicknesses.
  • the compressed gas flow 4 fed to the membrane hose 5 is regulated with the aid of analysis values of the waste water measured in the liquid circuit 2. As a result, very high denitrification rates on the outside 9 of the biofilm 6 and very high nitrification rates on the inside 7 of the biofilm 6 can be set at the same time.
  • the analysis values are continuously monitored via measuring instruments 10.
  • this partial stream 11 is freed from biofilm particles with the aid of a secondary settling tank 12 integrated into the liquid circuit 2. This prevents organic sludge from being entrained in the treated wastewater.
  • a supply of unpurified coke oven wastewater from the template 1 into the liquid circuit 2 is regulated or controlled with the aid of analysis values of the cleaned wastewater. This allows reliable compliance with limit values with stable operation within the reactor 3.
  • the resulting dilution means that problematic constituents, for example cyanides and sulfides, can also be controlled.
  • a heat exchanger 13 is also integrated in the liquid circuit 2 in order to be able to adjust the temperature of the waste water in the reactor 3.
  • a pH value control 15 is provided in order to be able to adjust the concentration of H + or OH- ions in the liquid circuit 2.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Reinigung von Kokereiabwasser, das mit Stickstoffverbindungen, Cyaniden und Sulfiden belastet ist. Erfindungsgemäss durchströmt das Kokereiabwasser einen in einen Flüssigkeitskreislauf (2) eingebundenen Reaktor (3), der mindestens einen innenseitig von einem sauerstoffhaltigen Druckgas (4) beaufschlagten gasdurchlässigen Membran schlauch (5) enthält. An der flüssigkeitsumströmten Aussenseite des Membran schlauches (5) wird ein Biofilm (6) aufrechterhalten, in dessen aufgrund der Gasdurchlässigkeit des Membranschlauches (5) sauerstoffreichen Innenbereich (7) eine selektive Nitrifikation von im Abwasser enthaltenen stickstoffhaltigen Verbindungen zu Nitraten stattfindet und gleichzeitig in einem sauerstoffarmen Aussenbereich (8) des Biofilms (6) eine Denitrifikation von Nitraten zu ele mentarem Stickstoff erfolgt.

Description

VERFAHREN ZUR REINIGUNG VON KOKEREIABWASSER MIT GASDURCHLÄSSIGER MEMBRAN
Beschreibung:
Die Erfindung betrifft ein Verfahren zur Reinigung von Kokereiabwasser, das mit Stickstoffverbindungen, wie z.B. N -, NO2 "-, NC»3 -Ionen sowie Cyaniden und Sulfiden belastet ist.
Im Stand der Technik wird die Reinigung dieser Kokereiabwasser in mehr- stufigen Verfahren innerhalb großvolumiger Behälter durchgeführt. Im Allgemeinen erfolgt zunächst eine Denitrifikation in Abwesenheit von Sauerstoff, bei der Nθ3 ~-lonen abgebaut werden. Anschließend wird ein Kohlenstoffabbau bzw. CSB-Abbau mit Hilfe aerober Bakterienstämme durchgeführt. Danach erfolgt eine Zwischenklärung, bei der mitgeschwemmte Biomasse abgetrennt wird. Es schließt sich eine Nitrifikation an, die im allgemeinen als Trägerbiologie ausgebildet ist. Zur Immobilisierung der Mikroorganismen werden Kunststoff- Füllkörper als Trägermaterial eingesetzt. Bei diesem Verfahrensschritt erfolgt eine Umwandlung von Nh -lonen in NÜ2- - bzw. NÜ3- -Ionen. Hieran schließt sich eine zweite Denitrifikationsstufe an, in der die NÜ2- sowie NÜ3- -Ionen zu elementarem Stickstoff (N2) umgewandelt werden. Es schließen sich eine Nachbelüftung zur Anreicherung des Belebtschlammes mit Sauerstoff sowie eine Nachklärung, in der der Belebtschlamm vom Abwasser getrennt wird, an.
Die bei der Nitπfikation und Denitrifikation ablaufenden chemischen Vorgänge können durch die im Folgenden angegebenen Reaktionsgleichungen beschrieben werden:
Umwandlung von stickstoffhaltigen Verbindungen durch Nitrifikation: NH4 + + - O2 D N02~ + H20 + 2H+
2
N02 " + - O2 D N03 ~
2
Abbau von Nitraten durch Denitrifikation in Abwesenheit von Sauerstoff:
10H + 2N03 ~ D 20H" + N2 + 4H20
Als Wasserstoff-Donatoren bei der Denitrifikation können organische Kohlen- Stoffverbindungen dienen.
Ein großer Nachteil konventioneller biologischer Reinigungsverfahren besteht darin, dass ein gleichgerichteter Sauerstoff- und Substrattransport von außen in die Bakterienflocken hinein stattfindet. Die Nitrifikation läuft daher sauerstoff- limitiert ab und ein Großteil der in den Bakterienflocken enthaltenen Nitrifikanten nimmt am Umsatz nicht teil. Dies ist als wesentlicher Grund dafür anzusehen, dass die konventionellen biologischen Reinigungsverfahren einen hohen Platzbedarf und damit einhergehend große Investitions- und Betriebskosten verursachen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Reinigung von mit Stickstoffverbindungen, Cyaniden und Sulfiden belasteten Kokereiabwasser anzugeben, welches niedrige Investitions- und Betriebskosten erlaubt.
Gegenstand der Erfindung und Lösung der Aufgabe ist ein Verfahren zur Reinigung von Kokereiabwasser, das mit Stickstoffverbindungen, Cyaniden und Sulfiden belastet ist, wobei das Kokereiabwasser einen in einen Flüssigkeitskreislauf eingebundenen Reaktor durchströmt, der mindestens einen innenseitig von einem sauerstoffhaltigen Druckgas beaufschlagten gasdurchlässigen Membranschlauch enthält, und
wobei an der flussigkeitsumstromten Außenseite des Membranschlauches ein Biofilm aufrechterhalten wird, in dessen aufgrund der Gasdurchlässigkeit des Membranschlauches sauerstoffreichen Innenbereich eine selektive Nitrifikation von im Abwasser enthaltenen stick- stoffhaltigen Verbindungen zu Nitraten stattfindet und gleichzeitig in einem sauerstoffarmen Außenbereich des Biofilms eine Denitrifikation von Nitraten zu elementarem Stickstoff erfolgt.
Das erfindungsgemäße Verfahren erlaubt einen wirksamen Abbau stickstoff- haltiger Verunreinigungen. Die Verwendung des beschriebenen Reaktors gewährleistet sehr hohe Nitrifikationsraten bei gleichzeitig sehr hohen Denitrifikationsraten. Aufgrund des gasdurchlässigen Membranschlauches ist eine voneinander unabhängige Substrat- und Sauerstoffversorgung der Mikroorganismen des Biofilms möglich. Während an der Außenseite des Biofilms ein sauer- stoffarmes Milieu vorliegt, welches sehr hohe Denitrifikationsraten in diesem Bereich erlaubt, sind in den direkt an die Oberfläche des Membranschlauches angrenzenden Bereichen des Biofilms aufgrund des dort herrschenden reichlichen Angebotes an Sauerstoff sehr gute Nitrifikationsraten erzielbar. Die bei konventionellen biologischen Reinigungsverfahren erforderlichen separaten Nitrifikations- und Denitrifikationsstufen können beim erfindungsgemäßen Verfahren zu einem einzigen Verfahrensschritt zusammengefasst werden. Dadurch können der apparative Aufwand, der Platzbedarf sowie die Investitions- und Betriebskosten gegenüber dem konventionellen Verfahren deutlich reduziert werden. Die kompakte Bauweise erlaubt einen produktionsintegrierten Einsatz bei deutlich höheren Konzentrationen als im Endabwasser, wodurch die Reinigung des Abwassers erheblich erleichtert wird. Der beim erfindungsgemäßen Verfahren eingesetzte Reaktor mit gasdurchlässigem Membranschlauch ist an sich bekannt. Bislang wurde ein solcher Reaktor jedoch lediglich zu Versuchszwecken mit synthetischen Abwassern und organisch belasteten Abwassern aus Schlachthöfen eingesetzt. Über- raschenderweise ist der Reaktor jedoch auch für die Reinigung von Kokereiabwasser geeignet, das im Vergleich zu vorbekannten Anwendungen mit Cyaniden und Sulfiden belastet ist. Der an der Oberfläche des Membranschlauches anhaftende Biofilm entsteht, wenn sich Mikroorganismen an Grenzflächen anlagern und dort wachsen. Der Biofilm kann hierbei entweder aus im Abwasser enthaltenen Stoffen und/oder aus dem Abwasser zugesetzten Bioschlämmen entstehen. Als Membranschläuche werden vorzugsweise porenfreie Schläuche, z.B. Silikonmembranschläuche, eingesetzt. Besonders bewährt hat in diesem Zusammenhang ein Polyestergarn, welches mit Silicium beschichtet ist. Als sauerstoffhaltiges Druckgas kommt elementarer Sauerstoff (02), aber auch Kohlendioxid (CO2) in Frage.
Vorzugsweise sind innerhalb des Flüssigkeitskreislaufes mehrere Reaktoren in Reihe geschaltet, die von dem Flüssigkeitsstrom nacheinander durchströmt werden. Entsprechend können im Strömungsraum eines Reaktors auch mehrere, von einem sauerstoffhaltigen Druckgas beaufschlagte Membranschläuche in Strömungsrichtung hintereinander angeordnet werden. Die Dicke des Biofilms wird über die Strömungsgeschwindigkeit der Flüssigkeit im Reaktor reguliert. Dies verhindert ein zu starkes Wachstum der Denitrifikationsschicht, die mit einem Verblocken des Reaktors einhergehen kann. Ab einer Dicke von 100 bis 200 μm nehmen Biofilme nicht mehr am Stoffumsatz teil. Daher muss die Bildung von zu dicken Biofilmen verhindert werden. Durch die Einstellung einer geeigneten Strömungsgeschwindigkeit werden Biofilmbereiche mit großer Dicke abgeschert und die Bildung von zu großen Filmdicken verhindert. Anhand einer kontinuierlichen Überwachung von Analysen-Messdaten innerhalb des Flüssigkeitskreislaufes kann festgestellt werden, ob eine für die biologische Reinigung optimale Strömungsgeschwindigkeit vorliegt. Vorzugsweise wird der dem Membranschlauch zugeführte Druckgasstrom mit Hilfe von im Flüssigkeitskreislauf gemessenen Analysewerten des Abwassers reguliert. Dies erlaubt sehr hohe Denitrifikationsraten an der Außenseite des Biofilms bei gleichzeitig sehr hohen Nitrifikationsraten im an den Membranschlauch angrenzenden Innenbereich des Biofilms. Als Messdaten eignen sich beispielsweise der O2-, NH4 +-, NO3 ~-, N02 "-, Cθ2-sowie N2-Gehalt im Flüssigkeitskreislauf. Die gezielte Regulierung des zugeführten Druckgasstromes erlaubt eine präzise Steuerung und/oder Regulierung der ablaufenden Denitri- fikations- und Nitrifikationsvorgänge.
Vor Entnahme eines gereinigten Teilstromes aus dem Flüssigkeitskreislauf wird dieser Teilstrom vorzugsweise mit Hilfe einer in den Flüssigkeitskreislauf eingebundenen Kläreinrichtung von Biofilmteilchen befreit. Dadurch wird verhindert, dass das die Reinigungsanlage verlassende gereinigte Abwasser mit Schlamm verunreinigt ist. Als Kläreinrichtung kommt sowohl ein Nachklärbecken in Frage, innerhalb dessen eine Sedimentation der Biofilmteilchen erfolgt, oder aber auch eine Zentrifuge. Eine Zufuhr von ungereinigtem Kokereiabwasser in den Flüssigkeitskreislauf wird vorzugsweise mit Hilfe von Analysewerten des gereinigten Abwassers reguliert oder gesteuert. Dies erlaubt ein sicheres Einhalten von Grenzwerten bei gleichzeitig stabilem Verhalten im Reaktor. Als Analysewerte kommen wiederum beispielsweise der Gehalt von 02, NH , Nθ3 ~~, Nθ2 ~, CO2 sowie N2 im Flüssigkeitskreislauf in Frage. Hiermit ist eine gezielte Einstellung der Verweilzeit des Abwassers im Flüssigkeitskreislauf möglich.
Das ungereinigte Kokereiabwasser kann vor der Einleitung in den Flüssigkeitskreislauf durch eine chemische Fällungsstufe geführt werden. Diese vorgeschaltete erste Reinigungsstufe entlastet das biologische Reinigungsverfahren. Durch die Zugabe von beispielsweise FeC^ werden in der chemischen Fällungsstufe bereits ein Teil der Stickstoffverbindungen aus dem Abwasser entfernt. Die Temperatur des Abwassers im Reaktor wird vorzugsweise über einen Wärmetauscher eingestellt. Hierdurch kann eine gleichmäßig optimale Temperatur für die Mikroorganismen gewährleistet werden. Der Wärmetauscher ist hierbei in den Flüssigkeitskreislauf des zu reinigenden Abwassers einge- bunden.
Im Folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung ausführlich erläutert. Es zeigen schematisch:
Fig. 1 ein Verfahrenfließbild des erfindungsgemäßen biologischen Reinigungsverfahrens, und
Fig. 2 einen Querschnitt durch einen von Druckgas beaufschlagten, gasdurchlässigen Membranschlauch in einem erfindungsgemäß eingesetzten Reaktor.
Die Fig. 1 zeigt einen schematischen Aufbau des erfindungsgemäßen biologischen Verfahrens zur Reinigung von mit Stickstoffverbindungen, Cyaniden und Sulfiden belastetem Kokereiabwasser. Das zu reinigende Kokereiabwasser wird aus einer Vorlage 1 in einen Flüssigkeitskreislauf 2 eingespeist, in den ein vom Kokereiabwasser durchströmter Reaktor 3 eingebunden ist. Der Reaktor 3 enthält mehrere innenseitig von einem sauerstoffhaltigen Druckgas 4 beaufschlagte gasdurchlässige Membranschläuche 5. Im Ausführungsbeispiel wird als sauerstoffhaltiges Druckgas 4 elementarer Sauerstoff eingesetzt. An der flüssigkeitsüberströmten Außenseite der Membranschläuche 5 wird ein Biofilm 6 aufrechterhalten. Aufgrund der Gasdurchlässigkeit des Membranschlauches 5 findet im sauerstoffreichen Innenbereich 7 des Biofilms 6 eine selektive Nitrifikation vom im Abwasser enthaltenen stickstoffhaltigen Verbindungen zu Nitraten statt. Gleichzeitig erfolgt in einem sauerstoffarmen Außenbereich 8 des Biofilms 6 eine Denitrifikation von Nitraten zu elementarem Stickstoff. Dies wird besonders in der Fig. 2 deutlich, die einen Querschnitt durch den vom Biofilm 6 ummantelten gasdurchlässigen Membranschlauch 5 darstellt. Während in dem an die Oberfläche des Membranschlauches 5 unmittelbar angrenzenden Bereich 7 des Biofilms 6 ein reichliches Sauerstoffangebot vorliegt, welches dort für sehr hohe Nitrifikationsraten sorgt, liegt an der Außenseite 8 des Biofilms 6 eine sehr niedrige Sauerstoffkonzentration vor, die ihrerseits in diesem Bereich 8 sehr hohe Denitrifikationsraten ermöglicht. Aufgrund der Entkopplung von Substrat- und Sauerstoffversorgung der Mikroorganismen des Biofilms 6 können auf engstem Raum sowohl Nitrifikations- als auch Denitrifikationsprozesse mit sehr hohen Raten stattfinden. Gegenüber konventionellen bioio- gischen Reinigungsverfahren, bei denen die Nitrifikation und die Denitrifikation in zwei voneinander getrennten Behältern nacheinander durchgeführt werden müssen, zeichnet sich das erfindungsgemäße Verfahren durch einen sehr geringen apparativen Aufwand, einen geringen Platzbedarf und gleichzeitig geringe Investitions- und Betriebskosten aus.
Der im Ausführungsbeispiel eingesetzte Membranschlauch 5 besteht aus einem mit Silicium beschichten Polyestergarn. Der Außendurchmesser des Membranschlauches beträgt 3 mm bei einer Wandstärke von 0,5 mm. Die spezifische Oberfläche des Schlauches beträgt zwischen 20 und 200 m2/m3. Der an dem Membranschlauch 5 anhaftende Biofilm 6 entsteht aus im Abwasser enthaltenen Stoffen und/oder aus dem Abwasser zugesetzten Bioschlämmen. Hierbei lagern sich Mikroorganismen an der Oberfläche des Membranschlauches an und wachsen dort.
Die Dicke des Biofilms 6 wird mit Hilfe einer Pumpe 9 über die Strömungsgeschwindigkeit der Flüssigkeit im Reaktor 3 reguliert. Hierdurch wird ein zu starkes Wachstum der Denitrifikationsschicht 8 verhindert, die zu einem Verblocken des Reaktors 3 führen kann. Ab einer Dicke vom 100 bis 200 μm nehmen Biofilme nicht mehr am Stoffumsatz teil. Die mit Hilfe der Pumpe 9 eingestellte Strömung schert Bereiche großer Dicke ab und verhindert damit zu große Biofilmdicken. Der dem Membranschlauch 5 zugeführte Druckgasstrom 4 wird mit Hilfe von im Flüssigkeitskreislauf 2 gemessenen Analysewerten des Abwassers reguliert. Hierdurch können gezielt gleichzeitig sehr hohe Denitrifikationsraten an der Außenseite 9 des Biofilms 6 und sehr hohe Nitrifikationsraten im Innenbereich 7 des Biofilms 6 eingestellt werden. Die Analysewerte werden über Messinstrumente 10 fortlaufend überwacht. Vor Entnahme eines gereinigten Teilstromes 11 aus dem Flüssigkeitskreislauf 2 wird dieser Teilstrom 11 mit Hilfe eines in den Flüssigkeitskreislauf 2 eingebundenen Nachklärbeckens 12 von Biofilmteilchen befreit. Dadurch wird ein Mitriss von Bioschlamm im gereinigten Ab- wasser verhindert. Eine Zufuhr von ungereinigtem Kokereiabwasser aus der Vorlage 1 in den Flüssigkeitskreislauf 2 wird mit Hilfe von Analysewerten des gereinigten Abwassers reguliert oder gesteuert. Dies erlaubt ein sicheres Einhalten von Grenzwerten bei gleichzeitig stabiler Betriebsweise innerhalb des Reaktors 3. Durch die sich dabei einstellende Verdünnung lassen sich auch problematische Bestandteile, z.B. Cyanide und Sulfide, beherrschen. In den Flüssigkeitskreislauf 2 ist auch ein Wärmetauscher 13 eingebunden, um die Temperatur des Abwassers im Reaktor 3 einstellen zu können. Hierdurch kann eine stets optimale Temperatur für die Mikroorganismen des Biofilms 6 sicher gewährleistet werden. Die Temperatur wird mit Hilfe einer entsprechenden Messvorrichtung 14 überwacht. Ferner ist eine pH-Wert-Regelung 15 vorgesehen, um die Konzentration von H+- bzw. OH- -Ionen im Flüssigkeitskreislauf 2 einstellen zu können.

Claims

Patenta.nsprüche:
1. Verfahren zur Reinigung von Kokereiabwasser, das mit Stickstoffverbindungen, Cyaniden und Sulfiden belastet ist,
wobei das Kokereiabwasser einen in einen Flüssigkeitskreislauf (2) eingebundenen Reaktor (3) durchströmt, der mindestens einen innenseitig von einem sauerstoffhaltigen Druckgas (4) beaufschlagten gasdurchlässigen Membranschlauch (5) enthält, und
wobei an der flussigkeitsumstromten Außenseite des Membranschlauches (5) ein Biofilm (6) aufrechterhalten wird, in dessen aufgrund der Gasdurchlässigkeit des Membranschlauches (5) sauerstoffreichen Innenbereich (7) eine selektive Nitrifikation von im Abwasser enthaltenen stickstoffhaltigen Verbindungen zu Nitraten stattfindet und gleichzeitig in einem sauerstoffarmen Außenbereich (8) des Biofilms (6) eine Denitrifikation von Nitraten zu elementarem Stickstoff erfolgt.
2. Verfahren nach Anspruch 1 , wobei innerhalb des Flüssigkeitskreislaufes (2) mehrere Reaktoren (3) in Reihe geschaltet und von dem Flüssigkeitsstrom nacheinander durchströmt werden.
3. Verfahren nach Anspruch 1 oder 2, wobei die Dicke des Biofilms (6) über die Strömungsgeschwindigkeit der Flüssigkeit im Reaktor (3) reguliert wird.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass der dem Membranschlauch (5) zugeführte Druckgasstrom (4) mit Hilfe von im Flüssigkeitskreislauf (2) gemessenen Analysenwerten des Abwassers reguliert wird.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass vor Entnahme eines gereinigten Teilstromes (11) aus dem Flüssigkeitskreislauf (2) dieser Teilstrom (11) mit Hilfe einer in den Flüssigkeitskreislauf (2) eingebundenen Kläreinrichtung (12) von Biofilmteilchen befreit wird.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass eine Zufuhr von ungereinigtem Kokereiabwasser in den Flüssigkeitskreislauf (2) mit Hilfe von Analysewerten des gereinigten Abwassers reguliert oder gesteuert wird.
7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass das ungereinigte Kokereiabwasser vor der Einleitung in den Flüssigkeitskreislauf (2) durch eine chemische Fällungsstufe geführt wird.
8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass die Temperatur des Abwassers im Reaktor (3) über einen Wärmetauscher (13) eingestellt wird.
PCT/EP2004/003353 2003-04-25 2004-03-30 Verfahren zur reinigung von kokereiabwasser mit gasdurchlässiger membran WO2004096719A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006504917A JP2006524562A (ja) 2003-04-25 2004-03-30 ガス透過性膜組織を用いたコークス製造廃液の浄化方法
MXPA05011489A MXPA05011489A (es) 2003-04-25 2004-03-30 Metodo para purificar agua residual de coque usando membrana permeable a gas.
EP04724283A EP1618073A1 (de) 2003-04-25 2004-03-30 Verfahren zur reinigung von kokereiabwasser mit gasdurchlässiger membran
BRPI0409732 BRPI0409732A (pt) 2003-04-25 2004-03-30 processo para a purificação de água residual de coqueria
CA 2523360 CA2523360A1 (en) 2003-04-25 2004-03-30 Method for purifying coke waste water using a gas-permeable membrane
US10/554,256 US20070012619A1 (en) 2003-04-25 2004-03-30 Method for purifying coke waste water using a gas-permeable membrane
NO20054903A NO20054903L (no) 2003-04-25 2005-10-24 Fremgangsmate for rensing av koksverk-avlopsvann med gasspermeabel membran

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003118736 DE10318736A1 (de) 2003-04-25 2003-04-25 Verfahren zur Reinigung von Kokereiabwasser
DE10318736.7 2003-04-25

Publications (1)

Publication Number Publication Date
WO2004096719A1 true WO2004096719A1 (de) 2004-11-11

Family

ID=33154411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003353 WO2004096719A1 (de) 2003-04-25 2004-03-30 Verfahren zur reinigung von kokereiabwasser mit gasdurchlässiger membran

Country Status (16)

Country Link
US (1) US20070012619A1 (de)
EP (1) EP1618073A1 (de)
JP (1) JP2006524562A (de)
KR (1) KR20060014037A (de)
CN (1) CN100355673C (de)
AR (1) AR044047A1 (de)
BR (1) BRPI0409732A (de)
CA (1) CA2523360A1 (de)
DE (1) DE10318736A1 (de)
MX (1) MXPA05011489A (de)
NO (1) NO20054903L (de)
PL (1) PL378165A1 (de)
RU (1) RU2005136658A (de)
TW (1) TW200505804A (de)
WO (1) WO2004096719A1 (de)
ZA (1) ZA200508611B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011118937A1 (de) 2011-11-21 2013-05-23 Thyssenkrupp Uhde Gmbh Verfahren und Vorrichtung zur Reinigung von Abwasser aus einem Kokslöschturm mit verkürzter Auffangbeckenverweilzeit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007042036B4 (de) * 2006-09-06 2014-02-13 Uas Messtechnik Gmbh Simultane Denitrifikation
US8197689B2 (en) 2010-07-01 2012-06-12 Alexander Fassbender Wastewater treatment
DE102011001962A1 (de) * 2011-04-11 2012-10-11 Thyssenkrupp Uhde Gmbh Verfahren und Anlage zur biologischen Reinigung von Kokereiabwasser
CN102432104B (zh) * 2011-11-04 2013-07-17 同济大学 高效低动力多层水平流生物膜污水处理方法与设备
US20160002081A1 (en) * 2013-02-22 2016-01-07 General Electric Company Wastewater treatment with membrane aerated biofilm and anaerobic digester
EP2958663B1 (de) 2013-02-22 2020-04-08 BL Technologies, Inc. Reaktorbecken mit membrananordnung als support für einen biofilm
CA3207201A1 (en) 2014-03-20 2015-09-24 Bl Technologies, Inc. Wastewater treatment with primary treatment and mbr or mabr-ifas reactor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2002926A1 (de) * 1970-01-23 1971-07-29 Roesler Norbert Dipl Ing Verfahren zur Reinigung von gering,maessig und stark verschmutzten Abwaessern
US4746435A (en) * 1980-10-13 1988-05-24 Mitsubishi Rayon Co., Ltd. Biochemical process for purifying contaminated water
EP0273174A1 (de) * 1985-06-05 1988-07-06 Noell GmbH Verfahren und Vorrichtung zum Entfernen von Ammonium aus Abwasser, Oberflächenwasser oder Grundwasser
WO1997014658A1 (en) * 1995-10-16 1997-04-24 Cormack, Edwin, James Cyanide containing effluent purification process
US6183643B1 (en) * 1999-02-24 2001-02-06 Ag Tech International, Inc. Method and apparatus for denitrification of water
US20020020666A1 (en) * 2000-03-08 2002-02-21 Pierre Cote Membrane module for gas transfer and membrane supported biofilm process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094752A (en) * 1990-02-09 1992-03-10 Davis Water & Waste Industries, Inc. Aerobic wastewater treatment with alkalinity control
US5846425A (en) * 1994-07-22 1998-12-08 Whiteman; George R. Methods for treatment of waste streams
US5932099A (en) * 1995-07-25 1999-08-03 Omnium De Traitements Et De Valorisation (Otv) Installation for biological water treatment for the production of drinkable water
US5733456A (en) * 1997-03-31 1998-03-31 Okey; Robert W. Environmental control for biological nutrient removal in water/wastewater treatment
GB9823496D0 (en) * 1998-10-27 1998-12-23 Univ Manchester Metropolitan Nitrification process
FR2793484B1 (fr) * 1999-05-12 2001-07-06 Degremont Procede, dispositif et utilisation du procede pour l'elimination par voie biologique d'elements metalliques presents a l'etat ionise dans les eaux
CN1164506C (zh) * 2001-04-09 2004-09-01 南京化工大学 陶瓷膜管生物反应分离***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2002926A1 (de) * 1970-01-23 1971-07-29 Roesler Norbert Dipl Ing Verfahren zur Reinigung von gering,maessig und stark verschmutzten Abwaessern
US4746435A (en) * 1980-10-13 1988-05-24 Mitsubishi Rayon Co., Ltd. Biochemical process for purifying contaminated water
EP0273174A1 (de) * 1985-06-05 1988-07-06 Noell GmbH Verfahren und Vorrichtung zum Entfernen von Ammonium aus Abwasser, Oberflächenwasser oder Grundwasser
WO1997014658A1 (en) * 1995-10-16 1997-04-24 Cormack, Edwin, James Cyanide containing effluent purification process
US6183643B1 (en) * 1999-02-24 2001-02-06 Ag Tech International, Inc. Method and apparatus for denitrification of water
US20020020666A1 (en) * 2000-03-08 2002-02-21 Pierre Cote Membrane module for gas transfer and membrane supported biofilm process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRINDLE K ET AL: "Nitrification and oxygen utilisation in a membrane aeration bioreactor", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER SCIENTIFIC PUBL.COMPANY. AMSTERDAM, NL, vol. 144, no. 1-2, 10 June 1998 (1998-06-10), pages 197 - 209, XP004123666, ISSN: 0376-7388 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011118937A1 (de) 2011-11-21 2013-05-23 Thyssenkrupp Uhde Gmbh Verfahren und Vorrichtung zur Reinigung von Abwasser aus einem Kokslöschturm mit verkürzter Auffangbeckenverweilzeit
WO2013075776A1 (de) 2011-11-21 2013-05-30 Thyssenkrupp Uhde Gmbh Verfahren und vorrichtung zur reinigung von abwasser aus einem kokslöschturm mit verkürzter auffangbeckenverweilzeit

Also Published As

Publication number Publication date
RU2005136658A (ru) 2006-03-20
CN1802322A (zh) 2006-07-12
NO20054903D0 (no) 2005-10-24
KR20060014037A (ko) 2006-02-14
US20070012619A1 (en) 2007-01-18
AR044047A1 (es) 2005-08-24
MXPA05011489A (es) 2005-12-15
JP2006524562A (ja) 2006-11-02
PL378165A1 (pl) 2006-03-06
EP1618073A1 (de) 2006-01-25
NO20054903L (no) 2005-11-25
BRPI0409732A (pt) 2006-05-09
CA2523360A1 (en) 2004-11-11
DE10318736A1 (de) 2004-11-11
TW200505804A (en) 2005-02-16
ZA200508611B (en) 2008-01-30
CN100355673C (zh) 2007-12-19

Similar Documents

Publication Publication Date Title
EP1943193B1 (de) Verfahren zur behandlung von ammoniumhaltigem abwasser mittels ph-regulierung
DE69708792T2 (de) Biologische Abwasserreinigung
DE102005063228B4 (de) Anaerobe Reinigung von Abwasser
EP2697173B1 (de) Verfahren zur biologischen reinigung von kokereiabwasser
EP0357753B1 (de) Verfahren und vorrichtung zur biologischen reinigung von wasser mit einer verschmutzung an stickstoff- und phosphorverbindungen sowie organischem kohlenstoff
DE2454426A1 (de) Verfahren zur behandlung roher abwaesser und anlage zur durchfuehrung des verfahrens
DE2821341A1 (de) Verfahren und vorrichtung zur biologischen abwasserreinigung
WO2004096719A1 (de) Verfahren zur reinigung von kokereiabwasser mit gasdurchlässiger membran
DE3412553C2 (de) Verfahren und Vorrichtung zur biologischen aeroben Reinigung von Abwasser
DE102016113796A1 (de) Verfahren und Anlage zur weitergehenden mikrobiologischen Reinigung von stickstoffhaltigen Abwässern
DE2935120A1 (de) Verfahren und einrichtung zur optimierung des lufteintrags in ein abwasser-belebtschlammgemisch in klaeranlagen
EP0019203A1 (de) Verfahren und Vorrichtung zur Nitrifikation und Denitrifikation von Abwässern
EP2067750B1 (de) Verfahren und Vorrichtung zur Behandlung von Abwasser mit hohem Stickstoff- und niedrigem BSB5-Anteil, insbesondere von Deponiewasser
EP0261516B1 (de) Verfahren zur kontinuierlichen mikrobiologischen Denitrifikation von Grundwasser
DE19716939C2 (de) Verfahren und Abwasserbehandlungsanlage zur biologischen Aufbereitung von farbstoffhaltigen Abwässern aus der Textil- und Lederindustrie
DE4339630C1 (de) Festbettverfahren zur Abwasserreinigung
EP0938455A2 (de) Verfahren und vorrichtung zur biologischen abwasserreinigung
WO1994011314A1 (de) Verfahren zur biologischen reinigung von mit organischen kohlenstoffverbindungen und stickstoffverbindungen verunreinigtem abwasser
EP0634368A1 (de) Verfahren und Anlage zum direkten biologischen Behandeln von heissem Industrieabwasser oder dessen Teilströmen
DE69414842T2 (de) Verfahren zur Minderung der Geruchsemission von in der Lebensmittelindustrie entstehenden Wasserströmen
DE10356681B4 (de) Vorrichtung zur Aufbereitung von Grundwasser zu Trinkwasser und Verfahren zu deren Verwendung
DE4213846C1 (en) Redn. of nitrogen content of foul sludge - by passing sludge through alternating nitrification-denitrification stage between decomposition and water extn.
DE2520397B2 (de) Anlage zur Reinigung von Abwasser nach dem Belebtschlammverfahren
WO2001025158A1 (de) Verfahren zur behandlung von abwasser einer biologischen kläranlage
DE202018101721U1 (de) Anlage zur Wasseraufbereitung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005/08611

Country of ref document: ZA

Ref document number: 2523360

Country of ref document: CA

Ref document number: 200508611

Country of ref document: ZA

Ref document number: 2006504917

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 378165

Country of ref document: PL

Ref document number: PA/a/2005/011489

Country of ref document: MX

Ref document number: 2120/KOLNP/2005

Country of ref document: IN

Ref document number: 20048110720

Country of ref document: CN

Ref document number: 1020057020311

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 543289

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2004724283

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005136658

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2007012619

Country of ref document: US

Ref document number: 10554256

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004724283

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057020311

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0409732

Country of ref document: BR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10554256

Country of ref document: US