WO2001025158A1 - Verfahren zur behandlung von abwasser einer biologischen kläranlage - Google Patents

Verfahren zur behandlung von abwasser einer biologischen kläranlage Download PDF

Info

Publication number
WO2001025158A1
WO2001025158A1 PCT/EP2000/009623 EP0009623W WO0125158A1 WO 2001025158 A1 WO2001025158 A1 WO 2001025158A1 EP 0009623 W EP0009623 W EP 0009623W WO 0125158 A1 WO0125158 A1 WO 0125158A1
Authority
WO
WIPO (PCT)
Prior art keywords
setpoint
oxygen
sewage
wastewater
content
Prior art date
Application number
PCT/EP2000/009623
Other languages
English (en)
French (fr)
Inventor
Joachim Hertrampf
Helmut Schrenk
Original Assignee
Messer Griesheim Gmbh
Stadt Neustadt An Der Weinstrasse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim Gmbh, Stadt Neustadt An Der Weinstrasse filed Critical Messer Griesheim Gmbh
Priority to EP00969376A priority Critical patent/EP1198422A1/de
Publication of WO2001025158A1 publication Critical patent/WO2001025158A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2

Definitions

  • the invention relates to a method for treating wastewater from a biological sewage treatment plant, comprising a first treatment stage in which an oxygen-containing gas is supplied to the wastewater in a controlled manner as a function of a predetermined ⁇ 2 setpoint for the oxygen content in the wastewater, ammonium compounds contained in the wastewater being below Formation of nitrates are oxidized, and a second treatment stage in which the nitrates are removed from the waste water with the formation of gaseous nitrogen.
  • Oxygen is required for nitrification; specifically, 4.6 g 0 2 are required for the conversion of 1 g of NH 4 + ions. Oxygen is artificially added to the activated sludge to accelerate the process.
  • the oxygen content can be kept at a predetermined 0 2 setpoint and an adequate oxygen supply to the microorganisms can be guaranteed.
  • the level of the 0 2 setpoint depends on a large number of parameters, such as the type and extent of the dirt load to be expected, and can differ from wastewater treatment plant to wastewater treatment plant.
  • the oxygen content is usually kept at a 0 2 setpoint of approximately 2 mg / l (mg per liter of waste water).
  • the known method is very well suited for the elimination of nitrogen and it is characterized by high operational reliability.
  • Technical oxygen is usually used to supply the microorganisms with oxygen during the first treatment stage. This results in a significant part of the operating costs in the known treatment method.
  • the invention is therefore based on the object of reducing the oxygen requirement for wastewater purification and thus reducing the operating costs while maintaining a high level of operational reliability.
  • this object is achieved according to the invention by continuously measuring the ammonium content or a property of the waste water which can be correlated therewith, and by specifying the 0 2 setpoint as a function of the measured ammonium content.
  • the method according to the invention comprises a first and a second
  • the first control mechanism regulates the supply of oxygen to the wastewater as a function of a predetermined O 2 setpoint.
  • the controlled variable is therefore the oxygen content in the wastewater.
  • the 0 2 setpoint for the oxygen content in the waste water is regulated depending on the ammonium content in the waste water.
  • the controlled variable is the 0 2 setpoint. In the method according to the invention, this is therefore not a constant variable, but rather a variable which is predetermined by the ammonium content measured in the wastewater and is accordingly used in the first control mechanism.
  • the oxygen input into the wastewater can be adapted to the current need for nitrification. It has been shown that the rate of nitrification depends on the oxygen content of the waste water. Therefore, especially in low load times, for example during the night, the oxygen content in the wastewater can be easily reduced, with the proviso that the reduction takes place as a function of the ammonium content of the wastewater.
  • the O 2 setpoint is therefore not set constantly - as in the known method - but is set variably. This makes it possible to reduce the oxygen consumption for wastewater treatment without any noticeable impairment of the cleaning effect and accordingly to lower the operating costs.
  • the O 2 setpoint is specified depending on the ammonium content. To determine the ammonium content, this is either measured directly in the wastewater, or a property of the wastewater that can be correlated with the ammonium content is measured. In the latter case, the corresponding correlatable property of the waste water can also be used as the control variable for the 0 2 setpoint instead of the ammonium content.
  • the measurement can be carried out continuously or according to time intervals.
  • the wastewater to be treated passes through the first and second treatment stages at least once. It can also go through the treatment stages several times, for example in a circuit.
  • a lower limit of 0.5 mg / 1 is preferably specified for setting the O 2 setpoint. This specification serves to ensure the operational safety of the process, since the oxygen culture below this lower limit could impair the culture of the aerobic microorganisms and the effectiveness of wastewater treatment.
  • a value of 3 mg / 1 is preferably specified as the upper limit for the 0 setpoint.
  • the location of the measurement of the ammonium content or the property correlated therewith has an influence on the measured value and thus on the control behavior of the above-mentioned control mechanisms. For example, a measurement in the area before the first treatment stage - that is, before nitrification - will provide a different measured value for the ammonium content than a measurement in the area after the first or after the second treatment stage.
  • a measurement in the area before the first treatment stage - that is, before nitrification - will provide a different measured value for the ammonium content than a measurement in the area after the first or after the second treatment stage.
  • the ammonium content measured in this way is preferably kept at a nominal NH value in the range between 0.2 and 2.0 mg / l. If there is a deviation from the NH setpoint, the 0 2 setpoint is varied accordingly.
  • Figure 1 shows an embodiment of the method according to the invention in a schematic representation
  • Figure 2 is a measurement and control scheme for performing the method according to the invention.
  • FIG. 1 shows schematically a number of basins (1-4) of a sewage treatment plant, as are usually used for the microbial treatment of organically polluted municipal and industrial wastewater. It is a pre-clarifier
  • SPARE BLADE (RULE 26) 1, a denitrification tank 2, the actual activation tank 3 and one
  • Secondary clarifier 4 The inflow of the wastewater to be treated to the primary clarifier 1 is with the arrow 5 and the drain from the aeration tank 3 into the secondary clarifier
  • two so-called gassing mats 8 are mounted on the pool floor, via which technically pure oxygen is introduced into the waste water.
  • the gassing mats 8 are connected via an oxygen supply line 9 to an oxygen tank (not shown in FIG. 1).
  • the oxygen supply to the gassing mats 8 is controlled by means of a measuring and control device 10 as a function of a predetermined setpoint for the oxygen content in the wastewater of the activation tank 3.
  • an oxygen measuring probe 11 is immersed in the activated sludge.
  • the measured values determined by the oxygen measuring probe 11 are fed to the control device 10 via the line 12.
  • the ammonium content of the waste water is measured in the discharge 6 from the aeration tank 3 to the secondary clarifier 4.
  • an NH measuring device 13 is provided, which is also connected to the control device 10 via a line 14.
  • Submersible agitators 15 are provided in the denitrification basin 2 and in the aeration basin 3, which prevent activated sludge from settling.
  • the wastewater to be treated passes from the primary clarifier 1 and denitrification tank 2 into the activation tank 3, where the so-called nitrification takes place, in which ammonium compounds contained in the sewage water or in the activated sludge of the activation tank 3 are oxidized to nitrates by microorganisms.
  • technical oxygen is introduced into the activated sludge via the gassing mats 8.
  • the oxygen content of the activated sludge is continuously measured by means of the oxygen measuring probe 11 and by means of the control device 10 using a
  • SPARE BLADE (RULE 26) first control mechanism kept at a predetermined 0 2 setpoint.
  • the specification of the 0 2 setpoint lies in the range between 0.5 mg / 1 and 3 mg / 1.
  • the specification of the O 2 setpoint results from a second control mechanism, which is based on a measurement of the ammonium content in the wastewater.
  • the ammonium content is continuously measured in the area of the drain 6 and the measured values are fed to the control device 10.
  • the NH 4 setpoint for the ammonium content in the region of the discharge 6 is 1.0 mg / l (liter, based on waste water).
  • the 0 2 setpoint is lowered by means of the control device 10 as soon as the ammonium content falls below the preset NH setpoint and increases as soon as the ammonium content is above the preset NH 4 setpoint.
  • Aeration tank 4 and the associated withdrawal of the setpoint during low load periods oxygen savings of up to 30% can be achieved.
  • the control device 10 comprises a controller for the setting of the ammonium content in the outlet 6 of the aeration tank 3 (referred to as “NH controller”), an adjuster for the setting of the 0 2 content in the activation tank 3 (as the “O 2 setpoint value” Controller ”) and a controller for setting the 0 2 setpoint (referred to as” 0 2 setpoint controller ").
  • SPARE BLADE Values for the setpoint of the ammonium concentration in sequence 6 (referred to as “NH 4 setpoint”) and an upper and a lower limit for the O 2 setpoint are specified and stored in the control device 10.
  • the limit values for the O 2 - In the exemplary embodiment, the setpoint is 0.5 mg / l or 3 mg / l, and the NH setpoint is set to 1 mg / l.
  • the oxygen content of the waste water 4 (hereinafter referred to as “actual value of O 2 ”) is measured at regular intervals by means of the oxygen measurement probe 11.
  • the ammonium content of the waste water is also measured continuously determined in sequence 6 by means of the NH measuring device (hereinafter referred to as “NH actual value”) as soon as this.
  • the actual NH 4 value is fed to the control device 10 and compared with the target value by means of a processor.
  • the 0 2 setpoint for the oxygen control is reset, provided the 0 2 setpoint to be set is within the specified limit values.
  • This new setting of the 0 2 setpoint takes place in the ⁇ 2 setpoint adjuster.
  • the newly set O 2 setpoint is then used as the basis for the usual regulation of the oxygen content in the aeration tank by means of the 0 2 controller, ie in the event of a discrepancy between the actual O 2 value measured by means of the oxygen measuring probe 11 and the newly set 0 2 setpoint ( ⁇ O 2 # 0) the oxygen input via the gassing mats 8 is set accordingly.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

Ein bekanntes Verfahren zum Abbau von Stickstoff-Verbindungen im Abwasser einer biologischen Kläranlage umfasst eine erste Behandlungsstufe, bei der dem Abwasser ein sauerstoffhaltiges Gas in Abhängigkeit eines vorgegebenen O2-Sollwertes für den Sauerstoffgehalt im Abwasser geregelt zugeführt wird, wobei im Abwasser enthaltende Ammonium unter Bildung von Nitraten oxidiert werden, und eine zweite Behandlungsstufe, bei der die Nitrate unter Bildung von gasförmigem Stickstoff eliminiert werden. Um hiervon ausgehend bei gleichbleibend hoher Betriebssicherheit den Sauerstoffbedarf bei der Abwasserreinigung zu verringern und damit die Betriebskosten zu senken, wird erfindungsgemäss vorgeschlagen, dass der Ammonium-Gehalt oder eine damit korrelierbare Eigenschaft des Abwassers fortlaufend gemessen, und der O2-Sollwert in Abhängigkeit vom gemessenen Ammonium-Gehalt vorgegeben wird.

Description

Verfahren zur Behandlung von Abwasser einer biologischen Kläranlage
Die Erfindung betrifft ein Verfahren zur Behandlung von Abwasser einer biologischen Kläranlage, umfassend eine erste Behandlungsstufe, bei der dem Abwasser ein sauerstoffhaltiges Gas in Abhängigkeit eines vorgegebenen θ2-Sollwertes für den Sauerstoffgehalt im Abwasser geregelt zugeführt wird, wobei im Abwasser enthaltende Ammonium-Verbindungen unter Bildung von Nitraten oxidiert werden, und eine zweite Behandlungsstufe, bei der die Nitrate unter Bildung von gasförmigem Stickstoff aus dem Abwasser entfernt werden.
Im Rahmen der Reinigung kommunaler und industrieller Abwässer ist unter anderem auch eine weitgehende Eliminierung von Stickstoffverbindungen erforderlich. Ein dafür geeignetes Verfahren ist unter der Bezeichnung „Biox-N-Verfahren" in der Produktinformationsschrift „Gas aktuell 48, Berichte aus Forschung und Technik" der Messer Griesheim GmbH (Ausgabe 9124/VII; 1994) beschrieben. Bei diesem Verfahren werden die im Belebtschlamm von Kläranlagen enthaltenen Stickstoffverbindungen in zwei Behandlungsschritten abgebaut. Im ersten Schritt - als Nitrifikation bezeichnet - werden Ammonium (NH +)-haltige Verbindungen durch spezielle aerobe Mikroorganismen (sogenannte „Nitrifizierer") zu Nitraten oxidiert. Dieser Behandlungsschritt läßt sich schematisch anhand folgender Reaktionsgleichungen beschreiben:
2 NH4 + + 3 02 2 N02 "+ 4 H+ + 2 H2O 2 NO2 " + 02 -» 2 N03 "
Für die Nitrifikation ist Sauerstoff erforderlich; konkret werden für die Umsetzung von 1 g NH4 +- Ionen 4,6 g 02 benötigt. Zur Beschleunigung des Vorganges wird dem Belebtschlamm Sauerstoff künstlich zugeführt. Durch eine geeignete Regelung kann der Sauerstoffgehalt auf einem vorgegebenen 02-Sollwert gehalten und eine ausreichende Sauerstoffversorgung der Mikroorganismen gewährleistet werden. Die Höhe des 02-Sollwertes hängt von einer Vielzahl von Parametern, wie beispielsweise Art und Umfang der zu erwartenden Schmutzfracht ab und kann sich von Kläranlage zu Kläranlage unterscheiden. Üblicherweise wird der Sauerstoffgehalt bei einem 02- Sollwert von etwa 2 mg/l (mg pro Liter Abwasser) gehalten.
ERSATZBLÄTT (REGEL 26) Der zweite Behandlungsschritt wird als „Denitrifikation" bezeichnet. Dabei nutzen die herkömmlichen kohlenstoffabbauenden Bakterien unter anaeroben Bedingungen das im Abwasser vorhandene Nitrat als Sauerstoffquelle. Der verbleibende gasförmige Stickstoff entweicht in die Atmosphäre. Die „Denitrifikation" läßt sich anhand folgender chemischer Gleichung beschreiben:
2 NO3 ' + 10 H - N2t + 2 OH" + 4 H2O
Das bekannte Verfahren ist für die Eliminierung von Stickstoff sehr gut geeignet und es zeichnet sich durch hohe Betriebssicherheit aus. Für die Sauerstoffversorgung der Mikroorganismen während der ersten Behandlungsstufe wird üblicherweise technischer Sauerstoff verwendet. Daraus ergibt sich ein wesentlicher Teil der Betriebskosten bei dem bekannten Behandlungsverfahren.
Der Erfindung liegt daher die Aufgabe zugrunde, bei gleichbleibend hoher Betriebssicherheit den Sauerstoffbedarf bei der Abwasserreinigung zu verringern und damit die Betriebskosten zu senken.
Diese Aufgabe wird ausgehend vom eingangs genannten Verfahren erfindungsgemäß dadurch gelöst, daß der Ammonium-Gehalt oder eine damit korrelierbare Eigenschaft des Abwassers fortlaufend gemessen, und der 02-Sollwert in Abhängigkeit vom gemessenen Ammonium-Gehalt vorgegeben wird.
Das erfindungsgemäße Verfahren umfaßt einen ersten und einen zweiten
Regelmechanismus. Durch den ersten Regelmechanismus wird die Zufuhr von Sauerstoff zum Abwasser in Abhängigkeit von einem vorgegebenen O2-Sollwert geregelt. Regelgröße ist demnach der Sauerstoffgehalt im Abwasser. Beim zweiten Regelmechanismus wird der 02-Sollwert für den Sauerstoffgehalt im Abwasser in Abhängigkeit vom Ammonium-Gehalt des Abwassers geregelt. Regelgröße ist hierbei der 02-Sollwert. Dieser ist beim erfindungsgemäßen Verfahren somit keine konstante Größe, sondern eine Variable, die durch den im Abwasser gemessenen Ammonium-Gehalt vorgegeben und dementsprechend im Rahmen des ersten Regelmechanismus verwendet wird.
ERSATZBLÄTT (REGEL 26) Mit dieser Verfahrensweise läßt sich der Sauerstoffeintrag in das Abwasser dem aktuellen Bedarf für die Nitrifikation anpassen. Es hat sich gezeigt, daß die Nitrifikationsgeschwindigkiet vom Sauerstoffgehalt des Abwassers abhängt. Daher kann insbesondere in Schwachlastzeiten, beispielsweise während der Nacht, der Sauerstoffgehalt im Abwasser ohne weiteres abgesenkt werden, mit der Maßgabe, daß die Absenkung in Abhängigkeit vom Ammonium-Gehalt des Abwassers erfolgt. Je geringer der Ammonium-Gehalt des Abwassers ist, umso niedriger kann der Sauerstoffgehalt - und damit einhergehend, der O2-Sollwert eingestellt werden. Erfindungsgemäß wird daher der O2-Sollwert nicht konstant - wie bei dem bekannten Verfahren - sondern variabel vorgegeben. Dadurch ist es möglich, den Sauerstoffverbrauch für die Abwassereinigung ohne erkennbare Beeinträchtigung der Reinigungswirkung zu verringern und dementsprechend die Betriebskosten zu senken.
Der O2-Sollwert wird in Abhängigkeit vom Ammonium-Gehalt vorgegeben. Zur Ermittlung des Ammonium-Gehalt wird dieser entweder unmittelbar im Abwasser gemessen, oder es wird eine mit dem Ammonium-Gehalt korrelierbare Eigenschaft des Abwassers gemessen. Im letztgenannten Fall kann beim Regelmechanismus für den 02-Sollwert als Stellgröße anstelle des Ammonium-Gehaltes auch die entsprechende korrelierbare Eigenschaft des Abwassers verwendet werden. Die Messung kann kontinuierlich oder nach Zeitintervallen erfolgen.
Das zu behandelnde Abwasser durchläuft die erste und die zweite Behandlungsstufe mindestens einmal. Es kann die Behandlungsstufen auch mehrfach, beispielsweise im Kreislauf, durchlaufen.
Vorzugsweise wird für die Einstellung des O2-Sollwertes eine Untergrenze von 0,5 mg/1 vorgegeben. Diese Vorgabe dient der Betriebssicherheit des Verfahrens, da bei Sauerstoffgehalten unterhalb dieser Untergrenze die Kultur der aeroben Mikroorganismen und die Effektivität der Abwasserreinigung beeinträchtigt werden könnte.
Als Obergrenze für den 0 -Sollwert wird bevorzugt ein Wert von 3 mg/1 vorgegeben. Zwar kann der optimale Sauerstoffgehalt m Hinblick auf die Effektivität der
ERSATZBLÄTT (REGEL 26) Abwasserreinigung auch über diesem Wert liegen Die angegebene Obergrenze dient jedoch der Senkung der Betriebskosten, wenn die Kosten für die Aufrechterhaltung eines höheren Sauerstoffgehaltes nicht mehr durch eine entsprechende Verbesserung der Abwasserreinigung gerechtfertigt sind.
Der Ort der Messung des Ammonium-Gehaltes oder der damit korrelierbaren Eigenschaft hat Einfluß auf den Meßwert und damit auf das Regelverhalten der oben genannten Regelmechanismen. Beispielsweise wird eine Messung im Bereich vor der ersten Behandlungsstufe - also vor der Nitrifikation - einen anderen Meßwert für den Ammonium-Gehalt liefern als eine Messung im Bereich nach der ersten oder nach der zweiten Behandlungsstufe. Im Hinblick auf eine hohe Betriebssicherheit hat es sich als vorteilhaft erwiesen, den Ammonium-Gehalt im Abwasser zu ermitteln, nachdem es mindestens einmal die erste Behandlungsstufe durchlaufen hat. Dadurch werden Schwankungen des Ammonium-Gehaltes, wie sie beispielsweise im Bereich des Einlaufes von unbehandeltem Abwasser in ein Klärbecken beobachtet werden, abgepuffert. In der Praxis hat sich die Messung des Ammonium-Gehalt im Ablauf des Abwassers in ein nachgeschaltetes Nachklärbecken bewährt.
Der so gemessene Ammonium-Gehalt wird bevorzugt auf einem NH -Sollwert im Bereich zwischen 0,2 und 2,0 mg/1 gehalten. Bei einer Abweichung vom NH -Sollwert wird der 02-Sollwert entsprechend variiert.
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispiels und einer Zeichnung näher erläutert. In der Zeichnung zeigen im einzelnen
Figur 1 eine Ausführungsform des erfindungsgemäßen Verfahrens in schematischer Darstellung, und
Figur 2 ein Meß- und Regelschema für die Durchführung des erfindungsgemäßen Verfahren.
In Figur 1 sind schematisch mehrere Becken (1 - 4) einer Kläranlage dargestellt, wie sie üblicherweise zur mikrobiellen Behandlung organisch belasteter kommunaler und industrieller Abwässer eingesetzt werden. Dabei handelt es sich um ein Vorklärbecken
ERSATZBLÄTT (REGEL 26) 1 , ein Denitrifikationsbecken 2, das eigentliche Belebungsbecken 3 und ein
Nachklärbecken 4. Der Zulauf des zu behandelnden Abwassers zum Vorklärbecken 1 ist mit dem Pfeil 5 und der Ablauf aus dem Belebungsbecken 3 in das Nachklärbecken
4 mit dem Pfeil 6 symbolisiert. Im übrigen wird die Fließbewegung des Abwassers durch die verschiedenen Becken (1 - 4) während der Behandlung durch die
Richtungspfeile 7 angedeutet.
Zur Belüftung des Belebtschlamms im Belebungsbecken 3 sind am Beckenboden zwei sogenannte Begasungsmatten 8 montiert, über die technisch reiner Sauerstoff in das Abwasser eingebracht wird. Hierzu sind die Begasungsmatten 8 über eine Sauerstoff- Zufuhrleitung 9 mit einem (in Figur 1 nicht dargestellten) Sauerstofftank verbunden. Die Sauerstoffzufuhr zu den Begasungsmatten 8 wird mittels einer Meß- und Regeleinrichtung 10 in Abhängigkeit von einem vorgegebenen Sollwert für den Sauerstoffgehalt im Abwasser des Belebungsbeckens 3 geregelt. Zur Messung des Sauerstoffgehaltes taucht eine Sauerstoff-Meßsonde 11 in den Belebtschlamm ein.
Die von der Sauerstoff-Meßsonde 11 ermittelten Meßwerte werden über die Leitung 12 der Regeleinrichtung 10 zugeführt.
Im Ablauf 6 vom Belebungsbecken 3 zum Nachklärbecken 4 wird der Ammonium- Gehalt des Abwassers gemessen. Hierzu ist eine NH -Meßeinrichtung 13vorgesehen, die ebenfalls über eine Leitung 14 mit der Regeleinrichtung 10 verbunden ist.
Im Denitrifikationsbecken 2 und im Belebungsbecken 3 sind jeweils Tauchmotorrührwerke 15 vorgesehen, die ein Absetzten von Belebtschlamm verhindern.
Vom Vorklärbecken 1 und Denitrifikationsbecken 2 gelangt das zu behandelnde Abwasser in das Belebungsbecken 3. Dort findet die sogenannte Nitrifikation statt, bei der im Abwasser bzw. im Belebtschlamm des Belebungsbeckens 3 enthaltene Ammoniumverbindungen durch Mikroorganismen zu Nitraten oxidiert werden. Hierzu wird technischer Sauerstoff über die Begasungsmatten 8 in den Belebtschlamm eingetragen. Der Sauerstoffgehalt des Belebtschlamms wird fortlaufend mittels der Sauerstoffmeß-Sonde 11 gemessen und mittels der Regeleinrichtung 10 anhand eines
ERSATZBLÄTT (REGEL 26) ersten Regelmechanismus auf einem vorgegebenen 02-Sollwert gehalten. Die Vorgabe des 02-Sollwertes liegt im Bereich zwischen 0,5 mg/1 und 3 mg/1.
Die Vorgabe des O2-Sollwertes ergibt sich durch einen zweiten Regelmechanismus, der auf einer Messung des Ammonium-Gehaltes im Abwassers beruht. Hierzu wird der Ammonium-Gehalt im Bereich des Ablaufes 6 fortlaufend gemessen und die Meßwerte der Regeleinrichtung 10 zugeführt. Der NH4-Sollwert für den Ammonium-Gehalt im Bereich des Ablaufes 6 beträgt im Ausführungsbeispiel 1 ,0 mg/l (Liter, bezogen auf Abwasser). Mittels der Regeleinrichtung 10 wird der 02-Sollwertes gesenkt, sobald der Ammonium-Gehalt unter den voreingestellten NH -Sollwert fällt und erhöht, sobald der Ammonium-Gehalt über dem voreingestellten NH4-Sollwert liegt.
Über einen Wasser-Kreislauf 17 wird stark nitrathaltiges Wasser in das Denitrifikationsbecken 2 zurückgeleitet. Außerdem wird aus dem Nachklärbecken 4 Schlamm abgezogen und ein Teil davon als Rücklaufschlamm über die
Rückschlammleitung 16 in das Denitrifikationsbecken 2 geführt. Unter den dort herrschenden anoxischen Bedingungen dienen die Nitrate den Mikroorganismen als Sauerstoffquelle. Der verbleibende gasförmige Stickstoff entweicht in die Atmosphäre.
In der Praxis konnte durch diese variable Vorgabe des O2-Sollwertes im
Belebungsbecken 4 und die damit einhergehende Zurücknahme des Sollwertes in Schwachlastzeiten eine Einsparung an Sauerstoff bis zu 30 % erzielt werden.
Nachfolgend wird das erfindungsgemäße Verfahren anhand dem Meß- und Regelschema gemäß Figur 2 näher erläutert. Die in Figur 2 genannten Bezugsziffern beziehen sich auf die Bauteile der in Figur 1 dargestellten Vorrichtung.
Die Regeleinrichtung 10 umfaßt einen Regler für die Einstellung des Ammonium- Gehaltes im Ablauf 6 des Belebunsgbeckens 3 (als „NH -Regler" bezeichnet), einen Einsteller für die Einstellung des 02-Gehaltes im Belebungsbecken 3 (als „O2-Sollwert- Steller" bezeichnet) und einen Regler für die Einstellung des 02-Sollwertes (als „02- Sollwert -Regler" bezeichnet).
ERSATZBLÄTT (REGEL 26) In der Regeleinrichtung 10 werden Werte für den Sollwert der Ammonium- Konzentration im Ablauf 6 (als „NH4-Sollwert" bezeichnet) und ein oberer und ein unterer Grenzwert für den O2-Sollwert vorgegeben und gespeichert. Die Grenzwerte für den O2-Sollwert liegen im Ausführungsbeispiel bei 0,5 mg/l bzw. bei 3 mg/l und der NH -Sollwert wird auf 1 mg/l eingestellt.
Wie aus dem in Figur 2 dargestellten Meß- und Regelschema ersichtlich, wird mittels der Sauerstoff-Meßsonde 11 der Sauerstoffgehalt des Abwassers 4 (im folgenden als „O2-lstwert" bezeichnet) nach regelmäßigen Zeitintervallen gemessen. Ebenso wird der Ammonium-Gehalt des Abwassers im Ablauf 6 mittels der NH -Meßeinrichtung fortlaufend ermittelt (im folgenden als „NH -Istwert" bezeichnet), sobald dieses . Der NH4-Istwert wird der Regeleinrichtung 10 zugeführt und mittels eines Prozessors mit dem Sollwert verglichen.
Bei einer Abweichung zwischen dem NH4-Istwert und dem NH4-Sollwert (ΔNH # 0) wird der 02-Sollwert für die Sauerstoffregelung neu eingestellt, sofern der einzustellende 02-Sollwert innerhalb der vorgegebenen Grenzwerte liegt. Diese Neu- Einstellung des 02-Sollwertes erfolgt im θ2-Sollwert-Steller. Der neu eingestellte O2- Sollwert wird dann der üblichen Regelung des Sauerstoffgehaltes im Belebungsbecken mittels des 02-Reglers zugrundegelegt, d.h., bei einer Abweichung zwischen dem mittels der Sauerstoffmeß-Sonde 11 gemessenen O2-lstwert und dem neu eingestellten 02-Sollwert (ΔO2 # 0) wird der Sauerstoffeintrag über die Begasungsmatten 8 entsprechend eingestellt.
ERSATZBL TT (REGEL 26)

Claims

Patentansprüche
1. Verfahren zum Abbau von Stickstoff-Verbindungen im Abwasser einer biologischen Kläranlage, umfassend eine erste Behandlungsstufe, bei der dem
Abwasser ein sauerstoffhaltiges Gas in Abhängigkeit eines vorgegebenen O2- Sollwertes für den Sauerstoffgehalt im Abwasser geregelt zugeführt wird, wobei im Abwasser enthaltende Ammonium unter Bildung von Nitraten oxidiert werden, und eine zweite Behandlungsstufe, bei der die Nitrate unter Bildung von gasförmigem Stickstoff eliminiert werden, dadurch gekennzeichnet, daß der Ammonium-Gehalt oder eine damit korrelierbare Eigenschaft des Abwassers fortlaufend gemessen, und der 02-Sollwert in Abhängigkeit vom gemessenen Ammonium-Gehalt vorgegeben wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß für die Untergrenze für den O2-Sollwert ein Wert von 0,5 mg/l vorgegeben wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Obergrenze für den 02-Sollwert ein Wert von 3 mg/l vorgegeben wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Ammonium-Gehalt im Abwassers gemessen wird, nachdem es mindestens einmal die erste Behandlungsstufe durchlaufen hat.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der
Ammonium-Gehalt auf einem NH -Sollwert im Bereich zwischen 0,2 und 2,0 mg/l gehalten wird.
ERSATZBL TT (REGEL 26)
PCT/EP2000/009623 1999-10-07 2000-09-30 Verfahren zur behandlung von abwasser einer biologischen kläranlage WO2001025158A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00969376A EP1198422A1 (de) 1999-10-07 2000-09-30 Verfahren zur behandlung von abwasser einer biologischen kläranlage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19948197.0 1999-10-07
DE1999148197 DE19948197A1 (de) 1999-10-07 1999-10-07 Verfahren zur Behandlung von Abwasser einer biologischen Kläranlage

Publications (1)

Publication Number Publication Date
WO2001025158A1 true WO2001025158A1 (de) 2001-04-12

Family

ID=7924737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009623 WO2001025158A1 (de) 1999-10-07 2000-09-30 Verfahren zur behandlung von abwasser einer biologischen kläranlage

Country Status (3)

Country Link
EP (1) EP1198422A1 (de)
DE (1) DE19948197A1 (de)
WO (1) WO2001025158A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098644A2 (en) 2001-06-06 2002-12-12 University Of Virginia Patent Foundation Multifunctional periodic cellular solids and the method of making the same
FR2871153A1 (fr) * 2004-06-02 2005-12-09 Otv Sa Procede de traitement d'eaux a l'aide d'un reacteur biologique, dans lequel la vitesse d'air injecte dans le reacteur est regulee, et dispositif correspondant
US8444742B2 (en) 2010-10-27 2013-05-21 Miller Chemical & Fertilizer Corporation Soluble calcium fertilizer formulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537682A (en) * 1982-01-29 1985-08-27 Environmental Research & Technology Activated sludge wastewater treating process
DE4024947A1 (de) * 1990-08-07 1992-02-13 Stewing Verwaltungsgesellschaf Verfahren und klaeranlage zum reinigen von abwasser
EP0550367A1 (de) * 1991-12-31 1993-07-07 OTV Omnium de Traitements et de Valorisation S.A. Belebtschlammverfahren zur Reinigung von industriellen und/oder städtischen Abwässern
FR2753191A1 (fr) * 1996-09-10 1998-03-13 Degremont Procede d'epuration de la pollution carbonee et de denitrification en milieu oxygene des eaux usees

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537682A (en) * 1982-01-29 1985-08-27 Environmental Research & Technology Activated sludge wastewater treating process
DE4024947A1 (de) * 1990-08-07 1992-02-13 Stewing Verwaltungsgesellschaf Verfahren und klaeranlage zum reinigen von abwasser
EP0550367A1 (de) * 1991-12-31 1993-07-07 OTV Omnium de Traitements et de Valorisation S.A. Belebtschlammverfahren zur Reinigung von industriellen und/oder städtischen Abwässern
FR2753191A1 (fr) * 1996-09-10 1998-03-13 Degremont Procede d'epuration de la pollution carbonee et de denitrification en milieu oxygene des eaux usees

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098644A2 (en) 2001-06-06 2002-12-12 University Of Virginia Patent Foundation Multifunctional periodic cellular solids and the method of making the same
FR2871153A1 (fr) * 2004-06-02 2005-12-09 Otv Sa Procede de traitement d'eaux a l'aide d'un reacteur biologique, dans lequel la vitesse d'air injecte dans le reacteur est regulee, et dispositif correspondant
WO2006000680A1 (fr) * 2004-06-02 2006-01-05 Otv Sa Procede de traitement d'eaux a l'aide d'un reacteur biologique, dans lequel la vitesse d'air injecte en continu dans le reacteur est regulee, et dispositif correspondant
AU2005256734B2 (en) * 2004-06-02 2009-10-08 Veolia Water Solutions & Technologies Support Method for treating waters by means of a biological reactor in which the speed of continuously injectable air is adjustable and corresponding device
CN1997602B (zh) * 2004-06-02 2011-04-20 威立雅水务解决方案与技术支持联合股份公司 使用其中调节连续注入到反应器中的空气速度的生物反应器的水处理方法和相应的设备
US8444742B2 (en) 2010-10-27 2013-05-21 Miller Chemical & Fertilizer Corporation Soluble calcium fertilizer formulation

Also Published As

Publication number Publication date
EP1198422A1 (de) 2002-04-24
DE19948197A1 (de) 2001-05-31

Similar Documents

Publication Publication Date Title
DE69509329T2 (de) Verfahren zur Steuerung der Belüftung eines Beckens für biologische Abwasseraufbereitung
DE69708792T2 (de) Biologische Abwasserreinigung
EP0881990B1 (de) Verfahren zur aeroben, weitergehenden biologischen reinigung von abwässern
EP1943193B1 (de) Verfahren zur behandlung von ammoniumhaltigem abwasser mittels ph-regulierung
EP2196438B1 (de) Verfahren zur belastungsabhängigen Regelung der Nitrifikation und Denitrifikation in Abwasserbehandlungsanlagen mit vorgeschalteter Denitrifikation
DE69900559T2 (de) Verfahren zur regulierung der belüftung bei der biologischen abwasserbehandlung
DE69918414T2 (de) Verfahren und anlage zur behandlung von abwasser mit einem anaeroben aufstromreaktor
DE69101688T3 (de) Verbesserter Reaktor für biologische Behandlung von Abwasser.
DE69703984T2 (de) Prozess zur entfernung von organischen komponenten aus abwasser und zur denitrifikation mit hilfe von sauerstoff
DE2821341A1 (de) Verfahren und vorrichtung zur biologischen abwasserreinigung
EP0019203B1 (de) Verfahren und Vorrichtung zur Nitrifikation und Denitrifikation von Abwässern
EP0442337B1 (de) Verfahren zur biologischen Reinigung von Abwässern
WO2001025158A1 (de) Verfahren zur behandlung von abwasser einer biologischen kläranlage
EP0367756A1 (de) Verfahren zur Denitrifikation von Flüssigkeiten und Vorrichtung zur Durchführung dieses Verfahrens
DE69807920T2 (de) Verfahren zur automatischen regulierung der belüftung einer biologischen abwasserreinigungsanlage
EP0938455A2 (de) Verfahren und vorrichtung zur biologischen abwasserreinigung
EP1618073A1 (de) Verfahren zur reinigung von kokereiabwasser mit gasdurchlässiger membran
EP0239037A2 (de) Teichanlage zur biologischen Reinigung von verschmutztem Abwasser
DE69100225T3 (de) Vorrichtung für die Reinigung von Abwässern.
DE19519742C2 (de) Verfahren zur Abwasserreinigung mit intermittierender Nitrifikation/Dentrifikation und Abwasserreinigungsanlage zur Durchführung des Verfahrens
DE2852544A1 (de) Verfahren zum stabilisieren von abwasserschlamm aus abwasserreinigungsanlagen
DE4443019C1 (de) Verfahren zur biologischen Abwasserreinigung mit intermittierender Denitrifikation
WO2015169702A1 (de) Verfahren und anlage zur biologischen abwasserreinigung
DE102007034133B4 (de) Verfahren zum Betrieb einer Kläranlage
EP1466869A1 (de) Vorrichtung und Verfahren zur Abwasserreinigung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2000969376

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): MX

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000969376

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000969376

Country of ref document: EP