WO2004092573A1 - Device and method for electronically controlling fuel injection - Google Patents

Device and method for electronically controlling fuel injection Download PDF

Info

Publication number
WO2004092573A1
WO2004092573A1 PCT/JP2004/005294 JP2004005294W WO2004092573A1 WO 2004092573 A1 WO2004092573 A1 WO 2004092573A1 JP 2004005294 W JP2004005294 W JP 2004005294W WO 2004092573 A1 WO2004092573 A1 WO 2004092573A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
fuel injection
plunger
purge
drive
Prior art date
Application number
PCT/JP2004/005294
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Yamazaki
Original Assignee
Mikuni Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corporation filed Critical Mikuni Corporation
Publication of WO2004092573A1 publication Critical patent/WO2004092573A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/027Injectors structurally combined with fuel-injection pumps characterised by the pump drive electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/20Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines characterised by means for preventing vapour lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/04Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/007Venting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/20Fuel-injection apparatus with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve

Definitions

  • the present invention relates to an electronically controlled fuel injection device that directly injects fuel into an internal combustion engine (hereinafter, simply referred to as an engine), and more particularly to a reciprocating plunger and vapor applied to an engine mounted on a motorcycle or the like.
  • the present invention relates to an electronically controlled fuel injection device having a purge valve for discharging and a fuel injection control method.
  • Examples of electronic control fuel injection devices applied to engines mounted on automobiles include a low-pressure pump that sends fuel from a fuel tank, a high-pressure pump that pressurizes and guides fuel guided by a low-pressure pipe, and a high-pressure pump. Equipped with a common rail that guides pumped fuel, an injection valve that injects fuel that branches off from the common rail, and a vapor discharge valve (purge valve) that is located at the end of the common rail to discharge vapor in the common rail.
  • a low-pressure pump that sends fuel from a fuel tank
  • a high-pressure pump that pressurizes and guides fuel guided by a low-pressure pipe
  • a high-pressure pump Equipped with a common rail that guides pumped fuel, an injection valve that injects fuel that branches off from the common rail, and a vapor discharge valve (purge valve) that is located at the end of the common rail to discharge vapor in the common rail.
  • an electronically controlled fuel injection device applied to an engine mounted on a motorcycle or the like for example, fuel guided from a fuel tank by a low-pressure pipe is suctioned and pumped by a plunger driven by an electromagnetic force, and is used in a pumping process. It is known that fuel mixed with vapor is returned to a fuel tank in an initial region, and fuel is directly injected from a nozzle into an intake passage in a late region of a pumping stroke (for example, see Japanese Patent Application Laid-Open No. 2001-22111). No. 37, Japanese Patent Application Laid-Open No. 2002-15555828).
  • the injection valve itself does not suck and inject fuel, but requires a low-pressure pump and a high-pressure pump, and is provided on a common rail.
  • the vapor discharge valve is driven by a dedicated electromagnetic force separate from the driving force of the pump. Therefore, energy for individually driving the high-pressure pump, the low-pressure pump, and the vapor discharge valve is required, and when all of them are performed by electric power, the power consumption increases.
  • the plunger movement stroke S required a stroke St obtained by calorically calculating a stroke S ⁇ for purging and a stroke Sinj for injection.
  • An object of the present invention is to provide an electronically controlled fuel injection device and a fuel injection control method capable of efficiently discharging generated vapor (bubbles) and performing optimum fuel injection according to the state of the engine.
  • the electronically controlled fuel injection device includes a plunger that sucks and pumps fuel by reciprocating motion, a purge valve that opens and closes a discharge port to discharge vapor in a pumping chamber that is fed by a plunger to a fuel tank, and an electromagnetic valve for the plunger.
  • An electronically controlled fuel injection device comprising: an exciting coil for exerting a driving force, wherein the purge valve closes when the coil is energized in one direction and opens when the coil is energized in the other direction. It is configured as follows. According to this configuration, when the coil is energized in one direction (positive direction), the plunger is driven (fuel injection drive) in a state where the purge valve is closed by the generated electromagnetic force. It is injected under pressure (pressurized).
  • the plunger is driven (purge driving) with the purge valve opened by the generated electromagnetic force.
  • the water is discharged from the outlet to the fuel tank by the pump action of the plunger.
  • a coil for driving the plunger is also used to obtain an electromagnetic force for driving the purge valve, the structure is simplified, the size is reduced, and power consumption is reduced.
  • the plunger has a through passage formed to penetrate in the reciprocating direction and communicating with the pumping chamber and defining a discharge port, and the purge valve can open and close the through passage on the pumping chamber side.
  • the magnets are arranged so as to be able to reciprocate freely and are magnetized so as to generate attraction or repulsion with the magnetic poles generated in the plunger when the coil is energized.
  • the plunger when the coil is energized in one direction, the plunger is driven, and at the same time, the magnetic pole (for example, S pole) generated at the end of the plunger on the side of the pumping chamber and the magnetic pole of the purge valve (for example, N pole) ), The purge valve closes the through passage, and the fuel is injected (fuel injection drive).
  • the magnetic pole for example, N pole
  • the magnetic pole for example, N pole
  • the plunger has a cylindrical body that reciprocates and accommodates the plunger and that defines a discharge port that communicates with the pressure feeding chamber on the wall surface.
  • the outlet is reciprocally movable so as to be able to open and close the outlet, and is magnetized so as to generate attraction or repulsion with a magnetic pole generated in the plunger by conduction to the coil.
  • the plunger when the coil is energized in one direction, the plunger is driven, and at the same time, the magnetic pole (for example, N pole) generated at the end of the plunger on the side of the pumping chamber and the magnetic pole of the purge valve (for example, N pole) ), The purge valve closes the discharge port formed in the wall of the cylinder, and fuel injection (fuel injection drive) is performed.
  • the magnetic pole for example, S pole
  • the magnetic pole for example, S pole
  • the purge valve opens a discharge port formed in the wall surface of the cylinder, and the vapor is discharged (purge driving).
  • the purge valve discharges when the coil is de-energized.
  • a configuration in which the outlet is opened can be employed.
  • the vapor generated in the pumping chamber is naturally discharged in a non-energized state, so that the stagnation of the vapor can always be prevented.
  • the vapor is efficiently discharged from the beginning of the driving. Therefore, it is effective in an apparatus that emphasizes the purge characteristics.
  • control means for controlling energization of a coil for injecting fuel according to the state of the engine
  • the control means includes a purge drive for opening a purge valve when the engine is in a predetermined state. And / or controlling the energization of the coil so as to perform fuel injection drive for injecting fuel by closing the valve.
  • a predetermined state for example, an operation state in which vapor is easily generated in the fuel, a high-temperature stop state, a high-speed high-load state in which vapor is unlikely to be generated, etc.
  • the state of the engine is determined according to the state. It is possible to control only the purge drive, both the purge drive and the fuel injection drive, or only the fuel injection drive, so that the required amount of fuel according to the engine state can be injected with high precision. .
  • control means controls the energization of the coil to perform the purge drive when the engine is in the idle operation state.
  • a power supply for example, pulse power supply
  • a power supply for purge drive for discharging vapor is added between power supplies (for example, pulse power supply) for injecting fuel. Therefore, even when the fuel flow rate is small, the generated vapor can be efficiently discharged, and the cooling action can be obtained to suppress the generation of the vapor.
  • the control unit controls the energization of the coil to perform the purge drive.
  • the purge valve is opened before the engine is started or restarted, so that the vapor accumulated in the pumping chamber can be discharged in advance, and the engine startability, especially restarting The performance is improved.
  • control means controls the energization of the coil so as to perform the purge drive for a predetermined time after the power is turned on, or a predetermined number of times after the power is turned on.
  • a configuration in which pulse energization control is performed on the coil to perform purge driving can be employed.
  • control means injects a current of the coil, a voltage of the power supply, and fuel. It is possible to adopt a configuration in which energization control is performed on the coil based on at least one state quantity of the pulse energization frequency to be performed to perform the purge drive.
  • the control means sets a pulse width for energizing the coil to perform the purge drive based on the temperature information.
  • the energization pulse width for performing the purge drive for discharging the vapor is determined.
  • control means determines whether to perform the purge drive based on the temperature information.
  • the purge drive for discharging the vapor based on the fuel temperature or temperature information such as the outside air temperature, the engine temperature, the oil temperature, and the coil temperature related to the fuel temperature.
  • the fuel temperature or temperature information such as the outside air temperature, the engine temperature, the oil temperature, and the coil temperature related to the fuel temperature.
  • the fuel injection control method of the present invention includes a plunger that suctions and pumps fuel by reciprocating motion, a purge valve that opens and closes a discharge port to discharge vapor in a pumping chamber fed by the plunger to a fuel tank, and a plunger.
  • a fuel injection control method for controlling fuel injection comprising an exciting coil for applying an electromagnetic driving force by switching the direction of energization to the coil, thereby opening a purge valve and discharging vapor. And a fuel injection drive for injecting fuel by closing the purge valve.
  • the state is determined according to the state.
  • Switch the energizing direction to the coil to purge The fuel injection is controlled by appropriately selecting the drive only stroke, both the purge drive and fuel injection drive strokes, or the fuel injection drive only stroke, so that the necessary amount according to the engine condition Can be injected with high precision.
  • FIG. 1 is a schematic configuration diagram showing a fuel supply system employing an electronically controlled fuel injection device according to the present invention.
  • FIG. 2 shows a pump section which forms a part of the electronically controlled fuel injection device.
  • (A) is an enlarged sectional view showing a state in which the purge valve is closed, and (b) is a state in which the purge valve is opened. It is an expanded sectional view showing a state.
  • FIG. 3 is a sectional view showing a support structure of the purge valve.
  • FIGS. 4A and 4B illustrate the operation of the plunger and the purge valve.
  • FIG. 4A is a state diagram when power is not supplied
  • FIG. 4B is a state diagram when fuel injection is driven
  • FIG. 5 shows a drive pulse (energization waveform) when driving the pump unit.
  • FIG. 6 shows the drive characteristics of the plunger by energizing the coil.
  • FIG. 6 (a) is a diagram illustrating the purge drive
  • FIG. 6 (b) is a diagram illustrating the fuel injection drive.
  • FIG. 7 is a graph illustrating the characteristics of the device according to the present invention.
  • FIG. 8 is a circuit diagram showing a pump drive circuit.
  • FIG. 9 is a drive diagram showing the operation of the switch circuit forming a part of the pump drive circuit.
  • FIG. 10 is a characteristic diagram showing characteristics of a capacitor forming a part of the pump drive circuit.
  • FIG. 11 is a flowchart showing drive control of the electronically controlled fuel injection device according to the present invention.
  • FIG. 11 is a flowchart showing drive control of the electronically controlled fuel injection device according to the present invention.
  • FIG. 12 is a schematic configuration diagram showing a fuel supply system employing an electronically controlled fuel injection device according to another embodiment.
  • FIGS. 13 and 13 show a pump section which is a part of the electronically controlled fuel injection device.
  • FIG. 13 (a) is an enlarged sectional view showing a state where the purge valve is closed
  • FIG. 13 (b) is an enlarged sectional view showing a state where the purge valve is opened. It is an expanded sectional view showing the state where it valved.
  • 14A and 14B illustrate the operation of the plunger and the purge valve.
  • FIG. 14A is a state diagram when power is not supplied
  • FIG. 14B is a state diagram when fuel injection is driven
  • FIG. It is a state diagram.
  • FIG. 14A is a state diagram when power is not supplied
  • FIG. 14B is a state diagram when fuel injection is driven
  • FIG. It is a state diagram.
  • FIG. 14A is a state diagram when power is not supplied
  • FIG. 14B is a state
  • FIG. 15 is a schematic configuration diagram showing a fuel supply system employing an electronically controlled fuel injection device according to still another embodiment.
  • Fig. 16 shows a part of the electronically controlled fuel injection system.
  • FIG. 3A is a sectional view showing a state in which a purge valve is closed
  • FIG. 3B is an enlarged sectional view showing a state in which the purge valve is opened.
  • FIG. 17 is a graph showing the driving characteristics of a plunger in a conventional electronically controlled fuel injection device.
  • this fuel supply system includes an electronically controlled fuel injection system comprising a fuel tank 1 of a motorcycle, an electromagnetically driven pump unit 20 and a nozzle unit 30 arranged in an intake passage 2 a of an engine 2.
  • a control unit (C / U) 40 as a control means for controlling the driving of the battery 0, a battery 50 as a power supply, and a key switch 60 for turning on / off the power of the entire system and starting the engine 2 are provided. ing.
  • the pump section 20 is provided with a cylindrical plunger 21, a sleeve 22 for accommodating the plunger 21 reciprocally, and a magnetic force line arranged outside the sleeve 22.
  • Yoke 23 coil for excitation 24, coil for excitation 24, chuck valve 25 that allows only the flow toward the inside of the pumping chamber P defined at the tip side of the sleeve 22, and through passage 21 formed in the plunger 21
  • a purge valve 26 that opens and closes a, a check valve 27 that allows discharge when the fuel in the pumping chamber P is pressurized to a predetermined pressure or more, and the like are provided.
  • the plunger 21 is biased by a return spring (not shown) and is positioned at a rest position (a position on the left side shown in FIG. 1).
  • the plunger 21 is opened and closed by a purge valve 26 seated at one end of a through passage 21 a formed to penetrate in the reciprocating direction.
  • a purge valve 26 seated at one end of a through passage 21 a formed to penetrate in the reciprocating direction.
  • an N pole is generated at one end of the plunger 21 and an S pole is generated at the other end, or an S pole is generated at the other end of the plunger 21, depending on the energizing direction (forward or reverse) of the coil 24.
  • An N pole is generated at the pole and the other end.
  • the purge valve 26 is reciprocally arranged in the plunger 21 so as to open and close the through passage 21a on the pressure feeding chamber P side.
  • the purge valve 26 has a valve portion 26 a as a permanent magnet magnetized on the N-pole and the S-pole, and is connected to the valve portion 26 a and the through passage 21 a It is formed of a support portion 26b and the like slidably inserted therein.
  • the valve When the coil 24 is energized in one direction (forward direction), the valve is closed as shown in Fig. 2 (a), and when energized in the other direction (reverse direction), the valve is opened as shown in Fig. 2 (b). It is becoming so.
  • FIG. 2 (b) the light-weight purge valve 26 is opened and the heavy plunger 21 moves immediately after the other direction (reverse direction) of the coil 24 is energized. In the middle of the start.
  • the support portion 26b is formed with a plurality of grooves 26b extending in the axial direction on the outer peripheral surface thereof.
  • the pumping chamber P communicates with the through passage 21a.
  • a flange 26 b ′ is provided at an end of the support 26 b, and a through passage 2 of the plunger 21 is provided.
  • a spring 26c is provided within 1a to bias the flange 26b '.
  • the purge valve 26 is formed to be normally closed by the biasing force of the spring 26c.
  • the plunger 21 is at the rest position as shown in FIG. 4 (a), and the purge valve 26 is biased by the spring 26c (see FIG. 3). In addition, it comes into contact with the plunger 21 by magnetic attraction, and closes the through passage 2 la (discharge port).
  • the nozzle portion 30 has an orifice having a predetermined throttle diameter.
  • Nozzle 31 port valve 32 that opens when fuel passing through orifice nozzle 31 is at or above a predetermined pressure, injection port 33 that injects fuel, air (air) for atomizing fuel Assist air pipes 34 to be supplied are provided.
  • FIG. 2 (a) and FIG. 4 The fuel injection drive shown in FIG. 4B is performed, and the plunger 21 pressurizes the fuel in the pressure feed chamber P to a predetermined pressure. Then, the fuel pressurized more than a predetermined amount opens the check pulp 27, is metered through the orifice nozzle 31, opens the poppet valve 32, and, together with the assist air, from the injection port 33. The mist is sprayed toward the intake passage 2a.
  • the purge driving shown in FIGS. 2 (b) and 4 (c) is performed.
  • the plunger 21 performs a pump action for compressing the pumping chamber P, and the purge valve 26 opens the through passage 21a. Then, the vapor or the fuel mixed with the vapor that has stayed in the pumping chamber P is discharged to the return pipe 5 through the through passage 21 a by the pump action of the plunger 21.
  • the purge valve 26 closes the through passage 21a, and at the same time, the plunger 21 is pushed back to the rest position by the biasing force of the return spring. At this time, the check valve 25 is opened, the fuel is sucked from the feed pipe 3 toward the pressure feed chamber P, and the fuel is on standby for the next injection.
  • the purge drive Tp and the fuel drive are performed as shown in FIG. Injection drive T inj can be selected and driven as appropriate.
  • purge drive + fuel injection drive, purge drive only, or fuel injection drive alone can be performed.
  • the plunger 21 When performing the purge drive, as shown in FIG. 6 (a), the plunger 21 is driven (moved) from the rest position by energizing the coil 24 in the opposite direction (other direction). At the same time, the purge valve 26 is opened to discharge vapor and the like. At this time, since the plunger 21 performs a pump action, the vapor can be smoothly discharged even if the return pipe 5 is a valley-shaped pipe located below the outlet of the pump section 20. Therefore, flexibility in arranging the return pipe 5 is increased.
  • the stroke Sp and the drive time Tp of the plunger 21 can be appropriately controlled as needed. For example, the plunger 21 may be moved to the end of the movement range.
  • the invalid time until the actual injection is eliminated is eliminated, and especially in the small flow rate operation region, the ratio of the injection amount to the driving time is small, and the injection accuracy is improved by eliminating the invalid time.
  • the purge does not affect the fuel injection. That is, in the purging process, the movement of the plunger 21 may change depending on the presence or absence of the purging. However, since there is no purging process, the influence of the purging can be prevented. As a result, the operation of the plunger 21 is stabilized, and the fuel injection is performed stably and with high accuracy.
  • the purge drive and the fuel injection drive can be driven separately, By performing the purge drive only when power is applied, power consumption and the like can be reduced, and the injection characteristics can be improved.
  • the purge flow is not performed in this operation region because the fuel flow is so large that almost no vapor is generated and it is not necessary to perform the purge drive.
  • the movement stroke S inj of the plunger 21 necessary for the injection stroke can be shortened, so that the power consumption can be reduced and the injection characteristics can be improved.
  • the optimal design of the solenoid mechanism is possible, and the propulsion force (electromagnetic driving force) of the plunger 21 can be increased. .
  • a control unit (C / U) 40 drives control units 41 and pump units 20 such as a CPU and an MPU that perform various arithmetic processes and generate control signals.
  • a detection circuit 44 for detecting and outputting the detected information to the control unit 41, a storage unit 45 for storing various information including engine operation information, and the like are provided.
  • the detection circuit 43 detects the current value or the frequency of the drive pulse supplied to the coil 24 by the pump drive circuit 42, the opening of the throttle valve 2b, and the engine 2 detected by the temperature sensor 2c. The state quantity, such as the temperature, is detected.
  • the pump drive circuit 42 drives the switch circuits 4 10, 4 11, 4 1 2, 4 1 3 and the switch circuit 4 10 including field-effect transistors and the like.
  • the respective switch circuits 410-413 are turned on and off in accordance with the purge drive and the fuel injection drive. As shown in the figure, it is stored when the coil 24 is energized. The energy stored in the capacitor 418 is transferred to and stored in the capacitor 418 when energization is stopped, and the energy stored in the capacitor 418 is used effectively at the start of the next drive, causing a sudden current ( Voltage).
  • the switch circuits 411 and 412 are turned on, and a drive voltage in the opposite direction (other direction) is applied to the coil 24.
  • the voltage V 1 e.g., 60 V
  • the power supply voltage V0 e.g., 12 V
  • the switch circuits 410 and 413 are turned ON, and a positive (one-way) drive voltage is applied to the coil 24.
  • the voltage V 1 e.g., 60 V
  • the power supply voltage V 0 e.g., 12 V
  • the switch circuits 411 and 413 are turned off, and the energy of the drive current passes through the diodes built in the switch circuits 411 and 412.
  • the capacitor 418 is charged as electric charge.
  • the drive current becomes zero
  • the voltage rise of the capacitor 418 also stops. That is, when the purge drive and the fuel injection drive are performed alternately, the above operation is repeated, and the coil 24 is energized. This operation is the same when the purge drive is continuously performed and when the fuel injection drive is continuously performed.
  • the energy stored in the capacitor 418 when the coil 24 is energized is effectively used at the next driving, so that the speed of driving the plunger 21 is increased.
  • step S1 when the key switch 60 is turned on (the power is turned on) (step S1), the control unit 41 issues a control signal to the pump drive circuit 42, and the pump drive circuit 42 A pulse is supplied to the coil 24 for the purge drive (T p) (step S 2).
  • the control unit 41 performs various arithmetic processing based on the force S and the state quantities detected by the detection circuits 43 and 44, and issues a control signal to the pump drive circuit 42. Based on these control signals, a predetermined pulse width for the pump drive circuit 42 to perform purge driving may be set, and pulse conduction may be performed to the coil 24.
  • the purge drive is performed before the engine 2 is started, the vapor retained inside is discharged in advance.
  • the engine 2 is stopped after high-load operation and the engine 2 is started after being left as it is, a large amount of vapor may be retained, but the generated vapor is discharged in advance. Therefore, the engine 2 can be started smoothly.
  • step S3 it is determined whether the key switch 60 has been turned to the start position and the engine 2 has started.
  • the pump drive circuit 42 energizes the coil 24 with a panel for purging drive (T p).
  • the pulse energization for the purge drive ( ⁇ ) is preferably performed by measuring the time by providing a timer (not shown) or the like, and performing the pulse energization only for a predetermined time after the key switch 60 is turned on. To be done.
  • a counter (not shown) is provided to count the number of pulses, so that the pulse is counted a predetermined number of times. Thereby, useless driving after the paper is completely discharged is avoided, and power consumption is reduced.
  • step S3 when it is determined in step S3 that the engine 2 has started, various state quantities are detected by the detection circuits 43, 44 and the like, and the operating state of the engine 2 is detected (step S4). Based on this detection information, engine 2 It is determined whether the vehicle is in the idle operation state (step S5).
  • the pump drive circuit 4 is instructed to inject fuel according to the operation state based on the control map and the like stored in the storage unit 45. 2 performs a pulse energization to the coil 24 for the fuel injection drive (T inj).
  • the control unit 41 determines the state amount detected by the detection circuits 43 and 44, for example, the immediately preceding coil current.
  • the pulse energization frequency of the fuel injection drive (T inj) immediately before, and the like perform various arithmetic processing based on at least one state quantity to obtain a pump drive circuit 4. Issue a control signal to 2.
  • the pump drive circuit 42 performs pulse energization to add purge drive (T p) to the coil 24 based on these control signals.
  • the pump drive circuit 42 supplies the coil 24 with a purge drive (T p) during a period from one fuel injection drive (T inj) for injecting fuel to the next fuel injection drive (T inj). ) Is performed a plurality of times.
  • the purge drive (T p) as described above should be easily inserted (added). Can be.
  • the generated vapor can be efficiently discharged, the heat generated from the coil 24 can be cooled, and the generation of the vapor can be further suppressed. .
  • step S7 it is determined whether or not the key switch 60 is turned in the reverse direction to stop the engine 2 (step S7).
  • the process returns to step S4, and steps S4, S5, and S6 are repeated again.
  • step S7 it is determined whether the key switch 60 has been turned off.
  • key switch 60 is still on (not turned off) If it is determined, the process returns to step S2, and the pump drive circuit 42 applies a pulse to the coil 24 for the purge drive as described above. That is, the pump drive circuit 42 supplies the coil 24 with a pulse current for the purge drive (T p) for a predetermined time or a predetermined number of times after the engine 2 is stopped. Do.
  • the purge valve 26 is closed when the power is not supplied.
  • a spring that urges the purge valve 26 in a direction to open the through passage 21 a is adopted.
  • the valve may be opened in reverse when the power is supplied.
  • the vapor generated in the pumping chamber in a non-energized state is naturally discharged, so that the stagnation of the vapor can always be prevented.
  • purging is performed, the vapor is efficiently discharged from the beginning of the driving. Therefore, it is effective in an apparatus that emphasizes the purge characteristics.
  • FIG. 12 to FIG. 14 show another embodiment of the electronically controlled fuel injection device according to the present invention.
  • This embodiment is the same as the above-described embodiment except that the structure of the pump unit 20 ′ of the electronically controlled fuel injection device 10 ′ is different. Therefore, the same components are denoted by the same reference numerals. That is, as shown in FIG. 12, the pump section 20 accommodates a cylindrical plunger 21, 21 ′ in a reciprocating manner and a discharge port 2 on the wall. Sleep 2 2 ′ as cylinder with 2 a ′, yoke 23, coil 24, check valve 25, purge valve 2 6 ′ to open and close discharge port 2 2 a ′, check valve BU 27.
  • the purge valve 26 can reciprocate along the sleeve 22 'so that the discharge port 22a' can be opened and closed on the side of the pumping chamber P.
  • the purge valve 26 is formed as a permanent magnet magnetized on the N pole and the S pole, and is slidably disposed in a predetermined range along the sleeve 22. I have.
  • the valve When the coil 24 is energized in one direction (forward direction), the valve is closed as shown in FIG. 13 (a) and when energized in the other direction (reverse direction), the valve is closed as shown in FIG. 13 (b). It is designed to open.
  • the lightweight purge valve 26 immediately after the one-way (positive direction) energization of the coil 24 is started, the lightweight purge valve 26, opens, and the heavy plunger 2 1 ′ Indicates the state in which movement has begun. Also, in this case, when the coil 24 is not energized, the purge valve 26 ′ is held in a state where the discharge port 22 a ′ is opened, as shown in FIG. 13B. .
  • the plunger 21 ′ is located at the rest position, and the purge valve 26 ′ is moved by the magnetic attraction force. It is drawn to the 'side, opening the outlet 2 2 a'. As described above, since the purge valve 26 is opened in the non-energized state, the vapor generated in the pumping chamber P is naturally discharged, and the stagnation of the vapor is always prevented.
  • the purge valve 26 ′ when performing the purge drive, the purge valve 26 ′ is opened in a de-energized state before the drive is started, so that the vapor is efficiently discharged from an early stage of the drive, and the purge characteristics are improved. This is effective for a device that is important.
  • FIG. 15 and FIG. 16 show still another embodiment of the electronically controlled fuel injection device according to the present invention.
  • this embodiment except for the structures of the pump section 20 ′ ′′ and the low-pressure filter 4 ′′ of the electronically controlled fuel injection device 10 — and the pipes of the feed pipes 3, 3 ′′ and the return pipe 5 ′′, This is the same as the embodiment shown in FIGS. 1 to 4 described above. Therefore, the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the low-pressure filter 4 ′ ′ filters the fuel guided from the fuel tank 1 via the feed pipe 3, sends out the filtered fuel toward the feed pipe 3 ′′, and also outputs the fuel inside the pump section 20 ′ ′′. It plays a role in guiding the generated vapor from the feed pipe 3 ′′ to the return pipe 5 ′′.
  • the pump section 20 has a plunger 21 and a plunge 2 2 ′ ′ s yoke 2 3, coil 2 4, as a cylindrical body having an opening 2 2 a, which accommodates the fuel 21 in a reciprocating manner and allows the inflow of fuel and the discharge of fuel and vapor.
  • a purge valve 26, a check valve 27, etc. are provided.
  • the plunger 21 is biased by the return spring (not shown) and is positioned at the rest position (the position closer to the left side as shown in FIG. 15).
  • the purge valve 26 is reciprocally arranged on the plunger 21 so as to open and close the through passage 21 a on the side of the pressure feed chamber P.
  • the valve closes as shown in Fig. 16 (a) by energizing in one direction (forward direction), and opens as shown in Fig. 16 (b) by energizing in the other direction (reverse direction). It has become.
  • the light-weight purge valve 26 opens and the heavy plunger 21 moves immediately after the other direction (reverse direction) of energization to the coil 24 starts. In the middle of the start. Further, as shown in FIG. 3 described above, the purge valve 26 is formed so as to be always closed by the urging force of the spring 26c when the coil 24 is not energized.
  • the plunger 21 is located at the rest position as shown in FIG. 4 (a), and the purge valve 26 is operated by the biasing force of the spring 26c and the magnetic attraction force. This makes contact with the plunger 21 and closes the through passage 21a (discharge port).
  • the barge valve 26 closes the through passage 21a by the urging force of the spring 26c, and waits for the next operation.
  • the purge valve 26 is closed beforehand in a de-energized state before the start of the drive. Is done.
  • the barge valve 26 closes the through passage 21a by the urging force of the spring 26c, and waits for the next operation.
  • the check valve 25 as shown in the above embodiment is not required, and the structure is simplified.
  • the pumps 20, 20 ′, 20 ⁇ 1 ′ and the nozzle 30 are formed as electronically controlled fuel injection devices 10, 10 ′, 10 ′ ′′.
  • the present invention can be similarly applied to a system in which both are separately arranged and connected by a fuel pipe or the like.
  • the purge drive is also performed in a low load operation state other than the idle operation.
  • the same pulsed current can be applied to increase the vapor discharge efficiency, and also ensure the cooling action to suppress the generation of vapor.
  • the pulse energization for the purge drive is performed for a preset time or number of times.
  • the electronically controlled fuel injection device and the fuel injection control method according to the present invention are: a plunger that suctions and pumps fuel by reciprocating motion;
  • a configuration that includes a purge valve that opens and closes the discharge port to discharge the paper, an exciting coil that applies an electromagnetic driving force to the plunger, etc. the purge valve is closed by energizing the coil in one direction and By forming the valve to open by energizing in the other direction, it is possible to perform purge driving or fuel injection driving by appropriately switching the energizing direction to the coil. The dead time can be omitted, and the purge drive can be performed only when necessary to efficiently discharge the vapor.
  • a coil for driving the plunger is also used to obtain an electromagnetic force for driving the purge valve, the structure is simplified, the size is reduced, and the power consumption is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

In a fuel injection device, vapor is discharged only when required to enhance fuel injection characteristics. A fuel injection device has a plunger (21) for sucking and pressure-sending a fuel by reciprocating motion, a purge valve (26) for opening and closing a discharge opening (21a) to discharge vapor in a pressure-sending chamber (P), and a coil (24) applying electromagnetic drive force to the plunger (21). A valve portion (26a) formed from permanent magnet is provided at the purge valve (26). Switching the direction of an electric current in the coil (24) produces magnetic poles in the plunger (21), and attraction or repelling between a magnetic pole and the valve portion (26a) opens and closes the purge valve (26). This enables that purge drive is performed only when required so that vapor is efficiently discharged. Further, the coil that drives the plunger also functions as the source of electromagnetic force for driving the purge valve, and this makes it possible that the structure of the device is simplified, the device is downsized, and power consumption is reduced.

Description

明細書 電子制御燃料噴射装置及び燃料噴射制御方法 技術分野  Description: Electronically controlled fuel injection device and fuel injection control method
本発明は、 内燃機関 (以下、 単にエンジンと称す) へ燃料を直接噴射する 電子制御燃料噴射装置に関し、 特に、 二輪車等に搭載されるエンジンに適用 されて、 往復動するプランジャ及びべーパを排出するパージ弁を備えた電子 制御燃料噴射装置及び燃料噴射制御方法に関する。 背景技術  The present invention relates to an electronically controlled fuel injection device that directly injects fuel into an internal combustion engine (hereinafter, simply referred to as an engine), and more particularly to a reciprocating plunger and vapor applied to an engine mounted on a motorcycle or the like. The present invention relates to an electronically controlled fuel injection device having a purge valve for discharging and a fuel injection control method. Background art
自動車に搭載のエンジンに適用される電子制御燃料噴射装置としては、 例 えば、 燃料タンクから燃料を送出する低圧ボンプ、 低圧配管により導かれえ た燃料を加圧して送出する高圧ポンプ、 高圧ポンプにより圧送された燃料を 導くコモンレール、 コモンレールからそれぞれ分岐して導かれる燃料を噴射 する噴射弁、 コモンレール内のベーパを排出するべくコモンレールの端部に 配置されたべーパ排出弁 (パージ弁) 等を備えたものが知られている (例え ば、 特開平 1 1 - 2 5 7 1 7 7号公報参照)。  Examples of electronic control fuel injection devices applied to engines mounted on automobiles include a low-pressure pump that sends fuel from a fuel tank, a high-pressure pump that pressurizes and guides fuel guided by a low-pressure pipe, and a high-pressure pump. Equipped with a common rail that guides pumped fuel, an injection valve that injects fuel that branches off from the common rail, and a vapor discharge valve (purge valve) that is located at the end of the common rail to discharge vapor in the common rail. Are known (for example, see Japanese Patent Application Laid-Open No. H11-25771).
一方、 二輪車等に搭載のエンジンに適用される電子制御燃料噴射装置とし ては、 例えば燃料タンクから低圧配管により導かれた燃料を、 電磁力により 駆動されるプランジャで吸引及び圧送し、 圧送行程の初期領域でベーパ混じ りの燃料を燃料タンクに戻し、 圧送行程の後期領域で燃料をノズルから吸気 通路に直接噴射するものが知られている (例えば、 特開 2 0 0 1— 2 2 1 1 3 7号公報、 特開 2 0 0 2— 1 5 5 8 2 8号公報参照)。  On the other hand, as an electronically controlled fuel injection device applied to an engine mounted on a motorcycle or the like, for example, fuel guided from a fuel tank by a low-pressure pipe is suctioned and pumped by a plunger driven by an electromagnetic force, and is used in a pumping process. It is known that fuel mixed with vapor is returned to a fuel tank in an initial region, and fuel is directly injected from a nozzle into an intake passage in a late region of a pumping stroke (for example, see Japanese Patent Application Laid-Open No. 2001-22111). No. 37, Japanese Patent Application Laid-Open No. 2002-15555828).
ところで、 上記自動車のエンジンに適用される従来の電子制御燃料噴射装 置では、 噴射弁そのものが燃料を吸引して噴射するのではなく、 低圧ポンプ 及び高圧ポンプを必要とし、 かつ、 コモンレールに設けられたベーパ排出弁 は、 ポンプの駆動力とは別の専用の電磁力により駆動される。 したがって、 高圧ポンプ、 低圧ポンプ、 ベーパ排出弁を個別に駆動するた めのエネルギが必要となり、 全てを電力にて行う場合は消費電力の増加を招 く。 By the way, in the conventional electronically controlled fuel injection device applied to the above-mentioned automobile engine, the injection valve itself does not suck and inject fuel, but requires a low-pressure pump and a high-pressure pump, and is provided on a common rail. The vapor discharge valve is driven by a dedicated electromagnetic force separate from the driving force of the pump. Therefore, energy for individually driving the high-pressure pump, the low-pressure pump, and the vapor discharge valve is required, and when all of them are performed by electric power, the power consumption increases.
一方、 二輪車のエンジンに適用される従来の電子制御燃料噴射装置では、 プランジャが移動して燃料を加圧する圧送行程においては、 第 1 7図に示す ように、 ベーパのパージ駆動 (T p ) と燃料の噴射駆動 (T i n j ) を必ず 続けて行うものである。 したがって、 プランジャの駆動開始から実際に燃料 が噴射されるまでの駆動時間 (無効時間 : T p ) を短縮することが望まれて いた。  On the other hand, in a conventional electronically controlled fuel injection device applied to a motorcycle engine, in a pressure feeding process in which a plunger moves and pressurizes fuel, as shown in FIG. 17, vapor purge drive (T p) is performed. The fuel injection drive (T inj) is always performed continuously. Therefore, it has been desired to reduce the drive time (ineffective time: T p) from the start of driving of the plunger to the actual injection of fuel.
また、 プランジャの移動ストローク Sとしては、 第 1 7図に示すように、 パージのためのストローク S ρと噴射のためのストローク S i n j とをカロ算 したストローク S tが必要であった。  Further, as shown in FIG. 17, the plunger movement stroke S required a stroke St obtained by calorically calculating a stroke Sρ for purging and a stroke Sinj for injection.
さらに、 エンジンの状態、 環境温度等種々の要因に応じて燃料内に発生す るべ一パの量も異なるため、 それぞれの要因を考慮してベーパの排出が効率 良く行われるようにする必要がある。 発明の開示 ' · ' 本発明は、 上記の点に鑑みて成されたものであり、 その目的とするところ は、 構造の簡略化、 小型化、 低消費電力化等を図りつつ、 燃料内に発生する ベーパ (気泡) を効率良く排出でき、 エンジンの状態に応じた最適な燃料噴 射が行える電子制御燃料噴射装置及び燃料噴射制御方法を提供することにあ る。  Furthermore, since the amount of vapor generated in the fuel varies depending on various factors such as the engine condition and the environmental temperature, it is necessary to consider each of these factors so that the vapor can be discharged efficiently. is there. DISCLOSURE OF THE INVENTION The present invention has been made in view of the above points, and its object is to simplify the structure, reduce the size, reduce the power consumption, etc. An object of the present invention is to provide an electronically controlled fuel injection device and a fuel injection control method capable of efficiently discharging generated vapor (bubbles) and performing optimum fuel injection according to the state of the engine.
本発明の電子制御燃料噴射装置は、 往復動により燃料を吸引及び圧送する ブランジャ、 プランジャにより圧送される圧送室内のベーパを燃料タンクへ 排出するべく排出口を開閉するパージ弁、 プランジャに対して電磁駆動力を 及ぼすための励磁用のコイル、 を備えた電子制御燃料噴射装置であって、 上 記パージ弁は、 コイルに対する一方向への通電により閉弁しかつ他方向への 通電により開弁するように形成されている、 構成となっている。 この構成によれば、 コイルが一方向 (正方向) に通電されると、 発生する 電磁力によりパージ弁が閉弁した状態でプランジャが駆動 (燃料噴射駆動) されるため、 圧送室内の燃料が圧送 (加圧) されて噴射される。 一方、 コィ ルが他方向 (逆方向) に通電されると、 発生する電磁力によりパージ弁が開 弁した状態でプランジャが駆動 (パージ駆動) されるため、 圧送室内に滞留 したべーパがブランジャのポンプ作用により排出口から燃料タンクへ排出さ れる。 このように、 コイルの通電方向を切替えることで、 パージ駆動及び燃 料噴射駆動の一方の駆動のみ又は両方の駆動を適宜行わせることができる。 これにより、 従来のような燃料噴射時の無効時間を省くことができ、 必要 なときにのみパージ駆動を行って効率良くべーパを排出させることができる 。 また、 パージ弁を駆動する電磁力を得るために、 プランジャを駆動するた めのコイルを兼用しているため、 構造が簡略化され、 小型化され、 消費電力 も低減される。 The electronically controlled fuel injection device according to the present invention includes a plunger that sucks and pumps fuel by reciprocating motion, a purge valve that opens and closes a discharge port to discharge vapor in a pumping chamber that is fed by a plunger to a fuel tank, and an electromagnetic valve for the plunger. An electronically controlled fuel injection device comprising: an exciting coil for exerting a driving force, wherein the purge valve closes when the coil is energized in one direction and opens when the coil is energized in the other direction. It is configured as follows. According to this configuration, when the coil is energized in one direction (positive direction), the plunger is driven (fuel injection drive) in a state where the purge valve is closed by the generated electromagnetic force. It is injected under pressure (pressurized). On the other hand, when the coil is energized in the other direction (reverse direction), the plunger is driven (purge driving) with the purge valve opened by the generated electromagnetic force. The water is discharged from the outlet to the fuel tank by the pump action of the plunger. In this way, by switching the energizing direction of the coil, only one of the purge drive and the fuel injection drive or both of the drives can be appropriately performed. This makes it possible to omit the ineffective time at the time of fuel injection as in the conventional case, and to perform the purge drive only when necessary to efficiently discharge the vapor. In addition, since a coil for driving the plunger is also used to obtain an electromagnetic force for driving the purge valve, the structure is simplified, the size is reduced, and power consumption is reduced.
上記構成において、 プランジャは、 往復動方向に貫通して形成され圧送室 に連通すると共に排出口を画定する貫通路を有し、 パージ弁は、 圧送室側に おいて貫通路を開閉し得るように往復動自在に配置されかつコイルへの通電 によりプランジャに発生する磁極と吸引又は反発を生じるように着磁されて いる、 構成を採用できる。  In the above configuration, the plunger has a through passage formed to penetrate in the reciprocating direction and communicating with the pumping chamber and defining a discharge port, and the purge valve can open and close the through passage on the pumping chamber side. The magnets are arranged so as to be able to reciprocate freely and are magnetized so as to generate attraction or repulsion with the magnetic poles generated in the plunger when the coil is energized.
この構成によれば、 コイルが一方向に通電されると、 プランジャが駆動さ れると同時に、 プランジャの圧送室側端部に生じる磁極 (例えば、 S極) と パージ弁の磁極 (例えば、 N極) との吸引力により、 パージ弁は貫通路を閉 塞した状態となり、 燃料の噴射 (燃料嘖射駆動) が行われる。 一方、 コイル が他方向に通電されると、 プランジャが駆動されると同時に、 プランジャの 圧送室側端部に生じる磁極 (例えば、 N極) とパージ弁の磁極 (例えば、 N 極) との反発力によりパージ弁は貫通路を開放した状態となり、 ベーパの排 出 (パージ駆動) が行われる。  According to this configuration, when the coil is energized in one direction, the plunger is driven, and at the same time, the magnetic pole (for example, S pole) generated at the end of the plunger on the side of the pumping chamber and the magnetic pole of the purge valve (for example, N pole) ), The purge valve closes the through passage, and the fuel is injected (fuel injection drive). On the other hand, when the coil is energized in the other direction, the plunger is driven, and at the same time, the magnetic pole (for example, N pole) generated at the end of the plunger on the side of the pumping chamber and the magnetic pole of the purge valve (for example, N pole) are repelled. The force causes the purge valve to open the through passage, and the vapor is discharged (purge driving).
また、 上記構成において、 プランジャを往復動自在に収容しかつ壁面にお いて圧送室に連通する排出口を画定する筒体を有し、 パージ弁は、 圧送室側 において排出口を開閉し得るように往復動自在に配置されかつコイルへの通 電によりブランジャに発生する磁極と吸引又は反発を生じるように着磁され ている、 構成を採用できる。 Further, in the above-described configuration, the plunger has a cylindrical body that reciprocates and accommodates the plunger and that defines a discharge port that communicates with the pressure feeding chamber on the wall surface. In this case, a configuration is adopted in which the outlet is reciprocally movable so as to be able to open and close the outlet, and is magnetized so as to generate attraction or repulsion with a magnetic pole generated in the plunger by conduction to the coil.
この構成によれば、 コイルが一方向に通電されると、 プランジャが駆動さ れると同時に、 プランジャの圧送室側端部に生じる磁極 (例えば、 N極) と パージ弁の磁極 (例えば、 N極) との反発力によりパージ弁は筒体の壁面に 形成された排出口を閉塞した状態となり、 燃料の噴射 (燃料噴射駆動) が行 われる。 一方、 コイルが他方向に通電されると、 プランジャが駆動されると 同時に、 プランジャの圧送室側端部に生じる磁極 (例えば、 S極) とパージ 弁の磁極 (例えば、 N極) との吸引力によりパージ弁は筒体の壁面に形成さ れた排出口を開放した状態となり、 ベーパの排出 (パージ駆動) が行われる 上記構成において、 パージ弁は、 コイルに対して非通電のとき、 排出口を 開放するように形成されている、 構成を採用できる。  According to this configuration, when the coil is energized in one direction, the plunger is driven, and at the same time, the magnetic pole (for example, N pole) generated at the end of the plunger on the side of the pumping chamber and the magnetic pole of the purge valve (for example, N pole) ), The purge valve closes the discharge port formed in the wall of the cylinder, and fuel injection (fuel injection drive) is performed. On the other hand, when the coil is energized in the other direction, the plunger is driven, and at the same time, the magnetic pole (for example, S pole) generated at the end of the plunger on the side of the pumping chamber and the magnetic pole (for example, N pole) of the purge valve are attracted. By the force, the purge valve opens a discharge port formed in the wall surface of the cylinder, and the vapor is discharged (purge driving). In the above configuration, the purge valve discharges when the coil is de-energized. A configuration in which the outlet is opened can be employed.
この構成によれば、 非通電の状態で、 圧送室内に発生したベーパは自然に 排出されるため、 常にべーパの滞留を防止できる。 また、 パージ駆動を行う 場合、 駆動の初期から効率良くべーパが排出される。 したがって、 パージ特 性を重視する装置において有効である。  According to this configuration, the vapor generated in the pumping chamber is naturally discharged in a non-energized state, so that the stagnation of the vapor can always be prevented. When purging is performed, the vapor is efficiently discharged from the beginning of the driving. Therefore, it is effective in an apparatus that emphasizes the purge characteristics.
上記構成において、 パージ弁は、 コイルに対して非通電のとき、 排出口を 閉鎖するように形成されている、 構成を採用できる。  In the above configuration, it is possible to adopt a configuration in which the purge valve is formed so as to close the discharge port when the coil is not energized.
この構成によれば、 燃料噴射駆動を行う場合、 駆動の初期から加圧 (圧送 ) がなされるため、 噴射時間を短縮できる。 したがって、 噴射特性を重視す る装置において有効である。  According to this configuration, when performing the fuel injection drive, pressurization (pressure feeding) is performed from the initial stage of the drive, so that the injection time can be reduced. Therefore, it is effective in a device that emphasizes injection characteristics.
上記構成において、 エンジンの状態に応じた燃料を噴射させるベくコイル への通電を制御する制御手段を有し、 制御手段は、 エンジンが所定の状態に あるとき、 パージ弁を開弁させるパージ駆動及び/又は閉弁させて燃料を噴 射させる燃料噴射駆動を行わせるべくコイルに対して通電制御を行う、 構成 を採用できる。 この構成によれば、 エンジンが所定の状態 (例えば、 燃料内にベーパが発 生し易い運転状態又は高温停止状態、 ベーパが発生し難い高速高負荷状態等 ) にあるとき、 それらの状態に応じてパージ駆動のみ、 パージ駆動及ぴ燃料 噴射駆動の両方、 あるいは、 燃料噴射駆動のみを行わせるように制御できる ため、 エンジンの状態に応じた必要量の燃料を高精度に噴射させることがで さる。 In the above configuration, there is provided control means for controlling energization of a coil for injecting fuel according to the state of the engine, and the control means includes a purge drive for opening a purge valve when the engine is in a predetermined state. And / or controlling the energization of the coil so as to perform fuel injection drive for injecting fuel by closing the valve. According to this configuration, when the engine is in a predetermined state (for example, an operation state in which vapor is easily generated in the fuel, a high-temperature stop state, a high-speed high-load state in which vapor is unlikely to be generated, etc.), the state of the engine is determined according to the state. It is possible to control only the purge drive, both the purge drive and the fuel injection drive, or only the fuel injection drive, so that the required amount of fuel according to the engine state can be injected with high precision. .
上記構成において、 制御手段は、 エンジンがアイ ドル運転状態にあるとき 、 パージ駆動を行わせるべくコイルに対して通電制御を行う、 構成を採用で さる。  In the above configuration, a configuration is adopted in which the control means controls the energization of the coil to perform the purge drive when the engine is in the idle operation state.
この構成によれば、 エンジンがアイ ドル運転状態にあるとき、 燃料を噴射 させる通電 (例えば、 パルス通電) の合間に、 ベーパを排出するパージ駆動 のための通電 (例えば、 パルス通電) を追加するため、 燃料流量の少ない状 態でも、 発生したベーパを効率良く排出でき、 又、 冷却作用が得られてベー パの発生を抑制できる。  According to this configuration, when the engine is in the idle operation state, a power supply (for example, pulse power supply) for purge drive for discharging vapor is added between power supplies (for example, pulse power supply) for injecting fuel. Therefore, even when the fuel flow rate is small, the generated vapor can be efficiently discharged, and the cooling action can be obtained to suppress the generation of the vapor.
上記構成において、 制御手段は、 エンジンを始動させるための電源が始動 前のオン状態にされたとき、 パージ駆動を行わせるべくコイルに対して通電 制御を行う、 構成を採用できる。 - この構成によれば、 エンジンの始動又は再始動に先立って、 パージ弁を開 弁させるため、 圧送室内に滞留したベ一パを予め排出させることができ、 ェ ンジンの始動性、 特に再始動性が向上する。  In the above configuration, it is possible to adopt a configuration in which when the power supply for starting the engine is turned on before starting the engine, the control unit controls the energization of the coil to perform the purge drive. -According to this configuration, the purge valve is opened before the engine is started or restarted, so that the vapor accumulated in the pumping chamber can be discharged in advance, and the engine startability, especially restarting The performance is improved.
上記構成において、 制御手段は、 電源がオン状態にされてから所定の時間 に亘りパージ駆動を行わせるべくコイルに対して通電制御を行う、 あるいは 、 電源がオン状態にされてから所定の回数だけパージ駆動を行わせるべくコ ィルに対してパルス通電制御を行う、 構成を採用できる。  In the above configuration, the control means controls the energization of the coil so as to perform the purge drive for a predetermined time after the power is turned on, or a predetermined number of times after the power is turned on. A configuration in which pulse energization control is performed on the coil to perform purge driving can be employed.
この構成によれば、 予め設定された所定の時間だけあるいは所定の回数だ け通電 (パルス通電) を行うため、 ベーパが完全に排出された後の無駄な駆 動が避けられ、 消費電力が低減される。  According to this configuration, power is supplied (pulsed power) only for a predetermined time set in advance or a predetermined number of times, so that useless driving after the vapor is completely discharged is avoided, and power consumption is reduced. Is done.
上記構成において、 制御手段は、 コイルの電流、 電源の電圧、 燃料を噴射 させるパルス通電周波数の少なくとも一つの状態量に基づき、 パージ駆動を 行わせるべくコイルに対して通電制御を行う、 構成を採用できる。 In the above configuration, the control means injects a current of the coil, a voltage of the power supply, and fuel. It is possible to adopt a configuration in which energization control is performed on the coil based on at least one state quantity of the pulse energization frequency to be performed to perform the purge drive.
この構成によれば、 エンジンの運転に関係する上記状態量に基づき通電制 御を行う (例えば、 通電のパルス幅を制御する) ことで、' ベーパを効率良く 排出させることができ、 それ故に燃料の噴射量を高精度に制御できる。  According to this configuration, by performing the energization control based on the state quantity related to the operation of the engine (for example, controlling the pulse width of the energization), it is possible to efficiently discharge the vapor, and hence the fuel Injection amount can be controlled with high accuracy.
上記構成において、 制御手段は、 温度情報に基づき、 パージ駆動を行わせ るべくコイルに対して通電するパルス幅を設定する、 構成を採用できる。 この構成によれば、 例えば、 燃料温度、 あるいは、 燃料温度と関係がある エンジン温度、 オイル温度、 コイル温度等の温度情報に基づいて、 ベーパを 排出させるパージ駆動を行うための通電のパルス幅を設定することで、 ェン ジンの運転状態に応じて、 燃料の噴射量をより高精度に制御できる。  In the above configuration, it is possible to adopt a configuration in which the control means sets a pulse width for energizing the coil to perform the purge drive based on the temperature information. According to this configuration, for example, based on the fuel temperature or temperature information such as the engine temperature, the oil temperature, and the coil temperature that are related to the fuel temperature, the energization pulse width for performing the purge drive for discharging the vapor is determined. By setting, the fuel injection amount can be controlled with higher accuracy according to the engine operating state.
上記構成において、 制御手段は、 パージ駆動を行うか否かを、 温度情報に 基づき決定する、 構成を採用できる。  In the above configuration, it is possible to adopt a configuration in which the control means determines whether to perform the purge drive based on the temperature information.
この構成によれば、 燃料温度、 あるいは、 燃料温度と関係する外気温度、 エンジン温度、 オイル温度、 コイル温度等の温度情報に基づき、 ベーパを排 出させるパージ駆動を行うか否かを決定することで、 例えば、 ベーパが発生 しないような極端に寒い環境下においては、 通電を行わないことで無駄な駆 動を避けて消費電力を低減できる。  According to this configuration, it is determined whether or not to perform the purge drive for discharging the vapor based on the fuel temperature or temperature information such as the outside air temperature, the engine temperature, the oil temperature, and the coil temperature related to the fuel temperature. Thus, for example, in an extremely cold environment where vapor is not generated, power consumption can be reduced by avoiding useless driving by not energizing.
また、 本発明の燃料噴射制御方法は、 往復動により燃料を吸引及び圧送す るプランジャ、 プランジャにより圧送される圧送室内のベーパを燃料タンク へ排出するべく排出口を開閉するパージ弁、 ブランジャに対して電磁駆動力 を及ぼすための励磁用のコイルを備え、 燃料の噴射を制御する燃料噴射制御 方法であって、 上記コイルへの通電方向を切り替えることにより、 パージ弁 を開弁させてベーパを排出するパージ駆動とパージ弁を閉弁させて燃料を噴 射させる燃料噴射駆動とを、 選択的に行う、 構成となっている。  In addition, the fuel injection control method of the present invention includes a plunger that suctions and pumps fuel by reciprocating motion, a purge valve that opens and closes a discharge port to discharge vapor in a pumping chamber fed by the plunger to a fuel tank, and a plunger. A fuel injection control method for controlling fuel injection, comprising an exciting coil for applying an electromagnetic driving force by switching the direction of energization to the coil, thereby opening a purge valve and discharging vapor. And a fuel injection drive for injecting fuel by closing the purge valve.
この構成によれば、 エンジンが所定の状態 (例えば、 燃料内にベーパが発 生し易い運転状態又は高温停止状態、ベーパが発生し難い高速高負荷状態等) にあるとき、 それらの状態に応じてコイルへの通電方向を切替えて、 パージ 駆動のみの行程、 パージ駆動及び燃料噴射駆動の両方の行程、 あるいは、 燃 料噴射駆動のみの行程を、 適宜選択して燃料の噴射が制御されるため、 ェン ジンの状態に応じた必要量の燃料を高精度に噴射させることができる。 図面の簡単な説明 According to this configuration, when the engine is in a predetermined state (for example, an operation state in which vapor is easily generated in the fuel, a high-temperature stop state, a high-speed high-load state in which vapor is unlikely to be generated, and the like), the state is determined according to the state. Switch the energizing direction to the coil to purge The fuel injection is controlled by appropriately selecting the drive only stroke, both the purge drive and fuel injection drive strokes, or the fuel injection drive only stroke, so that the necessary amount according to the engine condition Can be injected with high precision. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係る電子制御燃料噴射装置を採用した燃料供給システ ムを示す概略構成図である。 第 2図は、 電子制御燃料噴射装置の一部をなす ポンプ部を示すものであり、 ( a )はパージ弁が閉弁した状態を示す拡大断面 図、 (b ) はパージ弁が開弁した状態を示す拡大断面図である。 第 3図は、 パ ージ弁の支持構造を示す断面図である。 第 4図は、 プランジャ及びパージ弁 の動作を説明するものであり、 (a ) は非通電時の状態図、 (b ) は燃料噴射 駆動時の状態図、 (c ) はパージ駆動時の状態図である。 第 5図は、 ポンプ部 を駆動する際の駆動パルス (通電波形) を示すものである。 第 6図は、 コィ ルへの通電によるブランジャの駆動特性を示すものであり、 ( a )はパージ駆 動を説明する図、 (b ) は燃料噴射駆動を説明する図である。 第 7図は、 本発 明に係る装置の特性を説明するグラフである。 第 8図は、 ポンプ駆動回路を 示す回路図である。 第 9図は、 ポンプ駆動回路の一部をなすスィッチ回路の 動作を示す駆動図である。 第 1 0図は、 ポンプ駆動回路の一部をなすコンデ ンサの特性を示す特性図である。 第 1 1図は、 本発明に係る電子制御燃料噴 射装置の駆動制御を示すフローチャートである。 第 1 2図は、 他の実施形態 に係る電子制御燃料噴射装置を採用した燃料供給システムを示す概略構成図 である。 第 1 3図は、 電子制御燃料噴射装置の一部をなすポンプ部を示すも のであり、 (a ) はパージ弁が閉弁した状態を示す拡大断面図、 (b ) はパー ジ弁が開弁した状態を示す拡大断面図である。 第 1 4図は、 プランジャ及び パージ弁の動作を説明するものであり、 (a ) は非通電時の状態図、 (b ) は 燃料噴射駆動時の状態図、 (c ) はパージ駆動時の状態図である。第 1 5図は 、 さらに他の実施形態に係る電子制御燃料噴射装置を採用した燃料供給シス テムを示す概略構成図である。 第 1 6図は、 電子制御燃料嘖射装置の一部を なすポンプ部を示すものであり、 ( a )はパージ弁が閉弁した状態を示す拡大 断面図、 (b ) はパージ弁が開弁した状態を示す拡大断面図である。第 1 7図 は、 従来の電子制御燃料噴射装置におけるブランジャの駆動特性を示すダラ フである。 発明を実施するための最良の形態 FIG. 1 is a schematic configuration diagram showing a fuel supply system employing an electronically controlled fuel injection device according to the present invention. FIG. 2 shows a pump section which forms a part of the electronically controlled fuel injection device. (A) is an enlarged sectional view showing a state in which the purge valve is closed, and (b) is a state in which the purge valve is opened. It is an expanded sectional view showing a state. FIG. 3 is a sectional view showing a support structure of the purge valve. FIGS. 4A and 4B illustrate the operation of the plunger and the purge valve. FIG. 4A is a state diagram when power is not supplied, FIG. 4B is a state diagram when fuel injection is driven, and FIG. FIG. FIG. 5 shows a drive pulse (energization waveform) when driving the pump unit. FIG. 6 shows the drive characteristics of the plunger by energizing the coil. FIG. 6 (a) is a diagram illustrating the purge drive, and FIG. 6 (b) is a diagram illustrating the fuel injection drive. FIG. 7 is a graph illustrating the characteristics of the device according to the present invention. FIG. 8 is a circuit diagram showing a pump drive circuit. FIG. 9 is a drive diagram showing the operation of the switch circuit forming a part of the pump drive circuit. FIG. 10 is a characteristic diagram showing characteristics of a capacitor forming a part of the pump drive circuit. FIG. 11 is a flowchart showing drive control of the electronically controlled fuel injection device according to the present invention. FIG. 12 is a schematic configuration diagram showing a fuel supply system employing an electronically controlled fuel injection device according to another embodiment. FIGS. 13 and 13 show a pump section which is a part of the electronically controlled fuel injection device. FIG. 13 (a) is an enlarged sectional view showing a state where the purge valve is closed, and FIG. 13 (b) is an enlarged sectional view showing a state where the purge valve is opened. It is an expanded sectional view showing the state where it valved. 14A and 14B illustrate the operation of the plunger and the purge valve. FIG. 14A is a state diagram when power is not supplied, FIG. 14B is a state diagram when fuel injection is driven, and FIG. It is a state diagram. FIG. 15 is a schematic configuration diagram showing a fuel supply system employing an electronically controlled fuel injection device according to still another embodiment. Fig. 16 shows a part of the electronically controlled fuel injection system. FIG. 3A is a sectional view showing a state in which a purge valve is closed, and FIG. 3B is an enlarged sectional view showing a state in which the purge valve is opened. FIG. 17 is a graph showing the driving characteristics of a plunger in a conventional electronically controlled fuel injection device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について、 添付図面に基づき説明する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第 1図ないし第 1 1図は、 本発明に係る電子制御燃料噴射装置を二輪車に 搭載されたエンジンの燃料供給システムに適用した一実施形態を示すもので ある。 この燃料供給システムは、 第 1図に示すように、 二輪車の燃料タンク 1、 エンジン 2の吸気通路 2 aに配置された電磁駆動型のポンプ部 2 0及び ノズル部 3 0からなる電子制御燃料噴射装置 1 0、 燃料を供給するフィード パイプ 3、 フィ一ドパイプ 3の途中に配置された低圧フィルタ 4、 供給され た燃料の一部 (余剰燃料) を燃料タンク 1に戻すリターンパイプ 5、 ポンプ 部 2 0の駆動を制御する制御手段としてのコント口ールュニット ( C / U ) 4 0、 電源としてのバッテリ 5 0、 システム全体の電源のオン/オフ及びェ ンジン 2の始動を行うキースィツチ 6 0等を備えている。  1 to 11 show an embodiment in which an electronic control fuel injection device according to the present invention is applied to a fuel supply system for an engine mounted on a motorcycle. As shown in FIG. 1, this fuel supply system includes an electronically controlled fuel injection system comprising a fuel tank 1 of a motorcycle, an electromagnetically driven pump unit 20 and a nozzle unit 30 arranged in an intake passage 2 a of an engine 2. Device 10, feed pipe 3 for supplying fuel, low-pressure filter 4 located in the middle of feed pipe 3, return pipe 5 for returning part of supplied fuel (excess fuel) to fuel tank 1, pump section 2 A control unit (C / U) 40 as a control means for controlling the driving of the battery 0, a battery 50 as a power supply, and a key switch 60 for turning on / off the power of the entire system and starting the engine 2 are provided. ing.
ポンプ部 2 0は、 第 1図に示すように、 円柱状のプランジャ 2 1、 プラン ジャ 2 1を往復動自在に収容する筒体としてのスリーブ 2 2、 スリーブ 2 2 の外側に配置され磁力線を通すヨーク 2 3、 励磁用のコイル 2 4、 スリーブ 2 2の先端側に画定される圧送室 P内に向かう流れのみを許容するチヱック バルブ 2 5、 プランジャ 2 1内に形成された貫通路 2 1 aを開閉するパージ 弁 2 6、 圧送室 P内の燃料が所定圧力以上に加圧されたときに吐出を許容す るチェックバルブ 2 7等を備えている。 尚、 コイル 2 4への非通電のとき、 プランジャ 2 1はリターンスプリング (不図示) により付勢されて休止位置 (第 1図で示す左側寄りの位置) に位置付けられている。  As shown in FIG. 1, the pump section 20 is provided with a cylindrical plunger 21, a sleeve 22 for accommodating the plunger 21 reciprocally, and a magnetic force line arranged outside the sleeve 22. Yoke 23, coil for excitation 24, coil for excitation 24, chuck valve 25 that allows only the flow toward the inside of the pumping chamber P defined at the tip side of the sleeve 22, and through passage 21 formed in the plunger 21 A purge valve 26 that opens and closes a, a check valve 27 that allows discharge when the fuel in the pumping chamber P is pressurized to a predetermined pressure or more, and the like are provided. When the coil 24 is not energized, the plunger 21 is biased by a return spring (not shown) and is positioned at a rest position (a position on the left side shown in FIG. 1).
プランジャ 2 1は、 第 1図及び第 2図に示すように、 往復動方向に貫通し て形成された貫通路 2 1 aの一端部においてパージ弁 2 6が着座して開閉す る排出口を画し、 コイル 2 4への通電により常に一定方向に駆動され、 コィ ノレ 2 4への非通電により リターンスプリングの付勢力により休止位置に復帰 するものである。 As shown in FIGS. 1 and 2, the plunger 21 is opened and closed by a purge valve 26 seated at one end of a through passage 21 a formed to penetrate in the reciprocating direction. When the coil 24 is energized, it is always driven in a fixed direction, and when the coil 24 is de-energized, it returns to the rest position by the biasing force of the return spring.
また、 プランジャ 2 1には、 コイル 2 4への通電方向 (正方向か逆方向か ) に応じて、 一端側に N極及ぴ他端側に S極が発生し、 又は、 一端側に S極 及び他端側に N極が発生する。  In addition, an N pole is generated at one end of the plunger 21 and an S pole is generated at the other end, or an S pole is generated at the other end of the plunger 21, depending on the energizing direction (forward or reverse) of the coil 24. An N pole is generated at the pole and the other end.
パージ弁 2 6は、 第 2図に示すように、 圧送室 P側において貫通路 2 1 a を開閉し得るように、 ブランジャ 2 1に往復動自在に配置されている。  As shown in FIG. 2, the purge valve 26 is reciprocally arranged in the plunger 21 so as to open and close the through passage 21a on the pressure feeding chamber P side.
すなわち、 パージ弁 2 6は、 第 2図に示すように、 N極及び S極に着磁さ れた永久磁石としての弁部 2 6 a、 弁部 2 6 aに連結され貫通路 2 1 a内に 摺動自在に揷入された支持部 2 6 b等により形成されている。 そして、 コィ ル 2 4への一方向 (正方向) 通電により第 2図 (a ) に示すように閉弁しか つ他方向 (逆方向) 通電により第 2図 ( b ) に示すように開弁するようにな つている。 尚、 第 2図 (b ) においては、 コイル 2 4への他方向 (逆方向) 通電を開始した直後の状態で、 軽量のパージ弁 2 6が開弁し、 重量のプラン ジャ 2 1が移動を開始した途中の状態を示している。  That is, as shown in FIG. 2, the purge valve 26 has a valve portion 26 a as a permanent magnet magnetized on the N-pole and the S-pole, and is connected to the valve portion 26 a and the through passage 21 a It is formed of a support portion 26b and the like slidably inserted therein. When the coil 24 is energized in one direction (forward direction), the valve is closed as shown in Fig. 2 (a), and when energized in the other direction (reverse direction), the valve is opened as shown in Fig. 2 (b). It is becoming so. In FIG. 2 (b), the light-weight purge valve 26 is opened and the heavy plunger 21 moves immediately after the other direction (reverse direction) of the coil 24 is energized. In the middle of the start.
ここで、 支持部 2 6 bには、 第 2図 (a ) に示すように、 その外周面にお いて軸線方向に伸長する複数の溝 2 6 b 一が形成されており、 パージ弁 2 6 が開弁状態にあるとき、 圧送室 Pと貫通路 2 1 aとを連通させる。  Here, as shown in FIG. 2 (a), the support portion 26b is formed with a plurality of grooves 26b extending in the axial direction on the outer peripheral surface thereof. When the valve is in the valve open state, the pumping chamber P communicates with the through passage 21a.
ここで、 パージ弁 2 6の具体的な支持方法としては、 第 3図に示すように 、 支持部 2 6 bの端部に鍔部 2 6 b ' ,を設け、 プランジャ 2 1の貫通路 2 1 a内に配置され鍔部 2 6 b 'を付勢するスプリング 2 6 cを設ける。 そ して、 コイル 2 4への非通電の状態では、 パージ弁 2 6がスプリング 2 6 c の付勢力により常時閉弁状態となるように形成される。  Here, as a specific method of supporting the purge valve 26, as shown in FIG. 3, a flange 26 b ′ is provided at an end of the support 26 b, and a through passage 2 of the plunger 21 is provided. A spring 26c is provided within 1a to bias the flange 26b '. When the coil 24 is not energized, the purge valve 26 is formed to be normally closed by the biasing force of the spring 26c.
尚、 スプリング 2 6 cを設けなくても、 プランジャ 2 1からの脱落を防止 できる限り、 非通電の状態で弁部 2 6 aとプランジャ 2 1 との間に作用する 磁気的吸引力により、 パージ弁 2 6を閉弁状態に保持することも可能である コイル 2 4への通電 /非通電によるプランジャ 2 1及びパージ弁 2 6の動 作について、 第 4図に基づき説明する。 Even if the spring 26c is not provided, as long as the falling off of the plunger 21 can be prevented, the magnetically attractive force acting between the valve part 26a and the plunger 21 in the non-energized state will cause the purge. It is also possible to keep valve 26 closed The operation of the plunger 21 and the purge valve 26 by energizing / de-energizing the coil 24 will be described with reference to FIG.
先ず、 非通電の状態では、 第 4図 (a ) に示すように、 プランジャ 2 1は 休止位置に位置し、 又、 パージ弁 2 6は、 スプリング 2 6 c (第 3図参照) の付勢力及び磁気的吸引力によりプランジャ 2 1に接触して、 貫通路 2 l a (排出口) を閉塞している。  First, in the non-energized state, the plunger 21 is at the rest position as shown in FIG. 4 (a), and the purge valve 26 is biased by the spring 26c (see FIG. 3). In addition, it comes into contact with the plunger 21 by magnetic attraction, and closes the through passage 2 la (discharge port).
この休止状態において、 コイル 2 4が一方向 (正方向) に通電されると、 第 4図 (b ) に示すように、 ヨーク 2 3内に磁力線 (一点鎖線) の流れが生 じ、 発生する電磁力により、 プランジャ 2 1は下向き (圧送室 Pを圧縮する 向き) に移動する。 一方、 ブランジャ 2 1の端部には S極が発生するため、 この S極と弁部 2 6 aの N極とが吸引し合って、 パージ弁 2 6は強固に貫通 路 2 1 aを閉塞した状態に維持される。 すなわち、 圧送室 P内の燃料が加圧 (圧送) されて燃料噴射駆動が行われる。 尚、 非通電にすることで、 第 4図 ( a ) に示す休止位置に復帰する。  When the coil 24 is energized in one direction (positive direction) in the rest state, a flow of magnetic force lines (dashed lines) is generated in the yoke 23 as shown in FIG. Due to the electromagnetic force, the plunger 21 moves downward (to compress the pumping chamber P). On the other hand, since an S-pole is generated at the end of the plunger 21, the S-pole and the N-pole of the valve portion 26 a attract each other, and the purge valve 26 tightly closes the through passage 21 a. Is maintained. That is, the fuel in the pumping chamber P is pressurized (pressurized) and the fuel injection drive is performed. By turning off the power, it returns to the rest position shown in Fig. 4 (a).
このよ うに、 燃料噴射駆動を行う場合は、 駆動開始前の非通電の状態で予 めパージ弁 2 6は閉弁しているため、 駆動の初期から加圧がなされて噴射時 間 (昇圧に要する時間) が短縮され、 嘖射特性を重視する装置において有効 でめな。  As described above, when performing the fuel injection drive, since the purge valve 26 is closed beforehand in a de-energized state before the start of the drive, pressurization is performed from an early stage of the drive, and the injection time is increased. The time required) is shortened, and it is not effective for equipment that emphasizes the emission characteristics.
—方、 休止状態において、 コイル 2 4が他方向 (逆方向) に通電されると 、 第 4図 (c ) に示すように、 ヨーク 2 3内に磁力線 (一点鎖線) の流れが 生じ、 発生する電磁力により、 プランジャ 2 1は下向き (圧送室 Pを圧縮す る向き) に移動する。 一方、 プランジャ 2 1の端部には N極が発生するため 、 この N極と弁部 2 6 aの N極とが反発し合って、 パージ弁 2 6は下向きに 移動して貫通路 2 1 aを開放した状態となる。 すなわち、 プランジャ 2 1の ポンプ作用により圧送室 Pに滞留したベーパ又はべ一パ混じりの燃料が貫通 路 2 1 aを通って排出されるパージ駆動が行われる。 尚、 非通電にすること で、 第 4図 (a ) に示す休止位置に復帰する。  On the other hand, when the coil 24 is energized in the other direction (reverse direction) in the rest state, a magnetic force line (dashed line) flows in the yoke 23 as shown in FIG. Due to the generated electromagnetic force, the plunger 21 moves downward (to compress the pressure-feeding chamber P). On the other hand, since an N-pole is generated at the end of the plunger 21, the N-pole and the N-pole of the valve portion 26 a repel each other, and the purge valve 26 moves downward to move through the through passage 21. a is opened. That is, the purge operation is performed in which the vapor or the vapor mixed with the vapor accumulated in the pumping chamber P by the pump action of the plunger 21 is discharged through the through passage 21a. By turning off the power, it returns to the rest position shown in Fig. 4 (a).
ノズル部 3 0は、 第 1図に示すように、 所定の絞り 口径をもつオリフィス ノズル 3 1、 オリフィスノズル 3 1を通過した燃料が所定圧力以上のとき開 弁するポぺッ トバルブ 3 2、 燃料を噴射する噴射口 3 3、 燃料を霧化するた めのエア (空気) を供給するアシス トエアパイプ 3 4等を備えている。 As shown in FIG. 1, the nozzle portion 30 has an orifice having a predetermined throttle diameter. Nozzle 31, port valve 32 that opens when fuel passing through orifice nozzle 31 is at or above a predetermined pressure, injection port 33 that injects fuel, air (air) for atomizing fuel Assist air pipes 34 to be supplied are provided.
上記構成からなる電子制御燃料噴射装置 1 0においては、 コイル 2 4が所 定のパルス幅にて一方向 (正方向) に通電されて電磁駆動力を発生すると、 第 2図 (a ) 及び第 4図 (b ) に示す燃料噴射駆動が行われ、 プランジャ 2 1は圧送室 P内の燃料を所定の圧力に加圧する。 そして、 所定以上に加圧さ れた燃料は、 チェックパルプ 2 7を開弁させて、 オリフィスノズル 3 1を通 つて計量され、 ポペットバルブ 3 2を開弁させ、 アシス トエアと共に噴射口 3 3から吸気通路 2 aに向けて霧状になって噴射される。  In the electronically controlled fuel injection device 10 having the above-described configuration, when the coil 24 is energized in one direction (positive direction) with a predetermined pulse width to generate an electromagnetic driving force, FIG. 2 (a) and FIG. 4 The fuel injection drive shown in FIG. 4B is performed, and the plunger 21 pressurizes the fuel in the pressure feed chamber P to a predetermined pressure. Then, the fuel pressurized more than a predetermined amount opens the check pulp 27, is metered through the orifice nozzle 31, opens the poppet valve 32, and, together with the assist air, from the injection port 33. The mist is sprayed toward the intake passage 2a.
コイル 2 4への通電が断たれると、 プランジャ 2 1がリターンスプリング の付勢力により休止位置に押し戻される。 この際に、 チェックバルブ 2 5が 開弁してフィードパイプ 3から圧送室 Pに向けて燃料が吸引され、 次の噴射- に備えて待機することになる。  When the power supply to the coil 24 is cut off, the plunger 21 is pushed back to the rest position by the biasing force of the return spring. At this time, the check valve 25 is opened, the fuel is sucked from the feed pipe 3 toward the pressure feed chamber P, and the fuel is on standby for the next injection.
一方、 コイル 2 4が所定のパルス幅にて他方向 (逆方向) に通電されて電 磁駆動力を発生すると、 第 2図 (b ) 及び第 4図 (c ) に示すパージ駆動が 行われ、 プランジャ 2 1は圧送室 Pを圧縮するポンプ作用を行うと同時に、 パージ弁 2 6は貫通路 2 1 aを開放する。 そして、 圧送室 P内に滞留してい たべーパ又はべーパ混じりの燃料が、 プランジャ 2 1のポンプ作用により、 貫通路 2 1 aを通り抜けリターンパイプ 5に向けて排出される。  On the other hand, when the coil 24 is energized in the other direction (reverse direction) with a predetermined pulse width to generate an electromagnetic driving force, the purge driving shown in FIGS. 2 (b) and 4 (c) is performed. At the same time, the plunger 21 performs a pump action for compressing the pumping chamber P, and the purge valve 26 opens the through passage 21a. Then, the vapor or the fuel mixed with the vapor that has stayed in the pumping chamber P is discharged to the return pipe 5 through the through passage 21 a by the pump action of the plunger 21.
コイル 2 4への通電が断たれると、 パージ弁 2 6が貫通路 2 1 aを閉塞す ると同時に、 プランジャ 2 1がリターンスプリ ングの付勢力により休止位置 に押し戻される。 この際に、 チェックバルブ 2 5が開弁してフィードパイプ 3から圧送室 Pに向けて燃料が吸引され、 次の噴射に備えて待機することに なる。  When the power supply to the coil 24 is cut off, the purge valve 26 closes the through passage 21a, and at the same time, the plunger 21 is pushed back to the rest position by the biasing force of the return spring. At this time, the check valve 25 is opened, the fuel is sucked from the feed pipe 3 toward the pressure feed chamber P, and the fuel is on standby for the next injection.
この電子制御燃料噴射装置 1 0によれば、 燃料噴射駆動を行う際に必ずパ ージ駆動が行われるような従来のものと異なり、 第 5図に示すように、 パー ジ駆動 T pと燃料噴射駆動 T i n j とを適宜選択して駆動させることができ 、 エンジン 2の運転状態に応じて、 例えば、 パージ駆動 +燃料噴射駆動、 パ ージ駆動のみ、 燃料噴射駆動のみの駆動を行わせることができる。 According to the electronic control fuel injection device 10, unlike the conventional device in which the purge drive is always performed when performing the fuel injection drive, the purge drive Tp and the fuel drive are performed as shown in FIG. Injection drive T inj can be selected and driven as appropriate. Depending on the operation state of the engine 2, for example, purge drive + fuel injection drive, purge drive only, or fuel injection drive alone can be performed.
パージ駆動を行う場合は、 第 6図 (a ) に示すように、 コイル 2 4に逆方 向 (他方向) の通電を行うことで、 プランジャ 2 1を休止位置から駆動 (移 動) させると同時にパージ弁 2 6を開弁させてベーパ等を排出させる。 この とき、 プランジャ 2 1はポンプ作用をなすため、 リターンパイプ 5がポンプ 部 2 0の出口よりも下方に位置するような谷形状の配管であっても、 ベーパ を円滑に排出できる。 したがって、 リターンパイプ 5を配置する際の自由度 が増す。 尚、 プランジャ 2 1のス トローク S p及び駆動時間 T pは、 必要に 応じて適宜制御することができ、 例えば、 プランジャ 2 1を移動範囲の端部 まで移動させてもよい。  When performing the purge drive, as shown in FIG. 6 (a), the plunger 21 is driven (moved) from the rest position by energizing the coil 24 in the opposite direction (other direction). At the same time, the purge valve 26 is opened to discharge vapor and the like. At this time, since the plunger 21 performs a pump action, the vapor can be smoothly discharged even if the return pipe 5 is a valley-shaped pipe located below the outlet of the pump section 20. Therefore, flexibility in arranging the return pipe 5 is increased. The stroke Sp and the drive time Tp of the plunger 21 can be appropriately controlled as needed. For example, the plunger 21 may be moved to the end of the movement range.
一方、 燃料噴射駆動を行う場合は、 第 6図 (b ) に示すように、 コイル 2 4に正方向 (一方向) の通電を行うことで、 パ一ジ弁 2 6を閉弁状態に保持 させつつプランジャ 2 1を休止位置から駆動 (移動) させて、 燃料を圧送及 ぴ噴射させる。 このとき、 第 7図に示すように、 噴射行程の前に従来のよう なパージ行程が無く、 プランジャ 2 1が移動を開始すると同時に噴射行程が 開始される。 尚、 プランジャ 2 1のス トローク S i n j及び駆動時間 T i n j は、 必要に応じて適宜制御することができ、 ス トローク S i n j は、 パー ジ駆動の際のストローク S ρよりも短くすることができる。  On the other hand, when performing the fuel injection drive, as shown in FIG. 6 (b), by energizing the coil 24 in the forward direction (one direction), the purge valve 26 is maintained in the closed state. The plunger 21 is driven (moved) from the rest position while the fuel is being supplied, and the fuel is pumped and injected. At this time, as shown in FIG. 7, there is no conventional purge step before the injection step, and the injection step is started at the same time when the plunger 21 starts moving. Note that the stroke S inj and the driving time T inj of the plunger 21 can be appropriately controlled as needed, and the stroke S inj can be shorter than the stroke S ρ at the time of purging. .
したがって、 実際の噴射に至るまでの無効時間が解消され、 特に、 小流量 の運転領域では、 駆動時間に対する噴射量の割合も小さいため、 この無効時 間が無くなることで噴***度が向上する。  Therefore, the invalid time until the actual injection is eliminated is eliminated, and especially in the small flow rate operation region, the ratio of the injection amount to the driving time is small, and the injection accuracy is improved by eliminating the invalid time.
また、 パージ行程が無いため、 パージが燃料の噴射に影響しない。 すなわ ち、 パージ行程においては、 パージの有無によりプランジャ 2 1の動きに変 化を生じ得るが、 パージ行程そのものが無いためパージの影響を防止できる 。 その結果、 プランジャ 2 1の動作が安定し、 燃料噴射が安定して高精度に 行われる。  Also, since there is no purge process, the purge does not affect the fuel injection. That is, in the purging process, the movement of the plunger 21 may change depending on the presence or absence of the purging. However, since there is no purging process, the influence of the purging can be prevented. As a result, the operation of the plunger 21 is stabilized, and the fuel injection is performed stably and with high accuracy.
さらに、 パージ駆動と燃料噴射駆動とを別々に駆動できるため、 必要なと きにだけパージ駆動を行うことで、 消費電力等を低減でき、 噴射特性を改善 できる。 例えば、高速 (高回転) 高負荷の運転状態においては、 燃料流量が多 くてべーパが殆んど発生せずパージ駆動を行う必要がないため、 この運転領 域でパージ駆動を行わないことで、 噴射行程に必要なプランジャ 2 1の移動 ス トローク S i n j も短くでき、 消費電力を低減できると共に噴射特性を改 善できる。 Furthermore, since the purge drive and the fuel injection drive can be driven separately, By performing the purge drive only when power is applied, power consumption and the like can be reduced, and the injection characteristics can be improved. For example, in a high-speed (high rotation), high-load operation state, the purge flow is not performed in this operation region because the fuel flow is so large that almost no vapor is generated and it is not necessary to perform the purge drive. As a result, the movement stroke S inj of the plunger 21 necessary for the injection stroke can be shortened, so that the power consumption can be reduced and the injection characteristics can be improved.
また、 プランジャ 2 1の駆動に必要なストロークが従来に比べて短くなる ため、 ソレノイ ド機構としての最適な設計が可能になり、 プランジャ 2 1の 推進力 (電磁駆動力) を増加させることができる。  In addition, since the stroke required for driving the plunger 21 is shorter than before, the optimal design of the solenoid mechanism is possible, and the propulsion force (electromagnetic driving force) of the plunger 21 can be increased. .
制御手段としてのコントロールユニッ ト (C/U) 40は、 第 1図に示す ように、 種々の演算処理を行うと共に制御信号を発する C PU, MPU等の 制御部 4 1、 ポンプ部 20を駆動するポンプ駆動回路 4 2、 種々の状態量を 検出して制御部 4 1に出力する検出回路 4 3、 キースィッチ 6 0の状態 (電 源がオンか否か) 及びバッテリ 5 0の電圧等を検出して制御部 4 1に出力す る検出回路 44、 エンジンの運転情報を含む種々の情報が記憶された記憶部 45等を備えている。  As shown in FIG. 1, a control unit (C / U) 40 as a control means drives control units 41 and pump units 20 such as a CPU and an MPU that perform various arithmetic processes and generate control signals. Pump drive circuit 42, detection circuit 43 that detects various state quantities and outputs them to control unit 41, state of key switch 60 (whether the power is on or not), and voltage of battery 50, etc. A detection circuit 44 for detecting and outputting the detected information to the control unit 41, a storage unit 45 for storing various information including engine operation information, and the like are provided.
ここで、 検出回路 4 3は、 ポンプ駆動回路 4 2によりコィ'ル 24へ通電さ れる電流値あるいは駆動パルスの周波数、 スロッ トルバルブ 2 bの開度、 温 度センサ 2 cにより検出されるエンジン 2の温度等の状態量を検出する。 ポンプ駆動回路 4 2は、 第 8図に示すように、 電界効果型トランジスタ等 を含むスィツチ回路 4 1 0, 4 1 1, 4 1 2, 4 1 3、 スィ ッチ回路 4 1 0 を駆動する駆動回路 4 1 4、 スィツチ回路 4 1 1を駆動する駆動回路 4 1 5 、 スィツチ回路 4 1 2を駆動する駆動回路 4 1 6、 スィツチ回路 4 1 3を駆 動する駆動回路 4 1 7、 所定の容量 (例えば 1 0 0 F程度) をもつコンデ ンサ 4 1 8等により形成されている。  Here, the detection circuit 43 detects the current value or the frequency of the drive pulse supplied to the coil 24 by the pump drive circuit 42, the opening of the throttle valve 2b, and the engine 2 detected by the temperature sensor 2c. The state quantity, such as the temperature, is detected. As shown in FIG. 8, the pump drive circuit 42 drives the switch circuits 4 10, 4 11, 4 1 2, 4 1 3 and the switch circuit 4 10 including field-effect transistors and the like. Drive circuit 4 14, drive circuit 4 1 5 for driving switch circuit 4 1 1, drive circuit 4 16 for driving switch circuit 4 1 2, drive circuit 4 17 for driving switch circuit 4 13, predetermined It is formed of a capacitor 418 having a capacity of, for example, about 100 F.
このポンプ駆動回路 42においては、 第 9図に示すように、 パージ駆動及 び燃料噴射駆動に応じて、 それぞれのスィッチ回路 4 1 0-4 1 3が ON, OF Fされ、 又、 第 1 0図に示すように、 コイル 24への通電時に蓄えられ たエネルギを通電停止時にコンデンサ 4 1 8に移動させて蓄え、 次の駆動開 始時にコンデンサ 4 1 8に蓄えられたエネルギを有効に利用して、 コイル 2 4に通電する際の急激な電流 (電圧) の立ち上がりを図っている。 In the pump drive circuit 42, as shown in FIG. 9, the respective switch circuits 410-413 are turned on and off in accordance with the purge drive and the fuel injection drive. As shown in the figure, it is stored when the coil 24 is energized. The energy stored in the capacitor 418 is transferred to and stored in the capacitor 418 when energization is stopped, and the energy stored in the capacitor 418 is used effectively at the start of the next drive, causing a sudden current ( Voltage).
すなわち、 パージ駆動を開始するときは、 スィッチ回路 4 1 1, 4 1 2が ONになり、 コイル 24に逆方向 (他方向) の駆動電圧が加わる。 このとき 、 最初にコンデンサ 4 1 8に蓄えられた電圧 V 1 (例えば、 6 0V) が加わ り、 コンデンサ 4 1 8の放電が終了した時点で、 電源電圧 V0 (例えば、 1 2 V) が加わる。  That is, when the purge drive is started, the switch circuits 411 and 412 are turned on, and a drive voltage in the opposite direction (other direction) is applied to the coil 24. At this time, the voltage V 1 (e.g., 60 V) stored in the capacitor 418 is applied first, and the power supply voltage V0 (e.g., 12 V) is applied when the discharge of the capacitor 418 is completed. .
—方、 パージ駆動を停止するときは、 スィツチ回路 4 1 1, 4 1 2が OF Fになり、 駆動電流のエネルギは、 スィッチ回路 4 1 0, 4 1 3に内蔵され たダイオードを通り、 コンデンサ 4 1 8に電荷として充電される。 そして、 駆動電流が零になったときコンデンサ 4 1 8の電圧上昇も停止する。  On the other hand, when the purge drive is stopped, the switch circuits 411 and 412 become OFF, and the energy of the drive current passes through the diode built in the switch circuits 410 and 413 and the capacitor 4 18 is charged as electric charge. Then, when the drive current becomes zero, the voltage rise of the capacitor 418 also stops.
燃料噴射駆動を開始するときは、 スィッチ回路 4 1 0, 4 1 3が ONにな り、 コイル 24に正方向 (一方向) の駆動電圧が加わる。 このとき、 パージ 駆動時と同様に最初にコンデンサ 4 1 8に蓄えられた電圧 V 1 (例えば、 6 0 V) が加わり、 コンデンサ 4 1 8の放電が終了した時点で、 電源電圧 V 0 (例えば、 1 2 V) が加わる。  When the fuel injection drive is started, the switch circuits 410 and 413 are turned ON, and a positive (one-way) drive voltage is applied to the coil 24. At this time, the voltage V 1 (e.g., 60 V) initially stored in the capacitor 4 18 is applied as in the case of the purge drive, and when the discharge of the capacitor 4 18 is completed, the power supply voltage V 0 (e.g., , 12 V).
—方、 燃料噴射駆動を停止するときは、 スィツチ回路 4 1 0, 4 1 3が O F Fになり、 駆動電流のエネルギは、 スィッチ回路 4 1 1, 4 1 2に内蔵さ れたダイオードを通り、 コンデンサ 4 1 8に電荷として充電される。 そして 、 駆動電流が零になったときコンデンサ 4 1 8の電圧上昇も停止する。 すなわち、 パージ駆動と燃料噴射駆動を交互に行う場合、 上記の動作が繰 り返されて、 コイル 24への通電が行われる。 尚、 この動作は、 パージ駆動 を連続して行う場合、 燃料噴射駆動を連続して行う場合も同様である。 このように、 コイル 24への通電時にコンデンサ 4 1 8に蓄えられたエネ ルギを次の駆動時に有効に利用することにより、 プランジャ 2 1を駆動する 際の高速化が達成される。  On the other hand, when the fuel injection drive is stopped, the switch circuits 411 and 413 are turned off, and the energy of the drive current passes through the diodes built in the switch circuits 411 and 412. The capacitor 418 is charged as electric charge. Then, when the drive current becomes zero, the voltage rise of the capacitor 418 also stops. That is, when the purge drive and the fuel injection drive are performed alternately, the above operation is repeated, and the coil 24 is energized. This operation is the same when the purge drive is continuously performed and when the fuel injection drive is continuously performed. As described above, the energy stored in the capacitor 418 when the coil 24 is energized is effectively used at the next driving, so that the speed of driving the plunger 21 is increased.
次に、 上記燃料供給システムにおける電子制御燃料噴射装置 1 0の駆動に つき、 第 1図のシステム図及び第 1 1図のフローチャートを参照しつつ説明 する。 先ず、 キースィ ッチ 6 0がオン (電源がオン状態) にされると (ステ ップ S 1 )、制御部 4 1がポンプ駆動回路 4 2に制御信号は発し、ポンプ駆動 回路 4 2は、 コイル 2 4に対してパージ駆動 (T p ) のためのパルス通電を 行う (ステップ S 2 )。 Next, the driving of the electronically controlled fuel injection device 10 in the fuel supply system is described. A description will be given with reference to the system diagram of FIG. 1 and the flowchart of FIG. First, when the key switch 60 is turned on (the power is turned on) (step S1), the control unit 41 issues a control signal to the pump drive circuit 42, and the pump drive circuit 42 A pulse is supplied to the coil 24 for the purge drive (T p) (step S 2).
尚、 このパルス通電に際しては、 制御部 4 1力 S、 検出回路 4 3, 4 4によ り検出される状態量に基づき種々の演算処理を行い、 ポンプ駆動回路 4 2に 制御信号を発し、 これらの制御信号に基づいて、 ポンプ駆動回路 4 2がパー ジ駆動を行うための所定のパルス幅を設定し、 コイル 2 4に対してパルス通 電を行うようにしてもよい。  At the time of this pulse energization, the control unit 41 performs various arithmetic processing based on the force S and the state quantities detected by the detection circuits 43 and 44, and issues a control signal to the pump drive circuit 42. Based on these control signals, a predetermined pulse width for the pump drive circuit 42 to perform purge driving may be set, and pulse conduction may be performed to the coil 24.
このように、 エンジン 2が始動される前に、 パージ駆動が行われるため、 内部に滞留したベーパが予め排出される。 特に、 高負荷運転後にエンジン 2 を停止し、 そのまま放置された後においてェンジン 2を始動するような場合 に、 大量のベーパが滞留している可能性があるが、 発生したベーパは予め排 出されるため、 スムーズにエンジン 2を始動させることができる。  As described above, since the purge drive is performed before the engine 2 is started, the vapor retained inside is discharged in advance. In particular, when the engine 2 is stopped after high-load operation and the engine 2 is started after being left as it is, a large amount of vapor may be retained, but the generated vapor is discharged in advance. Therefore, the engine 2 can be started smoothly.
続いて、 キースィツチ 6 0がスタート位置に回されてエンジン 2が始動し たか否か判断される (ステップ S 3 )。 ここで、'未だ始動していない場合は、 ポンプ駆動回路 4 2は、 コイル 2 4に対してパージ駆動 (T p ) のためのパ ノレス通電を行う。 '  Subsequently, it is determined whether the key switch 60 has been turned to the start position and the engine 2 has started (step S3). Here, if the engine has not been started yet, the pump drive circuit 42 energizes the coil 24 with a panel for purging drive (T p). '
ところで、 このパージ駆動 (Τ ρ ) のためのパルス通電は、 好ましくは、 タイマー (不図示) 等を設けて時間を計測し、 キースィッチ 6 0がオン状態 にされてから所定時間の間だけ行われるようにする。 また、 カウンター (不 図示) を設けてパルスの回数をカウントし、 所定の回数だけ行われるように する。 これにより、 ぺーパが完全に排出された後の無駄な駆動が避けられて 、 消費電力が低減される。  By the way, the pulse energization for the purge drive (Τρ) is preferably performed by measuring the time by providing a timer (not shown) or the like, and performing the pulse energization only for a predetermined time after the key switch 60 is turned on. To be done. In addition, a counter (not shown) is provided to count the number of pulses, so that the pulse is counted a predetermined number of times. Thereby, useless driving after the paper is completely discharged is avoided, and power consumption is reduced.
一方、 ステップ S 3において、 エンジン 2が始動したと判断された場合は 、 検出回路 4 3, 4 4等により種々の状態量が検出されてエンジン 2の運転 状態が検出され (ステップ S 4 )、 この検出情報に基づいて、 エンジン 2がァ ィ ドル運転状態にあるか否かが判断される (ステップ S 5 )。 On the other hand, when it is determined in step S3 that the engine 2 has started, various state quantities are detected by the detection circuits 43, 44 and the like, and the operating state of the engine 2 is detected (step S4). Based on this detection information, engine 2 It is determined whether the vehicle is in the idle operation state (step S5).
ここで、 エンジン 2がアイ ドル運転状態ではないと判断された場合は、 記 憶部 4 5に格納された制御マップ等に基づき運転状態に応じた燃料を噴射す るように、 ポンプ駆動回路 4 2は、 コイル 2 4に対して燃料噴射駆動 (T i n j ) のためのパルス通電を行う。  Here, when it is determined that the engine 2 is not in the idle operation state, the pump drive circuit 4 is instructed to inject fuel according to the operation state based on the control map and the like stored in the storage unit 45. 2 performs a pulse energization to the coil 24 for the fuel injection drive (T inj).
一方、 ステップ S 5において、 エンジン 2がアイ ドル運転状態にあると判 断された場合は、 制御部 4 1は、 検出回路 4 3 , 4 4により検出される状態 量、 例えば、 直前のコイル電流、 電源 (バッテリ 5 0 ) の電圧、 直前におけ る燃料噴射駆動 (T i n j ) のパルス通電周波数等のうち、 少なく とも一つ の状態量に基づき種々の演算処理を行って、 ポンプ駆動回路 4 2に制御信号 を発する。 そして、 ポンプ駆動回路 4 2は、 これらの制御信号に基づきコィ ル 2 4に対してパージ駆動 ( T p ) を追加するべくパルス通電を行う。  On the other hand, when it is determined in step S5 that the engine 2 is in the idle operation state, the control unit 41 determines the state amount detected by the detection circuits 43 and 44, for example, the immediately preceding coil current. Of the power supply (battery 50), the pulse energization frequency of the fuel injection drive (T inj) immediately before, and the like, perform various arithmetic processing based on at least one state quantity to obtain a pump drive circuit 4. Issue a control signal to 2. Then, the pump drive circuit 42 performs pulse energization to add purge drive (T p) to the coil 24 based on these control signals.
すなわち、 ポンプ駆動回路 4 2は、 コイル 2 4に対して、 燃料を噴射させ る一つの燃料噴射駆動 (T i n j ) から次の燃料噴射駆動 (T i n j ) まで の合間に、 パージ駆動 (T p ) を複数回に亘つて行うパルス通電を行う。 ァ ィ ドル運転状態においては、 燃料噴射駆動 (T i n j ) のパルス幅が短く、 又、 その周期が比較的長いため、 上記のようなパージ駆動 (T p ) を容易に 挿入 (追加) することができる。 これにより、 燃料流量の少ないアイ ドル運 転状態においても、 発生したベーパを効率良く排出させることができ、 又、 コイル 2 4からの発熱を冷却することができ、 ベーパの発生もさらに抑制で きる。  That is, the pump drive circuit 42 supplies the coil 24 with a purge drive (T p) during a period from one fuel injection drive (T inj) for injecting fuel to the next fuel injection drive (T inj). ) Is performed a plurality of times. In the idle operation state, since the pulse width of the fuel injection drive (T inj) is short and its cycle is relatively long, the purge drive (T p) as described above should be easily inserted (added). Can be. As a result, even in the idle operation state where the fuel flow rate is small, the generated vapor can be efficiently discharged, the heat generated from the coil 24 can be cooled, and the generation of the vapor can be further suppressed. .
続いて、 キースィッチ 6 0が逆に回されてエンジン 2が停止されたか否か 判断される (ステップ S 7 )。 ここで、 エンジン 2が未だ運転状態にあり停止 していないと判断された場合は、 ステップ S 4に戻って再び同様にステップ S 4 , S 5 , S 6が繰り返される。  Subsequently, it is determined whether or not the key switch 60 is turned in the reverse direction to stop the engine 2 (step S7). Here, if it is determined that the engine 2 is still operating and not stopped, the process returns to step S4, and steps S4, S5, and S6 are repeated again.
—方、 ステップ S 7において、 エンジン 2が停止したと判断された場合は 、 続けてキースィツチ 6 0がオフとされたか否か判断される (ステップ S 8 )。 ここで、 キースィツチ 6 0は未だオン状態にある (オフとされていない) と判断された場合は、 ステップ S 2に戻って、 ポンプ駆動回路 4 2は、 コィ ル 2 4に対して前述同様に、 パージ駆動のためのパルス通電を行う。 すなわ ち、 ポンプ駆動回路 4 2は、 コイル 2 4に対して、 エンジン 2が停止されて から所定の時間に亘り、 あるいは、 所定の回数だけ、 パージ駆動 (T p ) の ためのパルス通電を行う。 On the other hand, if it is determined in step S7 that the engine 2 has stopped, it is determined whether the key switch 60 has been turned off (step S8). Here, key switch 60 is still on (not turned off) If it is determined, the process returns to step S2, and the pump drive circuit 42 applies a pulse to the coil 24 for the purge drive as described above. That is, the pump drive circuit 42 supplies the coil 24 with a pulse current for the purge drive (T p) for a predetermined time or a predetermined number of times after the engine 2 is stopped. Do.
特に、 高負荷運転直後にエンジン 2が停止された場合は、 大量のベーパが 発生し燃料通路の内部に滞留する。 したがって、 この状態のままエンジン 2 を再び始動 (再始動) させようとしても、 ベーパが燃料に混じり込んで噴射 されるため噴射量が不均一になり、 エンジン 2が始動し難い。 そこで、 上記 のように、 エンジン 2が再始動される前に、 パージ駆動 (T p ) を行わせて 内部に滞留したベーパを確実に排出させることで、 ベーパが取り除かれた均 一な燃料が噴射され、 スムーズにエンジン 2を再始動させることができる。 In particular, when the engine 2 is stopped immediately after high-load operation, a large amount of vapor is generated and stays inside the fuel passage. Therefore, even if an attempt is made to restart (restart) the engine 2 in this state, the fuel is mixed with the fuel and injected, so that the injection amount becomes uneven, and the engine 2 is hard to start. Therefore, as described above, before the engine 2 is restarted, the purge drive (T p) is performed to reliably discharge the vapor that has accumulated inside, so that the uniform fuel from which the vapor has been removed can be obtained. It is injected and the engine 2 can be restarted smoothly.
この実施形態においては、 非通電のときパージ弁 2 6を閉弁させる場合を 示したが、 貫通路 2 1 aを開放する向きにパージ弁 2 6を付勢するスプリン グを採用して、 非通電のとき逆に開弁させるようにしてもよい。 この場合、 非通電の状態で圧送室内に発生したベーパは自然に排出されるため、 常にべ ーパの滞留を防止できる。 また、 パージ駆動を行う場合、 駆動の初期から効 率良くべーパが排出される。 したがって、 パ一ジ特性を重視する装置におい て有効である。  In this embodiment, the case where the purge valve 26 is closed when the power is not supplied has been described. However, a spring that urges the purge valve 26 in a direction to open the through passage 21 a is adopted. The valve may be opened in reverse when the power is supplied. In this case, the vapor generated in the pumping chamber in a non-energized state is naturally discharged, so that the stagnation of the vapor can always be prevented. When purging is performed, the vapor is efficiently discharged from the beginning of the driving. Therefore, it is effective in an apparatus that emphasizes the purge characteristics.
第 1 2図ないし第 1 4図は、 本発明に係る電子制御燃料噴射装置の他の実 施形態を示すものである。 この実施形態においては、 電子制御燃料噴射装置 1 0 'のポンプ部 2 0 'の構造が異なる以外は、 前述の実施形態と同一であ り、 それ故に同一の構成については同一の符号を付してその説明を省略する すなわち、 ポンプ部 2 0 ,は、 第 1 2図に示すように、 円柱状のプランジ ャ 2 1 ,、 プランジャ 2 1 'を往復動自在に収容すると共に壁面に排出口 2 2 a 'をもつ筒体としてのスリープ 2 2 '、 ヨーク 2 3、 コイル 2 4、 チェ ックバルブ 2 5、 排出口 2 2 a 'を開閉するパージ弁 2 6 '、 チェックバル ブ 2 7等を備えている。 FIG. 12 to FIG. 14 show another embodiment of the electronically controlled fuel injection device according to the present invention. This embodiment is the same as the above-described embodiment except that the structure of the pump unit 20 ′ of the electronically controlled fuel injection device 10 ′ is different. Therefore, the same components are denoted by the same reference numerals. That is, as shown in FIG. 12, the pump section 20 accommodates a cylindrical plunger 21, 21 ′ in a reciprocating manner and a discharge port 2 on the wall. Sleep 2 2 ′ as cylinder with 2 a ′, yoke 23, coil 24, check valve 25, purge valve 2 6 ′ to open and close discharge port 2 2 a ′, check valve BU 27.
パージ弁 2 6 は、 第 1 2図ないし第 1 4図に示すように、 圧送室 P側に おいて排出口 2 2 a 'を開閉し得るように、 スリーブ 2 2 'に沿って往復動 自在に配置されている。 すなわち、 パージ弁 2 6 は、 第 1 4図に示すよう に、 N極及ぴ S極に着磁された永久磁石として形成され、 スリーブ 2 2 に 沿つて所定範囲を摺動自在に配置されている。  As shown in FIGS. 12 to 14, the purge valve 26 can reciprocate along the sleeve 22 'so that the discharge port 22a' can be opened and closed on the side of the pumping chamber P. Are located in That is, as shown in FIG. 14, the purge valve 26 is formed as a permanent magnet magnetized on the N pole and the S pole, and is slidably disposed in a predetermined range along the sleeve 22. I have.
そして、 コイル 2 4への一方向 (正方向) 通電により第 1 3図 (a ) に示 すように閉弁しかつ他方向 (逆方向) 通電により第 1 3図 (b ) に示すよう に開弁するようになっている。 尚、 第 1 3図 (a ) においては、 コイル 2 4 への一方向 (正方向) 通電を開始した直後の状態で、 軽量のパージ弁 2 6 , が開弁し、 重量のプランジャ 2 1 'が移動を開始した途中の状態を示してい る。 また、 ここでは、 コイル 2 4への非通電の状態で、 第 1 3図 (b ) に示 すように、 パージ弁 2 6 'は排出口 2 2 a 'を開放した状態に保持されてい る。  When the coil 24 is energized in one direction (forward direction), the valve is closed as shown in FIG. 13 (a) and when energized in the other direction (reverse direction), the valve is closed as shown in FIG. 13 (b). It is designed to open. In FIG. 13 (a), immediately after the one-way (positive direction) energization of the coil 24 is started, the lightweight purge valve 26, opens, and the heavy plunger 2 1 ′ Indicates the state in which movement has begun. Also, in this case, when the coil 24 is not energized, the purge valve 26 ′ is held in a state where the discharge port 22 a ′ is opened, as shown in FIG. 13B. .
コイル 2 4への通電 Z非通電によるプランジャ 2 1 '及びパージ弁 2 6 ' の動作について、 第 1 4図に基づき説明する。  The operation of the plunger 21 'and the purge valve 26' when the coil 24 is energized and not energized will be described with reference to FIG.
先ず、 非通電の状態では、 第 1 4図 ( a ) に示すように、 プランジャ 2 1 'は休止位置に位置し、 又、 パージ弁 2 6 'は、 磁気的吸引力によりプラン' ジャ 2 1 '側に引き寄せられて、 排出口 2 2 a 'を開放している。 このよう に、 非通電の状態でパージ弁 2 6 ,は開弁しているため、 圧送室 P内に発生 したべーパは自然に排出され、 常にべーパの滞留が防止される。  First, in the non-energized state, as shown in FIG. 14 (a), the plunger 21 ′ is located at the rest position, and the purge valve 26 ′ is moved by the magnetic attraction force. It is drawn to the 'side, opening the outlet 2 2 a'. As described above, since the purge valve 26 is opened in the non-energized state, the vapor generated in the pumping chamber P is naturally discharged, and the stagnation of the vapor is always prevented.
この休止状態において、 コイル 2 4がー方向 (正方向) に通電されると、 第 1 4図 (b ) に示すように、 ヨーク 2 3内に磁力線 (一点鎖線) の流れが 生じ、 発生する電磁力により、 プランジャ 2 1 'は下向き (圧送室 Pを圧縮 する向き) に移動する。 一方、 プランジャ 2 1 'の端部には N極が発生する ため、 この N極とパージ弁 2 6 'の N極とが反発し合って、 パージ弁 2 6一 は下方に移動し排出口 2 2 a を閉塞する。 すなわち、 圧送室 P内の燃料が 加圧 (圧送) されて燃料噴射駆動が行われる。 尚、 非通電にすることで、 第 1 4図 (a ) に示す休止位置に復帰する。 When the coil 24 is energized in the negative direction (positive direction) in the resting state, as shown in FIG. 14 (b), the flow of the magnetic force lines (dashed lines) occurs in the yoke 23, which is generated. The plunger 21 ′ moves downward (in a direction that compresses the pumping chamber P) due to the electromagnetic force. On the other hand, since an N-pole is generated at the end of the plunger 21 ', the N-pole repels the N-pole of the purge valve 26', and the purge valve 26-1 moves downward and the discharge port 2 2 Close a. That is, the fuel in the pumping chamber P is pressurized (pressurized) and the fuel injection drive is performed. By turning off the power, 14 Return to the rest position shown in Fig. (A).
一方、 休止状態において、 コイル 2 4が他方向 (逆方向) に通電されると 、 第 1 4図 (c ) に示すように、 ヨーク 2 3内に磁力線 (一点鎖線) の流れ が生じ、 発生する電磁力により、 プランジャ 2 1 は下向き (圧送室 Pを圧 縮する向き) に移動する。 一方、 プランジャ 2 1 'の端部には S極が発生す るため、 この S極とパージ弁 2 6 'の N極とが吸引し合って、 パージ弁 2 6 'はそのままの位置に保持されて排出口 2 2 a 'を開放した状態を維持する すなわち、 プランジャ 2 1 'のポンプ作用により圧送室 Pに滞留したべ一 パ又はべーパ混じりの燃料が排出口 2 2 a を通って排出されるパージ駆動 が行われる。 尚、 非通電にすることで、 第 1 4図 (a ) に示す休止位置に復 帰する。  On the other hand, when the coil 24 is energized in the other direction (reverse direction) in the rest state, the magnetic force lines (dashed lines) flow in the yoke 23 as shown in FIG. Due to the generated electromagnetic force, the plunger 21 moves downward (in a direction to compress the pumping chamber P). On the other hand, since an S pole is generated at the end of the plunger 21 ', the S pole and the N pole of the purge valve 26' attract each other, and the purge valve 26 'is held at the same position. That is, the exhaust port 22 a ′ is kept open, that is, the vapor or the vapor-mixed fuel remaining in the pumping chamber P due to the pump action of the plunger 21 ′ is discharged through the exhaust port 22 a. Purge drive is performed. By turning off the power, it returns to the rest position shown in Fig. 14 (a).
このように、 パージ駆動を行う場合は、 駆動開始前の非通電の状態で予め パージ弁 2 6 'は開弁しているため、 駆動の初期から効率良くべーパが排出 され、 パージ特性を重視する装置において有効である。  As described above, when performing the purge drive, the purge valve 26 ′ is opened in a de-energized state before the drive is started, so that the vapor is efficiently discharged from an early stage of the drive, and the purge characteristics are improved. This is effective for a device that is important.
尚、 パージ駆動及び燃料噴射駆動等の詳細な内容については、 前述の実施 形態と同様であるため、 説明を省略する。  The details of the purge drive, the fuel injection drive, and the like are the same as those in the above-described embodiment, and thus the description thereof is omitted.
第 1 5図及び第 1 6図は、 本発明に係る電子制御燃料噴射装置のさらに他 の実施形態を示すものである。 この実施形態においては、 電子制御燃料噴射 装置 1 0 —のポンプ部 2 0 ' '及び低圧フィルタ 4 ' 'の構造、 フィード パイプ 3, 3 ' '及びリターンパイプ 5 ' 'の配管が異なる以外は、 前述の 第 1図ないし第 4図に示す実施形態と同一であり、 それ故に同一の構成につ いては同一の符号を付してその説明を省略する。  FIG. 15 and FIG. 16 show still another embodiment of the electronically controlled fuel injection device according to the present invention. In this embodiment, except for the structures of the pump section 20 ′ ″ and the low-pressure filter 4 ″ of the electronically controlled fuel injection device 10 — and the pipes of the feed pipes 3, 3 ″ and the return pipe 5 ″, This is the same as the embodiment shown in FIGS. 1 to 4 described above. Therefore, the same components are denoted by the same reference numerals and description thereof will be omitted.
すなわち、 低圧フィルタ 4 ' 'は、 燃料タンク 1からフィードパイプ 3を 経て導かれた燃料を濾過し、 濾過した燃料をフィードパイプ 3 ' 'に向けて 送り出し、 又、 ポンプ部 2 0 ' '内で発生したベーパをフィ一ドパイプ 3 ' 'からリターンパイプ 5 ' 'へ導く役割をなす。  That is, the low-pressure filter 4 ′ ′ filters the fuel guided from the fuel tank 1 via the feed pipe 3, sends out the filtered fuel toward the feed pipe 3 ″, and also outputs the fuel inside the pump section 20 ′ ″. It plays a role in guiding the generated vapor from the feed pipe 3 ″ to the return pipe 5 ″.
ポンプ部 2 0 は、 第 1 5図に示すように、 プランジャ 2 1、 プランジ ャ 2 1を往復動自在に収容すると共に燃料の流入と燃料及びべーパの排出を 許容する開口 2 2 a , をもつ筒体としてのスリーブ 2 2 ' ' s ヨーク 2 3 、 コイル 2 4、 パージ弁 2 6、 チェックバルブ 2 7等を備えている。 尚、 コ ィル 2 4への非通電のとき、 プランジャ 2 1はリターンスプリング (不図示 ) により付勢されて休止位置 (第 1 5図で示す左側寄りの位置) に位置付け られている'。 As shown in Fig. 15, the pump section 20 has a plunger 21 and a plunge 2 2 ′ ′ s yoke 2 3, coil 2 4, as a cylindrical body having an opening 2 2 a, which accommodates the fuel 21 in a reciprocating manner and allows the inflow of fuel and the discharge of fuel and vapor. A purge valve 26, a check valve 27, etc. are provided. When the coil 24 is not energized, the plunger 21 is biased by the return spring (not shown) and is positioned at the rest position (the position closer to the left side as shown in FIG. 15).
パージ弁 2 6は、 第 1 6図に示すように、 圧送室 P側において貫通路 2 1 aを開閉し得るように、 プランジャ 2 1に往復動自在に配置されており、 コ ィル 2 4への一方向 (正方向) 通電により第 1 6図 (a ) に示すように閉弁 し、 一方、 他方向 (逆方向) 通電により第 1 6図 (b ) に示すように開弁す るようになっている。  As shown in FIG. 16, the purge valve 26 is reciprocally arranged on the plunger 21 so as to open and close the through passage 21 a on the side of the pressure feed chamber P. The valve closes as shown in Fig. 16 (a) by energizing in one direction (forward direction), and opens as shown in Fig. 16 (b) by energizing in the other direction (reverse direction). It has become.
尚、 第 1 6図 ( b ) においては、 コイル 2 4への他方向 (逆方向) 通電を 開始した直後の状態で、 軽量のパージ弁 2 6が開弁し、 重量のプランジャ 2 1が移動を開始した途中の状態を示している。 また、 パージ弁 2 6は、 前述 の第 3図に示すように、 コイル 2 4への非通電の状態では、 スプリング 2 6 cの付勢力により常時閉弁状態となるように形成される。  In FIG. 16 (b), the light-weight purge valve 26 opens and the heavy plunger 21 moves immediately after the other direction (reverse direction) of energization to the coil 24 starts. In the middle of the start. Further, as shown in FIG. 3 described above, the purge valve 26 is formed so as to be always closed by the urging force of the spring 26c when the coil 24 is not energized.
コイル 2 4への通電 Z非通電によるプランジャ 2 1及びパージ弁 2 6の動 作について、 前述の第 4図に基づき説明する。  The operation of the plunger 21 and the purge valve 26 when the coil 24 is energized and not energized will be described with reference to FIG. 4 described above.
先ず、 非通電の状態では、 第 4図 ( a ) に示すように、 プランジャ 2 1は 休止位置に位置し、 又、 パージ弁 2 6は、 スプリング 2 6 cの付勢力及び磁 気的吸引力によりプランジャ 2 1に接触して、 貫通路 2 1 a (排出口) を閉 塞している。  First, in the non-energized state, the plunger 21 is located at the rest position as shown in FIG. 4 (a), and the purge valve 26 is operated by the biasing force of the spring 26c and the magnetic attraction force. This makes contact with the plunger 21 and closes the through passage 21a (discharge port).
この休止状態において、 コイル 2 4がー方向 (正方向) に通電されると、 第 4図 (b ) に示すように、 ヨーク 2 3内に磁力線 (一点鎖線) の流れが生 じ、 発生する電磁力により、 プランジャ 2 1は下向き (圧送室 Pを圧縮する 向き) に移動する。 一方、 プランジャ 2 1の端部には S極が発生するため、 この S極と弁部 2 6 aの N極とが吸引し合って、 パージ弁 2 6は強固に貫通 路 2 1 aを閉塞した状態に維持される。 すなわち、 圧送室 P内の燃料が加圧 (圧送) されて燃料噴射駆動が行われる。 When the coil 24 is energized in the negative direction (positive direction) in this resting state, a flow of magnetic force lines (dashed line) is generated in the yoke 23 as shown in FIG. Due to the electromagnetic force, the plunger 21 moves downward (to compress the pumping chamber P). On the other hand, since an S-pole is generated at the end of the plunger 21, the S-pole and the N-pole of the valve portion 26 a attract each other, and the purge valve 26 tightly closes the through passage 21 a. Is maintained. That is, the fuel in the pumping chamber P is pressurized (Pressure feeding) and the fuel injection drive is performed.
続いて、 コイル 2 4への通電が断たれると、 ヨーク 2 4に発生していた磁 極 (N極) が消滅し、 プランジャ 2 1はリターンスプリングの付勢力により 第 4図 (a ) に示す休止位置に押し戻され始める。 この際、 プランジャ 2 1 の上流側の空間と圧送室 Pとの圧力差により、 パージ弁 2 6はスプリング 2 6 cの付勢力に抗して貫通路 2 1 aを解放し、 フィードパイプ 3 ' 'により 導かれた上流側の燃料が貫通路 2 1 aを通って圧送室 P内に流れ込む。  Subsequently, when the power supply to the coil 24 is cut off, the magnetic pole (N pole) generated in the yoke 24 disappears, and the plunger 21 is biased by the return spring as shown in FIG. It begins to be pushed back to the indicated rest position. At this time, due to the pressure difference between the space on the upstream side of the plunger 21 and the pumping chamber P, the purge valve 26 releases the through passage 21a against the urging force of the spring 26c, and the feed pipe 3 ' ', The fuel on the upstream side flows into the pumping chamber P through the through passage 21a.
そして、 プランジャ 2 1が停止すると同時又はその直前ないしは直後に、 バージ弁 2 6はスプリング 2 6 cの付勢力により貫通路 2 1 aを閉塞し、 次 の動作に備えて待機する。 上記動作の繰り返しにより、 燃料の吸引及び圧送 による連続的な燃料噴射駆動が行われる。  Simultaneously with or immediately before or after the stop of the plunger 21, the barge valve 26 closes the through passage 21a by the urging force of the spring 26c, and waits for the next operation. By repeating the above operation, continuous fuel injection driving by suction and pressure feeding of fuel is performed.
このように、 燃料噴射駆動を行う場合は、 駆動開始前の非通電の状態で予 めパージ弁 2 6は閉弁しているため、 駆動の初期から加圧がなされて昇圧に 要する時間が短縮される。  As described above, when performing the fuel injection drive, the purge valve 26 is closed beforehand in a de-energized state before the start of the drive. Is done.
—方、 休止状態において、 コイル 2 4が他方向 (逆方向) に通電されると 、 第 4図 (c ) に示すように、 ヨーク 2 3内に磁力線 (一点鎖線) の流れが 生じ、 発生する電磁力により、 プランジャ 2 1は下向き (圧送室 Pを圧縮す る向き) に移動する。 一方、 プランジャ 2 1の端部には N極が発生するため 、 この N極と弁部 2 6 aの N極とが反発し合って、 パージ弁 2 6は下向きに 移動して貫通路 2 1 aを開放した状態となる。 すなわち、 プランジャ 2 1の ポンプ作用により圧送室 Pに滞留したベーパ又はべ一パ混じりの燃料が貫通 路 2 1 aを通って排出されるパージ駆動が行われる。  On the other hand, when the coil 24 is energized in the other direction (reverse direction) in the rest state, a magnetic force line (dashed line) flows in the yoke 23 as shown in FIG. Due to the generated electromagnetic force, the plunger 21 moves downward (to compress the pressure-feeding chamber P). On the other hand, since an N-pole is generated at the end of the plunger 21, the N-pole and the N-pole of the valve portion 26 a repel each other, and the purge valve 26 moves downward to move through the through passage 21. a is opened. That is, the purge operation is performed in which the vapor or the vapor mixed with the vapor accumulated in the pumping chamber P by the pump action of the plunger 21 is discharged through the through passage 21a.
続いて、 コイル 2 4への通電が断たれると、 ヨーク 2 4に発生していた磁 極 ( N極) が消滅し、 ブランジャ 2 1はリターンスプリングの付勢力により 第 4図 (a ) に示す休止位置に押し戻され始める。 この際、 プランジャ 2 1 の上流側の空間と圧送室 Pとの圧力差により、 パージ弁 2 6はスプリング 2 6 cの付勢力に抗して貫通路 2 1 aを解放し、 フィードパイプ 3 ' 'により 導かれた上流側の燃料が貫通路 2 1 aを通って圧送室 P内に流れ込む。 そして、 プランジャ 2 1が停止すると同時又はその直前ないしは直後に、 バージ弁 2 6はスプリング 2 6 cの付勢力により貫通路 2 1 aを閉塞し、 次 の動作に備えて待機する。 上記動作の繰り返しにより、 燃料の吸引及びボン プ作用による連続的なパ一ジ駆動が行われる。 Subsequently, when the energization of the coil 24 is cut off, the magnetic pole (N pole) generated in the yoke 24 disappears, and the plunger 21 is moved to the position shown in FIG. It begins to be pushed back to the indicated rest position. At this time, due to the pressure difference between the space on the upstream side of the plunger 21 and the pumping chamber P, the purge valve 26 releases the through passage 21a against the urging force of the spring 26c, and the feed pipe 3 '', The fuel on the upstream side flows into the pumping chamber P through the through passage 21a. Simultaneously with or immediately before or after the stop of the plunger 21, the barge valve 26 closes the through passage 21a by the urging force of the spring 26c, and waits for the next operation. By repetition of the above operation, continuous purge drive by the suction and pump action of fuel is performed.
尚、 パージ駆動及び燃料噴射駆動等の詳細な内容については、 前述の実施 形態と同様であるため、 説明を省略する。  The details of the purge drive, the fuel injection drive, and the like are the same as those in the above-described embodiment, and thus the description thereof is omitted.
この実施形態においては、 前述の実施形態で示すようなチェックバルブ 2 5が不要になり、 構造が簡略化される。  In this embodiment, the check valve 25 as shown in the above embodiment is not required, and the structure is simplified.
上記各々の実施形態においては、 電子制御燃料噴射装置 1 0, 1 0 ', 1 0 ' 'として、 ポンプ 2 0 , 2 0 ' , 2 0一 ' とノズル部 3 0とがー体とな つたものを示したが、 両者が別々に配置されて燃料配管等により接続された システムにおいても同様に、 本発明を適用することができる。  In each of the above embodiments, the pumps 20, 20 ′, 20 −1 ′ and the nozzle 30 are formed as electronically controlled fuel injection devices 10, 10 ′, 10 ′ ″. However, the present invention can be similarly applied to a system in which both are separately arranged and connected by a fuel pipe or the like.
また、 エンジン 2の所定の状態として、 アイ ドル運転状態、 キースィッチ 6 0がオン状態とされエンジン 2が停止した状態を示したが、 アイ ドル運転 以外の低負荷運転状態等においても、 パージ駆動の追加が可能である限り、 同様のパルス通電を行うことでべーパの排出効率を高め、 又、 冷却作用を確 保してベーパの発生を抑制できる。  In addition, although the predetermined state of the engine 2 indicates the idle operation state and the state where the key switch 60 is turned on and the engine 2 is stopped, the purge drive is also performed in a low load operation state other than the idle operation. As long as it is possible, the same pulsed current can be applied to increase the vapor discharge efficiency, and also ensure the cooling action to suppress the generation of vapor.
さらに、 上記実施形態においては、 パージ駆動のためのパルス通電を予め 設定された時間あるいは回数だけ行う場合を示したが、 このように一定の時 間あるいは回数とするのではなく、 燃料温度、 あるいは、 燃料温度と関係す る外気温度、エンジン温度、オイル温度、コイル温度等の温度情報に基づき、 パージ駆動のためのパルス通電を行う時間あるいは回数を適宜決定すること も可能である。 これにより、 無駄な駆動を避けて消費電力を低減でき、 ェン ジンの運転状態に応じたより高精度な通電制御を行える。 産業上の利用可能性  Further, in the above-described embodiment, the case where the pulse energization for the purge drive is performed for a preset time or number of times has been described. However, instead of the constant time or number of times, the fuel temperature or It is also possible to appropriately determine the time or the number of times of pulse energization for the purge drive based on temperature information such as the outside air temperature, the engine temperature, the oil temperature, and the coil temperature related to the fuel temperature. As a result, useless driving can be avoided and power consumption can be reduced, and more accurate energization control can be performed according to the operating state of the engine. Industrial applicability
以上述べたように、 本発明の電子制御燃料噴射装置及び燃料噴射制御方法 :よれば、 往復動により燃料を吸引及び圧送するプランジャ、 圧送室内のベ ーパを排出するべく排出口を開閉するパージ弁、 ブランジャに電磁駆動力を 及ぼす励磁用のコイル等を備えた構成において、 パージ弁を、 コイルに対す る一方向への通電により閉弁しかつ他方向への通電により開弁するように形 成したことにより、 コイルへの通電方向を適宜切替えることにより、 パージ 駆動又は燃料噴射駆動を行わせることができるため、 従来のような燃料噴射 時の無効時間を省くことができ、 必要なときにのみパージ駆動を行って効率 良くべーパを排出させることができる。 また、 パージ弁を駆動する電磁力を 得るために、 プランジャを駆動するためのコイルを兼用しているため、 構造 が簡略化され、 小型化され、 消費電力も低減される。 As described above, the electronically controlled fuel injection device and the fuel injection control method according to the present invention are: a plunger that suctions and pumps fuel by reciprocating motion; In a configuration that includes a purge valve that opens and closes the discharge port to discharge the paper, an exciting coil that applies an electromagnetic driving force to the plunger, etc., the purge valve is closed by energizing the coil in one direction and By forming the valve to open by energizing in the other direction, it is possible to perform purge driving or fuel injection driving by appropriately switching the energizing direction to the coil. The dead time can be omitted, and the purge drive can be performed only when necessary to efficiently discharge the vapor. In addition, since a coil for driving the plunger is also used to obtain an electromagnetic force for driving the purge valve, the structure is simplified, the size is reduced, and the power consumption is reduced.

Claims

請求の範囲 The scope of the claims
1. 往復動により燃料を吸引及び圧送するプランジャ、 前記プランジャによ り圧送される圧送室内のベーパを燃料タンクへ排出するべく排出口を 開閉するパージ弁、 前記プランジャに対して電磁駆動力を及ぼすための 励磁用のコイル、 を備えた電子制御燃料噴射装置であって、 前記パージ 弁は、 前記コイルに対する一方向への通電により閉弁しかつ他方向への 通電により開弁するように、 形成されていることを特徴とする電子制御 燃料噴射装置。 1. A plunger that sucks and pumps fuel by reciprocating motion, a purge valve that opens and closes a discharge port to discharge vapor in a pressure feed chamber fed by the plunger to a fuel tank, and exerts an electromagnetic driving force on the plunger. An electronically controlled fuel injection device, comprising: an exciting coil, wherein the purge valve is configured to close when the coil is energized in one direction and open when energized in the other direction. An electronically controlled fuel injection device characterized in that:
2. 前記プランジャは、 往復動方向に貫通して形成され圧送室に連通すると 共に前記排出口を画定する貫通路を有し、 前記パージ弁は、 圧送室側に おいて前記貫通路を開閉し得るように往復動自在に配置され、 かつ、 前 記コイルへの通電により前記プランジャに発生する磁極と吸引又は反 発を生じるように着磁されていることを特徴とする請求項 1記載の電 子制御燃料噴射装置。 2. The plunger has a penetrating passage formed in the reciprocating direction and communicating with the pumping chamber and defining the discharge port, and the purge valve opens and closes the penetrating passage on the pumping chamber side. 2. The electrode according to claim 1, wherein the coil is arranged so as to be reciprocally movable so as to obtain the magnetic pole generated in the plunger by energization of the coil, and is attracted or repelled. Child control fuel injector.
3. 前記プランジャを往復動自在に収容し、 かつ、 壁面において圧送室に連 通する前記排出口を画定する筒体を有し、 前記パージ弁は、 圧送室側に おいて前記排出口を開閉し得るように往復動自在に配置され、 かつ、 前 記コイルへの通電により前記プランジャに発生する磁極と吸引又は反 発を生じるように着磁されていることを特徴とする請求項 1記載の電 子制御燃料噴射装置。  3. A cylinder that accommodates the plunger in a reciprocating manner and that defines a discharge port communicating with the pressure feed chamber on a wall surface, wherein the purge valve opens and closes the discharge port on the pressure feed chamber side. 2. The magnet according to claim 1, wherein the magnet is arranged so as to be able to reciprocate so as to be able to move, and is magnetized so as to generate attraction or repulsion with a magnetic pole generated in the plunger by energizing the coil. Electronically controlled fuel injector.
4. 前記パージ弁は、 前記コイルに対して非通電のとき、 前記排出口を開放 するように形成されていることを特徴とする請求項 1ないし 3いずれ かに記載の電子制御燃料噴射装置。  4. The electronically controlled fuel injection device according to claim 1, wherein the purge valve is configured to open the discharge port when the coil is not energized.
5. 前記パージ弁は、 前記コイルに対して非通電のとき、 前記排出口を閉鎖 するように形成されていることを特徴とする請求項 1ないし 3いずれ かに記載の電子制御燃料噴射装置。 5. The electronically controlled fuel injection device according to claim 1, wherein the purge valve is configured to close the discharge port when the coil is not energized.
6. エンジンの状態に応じた燃料を噴射させるベく前記コイルへの通電を制 御する制御手段を有し、 前記制御手段は、 エンジンが所定の状態にある とき、 前記パージ弁を開弁させるパージ駆動、 及び/又は、 閉弁させて 燃料を噴射させる燃料噴射駆動を行わせるべく、 前記コイルに対して通 電制御を行うことを特徴どする請求項 1ないし 5いずれかに記載の電 子制御燃料噴射装置。 6. Control the energization of the coil to inject fuel according to the state of the engine. A control means for controlling the control means, wherein when the engine is in a predetermined state, the control means performs a purge drive for opening the purge valve and / or a fuel injection drive for injecting fuel by closing the valve. The electronically controlled fuel injection device according to any one of claims 1 to 5, wherein conduction control is performed on the coil to achieve the above.
7. 前記制御手段は、 エンジンがアイ ドル運転状態にあるとき、 前記パージ 駆動を行わせるべく前記コイルに対して通電制御を行うことを特徴と する請求項 6記載の電子制御燃料噴射装置。  7. The electronically controlled fuel injection device according to claim 6, wherein the control unit controls the energization of the coil to perform the purge drive when the engine is in an idle operation state.
8. 前記制御手段は、 エンジンを始動させるための電源が始動前のオン状態 にされたとき、 前記パージ駆動を行わせるべく前記コイルに対して通電 制御を行うことを特徴とする請求項 6又は 7に記載の電子制御燃料噴 射装置。  8. The control means, when a power supply for starting an engine is turned on before starting the engine, performs an energization control on the coil to perform the purge drive. 8. The electronically controlled fuel injection device according to 7.
9. 前記制御手段は、 前記電源がオン状態にされてから所定の時間に亘り、 前記パージ駆動を行わせるべく前記コイルに対して通電制御を行うこ とを特徴とする請求項 6ないし 8いずれかに記載の電子制御燃料噴射  9. The control device according to claim 6, wherein the control unit controls the energization of the coil to perform the purge drive for a predetermined time after the power is turned on. Electronically controlled fuel injection described in Crab
10.前記制御手段は、 前記電源がオン状態にされてから所定の回数だけ、 前 記パージ駆動を行わせるべく前記コイルに対してパルス通電制御を行 うことを特徴とする請求項 6ないし 9いずれかに記載の電子制御燃料 噴射装置。 10. The control means performs pulse energization control on the coil to perform the purge drive a predetermined number of times after the power is turned on. The electronically controlled fuel injection device according to any one of the above.
11.前記制御手段は、 前記コイルの電流、 電源の電圧、 燃料を噴射させるパ ルス通電周波数の少なくとも一つの状態量に基づき、 前記パージ駆動を 行わせるべく前記コイルに対して通電制御を行うことを特徴とする請 求項 6ないし 1 0いずれかに記載の電子制御燃料噴射装置。  11.The control means performs energization control on the coil to perform the purge drive based on at least one state quantity of a current of the coil, a voltage of a power supply, and a pulse energization frequency for injecting fuel. The electronically controlled fuel injection device according to any one of claims 6 to 10, characterized in that:
12.前記制御手段は、 温度情報に基づき、 前記パージ駆動を行わせるべく前 記コイルに対して通電するパルス幅を設定することを特徴とする請求 項 6ないし 1 1いずれかに記載の電子制御燃料噴射装置。  12. The electronic control according to claim 6, wherein the control unit sets a pulse width for energizing the coil so as to perform the purge drive based on temperature information. Fuel injection device.
13.前記制御手段は、 前記パージ駆動を行うか否かを、 温度情報に基づき決 定することを特徴とする請求項 6ないし 1 2いずれかに記載の電子制 御燃料噴射装置。 13.The control means determines whether or not to perform the purge drive based on the temperature information. The electronically controlled fuel injection device according to any one of claims 6 to 12, characterized in that:
14.往復動により燃料を吸引及び圧送するプランジャ、 前記プランジャによ り圧送される圧送室内のベーパを燃料タンクへ排出するべく排出口を 開閉するパージ弁、 前記ブランジャに対して電磁駆動力を及ぼすための 励磁用のコイルを備え、 燃料の噴射を制御する燃料噴射制御方法であつ て、 前記コイルへの通電方向を切り替えることにより、 前記パージ弁を 開弁させてベーパを排出するパージ駆動と前記パージ弁を閉弁させて 燃料を噴射させる燃料噴射駆動とを、 選択的に行うことを特徴とする燃 料噴射制御方法。  14. A plunger that sucks and pumps fuel by reciprocating motion, a purge valve that opens and closes a discharge port to discharge the vapor in the pumping chamber that is pumped by the plunger to a fuel tank, and applies an electromagnetic driving force to the plunger. A fuel injection control method for controlling fuel injection, comprising: an excitation coil for opening the purge valve to discharge vapor by switching an energizing direction to the coil. A fuel injection drive method for selectively injecting fuel by closing a purge valve to inject fuel.
PCT/JP2004/005294 2003-04-15 2004-04-14 Device and method for electronically controlling fuel injection WO2004092573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-109723 2003-04-15
JP2003109723A JP4144704B2 (en) 2003-04-15 2003-04-15 Electronically controlled fuel injection apparatus and fuel injection control method

Publications (1)

Publication Number Publication Date
WO2004092573A1 true WO2004092573A1 (en) 2004-10-28

Family

ID=33295928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005294 WO2004092573A1 (en) 2003-04-15 2004-04-14 Device and method for electronically controlling fuel injection

Country Status (2)

Country Link
JP (1) JP4144704B2 (en)
WO (1) WO2004092573A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746566A1 (en) * 2012-12-18 2014-06-25 Delphi International Operations Luxembourg S.à r.l. Pump Unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100439700C (en) 2004-12-08 2008-12-03 浙江飞亚电子有限公司 Integrated type oil supplying unit
JP4583335B2 (en) * 2006-05-12 2010-11-17 本田技研工業株式会社 Fuel supply device for internal combustion engine
JP2015229931A (en) * 2014-06-03 2015-12-21 株式会社ミクニ Engine start control unit
EP3153697A1 (en) * 2015-10-09 2017-04-12 Continental Automotive GmbH Valve assembly arrangement for an injection valve and injection valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303389A (en) * 1988-05-31 1989-12-07 Japan Electron Control Syst Co Ltd Solenoid valve
JPH11257177A (en) * 1998-03-17 1999-09-21 Unisia Jecs Corp Fuel injection device
JP2001221137A (en) * 1999-11-29 2001-08-17 Mikuni Corp Electronically controlled fuel injection system
JP2002155828A (en) * 2000-11-17 2002-05-31 Mikuni Corp Electronically controlled fuel injector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01303389A (en) * 1988-05-31 1989-12-07 Japan Electron Control Syst Co Ltd Solenoid valve
JPH11257177A (en) * 1998-03-17 1999-09-21 Unisia Jecs Corp Fuel injection device
JP2001221137A (en) * 1999-11-29 2001-08-17 Mikuni Corp Electronically controlled fuel injection system
JP2002155828A (en) * 2000-11-17 2002-05-31 Mikuni Corp Electronically controlled fuel injector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746566A1 (en) * 2012-12-18 2014-06-25 Delphi International Operations Luxembourg S.à r.l. Pump Unit
WO2014095175A1 (en) * 2012-12-18 2014-06-26 Delphi International Operations Luxembourg S.À.R.L. Pump unit
CN104854340A (en) * 2012-12-18 2015-08-19 德尔福国际运营卢森堡有限公司 Pump unit

Also Published As

Publication number Publication date
JP4144704B2 (en) 2008-09-03
JP2004316503A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
US7100578B2 (en) Method for driving fuel injection pump
US7001158B2 (en) Digital fluid pump
JP4106663B2 (en) Fuel supply device for internal combustion engine
KR101877299B1 (en) Control apparatus and method of flow control valve for high pressure fuel pump
EP1911963B1 (en) Electronic-injection fuel-supply system
JP2008095521A (en) Solenoid operated valve device and fuel injection system using the same
JP2005171936A (en) Control device of engine high-pressure fuel pump
JP2006161661A (en) Control device for variable capacity type fuel pump, and fuel supplying system
JP2011132941A (en) Pressure control valve
JP2004353487A (en) Fuel supply device of internal combustion engine
WO2004092573A1 (en) Device and method for electronically controlling fuel injection
JP2009281390A (en) High-pressure fuel pump control device for engine
JP2013194579A (en) Control device of high-pressure pump
JP2005042649A (en) Fuel supply device and fuel supply method
JP4170739B2 (en) Method and apparatus for driving fuel injection pump
JP2009047035A (en) Control device of electromagnetic fuel pump
JP2003166455A (en) Electronically controlled fuel injection system
JP2009002187A (en) Driving method of fuel injection pump and fuel injection device
JP2007132206A (en) Fuel injection device
JP2007211653A (en) Fuel injection device for internal combustion engine
JP2005256735A (en) Fuel injection apparatus
JP4138794B2 (en) Fuel injection device and driving method of fuel injection device
JPH10288107A (en) High-pressure fuel system for internal combustion engine
JP5382870B2 (en) Control device and control method for accumulator fuel injector and accumulator fuel injector
JP2007032456A (en) Fuel injection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase