JP2000226680A - Production of sterilizing electrolytic water and device therefor - Google Patents

Production of sterilizing electrolytic water and device therefor

Info

Publication number
JP2000226680A
JP2000226680A JP11343971A JP34397199A JP2000226680A JP 2000226680 A JP2000226680 A JP 2000226680A JP 11343971 A JP11343971 A JP 11343971A JP 34397199 A JP34397199 A JP 34397199A JP 2000226680 A JP2000226680 A JP 2000226680A
Authority
JP
Japan
Prior art keywords
electrolytic cell
diaphragm
aqueous solution
water
electrolyzed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11343971A
Other languages
Japanese (ja)
Inventor
Toshiro Shimofusa
房 敏 郎 下
Yoshihiko Okawa
川 義 彦 大
Masahito Matsuki
木 雅 人 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Pretec Corp
Original Assignee
Asahi Pretec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Pretec Corp filed Critical Asahi Pretec Corp
Priority to JP11343971A priority Critical patent/JP2000226680A/en
Publication of JP2000226680A publication Critical patent/JP2000226680A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To generate a stabilized aq. hypochlorous acid soln. excellent in sterilizing property by supplying only an aq.soln. of the chloride of sodium, potassium or an alkaline-earth metal to an electrolytic cell and to provide the electrolytic method and device by which the contents of the remaining sodium chloride, etc., are drastically decreased. SOLUTION: This sterilizing electrolytic water is produced by electrolyzing an aq. sodium chloride soln. in a diaphragm-less electrolytic cell, then introducing the formed electrolyte on the anode side of a diaphragm electrolytic cell or further introducing an aq. sodium chloride soln. into the diaphragm electrolytic cell and electrolyzing the soln. to incorporate hypochlorous acid into the soln. The electroytic water thus obtained is preferably controlled to pH 6.0-7.5, and the concn. of effective chlorine is controlled to 1-40 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は殺菌性を有する電解
水の製造方法及び製造装置に関するもので、更に詳しく
述べると、ナトリウム、カリウム、カルシウム及びマグ
ネシウムからなる群より選ばれた、少なくとも1つの金
属の塩化物の水溶液を、無隔膜電解槽及び隔膜電解槽を
組合せた装置で電解することによって、次亜塩素酸を含
有した殺菌効果が高い電解水を生成させる方法及び装置
である。更に、この電解水を希釈した殺菌効果に優れ且
つ毒性が低い水溶液の製造方法及びその装置も含まれて
いる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing electrolyzed water having germicidal properties. More specifically, the present invention relates to at least one metal selected from the group consisting of sodium, potassium, calcium and magnesium. A method and an apparatus for generating electrolyzed water containing hypochlorous acid and having a high bactericidal effect by electrolyzing an aqueous solution of a chloride in a combination of a diaphragm-free electrolytic cell and a diaphragm electrolytic cell. Further, the present invention also includes a method and apparatus for producing an aqueous solution obtained by diluting the electrolyzed water with an excellent sterilizing effect and low toxicity.

【0002】[0002]

【従来の技術】次亜塩素酸水溶液の安定性はその溶液の
pH に依存し、酸性側では塩素ガス成分となって不安定
な状態で存在する。また、アルカリ側では次亜塩素酸イ
オンとして存在するため殺菌力が低下する。中性付近で
はほぼ全量が次亜塩素酸分子の状態で存在するため、殺
菌力が著しく向上している。
2. Description of the Related Art The stability of an aqueous solution of hypochlorous acid depends on the stability of the solution.
Depending on the pH, it is present in an unstable state as a chlorine gas component on the acidic side. On the alkaline side, the bactericidal activity is reduced because of the presence of hypochlorite ions. Near neutrality, almost all of the compound exists in the state of hypochlorous acid molecules, so that the bactericidal activity is significantly improved.

【0003】そこで、この様な殺菌性が高い溶液を得る
手段として特開平 2-111708 号公報には、塩化ナトリウ
ム水溶液を隔膜を有する電解槽で電気分解し、陽極側よ
り得られる強酸性溶液と陰極側で得られる強アルカリ性
溶液を混合して、中性付近の次亜塩素酸水溶液を得る方
法が開示されている。
[0003] As means for obtaining such a highly sterilizing solution, Japanese Patent Application Laid-Open No. 2-111708 discloses an aqueous solution of sodium chloride which is electrolyzed in an electrolytic cell having a diaphragm to obtain a strongly acidic solution obtained from the anode side. A method is disclosed in which a strongly alkaline solution obtained on the cathode side is mixed to obtain an aqueous solution of hypochlorous acid near neutrality.

【0004】また、特開平 5-237475 号公報には塩酸を
加えた塩化ナトリウム水溶液を無隔膜電解槽で電解し、
弱酸性の次亜塩素酸水溶液を得る方法が開示されてい
る。
In Japanese Patent Application Laid-Open No. Hei 5-237475, an aqueous solution of sodium chloride containing hydrochloric acid is electrolyzed in a non-diaphragm electrolytic cell.
A method for obtaining a weakly acidic aqueous solution of hypochlorous acid is disclosed.

【0005】これらの方法によって殺菌性が高い次亜塩
素酸水溶液を比較的簡単に得ることができるが、特開平
2-111708 号公報の方法では電解中に陰極に水酸化カル
シウムが析出するため、電解電流が低下して安定した次
亜塩素酸溶液の生成が阻害される。また、次亜塩素酸水
溶液に含まれている塩化ナトリウムが使用後に析出する
ため、洗浄等に使用した後白く粉を吹いた様な状態にな
るため水拭きが必要となる等の問題点があった。
[0005] By these methods, an aqueous solution of hypochlorous acid having high sterility can be obtained relatively easily.
In the method disclosed in Japanese Patent Application Laid-Open No. 2-111708, calcium hydroxide is deposited on the cathode during electrolysis, so that the electrolysis current is reduced and the formation of a stable hypochlorous acid solution is hindered. In addition, since sodium chloride contained in the aqueous solution of hypochlorous acid precipitates after use, there is a problem that it becomes necessary to wipe off water since it becomes like a white powder after being used for washing. Was.

【0006】更に特開平 5-237475 号公報に記載された
方法では、原水に塩酸を使用するため設備及び取扱い上
の問題の他、原料費が嵩む等の経済性の問題もあった。
Furthermore, the method described in Japanese Patent Application Laid-Open No. 5-237475 has problems in terms of equipment and handling since hydrochloric acid is used as raw water, and also has problems in economics such as an increase in raw material costs.

【0007】[0007]

【発明が解決しようとする課題】前述の種々な問題点に
かんがみ、電解槽にはナトリウム、カリウム、カルシウ
ム及びマグネシウムからなる群より選ばれた、少なくと
も1つの金属の塩化物の水溶液のみを供給することによ
って、安定した状態で存在する次亜塩素酸水溶液を生成
させ、且つ残存塩化ナトリウム等の含有量を大幅に低減
させることができる、電解方法及び電解装置を開発して
提供することにある。
In view of the various problems described above, the electrolytic cell is supplied with only an aqueous solution of at least one metal chloride selected from the group consisting of sodium, potassium, calcium and magnesium. Accordingly, it is an object of the present invention to develop and provide an electrolysis method and an electrolysis apparatus capable of generating a hypochlorous acid aqueous solution existing in a stable state and greatly reducing the content of residual sodium chloride and the like.

【0008】[0008]

【課題を解決するための手段】本発明者等はこれらの問
題点を解決する方法について研究した結果、第一段階で
はナトリウム、カリウム、カルシウム及びマグネシウム
からなる群より選ばれた、少なくとも1つの金属の塩化
物の水溶液を、電極間に隔膜を設けない電解槽で電解す
ることによって次亜塩素酸イオンの濃度が高い強アルカ
リ性溶液を生成させる。次に第二段階で隔膜を有する電
解槽の陽極側にこの次亜塩素酸イオンの濃度が高い溶液
を供給して電解すれば、その電解電流量を調節すること
によってpHが変化し、酸性領域から中性領域更にアルカ
リ性領域迄の次亜塩素酸水溶液を効率よく生成させるこ
とができることに着目した。
The present inventors have studied methods for solving these problems, and as a result, in the first step, at least one metal selected from the group consisting of sodium, potassium, calcium and magnesium. Is electrolyzed in an electrolytic cell having no diaphragm between the electrodes to produce a strong alkaline solution having a high concentration of hypochlorite ion. Next, in the second stage, if a solution having a high concentration of hypochlorite ions is supplied to the anode side of the electrolytic cell having a diaphragm and electrolysis is performed, the pH is changed by adjusting the amount of electrolysis current, and the acid region is changed. We focused on the ability to efficiently generate an aqueous solution of hypochlorous acid from the neutral region to the alkaline region.

【0009】ここで、電解槽へ供給するナトリウム、カ
リウム、カルシウム及びマグネシウムからなる群より選
ばれた、少なくとも1つの金属の塩化物の水溶液の濃度
及び、第一段階の無隔膜電解槽及び第二段階の隔膜電解
槽の電解条件を調節することによって、容易に次亜塩素
酸水溶液を殺菌用に使用するために適した pH 及び有効
塩素濃度、残存するアルカリ金属またはアルカリ土類金
属塩化物濃度等に適合させることができるとの知見を得
た。更に、原料としてアルカリ金属塩化物を使用する場
合にはこれらの塩の水溶液を調整するため、イオン交換
水を使用すれば電解槽陰極の水酸化カルシウム析出を防
止できるとの知見も得て本発明に到達した。
The concentration of the aqueous solution of at least one metal chloride selected from the group consisting of sodium, potassium, calcium and magnesium to be supplied to the electrolytic cell, By adjusting the electrolysis conditions in the membrane electrolyzer in the step, the pH and effective chlorine concentration suitable for using the hypochlorous acid aqueous solution for sterilization, the remaining alkali metal or alkaline earth metal chloride concentration, etc., are easily adjusted. The knowledge that it can be adapted to was obtained. Furthermore, when alkali metal chlorides are used as a raw material, it has been found that the use of ion-exchanged water can prevent the precipitation of calcium hydroxide at the cathode of the electrolytic cell to adjust aqueous solutions of these salts. Reached.

【0010】すなわち、ナトリウム、カリウム、カルシ
ウム及びマグネシウムからなる群より選ばれた、少なく
とも1つの金属の塩化物の水溶液を、無隔膜電解槽で電
気分解して生成した電解液を隔膜電解槽の陽極側に導入
する。または更にナトリウム、カリウム、カルシウム及
びマグネシウムからなる群より選ばれた、少なくとも1
つの金属の塩化物の水溶液を、該隔膜電解槽に導入して
電気分解することによって、次亞塩素酸を含有せしめる
ことを特徴とする殺菌性を有する電解水の製造方法及び
その装置である。
That is, an electrolytic solution produced by electrolyzing an aqueous solution of at least one metal chloride selected from the group consisting of sodium, potassium, calcium and magnesium in a non-diaphragm electrolytic cell is used as an anode in a diaphragm electrolytic cell. Introduce to the side. Or at least one further selected from the group consisting of sodium, potassium, calcium and magnesium
A method for producing electrolyzed water having bactericidal properties, characterized in that hypochlorous acid is contained by introducing an aqueous solution of a chloride of two metals into the electrolytic cell and electrolyzing the same.

【0011】前記においてアルカリ金属及びアルカリ土
類金属の塩化物の水溶液を、無隔膜電解槽で電気分解し
て生成した電解液を、次に隔膜電解槽の陽極側に導入し
て電気分解して生成させた次亜塩素酸水溶液を、更に水
で希釈した溶液が得られる様に構成させた殺菌性を有す
る電解水の製造装置も本発明に含まれている。
In the above, an electrolytic solution produced by electrolyzing an aqueous solution of a chloride of an alkali metal and an alkaline earth metal in a non-diaphragm electrolytic cell is then introduced into the anode side of the diaphragm electrolytic cell and electrolyzed. The present invention also includes an apparatus for producing sterilized electrolyzed water in which the generated hypochlorous acid aqueous solution is further diluted with water to obtain a solution.

【0012】前述の製造方法及び装置において、原料と
して使用される塩化ナトリウムまたは塩化カリウム水溶
液は、塩化ナトリウムをイオン交換水で溶解した、濃度
2%以上、30%以下の溶液が好ましい。また、殺菌性を
有する電解水のpHは 6.0以上であり、7.5 以下が好まし
く、有効塩素濃度は1ppm 以上であり、40 ppm以下が好
ましく、残存する塩化ナトリウムの濃度は 0.01 %以上
であり、 1.0 %以下であることが好ましい。
In the above-described production method and apparatus, the aqueous solution of sodium chloride or potassium chloride used as a raw material is preferably a solution having a concentration of 2% to 30% in which sodium chloride is dissolved in ion-exchanged water. Further, the pH of the electrolyzed water having germicidal properties is 6.0 or more, preferably 7.5 or less, the effective chlorine concentration is 1 ppm or more, preferably 40 ppm or less, and the concentration of the remaining sodium chloride is 0.01% or more. % Is preferable.

【0013】本発明において原料として使用されるアル
カリ金属またはアルカリ土類金属塩化物を溶解する場合
に使用する水は特に限定しないが、アルカリ金属塩化物
の場合にはイオン交換水がより好ましい。また、殺菌性
を有する電解水とは、電気分解によって得られた次亞塩
素酸を含む水溶液で、殺菌作用または除菌作用を有する
水を指している。以下、本発明について詳しく説明す
る。
The water used for dissolving the alkali metal or alkaline earth metal chloride used as a raw material in the present invention is not particularly limited. In the case of the alkali metal chloride, ion-exchanged water is more preferable. Further, the electrolyzed water having bactericidal properties refers to an aqueous solution containing hypochlorous acid obtained by electrolysis and having a bactericidal action or a disinfecting action. Hereinafter, the present invention will be described in detail.

【0014】本発明の殺菌性を有する電解水の製造方法
においては、原料としてナトリウム、カリウム、カルシ
ウム及びマグネシウムからなる群より選ばれた、少なく
とも1つの金属の塩化物の水溶液を使用する必要があ
る。また、本発明の殺菌性を有する電解水は塩化ナトリ
ウム水溶液等、アルカリ金属またはアルカリ土類金属塩
化物の水溶液のみから容易に得られることが、本発明の
特徴の一つである。例えば、塩化ナトリウムまたは塩化
カリウム水溶液の濃度は特に限定しないが2〜30%が好
ましい。2%以下に低下すると陰極から塩素ガスが発生
し更に、酸素も発生して電極を消耗させる原因となるか
らである。また、電気抵抗も高くなって電流効率が低下
する。塩化ナトリウム水溶液の濃度が2〜30%の範囲内
であれば、電解における塩素の電流効率を 95 %以上に
保持することができ、電力を有効に使用できるからであ
る。
In the method for producing electrolyzed water having germicidal properties of the present invention, it is necessary to use an aqueous solution of at least one metal chloride selected from the group consisting of sodium, potassium, calcium and magnesium as a raw material. . One of the features of the present invention is that the electrolyzed water having germicidal properties of the present invention can be easily obtained only from an aqueous solution of an alkali metal or alkaline earth metal chloride, such as an aqueous sodium chloride solution. For example, the concentration of the aqueous solution of sodium chloride or potassium chloride is not particularly limited, but is preferably 2 to 30%. If the concentration is reduced to 2% or less, chlorine gas is generated from the cathode, and oxygen is also generated to cause the electrode to be consumed. In addition, the electric resistance increases and the current efficiency decreases. If the concentration of the aqueous sodium chloride solution is in the range of 2 to 30%, the current efficiency of chlorine in electrolysis can be maintained at 95% or more, and electric power can be used effectively.

【0015】また、電解工程においてしばしば電解槽の
陰極に水酸化カルシウムが析出するため、電解電流が低
下して安定した次亜塩素酸溶液の生成が阻害される場合
がある。ここで、原料としてアルカリ金属塩化物の水溶
液を調整する場合には、イオン交換水のみで塩化物を溶
解すれば、水酸化カルシウムが析出するおそれがないた
めイオン交換水の使用が好ましい。また、本発明ではア
ルカリ土類金属塩化物の水溶液も使用可能であるが、陰
極の取替または掃除等に特に留意する必要がある。
In the electrolysis step, calcium hydroxide often precipitates on the cathode of the electrolytic cell, so that the electrolysis current is reduced and the generation of a stable hypochlorous acid solution may be hindered. Here, when an aqueous solution of an alkali metal chloride is prepared as a raw material, use of ion-exchanged water is preferred because calcium hydroxide is not likely to precipitate if the chloride is dissolved only with ion-exchanged water. In the present invention, an aqueous solution of an alkaline earth metal chloride can be used, but it is necessary to pay particular attention to replacement or cleaning of the cathode.

【0016】本発明においてナトリウム、カリウム、カ
ルシウム及びマグネシウムからなる群より選ばれた、少
なくとも1つの金属の塩化物の水溶液の電解工程は2段
階からなっている。これらのアルカリ金属またはアルカ
リ土類金属の塩化物水溶液は、先ず電解槽の内部に隔膜
が設けられていない電解槽に供給され電気分解される。
カソード側(陰極)では化1に示す反応により水酸化ナ
トリウムが生成され、また、アノード側(陽極)では化
2に示す反応により塩素ガスが発生する。尚、電解工業
では陰極がカソード、陽極がアノードと慣用的に呼ばれ
るためその呼称に従った。
In the present invention, the step of electrolyzing the aqueous solution of at least one metal chloride selected from the group consisting of sodium, potassium, calcium and magnesium comprises two steps. These alkali metal or alkaline earth metal chloride aqueous solutions are first supplied to an electrolytic cell in which a diaphragm is not provided inside the electrolytic cell and electrolyzed.
On the cathode side (cathode), sodium hydroxide is generated by the reaction shown in Chemical formula 1, and on the anode side (anode), chlorine gas is generated by the reaction shown in Chemical formula 2. In the electrolytic industry, the cathode is conventionally called the cathode, and the anode is usually called the anode.

【0017】[0017]

【化1】 Embedded image

【0018】[0018]

【化2】 Embedded image

【0019】この電解槽の内部ではカソード(陰極)と
アノード(陽極)の間に隔膜が設けられていないため、
両極で生成した電解液が混合し化3に示す反応によって
次亜塩素酸イオンが生成する。このため、アノード側に
生成した塩素ガスは大部分が混合液中に吸収されて次亜
塩素酸イオンとなり、次亜塩素酸イオン濃度が著しく増
大する。第一段階の電解工程が無隔膜電解槽でなされる
のは、槽内の電解液をアルカリ性とすることによってア
ノードで発生する塩素ガスの吸収を促進し、次亜塩素酸
イオンの生成を促進させるためである。このため電解液
はカソードで発生したアルカリ金属またはアルカリ土類
金属の水酸化物のため強アルカリ性となっている。
Since no diaphragm is provided between the cathode (cathode) and the anode (anode) inside the electrolytic cell,
Hypochlorite ions are generated by the reaction shown in Chemical formula 3 by mixing the electrolyte solutions generated at both electrodes. For this reason, most of the chlorine gas generated on the anode side is absorbed into the mixed solution to become hypochlorite ions, and the concentration of hypochlorite ions is significantly increased. The first stage electrolysis process is performed in a non-diaphragm electrolytic cell because the electrolytic solution in the cell is made alkaline to promote absorption of chlorine gas generated at the anode and promote generation of hypochlorite ions. That's why. For this reason, the electrolyte is strongly alkaline due to the hydroxide of the alkali metal or alkaline earth metal generated at the cathode.

【0020】[0020]

【化3】 Embedded image

【0021】無隔膜電解槽で得られた多量の次亜塩素酸
イオンを含む強アルカリ性溶液は、第二の電解工程であ
る隔膜電解槽のアノード側に導入される。電解による化
4の反応によって水酸イオンが減少して水素イオンが生
成するため、溶液の pH が低下して中性領域となる。こ
のため溶液中に存在する次亜塩素酸イオンは殆ど次亜塩
素酸分子の状態となって高い殺菌性を示す。
The strongly alkaline solution containing a large amount of hypochlorite ions obtained in the diaphragm-free electrolytic cell is introduced into the anode side of the diaphragm electrolytic cell in the second electrolysis step. Hydroxide ions are reduced by the reaction of chemical formula 4 by electrolysis to generate hydrogen ions, so that the pH of the solution is lowered to a neutral region. For this reason, hypochlorite ions existing in the solution are almost in the form of hypochlorous acid molecules and exhibit high sterility.

【0022】尚、ここで隔膜電解槽の電流量を調節すれ
ば pH が変化し、酸性領域から中性領域更にアルカリ性
領域迄の次亜塩素酸水溶液を効率よく生成させることが
できる。この広範囲の pH を有する電解水は何れも次亞
塩素酸を含み殺菌性を有するため本発明に含まれてい
る。この電解工程では化2に示した反応も同時に起こり
塩素ガスが発生する。
Here, if the amount of current in the diaphragm electrolytic cell is adjusted, the pH changes, and an aqueous hypochlorous acid solution from the acidic region to the neutral region and further to the alkaline region can be efficiently produced. Any of the electrolyzed waters having a wide range of pH contains hypochlorous acid and has bactericidal properties and is included in the present invention. In this electrolysis step, the reaction shown in Chemical formula 2 also occurs at the same time, and chlorine gas is generated.

【0023】[0023]

【化4】 Embedded image

【0024】この結果、隔膜電解槽のアノード側から取
り出された溶液の pH がほぼ中性となる様に調節すれ
ば、この溶液は多量の次亜塩素酸を含有するため高い殺
菌性を示す。このためそのまま殺菌用に使用することも
可能であるが使用目的に適した殺菌性に調整するため、
水道水等で希釈されて次亜塩素酸の濃度を低下させて使
用されることが多い。
As a result, if the pH of the solution taken out from the anode side of the diaphragm electrolyzer is adjusted to be almost neutral, this solution contains a large amount of hypochlorous acid and exhibits high sterility. For this reason, it is possible to use it for sterilization as it is, but in order to adjust it to sterilization suitable for the purpose of use,
It is often used after being diluted with tap water to lower the concentration of hypochlorous acid.

【0025】この工程において原料のナトリウム、カリ
ウム、カルシウム及びマグネシウムからなる群より選ば
れた、少なくとも1つの金属の塩化物の水溶液の一部は
第二の隔膜電解槽に直接供給して、第一の電解槽からア
ノード側に供給された溶液と共に電解する工程も本発明
に含まれている。ここで、第二段階の隔膜電解槽のアノ
ード側から取り出される溶液の pH 及び各成分の含有量
は、前述の様に原料の塩化ナトリウム等、アルカリ金属
またはアルカリ土類金属塩化物の水溶液の濃度及び、第
一及び第二段階の電解槽における電解条件によって調節
することが可能である。
In this step, a part of the aqueous solution of at least one metal chloride selected from the group consisting of the raw materials sodium, potassium, calcium and magnesium is directly supplied to the second diaphragm electrolytic cell, The step of performing electrolysis together with the solution supplied from the electrolytic cell to the anode side is also included in the present invention. Here, the pH of the solution taken out from the anode side of the membrane electrolyzer in the second stage and the content of each component are determined by the concentration of the aqueous solution of the alkali metal or alkaline earth metal chloride such as sodium chloride as the raw material as described above. And it can be adjusted by the electrolysis conditions in the first and second stage electrolyzers.

【0026】殺菌性を有する電解水の pH は特に限定し
ないが、6.0 以上、7.5 以下が好ましい。後述の実施例
3に具体的に示す様に、酸性がかなり高くpH 3.5ぐらい
迄低下すると手を洗う時、その周辺の空気中で塩素ガス
が検出され、塩素ガスの臭気がかなり感じられる。培養
試験では pH が高い試料に比べて強い殺菌作用を示す
が、怪我をした指を洗浄する時は痛みが感じられる。 p
H が中性領域の電解水も培養試験による殺菌効果を示す
が、洗浄に使用する時塩素ガスは検出されず、官能試験
でも臭気が殆ど感じられないかまたはほんの僅か感じら
れる程度である。
The pH of the sterilized electrolyzed water is not particularly limited, but is preferably 6.0 or more and 7.5 or less. As specifically shown in Example 3 described later, when the acidity is considerably high and the pH is lowered to about 3.5, when washing hands, chlorine gas is detected in the air around the hand, and the odor of chlorine gas is considerably felt. In the culture test, it shows stronger bactericidal action than the sample with high pH, but pain is felt when washing the injured finger. p
The electrolyzed water in which H is in the neutral region also exhibits a bactericidal effect by the culture test. However, chlorine gas is not detected when used for washing, and almost no or only a slight odor is sensed in the sensory test.

【0027】その他、酸性の殺菌性電解水は嗽をした場
合には苦味がかなり感じられ、また、常温で放置した場
合有効塩素濃度が急速に低下して殺菌性が低下すること
が認められる。一方、pHが 8.5ぐらいになると塩素ガス
の臭気は殆ど感じられないが、培養試験による殺菌効果
がやや低下する傾向が認められる。アルカリ性側では塩
素ガスの臭気、怪我の部分を洗浄した時の痛み、嗽の時
の苦味等は全くないが、pHが更に上昇すると培養試験に
よる殺菌性が次第に低下する。
In addition, it is recognized that bitterness is considerably felt when acidic germicidal electrolyzed water is gargled, and that when it is allowed to stand at room temperature, the effective chlorine concentration is rapidly reduced, and bactericidal properties are reduced. On the other hand, when the pH is about 8.5, the odor of chlorine gas is hardly felt, but the bactericidal effect by the culture test tends to be slightly lowered. On the alkaline side, there is no odor of chlorine gas, no pain at the time of washing the injured part, no bitterness at the time of gargling, etc. However, when the pH is further increased, the bactericidal property by the culture test gradually decreases.

【0028】その他、殺菌性電解水の pH と金属に対す
る腐食性は中性付近の電解水は水道水よりやや高い程度
であるが、酸性がかなり高い場合(pH 3.5程度)は腐食
性を示す。これらの点から pH が 6.0以上であり、7.5
以下の範囲内においては、殺菌性も高く塩素ガスの臭気
も殆ど感じられず、洗浄に使用した場合傷の痛み嗽の苦
味等の刺激性がなく、常温でかなりの期間放置しても殺
菌性が低下しないため、殺菌性を有する電解水に適して
いる。
In addition, the pH and metal corrosiveness of the sterilized electrolyzed water are slightly higher than that of tap water in the vicinity of neutral electrolyzed water, but corrosive when the acidity is considerably high (about pH 3.5). From these points, the pH is 6.0 or higher and 7.5
Within the following range, it is highly bactericidal and hardly feels the odor of chlorine gas, has no irritating properties such as bitterness of sores when used for cleaning, and is bactericidal even when left at room temperature for a considerable period of time. Therefore, it is suitable for electrolyzed water having bactericidal properties.

【0029】殺菌性を有する電解水の有効塩素濃度は特
に限定しないが、1ppm 以上であり、40 ppm以下が好ま
しい。後述の実施例4に具体的に示す様に、有効塩素濃
度が1ppm 以下になると塩素ガスの臭気は全くないが殺
菌作用がやや不十分となる。また、有効塩素濃度が 40
ppm 以上になると高い殺菌性を示すが、使用時に塩素ガ
スの臭気が少し感じられる様になり、手を洗うと少し皮
膚が荒れる感じがある。有効塩素濃度が1ppm 以上、 4
0 ppm 以下の範囲では殺菌性も高く塩素ガスの臭気も殆
ど感じられず、且つ水洗時の傷の痛み、嗽をした時の苦
味等の皮膚の刺激性もなく、殺菌性電解水として好まし
い。
The effective chlorine concentration of the electrolyzed water having germicidal properties is not particularly limited, but is 1 ppm or more, preferably 40 ppm or less. As specifically shown in Example 4 to be described later, when the effective chlorine concentration is 1 ppm or less, there is no odor of chlorine gas, but the bactericidal action is somewhat insufficient. The effective chlorine concentration is 40
Higher germicidal properties are obtained at ppm or higher, but the odor of chlorine gas is slightly felt during use, and the skin becomes slightly rough when washing hands. Effective chlorine concentration is 1ppm or more, 4
In the range of 0 ppm or less, the bactericidal property is high, the odor of chlorine gas is hardly felt, and the skin is not irritating to the skin, such as a wound when washed with water and a bitter taste when gargling, and thus it is preferable as sterilized electrolyzed water.

【0030】また、殺菌性を有する電解水の塩化ナトリ
ウム等、アルカリ金属またはアルカリ土類金属塩化物の
濃度は特に限定しないが 0.01 %以上、1.0 %以下が好
ましい。この電解水を種々の物品の洗浄に使用した場
合、例えば、塩化ナトリウム濃度が1.0 %以下の場合に
は洗浄後乾燥しても塩化ナトリウムの結晶の析出は認め
られないが、1.0 %以上になると結晶が析出するため再
度水で洗浄するかまたは水拭きが必要となることがある
からである。
The concentration of the alkali metal or alkaline earth metal chloride such as sodium chloride or the like in sterilized electrolytic water is not particularly limited, but is preferably 0.01% or more and 1.0% or less. When this electrolyzed water is used for cleaning various articles, for example, when the concentration of sodium chloride is 1.0% or less, precipitation of sodium chloride crystals is not observed even after washing and drying, but when the concentration exceeds 1.0%. This is because the crystals are deposited, so that it may be necessary to wash again with water or wipe with water.

【0031】尚、隔膜電解槽のカソード側から取り出さ
れた液は中和処理後廃棄される。また、隔膜電解槽に設
ける隔膜には残留塩素成分に対して強い耐性を有するフ
ッ素系陽イオン交換膜を使用すれば、隔膜寿命の延長、
電気抵抗の低減などの効果が得られる。この様な隔膜と
しては、例えばデュポン社製「ナフィオン450 」等が使
用可能である。
The liquid taken out from the cathode side of the diaphragm electrolytic cell is discarded after the neutralization treatment. In addition, if a fluorinated cation exchange membrane having strong resistance to residual chlorine components is used for the membrane provided in the membrane electrolyzer, the life of the membrane can be extended,
Effects such as reduction of electric resistance can be obtained. As such a diaphragm, for example, "Nafion 450" manufactured by DuPont can be used.

【0032】図1に本発明の殺菌性を有する電解水製造
装置のフローシートを示す。原料の塩化ナトリウム等、
アルカリ金属またはアルカリ土類金属の塩化物水溶液は
貯蔵タンク16より定量ポンプ1、2によってそれぞれ無
隔膜電解槽6または更に隔膜電解槽11に送られる。隔膜
電解槽のアノードとカソードの間には隔膜として陽イオ
ン交換膜12が設けられている。無隔膜電解槽6及び隔膜
電解槽11は電解用直流電源装置3より電解槽と直列に抵
抗8、無隔膜電解槽6と並列に抵抗8′、隔膜電解槽11
と並列に抵抗8″を介してそれぞれの電解槽のカソード
4、9及びアノード5、10に電圧が印加されて電解され
る。
FIG. 1 shows a flow sheet of the apparatus for producing electrolyzed water having bactericidal properties of the present invention. Raw material sodium chloride, etc.
The alkali metal or alkaline earth metal chloride aqueous solution is sent from the storage tank 16 to the diaphragm-free electrolytic cell 6 or further to the diaphragm electrolytic cell 11 by the metering pumps 1 and 2, respectively. A cation exchange membrane 12 is provided as a diaphragm between the anode and the cathode of the diaphragm electrolytic cell. The diaphragm electrolyzer 6 and the diaphragm electrolyzer 11 have a resistance 8 in series with the electrolyzer and a resistance 8 'in parallel with the diaphragmless electrolyzer 6 from the DC power supply 3 for electrolysis.
In parallel with this, a voltage is applied to the cathodes 4, 9 and the anodes 5, 10 of the respective electrolytic cells via the resistors 8 "to perform electrolysis.

【0033】無隔膜電解槽6より取り出された電解液は
配管13によって隔膜電解槽11のアノード側に導入されて
電解される。この際抵抗8′及び8″を調節することに
よって酸性領域から中性領域更にアルカリ性領域迄の次
亜塩素酸水溶液を得ることができる。隔膜電解槽11のア
ノード側の電解液は配管15によって取り出され、水道水
14で混合・希釈されて殺菌性を有する電解水が調整され
る。
The electrolytic solution taken out of the non-diaphragm electrolytic cell 6 is introduced to the anode side of the diaphragm electrolytic cell 11 through a pipe 13 and electrolyzed. At this time, by adjusting the resistances 8 'and 8 ", it is possible to obtain an aqueous solution of hypochlorous acid from an acidic region to a neutral region and further to an alkaline region. The electrolytic solution on the anode side of the diaphragm electrolytic cell 11 is taken out by a pipe 15. And tap water
The mixed and diluted electrolyzed water having a sterilizing property is prepared in step 14.

【0034】本発明の殺菌性を有する電解水を得るため
には原料として、例えば、塩化ナトリウムをイオン交換
水で希釈した濃度2〜30%の塩化ナトリウム水溶液を用
いるのみであり、簡単な操作によって高い殺菌性を有す
る電解水が連続的に供給できる。このため医療分野をは
じめ調理場、研究施設、学校等種々な分野での利用が可
能である。その他のアルカリ金属またはアルカリ土類金
属の塩化物水溶液を使用する場合も同様である。
In order to obtain the electrolyzed water having bactericidal properties of the present invention, for example, only a sodium chloride aqueous solution having a concentration of 2 to 30% obtained by diluting sodium chloride with ion-exchanged water is used as a raw material. Electrolyzed water having high sterility can be continuously supplied. Therefore, it can be used in various fields such as a medical field, a kitchen, a research facility, and a school. The same applies to the case of using a chloride aqueous solution of another alkali metal or alkaline earth metal.

【0035】[0035]

【発明の実施の形態】以下、実施例を挙げて図面によっ
て本発明を更に具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described more specifically with reference to the drawings by way of examples.

【0036】(実施例1)図1に本発明の殺菌性を有す
る水の製造装置の一態様のフローシートを示す。原料の
塩化ナトリウムをイオン交換水で希釈した濃度 10 %の
水溶液は、貯蔵タンク16より定量ポンプ1及び2によっ
てそれぞれ 15 ml/minで無隔膜電解槽6及び隔膜電解槽
11に供給される。隔膜電解槽のアノードとカソードの間
には隔膜として陽イオン交換膜12が設けられている。
Example 1 FIG. 1 shows a flow sheet of an embodiment of the apparatus for producing sterilizing water of the present invention. A 10% aqueous solution obtained by diluting the raw material sodium chloride with ion-exchanged water is supplied from the storage tank 16 by the constant-rate pumps 1 and 2 at a rate of 15 ml / min.
Supplied to 11. A cation exchange membrane 12 is provided as a diaphragm between the anode and the cathode of the diaphragm electrolytic cell.

【0037】無隔膜電解槽6及び隔膜電解槽11は電解用
直流電源装置3より電解槽と直列に抵抗8、無隔膜電解
槽6と並列に抵抗8′、隔膜電解槽11と並列に抵抗8″
を介してそれぞれの電解槽のカソード4、9及びアノー
ド5、10に電圧が印加される様になっている。この試験
では抵抗8′及び抵抗8″は共にオフの状態とし、両電
解槽共に3A の電流で電解させた。無隔膜電解槽6より
取り出された電解液は配管13によって隔膜電解槽11のア
ノード側に導入されて更に電解され、隔膜電解槽のアノ
ード側の電解液は配管15によって取り出され、水道水配
管14より供給された水3リットル/minと混合・希釈され
て、殺菌性を有する電解水が調整された。尚、隔膜電解
槽のカソード側から取り出された液は中和処理後廃棄さ
れる。
The diaphragm-less electrolytic cell 6 and the diaphragm electrolytic cell 11 are provided with a resistance 8 in series with the electrolytic cell, a resistance 8 'in parallel with the diaphragm-free electrolytic cell 6, and a resistance 8 in parallel with the diaphragm electrolytic cell 11 from the DC power supply 3 for electrolysis. ″
A voltage is applied to the cathodes 4 and 9 and the anodes 5 and 10 of the respective electrolytic cells via the electrodes. In this test, the resistances 8 'and 8 "were both turned off, and both electrolytic cells were electrolyzed with a current of 3 A. The electrolytic solution taken out of the diaphragm-free electrolytic cell 6 was supplied to the anode of the diaphragm electrolytic cell 11 through a pipe 13. The electrolytic solution on the anode side of the diaphragm electrolyzer is taken out by a pipe 15 and mixed / diluted with 3 liter / min of water supplied from a tap water pipe 14 to be sterilized. The liquid taken out from the cathode side of the diaphragm electrolytic cell was discarded after neutralization.

【0038】前記で隔膜電解槽11の陽極側で生成した原
液を、水で希釈して調製された殺菌性を有する電解水の
有効塩素濃度は30 ppm、pH=6.5 、また、電解電流は3
A で何れも安定した状態に保持された。生成した水溶液
の残存塩化ナトリウム濃度は0.01 %であった。電解時
間と殺菌性を有する電解水の有効塩素濃度、 pH の測定
値及び電解電流値との関係を図2、3、4に、この水溶
液を放置した場合の有効塩素濃度の変化を図5に示す。
尚、比較のため図5には後述の実施例3、試料No.1の有
効塩素濃度の変化も併せて示した。また、図4の電解電
流値は無隔膜電解槽と隔膜電解槽(両電解槽の電源は直
列接続)の電解電流値のバラツキを示したものである。
The effective chlorine concentration of bactericidal electrolyzed water prepared by diluting the stock solution produced on the anode side of the diaphragm electrolytic cell 11 with water is 30 ppm, pH = 6.5, and the electrolysis current is 3
In A, all were kept in a stable state. The resulting aqueous solution had a residual sodium chloride concentration of 0.01%. Figures 2, 3 and 4 show the relationship between the electrolysis time and the effective chlorine concentration, the measured value of the pH and the electrolysis current value of the electrolyzed water having germicidal properties. Show.
For comparison, FIG. 5 also shows changes in the effective chlorine concentration of Example 3 and Sample No. 1 described below. The electrolysis current value in FIG. 4 shows the variation in electrolysis current value between the non-diaphragm electrolytic cell and the diaphragm electrolytic cell (the power supplies of both electrolytic cells are connected in series).

【0039】(実施例2)実施例1において、抵抗8′
及び8″を調節することによって無隔膜電解槽6の電解
電流を3A に保持して、隔膜電解槽11の電解電流を0〜
10A に変化させた。隔膜電解槽11の電解電流と、陽極側
から取り出された電解液を希釈して得られた殺菌性を有
する電解水の pH との関係を図6に、電解電流と有効塩
素濃度の関係を図7に示す。
(Embodiment 2) In Embodiment 1, the resistance 8 '
And 8 ″, the electrolysis current of the non-diaphragm electrolytic cell 6 is maintained at 3 A, and the electrolysis current of the
Changed to 10A. FIG. 6 shows the relationship between the electrolysis current of the diaphragm electrolyzer 11 and the pH of sterilizing electrolyzed water obtained by diluting the electrolyte taken out from the anode side, and FIG. 6 shows the relationship between the electrolysis current and the effective chlorine concentration. FIG.

【0040】これらの結果によって、無隔膜電解槽6及
び隔膜電解槽11のそれぞれの電解電流を調節することに
より、酸性領域から中性領域更にアルカリ性領域迄の広
範囲にわたる次亜塩素酸水溶液が得られることが分か
る。
According to these results, by adjusting the respective electrolysis currents of the diaphragm-free electrolytic cell 6 and the diaphragm electrolytic cell 11, an aqueous solution of hypochlorous acid ranging from an acidic region to a neutral region and further to an alkaline region can be obtained. You can see that.

【0041】(実施例3)図1に示した電解装置におい
て、原料の塩化ナトリウムをイオン交換水で希釈した濃
度 10 %の水溶液を、 15 ml/minで無隔膜電解槽6及び
隔膜電解槽11に供給した。無隔膜電解槽6と並列に設け
られた電気抵抗8′及び、隔膜電解槽11と並列に設けら
れた電気抵抗8″を調節して、有効塩素含有量が 6000
ppm で pH がそれぞれ異なる4種類の電解液を隔膜電解
槽11の陽極側に生成させた。この液を電解槽から 15 ml
/minで取り出した後、水道水を3リットル/minで加えて
混合・希釈し、下記の表1に示す様に有効塩素濃度が 3
0 ppm で、 pH がそれぞれ 5.83 、6.24、7.35及び 7.8
6 の殺菌性を有する電解水 (試料No.2〜No.5) を調製し
た。
Example 3 In the electrolytic apparatus shown in FIG. 1, a 10% aqueous solution obtained by diluting sodium chloride as a raw material with ion-exchanged water was applied at a rate of 15 ml / min to a non-diaphragm electrolytic cell 6 and a diaphragm electrolytic cell 11. Supplied. By adjusting the electric resistance 8 'provided in parallel with the diaphragmless electrolytic cell 6 and the electric resistance 8 "provided in parallel with the diaphragm electrolytic cell 11, the effective chlorine content becomes 6000.
Four types of electrolytes, each having a different pH in ppm, were generated on the anode side of the diaphragm electrolyzer 11. 15 ml of this solution from the electrolytic cell
After extracting at 3 / min, tap water is added at 3 liter / min to mix and dilute, and as shown in Table 1 below, the effective chlorine concentration is 3
At 0 ppm, the pH is 5.83, 6.24, 7.35 and 7.8 respectively
Electrolytic water (Sample Nos. 2 to 5) having a sterilizing property of 6 was prepared.

【0042】それぞれの殺菌性を有する電解水の貯蔵
槽、カランから流下させた時の出口の周辺、シンク内の
空気中の塩素ガス濃度を測定した。更に、カランからの
流下する水で手を洗った時、水洗前後の手の指に付着し
ているバクテリアを、培養試験のコロニー数によってし
らべて水の殺菌効果を比較した。その結果を併せて表1
に示す。
The concentration of chlorine gas in the storage tank of the electrolyzed water having sterilizing properties, around the outlet when flowing down from the curran, and in the air in the sink was measured. Furthermore, when the hands were washed with water flowing down from the karan, the bacteria attached to the fingers of the hands before and after the washing were examined according to the number of colonies in the culture test, and the bactericidal effects of the water were compared. Table 1 shows the results.
Shown in

【0043】ここで、空気中の塩素ガス濃度はガス検知
管〔 (株) ガステック製「ガス検知管No.800 」〕によ
って測定した。この検知管の検出下限は 0.5 ppmであり
検知できない場合は図表で ND と表示したが、併せて塩
素の臭気の官能試験の結果も示した。また、バクテリア
培養試験は寒天培地〔 (株) 日研生物医学研究所製「パ
ームスタンプチェック L (PSC-L)〕を使用して、同一の
指を水洗の前後に寒天培地に密着させた後、培地を恒温
器内で 37 ℃で 48 時間培養し、発生したコロニー数を
コロニーカウンターで計数した。
Here, the chlorine gas concentration in the air was measured using a gas detector tube (“Gas detector tube No. 800” manufactured by Gastec Co., Ltd.). The lower limit of detection of this detector tube is 0.5 ppm, and if it cannot be detected, it is indicated as ND in the chart, but the results of the sensory test for chlorine odor are also shown. In addition, the bacterial culture test was performed using an agar medium [Nippon Biomedical Research Institute Co., Ltd. "Palm Stamp Check L (PSC-L)"], and the same finger was brought into close contact with the agar medium before and after washing. Then, the medium was cultured at 37 ° C. for 48 hours in a thermostat, and the number of generated colonies was counted by a colony counter.

【0044】また、比較のため原料の塩化ナトリウム水
溶液を 15 ml/minで無隔膜電解槽を通さずに直接隔膜電
解槽11に供給し、陽極側に生成する電解液の有効塩素濃
度が6000 ppm となる様に電解電流を調節した。得られ
た酸性が高い電解液も電解槽から取り出し後前記と同様
に水道水で混合・希釈して、殺菌性を有する電解水を調
製した (No.1) 。この溶液の pH は 3.36 であった。こ
の溶液についても前記と同様に塩素ガス濃度の測定及び
バクテリア培養試験によって水の殺菌効果をしらべた。
その結果も表1に併せて示した。
For comparison, an aqueous solution of sodium chloride as a raw material was supplied directly to the diaphragm electrolytic cell 11 at 15 ml / min without passing through the non-diaphragm electrolytic cell, and the effective chlorine concentration of the electrolytic solution formed on the anode side was 6000 ppm. The electrolytic current was adjusted so that The obtained highly acidic electrolytic solution was also taken out of the electrolytic cell and mixed and diluted with tap water in the same manner as described above to prepare sterilized electrolytic water (No. 1). The pH of this solution was 3.36. The disinfection effect of water on this solution was examined by the measurement of chlorine gas concentration and the bacterial culture test in the same manner as described above.
The results are also shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】これらの結果によって、 pH が最も低い試
料 No.1 は流出口の周辺では塩素ガスが検出され、水洗
中には塩素ガスの臭気がかなり感じられた。培養試験に
よる殺菌効果は最も高いが、怪我をした指を洗浄する時
は痛みが感じられる。 pH が6.2〜7.3 の中性領域の電
解水では塩素ガスは検出されず、官能試験でも臭気が殆
ど感じられないかまたはほんの僅か感じられる程度であ
る。培養試験による殺菌効果も高い。
From these results, in Sample No. 1 having the lowest pH, chlorine gas was detected around the outlet, and the odor of chlorine gas was considerably felt during washing with water. The bactericidal effect is the highest in the culture test, but pain is felt when cleaning the injured finger. Chlorine gas is not detected in the electrolyzed water in the neutral range with a pH of 6.2 to 7.3, and the sensory test shows little or only slight odor. The bactericidal effect by the culture test is also high.

【0047】また、酸性を有する試料 No.1 及び No.2
で嗽をした場合には苦味がかなり感じられた。その他、
常温で放置した場合有効塩素濃度が急速に低下して殺菌
性が低下することが認められた。特に酸性が強い実施例
3の溶液は塩素ガスの臭気、怪我の部分の痛み、嗽の時
の苦味が強く感じられた。
The samples No. 1 and No. 2 having acidity
When bitten, the bitterness was quite noticeable. Others
When it was left at room temperature, it was recognized that the effective chlorine concentration was rapidly reduced and the bactericidal property was reduced. The solution of Example 3 which was particularly acidic showed a strong odor of chlorine gas, pain at the injured part, and bitterness when gargling.

【0048】一方、pHが 7.8になると塩素ガスの臭気は
殆ど感じられないが、培養試験による殺菌効果がやや低
下する傾向が認められる。アルカリ性側では塩素ガスの
臭気、怪我の部分を洗浄した時の痛み、嗽の時の苦味等
は全くなかったが、 pH が更に上昇すると培養試験によ
る殺菌性が次第に低下する。
On the other hand, when the pH becomes 7.8, the odor of chlorine gas is hardly perceived, but the bactericidal effect by the culture test tends to be slightly lowered. On the alkaline side, there was no odor of chlorine gas, no pain when washing the injured part, no bitterness when gargling, etc. However, when the pH was further increased, the bactericidal property by the culture test gradually decreased.

【0049】これらの点から本発明の殺菌性を有する電
解水の pH が 6.0以上であり、7.5 以下である範囲内に
おいては、殺菌性も高く塩素ガスの臭気も殆ど感じられ
ず、傷のいたみ嗽の苦み等の刺激性もないため、本発明
の殺菌性を有する電解水としてはより好ましい。
From these points, when the pH of the electrolyzed water having germicidal properties of the present invention is not less than 6.0 and not more than 7.5, the bactericidal properties are high, the odor of chlorine gas is hardly felt, and the wound is damaged. Since there is no irritating property such as bitterness of the gargle, the electrolyzed water having bactericidal properties of the present invention is more preferable.

【0050】(実施例4)実施例3において、有効塩素
濃度が 6000 ppm の電解液を水道水で希釈して試料No.3
を調製する時、水道水の混合比率を変更すると共に一
部の試料は微量の塩酸で pH を調製して pH が 6.5で、
有効塩素含有量がそれぞれ 0.5、3.0 、 35.0及び50.0
ppmの殺菌性を有する電解水 (試料No.6〜No.9) を調製
した。
(Example 4) In Example 3, an electrolyte having an effective chlorine concentration of 6000 ppm was diluted with tap water to prepare a sample No. 3
When preparing water, change the mixing ratio of tap water and adjust the pH of some samples with a trace amount of hydrochloric acid to pH 6.5,
Effective chlorine content of 0.5, 3.0, 35.0 and 50.0 respectively
Electrolyzed water having a bactericidal activity of ppm (samples No. 6 to No. 9) was prepared.

【0051】これらの水溶液をカランから流下させた時
の出口の周辺、シンク内の空気中の塩素ガス濃度を測定
した。更に、カランから流下する水で手を洗った時、水
洗前後の手の指に付着しているバクテリアを培養試験の
コロニー数によってしらべて、水の殺菌効果を比較し
た。その結果を併せて表2に示す。
The concentration of chlorine gas in the air around the outlet and in the sink when these aqueous solutions were allowed to flow down from the curran was measured. Furthermore, when the hands were washed with water flowing down from the karan, the bacteria attached to the fingers before and after the washing were examined by the number of colonies in the culture test, and the bactericidal effects of the water were compared. Table 2 also shows the results.

【0052】[0052]

【表2】 [Table 2]

【0053】これらの結果によって、有効塩素濃度が最
も低い 0.5 ppmの水溶液は塩素ガスの臭気は全くないが
殺菌性がやや不十分である。また、有効塩素濃度が最も
高い50.0 ppm の水溶液は殺菌性が高いが手を洗った時
塩素ガスの臭気もごく僅かであるが感じられ、手の皮膚
が少し荒れる感じがある。有効塩素含有量が 3.0 ppm及
び 38.0 ppm の水溶液は殺菌性が高く塩素ガスの臭気も
殆ど感じられず、且つ水洗時の傷の痛み、嗽をした時の
苦味等の皮膚の刺激性もない。
According to these results, the 0.5 ppm aqueous solution having the lowest available chlorine concentration has no odor of chlorine gas, but has a slightly insufficient bactericidal property. The aqueous solution of 50.0 ppm, which has the highest available chlorine concentration, is highly bactericidal, but when washing hands, the odor of chlorine gas is very slight, and the skin of the hands is slightly roughened. Aqueous solutions having an effective chlorine content of 3.0 ppm and 38.0 ppm are highly bactericidal, have almost no odor of chlorine gas, and have no skin irritation such as pain when washing with water and bitterness when gargling.

【0054】(実施例5)実施例3において調製した p
H 6.24、有効塩素濃度 30 ppm の試料 (No.3) を調製す
る時少し隔膜電解槽に塩化ナトリウム溶液を加えて、残
存塩化ナトリウム量1.0及び2.0 %の水溶液 (No.10 、N
o.11)を調製した。
Example 5 p prepared in Example 3
When preparing a sample with an effective chlorine concentration of 30 ppm (No. 3), add a small amount of sodium chloride solution to the membrane electrolyzer, and add 1.0 and 2.0% aqueous sodium chloride solution (No. 10, N
o.11) was prepared.

【0055】試料 No.3 (塩化ナトリウム含有量 0.01
%) 、No.10 及び No.11で黒色のガラス瓶を洗浄・乾燥
後観察すると、試料 No.3 を使用した場合は瓶の表面に
塩化ナトリウムの結晶の析出は全く認められないが、試
料 No.11では明らかに塩化ナトリウムの結晶の析出が認
められ、試料 No.10では極微量の結晶が認められた。
Sample No. 3 (sodium chloride content 0.01
%), And observation of the black glass bottles No. 10 and No. 11 after washing and drying. When sample No. 3 was used, no precipitation of sodium chloride crystals was observed on the bottle surface. In .11, precipitation of sodium chloride crystals was clearly observed, and in sample No. 10, a trace amount of crystals was observed.

【0056】(実施例6)図1に示した本発明の殺菌性
を有する水の製造装置の一態様のフローシートと同一の
製造装置を使用し、また、原料の塩化ナトリウムの代わ
りに塩化カリウムを使用した他は水溶液の濃度、供給速
度等は同一の条件で試験した。
Example 6 The same production apparatus as the flow sheet of one embodiment of the apparatus for producing sterilizing water of the present invention shown in FIG. 1 was used, and potassium chloride was used instead of sodium chloride as a raw material. The test was carried out under the same conditions except for the use of, the concentration of the aqueous solution, the supply rate, and the like.

【0057】前記の試験において隔膜電解槽11の陽極側
で生成した原液を、水で希釈して調製された殺菌性を有
する電解水の有効塩素濃度は30 ppm、pH=6.8 、また、
電解電流は3A で何れも安定した状態に保持された。生
成した水溶液の残存塩化カリウム濃度は 0.01 %であっ
た。電解時間と殺菌性を有する電解水の有効塩素濃度、
pH の測定値及び電解電流値との関係を図8、9、10
に、この水溶液を放置した場合の有効塩素濃度の変化を
図11に示す。尚、比較のため図11には後述の実施例8、
試料No.12 の有効塩素濃度の変化も併せて示した。ま
た、図10の電解電流値は無隔膜電解槽と隔膜電解槽(両
電解槽の電源は直列接続)の電解電流値のバラツキを示
したものである。
The effective chlorine concentration of bactericidal electrolyzed water prepared by diluting the stock solution produced on the anode side of the diaphragm electrolytic cell 11 in the above test with water is 30 ppm, pH = 6.8, and
The electrolysis current was 3 A and all were kept in a stable state. The residual potassium chloride concentration of the resulting aqueous solution was 0.01%. Effective chlorine concentration of electrolyzed water with electrolysis time and bactericidal properties,
The relationship between the measured value of pH and the electrolytic current value is shown in Figs.
FIG. 11 shows a change in effective chlorine concentration when the aqueous solution is left. For comparison, FIG.
The change of available chlorine concentration of sample No. 12 is also shown. The electrolysis current value in FIG. 10 shows the variation in electrolysis current value between the non-diaphragm electrolytic cell and the diaphragm electrolytic cell (the power supplies of both electrolytic cells are connected in series).

【0058】(実施例7)実施例6において、抵抗8′
及び8″を調節することによって無隔膜電解槽6の電解
電流を3A に保持して、隔膜電解槽11の電解電流を0〜
10A に変化させた。隔膜電解槽11の電解電流と、陽極側
から取り出された電解液を希釈して得られた殺菌性を有
する電解水の pH との関係を図12に、電解電流と有効塩
素濃度の関係を図13に示す。
(Embodiment 7) In Embodiment 6, the resistor 8 '
And 8 ″, the electrolysis current of the non-diaphragm electrolytic cell 6 is maintained at 3 A, and the electrolysis current of the
Changed to 10A. Fig. 12 shows the relationship between the electrolysis current in the diaphragm electrolyzer 11 and the pH of sterilized electrolyzed water obtained by diluting the electrolyte taken out from the anode side, and Fig. 12 shows the relationship between the electrolysis current and the effective chlorine concentration. See Figure 13.

【0059】これらの結果によって、無隔膜電解槽6及
び隔膜電解槽11のそれぞれの電解電流を調節することに
より、酸性領域から中性領域更にアルカリ性領域迄の広
範囲にわたる次亜塩素酸水溶液が得られることが分か
る。
Based on these results, by adjusting the respective electrolysis currents of the diaphragm-free electrolytic cell 6 and the diaphragm electrolytic cell 11, an aqueous solution of hypochlorous acid can be obtained over a wide range from an acidic region to a neutral region and further to an alkaline region. You can see that.

【0060】(実施例8)図1に示した電解装置におい
て、原料の塩化カリウムをイオン交換水で希釈した濃度
10 %の水溶液を、 15 ml/minで無隔膜電解槽6及び隔
膜電解槽11に供給した。無隔膜電解槽6と並列に設けら
れた電気抵抗8′及び、隔膜電解槽11と並列に設けられ
た電気抵抗8″を調節して、有効塩素含有量が 6000 pp
m で pH がそれぞれ異なる4種類の電解液を隔膜電解槽
11の陽極側に生成させた。この液を電解槽から 15 ml/m
inで取り出した後、水道水を3リットル/minで加えて混
合・希釈し、下記の表1に示す様に有効塩素濃度が 30
ppm で、 pH がそれぞれ 5.57、6.56、7.41及び 7.92
の殺菌性を有する電解水 (試料No.13 〜No.16)を調製し
た。
Example 8 In the electrolytic apparatus shown in FIG. 1, the concentration of the raw material potassium chloride diluted with ion-exchanged water was used.
A 10% aqueous solution was supplied to the diaphragm-free electrolytic cell 6 and the diaphragm electrolytic cell 11 at a rate of 15 ml / min. By adjusting the electric resistance 8 'provided in parallel with the diaphragmless electrolytic cell 6 and the electric resistance 8 "provided in parallel with the diaphragm electrolytic cell 11, the effective chlorine content becomes 6000 pp.
and 4 kinds of electrolytes with different pH values
Generated on the anode side of 11. Remove 15 ml / m of this solution from the electrolytic cell.
After taking it out, tap water was added at 3 liter / min to mix and dilute, and as shown in Table 1 below, the effective chlorine concentration was 30
In ppm, the pH is 5.57, 6.56, 7.41, and 7.92, respectively.
The electrolyzed water (Sample Nos. 13 to 16) having the sterilization property was prepared.

【0061】それぞれの殺菌性を有する電解水の貯蔵
槽、カランから流下させた時の出口の周辺、シンク内の
空気中の塩素ガス濃度を測定した。更に、カランからの
流下する水で手を洗った時、水洗前後の手の指に付着し
ているバクテリアを、培養試験のコロニー数によってし
らべて水の殺菌効果を比較した。その結果を併せて表3
に示す。ここで、空気中の塩素ガス濃度の測定及びバク
テリア培養試験による水の殺菌効果は、前述の実施例3
に記載した方法によっておこなった。
The concentration of chlorine gas in the storage tank of the electrolyzed water having sterilizing properties, around the outlet when flowing down from the curran, and in the air in the sink was measured. Furthermore, when the hands were washed with water flowing down from the karan, the bacteria attached to the fingers of the hands before and after the washing were examined according to the number of colonies in the culture test, and the bactericidal effects of the water were compared. Table 3 shows the results.
Shown in Here, the measurement of the chlorine gas concentration in the air and the bactericidal effect of the water by the bacterial culture test were performed according to Example 3 described above.
The method was carried out according to the method described in (1).

【0062】また、比較のため原料の塩化カリウム水溶
液を 15 ml/minで無隔膜電解槽を通さずに直接隔膜電解
槽11に供給し、陽極側に生成する電解液の有効塩素濃度
が 6000 ppmとなる様に電解電流を調節した。得られた
酸性が高い電解液も電解槽から取り出し後前記と同様に
水道水で混合・希釈して、殺菌性を有する電解水を調製
した (No.12)。この溶液の pH は 3.35 であった。この
溶液についても前記と同様に塩素ガス濃度の測定及びバ
クテリア培養試験によって水の殺菌効果をしらべた。そ
の結果も表3に併せて示した。
For comparison, an aqueous solution of potassium chloride as a raw material was supplied directly to the diaphragm electrolytic cell 11 at a rate of 15 ml / min without passing through the diaphragm-free electrolytic cell, and the effective chlorine concentration of the electrolytic solution formed on the anode side was 6000 ppm. The electrolytic current was adjusted so that The obtained highly acidic electrolytic solution was also taken out of the electrolytic cell and mixed and diluted with tap water in the same manner as described above to prepare sterilized electrolytic water (No. 12). The pH of this solution was 3.35. The disinfection effect of water on this solution was examined by the measurement of chlorine gas concentration and the bacterial culture test in the same manner as described above. The results are also shown in Table 3.

【0063】[0063]

【表3】 [Table 3]

【0064】これらの結果によって、 pH が最も低い試
料 No.12 は流出口の周辺では塩素ガスが検出され、水
洗中には塩素ガスの臭気がかなり感じられた。培養試験
による殺菌効果は最も高いが、怪我をした指を洗浄する
時は痛みが感じられる。 pH が6.5〜7.4 の中性領域の
電解水では塩素ガスは検出されず、官能試験でも臭気が
殆ど感じられないかまたはほんの僅か感じられる程度で
ある。培養試験による殺菌効果も高い。
From these results, in Sample No. 12 having the lowest pH, chlorine gas was detected around the outlet, and the odor of chlorine gas was considerably felt during washing with water. The bactericidal effect is the highest in the culture test, but pain is felt when cleaning the injured finger. Chlorine gas is not detected in the electrolyzed water in the neutral range at a pH of 6.5 to 7.4, and little or no odor is felt in the sensory test. The bactericidal effect by the culture test is also high.

【0065】また、酸性を有する試料 No.12 及び No.1
3で嗽をした場合には苦味がかなり感じられた。その
他、常温で放置した場合有効塩素濃度が急速に低下して
殺菌性が低下することが認められた。特に酸性が強い実
施例8の溶液は塩素ガスの臭気、怪我の部分の痛み、嗽
の時の苦味が強く感じられた。
The samples No. 12 and No. 1 having acidity
In the case of gargling with 3, the bitterness was considerably felt. In addition, when left at room temperature, it was recognized that the effective chlorine concentration rapidly decreased and the bactericidal property decreased. In particular, the solution of Example 8 having a strong acidity strongly felt the odor of chlorine gas, the pain at the injured portion, and the bitterness at the time of gargling.

【0066】一方、pHが 7.9になると塩素ガスの臭気は
殆ど感じられないが、培養試験による殺菌効果がやや低
下する傾向が認められる。アルカリ性側では塩素ガスの
臭気、怪我の部分を洗浄した時の痛み、嗽の時の苦味等
は全くなかったが、 pH が更に上昇すると培養試験によ
る殺菌性が次第に低下する。
On the other hand, when the pH becomes 7.9, the odor of chlorine gas is hardly felt, but the bactericidal effect by the culture test tends to be slightly lowered. On the alkaline side, there was no odor of chlorine gas, no pain when washing the injured part, no bitterness when gargling, etc. However, when the pH was further increased, the bactericidal property by the culture test gradually decreased.

【0067】これらの点から本発明の殺菌性を有する電
解水の pH が 6.0以上であり、7.5 以下である範囲内に
おいては、殺菌性も高く塩素ガスの臭気も殆ど感じられ
ず、傷のいたみ嗽の苦み等の刺激性もないため、本発明
の殺菌性を有する電解水としてはより好ましい。
From these points, when the pH of the electrolyzed water having germicidal properties of the present invention is in the range of 6.0 or more and 7.5 or less, the bactericidal properties are high, the odor of chlorine gas is hardly felt, and the wound is damaged. Since there is no irritating property such as bitterness of the gargle, the electrolyzed water having bactericidal properties of the present invention is more preferable.

【0068】(実施例9)実施例8において、有効塩素
濃度が 6000 ppm の電解液を水道水で希釈して試料No.1
4 を調製する時、水道水の混合比率を変更すると共に一
部の試料は微量の塩酸で pH を調製して pH が 6.5で、
有効塩素含有量がそれぞれ 0.5、5.0 、30.0及び 50.0
ppm の殺菌性を有する電解水 (試料No.17 〜No.20)を調
製した。
(Example 9) In Example 8, an electrolyte having an effective chlorine concentration of 6000 ppm was diluted with tap water to prepare sample No. 1.
When preparing 4, change the mixing ratio of tap water and adjust the pH of some samples with a trace amount of hydrochloric acid to a pH of 6.5.
Effective chlorine content is 0.5, 5.0, 30.0 and 50.0 respectively
Electrolyzed water having a bactericidal activity of ppm (samples No. 17 to No. 20) was prepared.

【0069】これらの水溶液をカランから流下させた時
の出口の周辺、シンク内の空気中の塩素ガス濃度を測定
した。更に、カランから流下する水で手を洗った時、水
洗前後の手の指に付着しているバクテリアを培養試験の
コロニー数によってしらべて、水の殺菌効果を比較し
た。その結果を併せて表4に示す。
The concentration of chlorine gas in the air around the outlet and in the sink when these aqueous solutions were allowed to flow down from the curran was measured. Furthermore, when the hands were washed with water flowing down from the karan, the bacteria attached to the fingers before and after the washing were examined by the number of colonies in the culture test, and the bactericidal effects of the water were compared. Table 4 also shows the results.

【0070】[0070]

【表4】 [Table 4]

【0071】これらの結果によって、有効塩素濃度が最
も低い 0.5 ppmの水溶液は塩素ガスの臭気は全くないが
殺菌性がやや不十分である。また、有効塩素濃度が最も
高い50.0 ppm の水溶液は殺菌性が高いが手を洗った時
塩素ガスの臭気もごく僅かであるが感じられ、手の皮膚
が少し荒れる感じがある。有効塩素含有量が 5.0 ppm及
び 30.0 ppm の水溶液は殺菌性が高く塩素ガスの臭気も
殆ど感じられず、且つ水洗時の傷の痛み、嗽をした時の
苦味等の皮膚の刺激性もない。
According to these results, the aqueous solution of 0.5 ppm having the lowest available chlorine concentration has no odor of chlorine gas but has a slightly insufficient bactericidal property. The aqueous solution of 50.0 ppm, which has the highest available chlorine concentration, is highly bactericidal, but when washing hands, the odor of chlorine gas is very slight, and the skin of the hands is slightly roughened. Aqueous solutions having an effective chlorine content of 5.0 ppm and 30.0 ppm are highly bactericidal, have almost no odor of chlorine gas, and have no skin irritation such as wound pain when washing with water and bitterness when gargling.

【0072】(実施例10)実施例8において調製した
pH 6.56、有効塩素濃度 30 ppm の試料 (No.14)を調製
する時少し隔膜電解槽に塩化カリウム溶液を加えて、残
存塩化カリウム量 1.0及び2.0 %の水溶液 (No.21 、N
o.22)を調製した。
Example 10 Prepared in Example 8
When preparing a sample (No. 14) with a pH of 6.56 and an effective chlorine concentration of 30 ppm, add a potassium chloride solution to the diaphragm electrolyzer a little and add an aqueous solution of 1.0 and 2.0% residual potassium chloride (No. 21, N
o.22) was prepared.

【0073】試料 No.14 (塩化カリウム含有量 0.01
%) 、No.21 及び No.22で黒色のガラス瓶を洗浄・乾燥
後観察すると、試料 No.14 を使用した場合は瓶の表面
に塩化カリウムの結晶の析出は全く認められないが、試
料 No.22では明らかに塩化カリウムの結晶の析出が認め
られ、試料 No.21では極微量の結晶が認められた。
Sample No. 14 (potassium chloride content 0.01
%), And observation after washing and drying the black glass bottles with No. 21 and No. 22, no potassium chloride crystals were observed on the bottle surface when sample No. 14 was used. In .22, crystals of potassium chloride were clearly precipitated, and in Sample No. 21, a trace amount of crystals was observed.

【0074】(実施例11)図1に示した本発明の殺菌
性を有する水の製造装置の一態様のフローシートと同一
の製造装置を使用し、また、原料の塩化ナトリウムの代
わりに塩化ナトリウムと塩化カリウムが 1:1 の割合の
混合物を使用した他は水溶液の濃度、供給速度等は同一
の条件で試験した。
Example 11 The same production apparatus as the flow sheet of one embodiment of the apparatus for producing sterilizing water of the present invention shown in FIG. 1 was used, and sodium chloride was used instead of sodium chloride as a raw material. The concentration and supply rate of the aqueous solution were tested under the same conditions except that a mixture of 1: 1 and potassium chloride was used.

【0075】前記の試験において隔膜電解槽11の陽極側
で生成した原液を、水で希釈して調製された殺菌性を有
する電解水の有効塩素濃度は30 ppm、pH=6.7 、また、
電解電流は3A で何れも安定した状態に保持された。生
成した水溶液の残存塩化ナトリウム及び塩化カリウム濃
度は合計 0.01 %であった。電解時間と殺菌性を有する
電解水の有効塩素濃度、 pH の測定値及び電解電流値と
の関係を図14、15、16に、この水溶液を放置した場合の
有効塩素濃度の変化を図17に示す。尚、比較のため図17
には後述の実施例13、試料No.23 の有効塩素濃度の変化
も併せて示した。また、図16の電解電流値は無隔膜電解
槽と隔膜電解槽(両電解槽の電源は直列接続)の電解電
流値のバラツキを示したものである。
The effective chlorine concentration of bactericidal electrolyzed water prepared by diluting the stock solution produced on the anode side of the diaphragm electrolytic cell 11 in the above test with water is 30 ppm, pH = 6.7, and
The electrolysis current was 3 A and all were kept in a stable state. The concentration of residual sodium chloride and potassium chloride in the resulting aqueous solution was 0.01% in total. Figures 14, 15, and 16 show the relationship between the electrolysis time and the effective chlorine concentration, the measured value of pH, and the electrolysis current value of the electrolyzed water having bactericidal properties, and Fig. 17 shows the change in the effective chlorine concentration when this aqueous solution was left standing. Show. For comparison, FIG.
Also shows the change in the effective chlorine concentration of Example 13 and Sample No. 23 described later. The electrolysis current value in FIG. 16 shows the variation in electrolysis current value between the non-diaphragm electrolytic cell and the diaphragm electrolytic cell (the power supplies of both electrolytic cells are connected in series).

【0076】(実施例12)実施例11において、抵抗
8′及び8″を調節することによって無隔膜電解槽6の
電解電流を3A に保持して、隔膜電解槽11の電解電流を
0〜10A に変化させた。隔膜電解槽11の電解電流と、陽
極側から取り出された電解液を希釈して得られた殺菌性
を有する電解水の pH との関係を図18に、電解電流と有
効塩素濃度の関係を図19に示す。
(Embodiment 12) In Embodiment 11, the electrolysis current of the diaphragm electrolyzer 6 is maintained at 3 A by adjusting the resistances 8 'and 8 ", and the electrolysis current of the diaphragm electrolyzer 11 is set to 0 to 10A. FIG. 18 shows the relationship between the electrolysis current of the diaphragm electrolyzer 11 and the pH of sterilizing electrolyzed water obtained by diluting the electrolyte taken out from the anode side. FIG. 19 shows the relationship between the concentrations.

【0077】これらの結果によって、無隔膜電解槽6及
び隔膜電解槽11のそれぞれの電解電流を調節することに
より、酸性領域から中性領域更にアルカリ性領域迄の広
範囲にわたる次亜塩素酸水溶液が得られることが分か
る。
From these results, by adjusting the respective electrolysis currents of the diaphragm-free electrolytic cell 6 and the diaphragm electrolytic cell 11, an aqueous hypochlorous acid solution ranging from an acidic region to a neutral region and further to an alkaline region can be obtained. You can see that.

【0078】(実施例13)図1に示した電解装置にお
いて、原料の塩化ナトリウム及び塩化カリウム (1:1)を
イオン交換水で希釈した濃度 10 %の水溶液を、 15 ml
/minで無隔膜電解槽6及び隔膜電解槽11に供給した。無
隔膜電解槽6と並列に設けられた電気抵抗8′及び、隔
膜電解槽11と並列に設けられた電気抵抗8″を調節し
て、有効塩素含有量が 6000 ppm で pH がそれぞれ異な
る4種類の電解液を隔膜電解槽11の陽極側に生成させ
た。この液を電解槽から 15 ml/minで取り出した後、水
道水を3リットル/minで加えて混合・希釈し、下記の表
1に示す様に有効塩素濃度が 30 ppm で、 pH がそれぞ
れ 5.49、6.34、7.26及び 7.81 の殺菌性を有する電解
水(試料No.24 〜No.27)を調製した。
Example 13 In the electrolysis apparatus shown in FIG. 1, 15 ml of a 10% aqueous solution obtained by diluting sodium chloride and potassium chloride (1: 1) as raw materials with ion-exchanged water was used.
The solution was supplied to the diaphragm-free electrolytic cell 6 and the diaphragm electrolytic cell 11 at a rate of / min. By adjusting the electric resistance 8 'provided in parallel with the non-diaphragm electrolytic cell 6 and the electric resistance 8 "provided in parallel with the diaphragm electrolytic cell 11, four kinds of effective chlorine contents of 6000 ppm and different pH are provided. Was produced at the anode side of the diaphragm electrolyzer 11. This solution was taken out of the electrolyzer at 15 ml / min, and then mixed and diluted by adding tap water at 3 liter / min. As shown in Table 2, electrolyzed water (sample Nos. 24 to 27) having an effective chlorine concentration of 30 ppm and a pH of 5.49, 6.34, 7.26, and 7.81 was prepared.

【0079】それぞれの殺菌性を有する電解水の貯蔵
槽、カランから流下させた時の出口の周辺、シンク内の
空気中の塩素ガス濃度を測定した。更に、カランからの
流下する水で手を洗った時、水洗前後の手の指に付着し
ているバクテリアを、培養試験のコロニー数によってし
らべて水の殺菌効果を比較した。その結果を併せて表5
に示す。ここで、空気中の塩素ガス濃度の測定及びバク
テリア培養試験による水の殺菌効果は、前記実施例3に
記載した方法によっておこなった。
The concentration of chlorine gas in the storage tank of the electrolyzed water having sterilizing properties, around the outlet when flowing down from the curran, and in the air in the sink were measured. Furthermore, when the hands were washed with water flowing down from the karan, the bacteria attached to the fingers of the hands before and after the washing were examined according to the number of colonies in the culture test, and the bactericidal effects of the water were compared. Table 5 shows the results.
Shown in Here, the measurement of the chlorine gas concentration in the air and the sterilization effect of water by the bacterial culture test were performed by the method described in Example 3.

【0080】また、比較のため原料の塩化ナトリウムと
塩化カリウムの混合水溶液を 15 ml/minで無隔膜電解槽
を通さずに直接隔膜電解槽11に供給し、陽極側に生成す
る電解液の有効塩素濃度が 6000 ppmとなる様に電解電
流を調節した。得られた酸性が高い電解液も電解槽から
取り出し後前記と同様に水道水で混合・希釈して、殺菌
性を有する電解水を調製した (No.23)。この溶液の pH
は 3.33 であった。この溶液についても前記と同様に塩
素ガス濃度の測定及びバクテリア培養試験によって水の
殺菌効果をしらべた。その結果も表5に併せて示した。
For comparison, a mixed aqueous solution of sodium chloride and potassium chloride as a raw material was supplied directly to the diaphragm electrolytic cell 11 at a rate of 15 ml / min without passing through the non-diaphragm electrolytic cell, and the effective amount of the electrolytic solution generated on the anode side was reduced. The electrolytic current was adjusted so that the chlorine concentration was 6000 ppm. The obtained highly acidic electrolytic solution was also taken out of the electrolytic cell and mixed and diluted with tap water in the same manner as described above to prepare sterilized electrolytic water (No. 23). PH of this solution
Was 3.33. The disinfection effect of water on this solution was examined by the measurement of chlorine gas concentration and the bacterial culture test in the same manner as described above. The results are also shown in Table 5.

【0081】[0081]

【表5】 [Table 5]

【0082】これらの結果によって、 pH が最も低い試
料 No.23 は流出口の周辺では塩素ガスが検出され、水
洗中には塩素ガスの臭気がかなり感じられた。培養試験
による殺菌効果は最も高いが、怪我をした指を洗浄する
時は痛みが感じられる。 pH が6.3〜7.2 の中性領域の
電解水では塩素ガスは検出されず、官能試験でも臭気が
殆ど感じられないかまたはほんの僅か感じられる程度で
ある。培養試験による殺菌効果も高い。
From these results, in Sample No. 23 having the lowest pH, chlorine gas was detected around the outlet, and the odor of chlorine gas was considerably felt during washing with water. The bactericidal effect is the highest in the culture test, but pain is felt when cleaning the injured finger. Chlorine gas is not detected in the neutral electrolyzed water with a pH of 6.3 to 7.2, and the sensory test shows little or no odor. The bactericidal effect by the culture test is also high.

【0083】また、酸性を有する試料 No.23 及び No.2
4で嗽をした場合には苦味がかなり感じられた。その
他、常温で放置した場合有効塩素濃度が急速に低下して
殺菌性が低下することが認められた。特に酸性が強い実
施例13の溶液は塩素ガスの臭気、怪我の部分の痛み、嗽
の時の苦味が強く感じられた。
The samples No. 23 and No. 2 having acidity
In the case of gargling with 4, the bitterness was considerably felt. In addition, when left at room temperature, it was recognized that the effective chlorine concentration rapidly decreased and the bactericidal property decreased. The solution of Example 13 which was particularly acidic showed a strong odor of chlorine gas, pain at the injured portion, and bitterness when gargling.

【0084】一方、pHが 7.8になると塩素ガスの臭気は
殆ど感じられないが、培養試験による殺菌効果がやや低
下する傾向が認められる。アルカリ性側では塩素ガスの
臭気、怪我の部分を洗浄した時の痛み、嗽の時の苦味等
は全くなかったが、 pH が更に上昇すると培養試験によ
る殺菌性が次第に低下する。
On the other hand, when the pH becomes 7.8, the odor of chlorine gas is hardly felt, but the bactericidal effect by the culture test tends to be slightly lowered. On the alkaline side, there was no odor of chlorine gas, no pain when washing the injured part, no bitterness when gargling, etc. However, when the pH was further increased, the bactericidal property by the culture test gradually decreased.

【0085】これらの点から本発明の殺菌性を有する電
解水の pH が 6.0以上であり、7.5 以下である範囲内に
おいては、殺菌性も高く塩素ガスの臭気も殆ど感じられ
ず、傷のいたみ嗽の苦み等の刺激性もないため、本発明
の殺菌性を有する電解水としてはより好ましい。
From these points, when the pH of the electrolyzed water having germicidal properties of the present invention is in the range of 6.0 or more and 7.5 or less, the bactericidal properties are high, the odor of chlorine gas is hardly felt, and the wound is damaged. Since there is no irritating property such as bitterness of the gargle, the electrolyzed water having bactericidal properties of the present invention is more preferable.

【0086】(実施例14)実施例13において、有効塩
素濃度が 6000 ppm の電解液を水道水で希釈して試料N
o.25 を調製する時、水道水の混合比率を変更すると共
に一部の試料は微量の塩酸で pH を調製して pH が 6.7
で、有効塩素含有量がそれぞれ 0.5、4.0 、33.0及び5
0.0 ppmの殺菌性を有する電解水 (試料No.28 〜No.31)
を調製した。
(Example 14) In Example 13, an electrolyte having an effective chlorine concentration of 6000 ppm was diluted with tap water to prepare a sample N.
When preparing o.25, the mixing ratio of tap water was changed and some samples were adjusted to pH 6.7 with a small amount of hydrochloric acid.
And the effective chlorine content is 0.5, 4.0, 33.0 and 5 respectively.
Electrolyzed water with bactericidal properties of 0.0 ppm (Sample Nos. 28 to 31)
Was prepared.

【0087】これらの水溶液をカランから流下させた時
の出口の周辺、シンク内の空気中の塩素ガス濃度を測定
した。更に、カランから流下する水で手を洗った時、水
洗前後の手の指に付着しているバクテリアを培養試験の
コロニー数によってしらべて、水の殺菌効果を比較し
た。その結果を併せて表6に示す。
The concentration of chlorine gas in the air around the outlet and in the sink when these aqueous solutions were allowed to flow down from the curran was measured. Furthermore, when the hands were washed with water flowing down from the karan, the bacteria attached to the fingers before and after the washing were examined by the number of colonies in the culture test, and the bactericidal effects of the water were compared. Table 6 also shows the results.

【0088】[0088]

【表6】 [Table 6]

【0089】これらの結果によって、有効塩素濃度が最
も低い 0.5 ppmの水溶液は塩素ガスの臭気は全くないが
殺菌性がやや不十分である。また、有効塩素濃度が最も
高い50.0 ppm の水溶液は殺菌性が高いが手を洗った時
塩素ガスの臭気もごく僅かであるが感じられ、手の皮膚
が少し荒れる感じがある。有効塩素含有量が 4.0 ppm及
び 30.0 ppm の水溶液は殺菌性が高く塩素ガスの臭気も
殆ど感じられず、且つ水洗時の傷の痛み、嗽をした時の
苦味等の皮膚の刺激性もない。
According to these results, the 0.5 ppm aqueous solution having the lowest available chlorine concentration has no odor of chlorine gas, but has a slightly insufficient bactericidal property. The aqueous solution of 50.0 ppm, which has the highest available chlorine concentration, is highly bactericidal, but when washing hands, the odor of chlorine gas is very slight, and the skin of the hands is slightly roughened. Aqueous solutions with an effective chlorine content of 4.0 ppm and 30.0 ppm are highly bactericidal, have almost no odor of chlorine gas, and have no skin irritation such as wound pain when washed with water, bitterness when gargling, and the like.

【0090】(実施例15)実施例13において調製した
pH 6.34、有効塩素濃度 30 ppm の試料 (No.25)を調製
する時少し隔膜電解槽に塩化ナトリウム及び塩化カリウ
ム溶液(1:1) を加えて、残存する塩化ナトリウム及び塩
化カリウム量の合計が 1.0及び2.0 %の水溶液(No.32
、No.33)を調製した。
Example 15 Prepared in Example 13
When preparing a sample (No. 25) with a pH of 6.34 and an effective chlorine concentration of 30 ppm, add a little sodium chloride and potassium chloride solution (1: 1) to the diaphragm electrolyzer to reduce the total amount of remaining sodium chloride and potassium chloride. 1.0 and 2.0% aqueous solution (No. 32
, No. 33).

【0091】試料 No.25 (塩化ナトリウム及び塩化カリ
ウム含有量 0.01 %) 、No.32 及びNo.33で黒色のガラ
ス瓶を洗浄・乾燥後観察すると、試料 No.25 を使用し
た場合は瓶の表面に塩化ナトリウム及び塩化カリウムの
結晶の析出は全く認められないが、試料 No.33では明ら
かに塩化ナトリウム及び塩化カリウムの結晶の析出が認
められ、試料 No.32では極微量の結晶が認められた。
When the black glass bottles of Sample No. 25 (sodium chloride and potassium chloride content: 0.01%), No. 32 and No. 33 were washed and dried and observed, the surface of the bottle was found to be sample No. 25 when used. No precipitation of crystals of sodium chloride and potassium chloride was observed in Sample No. 33, but precipitation of crystals of sodium chloride and potassium chloride was clearly observed in Sample No. 33, and trace amounts of crystals were recognized in Sample No. 32 .

【0092】[0092]

【発明の効果】本発明の次亜塩素酸を含む殺菌性電解水
は塩化ナトリウム、塩化カリウム、塩化カルシウム及び
塩化マグネシウムの水溶液のみから、無隔膜電解槽及び
隔膜電解槽を組み合わせた電解工程によって容易に得ら
れる。本発明の電解工程で生成した電解水は高い殺菌性
を有するため通常は使用目的に応じて希釈して使用され
る。この様にして調製された水溶液は塩素ガスの臭気が
殆どなく、嗽の時の苦味或いは傷の部分を洗って殺菌す
る時も痛み等の刺激性がなく、また長期間保存しても殺
菌性が低下せず保存性に優れている。更に、本発明発明
は小さな装置にも適用可能であり医療分野をはじめ調理
場、学校等種々な分野での利用が可能である。
The germicidal electrolyzed water containing hypochlorous acid of the present invention can be easily prepared from only aqueous solutions of sodium chloride, potassium chloride, calcium chloride and magnesium chloride by an electrolysis process combining a diaphragm-free electrolytic cell and a diaphragm electrolytic cell. Is obtained. Since the electrolyzed water generated in the electrolysis step of the present invention has a high bactericidal property, it is usually used after being diluted according to the purpose of use. The aqueous solution prepared in this way has almost no odor of chlorine gas, has no irritating effect such as pain when washing and sterilizing bitterness or wounds at the time of gargling, and sterilizing property even when stored for a long time. Is excellent and has excellent storage stability. Further, the present invention can be applied to a small device, and can be used in various fields such as a cooking field, a school, and the like in the medical field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の殺菌効果を有する水の製造装置の一態
様のフローシートを示す。
FIG. 1 shows a flow sheet of an embodiment of the apparatus for producing water having a bactericidal effect of the present invention.

【符号の説明】[Explanation of symbols]

1 、2 塩化ナトリウム水溶液供給ポンプ 3 電解用直流電源装置 4 、9 カソード 5 、10 アノード 6 無隔膜電解槽 7 排水管 8 、8 ′、8 ″抵抗装置 11 隔膜電解槽 12 陽イオン交換膜 (隔膜) 13 無隔膜電解槽取り出し液の配管 14 水道水配管 15 隔膜電解槽のアノード側の取り出し液の配管 16 塩化ナトリウム水溶液貯蔵槽 17 殺菌性を有する電解水取出口 1, 2 Sodium chloride aqueous solution supply pump 3 DC power supply for electrolysis 4, 9 Cathode 5, 10 Anode 6 Non-diaphragm electrolytic cell 7 Drain pipe 8, 8 ', 8 "resistance device 11 Diaphragm electrolytic cell 12 Cation exchange membrane (diaphragm) 13) Piping of liquid taken out of non-diaphragm electrolytic cell 14 Tap water pipe 15 Piping of liquid taken out on anode side of diaphragm electrolytic cell 16 Sodium chloride aqueous solution storage tank 17 Disinfecting electrolytic water outlet

【図2】電解時間と殺菌性を有する電解水の有効塩素含
有量との関係を示す(0〜60時間)。
FIG. 2 shows the relationship between the electrolysis time and the effective chlorine content of electrolyzed water having bactericidal properties (0 to 60 hours).

【図3】電解時間と殺菌性を有する電解水の pH との関
係を示す。
FIG. 3 shows the relationship between electrolysis time and pH of electrolyzed water having bactericidal properties.

【図4】電解時間と電解電流値との関係を示す。FIG. 4 shows a relationship between electrolysis time and electrolysis current value.

【図5】放置日数と殺菌性を有する電解水の有効塩素含
有量との関係を示す(0〜100 日)。
FIG. 5 shows the relationship between the number of days left and the effective chlorine content of electrolyzed water having bactericidal properties (0 to 100 days).

【図6】隔膜電解槽の電解電流と陽極側電解液の pH と
の関係を示す。
FIG. 6 shows the relationship between the electrolysis current in the diaphragm electrolyzer and the pH of the anode-side electrolyte.

【図7】隔膜電解槽の電解電流と陽極側電解液の有効塩
素濃度との関係を示す。
FIG. 7 shows the relationship between the electrolysis current in the diaphragm electrolyzer and the effective chlorine concentration of the anode-side electrolyte.

【図8】電解時間と殺菌性を有する電解水の有効塩素含
有量との関係を示す(0〜60時間)。
FIG. 8 shows the relationship between the electrolysis time and the effective chlorine content of electrolyzed water having bactericidal properties (0 to 60 hours).

【図9】電解時間と殺菌性を有する電解水の pH との関
係を示す。
FIG. 9 shows the relationship between electrolysis time and pH of electrolyzed water having bactericidal properties.

【図10】電解時間と電解電流値との関係を示す。FIG. 10 shows the relationship between electrolysis time and electrolysis current value.

【図11】放置日数と殺菌性を有する電解水の有効塩素
含有量との関係を示す(0〜100 日)。
FIG. 11 shows the relationship between the number of days left and the effective chlorine content of electrolyzed water having bactericidal properties (0 to 100 days).

【図12】隔膜電解槽の電解電流と陽極側電解液の pH
との関係を示す。
FIG. 12: Electrolysis current of diaphragm cell and pH of anode-side electrolyte
The relationship is shown below.

【図13】隔膜電解槽の電解電流と陽極側電解液の有効
塩素濃度との関係を示す。
FIG. 13 shows the relationship between the electrolysis current in the diaphragm electrolyzer and the effective chlorine concentration of the anode-side electrolyte.

【図14】電解時間と殺菌性を有する電解水の有効塩素
含有量との関係を示す(0〜60時間)。
FIG. 14 shows the relationship between the electrolysis time and the effective chlorine content of electrolyzed water having bactericidal properties (0 to 60 hours).

【図15】電解時間と殺菌性を有する電解水の pH との
関係を示す。
FIG. 15 shows a relationship between electrolysis time and pH of electrolyzed water having bactericidal properties.

【図16】電解時間と電解電流値との関係を示す。FIG. 16 shows a relationship between electrolysis time and electrolysis current value.

【図17】放置日数と殺菌性を有する電解水の有効塩素
含有量との関係を示す(0〜100 日)。
FIG. 17 shows the relationship between the number of days left and the effective chlorine content of electrolyzed water having bactericidal properties (0 to 100 days).

【図18】隔膜電解槽の電解電流と陽極側電解液の pH
との関係を示す。
FIG. 18: Electrolysis current in diaphragm cell and pH of anode side electrolyte
The relationship is shown below.

【図19】隔膜電解槽の電解電流と陽極側電解液の有効
塩素濃度との関係を示す。
FIG. 19 shows the relationship between the electrolysis current in the diaphragm electrolyzer and the effective chlorine concentration of the anode-side electrolyte.

【符号の説明】[Explanation of symbols]

1 殺菌性を有する電解水 (pH ; 6.24 ) 2 〃 〃 〃 (pH ; 3.36 ) 3 殺菌性を有する電解水 (pH ; 6.56 ) 4 〃 〃 〃 (pH ; 3.35 ) 5 殺菌性を有する電解水 (pH ; 6.34 ) 6 〃 〃 〃 (pH ; 3.33 ) 1 Bactericidal electrolyzed water (pH; 6.24) 2 2 〃 (pH; 3.36) 3 Bactericidal electrolyzed water (pH; 6.56) 4 〃 〃 (pH; 3.35) 5 Bactericidal electrolyzed water (pH; 6.35) pH; 6.34) 6 〃 〃 pH (pH; 3.33)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25B 9/00 A23L 3/358 // A23L 3/358 C25B 9/00 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C25B 9/00 A23L 3/358 // A23L 3/358 C25B 9/00 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ナトリウム、カリウム、カルシウム及び
マグネシウムからなる群より選ばれた、少なくとも1つ
の金属の塩化物の水溶液を、無隔膜電解槽で電気分解し
て生成した電解液を隔膜電解槽の陽極側に導入し、また
は更にナトリウム、カリウム、カルシウム及びマグネシ
ウムからなる群より選ばれた、少なくとも1つの金属の
塩化物の水溶液を、該隔膜電解槽に導入して電気分解す
ることによって、次亞塩素酸を含有せしめることを特徴
とする殺菌性を有する電解水の製造方法。
1. An electrolytic solution produced by electrolyzing an aqueous solution of at least one metal chloride selected from the group consisting of sodium, potassium, calcium and magnesium in a non-diaphragm electrolytic cell, By introducing an aqueous solution of a chloride of at least one metal selected from the group consisting of sodium, potassium, calcium and magnesium into the membrane electrolyzer and electrolyzing it. A method for producing electrolyzed water having a bactericidal property, characterized by containing an acid.
【請求項2】ナトリウム、カリウム、カルシウム及びマ
グネシウムからなる群より選ばれた、少なくとも1つの
金属の塩化物の水溶液を、無隔膜電解槽で電気分解して
生成した電解液を隔膜電解槽の陽極側に導入し、または
更にナトリウム、カリウム、カルシウム及びマグネシウ
ムからなる群より選ばれた、少なくとも1つの金属の塩
化物の水溶液を、該隔膜電解槽に導入して電気分解する
ことによって、次亜塩素酸水溶液が得られる様に構成せ
しめてなる殺菌性を有する電解水の製造装置。
2. An electrolytic solution produced by electrolyzing an aqueous solution of at least one metal chloride selected from the group consisting of sodium, potassium, calcium and magnesium in a non-diaphragm electrolytic cell, and applying an electrolytic solution to the anode of the diaphragm electrolytic cell. By introducing an aqueous solution of a chloride of at least one metal selected from the group consisting of sodium, potassium, calcium and magnesium into the membrane electrolyzer and electrolyzing it. An apparatus for producing electrolyzed water having bactericidal properties, which is configured to obtain an acid aqueous solution.
【請求項3】ナトリウム、カリウム、カルシウム及びマ
グネシウムからなる群より選ばれた、少なくとも1つの
金属の塩化物の水溶液が、塩化ナトリウムまたは塩化カ
リウムをイオン交換水に溶解した濃度2%以上、30%以
下の溶液である、請求項1記載の殺菌性を有する電解水
の製造方法または、請求項2記載の殺菌性を有する電解
水の製造装置。
3. An aqueous solution of at least one metal chloride selected from the group consisting of sodium, potassium, calcium, and magnesium, wherein sodium chloride or potassium chloride is dissolved in ion-exchanged water at a concentration of 2% or more, and 30% or more. The method for producing sterilized electrolyzed water according to claim 1 or the apparatus for producing sterilized electrolyzed water according to claim 2, which is the following solution.
【請求項4】ナトリウム、カリウム、カルシウム及びマ
グネシウムからなる群より選ばれた、少なくとも1つの
金属の塩化物の水溶液を、無隔膜電解槽で電気分解して
生成した電解液を、隔膜電解槽の陽極側に導入して電気
分解して生成した次亜塩素酸水溶液を、更に水で希釈し
た溶液が得られる様に構成せしめてなる殺菌性を有する
電解水の製造装置。
4. An electrolytic solution produced by electrolyzing an aqueous solution of at least one metal chloride selected from the group consisting of sodium, potassium, calcium and magnesium in a non-diaphragm electrolytic cell, An apparatus for producing sterilized electrolyzed water, wherein an aqueous solution of hypochlorous acid generated by electrolysis by being introduced to the anode side is further diluted with water.
【請求項5】 殺菌性を有する電解水の pH が 3.5以上
であり、8.5 以下である請求項4記載の殺菌性を有する
電解水の製造装置。
5. An apparatus for producing sterilized electrolyzed water according to claim 4, wherein the pH of the sterilized electrolyzed water is 3.5 or more and 8.5 or less.
【請求項6】 殺菌性を有する電解水の有効塩素濃度が
1ppm 以上であり、40ppm以下である請求項4記載の殺
菌性を有する電解水の製造装置。
6. The apparatus according to claim 4, wherein the effective chlorine concentration of the sterilized electrolyzed water is 1 ppm or more and 40 ppm or less.
【請求項7】 殺菌性を有する水に含まれるナトリウ
ム、カリウム、カルシウム及びマグネシウムからなる群
より選ばれた、少なくとも1つの金属の塩化物の濃度が
0.01 %以上であり、1.0 %以下である請求項4記載の
殺菌性を有する電解水の製造装置。
7. The concentration of chloride of at least one metal selected from the group consisting of sodium, potassium, calcium and magnesium contained in water having bactericidal properties.
The apparatus for producing sterilized electrolyzed water according to claim 4, which is at least 0.01% and at most 1.0%.
JP11343971A 1998-12-02 1999-12-02 Production of sterilizing electrolytic water and device therefor Pending JP2000226680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11343971A JP2000226680A (en) 1998-12-02 1999-12-02 Production of sterilizing electrolytic water and device therefor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-360039 1998-12-02
JP36003998 1998-12-02
JP11343971A JP2000226680A (en) 1998-12-02 1999-12-02 Production of sterilizing electrolytic water and device therefor

Publications (1)

Publication Number Publication Date
JP2000226680A true JP2000226680A (en) 2000-08-15

Family

ID=26577667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11343971A Pending JP2000226680A (en) 1998-12-02 1999-12-02 Production of sterilizing electrolytic water and device therefor

Country Status (1)

Country Link
JP (1) JP2000226680A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272435A (en) * 2001-03-16 2002-09-24 Hoshizaki Electric Co Ltd Salt water-treating device
US6863798B2 (en) * 2001-12-28 2005-03-08 Omega Co., Ltd. Method of producing washing, cleaning and sterilizing solution and system using such solution
JP2006028601A (en) * 2004-07-16 2006-02-02 Asahi Pretec Corp Drinking water supplier
JP2008200610A (en) * 2007-02-20 2008-09-04 Hoshizaki Electric Co Ltd Preparation method of sterilizing and disinfecting cleaning liquid
CN100451175C (en) * 2005-02-02 2009-01-14 华东理工大学 Preparation of hypochlorous and disinfectant liquid
JP2009522084A (en) * 2005-12-30 2009-06-11 イー.シー.エイ.エス.エスアールエル Membrane electrolysis reactor system with four chambers
JP2010530794A (en) * 2007-02-26 2010-09-16 ドルキー コリア,リミテッド Method for producing medical sterilized physiological saline containing low concentration residual chlorine
KR101145326B1 (en) * 2010-01-29 2012-05-14 (주) 테크윈 Sterile water producing method and apparatus
CN102732908A (en) * 2012-07-17 2012-10-17 永州九星化工有限公司 External circulation electrolyser
CN103046069A (en) * 2012-12-13 2013-04-17 苏州新区化工节能设备厂 Chlorate electrolyzing device and working method
JP2015007285A (en) * 2007-09-28 2015-01-15 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrochemical device for biocidal treatment in agricultural use
CN107865974A (en) * 2016-09-26 2018-04-03 株式会社东芝 Dry process processing method
JP2018053309A (en) * 2016-09-28 2018-04-05 義久 石井 Hypochlorite vaporizer
CN114080230A (en) * 2019-07-03 2022-02-22 应用药品研究公司 Therapeutic use of hypotonic acid solutions

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002272435A (en) * 2001-03-16 2002-09-24 Hoshizaki Electric Co Ltd Salt water-treating device
US6863798B2 (en) * 2001-12-28 2005-03-08 Omega Co., Ltd. Method of producing washing, cleaning and sterilizing solution and system using such solution
JP2006028601A (en) * 2004-07-16 2006-02-02 Asahi Pretec Corp Drinking water supplier
CN100451175C (en) * 2005-02-02 2009-01-14 华东理工大学 Preparation of hypochlorous and disinfectant liquid
JP2009522084A (en) * 2005-12-30 2009-06-11 イー.シー.エイ.エス.エスアールエル Membrane electrolysis reactor system with four chambers
JP2008200610A (en) * 2007-02-20 2008-09-04 Hoshizaki Electric Co Ltd Preparation method of sterilizing and disinfecting cleaning liquid
JP2010530794A (en) * 2007-02-26 2010-09-16 ドルキー コリア,リミテッド Method for producing medical sterilized physiological saline containing low concentration residual chlorine
JP2015007285A (en) * 2007-09-28 2015-01-15 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrochemical device for biocidal treatment in agricultural use
KR101145326B1 (en) * 2010-01-29 2012-05-14 (주) 테크윈 Sterile water producing method and apparatus
CN102732908A (en) * 2012-07-17 2012-10-17 永州九星化工有限公司 External circulation electrolyser
CN103046069A (en) * 2012-12-13 2013-04-17 苏州新区化工节能设备厂 Chlorate electrolyzing device and working method
CN107865974A (en) * 2016-09-26 2018-04-03 株式会社东芝 Dry process processing method
JP2018050483A (en) * 2016-09-26 2018-04-05 株式会社東芝 Processing method for dry process
JP2018053309A (en) * 2016-09-28 2018-04-05 義久 石井 Hypochlorite vaporizer
CN114080230A (en) * 2019-07-03 2022-02-22 应用药品研究公司 Therapeutic use of hypotonic acid solutions

Similar Documents

Publication Publication Date Title
JP4410155B2 (en) Electrolyzed water ejection device
JP3602773B2 (en) Anode electrolyzed water and method for producing the same
US6106691A (en) Medical instrument sterilizing and washing method and apparatus
US20100310672A1 (en) Disinfectant based on aqueous; hypochlorous acid (hoci)-containing solutions; method for the production thereof and use thereof
US20040037737A1 (en) Method of and equipment for washing, disinfecting and/or sterilizing health care devices
JP2005511280A (en) Method and apparatus for producing negative and positive redox potential (ORP) water
JP2000226680A (en) Production of sterilizing electrolytic water and device therefor
JP2004267956A (en) Method for producing mixed electrolytic water
JP2005058848A (en) Production method for water used for washing, disinfecting, and wound healing, its production apparatus, and water used for washing, disinfecting, and wound healing
US20010022273A1 (en) Electrochemical treatment of water and aqueous salt solutions
JP2002301476A (en) Ascorbylglucosamine electrolyzed water and method for making the same
RU2297980C1 (en) Method of the electroactivation of the water solutions
CN113215596A (en) System suitable for industrial production hypochlorous acid sterilized water
JPH11151493A (en) Electrolyzer and electrolyzing method
JPH03258392A (en) Production of sterilizing water containing hypochlorous acid by electrolysis
JP3705756B2 (en) Electrolytic solution and electrolyzed water produced by the electrolytic solution
JP4251059B2 (en) Bactericidal electrolyzed water production equipment
CN211896187U (en) Sterilized water production device for hemodialysis pipelines and containers
JPH0852475A (en) Production of treating liquid for sterilization and apparatus for producing the same
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
JP2001259640A (en) Device and method for manufacturing and supplying electrolyzed water having bactericidal property
CN219195148U (en) Plasma enhanced diaphragm electrolysis device for preparing spectacle lens disinfectant
JP3878289B2 (en) Simultaneous desalination and sterilization electrodialysis system
EP1394119A1 (en) Method and apparatus for generating ozone by electrolysis
KR20220105790A (en) Apparatus for producing slight acidic hypochlorous acid water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050830