WO2004079192A1 - Vacuum device and vacuum pump - Google Patents

Vacuum device and vacuum pump Download PDF

Info

Publication number
WO2004079192A1
WO2004079192A1 PCT/JP2004/002484 JP2004002484W WO2004079192A1 WO 2004079192 A1 WO2004079192 A1 WO 2004079192A1 JP 2004002484 W JP2004002484 W JP 2004002484W WO 2004079192 A1 WO2004079192 A1 WO 2004079192A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
vacuum
vacuum pump
ejector
pumps
Prior art date
Application number
PCT/JP2004/002484
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Ohmi
Original Assignee
Tadahiro Ohmi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadahiro Ohmi filed Critical Tadahiro Ohmi
Priority to EP04716009A priority Critical patent/EP1609990B1/en
Priority to US10/548,225 priority patent/US20060182638A1/en
Priority to DE602004022519T priority patent/DE602004022519D1/en
Publication of WO2004079192A1 publication Critical patent/WO2004079192A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running

Definitions

  • the present invention relates to a vacuum device, and more particularly, to a vacuum device used in a semiconductor manufacturing field and the like and a vacuum pump used for the vacuum device.
  • Vacuum equipment is used in many industrial fields in addition to the semiconductor manufacturing field.
  • the vacuum apparatus generally includes a vacuum vessel and a vacuum pump that keeps the inside of the vacuum vessel in a vacuum or reduced pressure.
  • the vacuum device is arranged in a clean room and configured to perform a predetermined process while introducing and exhausting a predetermined process gas into and from the vacuum vessel.
  • An example of a conventional vacuum apparatus used in a semiconductor manufacturing apparatus will be described with reference to FIG.
  • the vacuum apparatus includes a plurality of reaction chambers (vacuum vessels) 10, 11, and 12, and a reaction chamber 10 for reducing the pressure inside or inside the reaction chambers 10, 11, 11, and 12. , 1 1 and 1 2
  • High vacuum pumps 1, 2, and 3 as the first vacuum pumps
  • booster pumps 4a, 5a, and 6a as the second vacuum pumps disposed after the high vacuum pumps
  • third vacuum Back pumps 4b, 5b, and 6b are provided as pumps.
  • Valves 22, 23, and 24 are provided between the high vacuum pumps 1, 2, and 3, and the booth pumps 4a, 5a, and 6a.
  • load lock chambers 13 and 14 for carrying a workpiece such as a wafer into the reaction chambers 10, 11, and 12, and a workpiece loaded into the mouthpiece chamber 13.
  • a transfer chamber 15 accommodating a unit (transport device) is provided.
  • a booster pump 8 a and a back pump 8 b are connected to the load lock champ 13, a booster pump 7 a and a back pump 7 b are connected to the mouth lock chamber 14, and a transfer chamber 1.
  • a booth evening pump 9a and a back pump 9b are connected to 5, and are configured to be able to reduce the pressure or create a vacuum.
  • reaction chambers 10, 11, and 12 are provided with heating means such as a gas inlet and a heater, and a film is formed while introducing a predetermined gas under heating. And the like.
  • reference numeral A1 indicates a pipe between the high vacuum pumps 1, 2, and 3 and the booster pumps 4a, 5a, and 6a
  • reference numeral A2 indicates a reaction chamber 10, 0, 1 1 , And 12 and the piping between high vacuum pumps 1, 2, and 3 are shown.
  • the symbol R indicates a clean room.
  • the transfer chamber 15 and the reaction chambers 10, 11, and 12 are kept under reduced pressure or vacuum. Then, a cassette containing a plurality of objects to be processed, such as a plurality of wafers, is carried into the load lock chamber 13 from the atmosphere outside the apparatus, and the load lock chamber 13 is evacuated.
  • a gate valve (not shown) between the load lock chamber 13 and the transfer chamber 15 is opened, and the workpiece transfer robot uses the transfer arm to move one piece of the workpiece in the cassette. Take it out and move it to Transferyaba 15.
  • a gate valve (not shown) between the reaction chamber 10 and the transfer chamber 15 is opened, and the workpiece is placed on the stage in the reaction chamber 10 by the transfer arm.
  • the processed object is transferred to another reaction chamber 11 or 12 or a load lock chamber 14 by a transfer arm.
  • the wafer is finally transported from the load lock chamber 14 to the outside.
  • a high vacuum Bonn flop operating in the molecular area of the ultimate vacuum (1 0- 7 torr or less) as a high vacuum pump I have.
  • a high-vacuum pump a general-purpose molecular pump or a thread groove pump is generally used.
  • turbomolecular pumps and thread groove pumps although small in size, have a high pumping speed, but have an allowable back pressure of 1 t0 rr or less (specifically, 0.5 t0 rr or less, more specifically, Is about 0.4 torr). For this reason, one or two low-vacuum pumps are provided downstream of the high-vacuum pump while operating at a relatively low back pressure, although the ultimate vacuum degree is relatively low.
  • a booster pump or the like will be provided as a medium vacuum pump after the high vacuum pump, and the ultimate vacuum degree will be provided after the booster pump.
  • Roots pumps are provided as low vacuum pumps that operate at relatively low back pressure, albeit low.
  • vacuum apparatus used for manufacturing a semiconductor device
  • two or three vacuum pumps are used in multiple stages for one reaction chamber (vacuum vessel).
  • these vacuum pumps often have different structures, but generally all are driven by an electric motor. For this reason, power consumption increases in this type of vacuum apparatus that uses a large number of vacuum pumps. Since the power consumption of a vacuum device affects the manufacturing cost of a semiconductor device as a result, it is desired to reduce the power consumption.
  • the last low vacuum pump (back pump) of the multi-stage vacuum pump requires a large capacity, its power consumption is also large. Therefore, reducing the power of the back pump is effective and desirable for reducing the power consumption of the entire vacuum apparatus and, consequently, the manufacturing cost of the semiconductor device.
  • an object of the present invention is to provide a vacuum device capable of suppressing power consumption. And to provide a vacuum pump.
  • a vacuum vessel provided with a gas inlet and a gas outlet, and a multi-stage vacuum pump connected to the vacuum vessel and having a mechanical structure for reducing the pressure inside the vacuum vessel and maintaining a reduced pressure state
  • a vacuum device connected to a discharge port of the last one of the vacuum pumps to assist the pressure reducing operation of the last vacuum pump and to suppress back diffusion from the discharge port.
  • a vacuum device characterized by having an ejector pump is obtained.
  • the vacuum device wherein the auxiliary pump is an ejector pump additionally attached to the discharge port of the last-stage pump.
  • the vacuum device as the ejector pump, wherein the auxiliary pump is incorporated in the last-stage pump and provided so as to be integrated with the last-stage pump.
  • a vacuum container having a gas inlet and a gas outlet, and a plurality of stages of a mechanical structure connected to the vacuum container and configured to reduce the pressure inside the vacuum container and maintain the reduced pressure.
  • a vacuum device having a vacuum pump a vacuum device characterized by having an ejector pump connected to a discharge port of a vacuum pump at a last stage of the vacuum pump is obtained.
  • a vacuum vessel provided with a gas inlet and a gas outlet, a first vacuum pump for keeping the inside of the vacuum vessel at reduced pressure, and a stage connected to the latter stage of the first vacuum pump
  • a second vacuum pump and a third vacuum pump connected downstream of the second vacuum pump, wherein the first vacuum pump is an evening molecular pump or a screw groove pump.
  • the second vacuum pump is a booster pump
  • the third vacuum pump is a dry pump
  • an ejector pump is added inside or outside the third vacuum pump.
  • a vacuum pump is provided in which an ejector pump section is provided at a discharge port facing the atmosphere side.
  • the vacuum pump in which the ejector pump section is additionally attached to the outside of the vacuum pump. Further, according to the present invention, the vacuum pump incorporated in the vacuum pump can be obtained in the ejector pump section.
  • the vacuum pump is a screw pump or a roots pump.
  • the power consumption of a vacuum pump can be suppressed compared with the former, and as a result, the manufacturing cost of a semiconductor device can be reduced.
  • FIG. 1 is a schematic view showing a vacuum apparatus for manufacturing a semiconductor to which the present invention is applied.
  • FIGS. 2A and 2B show a vacuum pump at the last stage in a vacuum apparatus according to Embodiment 1 of the present invention. It is a sectional view showing a screw pump of
  • FIG. 3 is a sectional view showing an ejector pump in the vacuum apparatus according to Embodiment 1 of the present invention
  • FIGS. 4 (a) and 4 (b) are cross-sectional views showing a screw pump as a last vacuum pump in a vacuum apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram illustrating the relationship between the suction pressure and the power consumption of the pump, together with a comparative example, for explaining the operation and effect of the present invention.
  • the vacuum apparatus according to the embodiment of the present invention is similar in system to the vacuum apparatus shown in FIG. Therefore, the description of the same configuration as in FIG. 1 is omitted.
  • the present invention is particularly characterized by the back pumps 4b, 5b, and 6b, which are the last (third) vacuum pumps in FIG.
  • the back pumps 4b, 5b, and 6b each have an ejector that can mainly assist the pressure reducing operation of these back pumps or suppress back diffusion from the discharge port, as described later in detail. Evening pumps are provided.
  • a screw pump A is provided as each of the back pumps 4b, 5b, and 6b in FIG.
  • male rotor 25 and female rotor 26 of screw pump A are housed in main casing 42, and one end of main case 42 is connected to main rotor 42. It is rotatably supported by bearings 35 and 36 attached to the sealing end plate 43 and bearings 37 and 38 attached to the sub-casing 46.
  • Timing gears 31 and 32 housed in a sub-casing 46 are attached to the rotating shafts 27 and 28 of the male rotor 25 and the female rotor 26, respectively.
  • the gap between the female mouth and the female mouth is adjusted so that they do not touch each other.
  • a motor M is attached to the rotating shaft of the male rotor 25 via a coupling or a gear for shifting. The rotation of the motor M is transmitted to the male rotor 25 and the timing gear 31 And 32 are configured to rotate the female rotor 26.
  • a suction boat 56 is provided, and a sub casing 55 is attached.
  • the end plate 43 of the main casing 42 is provided with a discharge port 57 for discharging the gas compressed by the male rotor 25 and the female rotor 26.
  • a cooling jacket 33 is formed outside the main casing 42, and the cooling jacket 33 is formed inside the cooling jacket 33.
  • a coolant such as water is circulated to cool the main casing 42 and the compressed gas.
  • this vacuum device connect to discharge port 57 of screw pump A
  • an ejector pump 60 for suppressing back diffusion from the outside of the atmospheric pressure through the discharge port 57 is provided.
  • the ejector pump 60 is additionally attached to the discharge port 57 of the screw pump A as a separate part from the screw pump A.
  • the ejector pump 60 includes a suction port 62, a gas inlet port 63, a diffuser 64, and a discharge port 65.
  • the pressures near the suction port 62 and the discharge port 57 of the screw pump A are expressed by the following formulas: 100 Pa Pa to 100 Pa Pa It becomes.
  • the principle of the ejector pump such as the generation of a wake and the generation of a shock wave in a differential user, is already known, and therefore the description thereof is omitted here.
  • the back diffusion from the outside of the atmospheric pressure to the suction port 56 through the discharge port 65 and the suction port 62 of the ejector pump 60 and the discharge port 57 of the screw pump A is significantly reduced. .
  • the pumps 4b, 5b and 6b operate efficiently and their power consumption can be greatly reduced.
  • the back pressure (atmospheric pressure) of the discharge port 65 can be reduced to about 300 torr at the suction port 62 by the ejector pump 60.
  • FIG. 5 shows the pressure at the suction port 56 of the screw pump A when the screw pump A is applied as the back pumps 4b, 5b, and 6b in the vacuum apparatus shown in FIG.
  • the results of verifying the relationship between the power consumption of screw pump A and that of screw pump A are shown.
  • a pump having the same structure as the screw pump A except that no ejector pump was provided was also used in the vacuum device in Fig. 1. Similar measurements were made with back pumps 4b, 5b, and 6b applied.
  • the screw pump A having the ejector pump 60 generally consumes less power than the screw pump without the ejector pump regardless of the suction pressure value.
  • the suction pressure is less than 10 t0 rr
  • the power consumption of the screw pump A with the ejector pump 60 is reduced by about 50% compared to the power consumption of the screw pump without the ejector pump.
  • the reaction chambers 10, 11, and 12 FIG. 1
  • a screw pump B is provided as each of the back pumps 4b, 5b, and 6b in FIG.
  • screw pump B has male rotor 25 and female rotor 26 as in screw pump A shown in FIGS. 2 (a) and (b).
  • Screw pump B has male rotor 25 and female rotor 26 as in screw pump A shown in FIGS. 2 (a) and (b).
  • the bearings 37 and 38 are rotatably supported.
  • Timing gears 31 and 32 housed in a sub-casing 46 are attached to the rotating shafts 27 and 28 of the male rotor 25 and the female rotor 26, respectively.
  • the gap between the two openings is adjusted so that the female rotor 26 and the female rotor 26 do not contact each other.
  • a motor M is attached to the rotary shaft of the male mouth 25 via a force coupling or a gear for shifting. The rotation of the motor M is transmitted to the male mouth 25 and the timing gear It is configured to rotate the female rotor 26 via 31 and 32.
  • a suction port 56 is provided, and a sub casing 55 is attached. Further, a discharge port 57 for discharging the gas compressed by the male rotor 25 and the female rotor 26 is formed in the end plate 43 of the main casing 42.
  • a cooling jacket 33 is formed outside the main casing 42, and a coolant such as water is circulated in the cooling jacket 33 to cool the main casing 42 and the compressed gas. It has become.
  • the screw pump B thus configured, when the male mouth 25 is rotationally driven by the motor M, the female rotor 26 is rotationally driven by the timing gears 31 and 32. Then, as the male mouth 25 and the female rotor 26 rotate, the gas from the upper booster pumps 4a, 5a, and 6a (Fig. 1) passes through the suction port 56, and the male Inhaled into the working chamber formed by mouth 25, female mouth 26, and main casing 42. The sucked gas is discharged through the discharge port 57 while being compressed as the male rotor 25 and the female rotor 26 rotate.
  • the screw pump B is connected to its discharge port 57, and has a built-in pump 60 for suppressing back diffusion from outside of the atmospheric pressure through the discharge port 57. are doing. That is, the ejector pump section 60 is incorporated in the discharge port 57 of the end plate 43 of the screw pump B as an integral part of the screw pump B.
  • the ejector pump section 60 includes a suction port 62, a gas introduction port 63, a differential user 64, and a discharge port 65.
  • the screw pump B having the ejector pump section 60 has lower power consumption as a whole than the screw pump without the ejector pump regardless of the suction pressure value. .
  • the power consumption of the screw pump B equipped with the ejector pump section 60 is reduced by about 50% compared to the power consumption of the screw pump without the ejector pump. .
  • the screw pump B when the screw pump B is applied as the back pumps 4b, 5b, and 6b of the vacuum apparatus as shown in FIG. 1, the reaction chambers 10, 11, and 12 (FIG. 1) It can be said that a higher effect is obtained when gas is not introduced into the inside. Since the screw pump according to the present embodiment has a built-in ejector pump section, it is more compact than the screw pump in which the ejector pump is externally attached as in the first embodiment. Therefore, when applied to a vacuum device having a plurality of back pumps, the space occupied by the entire vacuum device can be reduced.
  • the screw pump is used as an example of the back pump.
  • the vacuum pump according to the present invention to which the ejector pump is attached or built may be a loop pump or the like.
  • the vacuum pump according to the present invention can be used as a single-stage vacuum pump as well as a back pump in a multi-stage configuration, as long as the back pressure is within a pressure range in which the effect of the eject pump is exhibited. is there.
  • the application is not limited to a vacuum device for manufacturing a semiconductor device. Industrial applicability
  • the back pressure exerts the effect of the ejector pump.
  • the pressure is within the pressure range, it can be used not only as a back pump in a multistage configuration but also as a single-stage vacuum pump. Further, the application is not limited to a vacuum device for manufacturing a semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A vacuum device has a vacuum container with a gas inlet and a gas outlet, and a vacuum pump with plural stages of mechanically structured vacuum pumps for reducing the pressure inside the vacuum container and maintaining the pressure-reduced state. The vacuum device has an ejector pump (60) connected to a discharge port (57) of a screw pump (A) that is a vacuum pump at the last stage among the vacuum pumps. The vacuum device is used in the field of semiconductor manufacturing etc. and consumes less electric power.

Description

明 細 書 真空装置および真空ポンプ 技術分野  Description Vacuum equipment and vacuum pumps Technical field
真空装置に関し、 特に、 半導体製造分野等において用いられる真空装置ならび にこの真空装置に用いられる真空ポンプに関する。 背景技術  The present invention relates to a vacuum device, and more particularly, to a vacuum device used in a semiconductor manufacturing field and the like and a vacuum pump used for the vacuum device. Background art
半導体製造分野のほか、 多くの産業分野で真空装置が用いられている。 真空装 置は、 一般的に、 真空容器と、 真空容器内部を真空あるいは減圧状態に保つ真空 ポンプとを備えている。  Vacuum equipment is used in many industrial fields in addition to the semiconductor manufacturing field. The vacuum apparatus generally includes a vacuum vessel and a vacuum pump that keeps the inside of the vacuum vessel in a vacuum or reduced pressure.
そして、 真空装置は、 クリーンルーム内に配置されると共に、 真空容器内に、 所定の処理ガスを導入、排気しながら、所定の処理を行うように構成されている。 半導体製造装置に用いられている従来の真空装置の一例を、 図 1を参照して説 明する。  The vacuum device is arranged in a clean room and configured to perform a predetermined process while introducing and exhausting a predetermined process gas into and from the vacuum vessel. An example of a conventional vacuum apparatus used in a semiconductor manufacturing apparatus will be described with reference to FIG.
この真空装置は、複数の反応チャンバ (真空容器) 1 0、 1 1、 および 1 2と、 反応チャンバ 1 0、 1 1、および 1 2内部を減圧あるいは真空状態になすために、 反応チヤンバ 1 0、 1 1、 および 1 2にそれぞれ 1台または複数台配置された第 The vacuum apparatus includes a plurality of reaction chambers (vacuum vessels) 10, 11, and 12, and a reaction chamber 10 for reducing the pressure inside or inside the reaction chambers 10, 11, 11, and 12. , 1 1 and 1 2
1の真空ポンプとしての高真空ポンプ 1、 2、 および 3と、 高真空ポンプの後段 に配置された第 2の真空ポンプとしてのブースターポンプ 4 a、 5 a、 および 6 aと、 第 3の真空ポンプとしてのバックポンプ 4 b、 5 b、 および 6 bとを備え ている。 High vacuum pumps 1, 2, and 3 as the first vacuum pumps, and booster pumps 4a, 5a, and 6a as the second vacuum pumps disposed after the high vacuum pumps, and the third vacuum Back pumps 4b, 5b, and 6b are provided as pumps.
また、 高真空ポンプ 1、 2、 および 3と、 ブース夕一ポンプ 4 a、 5 a、 およ び 6 aとの間には、 バルブ 2 2、 2 3、 および 2 4が設けられている。  Valves 22, 23, and 24 are provided between the high vacuum pumps 1, 2, and 3, and the booth pumps 4a, 5a, and 6a.
さらに、 反応チャンバ 1 0、 1 1、 および 1 2にウェハ等の被処理物を搬入す るためのロードロックチャンバ 1 3および 1 4と、 口一ドロツクチャンバ 1 3に 搬入された被処理物を反応チャンバ 1 0、 1 1、 および 1 2に移送し、 また反応 チャンパ 1 0、 1 1、 および 1 2から口一ドロツクチャンバ 1 4に移送するロボ ット(搬送装置)が収容されているトランスファチヤバ 1 5とが設けられている。 また、 ロードロックチャンパ 1 3にはブースターポンプ 8 aならびにバックポ ンプ 8 bが接続され、 口一ドロツクチャンバ 1 4にはブースタ一ポンプ 7 aなら びにバックポンプ 7 bが接続され、 トランスファチヤバ 1 5にはブース夕一ボン プ 9 aならびにバックポンプ 9 bが接続されており、 減圧あるいは真空状態にな すことができるように構成されている。 Further, load lock chambers 13 and 14 for carrying a workpiece such as a wafer into the reaction chambers 10, 11, and 12, and a workpiece loaded into the mouthpiece chamber 13. To transfer chambers to reaction chambers 10, 11, and 12 and from reaction chambers 10, 11, and 12 to mouthpiece chamber 14. A transfer chamber 15 accommodating a unit (transport device) is provided. In addition, a booster pump 8 a and a back pump 8 b are connected to the load lock champ 13, a booster pump 7 a and a back pump 7 b are connected to the mouth lock chamber 14, and a transfer chamber 1. A booth evening pump 9a and a back pump 9b are connected to 5, and are configured to be able to reduce the pressure or create a vacuum.
さらに、 反応チャンバ 1 0、 1 1、 および 1 2には、 図示はしないが、 ガス導 入口およびヒー夕等の加熱手段が設けられており、 加熱下で所定のガスを導入し ながら、 成膜等の所定の処理がなされるように構成されている。  Although not shown, the reaction chambers 10, 11, and 12 are provided with heating means such as a gas inlet and a heater, and a film is formed while introducing a predetermined gas under heating. And the like.
尚、図中、符号 A 1は高真空ポンプ 1、 2、および 3とブースタ一ポンプ 4 a、 5 a、 および 6 aとの間の配管を示し、 符号 A 2は反応チャンバ 1 0、 1 1、 お よび 1 2と高真空ポンプ 1、 2、 および 3との間の配管を示している。 また、 図 中、 符号 Rは、 クリーンルームを示す。  In the figure, reference numeral A1 indicates a pipe between the high vacuum pumps 1, 2, and 3 and the booster pumps 4a, 5a, and 6a, and reference numeral A2 indicates a reaction chamber 10, 0, 1 1 , And 12 and the piping between high vacuum pumps 1, 2, and 3 are shown. In the figure, the symbol R indicates a clean room.
この真空装置が待機した状態にあっては、 卜ランスファチヤバ 1 5ならびに反 応チャンバ 1 0、 1 1、および 1 2は、減圧あるいは真空状態に維持されている。 そして、 装置外部の大気中から複数のウェハ等の被処理物を入れたカセッ卜が ロードロックチャンバ 1 3に搬入され、 ロードロツクチャンバ 1 3が真空引され る。  When the vacuum apparatus is in a standby state, the transfer chamber 15 and the reaction chambers 10, 11, and 12 are kept under reduced pressure or vacuum. Then, a cassette containing a plurality of objects to be processed, such as a plurality of wafers, is carried into the load lock chamber 13 from the atmosphere outside the apparatus, and the load lock chamber 13 is evacuated.
次に、 ロードロツクチャンバ 1 3と卜ランスファチヤバ 1 5との間のゲ一卜弁 (図示せず) が開き、 被処理物搬送用ロボットが搬送アームによりカセット内の 被処理物を一枚取り出してトランスファチヤバ 1 5に移動させる。  Next, a gate valve (not shown) between the load lock chamber 13 and the transfer chamber 15 is opened, and the workpiece transfer robot uses the transfer arm to move one piece of the workpiece in the cassette. Take it out and move it to Transferyaba 15.
その後、 反応チャンバ 1 0とトランスファチヤバ 1 5間とのゲート弁 (図示せ ず) が開き、 搬送アームにより被処理物が反応チャンバ 1 0内のステージ上に載 置される。  Thereafter, a gate valve (not shown) between the reaction chamber 10 and the transfer chamber 15 is opened, and the workpiece is placed on the stage in the reaction chamber 10 by the transfer arm.
そして、 成膜処理等の所定の処理後、 処理された被処理物は、 搬送アームによ り他の反応チャンバ 1 1または 1 2もしくはロードロックチャンバ 1 4に搬送さ れる。  After a predetermined process such as a film forming process, the processed object is transferred to another reaction chamber 11 or 12 or a load lock chamber 14 by a transfer arm.
そして、 処理が終了した後、 最終的にロードロックチャンバ 1 4から外部に搬 送される。 図 1に示した装置をも含め、 従来の真空装置においては、 高真空ポンプとして 一般的には到達真空度 (1 0— 7 t o r r以下) の分子領域で動作する高真空ボン プが用いられている。 具体的には、 高真空ポンプとしては、 一般的に夕一ポ分子 ポンプあるいはねじ溝ポンプが用いられている。 Then, after the processing is completed, the wafer is finally transported from the load lock chamber 14 to the outside. Including the apparatus shown in FIG. 1, in the conventional vacuum apparatus, generally employed is a high vacuum Bonn flop operating in the molecular area of the ultimate vacuum (1 0- 7 torr or less) as a high vacuum pump I have. Specifically, as a high-vacuum pump, a general-purpose molecular pump or a thread groove pump is generally used.
ターボ分子ポンプならびにねじ溝ポンプは、 一般的に、 小型のものでも排気速 度は大きいものの、許容背圧が 1 t 0 r r以下(具体的には 0 . 5 t 0 r r以下、 より具体的には 0 . 4 t o r r程度) と小さい。 このため、 高真空ポンプの後段 に、 到達真空度が比較的低いものの、 比較的低い背圧で動作する中、 低真空ボン プが一〜二段設けられている。  In general, turbomolecular pumps and thread groove pumps, although small in size, have a high pumping speed, but have an allowable back pressure of 1 t0 rr or less (specifically, 0.5 t0 rr or less, more specifically, Is about 0.4 torr). For this reason, one or two low-vacuum pumps are provided downstream of the high-vacuum pump while operating at a relatively low back pressure, although the ultimate vacuum degree is relatively low.
例えば、 高真空ポンプの後段に二段の真空ポンプが設けられる場合には、 高真 空ボンプの後段に中真空ポンプとしてブースターボンプ等が設けられ、 さらに、 ブースターポンプの後段に、 到達真空度が低いものの、 比較的低い背圧で動作す る低真空ポンプとして、 ルーツボンプ等が設けられる。  For example, if a two-stage vacuum pump is provided after the high vacuum pump, a booster pump or the like will be provided as a medium vacuum pump after the high vacuum pump, and the ultimate vacuum degree will be provided after the booster pump. Roots pumps are provided as low vacuum pumps that operate at relatively low back pressure, albeit low.
この種の、 半導体装置の製造分野に用いられる複数段の真空ポンプを有する真 空装置は、 例えば、 特開 2 0 0 2— 3 9 0 6 1号公報に開示されている。 発明の開示  This type of vacuum apparatus having a plurality of stages of vacuum pumps used in the field of manufacturing semiconductor devices is disclosed, for example, in Japanese Patent Application Laid-Open No. 2002-39061. Disclosure of the invention
上述したように、半導体装置の製造に使用される真空装置においては、一般に、 一つの反応チャンバ (真空容器) に対して 2〜 3台の真空ポンプが多段に用いら れている。 これら真空ポンプは互いに前述のごとく構造が異なることが多いが、 一般に、 いずれも電気モータによって駆動される。 このため、 真空ポンプの使用 台数が多いこの種の真空装置においては、 消費電力が大きくなる。 真空装置の消 費電力は、 結果的に半導体装置の製造コストに影響するため、 その省電力化が望 まれている。  As described above, in a vacuum apparatus used for manufacturing a semiconductor device, generally, two or three vacuum pumps are used in multiple stages for one reaction chamber (vacuum vessel). As described above, these vacuum pumps often have different structures, but generally all are driven by an electric motor. For this reason, power consumption increases in this type of vacuum apparatus that uses a large number of vacuum pumps. Since the power consumption of a vacuum device affects the manufacturing cost of a semiconductor device as a result, it is desired to reduce the power consumption.
特に、 多段の真空ポンプのうちの最後段の低真空ポンプ (バックポンプ) には 大容量が必要とされるため、 その消費電力も大きい。 よって、 バックポンプの電 力を抑えることが、 真空装置全体の消費電力低減、 ひいては、 半導体装置の製造 コスト削減に効果的であり、 望まれることである。  In particular, since the last low vacuum pump (back pump) of the multi-stage vacuum pump requires a large capacity, its power consumption is also large. Therefore, reducing the power of the back pump is effective and desirable for reducing the power consumption of the entire vacuum apparatus and, consequently, the manufacturing cost of the semiconductor device.
したがって、 本発明の課題は、 消費電力を抑制することができる真空装置なら びに真空ポンプを提供することである。 Therefore, an object of the present invention is to provide a vacuum device capable of suppressing power consumption. And to provide a vacuum pump.
本発明によれば、 ガス導入口とガス排出口を備えた真空容器と、 前記真空容器 に接続され、 該真空容器内部を減圧すると共に減圧状態を保っための機械構造の 複数段の真空ポンプとを有する真空装置において、 前記真空ポンプのうちの最後 段の真空ポンプの吐出口に接続され、該最後段の真空ポンプの減圧動作を補助し、 該吐出口からの逆拡散を抑制するためのェジェクタポンプを有することを特徴と する真空装置が得られる。  According to the present invention, a vacuum vessel provided with a gas inlet and a gas outlet, and a multi-stage vacuum pump connected to the vacuum vessel and having a mechanical structure for reducing the pressure inside the vacuum vessel and maintaining a reduced pressure state, A vacuum device connected to a discharge port of the last one of the vacuum pumps to assist the pressure reducing operation of the last vacuum pump and to suppress back diffusion from the discharge port. A vacuum device characterized by having an ejector pump is obtained.
本発明によればまた、 前記補助ポンプは、 前記最後段のポンプの前記吐出口に 付加的に取り付けられたェジェクタボンプである前記真空装置が得られる。  According to the present invention, there is also obtained the vacuum device, wherein the auxiliary pump is an ejector pump additionally attached to the discharge port of the last-stage pump.
本発明によればさらに、 前記補助ポンプは、 前記最後段のポンプに内蔵されて 該最後段のポンプと一体装置となるように備えられているェジェクタポンプであ る前記真空装置が得られる。  According to the present invention, there is further obtained the vacuum device as the ejector pump, wherein the auxiliary pump is incorporated in the last-stage pump and provided so as to be integrated with the last-stage pump.
また、 本発明によれば、 ガス導入口とガス排出口を備えた真空容器と、 前記真 空容器に接続され、 該真空容器内部を減圧すると共に減圧状態を保っための機械 構造の複数段の真空ポンプとを有する真空装置において、 前記真空ポンプのうち の最後段の真空ボンプの吐出口に接続されたェジェクタポンプを有することを特 徴とする真空装置が得られる。  Further, according to the present invention, there is provided a vacuum container having a gas inlet and a gas outlet, and a plurality of stages of a mechanical structure connected to the vacuum container and configured to reduce the pressure inside the vacuum container and maintain the reduced pressure. In a vacuum device having a vacuum pump, a vacuum device characterized by having an ejector pump connected to a discharge port of a vacuum pump at a last stage of the vacuum pump is obtained.
さらに、 本発明によれば、 ガス導入口とガス排出口を備えた真空容器と、 前記 真空容器内部を減圧に保っための第 1の真空ポンプと、 前記第 1の真空ポンプの 後段に接続された第 2の真空ポンプと、 前記第 2の真空ポンプの後段に接続され た第 3の真空ポンプとを有する真空装置において、 前記第 1の真空ポンプが夕一 ポ分子ポンプまたはねじ溝ポンプであり、 前記第 2の真空ボンプがブースターポ ンプであり、 前記第 3の真空ポンプがドライポンプであって、 前記第 3の真空ポ ンプの内部または外部にェジェクタボンプが付加されていることを特徴とする真 空装置が得られる。  Further, according to the present invention, a vacuum vessel provided with a gas inlet and a gas outlet, a first vacuum pump for keeping the inside of the vacuum vessel at reduced pressure, and a stage connected to the latter stage of the first vacuum pump A second vacuum pump, and a third vacuum pump connected downstream of the second vacuum pump, wherein the first vacuum pump is an evening molecular pump or a screw groove pump. The second vacuum pump is a booster pump, the third vacuum pump is a dry pump, and an ejector pump is added inside or outside the third vacuum pump. A vacuum device is obtained.
また、 本発明によれば、 大気側を臨む吐出口にェジェクタポンプ部を装備した ことを特徴とする真空ポンプが得られる。  Further, according to the present invention, a vacuum pump is provided in which an ejector pump section is provided at a discharge port facing the atmosphere side.
さらに、 本発明によれば、 前記ェジェクタポンプ部は、 前記真空ポンプの外部 に付加的に取り付けられている前記真空ポンプが得られる。 また、 本発明によれば、 前記ェジェクタポンプ部は、 前記真空ポンプに内蔵さ れている前記真空ボンプが得られる。 Further, according to the present invention, there is obtained the vacuum pump in which the ejector pump section is additionally attached to the outside of the vacuum pump. Further, according to the present invention, the vacuum pump incorporated in the vacuum pump can be obtained in the ejector pump section.
さらに、 本発明によれば、 前記真空ポンプは、 スクリューポンプまたはルーツ ポンプである前記真空ポンプが得られる。  Further, according to the present invention, the vacuum pump is a screw pump or a roots pump.
本発明による真空装置、 真空ポンプによれば、 従来に比べて真空ポンプの消費 電力を抑制することができると共に、 その結果として半導体装置の製造コストを 削減することができる。 図面の簡単な説明  ADVANTAGE OF THE INVENTION According to the vacuum apparatus and the vacuum pump by this invention, the power consumption of a vacuum pump can be suppressed compared with the former, and as a result, the manufacturing cost of a semiconductor device can be reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明が適用される半導体製造用の真空装置を示す概略図であり、 図 2 ( a ) および ( b ) は、 本発明の実施例 1による真空装置における最後段 の真空ポンプとしてのスクリユーポンプを示す断面図であり、  FIG. 1 is a schematic view showing a vacuum apparatus for manufacturing a semiconductor to which the present invention is applied. FIGS. 2A and 2B show a vacuum pump at the last stage in a vacuum apparatus according to Embodiment 1 of the present invention. It is a sectional view showing a screw pump of
図 3は、 本発明の実施例 1による真空装置におけるェジェクタポンプを示す断 面図であり、  FIG. 3 is a sectional view showing an ejector pump in the vacuum apparatus according to Embodiment 1 of the present invention,
図 4 ( a ) および ( b ) は、 本発明の実施例 2による真空装置における最後段 の真空ポンプとしてのスクリユーポンプを示す断面図であり、 そして、  4 (a) and 4 (b) are cross-sectional views showing a screw pump as a last vacuum pump in a vacuum apparatus according to Embodiment 2 of the present invention, and
図 5は、 本発明の作用効果を説明するための、 吸入圧力とポンプの消費電力と の関係を比較例と共に示す図である。 発明を実施するための最良の形態  FIG. 5 is a diagram illustrating the relationship between the suction pressure and the power consumption of the pump, together with a comparative example, for explaining the operation and effect of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の実施の形態による真空装置は、 システム的には、 図 1に示した真空装 置と同様である。 このため、 図 1と同様な構成については説明を省略する。 本発明では特に、 図 1における最後段の (第 3の) 真空ポンプであるバックポ ンプ 4 b、 5 b、 および 6 bに特徴がある。 即ち、 バックポンプ 4 b、 5 b、 お よび 6 bにはそれぞれ、 後に詳述するように、 主にこれらバックポンプによる減 圧動作を補助し、 あるいは、 吐出ポートからの逆拡散を抑制できるェジェク夕ポ ンプが備えられている。  The vacuum apparatus according to the embodiment of the present invention is similar in system to the vacuum apparatus shown in FIG. Therefore, the description of the same configuration as in FIG. 1 is omitted. The present invention is particularly characterized by the back pumps 4b, 5b, and 6b, which are the last (third) vacuum pumps in FIG. In other words, the back pumps 4b, 5b, and 6b each have an ejector that can mainly assist the pressure reducing operation of these back pumps or suppress back diffusion from the discharge port, as described later in detail. Evening pumps are provided.
[実施例 1 ] 本発明の実施例 1においては、 図 1のバックポンプ 4 b、 5 b、 および 6 bの それぞれとして、 スクリユーポンプ Aを有している。 [Example 1] In the first embodiment of the present invention, a screw pump A is provided as each of the back pumps 4b, 5b, and 6b in FIG.
図 2 ( a ) および (b ) を参照して、 スクリューポンプ Aの雄ロータ 2 5およ び雌ロー夕 2 6は、 主ケーシング 4 2に収容されており、 主ケース 4 2の一端側 を密封する端板 4 3に取り付けられた軸受 3 5および 3 6ならびに副ケーシング 4 6に取り付けられた軸受 3 7および 3 8によって回転自在に支持されている。 雄ロータ 2 5および雌ロータ 2 6の回転軸 2 7および 2 8には、 副ケ一シング 4 6内に収容されたタイミングギア 3 1および 3 2が取り付けられており、 雄口 一夕 2 5および雌口一夕 2 6が互いに接触しないように両口一タ間の隙間が調整 されている。 また、 雄ロータ 2 5の回転軸には、 カップリングまたは変速用ギア を介してモ一夕 Mが取り付けられており、 モータ Mの回転は、 雄ロータ 2 5に伝 達され、 タイミングギア 3 1および 3 2を介して雌ロータ 2 6を回転させるよう に構成されている。  Referring to FIGS. 2 (a) and (b), male rotor 25 and female rotor 26 of screw pump A are housed in main casing 42, and one end of main case 42 is connected to main rotor 42. It is rotatably supported by bearings 35 and 36 attached to the sealing end plate 43 and bearings 37 and 38 attached to the sub-casing 46. Timing gears 31 and 32 housed in a sub-casing 46 are attached to the rotating shafts 27 and 28 of the male rotor 25 and the female rotor 26, respectively. The gap between the female mouth and the female mouth is adjusted so that they do not touch each other. A motor M is attached to the rotating shaft of the male rotor 25 via a coupling or a gear for shifting. The rotation of the motor M is transmitted to the male rotor 25 and the timing gear 31 And 32 are configured to rotate the female rotor 26.
主ケ一シング 4 2の一端側には、 吸入ボート 5 6が設けられて副ケ一シング 5 5が取り付けられている。 また、 主ケ一シング 4 2の端板 4 3には, 雄ロータ 2 5および雌ロータ 2 6で圧縮された気体を吐出する吐出ポ一ト 5 7が形成されて いる。  At one end of the main casing 42, a suction boat 56 is provided, and a sub casing 55 is attached. The end plate 43 of the main casing 42 is provided with a discharge port 57 for discharging the gas compressed by the male rotor 25 and the female rotor 26.
また、 主ケ一シング 4 2や圧縮気体等は気体の圧縮によって温度が上昇するた め、 主ケーシング 4 2の外側には、 冷却ジャケット 3 3が形成されており、 この 冷却ジャケット 3 3内に水等の冷媒を流通され、 主ケーシング 4 2や圧縮気体等 が冷却されるようになつている。  Also, since the temperature of the main casing 42 and the compressed gas rises due to the compression of the gas, a cooling jacket 33 is formed outside the main casing 42, and the cooling jacket 33 is formed inside the cooling jacket 33. A coolant such as water is circulated to cool the main casing 42 and the compressed gas.
このように構成されたスクリューポンプ Aは、 モータ Mによって雄ロー夕 2 5 を回転駆動すると、 タイミングギア 3 1および 3 2によって雌ロータ 2 6が回転 駆動される。 そして、 雄ロータ 2 5および雌ロータ 2 6の回転に伴い、 上段のブ 一スターポンプ 4 a、 5 a、 および 6 a (図 1 ) からの気体が吸入ポート 5 6を 通して、 雄ロータ 2 5、 雌ロータ 2 6、 および主ケーシング 4 2によって形成さ れる作動室に吸入される。 吸い込まれた気体は、 雄口一夕 2 5および雌ロー夕 2 6の回転に伴い、 圧縮されながら吐出ポ一ト 5 7を通して吐出される。  In the screw pump A thus configured, when the male rotor 25 is rotationally driven by the motor M, the female rotor 26 is rotationally driven by the timing gears 31 and 32. Then, as the male rotor 25 and the female rotor 26 rotate, gas from the upper booster pumps 4a, 5a, and 6a (FIG. 1) passes through the suction port 56, and the male rotor 2 5, is sucked into the working chamber formed by the female rotor 26 and the main casing 42. The sucked gas is discharged through the discharge port 57 while being compressed with the rotation of the male mouth 25 and the female mouth 26.
ここで、 本真空装置においては、 スクリユーポンプ Aの吐出ポート 5 7に接続 され、 大気圧の外部から吐出ポート 5 7を通した逆拡散を抑制するためのェジェ クタポンプ 6 0を有している。 ェジェクタポンプ 6 0は、 スクリューポンプ Aと は別部品として、 スクリユーポンプ Aの吐出ポート 5 7に付加的に取り付けられ ている。 Here, in this vacuum device, connect to discharge port 57 of screw pump A In addition, an ejector pump 60 for suppressing back diffusion from the outside of the atmospheric pressure through the discharge port 57 is provided. The ejector pump 60 is additionally attached to the discharge port 57 of the screw pump A as a separate part from the screw pump A.
図 3をもあわせ参照して、 ェジェクタポンプ 6 0は、 吸入口 6 2と、 ガス導入 口 6 3と、 デフユ一ザ 6 4と、 吐出口 6 5とを備えている。  Referring also to FIG. 3, the ejector pump 60 includes a suction port 62, a gas inlet port 63, a diffuser 64, and a discharge port 65.
そして、 本真空装置の稼動時、 即ち、 高真空ポンプ 1 、 2、 および 3、 ブース タ一ポンプ 4 a、 5 a、 および 6 a、 ならびに、 バックポンプ 4 b、 5 b、 およ び 6 b (いずれも図 1 ) の稼動時は常時、 反応チャンバ 1 0、 1 1、 および 1 2 (図 1 ) へのガス導入中/非導入中に関わらず、 ェジェクタポンプ 6 0のガス導 入口 6 3からデフユーザ 6 1に向けて、 不活性ガスを 0 · 1 M P a〜 0 . 5 M P aの圧力で導入する。  Then, when the vacuum apparatus is operated, that is, the high vacuum pumps 1, 2, and 3, the booster pumps 4a, 5a, and 6a, and the back pumps 4b, 5b, and 6b The gas inlet 6 of the ejector pump 60 is always in operation (both in Fig. 1) regardless of whether gas is introduced into the reaction chambers 10, 11, and 12 (Fig. 1). Inert gas is introduced from 3 to the differential user 61 at a pressure of 0.1 MPa to 0.5 MPa.
こうすることで、 ェジェクタポンプの原理により、 吸入口 6 2ならびにスクリ ュ一ポンプ Aの吐出ポ一ト 5 7付近の圧力は、 数 1 0 0 0 P a〜数 1 0 0 0 0 P aとなる。 尚、 随伴流の発生やデフユーザにおける衝撃波の発生等のェジェクタ ポンプの原理については、 既知のことであるため、 ここでは説明を省略する。 この結果、 大気圧の外部からェジェクタポンプ 6 0の吐出口 6 5および吸入口 6 2ならびにスクリューポンプ Aの吐出ポート 5 7を通して吸入ボ一卜 5 6へ向 かう逆拡散は、 著しく減少される。 逆拡散が抑制されることにより、 高真空ボン プ 1 、 2、 および 3、 ブースターポンプ 4 a、 5 a、 および 6 a、 ならびに、 パ ックポンプ 4 b、 5 b、 および 6 bが、 特に、 バックポンプ 4 b、 5 b , および 6 bが効率よく動作し、 その消費電力を大きく削減できる。 また、 ェジェクタポ ンプ 6 0によって、 その吐出口 6 5の背圧 (大気圧) を吸入口 6 2において 3 0 0 t o r r程度まで減圧することができる。  In this way, according to the principle of the ejector pump, the pressures near the suction port 62 and the discharge port 57 of the screw pump A are expressed by the following formulas: 100 Pa Pa to 100 Pa Pa It becomes. It should be noted that the principle of the ejector pump, such as the generation of a wake and the generation of a shock wave in a differential user, is already known, and therefore the description thereof is omitted here. As a result, the back diffusion from the outside of the atmospheric pressure to the suction port 56 through the discharge port 65 and the suction port 62 of the ejector pump 60 and the discharge port 57 of the screw pump A is significantly reduced. . By suppressing back diffusion, the high vacuum pumps 1, 2, and 3, the booster pumps 4a, 5a, and 6a, and the pack pumps 4b, 5b, and 6b, in particular, The pumps 4b, 5b and 6b operate efficiently and their power consumption can be greatly reduced. The back pressure (atmospheric pressure) of the discharge port 65 can be reduced to about 300 torr at the suction port 62 by the ejector pump 60.
図 5は、 図 1に示すような真空装置において、 バックポンプ 4 b、 5 b、 およ び 6 bとしてスクリューポンプ Aを適用した際の、 スクリユーポンプ Aの吸入ポ —ト 5 6における圧力とスクリユーポンプ Aの消費電力との関係を検証した結果 を示している。 この検証においては、 比較例として、 ェジェクタポンプを備えて いない他はスクリユーポンプ Aと同構造のポンプをも、 図 1の真空装置における バックポンプ 4 b、 5 b、 および 6 bとして適用し、 同様の測定を行った。 FIG. 5 shows the pressure at the suction port 56 of the screw pump A when the screw pump A is applied as the back pumps 4b, 5b, and 6b in the vacuum apparatus shown in FIG. The results of verifying the relationship between the power consumption of screw pump A and that of screw pump A are shown. In this verification, as a comparative example, a pump having the same structure as the screw pump A except that no ejector pump was provided was also used in the vacuum device in Fig. 1. Similar measurements were made with back pumps 4b, 5b, and 6b applied.
図 5から明らかなように、 ェジェクタポンプ 6 0を備えたスクリューポンプ A は、 ェジェクタポンプを持たないスクリューポンプに比べて、 吸入圧力の値に関 わらず全般的に消費電力が低い。 特に、 吸入圧力が 1 0 t 0 r r未満時には、 ェ ジェクタポンプ 6 0を備えたスクリューポンプ Aの消費電力は、 ェジェクタボン プを持たないスクリューポンプの消費電力に比べておよそ 5 0 %削減されている。 換言すれば、 図 1に示すような真空装置のバックポンプ 4 b、 5 b、 および 6 bとしてスクリユーポンプ Aを適用した場合には、 反応チャンバ 1 0、 1 1、 お よび 1 2 (図 1 ) 内へのガス非導入時に、 より高い効果があらわれると云える。  As is evident from FIG. 5, the screw pump A having the ejector pump 60 generally consumes less power than the screw pump without the ejector pump regardless of the suction pressure value. In particular, when the suction pressure is less than 10 t0 rr, the power consumption of the screw pump A with the ejector pump 60 is reduced by about 50% compared to the power consumption of the screw pump without the ejector pump. . In other words, when the screw pump A is applied as the back pumps 4b, 5b, and 6b of the vacuum device as shown in FIG. 1, the reaction chambers 10, 11, and 12 (FIG. 1) It can be said that a higher effect is obtained when gas is not introduced into the interior.
[実施例 2 ]  [Example 2]
本発明の実施例 2においては、 図 1のバックポンプ 4 b、 5 b、 および 6 bの それぞれとして、 スクリュ一ポンプ Bを有している。  In the second embodiment of the present invention, a screw pump B is provided as each of the back pumps 4b, 5b, and 6b in FIG.
図 4 ( a )および(b ) を参照して、 スクリューポンプ Bにおいては、 図 2 ( a ) および ( b ) に示したスクリユーポンプ Aと同様に、 雄ロータ 2 5および雌ロー 夕 2 6は、 主ケ一シング 4 2に収容されており、 主ケース 4 2の一端側を密封す る端板 4 3に取り付けられた軸受 3 5および 3 6ならびに副ケ一シング 4 6に取 り付けられた軸受 3 7および 3 8によって回転自在に支持されている。  Referring to FIGS. 4 (a) and (b), screw pump B has male rotor 25 and female rotor 26 as in screw pump A shown in FIGS. 2 (a) and (b). Are housed in the main casing 42 and are mounted on the bearings 35 and 36 attached to the end plate 43 sealing one end of the main case 42 and the sub casing 46. The bearings 37 and 38 are rotatably supported.
雄ロータ 2 5および雌ロータ 2 6の回転軸 2 7および 2 8には、 副ケ一シング 4 6内に収容されたタイミングギア 3 1および 3 2が取り付けられており、 雄口 一夕 2 5および雌ロータ 2 6が互いに接触しないように両口一夕間の隙間が調整 されている。 また、 雄口一夕 2 5の回転軸には、 力ップリングまたは変速用ギァ を介してモータ Mが取り付けられており、 モータ Mの回転は、 雄口一夕 2 5に伝 達され、 タイミングギア 3 1および 3 2を介して雌ロータ 2 6を回転させるよう に構成されている。  Timing gears 31 and 32 housed in a sub-casing 46 are attached to the rotating shafts 27 and 28 of the male rotor 25 and the female rotor 26, respectively. The gap between the two openings is adjusted so that the female rotor 26 and the female rotor 26 do not contact each other. A motor M is attached to the rotary shaft of the male mouth 25 via a force coupling or a gear for shifting. The rotation of the motor M is transmitted to the male mouth 25 and the timing gear It is configured to rotate the female rotor 26 via 31 and 32.
主ケ一シング 4 2の一端側には、 吸入ポ一ト 5 6が設けられて副ケ一シング 5 5が取り付けられている。 また、 主ケーシング 4 2の端板 4 3には、 雄ロータ 2 5および雌ロータ 2 6で圧縮された気体を吐出する吐出ポート 5 7が形成されて いる。  At one end of the main casing 42, a suction port 56 is provided, and a sub casing 55 is attached. Further, a discharge port 57 for discharging the gas compressed by the male rotor 25 and the female rotor 26 is formed in the end plate 43 of the main casing 42.
また、 主ケーシング 4 2や圧縮気体等は気体の圧縮によって温度が上昇するた め、 主ケ一シング 4 2の外側には、 冷却ジャケット 3 3が形成されており、 この 冷却ジャケット 3 3内に水等の冷媒を流通され、 主ケーシング 4 2や圧縮気体等 が冷却されるようになっている。 Also, the temperature of the main casing 42 and the compressed gas rises due to the compression of the gas. Therefore, a cooling jacket 33 is formed outside the main casing 42, and a coolant such as water is circulated in the cooling jacket 33 to cool the main casing 42 and the compressed gas. It has become.
このように構成されたスクリューポンプ Bは、 モータ Mによって雄口一夕 2 5 を回転駆動すると、 タイミングギア 3 1および 3 2によって雌ロータ 2 6が回転 駆動される。 そして、 雄口一夕 2 5および雌ロータ 2 6の回転に伴い、 上段のブ 一スターポンプ 4 a、 5 a、 および 6 a (図 1 ) からの気体が吸入ポート 5 6を 通して、 雄口一夕 2 5、 雌口一夕 2 6、 および主ケ一シング 4 2によって形成さ れる作動室に吸入される。 吸い込まれた気体は、 雄ロータ 2 5および雌ロー夕 2 6の回転に伴い、 圧縮されながら吐出ポー卜 5 7を通して吐出される。  In the screw pump B thus configured, when the male mouth 25 is rotationally driven by the motor M, the female rotor 26 is rotationally driven by the timing gears 31 and 32. Then, as the male mouth 25 and the female rotor 26 rotate, the gas from the upper booster pumps 4a, 5a, and 6a (Fig. 1) passes through the suction port 56, and the male Inhaled into the working chamber formed by mouth 25, female mouth 26, and main casing 42. The sucked gas is discharged through the discharge port 57 while being compressed as the male rotor 25 and the female rotor 26 rotate.
本実施の形態において、 スクリューポンプ Bは、 その吐出ポート 5 7に接続さ れ、 大気圧の外部から吐出ポ一ト 5 7を通した逆拡散を抑制するためのェジェク 夕ポンプ部 6 0を内蔵している。 即ち、 ェジェクタポンプ部 6 0は、 スクリュー ポンプ Bと一体の部品として、 スクリユーポンプ Bの端板 4 3の吐出ポー卜 5 7 部分に内蔵されている。  In the present embodiment, the screw pump B is connected to its discharge port 57, and has a built-in pump 60 for suppressing back diffusion from outside of the atmospheric pressure through the discharge port 57. are doing. That is, the ejector pump section 60 is incorporated in the discharge port 57 of the end plate 43 of the screw pump B as an integral part of the screw pump B.
ェジェクタポンプ部 6 0は、 吸入口 6 2と、 ガス導入口 6 3と、 デフユーザ 6 4と、 吐出口 6 5とを備えている。  The ejector pump section 60 includes a suction port 62, a gas introduction port 63, a differential user 64, and a discharge port 65.
そして、 本真空装置の稼動時、 即ち、 高真空ポンプ 1、 2、 および 3、 ブース 夕一ポンプ 4 a、 5 a、 および 6 a、 ならびに、 ノ ソクポンプ 4 b、 5 b , およ び 6 b (いずれも図 1 ) の稼動時は常時、 反応チャンバ 1 0、 1 1、 および 1 2 (図 1 ) へのガス導入中 Z非導入中に関わらず、 ェジェクタポンプ部 6 0のガス 導入口 6 3からデフユーザ 6 1に向けて、 不活性ガスを 0 . 1 M P a〜 0 . 5 M P aの圧力で導入する。  Then, when the vacuum apparatus is operated, that is, the high vacuum pumps 1, 2, and 3, the booth pumps 4a, 5a, and 6a, and the pumps 4b, 5b, and 6b (In both cases, Fig. 1), the gas inlet of the ejector pump section 60 regardless of whether gas is being introduced into the reaction chambers 10, 11, and 12 (Fig. 1). Inert gas is introduced from 63 to the differential user 61 at a pressure of 0.1 MPa to 0.5 MPa.
こうすることで、 ェジェクタポンプの原理により、 吸入口 6 2ならびにスクリ ュ一ポンプ Bの吐出ポ一ト 5 7付近の圧力は、 数 1 0 0 0 P a〜数 1 0 0 0 0 P aとなる。  In this way, according to the principle of the ejector pump, the pressures near the suction port 62 and the discharge port 57 of the screw pump B are expressed by the following formulas. It becomes.
この結果、 大気圧の外部からェジェクタポンプ部 6 0の吐出口 6 5および吸入 口 6 2ならびにスクリューポンプ Bの吐出ポート 5 7を通して吸入ポート 5 6へ 向かう逆拡散は、 著しく減少される。 逆拡散が抑制されることにより、 高真空ポ ンプ 1 、 2、 および 3、 ブースターポンプ 4 a、 5 a、 および 6 a、 ならびに、 バックポンプ 4 b、 5 b、 および 6 bが、 特に、 バックポンプ 4 b、 5 b、 およ び 6 bが効率よく動作し、 その消費電力を大きく削減できる。 As a result, the back diffusion from the outside of the atmospheric pressure to the suction port 56 through the discharge port 65 and the suction port 62 of the ejector pump section 60 and the discharge port 57 of the screw pump B is significantly reduced. By suppressing back diffusion, high vacuum Pumps 1, 2, and 3, booster pumps 4a, 5a, and 6a, and back pumps 4b, 5b, and 6b, in particular, back pumps 4b, 5b, and 6b Operates efficiently and its power consumption can be greatly reduced.
図 1に示すような真空装置において、 バックポンプ 4 b、 5 b、 および 6 bと して本実施の形態によるスクリューポンプ Bを適用した際にも、 実施例 1と同じ く、 図 5に示す結果が得られた。  In the vacuum apparatus shown in FIG. 1, when the screw pump B according to the present embodiment is applied as the back pumps 4b, 5b, and 6b, as shown in FIG. The result was obtained.
図 5から明らかなように、 ェジェクタポンプ部 6 0を備えたスクリユーポンプ Bは、 ェジェクタポンプを持たないスクリユーポンプに比べて、 吸入圧力の値に 関わらず全般的に消費電力が低い。 特に、 吸入圧力が 1 0 t o r r未満時には、 ェジェクタポンプ部 6 0を備えたスクリュ一ポンプ Bの消費電力は、 ェジェクタ ポンプを持たないスクリューポンプの消費電力に比べておよそ 5 0 %削減されて いる。  As is clear from FIG. 5, the screw pump B having the ejector pump section 60 has lower power consumption as a whole than the screw pump without the ejector pump regardless of the suction pressure value. . In particular, when the suction pressure is less than 10 torr, the power consumption of the screw pump B equipped with the ejector pump section 60 is reduced by about 50% compared to the power consumption of the screw pump without the ejector pump. .
換言すれば、 図 1に示すような真空装置のバックポンプ 4 b、 5 b、 および 6 bとしてスクリューポンプ Bを適用した場合には、 反応チャンバ 1 0、 1 1 、 お よび 1 2 (図 1 ) 内へのガス非導入時に、 より高い効果があらわれると云える。 本実施の形態によるスクリューポンプは、 ェジェクタポンプ部を内蔵している ため、 実施例 1のごとくェジェクタポンプが外付けされているスクリユーポンプ に比べ.. コンパクトである。 このため、 複数台のバックポンプを有する真空装置 に適用した場合、 真空装置全体の占有スペースを低減することができる。  In other words, when the screw pump B is applied as the back pumps 4b, 5b, and 6b of the vacuum apparatus as shown in FIG. 1, the reaction chambers 10, 11, and 12 (FIG. 1) It can be said that a higher effect is obtained when gas is not introduced into the inside. Since the screw pump according to the present embodiment has a built-in ejector pump section, it is more compact than the screw pump in which the ejector pump is externally attached as in the first embodiment. Therefore, when applied to a vacuum device having a plurality of back pumps, the space occupied by the entire vacuum device can be reduced.
以上の実施の形態では、バックポンプとしてスクリユーポンプを例に挙げたが、 ェジェクタポンプが取り付けられるか内蔵される本発明による真空ポンプは、 ル ーッポンプ等であってもよい。  In the above embodiment, the screw pump is used as an example of the back pump. However, the vacuum pump according to the present invention to which the ejector pump is attached or built may be a loop pump or the like.
また、 本発明による真空ポンプは、 その背圧がェジェク夕ポンプの効果があら われる圧力範囲であるならば、 多段構成のうちのバックポンプに限らず、 一段の 真空ポンプとして使用することも可能である。 さらに、 用途としては、 半導体装 置を製造するための真空装置に限定されるものではない。 産業上の利用可能性  In addition, the vacuum pump according to the present invention can be used as a single-stage vacuum pump as well as a back pump in a multi-stage configuration, as long as the back pressure is within a pressure range in which the effect of the eject pump is exhibited. is there. Further, the application is not limited to a vacuum device for manufacturing a semiconductor device. Industrial applicability
本発明による真空ポンプは、 その背圧がェジェクタポンプの効果があらわれる 圧力範囲であるならば、 多段構成のうちのバックポンプに限らず、 一段の真空ポ ンプとして使用することも可能である。 さらに、 用途としては、 半導体装置を製 造するための真空装置に限定されるものではない。 In the vacuum pump according to the present invention, the back pressure exerts the effect of the ejector pump. As long as the pressure is within the pressure range, it can be used not only as a back pump in a multistage configuration but also as a single-stage vacuum pump. Further, the application is not limited to a vacuum device for manufacturing a semiconductor device.

Claims

請求の範囲 The scope of the claims
1 .ガス導入口とガス排出口を備えた真空容器と、前記真空容器に接続され、 該真空容器内部を減圧すると共に減圧状態を保っための機械構造の複数段の真空 ポンプとを有する真空装置において、 1. A vacuum apparatus having a vacuum vessel provided with a gas inlet and a gas outlet, and a multi-stage vacuum pump connected to the vacuum vessel and having a mechanical structure for reducing the pressure inside the vacuum vessel and maintaining the reduced pressure. At
前記真空ポンプのうちの最後段の真空ポンプの吐出口に接続され、 該最後段の 真空ポンプの減圧動作を補助し、 該吐出口からの逆拡散を抑制するための非機械 構造の補助ポンプを有することを特徴とする真空装置。  A non-mechanical auxiliary pump connected to the discharge port of the last-stage vacuum pump of the vacuum pump, for assisting the pressure-reducing operation of the last-stage vacuum pump, and for suppressing reverse diffusion from the discharge port; A vacuum device, comprising:
2 . 前記補助ポンプは、 前記最後段のポンプの前記吐出口に付加的に取り付 けられたェジ工クタポンプである請求の範囲第 1項記載の真空装置。  2. The vacuum apparatus according to claim 1, wherein the auxiliary pump is an edge construction pump additionally attached to the discharge port of the last-stage pump.
3 . 前記補助ポンプは、 前記最後段のポンプに内蔵されて該最後段のポンプ と一体装置となるように備えられているェジェクタポンプである請求の範囲第 1 項記載の真空装置。  3. The vacuum apparatus according to claim 1, wherein the auxiliary pump is an ejector pump built in the last-stage pump and provided so as to be integrated with the last-stage pump.
4 .ガス導入口とガス排出口を備えた真空容器と、前記真空容器に接続され、 該真空容器内部を減圧すると共に減圧状態を保っための機械構造の複数段の真空 ポンプとを有する真空装置において、  4. A vacuum apparatus having a vacuum vessel having a gas inlet and a gas outlet, and a multistage vacuum pump connected to the vacuum vessel and having a mechanical structure for reducing the pressure inside the vacuum vessel and maintaining the reduced pressure. At
前記真空ポンプのうちの最後段の真空ポンプの吐出口に接続されたェジェク夕 ポンプを有することを特徴とする真空装置。  A vacuum apparatus, comprising: an ejector pump connected to a discharge port of a last one of the vacuum pumps.
5 . ガス導入口とガス排出口を備えた真空容器と、 前記真空容器内部を減圧 に保っための第 1の真空ポンプと、 前記第 1の真空ポンプの後段に接続された第 2の真空ポンプと、 前記第 2の真空ポンプの後段に接続された第 3の真空ポンプ とを有する真空装置において、  5. A vacuum vessel provided with a gas inlet and a gas outlet, a first vacuum pump for keeping the inside of the vacuum vessel at reduced pressure, and a second vacuum pump connected to a stage subsequent to the first vacuum pump And a third vacuum pump connected downstream of the second vacuum pump.
前記第 1の真空ポンプが夕一ボ分子ポンプまたはねじ溝ポンプであり、 前記第 2の真空ポンプがブースターポンプであり、 前記第 3の真空ポンプがドライボン プであって、  Wherein the first vacuum pump is an evening molecular pump or a screw groove pump, the second vacuum pump is a booster pump, the third vacuum pump is a dry pump,
前記第 3の真空ポンプの内部または外部にェジェクタボンプが付加されている ことを特徴とする真空装置。  A vacuum apparatus, wherein an ejector pump is added inside or outside the third vacuum pump.
6 . 大気側を臨む吐出口にェジェクタポンプ部を装備したことを特徴とする 真空ポンプ。 6. A vacuum pump, which is equipped with an ejector pump at the discharge port facing the atmosphere.
7 . 前記ェジェクタポンプ部は、 前記真空ポンプの外部に付加的に取り付け られている請求の範囲第 6項記載の真空ポンプ。 7. The vacuum pump according to claim 6, wherein the ejector pump section is additionally mounted outside the vacuum pump.
8 . 前記ェジェクタポンプ部は、 前記真空ポンプに内蔵されている請求の範 囲第 6項記載の真空ポンプ。  8. The vacuum pump according to claim 6, wherein the ejector pump section is built in the vacuum pump.
9 . 前記真空ポンプは、 スクリユーポンプまたはルーツポンプである請求の 範囲第 6乃至第 8項のいずれか一項記載の真空ポンプ。  9. The vacuum pump according to any one of claims 6 to 8, wherein the vacuum pump is a screw pump or a roots pump.
PCT/JP2004/002484 2003-03-03 2004-03-01 Vacuum device and vacuum pump WO2004079192A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04716009A EP1609990B1 (en) 2003-03-03 2004-03-01 Vacuum device and vacuum pump
US10/548,225 US20060182638A1 (en) 2003-03-03 2004-03-01 Vacuum device and vacuum pump
DE602004022519T DE602004022519D1 (en) 2003-03-03 2004-03-01 VACUUM DEVICE AND VACUUM PUMP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003055749A JP2004263635A (en) 2003-03-03 2003-03-03 Vacuum device and vacuum pump
JP2003-055749 2003-03-03

Publications (1)

Publication Number Publication Date
WO2004079192A1 true WO2004079192A1 (en) 2004-09-16

Family

ID=32958669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002484 WO2004079192A1 (en) 2003-03-03 2004-03-01 Vacuum device and vacuum pump

Country Status (6)

Country Link
US (1) US20060182638A1 (en)
EP (1) EP1609990B1 (en)
JP (1) JP2004263635A (en)
DE (1) DE602004022519D1 (en)
TW (1) TW200506205A (en)
WO (1) WO2004079192A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0418771D0 (en) * 2004-08-20 2004-09-22 Boc Group Plc Evacuation of a load lock enclosure
JP4745779B2 (en) * 2005-10-03 2011-08-10 神港精機株式会社 Vacuum equipment
FR2952683B1 (en) * 2009-11-18 2011-11-04 Alcatel Lucent METHOD AND APPARATUS FOR PUMPING WITH REDUCED ENERGY CONSUMPTION
TW201118259A (en) * 2009-11-19 2011-06-01 Ji Ee Industry Co Ltd Water pump
CN102062088B (en) * 2011-01-19 2012-11-28 西安交通大学 Two-screw multiphase pump device suitable for working condition with high air void
US20120261011A1 (en) * 2011-04-14 2012-10-18 Young Man Cho Energy reduction module using a depressurizing vacuum apparatus for vacuum pump
EP2644264A1 (en) * 2012-03-28 2013-10-02 Aurotec GmbH Pressure-controlled multi-reactor system
DE102012220442A1 (en) * 2012-11-09 2014-05-15 Oerlikon Leybold Vacuum Gmbh Vacuum pump system for evacuating a chamber and method for controlling a vacuum pump system
FR3008145B1 (en) 2013-07-04 2015-08-07 Pfeiffer Vacuum Sas DRY PRIMARY VACUUM PUMP
CN103900376B (en) * 2014-04-15 2015-11-18 吴江市赛纳电子科技有限公司 A kind of manual vacuum stove
US10760573B2 (en) 2014-06-27 2020-09-01 Ateliers Busch Sa Method of pumping in a system of vacuum pumps and system of vacuum pumps
RU2674297C2 (en) * 2014-10-02 2018-12-06 Ателье Буш Са Pumping-out system for creating vacuum and pumping-out method therewith
US11209024B2 (en) * 2015-06-24 2021-12-28 Itt Manufacturing Enterprises Llc Discharge casing insert for pump performance characteristics control
US10155600B2 (en) * 2015-12-28 2018-12-18 Starvac Systems Pty Ltd Apparatus for vacuum sealing products
FR3077343B1 (en) * 2018-01-29 2020-02-14 Norauto France SUCTION PLANT FOR THE COLLECTION OF WASTE FLUIDS FROM A MOTOR VEHICLE, DEVICE COMPRISING THE PLANT AND COLLECTION METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385292A (en) * 1986-09-29 1988-04-15 Hitachi Ltd Vacuum pump
JPH0726623B2 (en) * 1990-03-28 1995-03-29 日本碍子株式会社 Vacuum unit
JP2002039061A (en) * 2000-07-25 2002-02-06 Dia Shinku Kk Vacuum system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1495762A (en) * 1923-05-28 1924-05-27 Emma Rosenhagen Vacuum pump
US2335109A (en) * 1942-06-02 1943-11-23 F E Myers & Bro Co Combination centrifugal ejector pump
US2452874A (en) * 1945-10-24 1948-11-02 Deming Co Pumping system
US2923458A (en) * 1956-11-01 1960-02-02 Sone Tamotsu Diffusion pumps
US2913120A (en) * 1957-03-26 1959-11-17 J P Glasby Mfg Co Inc Vacuum operated apparatus for moving fluid material
US3536418A (en) * 1969-02-13 1970-10-27 Onezime P Breaux Cryogenic turbo-molecular vacuum pump
EP0166851B1 (en) * 1984-04-11 1989-09-20 Hitachi, Ltd. Screw type vacuum pump
US4718240A (en) * 1985-03-01 1988-01-12 Helix Technology Corporation Cryopump regeneration method and apparatus
JPH0784871B2 (en) * 1986-06-12 1995-09-13 株式会社日立製作所 Vacuum exhaust device
JPH0353039Y2 (en) * 1987-05-30 1991-11-19
JPS6429690A (en) * 1987-07-22 1989-01-31 Hitachi Ltd Shaft sealing device for screw vacuum pump
US5611673A (en) * 1994-07-19 1997-03-18 Shin-Ei Kabushiki Kaisha Vacuum jet pump for recovering a mixed fluid of gas and liquid condensates from steam-using apparatus
JPH09125227A (en) * 1995-10-27 1997-05-13 Tokyo Electron Ltd Evacuation apparatus and vacuum treatment equipment
US5944049A (en) * 1997-07-15 1999-08-31 Applied Materials, Inc. Apparatus and method for regulating a pressure in a chamber
US5960775A (en) * 1997-12-08 1999-10-05 Walbro Corporation Filtered fuel pump module
RU2142917C1 (en) * 1998-06-30 1999-12-20 Попов Алексей Юрьевич Method and device for electrochemical treatment of water
TW504548B (en) * 1998-06-30 2002-10-01 Ebara Corp Turbo molecular pump
JP2002541541A (en) * 1999-04-07 2002-12-03 アルカテル System for regulating the pressure in a vacuum chamber, vacuum pumping unit equipped with this system
DE10009164C1 (en) * 2000-02-26 2001-07-19 Festo Ag & Co Combined vacuum generator units has housing of each unit provided with ejector socket for fitting with ejector inserts of varying type
JP2002234861A (en) * 2001-02-09 2002-08-23 Nippon Shokubai Co Ltd Method for producing hydroxyalkyl ester
EP1234982B1 (en) * 2001-02-22 2003-12-03 VARIAN S.p.A. Vacuum pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385292A (en) * 1986-09-29 1988-04-15 Hitachi Ltd Vacuum pump
JPH0726623B2 (en) * 1990-03-28 1995-03-29 日本碍子株式会社 Vacuum unit
JP2002039061A (en) * 2000-07-25 2002-02-06 Dia Shinku Kk Vacuum system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1609990A4 *

Also Published As

Publication number Publication date
EP1609990A4 (en) 2007-07-18
EP1609990B1 (en) 2009-08-12
JP2004263635A (en) 2004-09-24
US20060182638A1 (en) 2006-08-17
DE602004022519D1 (en) 2009-09-24
TW200506205A (en) 2005-02-16
EP1609990A1 (en) 2005-12-28

Similar Documents

Publication Publication Date Title
WO2004079192A1 (en) Vacuum device and vacuum pump
US9541088B2 (en) Evacuation apparatus
US6589023B2 (en) Device and method for reducing vacuum pump energy consumption
US9869317B2 (en) Pump
US6896490B2 (en) Vacuum apparatus
US20080206072A1 (en) Vacuum Apparatus
KR100884115B1 (en) Multi-chamber installation for treating objects under vacuum, method for evacuating said installation and evacuation system therefor
JP4180265B2 (en) Operation method of vacuum exhaust system
WO2004079198A1 (en) Screw vacuum pump
WO2005061896A2 (en) Vacuum pump
WO2004083643A1 (en) Positive-displacement vacuum pump
JP2003172282A (en) Multi-stage type vacuum pump
KR102178373B1 (en) Vacuum pump housing for preventing overpressure and vacuum pump having the same
JP2003083248A (en) Evacuation system
JPH09125227A (en) Evacuation apparatus and vacuum treatment equipment
EP1607633A1 (en) Vacuum pump
JP2002174174A (en) Evacuator
TW202120792A (en) Pump unit
TWI274108B (en) Liquid ring gas pump
KR102229080B1 (en) Pumping system and method for lowering the pressure in a load-lock chamber
KR102382668B1 (en) Vacuum pump housing for preventing overpressure and vacuum pump having the same
WO1999042729A1 (en) Vacuum pump
JP2003161281A (en) Vacuum treatment device
JP2002070776A (en) Composite vacuum pump
JP2002039061A (en) Vacuum system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004716009

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006182638

Country of ref document: US

Ref document number: 10548225

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004716009

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10548225

Country of ref document: US