WO2004085523A1 - 樹脂成形品およびその加工品 - Google Patents

樹脂成形品およびその加工品 Download PDF

Info

Publication number
WO2004085523A1
WO2004085523A1 PCT/JP2004/003964 JP2004003964W WO2004085523A1 WO 2004085523 A1 WO2004085523 A1 WO 2004085523A1 JP 2004003964 W JP2004003964 W JP 2004003964W WO 2004085523 A1 WO2004085523 A1 WO 2004085523A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
resin molded
molded article
mass
irradiation
Prior art date
Application number
PCT/JP2004/003964
Other languages
English (en)
French (fr)
Inventor
Teruo Aoyama
Minoru Furuichi
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to US10/529,206 priority Critical patent/US7579057B2/en
Priority to EP04722718A priority patent/EP1607434A4/en
Publication of WO2004085523A1 publication Critical patent/WO2004085523A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0877Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1386Natural or synthetic rubber or rubber-like compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Definitions

  • the present invention relates to a molded product obtained by irradiating a resin molded product comprising a syndiotactic 1,2-polybutadiene-containing composition with an electron beam. More specifically, the present invention relates to a syndiotactic 1,2-polybutadiene-containing molded article having excellent flexibility and hardness and having steam sterilization resistance. Background art
  • Syndiotactic 1,2-polybutadiene is a thermoplastic elastomer that has the properties of both plastic (hardness) and rubber (elasticity, flexibility). Because it can be easily formed by such a method, it is used for various industrial products. In particular, it is excellent in gas permeation resistance and transparency, and can be processed without adding a plasticizer compared to vinyl chloride-based resins that require a large amount of plasticizer, and has appropriate flexibility and self-adhesiveness. Applications for medical applications such as tubing and catheters are expanding.
  • syndiotactic 1,2-polybutadiene has a low melting point of 70-95 ° C, which is used for infusion tubes, infusion containers, and medical devices such as catheters. And when steam sterilized, In some cases, this was a practical problem.
  • Syndiotactic 1,2-polybutadiene is a thermoplastic elastomer that has the properties of both plastic (hardness) and rubber (elasticity, flexibility).
  • a method has been proposed in which only the surface layer of a molded product is crosslinked and cured by irradiating ultraviolet rays of a limited wavelength (Japanese Patent Application Laid-Open No. 2000-129017). This method has a considerable effect on the improvement of the performance balance of flexibility, transparency and heat resistance (high-pressure steam sterilization resistance) as a medical component.
  • the molded article obtained by the method disclosed in the above-mentioned publication crosslinks only the surface layer by irradiation of ultraviolet rays having a limited wavelength, for example, the heat resistance inside the medical tube is not always sufficient. It is not something I can be satisfied with.
  • the inside of the molded product is excessively hardened, and the flexibility, which is one of the properties of syndiotactic 1,2-polybutadiene, is almost lost. There is a problem.
  • the present invention relates to a syndiotactic 1,2-polybutadiene-containing molding having excellent flexibility and hardness and excellent steam sterilization resistance, which is useful for medical applications such as infusion tubes, infusion containers, and catheters.
  • the purpose is to provide goods. Disclosure of the invention
  • the present invention provides (A) 100 to 60 parts by mass of syndiotactic 1,2-polybutadiene having a crystallinity of 5% or more, and (B) polyethylene, polypropylene, styrene-butadiene-styrene block copolymer.
  • SBS styrene-isoprene-styrene block copolymer
  • SEBS styrene-isoprene-styrene block copolymer
  • BR syndiotactic 1,2-polybutadiene
  • ABS resin polyisoprene
  • polyethylene LLDP E, ULDPE, or LDP E
  • ethylene-vinyl acetate copolymer ethylene-acrylate copolymer
  • the 50% stress (50% M: M2) of the molded article after electron beam irradiation is 1.01 to 50% stress (50% M: M1) before electron beam irradiation. 2. It relates to a resin molded product characterized by a factor of five and having steam sterilization resistance.
  • the resin molded article preferably has a haze value of 50 or less.
  • the toluene-insoluble content of the resin molded article after electron beam irradiation is usually 50 to 99% by mass.
  • the electron beam dose is 2 to 1,000,000 (kV ⁇ Mrad), which is the product of the electron beam acceleration voltage (kV) and the irradiation dose (Mrad).
  • resin molded products include tubes, sheets, films, bags, And at least one selected from the group of connectors.
  • These resin molded articles preferably have a halogen atom content of 50 ppm or less.
  • the resin molded product of the present invention is particularly applied to medical applications.
  • the present invention relates to processed products obtained by processing the above resin molded product, such as food applications, footwear applications, vehicle applications, and wire coating applications.
  • the (A) syndiotactic 1,2-polybutadiene used in the present invention is a syndiotactic 1,2-polybutadiene having a crystallinity of 5% or more, preferably 10 to 40%, Its melting point is preferably in the range of 50 to 130 ° C, more preferably in the range of 60 to 120 ° C. When the crystallinity and the melting point are in this range, excellent mechanical strength such as tensile strength and tear strength and flexibility can be obtained.
  • the (A) syndiotactic 1,2-polybutadiene used in the present invention has, for example, a 1,2-bond content of at least 70%, and is, for example, a catalyst containing a cobalt compound and an aluminoxane. It is obtained by polymerizing butadiene in the presence, but is not limited to this production method.
  • the 1,2-bond content in the butadiene binding unit of (A) syndiotactic 1,2-polybutadiene used in the present invention is usually 70% or more, preferably 80% or more, and more preferably 9% or more. 0% or more. 1, 2 — with bond When the content is 70% by mass or more, the 2-polybutadiene exhibits excellent properties as a thermoplastic elastomer.
  • the (A) syndiotactic 1,2-polybutadiene used in the present invention may contain a small amount of a conjugated diene other than butadiene.
  • Conjugated gens other than butadiene include 1,3-pentadiene, 1,3-butadiene derivatives substituted with higher alkyl groups, and 2-alkyl-substituted 1,3-butadiene.
  • 1,3-butadiene derivatives substituted with higher alkyl groups include 1-pentyl-1,3-butadiene, 1-hexyl-1,3-butadiene, 1-heptyl-1,3-butadiene, 1-octyl 1,3-butadiene and the like.
  • 2-alkyl-substituted 1,3-butadiene 2-methyl-1,3-butadiene (isoprene), 2-ethyl-1,3-butane, and 2-propyl.
  • conjugated genes to be copolymerized with butadiene include isoprene and 1,3-pentene.
  • the content of butadiene in the monomer component used for polymerization is 50 mol% or more, especially Is preferably at least 70 mol%.
  • the (A) syndiotactic 1,2-polybutadiene used in the present invention can be obtained by polymerizing butadiene in the presence of, for example, a catalyst containing a cobalt compound and an aluminoxane.
  • cobalt compound an organic acid salt of cobalt having preferably 4 or more carbon atoms can be mentioned.
  • organic acid salts of cobalt include butyrate, hexanoate, heptoate, octylate such as 2-ethyl-hexylate, decanoate, stearic acid, oleic acid, and ell.
  • octylates of 2-ethylhexyl acid, stearates, and benzoates are preferred because of their excellent solubility in hydrocarbon solvents.
  • aluminoxane examples include those represented by the following general formula (I) or general formula (II). 2-Al- (OAl) m -OAlR 2 —— (I)
  • R is a hydrocarbon group such as a methyl group, an ethyl group, a propyl group, and a butyl group; Preferred are a methyl group and an ethyl group, and particularly preferred is a methyl group.
  • m is an integer of 2 or more, preferably 5 or more, and more preferably 10 to 100.
  • Specific examples of aluminoxane include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, and the like, and methylaluminoxane is particularly preferred.
  • the polymerization catalyst contains a phosphine compound in addition to the cobalt compound and the aluminoxane.
  • the phosphine compound is a component effective for activating the polymerization catalyst, controlling the Bier bond structure and crystallinity, and preferably includes an organic phosphorus compound represented by the following general formula (III).
  • Ar represents a group shown below.
  • R 1 , R 2 , R 3 are the same or different and are each a hydrogen atom, an alkyl group having preferably 1 to 6 carbon atoms, a halogen atom, an alkoxy group having preferably 1 to 6 carbon atoms or It preferably represents an aryl group having 6 to 12 carbon atoms.
  • R ′ represents a cycloalkyl group or an alkyl-substituted cycloalkyl group
  • n is an integer of 0 to 3.
  • Specific examples of the phosphine compound represented by the general formula (in) include tri (3-methylphenyl) phosphine, tri (3-ethylphenyl) phosphine, tri- (3,5-dimethylphenyl) phosphine, and tri (3-methylphenyl) phosphine.
  • cobalt compound a compound represented by the following general formula (IV) can be used.
  • the compound represented by the general formula (IV) is a complex having, as a ligand, a phosphine compound in which n is 3 in the general formula (in) with respect to cobalt chloride.
  • a compound synthesized in advance may be used, or a method in which cobalt chloride and a phosphine compound are brought into contact in a polymerization system may be used.
  • various phosphine compounds in the complex it is possible to control the amount of 1,2 _ bonds and the crystallinity of the obtained syndiotactic 1,2-polybutadiene.
  • cobalt compound represented by the above general formula (IV) include cobalt bis (triphenylphosphine) dichloride, cobalt bis [tris (3-methylphenylphosphine)] dichloride, cobalt bis [tris (3 —Ethylphenylphosphine)] dichloride, cobalt bis [tris (4—methylphenylphosphine)] dichloride, cobalt bis [tris (3,5-dimethylphenylphosphine)] dichloride, cobalt bis [tris (3 , 4-dimethylphenylphosphine)] dichloride, cobalt bis [tris (3-isopropylphenylphosphine)] dichloride, cobalt bis [tris (3-t-butylphenylphosphine)] dichloride, cobalt bis [tris (3, 5-Jetil Enyl phosphine)] Jikurorai de, Cobalt bis [tris (3-
  • cobalt bis (triphenylphosphine) dichloride cobalt bis [tris (3-methylphenylphosphine)] dichloride, cobalt bis [tris (3,5-dimethylphenylphosphine)] dichloride, Cobalt bis [tris (4-methoxy-3,5-dimethylphenylphosphine)] dichloride and the like.
  • the amount of the catalyst used is 1 mole of butadiene in the case of homopolymerization of butadiene, or 1 mole of butadiene and a conjugated gen other than butadiene. It is used in an amount of 0.01 to 1 mmol, preferably about 0.01 to 0.5 mmol.
  • the amount of the phosphine compound used depends on the ratio of phosphorus atoms to cobalt atoms (PZCo). Usually, it is 0.1 to 50, preferably 0.5 to 20, and more preferably 1 to 20. Further, the amount of aluminoxane used is usually 4 to 10 7 , preferably 10 to 10 6 as the ratio of aluminum atom to cobalt atom (Al / Co) of the cobalt compound. When the complex represented by the general formula (IV) is used, the phosphine compound is used in a ratio of phosphorus atoms to cobalt atoms (PZCo) of 2, and the amount of aluminoxane is as described above.
  • inert organic solvent used as the polymerization solvent examples include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and cumene; aliphatic hydrocarbon solvents such as n-pentane, n-hexane, and n-butane; Examples include alicyclic hydrocarbon solvents such as pentane, methyl cyclopentane, and cyclohexane, and mixtures thereof.
  • the polymerization temperature is usually between ⁇ 50 and 120 ° C., preferably between ⁇ 20 and 100.
  • the polymerization reaction may be a batch type or a continuous type.
  • the concentration of the monomer in the solvent is usually 5 to 50% by mass, preferably 10 to 35% by mass.
  • the reaction mixture is added with alcohol, another polymerization terminator, an antioxidant, an antioxidant, an ultraviolet absorber, and the like, and then the produced polymer is separated, washed, Dried syndiotactic 1,2- Polybutadiene can be obtained.
  • the weight average molecular weight of the (A) syndiotactic 1,2-polybutadiene used in the present invention is preferably 10,000 to 5,000,000, more preferably 10,000 to 150,000, particularly preferably 50,000 to 100,000. It is. If the weight average molecular weight is less than 10,000, the fluidity is extremely high, processing becomes extremely difficult, and the molded article is sticky, which is not preferable.On the other hand, if the weight average molecular weight exceeds 500,000, the fluidity is extremely low, and the processing becomes difficult. It is very difficult and not preferable.
  • thermoplastic polymer is a thermoplastic resin and / or a thermoplastic elastomer other than the above component (A), and specifically, polyethylene, polypropylene, styrene-butadiene-styrene block copolymer.
  • SBS styrene-isoprene-styrene block copolymer
  • SEBS styrene-isoprene-styrene block copolymer
  • SEBS styrene-isoprene-styrene block copolymer
  • SEEPS styrene-isoprene-styrene block copolymer
  • BR syndiotactic 1,2-polybutadiene
  • BR syndiotactic 1,2-polybutadiene
  • AB S ⁇ Fat polyisoprene
  • various polyethylenes LLDP E, ULDPE, LDP E
  • ethylene monoacetate vinyl copolymer ethylene monoacrylate copolymer
  • ethylene-methacrylic acid copolymer ethylene-methacrylic acid copolymer.
  • the compounding amount of the component (B) is 40 parts by mass or less, preferably 0 to 35 parts by mass, in the total amount of 100 parts by mass of the components (A) to (B). If the amount exceeds 40 parts by mass, the proportion of the component (A) used is reduced, and flexibility, hardness and transparency are lost.
  • additives such as a lubricant, a filler, an oil or a foaming agent may be contained, if necessary, in addition to the components (A) and (B). May have.
  • lubricants such as L-acid amide, stearic acid amide, and oleic acid amide, talc, silica, magnesium hydroxide, calcium carbonate, glass, power pon fiber, glass balloon, and the like.
  • a polyfunctional monomer such as trimethylpropane trimethacrylate
  • a photopolymerization initiator such as hydroxycyclohexyl phenyl ketone
  • benzoin A photosensitizer such as phenone may be contained in an amount of 5 parts by mass or less based on 100 parts by mass of the syndiotactic 1,2-polybutadiene.
  • the composition used in the present invention is obtained by adding the above components (A) to (B) and, if necessary, the above-mentioned additives and the like, heating and softening, kneading and kneading. Kneading and molding should be carried out in a temperature range with good moldability above the softening temperature or melting temperature of syndiotactic 1,2-polybutadiene to obtain a homogeneous molded product. Therefore, the molding temperature is preferably about 90 to 170 ° C. To obtain molded products, press molding, extrusion molding, injection molding, blow molding, profile extrusion molding, T-die film molding, inflation molding, powder slush molding, rotation Molding is used.
  • the resin molded product of the present invention is obtained by subsequently irradiating an electron beam.
  • the vinyl group of the syndiotactic 1,2-polybutadiene undergoes a radical reaction to form a three-dimensional crosslinked structure, which cures the molded article and imparts heat resistance.
  • the electron beam is permeable to the synthetic resin, and the degree of transmission depends on the thickness of the molded article and the kinetic energy of the electron beam.
  • the energy of the electron beam is preferably 20 to 5,000 kV, more preferably 50 to 3,000 kV, and still more preferably 100 to 2, OO kV with respect to the molded article. If the voltage is lower than 20 kV, the proportion of electrons captured and absorbed in the surface layer becomes relatively large, and the amount of electron beam transmitted through the molded article decreases. Is not preferred because of the differences in On the other hand, if it is larger than 5, OO OkV, the degree of cross-linking becomes too large and becomes hard, which is not preferable since elasticity and elongation are small.
  • the irradiation amount of the electron beam at this time is preferably 0.1 to 200 Mrad (corresponding to 1 to 2,000 kGy in SI unit system), and more preferably 0.5 to 100 Mrad. Irradiation is performed in the range described above to effect crosslinking and curing. If it is not less than 0.1 Mrad, the degree of crosslinking of 1,2-polybutadiene is small, while if it exceeds 200 Mrad, the degree of crosslinking becomes too large and becomes hard, resulting in poor elasticity and elongation. It is not preferable because it is small.
  • Crosslinking by electron beam irradiation can be represented by the product of electron beam energy and irradiation amount.
  • the product of electron beam acceleration voltage (kV) and irradiation dose (Mrad) is preferably 2 to 1 , 00 0,000 (kV'M rad), more preferably 25 to 300,000 (kV'M rad), even more preferably 50 to: L 00,000 (kV'Mrad) . If it is smaller than 2 (kVMrad), the proportion of electrons captured and absorbed in the surface layer becomes relatively large, and the number of electron beams that pass through the molded article decreases. However, it is not preferable because the difference in the bridge degree occurs due to delay. On the other hand, if it is larger than 1,000,000 (kV-Mrad), the degree of cross-linking becomes too large, and the resin becomes hard.
  • the ratio of M2 / M1 is preferably 1.0 to 2.5 times, more preferably 1.02 to 2.0 times. It can be.
  • M2 and Ml mean the 50% stress (50% M: M2) of the molded article after electron beam irradiation and the 50% stress (50% M: M1) before electron beam irradiation. If it is less than 1.01, electron beam cross-linking has not progressed and steam sterilization resistance is poor. On the other hand, if it exceeds 2.5, the cross-linked molded article becomes too hard and loses flexibility, which is not preferable.
  • M2 / M1 is the product of the electron beam acceleration voltage (kV) and the irradiation dose (Mrad), preferably 2 to 1,000,000 (kV'Mrad), and more preferably 25 to 300. , 00 0 (kV ⁇ Mrad), even more preferably 50 to: LOO, 000 (kV′Mrad), so that the adjustment can be made easily.
  • the cross-linked molded article obtained in this way after irradiation with electron beams has steam sterilization resistance. For example, by using an infusion tube which is one form of the cross-linked molded article of the present invention, 90 to 140 ° ⁇ There is no deformation even if steam sterilized for about 10 to 20 minutes at 3.
  • steam sterilization resistance refers to, for example, high-pressure steam sterilization of a resin molded product such as an infusion tube (for example, a tube with an inner diameter of 3 ⁇ , an outer diameter of 4.4 ⁇ , a wall thickness of 0.7mm, and a tube length of 20cm)
  • a resin molded product such as an infusion tube (for example, a tube with an inner diameter of 3 ⁇ , an outer diameter of 4.4 ⁇ , a wall thickness of 0.7mm, and a tube length of 20cm)
  • the haze value of the resin molded product irradiated with the electron beam of the present invention is 50 or less, preferably 30 or less.
  • the haze value is a measure of transparency, the smaller the value, the better the transparency. This haze value is a value measured in accordance with ASTM D-1003.
  • the resin molded product of the present invention after electron beam irradiation generally contains toluene-insoluble components.
  • Toluene-insoluble matter is a barometer that shows the extent to which double bonds in (A) syndiotactic 1,2-polybutadiene are cross-linked by irradiating a resin molded product with an electron beam.
  • the toluene-insoluble matter is obtained by immersing the resin molded article [(a) g] of the present invention in 100 ml of toluene, shaking at 30 ° C. for 48 hours, and filtering using a 100 mesh wire mesh. After collecting a part of the filtrate [(c) ml], it is evaporated to dryness and solidified. The obtained residual solid content [toluene soluble matter: (b) g] is weighed, and the gel content is calculated by the following formula. did.
  • the toluene-insoluble content is the product of the electron beam acceleration voltage (kV) and the irradiation dose (M rad), preferably 2 to: L, 000, 000 (kV'M rad), more preferably 25 to It can be easily adjusted by setting it to 300,000 (kV'Mrad), even more preferably 50 to; L00,000 (kV'Mrad).
  • kV electron beam acceleration voltage
  • M rad irradiation dose
  • the resin molded article of the present invention has a halogen atom content of 50 ppm or less, preferably 20 ppm or less.
  • the content of halogen atoms in the obtained 1,2-polybutadiene can be adjusted to 50 ppm by using a non-halogen inert organic solvent as a polymerization solvent.
  • it can be preferably 20 ppm or less.
  • it is preferable to use only a non-halogen compound because the content of halogen atoms in the resin molded product can be further reduced.
  • the resin molded article of the present invention is a syndiotactic 1,2-polybutadiene-containing molded article having excellent flexibility and hardness and having steam sterilization resistance, and is used for an infusion tube, an infusion container, and a catheter. It is useful for medical applications such as.
  • the measurement was performed at a test speed of 20 OmmZ and a distance between grips of 5 Omm in accordance with JIS K6301.
  • a tensile elongation at break of 100% or more after electron beam irradiation was regarded as good.
  • Example 1 was the same as Example 1 except that the acceleration voltage of the electron beam was changed to 800 kV. Table 1 shows the evaluation results.
  • Example 2 was the same as Example 2 except that the irradiation dose of the electron beam was changed to 5 Mrad. Table 1 shows the evaluation results.
  • Example 3 was repeated except that 1,2 polybutadiene blended with 30% by mass of SIS (styrene-isoprene-styrene block copolymer, JSRSIS 5229P) was used. I did the same. Table 1 shows the evaluation results.
  • SIS styrene-isoprene-styrene block copolymer
  • Example 1 a tube extruded from 100 parts by mass of 1,2-polybutadiene was evaluated without irradiation with an electron beam. Table 1 shows the evaluation results.
  • Example 1 was the same as Example 1 except that the acceleration voltage of the electron beam was changed to 30 kV and the irradiation dose was adjusted to 0.05 Mrad. Table 1 shows the evaluation results. Comparative Example 3
  • Example 2 was the same as Example 1 except that the electron beam acceleration voltage was changed to 5,000 kV and the irradiation dose was changed to 30 OMrad. Table 1 shows the evaluation results. Show.
  • the electron beam irradiation condition of the present invention satisfies the product of the electron beam acceleration voltage (kV) and the irradiation dose (Mrad) of 2 to 1,000, 0000 (kV'Mrad).
  • Example 1 which does not satisfy the irradiation conditions, has improved heat resistance (steam sterilization) compared to Comparative Example 1 (no irradiation) and Comparative Example 2 (acceleration voltage: 30 kV, irradiation dose: 0.05 Mrad). It can be seen that the flexibility is excellent.
  • Example 3 although the irradiation dose of 2 OMrad in Example 2 was reduced to 5 Mrad, the heat resistance (steam sterilization property) was improved, and the result was more excellent in flexibility.
  • Example 4 the irradiation conditions in Example 3 were such that 30 parts by mass of 1,2-polybutadiene was blended with SIS (styrene-isoprene-styrene block copolymer, manufactured by JSR, JSR SIS5229P). However, the result is excellent in heat resistance (steam sterilization) and flexibility.
  • SIS styrene-isoprene-styrene block copolymer
  • Comparative Example 1 is a tube that has not been subjected to electron beam irradiation and has poor heat resistance (steam sterilization).
  • the resin molded product of the present invention is excellent in flexibility and hardness and has steam sterilization resistance, so that it is useful for applications such as tubes, sheets, films, bags, and connectors. In particular, it is useful for medical applications such as infusion tubes, infusion containers, and catheters.
  • a processed product obtained by processing the resin molded product of the present invention by similar electron beam irradiation is also useful for food applications, footwear applications, vehicle applications, wire coating applications, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

 (A)結晶化度が5%以上であるシンジオタクチック1,2−ポリブタジエン100~60質量部、ならびに(B)他の熱可塑性ポリマー0~40質量部を含有する樹脂成形品を電子線照射して得られる成形品であって、電子線照射後の成形品の50%応力(50%M:M2)が電子線照射前の50%応力(50%M:M1)の1.01~2.5倍であり、かつ耐蒸気滅菌性を有する樹脂成形品。柔軟性と硬度とに優れるとともに、耐蒸気滅菌性に優れ、輸液用チューブ、輸液用容器、およびカテーテルなどの医療用途に有用である。

Description

明細書 樹脂成形品およびその加工品 技術分野
本発明は、 シンジオタクチック 1, 2—ポリブタジエン含有組成物からな る樹脂成形品を電子線照射して得られる成形品に関する。 さらに詳しくは、 柔軟性と硬度とに優れ、 かつ耐蒸気滅菌性を有するシンジオタクチック 1, 2 _ポリブタジエン含有成形品に関する。 背景技術
シンジオタクチック 1, 2 _ポリブタジエンは、 プラスチック (硬度) と ゴム (弾性、 柔軟性) との性質を併せ持つ熱可塑性エラストマ一であり、 一 定の結晶性を持ちながら、 汎用されているポリマー加工機によって容易に成 形することが可能であるため、 各種工業用品に用いられるようになつている。 特に、 耐ガス透過性、 透明性に優れ、 可塑剤を多量に必要とする塩化ビニ ル系樹脂などに較べ、 可塑剤無添加で成形加工でき、 柔軟かつ自己粘着性を 適度に有するので、 輸液用チューブ、 およびカテ一テルなどの医療用途への 応用が拡大しつつある。
しかし、 シンジオタクチック 1 , 2 _ポリブタジエンは、 結晶化度が低い 場合には、 融点が 7 0〜9 5 °Cと低く、 これを輸液用チューブや輸液容器、 およびカテーテルなどの医療用具に用いて、 蒸気滅菌すると、 耐熱性に乏し く、 実用上問題となることがあった。
シンジオタクチック 1, 2—ポリブタジエンの、 プラスチック (硬度) と ゴム (弾性、 柔軟性) との性質を併せ持つ熱可塑性エラストマ一であるとい う特性を保持しつつ、 性能バランスの不足を解消する方法として、 限定され た波長の紫外線を照射することにより成形物の表層のみを架橋させて硬化さ せる方法が提案されている (特開 2 0 0 0— 1 2 9 0 1 7号公報)。 この方 法は、 医療用部材としての、 柔軟性、 透明性および耐熱性 (耐高圧蒸気滅菌 性) の性能バランスの向上の点では相応の効果を発揮するものである。
また、 より硬質な表面を得るため、 電子線を照射する方法も種々提案され ている。 これらの方法は、 耐傷付き性については一定の効果を発揮するもの である。
しかしながら、 上記公報に開示された方法により得られる成形物は、 限定 された領域の波長の紫外線照射によって表層のみを架橋するものであるため、 例えば医療用チューブの内部の耐熱性については、 必ずしも十分に満足し得 るものではない。 また、 従来の電子線を用いる方法は、 成形物の内部をも過 剰に硬質化してしまい、 シンジオタクチック 1 , 2—ポリブタジエンが有す る 1つの性質である柔軟性がほとんど失われてしまうという問題がある。
本発明は、 輸液用チューブ、 輸液用容器、 およびカテーテルなどの医療用 途などに有用な、 柔軟性と硬度とに優れるとともに、 耐蒸気滅菌性に優れた シンジオタクチック 1 , 2—ポリブタジエン含有成形品を提供することを目 的とする。 発明の開示
本発明は、 (A) 結晶化度が 5 %以上であるシンジオタクチック 1 , 2— ポリブタジエン 1 0 0〜60質量部、 ならびに (B) ポリエチレン、 ポリプ ロピレン、 スチレン一ブタジエン一スチレンブロック共重合体 (S B S)、 スチレン一イソプレン一スチレンブロック共重合体 ( S I S )、 これらの水 素化物 (S EB S、 または S EP S)、 上記シンジオタクチック 1 , 2—ポ リブタジエン以外のポリブタジエン (BR)、 AB S樹脂、 ポリイソプレン、 ポリエチレン (LLDP E、 ULDPE、 または LDP E)、 エチレン一酢 酸ビニルコポリマ一、 エチレン—アクリル酸エステルコポリマー、 およびェ チレン一メ夕クリル酸コポリマ一の群から選ばれた少なくとも 1種の熱可塑 性ポリマ一 0〜40質量部 [ただし、 (A) + (B) = 1 0 0質量部] を含 有する樹脂成形品を電子線照射して得られる成形品であって、 電子線照射後 の成形品の 50 %応力 ( 50 %M: M 2 ) が電子線照射前の 50 %応力 ( 5 0 %M : M1)) の 1. 0 1〜2. 5倍であり、 かつ耐蒸気滅菌性を有する ことを特徴とする樹脂成形品に関する。
ここで、'樹脂成形品のヘイズ値は、 50以下の透明性を有するものが好ま しい。
また、 電子線照射後の樹脂成形品のトルエン不溶分は、 通常、 5 0〜99 質量%である。
さらに、 電子線照射量は、 電子線加速電圧 (kV) と照射線量 (Mr a d) の積で 2〜1, 000, 000 (k V · M r a d) である。
樹脂成形品の具体例としては、 チューブ、 シート、 フィルム、 バッグ、 お よびコネクターの群から選ばれた少なくとも 1種が挙げられる。
これらの樹脂成形品は、 ハロゲン原子の含有量が 5 0 p p m以下であるこ とが好ましい。
本発明の樹脂成形品は、 特に医療用途に応用される。
さらに、 本発明は、 上記樹脂成形品を加工して得られる食品用途、 履き物 用途、 車両用途、 電線被覆用途などの加工品に関する。 発明を実施するための最良の形態
(A) シンジオタクチック 1 , 2—ポリブタジエン
本発明に用いられる (A) シンジオタクチック 1, 2—ポリブタジエンは、 結晶化度が 5 %以上、 好ましくは 1 0〜4 0 %の結晶性を有するシンジォ夕 クチック 1, 2 _ポリブタジエンであり、 その融点は、 好ましくは 5 0〜1 3 0 °C、 さらに好ましくは 6 0〜 1 2 0 °Cの範囲にある。 結晶化度 ·融点が この範囲にあることにより、 引張強度、 引裂強度などの力学強度と柔軟性に 優れる結果となる。
本発明に用いられる (A) シンジオタクチック 1, 2—ポリブタジエンは、 例えば、 1, 2 —結合含有量が 7 0 %以上のものであり、 例えば、 コバルト 化合物およびアルミノォキサンを含有する触媒の存在下に、 ブタジエンを重 合して得られるものであるが、 この製造方法に限定されるものではない。 本発明に用いられる (A) シンジオタクチック 1 , 2—ポリブタジエンの ブタジエン結合単位における 1, 2 —結合含有量は、 通常、 7 0 %以上、 好 ましくは 8 0 %以上、 さらに好ましくは 9 0 %以上である。 1, 2 —結合含 有量が 70質量%以上であることにより、 当該 2—ポリブタジエンが良 好な熱可塑性エラストマ一としての性質が発揮される。
本発明に用いられる (A) シンジオタクチック 1, 2—ポリブタジエンは、 ブタジエン以外の共役ジェンが少量共重合していてもよい。 ブタジエン以外 の共役ジェンとしては、 1, 3—ペン夕ジェン、 高級アルキル基で置換され た 1, 3—ブタジエン誘導体、 2—アルキル置換— 1, 3—ブタジエンなど が挙げられる。 このうち、 高級アルキル基で置換された 1, 3—ブタジエン 誘導体としては、 1 _ぺンチル一 1, 3—ブタジエン、 1一へキシルー 1, 3—ブタジエン、 1—へプチルー 1, 3—ブタジエン、 1ーォクチル 1, 3 一ブタジエンなどが挙げられる。
ここで、 2—アルキル置換— 1, 3—ブタジエンの代表的なものは、 2— メチル— 1 , 3—ブタジエン (イソプレン)、 2—ェチル— 1, 3—ブ夕ジ ェン、 2—プロピル一 1, 3—ブタジエン、 2—イソプロピル一 1 , 3—ブ 夕ジェン、 2 _ブチル— 1 , 3—ブタジエン、 2—イソブチル— 1, 3—ブ 夕ジェン、 2—アミルー 1, 3—ブタジエン、 2—イソアミルー 1, 3—ブ 夕ジェン、 2—へキシル一 1, 3—ブタジエン、 2—シクロへキシルー 1 , 3—ブタジエン、 2—イソへキシルー 1 , 3—ブタジエン、 2—ヘプチル— 1 , 3—ブタジエン、 2—イソへプチルー 1, 3—ブタジエン、 2—ォクチ ル— 1, 3—ブタジエン、 2—イソォクチルー 1 , 3—ブタジエンなどが挙 げられる。 これらの共役ジェンのなかで、 ブタジエンと共重合される好まし い共役ジェンとしては、 イソプレン、 1, 3—ペン夕ジェンが挙げられる。 重合に供される単量体成分中のブタジエンの含有量は 5 0モル%以上、 特に は 7 0モル%以上が好ましい。 本発明で用いられる (A) シンジオタクチック 1 , 2 _ポリブタジエンは、 上述したように、 例えば、 コバルト化合物およびアルミノォキサンを含有す る触媒の存在下に、 ブタジエンを重合して得られる。 上記コバルト化合物と しては、 好ましくは炭素数 4以上のコバルトの有機酸塩を挙げることができ る。 このコバルトの有機酸塩の具体例として、 酪酸塩、 へキサン酸塩、 ヘプ チル酸塩、 2—ェチル—へキシル酸などのォクチル酸塩、 デカン酸塩や、 ス テアリン酸、 ォレイン酸、 エル力酸などの高級脂肪酸塩、 安息香酸塩、 トリ ル酸塩、 キシリル酸塩、 ェチル安息香酸などのアルキル、 ァラルキル、 ァリ ル置換安息香酸酸塩やナフトェ酸塩、 アルキル、 ァラルキルもしくはァリル 置換ナフトェ酸塩を挙げることができる。 これらのうち、 2—ェチルへキシ ル酸のいわゆるォクチル酸塩や、 ステアリン酸塩、 安息香酸塩が、 炭化水素 溶媒への優れた溶解性のために好ましい。 上記アルミノォキサンとしては、例えば下記一般式( I )または一般式(I I) で表されるものを挙げることができる。 2-Al-(OAl)m-OAlR2 —— (I)
R
-(II)
(OAl)m+2
R この一般式 ( I ) あるいは (I I) で表されるアルミノォキサンにおいて. Rはメチル基、 ェチル基、 プロピル基、 ブチル基などの炭化水素基であり, 好ましくはメチル基、 ェチル基であり、 特に好ましくはメチル基である。 ま た、 mは、 2以上、 好ましくは 5以上、 さらに好ましくは 1 0〜1 00の整 数である。 アルミノォキサンの具体例としては、 メチルアルミノォキサン、 ェチルアルミノォキサン、 プロピルアルミノォキサン、 プチルアルミノォキ サンなどを挙げることができ、 メチルアルミノォキサンが特に好ましい。 重合触媒は、 上記コバルト化合物とアルミノォキサン以外に、 ホスフィン 化合物を含有することが極めて好ましい。 ホスフィン化合物は、 重合触媒の 活性化、 ビエル結合構造および結晶性の制御に有効な成分であり、 好ましく は下記一般式 (III) で表される有機リン化合物を挙げることができる。
P (A r) n (R ' ) 3-n ……(ΙΠ)
一般式 (III) 中、 A rは下記で示される基を示す。
Figure imgf000008_0001
(上記基において、 R1, R2, R3は、 同一または異なって、 水素原子、 炭素 数が好ましくは 1〜 6のアルキル基、 ハロゲン原子、 炭素数が好ましくは 1 〜 6のアルコキシ基または炭素数が好ましくは 6〜 1 2のァリ一ル基を表 す。)
また、 一般式 (III) 中、 R 'はシクロアルキル基、 アルキル置換シクロ アルキル基を示し、 nは 0〜3の整数である。 一般式 (i n) で表されるホスフィン化合物としては、 具体的に、 卜リー ( 3—メチルフエニル) ホスフィン、 トリー (3—ェチルフエニル) ホスフ イン、 トリ— (3 , 5—ジメチルフエニル) ホスフィン、 トリー (3 , 4 - ジメチルフエニル) ホスフィン、 トリ一 ( 3—イソプロピルフエニル) ホス フィン、 トリ— ( 3 _ t —ブチルフエニル) ホスフィン、 卜リー (3, 5 - ジェチルフエニル) ホスフィン、 トリー (3—メチル— 5 _ェチルフエニル) ホスフィン)、 トリー (3—フエエルフェニル) ホスフィン、 トリ一 (3 , 4, 5—トリメチルフエニル) ホスフィン、 トリー (4ーメトキシー 3, 5 ージメチルフエニル) ホスフィン、 トリ— (4一エトキシ一 3, 5—ジェチ ルフエニル) ホスフィン、 トリー (4一ブトキシー 3 , 5—ジブチルフエ二 ル) ホスフィン、 トリ (p—メトキシフエニルホスフイン)、 トリシクロへ キシルホスフィン、 ジシクロへキシルフェニルホスフィン、 トリベンジルホ スフイン、 トリ (4一メチルフエニルホスフィン)、 トリ (4一ェチルフエ ニルホスフィン) などを挙げることができる。 これらのうち、 特に好ましい ものとしては、 トリフエニルホスフィン、 トリ一 (3—メチルフエニル) ホ スフイン、 トリ一 (4ーメトキシ— 3, 5—ジメチルフエニル) ホスフィン などが挙げられる。
また、 コバルト化合物として、 下記一般式 (IV) で表される化合物を用い ることができる。
Figure imgf000010_0001
上記一般式(IV)で表される化合物は、塩化コバルトに対し上記一般式(i n) において nが 3であるホスフィン化合物を配位子に持つ錯体である。 このコ バルト化合物の使用に際しては、 あらかじめ合成したものを使用してもよい し、 あるいは重合系中に塩化コバルトとホスフィン化合物を接触させる方法 で使用してもよい。 錯体中のホスフィン化合物を種々選択することにより、 得られるシンジオタクチック 1 , 2—ポリブタジエンの 1 , 2 _結合の量、 結晶化度の制御を行なうことができる。
上記一般式 (IV) で表されるコバルト化合物の具体例としては、 コバルト ビス (トリフエニルホスフィン) ジクロライ ド、 コバルトビス 〔トリス (3 一メチルフエニルホスフィン)〕 ジクロライ ド、 コバルトビス 〔トリス ( 3 —ェチルフエニルホスフィン)〕 ジクロライ ド、 コバルトビス 〔トリス (4 —メチルフエニルホスフィン)〕 ジクロライド、 コバルトビス 〔トリス (3, 5—ジメチルフエニルホスフィン)〕 ジクロライ ド、 コバルトビス 〔トリス ( 3, 4ージメチルフエニルホスフィン)〕 ジクロライド、 コバルトビス 〔ト リス ( 3—イソプロピルフエニルホスフィン)〕 ジクロライ ド、 コバルトビ ス 〔トリス ( 3 — t 一ブチルフエニルホスフィン)〕 ジクロライ ド、 コバル トビス 〔トリス (3 , 5—ジェチルフエニルホスフィン)〕 ジクロライ ド、 コバルトビス 〔トリス ( 3—メチルー 5—ェチルフエニルホスフィン)〕 ジ クロライ ド、 コバルトビス 〔トリス ( 3—フエニルフエニルホスフィン)〕 ジクロライド、 コバルトビス 〔トリス (3 , 4 , 5 _トリメチルフエニルホ スフイン)〕 ジクロライ ド、 コバルトビス 〔トリス (4ーメトキシー 3, 5 —ジメチルフエニルホスフィン)〕 ジクロライド、 コバルトビス 〔トリス (4 一エトキシー 3 , 5—ジェチルフエニルホスフィン)〕 ジクロライ ド、 コバ ルトビス 〔トリス (4—ブトキシー 3, 5 _ジブチルフエニルホスフィン)〕 ジクロライド、 コバルトビス 〔トリス (4—メトキシフエ二ルホスフイン)〕 ジクロライド、 コバルトビス 〔トリス (3—メトキシフエ二ルホスフイン)〕 ジクロライド、 コバルトビス 〔トリス (4—ドデシルフェニルホスフィン)〕 ジクロライド、 コバルトビス 〔トリス (4—ェチルフエニルホスフィン)〕 ジクロライドなどを使用することができる。
これらのうち、 特に好ましいものとしては、 コバルトビス (トリフエニル ホスフィン) ジクロライ ド、 コバルトビス 〔トリス (3—メチルフエニルホ スフイン)〕 ジクロライ ド、 コバルトビス 〔トリス (3, 5—ジメチルフエ ニルホスフィン)〕 ジクロライ ド、 コバルトビス 〔トリス (4ーメトキシー 3 , 5—ジメチルフエニルホスフィン)〕 ジクロライドなどが挙げられる。 触媒の使用量は、 ブタジエンの単独重合の場合は、 ブタジエン 1モル当た り、 共重合する場合は、 ブタジエンとブタジエン以外の共役ジェンとの合計 量 1モル当たり、 コバルト化合物を、 コバルト原子換算で 0 . 0 0 1〜1ミ リモル、 好ましくは 0 . 0 1〜0 . 5ミリモル程度使用する。 また、 ホスフ イン化合物の使用量は、 コバルト原子に対するリン原子の比 (P Z C o ) と して、 通常、 0. 1〜50、 好ましくは 0. 5〜20、 さらに好ましくは 1 〜20である。 さらに、 アルミノォキサンの使用量は、 コバルト化合物のコ バルト原子に対するアルミニウム原子の比 (A l/Co) として、 通常、 4 〜107、 好ましくは 10〜1 06である。 なお、 一般式 (IV) で表される錯 体を用いる場合は、 ホスフィン化合物の使用量がコバルト原子に対するリン 原子の比 (PZCo) が 2であるとし、 アルミノォキサンの使用量は、 上記 の記載に従う。
重合溶媒として用いられる不活性有機溶媒としては、 例えばベンゼン、 ト ルェン、 キシレン、 クメンなどの芳香族炭化水素溶媒、 n—ペンタン、 n— へキサン、 n—ブタンなどの脂肪族炭化水素溶媒、 シクロペンタン、 メチル シクロペンタン、 シクロへキサンなどの脂環族炭化水素溶媒およびこれらの 混合物が挙げられる。
重合温度は、 通常、 — 50〜 120 °Cで、 好ましくは— 20〜 100 で ある。
重合反応は、 回分式でも、 連続式でもよい。 なお、 溶媒中の単量体濃度は、 通常、 5〜50質量%、 好ましくは 10〜35質量%である。
また.、 重合体を製造するために、 本発明の触媒および重合体を失活させな いために、 重合系内に酸素、 水あるいは炭酸ガスなどの失活作用のある化合 物の混入を極力なくすような配慮が必要である。 重合反応が所望の段階まで 進行したら反応混合物をアルコール、 その他の重合停止剤、 老化防止剤、 酸 化防止剤、 紫外線吸収剤などを添加し、 次いで通常の方法に従って生成重合 体を分離、 洗浄、 乾燥して本発明に用いられるシンジオタクチック 1, 2— ポリブタジエンを得ることができる。
本発明に用いられる (A) シンジオタクチック 1 , 2—ポリブタジエンの 重量平均分子量は、 好ましくは 1万〜 500万、 さらに好ましくは 1万〜 1 5 0万、 特に好ましくは 5万〜 1 00万である。 重量平均分子量が 1万未満 では流動性が極端に高く、 加工が非常に困難となり、 また成形品がベたつく ため好ましくなく、 一方、 50 0万を超えると流動性が極端に低く、 加工が 非常に困難となり好ましくない。
(B) 熱可塑性ポリマー
(B) 熱可塑性ポリマーとしては、 上記 (A) 成分以外の熱可塑性樹脂お よび/または熱可塑性エラストマ一であり、 具体的には、 ポリエチレン、 ポ リプロピレン、 スチレン一ブタジエン一スチレンブロック共重合体 (S B S)、 スチレン一イソプレン一スチレンブロック共重合体 (S I S)、 これらの水 素化物 (S EB S、 S E P S)、 上記シンジオタクチック 1, 2—ポリブタ ジェン以外のポリブタジエン (BR)、 AB S榭脂、 ポリイソプレン、 各種 ポリエチレン (LLDP E、 ULDPE、 LDP E)、 エチレン一酢酸ビニ ルコポリマ一、 エチレン一アクリル酸エステルコポリマー、 およびエチレン ーメタクリル酸コポリマーの群から選ばれた少なくとも 1種である。
(B) 成分の配合量は、 (A) 〜 (B) 成分の合計量 1 0 0質量部中に、 40質量部以下、 好ましくは 0〜 3 5質量部である。 40質量部を超えると、 (A) 成分の使用割合が少なくなり、 柔軟性や硬度と透明性が失われる。
なお、 本発明に用いられる組成物において、 上記 (A) 〜 (B) 成分以外 に、 必要に応じて、 滑剤、 フィラー、 オイルまたは発泡剤などの添加剤を含 有してもよい。 上記添加剤の具体例としては、 エル力酸アミ ド、 ステアリン 酸アミド、 ォレイン酸アミドなどの滑剤、 タルク、 シリカ、 水酸化マグネシ ゥム、 炭酸カルシウム、 ガラス、 力一ポンファィバー、 ガラスバルーンなど のフイラ一、 パラフィンオイル、 シリコンオイル、 ェクスパンセル発泡剤 (日 本フィライト社取り扱いビーズ型発泡剤マイクロスフェアー:成形加工時に ビーズが 40倍以上に膨張)、 ADCA (Az o d i c a r b a n am i d e)、 OB SH , p -o xyb i s b e n z e n s u l f o ny l y d r a z i n e ), 重曹、 A I B N (ァゾビスイソブチロニトリル) などの 発泡剤を挙げることができる。
また、 電子線照射による耐熱性と柔軟性を向上させるために、 その他の添 加剤、 例えば、 トリメチルプロパントリメタクリレートなどの多官能モノマ ―、 ヒドロキシシクロへキシルフェニルケトンなどの光重合開始剤、 ベンゾ フエノンなどの光増感剤などを、 シンジオタクチック 1, 2—ポリブタジェ ン 100質量部に対して 5質量部以下含有させてもよい。
組成物の調製と成形
本発明に用いられる組成物は、 上記 (A) 〜 (B) 成分、 これらにさらに 必要に応じて、 上記添加剤などを添加して、 加熱軟化させて、 混練し成形す る。 混練と成形は、 シンジオタクチック 1, 2—ポリブタジエンの軟化温度 ないし溶融温度以上の成形性の良好な温度範囲で行い、 均質な成形品にする。 このため、 成形温度は、 9 0〜 1 7 0°C程度が良い。 成形品を得るには、 プレス成形、 押し出し成形、 射出成形、 ブロー成形、 異形押し出し成形、 T ダイフィルム成形、 インフレーション成形、 パウダースラッシュ成形、 回転 成形などが利用される。
電子線照射
本発明の樹脂成形品は、 次いで電子線を照射して得られる。 電子線を照射 すると、 シンジオタクチック 1, 2—ポリブタジエンのビニル基のラジカル 反応により三次元架橋構造となり、 成形品を硬化させるとともに、 耐熱性を 付与させる。
電子線は、 合成樹脂に対して透過性があり、 その透過の程度は、 成形品の 厚みと、 電子線の運動エネルギーに依存する。
その照射厚みに従って厚み方向に均一に透過可能に電子線のエネルギーを 調節すると、 厚み方向で架橋度を均一にした成形品とすることができる。 電子線のエネルギーは、 上記の成形品に対して、 好ましくは 20〜 5, 0 0 0 kV、 さらに好ましくは 50〜 3, 0 00 kV、 さらにより好ましくは 1 00〜2, O O O kVとする。 20 kVより小さいと、 表層部で捕獲吸収 される電子の割合が相対的に多くなつて、 成形品を透過する電子線が少なく なり、 表層部に比して内部の架橋が遅れて、 架橋度に差が生じるので、 好ま しくない。 一方、 5, O O O kVより大きいと、 架橋度が大きくなり過ぎて、 硬質となるので、 弾力性や伸びが小さいので好ましくない。
また、 この際の電子線の照射量は、 好ましくは 0. l〜200Mr a d (S I単位系で、 1〜2, 0 00 k Gyに相当する)、 さらに好ましくは 0. 5 〜 1 00 M r a dの範囲で照射して架橋硬化させる。 0. l Mr a dより少 ないと、 1, 2—ポリブタジエンの架橋度が小さく、 一方、 200 M r a d を超えると、 架橋度が大きくなり過ぎて、 硬質となるので、 弾力性や伸びが 小さいので好ましくない。
電子線照射による架橋は、 電子線エネルギーと照射量の積で表すことがで き、 本発明においては、 電子線加速電圧 (kV) と照射線量 (Mr a d) の 積を、 好ましくは 2〜1, 00 0, 000 (kV ' M r a d)、 さらに好ま しくは 25〜 300, 0 0 0 (kV ' M r a d)、 さらにより好ましくは 5 0〜: L 00, 000 (kV ' Mr a d) とする。 2 (k V · M r a d) より 小さいと、 表層部で捕獲吸収される電子の割合が相対的に多くなつて、 成形 品を透過する電子線が少なくなり、 表層部に比して内部の架橋が遅れて、 架 橋度に差が生じるので、 好ましくない。 一方、 1, 000, 000 (kV - Mr a d) より大きいと、 架橋度が大きくなり過ぎて、 硬質となるので、 弹 力性や伸びが小さいので好ましくない。
本発明の成形品に、 上記のような電子線照射を施すことにより、 M2/M 1の比を、 好ましくは 1. 0 1〜2. 5倍、 さらに好ましくは 1. 02〜2. 0倍とすることができる。 ここで、 M2、 Mlは、 電子線照射後の成形品の 50 %応力 (5 0 %M: M2)、 電子線照射前の 5 0 %応力 (50 %M: M 1) を意味する。 1. 0 1未満では、 電子線架橋が進んでおらず、 耐蒸気滅 菌性に劣る。 一方、 2. 5を超えると、 架橋成形品が硬くなりすぎ、 柔軟性 が失われ好ましくない。 M2/M 1は、 上記電子線加速電圧 (kV) と照射 線量 (M r a d) の積を、 好ましくは 2〜1, 00 0, 00 0 (kV ' M r a d)、 さらに好ましくは 25〜30 0, 0 0 0 (k V · M r a d), さらに より好ましくは 50〜: L O O, 00 0 (kV ' Mr a d) とすることにより、 容易に調整することができる。 また、 このようにして得られる電子線照射後の架橋成形品は、 耐蒸気滅菌 性を有し、 例えば、 本発明の架橋成形品の一形態である輸液チューブを用い て、 90〜140°<3で1 0〜20分間程度、 蒸気滅菌しても、 変形すること もない。
ここで、 耐蒸気滅菌性とは、 たとえば、 輸液チューブなどの樹脂成形品 (一 例:内径 3πιιηφ、 外径 4· 4πιπιφ、 肉厚 0. 7mmのチューブ、 チュー ブ長 20 cm) を高圧蒸気滅菌器に入れ、 1 2 1°Cで 20分間、 蒸気滅菌し た場合、 滅菌前の形状が保たれ、 変形が観察されないことを意味する。
さらに、 本発明の電子線を照射された樹脂成形品のヘイズ値は、 50以下、 好ましくは 3 0以下である。 ヘイズ値は、 透明性の尺度であり、 その値が小 さくなる程、 透明性がよくなる。 このヘイズ値は、 ASTM D— 1 003 に準拠して測定される値である。
また、 電子線照射後の本発明の樹脂成形品は、 トルエン不溶分が、 通常、
50〜99質量%、 好ましくは 80〜 9 5質量%である。 トルエン不溶分は、 樹脂成形品を電子線照射することにより、 (A) シンジオタクチック 1, 2 一ポリブタジエン中の二重結合がどの程度架橋しているかを示すバ口メータ 一である。
ここで、 トルエン不溶分は、 本発明の樹脂成形品 [(a) g] を 1 00m 1のトルエンに浸漬させ、 30°Cで 48時間振とう後、 1 00メッシュ金網 を用いて濾過し、 濾過液の一部 [(c) m l ] を採取後、 蒸発乾燥固化させ、 得られた残存固形分 [トルエン可溶分: (b) g] を秤量し、 下式によりゲ ル含有量を算出した。 ゲル含有量 (質量%) = [{ a - b X ( 1 00/c)} /a] X 1 00 トルエン不溶分が 50質量%未満では、 電子線照射による架橋が不充分で あり、 耐熱性が劣り、 耐蒸気滅菌性に劣る。 一方、 9 9質量%を超えると、 電子線照射による架橋が進みすぎて、 樹脂成形品が硬くなりすぎ、 柔軟性が 失われ好ましくない。
上記トルエン不溶分は、 上記電子線加速電圧 (kV) と照射線量 (M r a d) の積を、 好ましくは 2〜: L , 000, 00 0 (kV ' M r a d)、 さら に好ましくは 2 5〜 30 0, 00 0 (kV ' M r a d)、 さらにより好まし くは 50〜; L 00, 00 0 (kV ' Mr a d) とすることにより、 容易に調 整することができる。
さらに、 本発明の樹脂成形品は、 ハロゲン原子の含有量が 50 p pm以下、 好ましくは 20 p pm以下である。 このハロゲン原子の含有量は、 例えば、 上記のように、 重合溶媒として非ハロゲン系の不活性有機溶媒を用いること により、 得られる 1, 2—ポリブタジエン中のハロゲン原子の含有量を 5 0 p pm以下、 好ましくは 20 p pm以下にすることができる。 また、 触媒系 において、 非ハロゲン系の化合物のみを用いることは、 樹脂成形品中のハロ. ゲン原子の含有量をさらに低減させることができ好ましい。
本発明の樹脂成形品は、 柔軟性と硬度とに優れ、 かつ耐蒸気滅菌性を有す るシンジオタクチック 1 , 2—ポリブタジエン含有成形品であり、 輸液用チ ユーブ、 輸液用容器、 およびカテーテルなどの医療用途に有用である。
実施例
以下、 実施例を挙げて本発明をさらに具体的に説明するが、 本発明は以下 の実施例に限定されるものではない。 なお、 実施例中、 部および%は特に断 らない限り、 質量基準である。 また、 実施例中の各種の測定は、 以下に従つ た。
耐蒸気滅菌性:
本文中に記載
透明性 (ヘイズ値) :
本文中に記載
引張強度、 引張破断伸び、 引張弾性率:
J I S K 6 30 1に準拠し、 試験速度 20 OmmZ分、 つかみ具間距離 5 Ommで測定した。
ゲル分率:
本文中に記載
硬度:
電子線照射後の成形品の 50 %応力 (50 %M : M2) が 5 MP a以下を 硬度が高くなく、 良とした。
柔軟性:
電子線照射後の引張破断伸びが 1 00%以上を良とした。
実施例 1 '
1, 2—ポリブタジエン ( J S R社製、 商品名: J S R RB 8 1 0、 結 晶化度 = 18 %) 1 00質量部を押出し成形にて、 内径 3mm(/)、 外径 4. 4πιπιφ、 肉厚 0. 7 mmのチューブに成形し、 これを電子線照射装置 (日 新ハイボルテージ社製、 商品名 : EP S 800— 3 5) を用いて、 加速電圧 300 kV、 照射線量 2 OM r a dで電子線照射処理を行った。 評価結果を 表 1に示す。
実施例 2
実施例 1において、 電子線の加速電圧を 800 kVに変えたこと以外は、 実施例 1と同様にした。 評価結果を表 1に示す。
実施例 3
実施例 2において、 電子線の照射線量 5 M r a dに変えたこと以外は、 実 施例 2と同様にした。 評価結果を表 1に示す。
実施例 4
実施例 3において、 1 , 2—ポリブタジエンに S I S (スチレン—イソプ レン一スチレンブロック共重合体、 J S R社製、 J S R S I S 5229 P) を 30質量%ブレンドしたものを用いたこと以外は、 実施例 3と同様に した。 評価結果を表 1に示す。
比較例 1
実施例 1において、 1, 2—ポリブタジエン 1 00質量部を押出し成形し たチューブを電子線照射せずに評価した。 評価結果を表 1に示す。
比較例 2
実施例 1において、 電子線の加速電圧を 3 0 kVに、 照射線量 0. 0 5M r a dに変えたこと以外は、 実施例 1と同様にした。 評価結果を表 1に示す。 比較例 3
実施例 2において、 電子線の加速電圧を 5, 0 00 kVに、 照射線量 3 0 OMr a dに変えたこと以外は、 実施例 1と同様にした。 評価結果を表 1に 示す。
Figure imgf000021_0001
1) RB ; 1, 2—ポリブタジエン ( J S R社製、 商品名: J S R R B 8 1 0、 結晶化度 = 1 8 %
(*2) S I S ; (スチレン—イソプレン一スチレンブロック共重合体、 J
S R社製、 J SR S I S 5229 P)
表 1に示すように、 本発明の電子線照射条件が、 電子線加速電圧 (kV) と照射線量 (Mr a d) の積で 2〜 1, 0 00, 0 00 (kV ' M r a d) を満足する実施例 1は、 照射条件を満足しない比較例 1 (照射無し) および 比較例 2 (加速電圧: 30 kV、 照射線量: 0. 0 5Mr a d) に比べ耐熱 性 (蒸気滅菌性) が向上し、 また柔軟性に優れていることが分かる。
また、 実施例 1における加速電圧 3 O O kVを 8 00 kVに高めた実施例 2でも、 耐熱性 (蒸気滅菌性) が向上していることが分かる。
さらに、 実施例 3は、 実施例 2における照射線量 2 OMr a dを 5M r a dに下げたものであるが、 耐熱性 (蒸気滅菌性) が向上し、 さらに柔軟性に 優れた結果となっている。
実施例 4は、 実施例 3における照射条件で、 1, 2—ポリブタジエンに S I S (スチレン一イソプレン—スチレンブロック共重合体、 J SR社製、 J SR S I S 52 29 P) を 30質量部ブレンドしたものを用いたもので あるが、 耐熱性 (蒸気滅菌性) と柔軟性に優れた結果となっている。
一方、 比較例 1は、 電子線照射を実施していないチューブであり、 耐熱性 (蒸気滅菌性) が劣る。
比較例 2は、 電子線照射条件が、 電子線加速電圧 (kV) と照射線量 (M r a d) の積で 2〜1, 0 00, 000 (kV ' Mr a d) を下まわってお り、 耐熱性 (蒸気滅菌性) が劣る。
比較例 3は、 電子線照射条件が、 電子線加速電圧 (kV) と照射線量 (M r a d) の積で 2〜 1, 000, 000 (kV . Mr a d) を上回っており、 柔軟性が劣る。 産業上の利用可能性
本発明の樹脂成形品は、 柔軟性と硬度とに優れ、 また耐蒸気滅菌性を有す るので、 チューブ、 シート、 フィルム、 バッグ、 コネクターなどの用途に有 用である。 特に、 輸液チューブ、 輸液容器、 およびカテーテルなどの医療用 途に有用である。 また、 本発明の樹脂成形品を同様の電子線照射により加工して得られる加 ェ品は、 食品用途、 履き物用途、 車両用途、 電線被覆用途などにも有用であ る。

Claims

請求の範囲
1. (A) 結晶化度が 5 %以上であるシンジオタクチック 1, 2—ポリブ 夕ジェン 1 00〜 60質量部、 ならびに (B) ポリエチレン、 ポリプロピレ ン、 スチレン—ブタジエン一スチレンブロック共重合体 (S B S)、 スチレ ンーイソプレン—スチレンブロック共重合体 (S I S)、 これらの水素化物 (S E B Sまたは S E P S)、 上記シンジオタクチック 1 , 2—ポリブタジ ェン以外のポリブタジエン (BR)、 AB S樹脂、 ポリイソプレン、 ポリエ チレン (LLDP E、 UL D P Eまたは L D P E)、 エチレン—酢酸ビニル コポリマー、 エチレン—アクリル酸エステルコポリマー、 およびエチレン一 メタクリル酸コポリマーの群から選ばれた少なくとも 1種の熱可塑性ポリマ 一 0〜40質量部 [ただし、 (A) + (B) = 1 0 0質量部] を含有する樹 脂成形品を電子線照射して得られる成形品であって、 電子線照射後の成形品 の 50 %応力 ( 50 %M: M 2 ) が電子線照射前の 5 0 %応力 ( 50 %M: Ml) の 1. 0 1〜 2. 5倍であり、 かつ耐蒸気滅菌性を有することを特徴 とする樹脂成形品。
2. 2 mmシートのヘイズ値が 50以下の透明性を有する請求の範囲第 1 項記載の樹脂成形品。
3. 電子線照射後のトルエン不溶分が 5 0〜99質量%である請求の範囲 第 1項または第 2項記載の樹脂成形品。
4. 電子線照射量が、 電子線加速電圧 (kV) と照射線量 (Mr a d) の 積で 2〜1, 0 00, 0 00 (kV ' Mr a d) である請求の範囲第 1〜3 いずれかに記載の樹脂成形品。
5 . 成形品形態がチューブ、 シート、 フィルム、 バッグ、 およびコネクタ 一の群から選ばれた少なくとも 1種である請求の範囲第 1〜 4項いずれかに 記載の樹脂成形品。
6 . ハロゲン原子の含有量が 5 0 p p m以下である請求の範囲第 1〜 5項 いずれかに記載の樹脂成形品。
7 . 医療用途である請求の範囲第 1〜 6項いずれかに記載の樹脂成形品。
8 . 請求の範囲第 1〜 7項いずれかに記載の樹脂成形品を加工して得られ る加工品。
9 . 食品用途、 履き物用途、 車両用途、 または電線被覆用途である請求の 範囲第 8項記載の加工品。
PCT/JP2004/003964 2003-03-27 2004-03-23 樹脂成形品およびその加工品 WO2004085523A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/529,206 US7579057B2 (en) 2003-03-27 2004-03-23 Resin molding and worked item therefrom
EP04722718A EP1607434A4 (en) 2003-03-27 2004-03-23 RESIN MOLDING AND WORKING ARTICLE OBTAINED THEREFROM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-086775 2003-03-27
JP2003086775 2003-03-27

Publications (1)

Publication Number Publication Date
WO2004085523A1 true WO2004085523A1 (ja) 2004-10-07

Family

ID=33095076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003964 WO2004085523A1 (ja) 2003-03-27 2004-03-23 樹脂成形品およびその加工品

Country Status (5)

Country Link
US (1) US7579057B2 (ja)
EP (1) EP1607434A4 (ja)
KR (1) KR100614988B1 (ja)
CN (1) CN1311011C (ja)
WO (1) WO2004085523A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735402B (zh) * 2008-11-07 2011-06-22 中国石油天然气股份有限公司 一种间规聚1,2-丁二烯热塑性弹性体的制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023062A (ja) * 2005-07-12 2007-02-01 Jsr Corp 熱可塑性エラストマー組成物、その成形品の接着方法、その成形品を含む複合成形品及びその複合成形品を備える医療用輸液セット
WO2007066652A1 (ja) * 2005-12-09 2007-06-14 Jsr Corporation 紫外線硬化性重合体組成物、樹脂成形品及びその製造方法
US20080136064A1 (en) * 2006-12-12 2008-06-12 Husky Injection Molding Systems Ltd. Molding apparatus and a molding method
DE102007050582B4 (de) * 2007-10-23 2018-09-06 Khs Corpoplast Gmbh Verfahren und Vorrichtung zum Sterilisieren sowie Vorrichtung zur Blasformung von Behältern
WO2010019862A1 (en) * 2008-08-14 2010-02-18 Firestone Diversified Products, Llc Rubber articles subjected to repeated deformation and compositions for making the same
KR101425208B1 (ko) * 2011-03-14 2014-08-01 주식회사 나다이노베이션 플라스틱 사출 성형물의 표면 개질 방법
US8679607B2 (en) * 2012-07-12 2014-03-25 3M Innovative Properties Company Foamable article
KR101931585B1 (ko) * 2016-03-18 2019-02-26 주식회사 엘지화학 열가소성 수지 조성물 및 이로부터 제조된 성형품
CN111032054A (zh) * 2017-07-11 2020-04-17 持续纳米***有限责任公司 超压缩聚合物剂型的辐射灭菌
CN109930238B (zh) * 2019-02-26 2022-03-29 上海梦丝新材料科技有限公司 一种交联的苯乙烯嵌段共聚物混合物弹性纤维及其制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179675A (ja) * 1993-12-24 1995-07-18 Nippon Petrochem Co Ltd 架橋性高難燃組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632534A (en) * 1979-08-27 1981-04-02 Japan Synthetic Rubber Co Ltd Thermoplastic elastomer composition
US4465487A (en) * 1981-06-16 1984-08-14 Terumo Kabushiki Kaisha Container for medical use
US5063005A (en) * 1988-03-18 1991-11-05 The Kendall Company Preparing heat shrinkable wraps
EP0565448B1 (en) * 1992-04-08 1998-09-09 Terumo Kabushiki Kaisha Catheter shaft
US6187400B1 (en) * 1996-05-03 2001-02-13 Baxter International Inc. Medical tubing and pump performance enhancement by ionizing radiation during sterilization
JPH1060218A (ja) * 1996-08-23 1998-03-03 Ube Ind Ltd 熱可塑性エラストマー組成物
US7011872B2 (en) * 2001-08-24 2006-03-14 Baxter International Inc. Method and process for enhancing properties and medical tubing performance in a polybutadiene material
EP1468704B1 (en) * 2003-04-11 2007-02-28 JSR Corporation Medical member mainly comprising syndiotactic 1,2-polybutadiene
US6956093B1 (en) * 2004-10-29 2005-10-18 The Goodyear Tire & Rubber Company Preparation of syndiotactic polybutadiene, rubber composition and tire with rubber component

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179675A (ja) * 1993-12-24 1995-07-18 Nippon Petrochem Co Ltd 架橋性高難燃組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1607434A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735402B (zh) * 2008-11-07 2011-06-22 中国石油天然气股份有限公司 一种间规聚1,2-丁二烯热塑性弹性体的制备方法

Also Published As

Publication number Publication date
US20060068202A1 (en) 2006-03-30
KR20050071482A (ko) 2005-07-07
US7579057B2 (en) 2009-08-25
KR100614988B1 (ko) 2006-08-28
EP1607434A4 (en) 2007-08-15
CN1701089A (zh) 2005-11-23
EP1607434A1 (en) 2005-12-21
CN1311011C (zh) 2007-04-18

Similar Documents

Publication Publication Date Title
WO2004085523A1 (ja) 樹脂成形品およびその加工品
WO2019191509A1 (en) Thiol-acrylate polymers, methods of synthesis thereof and use in additive manufacturing technologies
KR101797883B1 (ko) 올레핀계 불포화 방사형 스티렌계 블록 공중합체 및 개량된 가황제 무함유 라텍스
JP5236634B2 (ja) リン酸若しくはホスホン酸塩を用いる非活性化重合触媒の中和
ES2456694T3 (es) Polímero hidrogenado
CN111201276A (zh) 抗电离辐射的热塑性树脂组合物和包括其的模塑制品
JP4561964B2 (ja) 医療用部材および医療用器具
JP2004307843A (ja) 樹脂成形品およびその加工品
JP3575228B2 (ja) ゴム状重合体の取得方法、およびゴム状重合体
KR20060123391A (ko) 폴리부타디엔 성형품의 접착 방법, 이로부터 얻어지는폴리부타디엔 복합 성형품, 의료용 부재, 및 수액 세트
JP4279686B2 (ja) フィラー複合材
JP3139525B2 (ja) プロピレン単独重合体及びそれを用いた延伸フィルム
EP1468704B1 (en) Medical member mainly comprising syndiotactic 1,2-polybutadiene
Varghese et al. Radiation Processing of Natural Rubber Latex
JPS6211703A (ja) 変性ポリオレフインの製造方法
JP2005146092A (ja) 靴底成形品の加工方法および靴底加工品
JPH0892396A (ja) 改質ポリエチレンの製造方法および成形品
JP2004502567A (ja) ポリオレフィンの成形
JP2007161777A (ja) 樹脂成形品及びその製造方法
JPH05194648A (ja) 臭気の改良されたポリプロピレン樹脂
JP2695662B2 (ja) オレフィン系重合体組成物
JP2006161020A (ja) 熱可塑性エラストマー成形品、熱可塑性エラストマー成形品の表面処理方法、医療用チューブ、および輸液セット
JPH09227666A (ja) ポリエステルフィルム
JP2006077161A (ja) ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合成形品、医療用部材、および輸液セット
JP2005206824A (ja) ポリブタジエン成形品の接着方法、これより得られるポリブタジエン複合成形品、医療用部材、および輸液セット

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057003194

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006068202

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10529206

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004800973X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004722718

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057003194

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004722718

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10529206

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP