WO2004074483A1 - Tsg gene-knockout animal - Google Patents

Tsg gene-knockout animal Download PDF

Info

Publication number
WO2004074483A1
WO2004074483A1 PCT/JP2003/011050 JP0311050W WO2004074483A1 WO 2004074483 A1 WO2004074483 A1 WO 2004074483A1 JP 0311050 W JP0311050 W JP 0311050W WO 2004074483 A1 WO2004074483 A1 WO 2004074483A1
Authority
WO
WIPO (PCT)
Prior art keywords
tsg
gene
dna
drug
tissue
Prior art date
Application number
PCT/JP2003/011050
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Nosaka
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to JP2004568506A priority Critical patent/JPWO2004074483A1/en
Publication of WO2004074483A1 publication Critical patent/WO2004074483A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knockout animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • A61P5/40Mineralocorticosteroids, e.g. aldosterone; Drugs increasing or potentiating the activity of mineralocorticosteroids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0393Animal model comprising a reporter system for screening tests

Definitions

  • the present invention relates to a TSG gene-modified non-human mammal.
  • the present invention provides a medicament for treating or preventing a disease associated with dysgenesis of a tissue derived from mesoderm, a method for screening a candidate compound thereof, and a test for a disease associated with dysgenesis of a tissue derived from mesoderm About the method and the test drug.
  • TGF-j3 family ligands, receptors, and signal / reconverters such as SMADs have been implicated in many human diseases.
  • TSG was identified in Drosophila as one of seven zygotic genes that govern dorsal cell fate in Drosophila embryos (Non-Patent Document 1)
  • TSG corresponds to vertebrate BMP-4
  • Mutations in the TSGs that encode for secreted cysteine-rich proteins that regulate Decapentaplegic activity and that cause mutations in TSGs result in the loss of the dorsal central structure called the amniotic serosa in Drosophila.
  • Non-Patent Document 2 On the other hand, in searching for an essential soluble factor produced from the AGM (Non-patent Document 3) region where final hematopoiesis occurs, the present inventors determined that after intercourse (dpc) 10.5 days A mouse homolog of Drosophila TSG was isolated using a retrovirus-mediated signal sequence capture method (Non-patent Document 4), using mRNA from the AGM region of the mouse embryo of the mouse (Patent Document 1).
  • Non-Patent Documents 5 and 6 The ventral-dorsal axis is reversed between Drosophila and vertebrates, and BMP-4, a ventral morphogen, is a mesodermal formation (Non-Patent Document 7) and the survival of hematopoietic stem cells (HSC) (Non-Patent Document 8), the present inventors speculate that TSG may also be involved in ventral formation and mesoderm-derived organ formation including mammalian hematopoiesis. did.
  • TSGs form a ternary complex of TSG, BMP-4, and chordin, a BMP-4 antagonist, in flies and fish frogs.
  • BMP-4 BMP-4 antagonists
  • cystin a BMP-4 antagonist
  • Patent Document 1 W0 01/18200
  • Non-Patent Document 1 Zusman, S.B., and E.F.Wieschaus. 1985. Dev. Biol. 1
  • Non-patent document 2 Mason, ED et al., 1994.Genes & Dev. 8: 1489-1501
  • Non-patent document 3 Medvinsky, A., and E. Dzierzak. 1996.Cell 86: 897-906
  • Patent Document 4 Kojima, T., and T. Kitamura. 1999. Nat. Biotechnol. 1
  • Non-patent document 5 Oelgeschlager, M. et al., 2000.Nature 405: 757-763 (Non-patent document 6) Larrain J et al., 2001.Development 128 (22): 4439-4447 (Non-patent document 7 Winnier, G. et al, 1995.Genes & Dev. 9: 2105-2116 [Non-Patent Document 8] Bhatia, M. et al., 1999. J. Exp. Med. 189: 1139-1147 [Non-patent Reference 9] Chang, C. et al., 2001. Nature 410: 483-487
  • Non-Patent Document 10 Ross, JJ et al., 2001.Nature 410: 479-483
  • Non-Patent Document 11 Scott, IC et al., 2001.Nature 410: 475-478
  • Non-patent Document 1 2 Yu K et al., 2000. Development 127 (10): 2143- 2154 Disclosure of the Invention
  • the present invention has been made in view of such a situation, and an object of the present invention is to elucidate the function of TSG in a living body and find a relationship with TSG. Further, the present invention provides a model animal for the disease, a drug for treating or preventing the disease, a method for screening candidate compounds thereof, a method for testing the disease, and a method for examining the disease, based on the relevance to the found disease. Aims to provide testing drugs.
  • TSG gene knockout mice were created and analyzed. As a result, TSG gene knockout mice showed dwarfism, dwarfism with combined immunodeficiency, osteogenesis imperfecta, hypochondrosis, lymphopenia, combined immunodeficiency, and renal hypoplasia Showed formation. It has also been shown that TSG deficiency causes varying degrees of developmental impairment in many mesodermal-derived tissues, especially the thymus, spleen, cartilage and bone.
  • TSG acts as both an agonist and antagonist for BMP-4 signaling and is essential for mammalian immune-bone development.
  • the present invention relates to a model animal for a disease associated with developmental deficiency of a tissue derived from mesoderm, a drug for treating or preventing the disease, a screening method for a candidate compound thereof, a method for testing the disease, and a test drug
  • a model animal for a disease associated with developmental deficiency of a tissue derived from mesoderm a drug for treating or preventing the disease
  • a screening method for a candidate compound thereof a method for testing the disease
  • a test drug The following [1] to [18] are provided.
  • a genetically modified mammalian cell characterized in that a foreign gene has been inserted into one or both of the TSG gene pairs.
  • Diseases associated with dysgenesis of tissues derived from mesoderm include dwarfism, dwarfism with complex immunodeficiency disorder, osteogenesis imperfecta, hypochondrosis, lymphopenia, and complex type
  • the drug according to [7] which is for immunodeficiency or renal hypoplasia.
  • [11] Diseases with impaired development of mesoderm-derived tissues including the following steps (a) to (c), bone loss due to drugs, osteoporosis, fractures, or growth due to drugs A method of screening a candidate compound for a drug for the treatment or prevention of deterrence.
  • a method for examining a disease associated with insufficient development of a mesodermal-derived tissue comprising a step of detecting a mutation in a TSG gene region.
  • Diseases associated with dysgenesis of tissues derived from mesoderm include dwarf growth, complex dwarf hyperplasia with immunodeficiency, osteogenesis imperfecta, hypochondrosis, lymphopenia, complex Immunodeficiency or renal hypoplasia [9]-[1
  • An agent for detecting a disease associated with dysfunction in mesodermal tissue-derived tissue comprising an oligonucleotide hybridized to the TSG gene region and having a chain length of at least 15 nucleotides.
  • An agent for testing a disease associated with dysgenesis of mesodermal-derived tissue including an antibody that binds to TSG.
  • the present inventors have created TSG gene knockout mice in order to elucidate the function of TSG in vivo. As a result, it became clear that TSG was associated with a disease associated with a failure to develop mesodermal tissue.
  • the present invention provides a genetically modified non-human mammal characterized in that the expression of the TSG gene is artificially suppressed based on this finding.
  • the genetically modified non-human mammal of the present invention is useful as a model animal for a disease associated with developmental failure of a tissue derived from mesoderm. Further, the genetically modified non-human mammal of the present invention
  • the drug is a candidate compound for the treatment or prevention of diseases associated with dysgenesis of mesodermal-derived tissue, bone loss due to drugs, osteoporosis, fractures, or growth inhibition caused by drugs. Can be used for the method.
  • TSG twisted gastrulation gene of the present invention
  • TSG protein encoded by the gene
  • accession numbers of the SG sequence are shown below.
  • the TSG of the present invention is not limited to the above examples, but also includes proteins functionally equivalent to the above TSG.
  • Functionally equivalent proteins include proteins consisting of amino acid sequences in which one or more amino acids have been substituted, deleted, added and / or inserted in the amino acid sequence of native TSG.
  • Other methods well known to those skilled in the art for preparing DNA encoding a mutant protein functionally equivalent to the TSGs of the present invention include hybridization techniques under stringent conditions (Southern EM: J Mol Biol 98: 503, 1975) and polymerase chain reaction (PCR) technology (Saik RK, et al: Science 230: 1350, 1985; Saiki RK, et al: Science 239: 487, 1988). Method.
  • the stringent hybridization conditions refer to the conditions of 6 M urea, 0.4% SDS, 0.5 X SSC or the equivalent stringency of the hybridization conditions. Under conditions of higher stringency, for example, 6M urea, 0.4% SDS, and 0.1 ⁇ SSC, it is expected that more homologous DNA can be isolated.
  • High homology means that the entire amino acid sequence is at least 50% or more, It preferably refers to 70% or more, more preferably 90% or more, and most preferably 95% or more sequence identity.
  • the number of amino acids to be mutated in the mutant is usually within 30 amino acids, preferably within 15 amino acids, more preferably within 5 amino acids, further preferably within 3 amino acids, and still more preferably No more than 2 amino acids.
  • Amino acid sequence and nucleotide sequence identity are determined using the BLAST algorithm (Proc. Natl. Acad. Sci. USA 87: 2264—2268, 1990, Proc Natl. Acad Sci. USA 90: 5873, 1993) by Carlin and Artiul. can do.
  • tissues derived from mesoderm include, but are not limited to, thymus, spleen, cartilage, bone, and kidney.
  • examples of the disease associated with the developmental failure of the tissue derived from the mesoderm include dwarfism, dwarfism with combined immunodeficiency (SCID), osteogenesis imperfecta, hypochondrosis, Lymphopenia, combined immunodeficiency, and renal hypoplasia.
  • SCID combined immunodeficiency
  • osteogenesis imperfecta a gene mutation such as insertion, deletion, or substitution of a nucleotide. It refers to a state in which the expression of the gene is suppressed.
  • the expression of a mutant TSG protein whose function as a normal TSG protein is reduced or lost is also included in the “suppression of TSG gene expression”.
  • suppression includes not only the case where the expression of the TSG ⁇ gene is completely suppressed, but also the case where the expression of only one gene of the gene pair of the gene is suppressed.
  • the site where the gene mutation is present in the present invention is not particularly limited as long as expression of the gene is suppressed, and examples thereof include an exon site and a promoter site.
  • the species from which the animal targeted for the modification of the TSG gene is derived are usually mammals other than humans, and preferably rodents such as mice, rats, hamsters, puppies, and stags. Of these, mice are particularly preferred.
  • the present invention provides a genetically modified mammalian cell characterized in that the expression of the TSG gene is artificially suppressed. Such cells are useful as model cells for diseases associated with dysfunction of mesodermally derived tissues.
  • the species of organism from which the cells for which the TSG gene is to be modified are cells derived from various species including humans.
  • examples of the types of cells to be modified of the TSG gene in the present invention include somatic cells, fertilized eggs, ES cells, and cells established from the genetically modified non-human mammal of the present invention. It is not limited to these.
  • a method for establishing the cell line derived from the genetically modified non-human mammal a known method can be used. For example, in rodents, it is possible to use the method of primary culture of fetal cells. (Shinsei Kagaku Kenkyusho, Vol. 18, pages 125-129, Tokyo Kagaku Doujin and Mouse Embryo Operation Manual, pages 262-264, Modern Publishing).
  • Means for artificially suppressing the expression of the TSG gene in the genetically modified non-human mammal and the genetically modified mammalian cell of the present invention include a method of deleting the whole or a part of the TSG gene and a method of controlling the expression of the TSG gene.
  • Examples of the method include deletion of all or a part of the region, and preferably a method of inactivating the TSG gene by inserting a foreign gene into one or both of the TSG gene pair. is there. That is, in a preferred embodiment of the present invention, the genetically modified non-human mammal and the genetically modified mammalian cell are characterized in that a foreign gene has been inserted into one or both of the gene pairs of the TSG gene.
  • the genetically modified non-human mammal of the present invention can be prepared by those skilled in the art by generally known genetic engineering techniques.
  • a genetically modified mouse can be prepared as follows. First, DNA containing the exon portion of the TSG gene is isolated from a mouse, and an appropriate marker gene is inserted into this DNA fragment to construct a targeting vector. This targeting vector is introduced into a mouse ES cell line by electoral boration, etc., and cells that have undergone homologous recombination -1 o-Select strains.
  • an antibiotic resistance gene such as a neomycin resistance gene is preferable.
  • a cell line in which homologous recombination has occurred can be selected only by culturing in a medium containing the antibiotic.
  • a thymidine kinase gene or the like can be linked to a targeting vector.
  • a homologous recombinant can be assayed by PCR and Southern plot to efficiently obtain a cell line in which one of the TSG gene pair is inactivated.
  • a cell line in which homologous recombination has occurred it is preferable to produce a chimera using a plurality of clones in addition to the homologous recombination site, since there is a risk of unknown gene disruption due to introduction of a gene.
  • the obtained ES cell line is injected into a mouse blastoderm to obtain a chimeric mouse.
  • a mouse in which one of the gene pairs of the TSG gene has been inactivated can be obtained.
  • a mouse in which both gene pairs of the TSG gene have been inactivated Gene modification can also be performed in animals other than mice, in which ES cells have been established, by the same method.
  • An ES cell line in which both TSG gene pairs have been inactivated can be obtained by the following method.
  • a cell line in which the other gene pair has been inactivated ie, TSG ⁇ An ES cell line in which both of the offspring gene pairs have been inactivated
  • it can be prepared by selecting an ES cell line in which one of the gene pairs has been inactivated, introducing a targeting vector again into this cell line, and selecting a cell line in which homologous recombination has occurred. It is preferable to use a different marker gene from the marker gene to be introduced into the target marker.
  • the present invention also includes TSG or a DNA encoding TSG as an active ingredient, -li one
  • bone loss by drugs such as corticosteroids, osteoporosis, fractures, or growth inhibition by drugs such as corticosteroids Provide the drug.
  • DM encoding TSG in the agent of the present invention is not particularly limited, and may be genomic DNA, cDNA, synthetic DNA, or a vector containing those DNAs.
  • “TSG” in the drug of the present invention can be prepared as a recombinant protein using a known gene recombination technique, in addition to a natural protein.
  • “TSG” in the drug of the present invention is not particularly limited to the organism from which it is derived. When used for treatment or prevention of human diseases, it is preferably derived from mammals, and most preferably derived from humans.
  • the natural protein is prepared, for example, from an extract of tissues such as heart, brain, lung, liver, and kidney, which are thought to express TSG, by affinity chromatography using an antibody against TSG. It is possible to do so.
  • recombinant protein A person skilled in the art can prepare it by a known method, for example, as a recombinant polypeptide.
  • Recombinant polypeptides are obtained, for example, by incorporating TSG-encoding DNA into an appropriate expression vector, introducing it into an appropriate host cell, collecting the transformant, obtaining an extract, Purify and prepare by chromatography such as exchange, reverse phase, gel filtration, or affinity chromatography in which an antibody against TSG is immobilized on a column, or by combining a plurality of these columns. It is possible.
  • host cells for example, animal cells or E.
  • the expressed recombinant polypeptide can be purified using a daltathione column or a nickel column.
  • Escherichia coli when Escherichia coli is used as a host, the vector is amplified in Escherichia coli in order to amplify the vector in large amounts with Escherichia coli (for example, JM109, DH5a, HB101, XLlBlue), etc.
  • vectors include M13 vectors, pUC vectors, pBR322, pBluescript, pCR-Script, etc.
  • pGE M - a selected gene for transformed Escherichia coli
  • the expression vector in the case of expression in Escherichia coli, is useful in addition to the above-mentioned characteristics such that the vector is amplified in Escherichia coli, and the host may be JM109, DH5cx, HB10U XL1.
  • E. coli such as Blue
  • a promoter that can be efficiently expressed in E. coli such as the lacZ promoter (Ward et al., Nature (1989) 341, 544-546; FASEB J.
  • pGEX- 5X- 1 (Buarumashia Co.), "QIAe xpress system] (Qiagen), include pEGFP s or pET like.
  • the vector may include a signal sequence for polypeptide secretion.
  • a signal sequence for polypeptide secretion the pelB signal sequence (Lei, SP et al J. Bacteriol. (1987) 169, 4379) may be used for production in E. coli periplasm.
  • the introduction of the vector into the host cell can be performed using, for example, a calcium chloride method or an electroporation method.
  • Escherichia coli for example, as a vector for producing TSG, expression vectors derived from mammals (for example, pcDNA3 (manufactured by Invitrogen) and pEGF-BOS (Nucleic Acids. Res.
  • insect cells Vectors eg, “Bac-to-BAC baculovairus expression system” (manufactured by Gipco BRL), P BacPAK8), plant-derived expression vectors (eg, ⁇ 1, pMH2), and animal virus-derived expression vectors (eg, pHSV, pMV , PAdexLcw), retrovirus-derived expression vector (for example, pZIPneo), yeast-derived expression vector (for example, “Pichia Expression Kit” (manufactured by Invitrogen), pNVll, SP-Q01), and Bacillus subtilis-derived expression Vector (for example, pPL608, pKTH50) and the like.
  • insect cells Vectors eg, “Bac-to-BAC baculovairus expression system” (manufactured by Gipco BRL), P BacPAK8)
  • plant-derived expression vectors eg, ⁇ 1, pMH2
  • animal virus-derived expression vectors eg, pHSV
  • promoters required for expression in cells such as the SV40 promoter (Mulligan et al., Nature (1979) 277, 108) , MMLV-LTR promoter, EFla promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322), CMV promoter, etc. are essential to select for transformation into cells. It is more preferable to have a gene (eg, a drug resistance gene that can be identified by a drug (neomycin, G418, etc.)). Examples of a vector having such properties include pMAM, pDR2, pBK-RSV, pBK-CMV, p0PRSV, p0P13, and the like.
  • examples of a system for producing a polypeptide in w 'in include a production system using an animal plant and a production system using a plant.
  • the TSG-encoding DNA is introduced into the animal or plant, and TSG is produced and recovered in the animal or plant.
  • animals there are production systems using mammals and insects. Goats, stags, sheep, mice, and mice can be used as mammals (Vicki Glasser, SPECTRUM Biotechnology Applications, 1993). When a mammal is used, a transgenic animal can be used.
  • a DNA encoding TSG is prepared as a fusion gene with a gene encoding a polypeptide uniquely produced in milk, such as goat / 3 casein.
  • the DNA fragment containing the fusion gene is then injected into a goat embryo and the embryo is transferred to a female goat.
  • TSGs can be obtained from milk produced by the transjugyan goat born from the goat that has received the embryo or its progeny. Produced from transgenic goats Hormones may optionally be used in transgenic rats to increase the amount of milk containing the polypeptide to be produced (Ebert, KM et al., Bio / Technology (1994) 12, 699-702).
  • silkworms can be used as insects, for example.
  • TSG can be obtained from the body fluid of the silkworm by infecting the silkworm with a paculovirus into which DNA encoding TSG has been inserted (Susumu, M. et al., Nature (1985)). 315, 592-594).
  • TSG when using a plant, for example, tobacco can be used.
  • a plant expression vector for example, pMON530
  • this vector is introduced into a vector such as Agrobacterium tumefaciens.
  • This pacteria is tobacco, for example, Nicotiana.
  • Tabacum By infecting Tabacum (Nicotiana tabacum), TSG can be obtained from the leaves of this tobacco (Julian IL-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138).
  • the TSG thus obtained can be isolated from the inside or outside of the host cell (eg, medium) and purified as a substantially pure and uniform polypeptide. Separation and purification of the polypeptide may be carried out by using the separation and purification methods used in ordinary polypeptide purification, and is not limited at all. For example, chromatography, chromatography, finoletter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. If selected and combined, the polypeptide can be separated and purified.
  • the TSG of the present invention can be arbitrarily modified or partially removed by applying an appropriate protein modifying enzyme before or after purification of the TSG.
  • an appropriate protein modifying enzyme for example, trypsin, chymotrypsin, lysine peptidase, protein kinase, dalcosidase and the like are used.
  • anti-TSG antibody there is no particular limitation on the anti-TSG antibody.
  • monoclonal antibodies Also included are local antibodies.
  • antisera obtained by immunizing immunized animals such as rabbits with TSG, polyclonal antibodies and monoclonal antibodies of all classes, and humanized antibodies and human antibodies obtained by transgenes.
  • the above antibody can be prepared by the following method.
  • TSG is immunized to a small animal such as a heron to obtain serum, and this is subjected to an affinity column to which TSG is coupled to obtain a fraction that recognizes only TSG. From this fraction, immunoglobulin G or M can be prepared by purifying it with protein A or protein G column.
  • a small animal such as a mouse is immunized with TSG, and the spleen is excised from the mouse, crushed into cells, and fused with mouse myeloma cells using a reagent such as polyethylene glycol.
  • a clone producing an antibody against TSG is selected from the fused cells (hybri-doma).
  • the obtained hybridoma was transplanted into the abdominal cavity of a mouse, ascites was recovered from the mouse, and the obtained monoclonal antibody was subjected to, for example, ammonium sulfate precipitation, protein A, protein G column, DE AE ion exchange chromatography, It can be prepared by purifying TSG with a coupled affinity column or the like.
  • the above antibody can be used for purification and detection of TSG, and can also be used as an agent for controlling the function of TSG.
  • an antibody is used as a drug for humans, an arsenic, an antibody or a humanized antibody is effective in terms of immunogenicity.
  • Human antibodies or humanized antibodies can be prepared by methods known to those skilled in the art.
  • a human antibody can be prepared, for example, by immunizing a mouse in which the immune system has been replaced with a human with TSG.
  • a humanized antibody can be prepared, for example, by CDR grafting in which an antibody gene is cloned from a monoclonal antibody-producing cell and the antigen-determining site is transplanted to an existing human antibody.
  • the above drug can be administered either orally or parenterally, but is preferably administered parenterally.
  • injection nasal administration, pulmonary administration, transdermal administration And the like.
  • injection forms include systemic or local administration by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and the like.
  • a non-viral vector such as a liposome such as a retrovirus, an adenovirus, or a virus vector such as Sendai virus can be used.
  • a non-viral vector such as a liposome such as a retrovirus, an adenovirus, or a virus vector such as Sendai virus.
  • the administration method include an in vivo method and an ex vivo method.
  • the drug of the present invention in addition to directly administering the drug of the present invention to a patient, it is also possible to administer the drug as a drug prepared by a known pharmaceutical method.
  • a drug can be used in the form of a sterile solution with water or another pharmaceutically acceptable liquid, or a suspension for injection.
  • a suitable combination with a pharmacologically acceptable carrier or medium specifically, sterile water or saline, an emulsifier, a suspending agent, a surfactant, a stabilizer, a vehicle, a preservative, or the like, It may be formulated by mixing in unit dosage form as required by generally accepted pharmaceutical practice. The amount of the active ingredient in these preparations is such that an appropriate dose in the specified range can be obtained.
  • Sterile compositions for injection can be formulated according to normal pharmaceutical practice using a vehicle such as distilled water for injection.
  • Aqueous solutions for injection include, for example, physiological saline, isotonic solutions containing budsugar and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride.
  • alcohols specifically, ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 TM, and HC0-50 may be used in combination.
  • oily liquid examples include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent. It may also be combined with a buffer, for example, a phosphate buffer, a sodium acetate buffer, a soothing agent, for example, proforce hydrochloride, a stabilizer, for example, benzyl alcohol, phenol, or an antioxidant.
  • a buffer for example, a phosphate buffer, a sodium acetate buffer, a soothing agent, for example, proforce hydrochloride, a stabilizer, for example, benzyl alcohol, phenol, or an antioxidant.
  • the prepared injection solution is usually filled into an appropriate ampoule.
  • the dose can be appropriately selected depending on the age and symptoms of the patient. For example:-You can choose from 0,000 lmg to 100 mg per lkg body weight per serving. Alternatively, for example, the dose can be selected from the range of 0.001 to 100,000 mg / body per patient. However,
  • the present invention relates to the treatment or prevention of diseases associated with dysgenesis of tissues derived from mesoderm, bone loss by drugs such as adrenocortical hormone, osteoporosis, fractures, or growth suppression by drugs such as corticosteroids.
  • the present invention provides a screening method for a candidate compound of a drug for the screening. Examples of the screening method of the present invention will be described below, but the screening method of the present invention is not limited thereto.
  • the first embodiment of the screening method of the present invention relates to a screening compound which binds to TSG.
  • a test compound is brought into contact with TSG.
  • the test compound used in the screening method of the present invention includes, for example, a single compound such as a natural compound, an organic compound, an inorganic compound, a protein, a peptide, and the like, a compound library, an expression product of a gene library, and a cell. Extracts, cell culture supernatants, fermentation microorganism products, marine organism extracts, plant extracts and the like can be mentioned.
  • the binding between the TSG and a test compound is detected.
  • a test compound that binds to the TSG is selected.
  • the isolated compound can be a candidate compound for an agent for the treatment or prevention of a disease associated with a failure to develop tissue derived from mesoderm. It can also be used as a test compound in the screening method described below.
  • TSG-encoding DNA is pSV2neo, pcDNA I, pCD8, etc. 8—
  • the gene is expressed in animal cells by inserting it into any exogenous gene expression vector.
  • Promoters used for expression include the SV40 early promoter (Rigby In Williamson, ed.), Genetic Engineering, Vol. 3. Academic Press, London, p. 83-141 (1982)), EF-1a promoter (Kim et al. Gene 91). , P. 217-223 (1990)), CAG promoter (Niwa et al. Gene 108, p. 193-200 (1991)), RSV LTR promoter (Cullen Methods in Enzymology 152, p. 684-704 (1987)) , SR promoter (Takebe et al. Mol. Cell. Biol. 8, p.
  • CMV immediate early promoter Seed and Aruffo Pro atl. Acad. Sci. USA 84, p. 3365-3369 ( 1987)
  • SV40 late promoter Gheysen and Fiers J. Mol. Appl. Genet. 1, p. 385-394 (1982)
  • Adenovirus late promoter Kaufman et al. Mol. Cell. Biol. 9, p.
  • any commonly used promoter such as the HSV TK promoter may be used.
  • TSG can be expressed as a fusion polypeptide having a monoclonal antibody recognition site by introducing a recognition site (epitope) of the monoclonal antibody, for which the specificity is known, into the N-terminal or C-terminal of TSG.
  • ⁇ -galactosidase Vectors that can express fusion polypeptides with maltose binding protein, daltathione S-transferase, green fluorescent protein (GFP), and the like are commercially available.
  • polyhistidine His-tag
  • influenza agglutinin HA human c-myc
  • FLAG Vesicular stomatitis virus glycoprotein
  • VSV-GP Vesicular stomatitis virus glycoprotein
  • T7-tag human simple virus Epitopes such as viral glycoproteins (HSV-tag) and E-tag (epitopes on monoclonal phage) and monoclonal antibodies that recognize them
  • HSV-tag viral glycoproteins
  • E-tag epitope antibody system for screening for polypeptides that bind to TSG
  • an immunocomplex is formed by adding these antibodies to a cell lysate prepared using an appropriate surfactant.
  • This immune complex consists of TSG, a polypeptide capable of binding thereto, and an antibody.
  • immunoprecipitation can also be performed using antibodies against TSG.
  • Antibodies against TSG include, for example, introducing TSG-encoding DNA into an appropriate E. coli expression vector, expressing it in Escherichia coli, purifying the expressed polypeptide, and then purifying it from egret, mouse, rat, and goat. It can be prepared by immunizing chickens and the like. Alternatively, it can be prepared by immunizing the above animal with the synthesized partial peptide of TSG.
  • the immune complex can be precipitated, for example, using Protein A Sepharose or Protein G Sepharose if the antibody is a mouse IgG antibody.
  • TSG is prepared as a fusion polypeptide with an epitope such as GST, for example, a substance which specifically binds to these epitopes such as glutathione-Sepharose 4B is used to generate an antibody against TSG.
  • an immune complex can be formed.
  • immunoprecipitation for example, according to the method described in the literature (Harlow, E. and Lane, D .: Antibodies, pp. 511-552, Cold Spring Harbor Laboratory publications, New York (1988)), or It may be performed according to.
  • SDS-PAGE is generally used for the analysis of immunoprecipitated polypeptides.
  • a gel having an appropriate concentration it is possible to analyze the polypeptides bound by the molecular weight of the polypeptide.
  • Poribe petit de which is generally bound to TSG, since it is difficult to detect in normal staining of polypeptides such as Coomassie one staining or silver staining, a radioactive isotope 3
  • the detection sensitivity can be improved. Once the molecular weight of the polypeptide is known, the desired polypeptide can be directly purified from the SDS-polyacrylamide gel and its sequence determined.
  • a method for isolating a polypeptide binding to the TSG using TSG for example, the method of Skolnik et al. (Skolnik, EY et al., Cell (1991) 65, 83-90) is used. be able to.
  • a cDNA library using a phage vector (gtii, ZAP, etc.) was prepared from a cell, which is expected to express a polypeptide that binds to TSG, and expressed on LB-agarose. Then, the expressed polypeptide is immobilized on the filter, the purified and labeled TSG is allowed to react with the above filter, and the plaque expressing the polypeptide bound to the TSG may be detected by the label.
  • Methods for labeling TSG include a method using the binding property of biotin and avidin, a method using an antibody that specifically binds to TSG or a polypeptide fused to TSG (eg, GST), a method using a radioisotope Alternatively, a method utilizing fluorescence and the like can be mentioned.
  • a 2-neoprid system using cells Yields, S., and Sternglanz, R., Trends. Genet. (1994) 10, 286-292, Dalton S, and Treisman R (1992) Characterization of SAP- 1, a protein recruited by serum response factor to the c-fos serum response element.Cell 68, 597-612, "MATCHMARKER Two-Hybrid System”, “Malian MATCHMAKER Two-Hybrid Assay Kit”, MATCHMAKER One-Hybrid System (Both manufactured by Clontech) and rHybriZAP Two-Hybrid Vector System] (manufactured by Stratagene).
  • TSG or its partial peptide is fused with SRF DNA binding region or GAL4 DNA binding region and expressed in yeast cells, and it is expected that polypeptide that binds to TSG is expressed.
  • a cDNA library that is expressed in a form fused with the VP16 or GAL4 transcriptional activation region is prepared from the cells to be transfected, and this is introduced into the yeast cells, and cDNA derived from the library is extracted from the positive clones detected. Isolate (When the polypeptide that binds to TSG is expressed in the yeast cells, the binding of both activates the reporter gene, and a positive clone can be confirmed).
  • a polypeptide encoded by the cDNA can be obtained. This makes it possible to prepare a polypeptide or a gene thereof that binds to TSG.
  • Reporter genes used in the 2-hybrid system include, for example, HIS3 gene, Ade2 gene, LacZ gene, CAT gene, luciferase gene, PAI-1 (Plasminogen activator inhibitor typel) gene, etc. However, it is not limited to these.
  • (2) Screening by the hybrid method can be performed using mammalian cells in addition to yeast cells.
  • TSG is immobilized on a carrier of an affinity column, and a test compound expected to express a polypeptide that binds to TSG is applied here.
  • the test compound include a cell extract, a cell lysate, and the like.
  • the column can be washed to prepare a polypeptide bound to TSG.
  • the obtained polypeptide is analyzed for its amino acid sequence, an oligo DNA is synthesized based on the amino acid sequence, and a cDNA library is screened using the DNA as a probe to obtain a DNA encoding the polypeptide.
  • Methods for isolating compounds that bind to TSGs include, for example, reacting a synthetic compound, a natural product puncture, or a random phage peptide display library with immobilized TSG, A method for screening binding molecules and a screening method using high throughput by combinatorial chemistry technology (Wrighton NC; Farrell FX; Chang R; Kashyap AK; Barbone FP; Mulcahy LS; Johnson DL; Barrett RW; Jolliffe LK; Dower W J., Small pepti des as potent mimetics of the protein hormone erythropoie tin, Science (UNITED STATES) Jul 26 1996, 273 p458-64, Verdine GL., The combinatorial chemi stry of nature.Nature (ENGLAND) Nov 7 1996, 384 pll-13, Hogan JC Jr., Directed combinatorial chemistry. Nature (ENGLAND) Nov 7 1996, 384 pl7-9) are known
  • a biosensor utilizing surface plasmon resonance can be used as a means for detecting or measuring the bound compound.
  • Biosensors using the surface plasmon resonance phenomenon enable real-time observation of the interaction between the TSG and the test compound as a surface plasmon resonance signal using a small amount of polypeptide and without labeling (Eg, BIAcore, manufactured by Pharmacia).
  • the second aspect of the screening method of the present invention relates to screening for a compound that substitutes for the function of TSG.
  • a test compound is administered to the genetically modified non-human mammal of the present invention.
  • Administration of the test compound to the genetically modified non-human mammal of the present invention can be performed, for example, orally or parenterally, but is not limited thereto.
  • the test compound is a protein, for example, a virus vector having a gene encoding the protein is used.
  • the gene can also be introduced into the genetically modified non-human mammal of the present invention by utilizing the infectivity of the gene.
  • a compound that substitutes for the function of TSG is selected as compared with the case where the test compound is not administered.
  • the test compound substitutes for the function of TSG.
  • the length of the anal nose (distance between the nose and anus) is measured with a vernier caliper or the like.
  • the white blood cell smear which was measured and separately prepared and subjected to May-Giemsa staining, was observed under a microscope to calculate the leukocyte percentage, and the two were multiplied to calculate the lymphocyte count, and the test compound was administered. If the lymphocytes in the peripheral blood of the offspring modified non-human animal were higher than those without administration, the non-human animal was euthanized, the thymus or spleen was removed, the weight was measured using a balance, and the test compound was administered. The weight of the thymus or spleen of the genetically modified non-human animal is heavier than that of the non-administered animal.
  • the third aspect of the screening method of the present invention relates to screening for a compound that increases the activity of TSG.
  • a test compound is brought into contact with TSG.
  • the TSG state used in the third embodiment is not particularly limited, and may be, for example, a purified state, a state expressed in a cell, a state expressed in a cell extract, and the like.
  • TSG The purification of TSG can be carried out by a well-known method (until determination of the primary structure under Protein Experiment Note, pages 10-13).
  • Cells expressing TSG include cells expressing endogenous TSG or cells expressing exogenous TSG.
  • Cells expressing the endogenous TSG include, but are not limited to, cultured cells.
  • the cells expressing the exogenous TSG can be prepared, for example, by introducing a vector containing DNA encoding TSG into the cells. Introduction of the vector into cells can be performed by a method common to those skilled in the art. In addition, Cells having TSG can be produced, for example, by inserting DNA encoding TSG into a chromosome by a gene transfer method utilizing homologous recombination.
  • the species from which the cell into which such exogenous TSG is introduced is not particularly limited, and may be any species for which a technique for expressing a foreign protein in cells has been established.
  • Examples of the cell extract in which TSG is expressed include, for example, those obtained by adding a vector containing DNA encoding TSG to a cell extract contained in an in vitro transcription / translation system.
  • the in vitro transcription / translation system is not particularly limited, and a commercially available in vitro transcription / translation kit or the like can be used.
  • the “contact” is performed according to the state of the TSG.
  • TSG when TSG is in a purified state, it can be carried out by adding a test compound to a purified sample.
  • the expression can be carried out by adding a test compound to the cell culture or the cell extract, respectively, as long as it is expressed in the cell or in the cell extract.
  • the test compound is a protein
  • a vector containing DNA encoding the protein is introduced into a cell expressing TSG, or the vector is extracted from a cell extract expressing TSG. It is also possible to carry out by adding the compound.
  • a two-hybrid method using yeast or animal cells can be used.
  • the activity of the TSG is then measured.
  • the activity of TSG can be measured, for example, by using the binding ability to BMP-4 as an index (Oelgeschlage, M. et al., 2000. Nature 405: 757-763).
  • a compound that increases the activity of the TSG is then selected as compared to when the test compound is not administered.
  • the fourth aspect of the screening method according to the present invention relates to screening for a compound that increases the expression level of a TSG gene.
  • a cell or a cell extract having DNA in which a reporter gene is operably linked downstream of the promoter region of the TSG gene is provided.
  • “Functionally coupled” Means that the promoter region of the TSG gene is linked to the reporter gene such that expression of the reporter gene is induced by binding of the transcription factor to the promoter region of the TSG gene. Therefore, even when the reporter gene is linked to another gene and forms a fusion protein with another gene product, the expression of the fusion protein is caused by binding of the transcription factor to the promoter region of the TSG gene. If it is induced, it is included in the meaning of the above “functionally linked”.
  • the reporter gene is not particularly limited as long as its expression can be detected.
  • CAT gene lacZ gene, luciferase gene, -dalcuronidase gene (GUS) and GFP gene commonly used in the art. And the like.
  • the reporter gene also includes DNA encoding TSG.
  • a test compound is then brought into contact with the cells or the cell extract.
  • the expression level of the reporter gene in the cell or the cell extract is measured.
  • the expression level of the reporter gene can be measured by a method known to those skilled in the art, depending on the type of the reporter gene used. For example, when the reporter gene is a CAT gene, the expression level of the reporter gene can be measured by detecting the acetylation of kuram ramuechol by the gene product.
  • the reporter gene is the lacZ ⁇ gene, the coloration of the dye compound by the catalytic action of the gene expression product is detected, and when the reporter gene is the luciferase gene, the catalytic activity of the gene expression product is detected.
  • the reporter gene Measure expression level can do.
  • the expression level of the gene can be measured by a method known to those skilled in the art.
  • the transcription level of the gene can be measured by extracting the mRNA of the gene according to a standard method and performing a Northern hybridization method or RT-PCR method using the mRNA as a type II.
  • the expression level of the gene can be measured using DNA array technology.
  • the level of translation of the gene can be measured by collecting the fraction containing TSG according to a standard method and detecting the expression of TSG by electrophoresis such as SDS-PAGE. Further, it is also possible to measure the translation level of the gene by detecting the expression of the TSG by performing a Western plotting method or the like using an antibody against the TSG.
  • a compound that increases the expression level of the reporter gene is selected as compared with the case where the test compound is not administered.
  • the present invention provides a method for detecting a disease associated with insufficient development of a mesodermal-derived tissue, which comprises a step of measuring the expression level of a TSG gene.
  • TSG gene expression includes not only TSGmRM expression but also TSG expression.
  • RNA sample of a subject is prepared.
  • the RNA sample can be extracted, for example, from the subject's blood, skin, oral mucosa, hair, tissues or cells collected or excised by surgery.
  • the amount of RNA encoding TSG contained in the RA sample is measured.
  • the measured amount of RA is then compared to a control. Examples of such a method include Northern blotting, DNA array, and RT-PCR. can do.
  • a polypeptide sample is prepared from a subject.
  • Polypeptide samples can be prepared, for example, from the subject's blood, skin, oral mucosa, hair, surgically collected or excised dentin or cells.
  • the amount of TSG contained in the polypeptide sample is measured.
  • the measured amount of TSG is then compared to a control.
  • examples of such methods include SDS polyacrylamide electrophoresis, stamp lotting, dot plotting, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA) using antibodies that bind to TSG, and
  • ELISA enzyme-linked immunosorbent assay
  • the present invention provides a method for testing a disease associated with insufficient development of a mesodermal tissue-derived tissue, comprising a step of detecting a mutation in a TSG gene region.
  • a mutation occurs in the TSG gene region according to the test method, it is determined that the patient is already suffering from a disease accompanied by insufficient development of a tissue derived from the mesoderm.
  • the TSG gene region means a TSG gene or a region that affects the expression of the gene.
  • the region that affects the expression of the gene includes a promoter region.
  • the mutation in the present invention is not limited in its type, number, site, etc., so long as it is a mutation that causes abnormal growth or differentiation of cells.
  • Examples of the type of the mutation include deletion, substitution, and insertion mutation.
  • a DNA sample is prepared from a subject.
  • the DNA sample can be prepared based on, for example, chromosomal DNA or RNA extracted from tissue or cells collected or excised from the blood, skin, oral mucosa, hair, or surgery of the subject.
  • DNA containing the TSG gene region is then isolated.
  • the gene region can be isolated, for example, by using a primer that hybridizes to DNA containing the gene region and performing PCR using chromosomal DNA or RNA as a type II.
  • the base sequence of the isolated DNA is determined.
  • the nucleotide sequence of the isolated DNA can be determined by a method known to those skilled in the art. .
  • a control refers to a DNA containing a normal (wild-type) TSG gene region.
  • the sequence of the DNA containing the TSG gene region of a healthy person is considered to be normal, so the above ⁇ compare with control '' usually means comparing with the sequence of the DNA containing the TSG gene region of a healthy person.
  • Detection of a mutation in the present invention can also be performed by the following method. First, a DNA sample is prepared from a subject. Next, the prepared DNA sample is cut with a restriction enzyme. Next, the DNA fragments are separated according to their size. The size of the detected DNA fragment is then compared to a control. In another embodiment, first, a DNA sample is prepared from a subject. Next, the DNA containing the TSG gene region is amplified. In addition, the amplified DNA is cut with a restriction enzyme. Next, the DNA fragments are separated according to their size. The size of the detected DNA fragment is then compared to a control.
  • Examples of such a method include a method using restriction fragment length polymorphism (RFLP) and a PCR-RFLP method. Specifically, when there is a mutation in the recognition site of the restriction enzyme, or when there is a base insertion or deletion in the DNA fragment generated by the restriction enzyme treatment, the size of the fragment generated after the restriction enzyme treatment is compared with that of the control. And change. By amplifying the portion containing this mutation by PCR and treating it with each restriction enzyme, these mutations can be detected as a difference in band mobility after electrophoresis. Or chromosome After treating DM with these restriction enzymes, electrophoresis, and performing Southern blotting using the probe DNA of the present invention, the presence or absence of the mutation can be detected.
  • RFLP restriction fragment length polymorphism
  • the restriction enzyme to be used can be appropriately selected according to each mutation.
  • RNA prepared from a subject in addition to genomic DNA, RNA prepared from a subject can be converted into cDNA with a reverse transcriptase, and this can be directly cut with a restriction enzyme, followed by Southern plotting. It is also possible to amplify the DNA containing the TSG gene region by PCR using this cDNA as type I, cut it with restriction enzymes, and then examine the difference in mobility.
  • a DNA sample is first prepared from a subject.
  • DNA containing the TSG gene region is amplified.
  • the amplified DNA is dissociated into single-stranded DNA.
  • the dissociated single-stranded DNA is separated on a nondenaturing gel. Compare the mobility of the separated single-stranded DNA on the gel with the control.
  • Examples of the method include the FCR-SSCP (Single-strand conformation polymorphism) method (Cloning and polymerase cnain reaction-single-st rand conformation polymorphism analysis of anonymous Alu repeats on chro mo some 11.Genomics 1992 Jan 1; 12 (1): 139-146., Detection of p53 gene mutations in human brain tumors by single-strand conformation polymorphism analysis of polymerase chain reaction products.Oncogene. 1991 Aug 1; 6 (8): 1313 -1318., Multiple fluorescence-based PCR-SSCP analysis with post labeling., PCR Methods Appl. 1995 Apr 1; 4 (5): 275-282.).
  • FCR-SSCP Single-strand conformation polymorphism
  • This method has advantages such as relatively simple operation and small amount of test sample, and is particularly suitable for screening a large number of DNA samples.
  • the principle is as follows. When a double-stranded DNA fragment is dissociated into single strands, each strand forms a unique higher-order structure depending on its base sequence. When the dissociated DNA strand is electrophoresed in a polyacrylamide gel containing no denaturing agent, the single-stranded DNA of the same complementary length moves to a different position according to the difference in each higher-order structure. . Single base substitution The higher-order structure of this single-stranded DNA also changes, and shows different mobility in polyacrylamide gel electrophoresis. Therefore, by detecting this change in mobility, the presence of a mutation due to point mutation, deletion, insertion or the like in the DNA fragment can be detected.
  • DNA containing the TSG gene region is amplified by PCR or the like.
  • PCR can be performed by those skilled in the art by appropriately selecting reaction conditions and the like.
  • the amplified DNA product can be labeled by using a primer labeled with an isotope such as 32 P, a fluorescent dye, or biotin.
  • the amplified DM product can be labeled by adding PCR to a PCR reaction solution and adding a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin.
  • labeling can also be performed by adding a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin to the amplified DNA fragment using Klenow enzyme or the like after the PCR reaction. .
  • the labeled DNA fragment thus obtained is denatured by applying heat or the like, and electrophoresis is carried out using a polyacrylamide gel containing no denaturing agent such as urea.
  • electrophoresis conditions vary depending on the properties of each DNA fragment, but are usually performed at room temperature (20 to 25 ° C).
  • the optimal mobility is used at a temperature of 4 to 30 ° C.
  • the mobility of DNA fragments is detected and analyzed by autoradiography using an X-ray film or a scanner that detects fluorescence. If a band with a difference in mobility is detected, the band can be directly excised from the gel, re-amplified by PCR, and directly sequenced to confirm the presence of the mutation. Even when labeled DNA is not used, band can be detected by staining the gel after electrophoresis with ethidium bromide silver staining. Monkey
  • a DNA sample is first prepared from a subject.
  • DNA containing the TSG gene region is amplified.
  • the amplified DNA is separated on a gel with increasing concentrations of DNA denaturant. The mobility of the separated DNA on the gel is then compared to a control.
  • Examples of such a method include a denaturant gradient gel electrophoresis (DGGE method) and the like.
  • the DGGE method is a method in which a mixture of DNA fragments is electrophoresed in a polyacrylamide gel having a concentration gradient of a denaturing agent, and the DNA fragments are separated based on differences in their instabilities.
  • DGGE method is a method in which a mixture of DNA fragments is electrophoresed in a polyacrylamide gel having a concentration gradient of a denaturing agent, and the DNA fragments are separated based on differences in their instabilities.
  • an unstable DNA fragment with a mismatch migrates to a certain denaturant concentration in the gel, the DNA sequence around the mismatch is partially dissociated into single strands due to the instability.
  • the mobility of this partially dissociated DNA fragment becomes very slow, and the mobility of the completely dissociated double-stranded DNA without dissociated part is different from that of the partially dissociated DNA, so that the two can be separated.
  • DNA containing the TSG gene region is amplified by a PCR method using the primers of the present invention, etc., and gradually increases as the concentration of a denaturing agent such as urea moves. Perform electrophoresis in a polyacrylamide gel and compare to a control.
  • a DNA fragment containing a mutation the DM fragment becomes single-stranded at a lower denaturant concentration position, and the migration speed becomes extremely slow.Therefore, the presence or absence of the mutation can be determined by detecting this difference in mobility. Can be detected.
  • a DNA containing a TSG gene region prepared from a subject and a substrate on which a nucleotide probe that hybridizes to the DNA is immobilized are provided.
  • substrate means a plate-like material on which nucleotide probes can be immobilized.
  • nucleotides include oligonucleotides and polynucleotides.
  • the substrate of the present invention is not particularly limited as long as nucleotide probes can be immobilized, but is generally used in DNA array technology.
  • a substrate can be suitably used.
  • DNA arrays are composed of thousands of nucleotides printed on a substrate at high density. Normally, these DNAs are printed on the surface of a non-porous substrate.
  • the surface layer of the substrate is generally glass, but a permeable membrane such as a nitrocellulose membrane can be used.
  • examples of the method for immobilizing (arraying) nucleotides include an oligonucleotide-based array developed by Affymetrix.
  • oligonucleotides are usually synthesized in situ.
  • photolithographic technology Affymetrix
  • inkjet Raster Inpharmatics
  • the nucleotide probe immobilized on the substrate is not particularly limited as long as it can detect a mutation in the TSG gene region. That is, the probe is, for example, a probe that hybridizes to DNA containing the TSG gene region. If specific hybridization is possible, the nucleotide probe will contain the gene region! It does not need to be completely complementary to NA.
  • the length of the nucleotide probe to be bound to the substrate when the oligonucleotide is immobilized is usually 10 to 100 bp, preferably 10 to 50 bp, and more preferably 15 to 25 bp.
  • the DNA containing the TSG gene region is brought into contact with the substrate.
  • DNA is hybridized to the nucleotide probe.
  • the reaction conditions of the hybridization reaction solution can vary depending on various factors such as the length of the nucleotide probe immobilized on the substrate, but it is generally performed by a method known to those skilled in the art. it can.
  • the DNA containing the TSG gene region is then immobilized on the substrate.
  • the intensity of the hybridization with the nucleotide probe is detected. This detection can be performed, for example, by reading the fluorescent signal with a scanner or the like.
  • DNA arrays DNA fixed on a slide glass is generally called a probe, while labeled DNA in a solution is called a target. Therefore, the above nucleotide immobilized on the substrate is referred to herein as a nucleotide probe.
  • the detected intensity of the hybridized soybean is further compared with a control.
  • Examples of such a method include the DM array method (SNP gene mutation strategy, Kenichi Matsubara and Yoshiyuki Sakaki, Nakayama Shoten, 128-135, Nature Genetics (1999) 22: 164-167).
  • the Allele Specific 01 iigonucleotide ASO hybridization method can be used for the purpose of detecting only a mutation at a specific position.
  • an oligonucleotide containing a nucleotide sequence that is considered to have a mutation is prepared and hybridized with DNA, the efficiency of hybrid formation is reduced in the presence of the mutation. This can be detected by the Southern prototyping method, a method utilizing the property of quenching by intercalating a special fluorescent reagent into a hybrid gap, or the like.
  • the MALDI-TOF / MS method SP gene polymorphism strategy, Kenichi Matsubara; Yoshiyuki Sakaki, Nakayama Shoten, pl06-117, Trends Biotechnol (2000): 18: 77-84
  • TaqMan PCR method SNP genetic polymorphism strategy, Kenichi Matsubara ⁇ Yoshiyuki Sakaki, Nakayama Shoten, p94-105, Gen et Anal.
  • the present invention provides a test agent for use in the test method of the present invention.
  • the test agent hybridizes to the TSG gene region and contains an oligonucleotide having a chain length of at least 15 nucleotides.
  • oligonucleotide includes a polynucleotide.
  • the oligonucleotide specifically hybridizes to DNA (normal DNA or mutant DNA) containing the TSG gene region.
  • DNA normal DNA or mutant DNA
  • the term “specifically hybridizes” refers to ordinary hybridization conditions, preferably to stringent hybridization conditions (eg, Sampluck et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, New York, US A, 2nd jR ⁇ 989 (conditions described here) means that cross-hybridization does not significantly occur with DNA encoding other proteins.
  • the oligonucleotide need not be completely complementary to the DNA containing the TSG gene region, as long as specific hybridization is possible.
  • Oligonucleotides that hybridize to DNA containing the TSG gene region and have a chain length of at least 15 nucleotides can be used as probes (including substrates on which the probes are immobilized) and primers in the above-described test method of the present invention.
  • the oligonucleotide is used as a primer, its length is usually 15 bp to 100 bp, preferably 17 bp to 30 bp.
  • the primer is not particularly limited as long as it can amplify at least a part of the TSG gene region including the mutated portion.
  • the probe is not particularly limited as long as it specifically hybridizes to DNA containing the TSG gene region.
  • the probe may be a synthetic oligonucleotide, which usually has a chain length of at least 15 bp or more.
  • the oligonucleotide of the present invention can be produced by, for example, a commercially available oligonucleotide synthesizer.
  • the probe can also be prepared as a double-stranded DNA fragment obtained by treatment with a restriction enzyme or the like.
  • the oligonucleotide of the present invention When the oligonucleotide of the present invention is used as a probe, it may be appropriately labeled before use. Is preferred. Labeling methods include the method of labeling by phosphorylating the 5 'end of the oligonucleotide with 32 P using T4 polynucleotide kinase, and random hexamer oligonucleotide using DM polymerase such as Klenow enzyme.
  • a primer a method of incorporating a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin using a nucleotide or the like as a primer (random prime method, etc.) can be exemplified.
  • test agent of the present invention is a test reagent containing an antibody that binds to TSG.
  • the above antibody is not particularly limited as long as it can be used for the test.
  • Antibodies are labeled as needed.
  • oligonucleotide antibody as an active ingredient, for example, sterile water, physiological saline, vegetable oil, surfactant, lipid, solubilizer, buffer, protein stabilizer (BSA or gelatin) And the like, and preservatives and the like may be mixed as necessary.
  • sterile water, physiological saline, vegetable oil, surfactant, lipid, solubilizer, buffer, protein stabilizer (BSA or gelatin) And the like, and preservatives and the like may be mixed as necessary.
  • FIG. 1 is a photograph showing TSG expression patterns in embryo and adult mice.
  • a to D show sagittal sections of 11.5 dpc mouse embryos by in situ hybridization.
  • White dots represent hybridization signals.
  • A Probing with sense strand R A of TSG.
  • BD probe with the antisense strand of TSG.
  • C D, and a partially enlarged view of B by hematoxylin and eosin (HE) staining.
  • V area where the spine is emerging; A, aorta; GM, gonad-mesonephros.
  • E Northern plot analysis of many tissues from adult mice with TSG cDNA probe.
  • FIG. 2 is a photograph showing TSG expression in the lung, thymus, and kidney of a 17.5 dpc wild-type mouse embryo. Each tissue section was subjected to in situ hybridization using TSG antisense or sense lipoprop and stained with HE. The scale panel shows 100 ⁇ , and all panels show the same magnification.
  • FIG. 3 is a diagram and a photograph showing the targeted disruption of TSG. A, Map of the TSG locus (top), targeting construct (center), and targeting locus (bottom). The enzymes are EcoRI (E), BamHI (B), and hel (N).
  • the targeting vector was a 4.8 and 1.6 kb TSG genomic fragment, a neomycin resistance gene ( ⁇ 3 ⁇ 4 ⁇ ) cassette derived from pMClNeoPolyA (Stratagene), a simple herpesvirus thymidine kinase containing the same promoter as pMClNeoPolyA ( tk) Gene cassettes.
  • B Southern plot analysis of tail DNA from mice. Genomic DNA digested with EcoRI was hybridized with the 5 'flanking probe. The 8.1 and 7.4 kb bands represent the wild-type mutated allele, respectively.
  • FIG. 4 Hybridization using total TSG cDNA probe to total RNA from adult TSG + / + mouse or adult TSG-mice liver and kidney, and human glyceraldehyde triphosphate dehydrogenase.
  • 4 is a photograph showing Northern plot analysis by rehybridization using a (GAPDH) probe. The left side of the photo shows the RNA ladder Ichudichi (kb) (Promega).
  • FIG. 5 is a diagram and a photograph showing growth retardation in mice.
  • A Appearance of TSG + / + and TSG littermate mice at 15 days of age. Par represents 1 cm.
  • D Survival rates of TSG + / + , TSG +/— , and TSG— mice by age. Diseased mice sacrificed before death were excluded from the data.
  • FIG. 6 is a photograph showing the shrunken tail of a TSG-mouse.
  • A TSG at 26 days of age—Mice with curly tail.
  • FIG. 7 is a photograph showing an X-ray image of a 22-day-old TSG-mouse and TSG + / + littermates. -/-Mice have thinner bones than + / + mice.
  • FIG. 8 is a photograph showing the skeleton of a 27-day-old TSG-mouse and litters stained with Arizarin Red and Aleu Chample.
  • FIG. 9 is a photograph showing dwarfogenesis with delayed endochondral ossification and the immature structure of the glomeruli of the kidney in TSG-/-mice.
  • Par 250 ⁇ .
  • FIG. 10 is a graph showing the bone density of TSG + / + , TSG +/ ⁇ , and TSG-z alone.
  • the bone mineral density of the right femur and lumbar vertebra L2-4 was measured by X-ray imaging using DCS-600EX-II (a Kikirisha).
  • Three ⁇ / ⁇ male mice (1 at 189 days, 2 at 224 days) and 16 female mice (other) were analyzed.
  • A indicates the femur, B indicates the waist;
  • FIG. 11 is a diagram showing lymphatic deficiency in peripheral blood of TSG-mice.
  • A Analysis of peripheral blood in TSG-I and TSG + / + littermates.
  • WB (:, leukocytes; RBC, erythrocytes; Hb, hemoglobin; PLT, platelets.
  • RBC leukocytes
  • Hb hemoglobin
  • PLT platelets.
  • B WBCs Blood cell counts of the same samples used in A were analyzed.
  • FIG. 12 is a photograph showing the lack of lymphatic system development in TSG-mouse.
  • Par 5 thighs in A, 3 marauders in B.
  • Par 30 mo Comparison of splenocyte and thymocyte numbers by age in E, F, TSG + / + , TSG +/— , and TSG—z— mice. ⁇
  • FIG. 13 is a photograph showing the results of TUNEL analysis using fluorescein-dUTP (green) on cells visualized with providide iodide (red).
  • A is from the same paraffin-embedded specimen as in Figure 12C. The same applies to B and the section of FIG. 12D.
  • FIG. 14 is a diagram showing flow cytometry analysis of thymocytes and bone marrow cells from a 27-day-old TSG-mouse TSG + / + littermates.
  • Thy Thymocytes
  • BM bone marrow cells
  • FIG. 15 is a diagram showing proliferation of TSG-deficient lymphocytes in the cells. 26-day-old TSG + / + and TSG—Thymocytes (A) and splenocytes (B) from littermates stimulated by various polymorphic narratative beta-cells for 24 hours to produce 3 ⁇ 4-thymidine Incorporation was measured after pulse labeling.
  • FIG. 16 is a photograph showing promotion of SMAD1 phosphorylation with an increase in RUM1 transcript in TSG-S gland cells.
  • A Western blot analysis of thymocytes of + / + and ⁇ / ⁇ littermates at 10 days of age using anti-phosphorylated SMAD1 antibody.
  • Freshly isolated thymocytes (labeled in vivo) were added to human BMP-4 at 100 ng / ml prior to recovery, and 7.5% knockout serum substitute (KSR) medium (denoted as BMP-4), human BMP- 4 was cultured for 45 minutes in a 7.5% KSR medium (denoted as BMP-4 + TSG) supplemented with 100 ng / ml of mouse TSG and ⁇ ⁇ g / ml. Each lane was loaded with cell lysate equivalent to 1.5 ⁇ 10 5 cells. The results are shown in two independent photographs. The left picture shows only the results of thymocytes in ⁇ WW.
  • the targeting vector was obtained by subcloning a TSG genomic clone (derived from ES129 / SvJ strain DNA (Stratagene) cloned into phage (Stratagene)) into pBluescript II (Stratagene), followed by the first ATG 20bp After converting the Nhel site in the downstream exon into a Sail site, a 1.1 kb Xhol-Sall fragment of pMClNeoPolyA (Stratagene) was inserted into the same site in the antisense direction. The HSV ⁇ cassette was also inserted into the Notl site of pBluescript II for negative selection.
  • the vector was linearized at the 5 'end of the left arm and electroporated into E14-1 embryonic stem (ES) cells. Screening of Southern blot analysis for homologous recombination was performed as described in the literature (Nosaka, T. et al., 1995. Science 270: 800-802). The targeting efficiency was between 5 and 10%. All mice were maintained under specific pathogen-free conditions.
  • Con A Concanapalin A
  • KSR knockout serum-substitute medium
  • FBS fetal calf serum
  • the mouse TSG cDNA isolated from the mouse aorta-gonad-mesonephros (AGM) region by the present inventors has a TSG protein (activator) of 4.0 kb in length. Session number: NCBI N0. Encodes 222 amino acids of MG00605), which is another gnorape (Graf, D. et al., 2001. Mamm. Genome 124: 554-560, Ross, JJ et al., 2001. Nature 410: 479-483, identical to the protein published by Scott, IC et al., 2001. Nature 410: 475-478). 11.
  • Figures 1A-D Northern blot analysis of adult mouse tissues revealed the presence of a 4.1 kb TSG transcript (FIG. 1E) in heart, lung, liver, and kidney.
  • TSG mRNA expression in 17.5 dpc sections of lung, thymus and kidney was also examined ( Figure 2).
  • TSG-deficient mice by gene targeting.
  • the present inventors Constructed a TSG targeting vector that disrupted the first codexon and completely suppressed TSG gene expression (Figure 3A).
  • the construct was electroporated into E14-1 ES cells to yield three independent clones, which were injected into C57BL / 6 blastocysts to produce chimeric mice.
  • the chimeric mice were backcrossed with C57BL / 6 mice to produce heterozygous (+/-) mice, and +/- mice were bred to produce homozygous mutant (-/-) mice.
  • Genotyping of 100 offspring yielded 27 wild-type (+ / +), 47 +/- and 26-/-mice; this expected ratio (1: 2 : 1) showed no embryo lethality.
  • the absence of wild-type TSG mRNA was confirmed by Northern blot analysis (FIG. 4).
  • mice At necropsy, several diseased mice were found to have pulmonary fibrosis, intraabdominal or subarachnoid hemorrhage, as well as thymic and spleen dysfunction (described below). Pathological; irrespective of the presence of W, almost half of the ⁇ / ⁇ mice had a clearly curled tail (FIG. 6).
  • BMP-7 null mouse Dudley, AT et al., 1995. Genes Dev 9: 2795-2807, Jena, N. et al., 1997. Exp Cell Res. 230: 28-37, Luo, G. et al., 1995.
  • Radiographs (typically shown in Figure 7) of + / +, +/-, and-/-littermates (along with cartilage) along with their necropsy, and their aleurysample (for cartilage) Skeletal specimens stained (for bones) ( Figure 8) showed that the TSG- / mouse had short and thin leg bones and a very thin skull, but at 27 days of age they had been mineralized. No difference was found in the area.
  • Femur and lumbar vertebrae of-/-mice with severe dwarfism at 32 days of age have a bone density of approximately half that of + / + littermates and a lower survival rate of long-lived-/-mice.
  • the decreasing trend was also shown to be modest (Figure 10).
  • These phenotypes are similar to those of transgenic mice expressing a dominant negative IB type BMP receptor driven by an osteoblast lineage-specific promoter (Zhao, M. et al., 2002. J. Cell Biol. 157: 1049-1060).
  • the present inventors have isolated mouse TSG cDNA from the AGM region.
  • BMP-4 was also found to be expressed in the human AGM region (Marshall, C.J. et al., 2000. Blood 96: 1591-1593).
  • BMP-4 unlike its upstream regulator Sonic Hedgehog (shh) (Bhardwaj, G. et al., 2001. Nat. Immunol. 2: 172-180), is a pluripotent hematopoietic. Cells cannot grow but can maintain them (Bhatia, M. et al., 1999. J. Exp. Med. 189: 1139-1147). Therefore, we were interested in the effect of TSG deficiency on hematopoiesis.
  • TUNEL analysis showed that many thymocytes in diseased-/-mice underwent DNA fragmentation to varying degrees, whereas thymocytes in + / + mice did not ( Figure 13).
  • Thymic flow cytometry analysis showed that the percentage of CD4-and CD8-single positive cells increased and double positive cells decreased in-/-mice compared to + / + littermates. (Fig. 14, upper panel). The number of bone marrow cells, when normalized by physique in a few cases, did not decrease significantly in ⁇ / ⁇ mice.
  • CD43 / B220 and B220 / IgM double staining of bone marrow cells showed that pro-B (CD43 + B220 lOT IgM-), pre-B (CD43- B220 low IgM-) and immature B (CD43 + B220 low IgM + ) cells decreased dramatically while mature B cells (CD43—B220 high IgM +) were retained ( Figure 14, middle four panels).
  • splenocytes and thymocytes from-/-mice show normal mitotic activity in vitro, and when cultured in KSR medium (i.e., in the absence of male fetal TSG), lipopolysaccharide Splenocytes and thymocytes from + / + mice by stimulation with polyclonal activators such as (LPS), concanapalin A (ConA), and anti-CD3 antibody plus phorbol myristyl acetate (PA), or IL-7 Proliferated at equal or even enhanced levels compared to (Figure 15).
  • polyclonal activators such as (LPS), concanapalin A (ConA), and anti-CD3 antibody plus phorbol myristyl acetate (PA), or IL-7 Proliferated at equal or even enhanced levels compared to (Figure 15).
  • TSG--mouse lymphoid deficiency does not appear to be due to endogenous deficiencies in B- and T-cells, and abnormalities in microenvironments such as stromal cells and cytokine production. Or it was thought to be due to abnormal distribution. It should also be noted that TSG has weak homology to connective tissue growth factor. The percentage of CDllb + Gr ⁇ bone marrow cells increased in ⁇ / ⁇ bone marrow cells, indicating that they are rich in mature granulocytes (FIG.
  • GM granulocyte-macrophage colony
  • Meg is megakaryocyte colony
  • BE is erythroid burst forming unit
  • E / Meg erythroid-megakaryocytic colony
  • Mix is mixed hematopoietic colony
  • B / Ly is B-lymph. Shows the ball mouth.
  • TSG which may be present in fetal bovine serum used for colony attachment, may have acted to enhance TSG-cell proliferation in vitro. Can not be excluded (KSR was used for very low colony forming efficiency), Assi is, TSG- lambda marrow + / + bone marrow and at comparable levels B- lymphocytes precursor cells containing Mukoto Is shown. On the other hand, it shows that the precursor cells of other lineages are all reduced.
  • TSG functions as a BMP-4 antagonist in terms of phosphorylation of SMAD1 in thymocytes in in vivo.
  • RUNX1 the gene product of which functionally binds to SMAD1 (Hanai, J. et al., 1999. J. Biol. Chem. 274: 31577-31582)
  • ⁇ 1 which is expected to stimulate its own transcription
  • TSG-deficient mice The phenotype of TSG-deficient mice varies from one individual to another; some mice survive and produce offspring (male and female TSGs—both male and female), but more than half of TSG-deficient mice have ossification. Births due to severe dwarfism due to delays in the lymph system, lymphatic system deficits with lymphoid progenitor cell depletion, delayed renal development, and additional diseases such as lupus fibrosis possibly caused by weakness and / or immunodeficiency Dies within one month later. TSG—The phenotypic diversity of mice is attributed to the stochastic distribution of soluble factors, including BMPs and cordin, in the microenvironment in the absence of TSG.
  • Parents of-/-with a mild phenotype produced not only-/-mice with a mild phenotype but also-/-mice with a severe phenotype at birth (data not shown).
  • TSG was expressed in the AGM region, and TSG-deficient mice exhibited lymphatic developmental deficits with moderate thrombocytopenia and mild anemia.
  • Low concentrations of BMP-4 are known to induce proliferation of CD34 + CD38-Lin-human HSCs, while higher concentrations of BMP-4 promote HSCs survival ( Bhatia, M. et al., 1999. J. Exp. Med. 189: 1139-1147). Therefore, it is speculated that TSG functions as an agonist of the mesenchymal inducer BMP-4 at an early stage of hematopoiesis.
  • BMP-4-mediated regulation of hematopoiesis is more complex.
  • Shh a regulator upstream of BMP-4, is produced by the thymic stroma and its receptor, Patched & Smoothened, is expressed in double-negative (DN) thymocytes.
  • Shh has been shown to arrest thymocyte differentiation at the DN stage (Outram, SV et al., 2000. Immunity 13: 187-197).
  • BMP-4 produced by the thymus stroma has also been shown to inhibit thymocyte proliferation and differentiation, and TSG I whose expression in thymocytes is induced by T cell receptor signaling. It has been shown to be synergistic with cordin to block BMP-4 mediated thymic developmental inhibitory effects (Graf, D. et al., 2002. J.
  • TSG as a BMP-4 antagonist appears to be a positive regulator of thymocyte development. Findings of the present inventors on the development failures thymus in TSG- lambda mice before and after birth, consistent with these results in in vi iro. Nevertheless, TSG is a connective tissue growth factor (CTGF), a mitogenic peptide that is a downstream mediator of TGF- action on fibroblasts (Brad am, DM. Et al, 1991. Cell Biol. 114: 1285-1294) (Grotendorst, GR 1997. Cytokine Growth Factor Reviews 8: 171-17 9), and TSG regulates BMP-4 signaling. In addition to functioning, it may function as a growth Z differentiation factor for unspecified targets that affect stromal function.
  • CGF connective tissue growth factor
  • the TSG has recently been proposed to exert both agonist and antagonist functions in BMP signaling in a timely manner; first, the TSG is a ternary complex with BMP and full-length cordin. And interfering with the binding of BMP to its receptor, and secondly, when all cordins are cut off by zoidoids (human BMP-1, dwarf baetroids), TSGs It promotes BMP signal transmission by competing with a coding fragment that still retains anti-BMP activity. Thus, the switch on and off of BMP signaling is sharply controlled by TSG (Larrain, J. et al., 2001. Development 128: 4439-4444).
  • TSG Our findings in mice show that the fine control of BMP activity by TSG as a molecular switch is essential for the proper development of many organs. Suggests. Twinkilong TSGs can trigger different BMP signaling during development of different animal species, depending on the local concentration of BMPs, cordins, TSGs, zoids, and other related molecules. TSG-deficient mice have molecular mechanisms of early hematopoietic progenitor, thymus, spleen, cartilage, bone, and kidney development, regulated by hedgehog-BMP-SMAD signaling and Z or putative BMP-irrelevant signaling Can be used to elucidate
  • the human TSG gene maps to chromosome band 18pll, to which immuno-bone disease has not previously been linked (Scott, I. C. et al., 2001. Nature 410: 475-478).
  • the phenotype of diseased TSG-mice is similar to that of human early lethal skeletal malformations with SCID (Gatti, RA et al., 1969. J. Pediatr. 75: 675-684) .
  • TSG-deficient mice may also be useful for elucidating the mechanisms underlying the pathogenesis of these diseases .
  • TSG-deficient mice the phenotype of dwarfism with structurally immature kidneys and lymphatic deficiency in TSG-deficient mice is due to the dual function of TSGs in vivo (BMP-4 agonists for skeletal-nephrogenic and thymic BMP-4 antagonist for development).
  • BMP-4 agonists for skeletal-nephrogenic and thymic BMP-4 antagonist for development BMP-4 agonists for skeletal-nephrogenic and thymic BMP-4 antagonist for development.
  • CTGF thymic BMP-4 antagonist for development
  • mammalian TSGs are essential for the proper development of mesodermal organs.
  • the first point of the industrial usefulness of the present invention is that TSG protein, TSG gene and TSG gene are used for various diseases which exhibit traits such as dwarf growth and lymphocyte hematopoiesis observed in the animals of the present invention.
  • a compound having the same biological activity as described above can be applied as a therapeutic or prophylactic agent.
  • the second point is to modify the activity of endogenous TSG, a compound having the same biological activity as TSG, using the animal and a TSG gene-modified mammalian cell. It is to provide a method for screening compounds.
  • the third point is that a test method or a test drug for the above-mentioned diseases can be provided by measuring the expression level of the TSG gene or protein.

Abstract

A TSG gene-knockout mouse is constructed and analyzed. As a result, this TSG gene-knockout mouse shows dwarfism, dwarfism accompanied by multiple immune deficiencies, osteogenesis imperfecta, dyschondroplasia, lymphopenia, multiple immune deficiencies and insufficient nephrogenesis. It is found out that deficiency of TSG causes developmental disorders at various degrees in a large number of tissues originating in the mesoderm, in particular, thymus gland, spleen, cartilage and bone. It is also found out that TSG is essentially required in mammalian immunity and bone development.

Description

明細書  Specification
TSG遺伝子ノックァゥト動物 技術分野 TSG gene knockout animal technical field
本発明は、 TSG遺伝子改変非ヒト哺乳動物に関する。 また、 本発明は、 中胚葉 に由来する組織の発達不全を伴う疾患の治療または予防のための薬剤、 その候補 化合物のスクリーニング方法、 並びに中胚葉に由来する組織の発達不全を伴う疾 患の検査方法およぴ検查薬に関する。 背景技術  The present invention relates to a TSG gene-modified non-human mammal. In addition, the present invention provides a medicament for treating or preventing a disease associated with dysgenesis of a tissue derived from mesoderm, a method for screening a candidate compound thereof, and a test for a disease associated with dysgenesis of a tissue derived from mesoderm About the method and the test drug. Background art
トランスフォーミング増殖因子 (TGF) - )3スーパーファミリーのメンバーであ る BMPsは、 重要な発達調節物質である。 TGF- j3ファミリーリガンド、 受容体、 および SMADsのようなシグナ /レ変換物質における変異は、 多くのヒト疾患に関連 している。 TSGはショウジヨウパェ (Drosophila 胚における背側細胞の運命を 支配する接合子遺伝子 7個のうちの 1個としてショウジョゥパェにおいて同定さ れた (非特許文献 1 ) 。 TSGは脊椎動物の BMP- 4に対応するデカペンタプレジッ ク (Decapentaplegic) の活性を調節する分泌型のシスティンに富む蛋白質をコ ―ドし、 TSGに変異が起こると、 ショウジョゥバエにおいて羊漿膜と呼ばれる背 側中心構造の欠損が起こる (非特許文献 2 ) 。 一方、 最終的な造血が起こる AGM (非特許文献 3 ) 領域から産生された必須の可溶性因子を探索するにあたって、 本発明者らは、 ***後 (dpc) 10. 5日のマウス胚の AGM領域からの mRNAを用レヽ て、 レトロウイルス媒介シグナル配列捕獲法 (非特許文献 4 ) を用いて、 ショウ ジヨウバエ TSGのマウス相同体を単離した (特許文献 1 ) 。  BMPs, members of the transforming growth factor (TGF)-) 3 superfamily, are important developmental regulators. Mutations in TGF-j3 family ligands, receptors, and signal / reconverters such as SMADs have been implicated in many human diseases. TSG was identified in Drosophila as one of seven zygotic genes that govern dorsal cell fate in Drosophila embryos (Non-Patent Document 1) TSG corresponds to vertebrate BMP-4 Mutations in the TSGs that encode for secreted cysteine-rich proteins that regulate Decapentaplegic activity and that cause mutations in TSGs result in the loss of the dorsal central structure called the amniotic serosa in Drosophila. Non-Patent Document 2) On the other hand, in searching for an essential soluble factor produced from the AGM (Non-patent Document 3) region where final hematopoiesis occurs, the present inventors determined that after intercourse (dpc) 10.5 days A mouse homolog of Drosophila TSG was isolated using a retrovirus-mediated signal sequence capture method (Non-patent Document 4), using mRNA from the AGM region of the mouse embryo of the mouse (Patent Document 1).
2000年に、 アフリカッメガエルの TSGが、 BMP- 4に直接結合して、 BMP-4の細 胞外利用率を調節することによって BMP- 4シグナル伝達を促進することが判明し た (非特許文献 5、 6 ) 。 腹側 -背側軸は、 ショウジヨウバエと脊椎動物とでは 逆であり、 そして腹側形成因子である BMP- 4は中胚葉形成 (非特許文献 7 ) およ ぴ造血幹細胞 (HSC) の生存 (非特許文献 8 ) にとつて必須であることから、 本 発明者らは、 TSGが同様に、 腹側形成および哺乳類の造血を含む中胚葉由来臓器 形成にも関与する可能性があると推測した。 そのあいだに、 4つのグループが、 微細な分子分析によって、 TSGが、 ハエ、 魚類おょぴカエルにおいて TSG、 BMP - 4、 および BMP- 4アンタゴニストであるコーディンの三元複合体を形成することによ つて、 またはプロテアーゼであるトロイドと協調して、 むしろ BMP-4アンタゴニ ストとして作用すると報告した (非特許文献 9〜 1 2 ) 。 このように、 TSGが BM P-4ァゴニストまたはアンタゴニストのいずれとして作用するのかに関しては議 論が分かれている。 In 2000, it was found that the African frog TSG binds directly to BMP-4 and promotes BMP-4 signaling by regulating extracellular utilization of BMP-4. (Non-Patent Documents 5 and 6). The ventral-dorsal axis is reversed between Drosophila and vertebrates, and BMP-4, a ventral morphogen, is a mesodermal formation (Non-Patent Document 7) and the survival of hematopoietic stem cells (HSC) (Non-Patent Document 8), the present inventors speculate that TSG may also be involved in ventral formation and mesoderm-derived organ formation including mammalian hematopoiesis. did. In the meantime, four groups have shown that, through fine molecular analysis, TSGs form a ternary complex of TSG, BMP-4, and chordin, a BMP-4 antagonist, in flies and fish frogs. Thus, they reported that they act as BMP-4 antagonists, or in concert with the protease toroid (Non-patent Documents 9 to 12). Thus, there is controversy as to whether TSG acts as a BMP-4 agonist or antagonist.
なお、 本出願の発明に関連する先行技術文献情報を以下に記す。  Prior art document information related to the invention of the present application is described below.
〔特許文献 1〕 W0 01/18200  (Patent Document 1) W0 01/18200
〔非特許文献 1〕 Zusman, S. B., and E. F. Wieschaus. 1985. Dev. Biol. 1  [Non-Patent Document 1] Zusman, S.B., and E.F.Wieschaus. 1985. Dev. Biol. 1
11 : 359-371  11: 359-371
〔非特許文献 2〕 Mason, E. D. et al. , 1994. Genes & Dev. 8: 1489-1501 〔非特許文献 3〕 Medvinsky, A. , and E. Dzierzak. 1996. Cell 86 : 897 - 906 〔非特許文献 4〕 Kojima, T., and T. Kitamura. 1999. Nat. Biotechnol. 1  [Non-patent document 2] Mason, ED et al., 1994.Genes & Dev. 8: 1489-1501 [Non-patent document 3] Medvinsky, A., and E. Dzierzak. 1996.Cell 86: 897-906 (Non-patent document 2) Patent Document 4] Kojima, T., and T. Kitamura. 1999. Nat. Biotechnol. 1
7 :487-490  7: 487-490
〔非特許文献 5〕 Oelgeschlager, M. et al. , 2000. Nature 405 : 757-763 〔非特許文献 6〕 Larrain J et al. , 2001. Development 128 (22) : 4439-4447 〔非特許文献 7〕 Winnier, G. et al, , 1995. Genes & Dev. 9 : 2105 - 2116 〔非特許文献 8〕 Bhatia, M. et al. , 1999. J. Exp. Med. 189 : 1139—1147 〔非特許文献 9〕 Chang, C. et al., 2001. Nature 410 :483-487  (Non-patent document 5) Oelgeschlager, M. et al., 2000.Nature 405: 757-763 (Non-patent document 6) Larrain J et al., 2001.Development 128 (22): 4439-4447 (Non-patent document 7 Winnier, G. et al, 1995.Genes & Dev. 9: 2105-2116 [Non-Patent Document 8] Bhatia, M. et al., 1999. J. Exp. Med. 189: 1139-1147 [Non-patent Reference 9] Chang, C. et al., 2001. Nature 410: 483-487
〔非特許文献 1 0〕 Ross, J. J. et al. , 2001. Nature 410: 479- 483 〔非特許文献 1 1〕 Scott, I. C. et al. , 2001. Nature 410:475-478 〔非特許文献 1 2〕 Yu K et al., 2000. Development 127 (10) : 2143- 2154 発明の開示 [Non-Patent Document 10] Ross, JJ et al., 2001.Nature 410: 479-483 [Non-Patent Document 11] Scott, IC et al., 2001.Nature 410: 475-478 [Non-patent Document 1 2] Yu K et al., 2000. Development 127 (10): 2143- 2154 Disclosure of the Invention
本発明は、 このような状況に鑑みてなされたものであり、 その目的は、 TSGの 生体内での機能を解明し、 疾患との関連性を見出すことにある。 さらに、 本発明 は、 見出された疾患との関連性に基づき、 該疾患のモデル動物、 該疾患に対する 治療または予防のための薬剤、 その候補化合物のスクリーニング方法、 該疾患の 検査方法、 およぴ検查薬を提供することを目的とする。  The present invention has been made in view of such a situation, and an object of the present invention is to elucidate the function of TSG in a living body and find a relationship with TSG. Further, the present invention provides a model animal for the disease, a drug for treating or preventing the disease, a method for screening candidate compounds thereof, a method for testing the disease, and a method for examining the disease, based on the relevance to the found disease. Aims to provide testing drugs.
本発明者らは、 上記の課題を解決するために鋭意研究を行つた。 TSGの生体内 での機能を解明するために、 TSG遺伝子ノックァゥトマウスを作製し、 解析した。 その結果、 TSG遺伝子ノックアウトマウスは、 矮小発育症、 複合型免疫不全症を 伴う矮小発育症、 骨形成不全症、 軟骨低形成症、 リンパ球減少症、 複合型免疫不 全症、 および、 腎低形成を示した。 また、 TSGの欠損によって、 多数の中胚葉に 由来する組織、 特に胸腺、 脾臓、 軟骨および骨に様々な程度の発達障害が起こる ことが判明した。 興味深いことに、 胸腺の増殖おょぴ分化は、 中胚葉のモルフォ ゲンとして一般的に機能する BMP- 4によつて抑制されることが最近報告されてい る (Graf, D. et al. , 2002. J. Exp. Med. 196 : 163-171) 。 これらの知見は、 T SGが、 BMP - 4シグナル伝達にとってのァゴニストおよびアンタゴニストの双方と して作用すること、 また、 哺乳類の免疫 -骨発達にとって不可欠であることを示 している。  The present inventors have intensively studied to solve the above-mentioned problems. To elucidate the function of TSG in vivo, TSG gene knockout mice were created and analyzed. As a result, TSG gene knockout mice showed dwarfism, dwarfism with combined immunodeficiency, osteogenesis imperfecta, hypochondrosis, lymphopenia, combined immunodeficiency, and renal hypoplasia Showed formation. It has also been shown that TSG deficiency causes varying degrees of developmental impairment in many mesodermal-derived tissues, especially the thymus, spleen, cartilage and bone. Interestingly, thymic proliferation and differentiation have recently been reported to be suppressed by BMP-4, which generally functions as a mesoderm morphogen (Graf, D. et al., 2002). J. Exp. Med. 196: 163-171). These findings indicate that TSG acts as both an agonist and antagonist for BMP-4 signaling and is essential for mammalian immune-bone development.
即ち、 本発明は、 中胚葉に由来する組織の発達不全を伴う疾患のモデル動物、 該疾患に対する治療または予防のための薬剤、 その候補化合物のスクリーニング 方法、 該疾患の検査方法、 および検査薬に関し、 以下の 〔1〕 〜 〔1 8〕 を提供 するものである。  That is, the present invention relates to a model animal for a disease associated with developmental deficiency of a tissue derived from mesoderm, a drug for treating or preventing the disease, a screening method for a candidate compound thereof, a method for testing the disease, and a test drug The following [1] to [18] are provided.
〔1〕 TSG遺伝子の発現が人為的に抑制されていることを特徴とする遺伝子改 変非ヒト哺乳動物。 〔2〕 TSG遺伝子の遺伝子対の一方または双方に外来遺伝子が揷入されている ことを特徴とする遺伝子改変非ヒト哺乳動物。 [1] A genetically modified non-human mammal characterized in that expression of the TSG gene is artificially suppressed. [2] A genetically modified non-human mammal characterized in that a foreign gene has been introduced into one or both of the TSG gene pairs.
〔 3〕 中胚葉に由来する組織の発達不全を伴う疾患のモデル動物である、 (3) a model animal of a disease associated with a failure to develop tissue derived from mesoderm,
〔1〕 または 〔2〕 に記載の遺伝子改変非ヒト哺乳動物。  The genetically modified non-human mammal according to [1] or [2].
〔4〕 中胚葉に由来する組織の発達不全を伴う疾患が、 矮小発育症、 複合型免 疫不全症を伴う矮小発育症、 骨形成不全症、 軟骨低形成症、 リンパ球減少 症、 複合型免疫不全症、 または、 腎低形成である、 〔3〕 に記載の遺伝子 改変非ヒト哺 動物。 (4) Diseases associated with dysgenesis of tissues derived from mesoderm include dwarfism, dwarfism with combined immunodeficiency disease, osteogenesis imperfecta, hypochondrosis, lymphopenia, and complex type The genetically modified non-human mammal according to [3], wherein the mammal has immunodeficiency or renal hypoplasia.
〔5〕 TSG遗伝子の発現が人為的に抑制されていることを特徴とする遗伝子改 変哺乱動物細胞。 [5] A transgenic modified mammalian cell, wherein expression of the TSG gene is artificially suppressed.
〔 6〕 TSG遺伝子の遺伝子対の一方または双方に外来遺伝子が挿入されている ことを特敷とする遺伝子改変哺乳動物細胞。  [6] A genetically modified mammalian cell characterized in that a foreign gene has been inserted into one or both of the TSG gene pairs.
〔7〕 TSGまたは TSGをコードする DNAを有効成分として含有する、 中胚葉に 由来する組織の発達不全を伴う疾患、 薬物による骨量減少、 骨粗しょう症、 骨折、 または、 薬物による成長抑止の治療または予防のための薬剤。 [7] Treatment of diseases associated with insufficiency of mesodermal tissue development, bone loss due to drugs, osteoporosis, fractures, or drug-suppressed growth containing TSG or DNA encoding TSG as an active ingredient Or drugs for prevention.
〔8〕 中胚葉に由来する組織の発達不全を伴う疾患が、 矮小発育症、 複合型免 疫不全症を伴う矮小発育症、 骨形成不全症、 軟骨低形成症、 リンパ球減少 症、 複合型免疫不全症、 または、 腎低形成である、 〔7〕 に記載の治療ま たは予防のための薬剤。  (8) Diseases associated with dysgenesis of tissues derived from mesoderm include dwarfism, dwarfism with complex immunodeficiency disorder, osteogenesis imperfecta, hypochondrosis, lymphopenia, and complex type The drug according to [7], which is for immunodeficiency or renal hypoplasia.
〔9〕 以下の (a ) 〜 ( c ) の工程を含む、 中胚葉に由来する組織の発達不全 を伴う疾患、 薬物による骨量減少、 骨粗しょう症、 骨折、 または、 薬物に よる成長抑止の治療または予防のための薬剤の候補化合物のスクリ一ニン グ方法。 [9] Diseases associated with inadequate development of mesodermal tissue, including bone loss, osteoporosis, fracture, or drug-induced growth inhibition, including the following steps (a) to (c): A method of screening a candidate compound for a drug for treatment or prevention.
( a ) TSGに被検化合物を接触させる工程  (a) Step of bringing a test compound into contact with TSG
( b ) 該 TSGと被検化合物との結合を検出する工程  (b) a step of detecting the binding between the TSG and a test compound
( c ) 該 TSGと結合する被検化合物を選択する工程 〔10〕 以下の (a) 〜 (c) の工程を含む、 中胚葉に由来する組織の発達不 全を伴う疾患、 薬物による骨量減少、 骨粗しょう症、 骨折、 または、 薬 物による成長抑止の治療または予防のための薬剤の侯ネ甫化合物のスクリ 一ユング方法。 (c) selecting a test compound that binds to the TSG [10] Diseases involving impaired development of mesoderm-derived tissues, including the following steps (a) to (c), bone loss due to drugs, osteoporosis, fractures, or growth inhibition by drugs A method for screening or treating a compound for treating or preventing cancer.
(a) 被検化合物を 〔1〕 〜 〔4〕 のいずれかに記載の遺伝子改変非ヒ ト哺乳動物に投与する工程  (a) a step of administering a test compound to the genetically modified non-human mammal according to any of [1] to [4];
(b) 被検化合物が TSGの機能を代替しているか否かを判定する工程 (b) Step of determining whether the test compound substitutes for the function of TSG
(c) 被検化合物を投与していない場合と比較して、 TSGの機能を代替 する化合物を選択する工程 (c) selecting a compound that substitutes for the function of TSG as compared to when the test compound is not administered
〔1 1〕 以下の (a) 〜 (c) の工程を含む、 中胚葉に由来する組織の発達不 全を伴う疾患、 薬物による骨量減少、 骨粗しょう症、 骨折、 または、 薬 物による成長抑止の治療または予防のための薬剤の候補化合物のスクリ 一ユング方法。  [11] Diseases with impaired development of mesoderm-derived tissues, including the following steps (a) to (c), bone loss due to drugs, osteoporosis, fractures, or growth due to drugs A method of screening a candidate compound for a drug for the treatment or prevention of deterrence.
(a) 被検化合物を TSGに接触させる工程  (a) contacting the test compound with TSG
( b ) 該 TSGの活性を測定する工程  (b) a step of measuring the activity of the TSG
(c) 被検化合物を投与していない場合と比較して、 該 TSGの活性を上 昇させる化合物を選択する工程  (c) a step of selecting a compound that increases the activity of the TSG as compared to when the test compound is not administered
〔12〕 以下の (a) 〜 (d) の工程を含む、 中胚葉に由来する組織の発達不 全を伴う疾患、 薬物による骨量減少、 骨粗しょう症、 骨折、 または、 薬 物による成長抑止の治療または予防のための薬剤の候補化合物のスクリ 一ユング方法。  [12] Diseases associated with impaired development of mesodermal-derived tissues, including the following steps (a) to (d), bone loss due to drugs, osteoporosis, fractures, or growth inhibition by drugs A method for screening a candidate compound of a drug for treating or preventing cancer.
(a) TSG遺伝子のプロモーター領域の下流にレポーター遺伝子が機能 的に結合した DNAを有する細胞または細胞抽出液を提供する工程 (a) Providing a cell or cell extract having a DNA in which a reporter gene is functionally linked downstream of the promoter region of the TSG gene
( b ) 該細胞または該細胞抽出液に被検化合物を接触させる工程 (b) a step of bringing a test compound into contact with the cells or the cell extract.
( c ) 該細胞または該細胞抽出液における該レポーター遺伝子の発現レ ベルを測定する工程 ( d ) 被検化合物を投与していない場合と比較して、 該レポーター遺伝 子の発現レベルを上昇させる化合物を選択する工程 〔1 3〕 TSG遺伝子の発現量を測定する工程を含む、 中胚葉に由来する組織の 発達不全を伴う疾患の検查方法。 (c) a step of measuring the expression level of the reporter gene in the cell or the cell extract (d) a step of selecting a compound that increases the expression level of the reporter gene as compared to a case where no test compound is administered [13] a step of measuring the expression level of the TSG gene, A method for detecting a disease associated with a tissue developmental deficiency derived from a human.
〔1 4〕 TSG遺伝子領域における変異を検出する工程を含む、 中胚葉に由来す る組織の発達不全を伴う疾患の検査方法。  [14] A method for examining a disease associated with insufficient development of a mesodermal-derived tissue, comprising a step of detecting a mutation in a TSG gene region.
〔1 5〕 中胚葉に由来する組織の発達不全を伴う疾患が、 矮小発育症、 複合型 免疫不全症を伴う矮小発育症、 骨形成不全症、 軟骨低形成症、 リンパ球 減少症、 複合型免疫不全症、 または、 腎低形成である、 〔9〕 〜 〔1 (15) Diseases associated with dysgenesis of tissues derived from mesoderm include dwarf growth, complex dwarf hyperplasia with immunodeficiency, osteogenesis imperfecta, hypochondrosis, lymphopenia, complex Immunodeficiency or renal hypoplasia [9]-[1
4〕 のいずれかに記載の検查方法。 4] The detection method according to any one of the above.
〔1 6〕 TSG遺伝子領域にハイブリダイズし、 少なくとも 15ヌクレオチドの 鎖長を有するオリゴヌクレオチドを含む、 中胚葉に由来する組織の発達 不全を伴う疾患の検查薬。  [16] An agent for detecting a disease associated with dysfunction in mesodermal tissue-derived tissue, comprising an oligonucleotide hybridized to the TSG gene region and having a chain length of at least 15 nucleotides.
〔1 7〕 TSGに結合する抗体を含む、 中胚葉に由来する組織の発達不全を伴う 疾患の検査薬。  [17] An agent for testing a disease associated with dysgenesis of mesodermal-derived tissue, including an antibody that binds to TSG.
〔1 8〕 中胚葉に由来する組織の発達不全を伴う疾患が、 矮小発育症、 複合型 免疫不全症を伴う矮小発育症、 骨形成不全症、 軟骨低形成症、 リンパ球 減少症、 複合型免疫不全症、 または、 腎低形成である、 〔1 6〕 または 〔1 7〕 に記載の検査薬。  (18) Diseases associated with dysgenesis of tissues derived from mesoderm include dwarf growth, complex dwarf growth with immunodeficiency, osteogenesis imperfecta, hypochondrosis, lymphopenia, complex The test agent according to [16] or [17], which is immunodeficiency or renal hypoplasia.
本発明者らは、 TSGの生体内での機能を解明するために、 TSG遺伝子ノックァ ゥトマウスを作出した。 その結果、 TSGと中胚葉に由来する組織の発達不全を伴 う疾患との関連が明らかとなった。 本発明は、 この知見に基づき、 TSG遺伝子の 発現が人為的に抑制されていることを特徴とする遺伝子改変非ヒト哺乳動物を提 供する。  The present inventors have created TSG gene knockout mice in order to elucidate the function of TSG in vivo. As a result, it became clear that TSG was associated with a disease associated with a failure to develop mesodermal tissue. The present invention provides a genetically modified non-human mammal characterized in that the expression of the TSG gene is artificially suppressed based on this finding.
本発明の遺伝子改変非ヒト哺乳動物は、 中胚葉に由来する組織の発達不全を伴 う疾患のモデル動物として有用である。 また、 本発明の遺伝子改変非ヒト哺乳動 物は、 中胚葉に由来する組織の発達不全を伴う疾患、 薬物による骨量減少、 骨粗 しょう症、 骨折、 または、 薬物による成長抑止の治療や予防のための薬剤の候補 化合物のスクリ一ユング方法に利用することができる。 The genetically modified non-human mammal of the present invention is useful as a model animal for a disease associated with developmental failure of a tissue derived from mesoderm. Further, the genetically modified non-human mammal of the present invention The drug is a candidate compound for the treatment or prevention of diseases associated with dysgenesis of mesodermal-derived tissue, bone loss due to drugs, osteoporosis, fractures, or growth inhibition caused by drugs. Can be used for the method.
本発明の TSG (twisted gastrulation)遺伝子 (該遺伝子によってコードされる タンパク質を 「TSG」 と記載) は、 ヒト、 マウス、 ショウジヨウバエ、 アフリカ ッメガエル、 ゼブラフィッシュ等において知られている。 各々の配列における T The TSG (twisted gastrulation) gene of the present invention (the protein encoded by the gene is referred to as "TSG") is known in humans, mice, Drosophila, African Xenopus, zebrafish and the like. T in each array
SG配列のァクセッション番号を以下に示す。 The accession numbers of the SG sequence are shown below.
ヒ ト NCBI, Entrea Nucleotide, M 020648 Human NCBI, Entrea Nucleotide, M 020648
マウス NCBI, Entrea Nucleotide, NM 023053 Mouse NCBI, Entrea Nucleotide, NM 023053
ショウジヨウバエ NCBI, Entrea Nucleotide, NM 078580 Drosophila NCBI, Entrea Nucleotide, NM 078580
アフリカッメガエ/レ NCBI, Entrea Nucleotide, AF 279246 African algae / NCBI, Entrea Nucleotide, AF 279246
ゼブラフィッシュ NCBI, Entrea Nucleotide, NM 131797 Zebrafish NCBI, Entrea Nucleotide, NM 131797
また、 本発明の TSGは上記の例に限定されず、 上記 TSGと機能的に同等なタン パク質も含む。 機能的に同等なタンパク質には、 天然の TSGのアミノ酸配列にお いて 1もしくは複数のァミノ酸が置換 欠失、 付加および/または揷入されたァ ミノ酸配列からなるタンパク質が含まれる。 本発明の TSGと機能的に同等な変異 タンパク質をコ一ドする DNAを調製するために、 当業者によく知られた他の方法 としては、 ストリンジェントな条件下でのハイブリダイゼーション技術 (Southe rn EM: J Mol Biol 98: 503, 1975) やポリメラーゼ連鎖反応 (PCR) 技術 (Saik i RK, et al : Science 230: 1350, 1985、 Saiki RK, et al : Science 239: 487, 1988) を利用する方法が挙げられる。  Further, the TSG of the present invention is not limited to the above examples, but also includes proteins functionally equivalent to the above TSG. Functionally equivalent proteins include proteins consisting of amino acid sequences in which one or more amino acids have been substituted, deleted, added and / or inserted in the amino acid sequence of native TSG. Other methods well known to those skilled in the art for preparing DNA encoding a mutant protein functionally equivalent to the TSGs of the present invention include hybridization techniques under stringent conditions (Southern EM: J Mol Biol 98: 503, 1975) and polymerase chain reaction (PCR) technology (Saik RK, et al: Science 230: 1350, 1985; Saiki RK, et al: Science 239: 487, 1988). Method.
本発明においてストリンジェントなハイプリダイゼーション条件とは、 6M尿 素、 0. 4% SDS、 0. 5 X SSCの条件またはこれと同等のストリンジエンシーのハイ プリダイゼーション条件を指す。 よりストリンジェンシ一の高い条件、 例えば、 6M尿素、 0. 4% SDS、 0. 1 X SSCの条件下では、 より相同性の高い DNAを単離で きると期待される。 高い相同性とは、 アミノ酸配列全体で少なくとも 50%以上、 好ましくは 70%以上、 さらに好ましくは 90%以上、 最も好ましくは 95%以上の 配列の同一性を指す。 また、 変異体における、 変異するアミノ酸数は、 通常、 30 アミノ酸以内であり、 好ましくは 15アミノ酸以内であり、 より好ましくは 5ァ ミノ酸以内、 さらに好ましくは 3アミノ酸以内であり、 よりさらに好ましくは 2 アミノ酸以内である。 In the present invention, the stringent hybridization conditions refer to the conditions of 6 M urea, 0.4% SDS, 0.5 X SSC or the equivalent stringency of the hybridization conditions. Under conditions of higher stringency, for example, 6M urea, 0.4% SDS, and 0.1 × SSC, it is expected that more homologous DNA can be isolated. High homology means that the entire amino acid sequence is at least 50% or more, It preferably refers to 70% or more, more preferably 90% or more, and most preferably 95% or more sequence identity. The number of amino acids to be mutated in the mutant is usually within 30 amino acids, preferably within 15 amino acids, more preferably within 5 amino acids, further preferably within 3 amino acids, and still more preferably No more than 2 amino acids.
アミノ酸配列や塩基配列の同一性は、 カーリンおよびアルチユールによるアル ゴリズム BLAST (Proc. Natl. Acad. Sci. USA 87: 2264— 2268, 1990、 Proc Natl Acad Sci USA 90: 5873, 1993) を用いて判定することができる。  Amino acid sequence and nucleotide sequence identity are determined using the BLAST algorithm (Proc. Natl. Acad. Sci. USA 87: 2264—2268, 1990, Proc Natl. Acad Sci. USA 90: 5873, 1993) by Carlin and Artiul. can do.
本発明において、 中胚葉に由来する組織としては、 胸腺、 脾臓、 軟骨、 骨およ び腎臓などが例示できるが、 これらに限定されない。  In the present invention, examples of tissues derived from mesoderm include, but are not limited to, thymus, spleen, cartilage, bone, and kidney.
本発明において、 中胚葉に由来する組織の発達不全を伴う疾患としては、 例え ば、 矮小発育症、 複合型免疫不全症 (SCID) を伴う矮小発育症、 骨形成不全症、 軟骨低形成症、 リンパ球減少症、 複合型免疫不全症、 腎低形成が挙げられる。 本発明において 「TSG遺伝子の発現が人為的に抑制されている」 とは、 通常、 TSG遺伝子の遺伝子封の一方または双方に、 ヌクレオチドの揷入、 欠失、 置換等 の遺伝子変異を有することにより該遺伝子の発現が抑制されている状態を指す。 正常な TSGタンパク質としての機能が減少または喪失している変異 TSGタンパク 質が発現している場合も、 この 「TSG遺伝子の発現の抑制」 に含まれる。 上記 「抑制」 には、 TSG遗伝子の発現が完全に抑制されている場合のほか、 該遺伝子 の遺伝子対の一方の遺伝子の発現のみが抑制されている場合も含まれる。 本発明 における遺伝子変異の存在する部位は、 該遺伝子の発現が抑制されるような部位 であれば特に制限されず、 例えばェクソン部位、 プロモーター部位等を挙げるこ とができる。  In the present invention, examples of the disease associated with the developmental failure of the tissue derived from the mesoderm include dwarfism, dwarfism with combined immunodeficiency (SCID), osteogenesis imperfecta, hypochondrosis, Lymphopenia, combined immunodeficiency, and renal hypoplasia. In the present invention, "the expression of the TSG gene is artificially suppressed" usually means that one or both of the gene seals of the TSG gene has a gene mutation such as insertion, deletion, or substitution of a nucleotide. It refers to a state in which the expression of the gene is suppressed. The expression of a mutant TSG protein whose function as a normal TSG protein is reduced or lost is also included in the “suppression of TSG gene expression”. The term “suppression” includes not only the case where the expression of the TSG 遗 gene is completely suppressed, but also the case where the expression of only one gene of the gene pair of the gene is suppressed. The site where the gene mutation is present in the present invention is not particularly limited as long as expression of the gene is suppressed, and examples thereof include an exon site and a promoter site.
本発明において TSG遺伝子の改変の対象となる動物が由来する生物種は、 通常、 ヒト以外の哺乳動物であり、 好ましくはマウス、 ラット、 ハムスター、 ゥサギ、 プタ等のげつ歯類であり、 その中でも特にマウスが好ましい。 また、 本発明は、 TSG遺伝子の発現が人為的に抑制されていることを特徴とす る遺伝子改変哺乳動物細胞を提供する。 このような細胞は、 中胚葉に由来する組 織の発達不全を伴う疾患のモデル細胞として有用である。 本発明において TSG遺 伝子の改変の対象となる細胞が由来する生物種は、 特に制限はなく、 ヒトを含む 種々の生物種由籴の細胞である。 また、 本発明において TSG遺伝子の改変の対象 となる細胞の種類としては、 例えば、 体細胞、 受精卵、 ES細胞、 本発明の遺伝 子改変非ヒト哺乳動物から樹立された細胞が挙げられるが、 これらに限定される ものではない。 上記遺伝子改変非ヒト哺乳動物由来の細胞株を樹立する方法とし ては、 公知の方法を利用することができる。 例えば、 げっ歯類においては、 胎仔 細胞の初代培養の方法を用いることが可能である。 (新生化学実験講座、 18卷、 125頁〜 129頁東京化学同人、 およびマウス胚の操作マニュアル、 262頁〜 264頁、 近代出版) 。 In the present invention, the species from which the animal targeted for the modification of the TSG gene is derived are usually mammals other than humans, and preferably rodents such as mice, rats, hamsters, puppies, and stags. Of these, mice are particularly preferred. In addition, the present invention provides a genetically modified mammalian cell characterized in that the expression of the TSG gene is artificially suppressed. Such cells are useful as model cells for diseases associated with dysfunction of mesodermally derived tissues. In the present invention, there is no particular limitation on the species of organism from which the cells for which the TSG gene is to be modified are cells derived from various species including humans. In addition, examples of the types of cells to be modified of the TSG gene in the present invention include somatic cells, fertilized eggs, ES cells, and cells established from the genetically modified non-human mammal of the present invention. It is not limited to these. As a method for establishing the cell line derived from the genetically modified non-human mammal, a known method can be used. For example, in rodents, it is possible to use the method of primary culture of fetal cells. (Shinsei Kagaku Kenkyusho, Vol. 18, pages 125-129, Tokyo Kagaku Doujin and Mouse Embryo Operation Manual, pages 262-264, Modern Publishing).
本発明の遺伝子改変非ヒト哺乳動物およぴ遺伝子改変哺乳動物細胞において、 TSG遺伝子の発現を人為的に抑制する手段としては、 TSG遺伝子全体またはその 一部を欠損させる方法や TSG遺伝子の発現制御領域の全部またはその一部を欠損 させる方法等を例示することができるが、 好ましくは TSG遺伝子の遺伝子対の一 方または双方に外来遺伝子を揷入することにより TSG遺伝子を不活性化する方法 である。 即ち、 本発明の好ましい態様において、 遺伝子改変非ヒト哺乳動物およ ぴ遺伝子改変哺乳動物細胞は、 TSG遺伝子の遺伝子対の一方または双方に外来遺 伝子が挿入されていることを特徴とする。  Means for artificially suppressing the expression of the TSG gene in the genetically modified non-human mammal and the genetically modified mammalian cell of the present invention include a method of deleting the whole or a part of the TSG gene and a method of controlling the expression of the TSG gene. Examples of the method include deletion of all or a part of the region, and preferably a method of inactivating the TSG gene by inserting a foreign gene into one or both of the TSG gene pair. is there. That is, in a preferred embodiment of the present invention, the genetically modified non-human mammal and the genetically modified mammalian cell are characterized in that a foreign gene has been inserted into one or both of the gene pairs of the TSG gene.
本発明の遺伝子改変非ヒト哺乳動物は、 当業者においては一般的に公知の遺伝 子工学技術により作製することができる。 例えば、 以下のようにして遺伝子改変 マウスを作製することができる。 まず、 マウスから TSG遺伝子のェクソン部分を 含む DNAを単離し、 この DNA断片に適当なマーカー遺伝子を挿入し、 ターゲッテ イングベクターを構築する。 このターゲッティングベクターをエレクト口ボーレ ーション法などによりマウスの ES細胞株に導入し、 相同組み換えを生じた細胞 - 1 o - 株を選抜する。 揷入するマーカー遺伝子としては、 ネオマイシン耐性遺伝子など の抗生物質耐性遺伝子が好ましい。 抗生物質耐性遺伝子を挿入した場合には、 抗 生物質を含む培地で培養するだけで相同組み換えを生じた細胞株を選抜すること ができる。 また、 より効率的な選抜を行うためには、 ターゲッティングベクター にチミジンキナーゼ遺伝子などを結合させておくことも可能である。 これにより、 非相同組み換えを起こした細胞株を排除することができる。 また、 PCRおよぴサ ザンプロットにより相同組み換え体の検定を行い、 TSG遺伝子の遺伝子対の一方 が不活性化された細胞株を効率よく得ることもできる。 The genetically modified non-human mammal of the present invention can be prepared by those skilled in the art by generally known genetic engineering techniques. For example, a genetically modified mouse can be prepared as follows. First, DNA containing the exon portion of the TSG gene is isolated from a mouse, and an appropriate marker gene is inserted into this DNA fragment to construct a targeting vector. This targeting vector is introduced into a mouse ES cell line by electoral boration, etc., and cells that have undergone homologous recombination -1 o-Select strains. As a marker gene to be introduced, an antibiotic resistance gene such as a neomycin resistance gene is preferable. When an antibiotic resistance gene is inserted, a cell line in which homologous recombination has occurred can be selected only by culturing in a medium containing the antibiotic. For more efficient selection, a thymidine kinase gene or the like can be linked to a targeting vector. As a result, cell lines that have undergone heterologous recombination can be excluded. In addition, a homologous recombinant can be assayed by PCR and Southern plot to efficiently obtain a cell line in which one of the TSG gene pair is inactivated.
相同組み換えを生じた細胞株を選抜する場合、 相同組み換え箇所以外にも、 遺 伝子揷入による未知の遺伝子破壊の恐れがあることから、 複数のクローンを用い てキメラ作製を行うことが好ましい。 得られた ES細胞株をマウス胚盤葉にィン ジェクションしキメラマウスを得ることができる。 このキメラマウスを交配させ ることで、 TSG遺伝子の遺伝子対の一方を不活性化したマウスを得ることができ る。 さらに、 このマウスを交配させることで、 TSG遺伝子の遺伝子対の双方を不 活性化したマウスを取得することができる。 マウス以外の ES細胞が樹立された 動物においても、 同様の手法により、 遺伝子改変を行うことができる。  When selecting a cell line in which homologous recombination has occurred, it is preferable to produce a chimera using a plurality of clones in addition to the homologous recombination site, since there is a risk of unknown gene disruption due to introduction of a gene. The obtained ES cell line is injected into a mouse blastoderm to obtain a chimeric mouse. By mating this chimeric mouse, a mouse in which one of the gene pairs of the TSG gene has been inactivated can be obtained. Furthermore, by mating this mouse, it is possible to obtain a mouse in which both gene pairs of the TSG gene have been inactivated. Gene modification can also be performed in animals other than mice, in which ES cells have been established, by the same method.
また、 TSG遺伝子の遺伝子対の双方を不活性化した ES細胞株は、 以下の方法 により取得することも可能である。 すなわち、 遣伝子対の一方を不活性化した E S細胞株を高濃度の抗生物質を含む培地で培養することにより、 遺伝子対のもう 一方も不活性化された細胞株、 即ち、 TSG遗伝子の遣伝子対の双方を不活性化し た ES細胞株を得ることができる。 また、 遺伝子対の一方を不活性化した ES細胞 株を選抜し、 この細胞株に再度ターゲッティングベクターを導入し、 相同組換え を生じた細胞株を選択することでも作製することができる。 タ^-ゲッティングべ クターに揷入するマーカ一遺伝子は、 前出のマーカ一遺伝子とは異なるものを使 用することが好ましい。  An ES cell line in which both TSG gene pairs have been inactivated can be obtained by the following method. In other words, by culturing an ES cell line in which one of the gene pairs has been inactivated in a medium containing a high concentration of antibiotics, a cell line in which the other gene pair has been inactivated, ie, TSG 遗An ES cell line in which both of the offspring gene pairs have been inactivated can be obtained. Alternatively, it can be prepared by selecting an ES cell line in which one of the gene pairs has been inactivated, introducing a targeting vector again into this cell line, and selecting a cell line in which homologous recombination has occurred. It is preferable to use a different marker gene from the marker gene to be introduced into the target marker.
また、 本発明は、 TSGまたは TSGをコードする DNAを有効成分として含有する、 - l i一 The present invention also includes TSG or a DNA encoding TSG as an active ingredient, -li one
中胚葉に由来する組織の発達不全を伴う疾患、 副腎皮質ホルモンなどの薬物によ る骨量減少、 骨粗しょう症、 骨折、 または、 副腎皮質ホルモンなどの薬物による 成長抑止の治療または予防のための薬剤を提供する。 For the treatment or prevention of diseases associated with poor development of mesodermal tissue, bone loss by drugs such as corticosteroids, osteoporosis, fractures, or growth inhibition by drugs such as corticosteroids Provide the drug.
本発明の薬剤における 「TSGをコードする DM」 の形態としては、 特に制限は なく、 ゲノム DNA、 cDNA、 合成 DNA、 またはそれらの DNAを含むベクターであつ てもよい。  The form of “DM encoding TSG” in the agent of the present invention is not particularly limited, and may be genomic DNA, cDNA, synthetic DNA, or a vector containing those DNAs.
また、 本発明の薬剤における 「TSG」 は、 天然のタンパク質の他、 公知の遺伝 子組み換え技術を利用した組換えタンパク質として調製することができる。 また、 本発明の薬剤における 「TSG」 は、 その由来する生物に特に制限はない。 ヒトの 疾患の治療や予防に用いる場合には、 好ましくは哺乳動物由来であり、 最も好ま しくはヒト由来である。 天然のタンパク質は、 例えば TSGが発現していると考え られる心臓、 脳、 肺、 肝臓、 腎臓等の組織の抽出液に対し、 TSGに対する抗体を 用いたァフィ二ティーク口マトグラフィ一を用いる方法により調製することが可 能である。  In addition, “TSG” in the drug of the present invention can be prepared as a recombinant protein using a known gene recombination technique, in addition to a natural protein. Further, “TSG” in the drug of the present invention is not particularly limited to the organism from which it is derived. When used for treatment or prevention of human diseases, it is preferably derived from mammals, and most preferably derived from humans. The natural protein is prepared, for example, from an extract of tissues such as heart, brain, lung, liver, and kidney, which are thought to express TSG, by affinity chromatography using an antibody against TSG. It is possible to do so.
一方、 組換えタンパク質は.。 当業者においては公知の方法により、 例えば組換 えポリぺプチドとして調製することができる。 組み換えポリぺプチドは、 例えば、 TSGをコードする DNAを、 適当な発現ベクターに組み込み、 これを適当な宿主細 胞に導入して得た形質転換体を回収し、 抽出物を得た後、 イオン交換、 逆相、 ゲ ル濾過などのクロマトグラフィー、 あるいは TSGに対する抗体をカラムに固定し たァフィ二ティークロマトグラフィーにかけることにより、 または、 さらにこれ らのカラムを複数組み合わせることにより精製し、 調製することが可能である。 また、 TSGをダルタチオン S-トランスフェラーゼ蛋白質との融合ポリべプチ ドとして、 あるいはヒスチジンを複数付加させた組み換えポリペプチドとして宿 主細胞 (例えば、 動物細胞や大腸菌など) 内で発現させた場合には、 発現させた 組み換えポリぺプチドはダルタチオンカラムあるいは二ッケルカラムを用いて精 製することができる。 上記ベクターとしては、 例えば、 大腸菌を宿主とする場合には、 ベクターを大 腸菌 (例えば、 JM109、 DH5 a , HB101、 XLlBlue) 等で大量に増幅させ大量調製す るために、 大腸菌で増幅されるための 「ori」 をもち、 さらに形質転換された大 腸菌の選抜遺伝子 (例えば、 なんらかの薬剤 (アンピシリンやテトラサイクリン、 カナマイシン、 クロラムフエ二コールにより判別できるような薬剤耐性遺伝子) を有すれば特に制限はない。 ベクターの例としては、 M13系ベクター、 pUC系べ クタ一、 pBR322、 pBluescript, pCR - Script等が挙げられる。 また、 cDNAのサブ クローユング、 切り出しを目的とした場合、 上記ベクターの他に、 例えば、 pGE M - T、 pDIRECTs pT7等が挙げられる。 TSGを生産する目的においてベクターを使 用する場合には、 特に、 発現ベクターが有用である。 発現ベクターとしては、 例 えば、 大腸菌での発現を目的とした場合は、 ベクターが大腸菌で増幅されるよう な上記特徴を持つほかに、 宿主を JM109、 DH5 cx、 HB10U XL1- Blue等の大腸菌と した場合においては、 大腸菌で効率よく発現できるようなプロモーター、 例えば、 lacZプロモーター (Wardら, Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422-2427) 、 ai'aBプロモーター (Betterら, Science (1988) 240, 1041-1043 ) 、 または T7プロモーター等を持っていることが不可欠である。 このようなべ クタ一としては、 上記ベクターの他に pGEX - 5X- 1 (ブアルマシア社製) 、 「QIAe xpress system] (キアゲン社製) 、 pEGFPs または pET等が挙げられる。 On the other hand, recombinant protein. A person skilled in the art can prepare it by a known method, for example, as a recombinant polypeptide. Recombinant polypeptides are obtained, for example, by incorporating TSG-encoding DNA into an appropriate expression vector, introducing it into an appropriate host cell, collecting the transformant, obtaining an extract, Purify and prepare by chromatography such as exchange, reverse phase, gel filtration, or affinity chromatography in which an antibody against TSG is immobilized on a column, or by combining a plurality of these columns. It is possible. When TSG is expressed in host cells (for example, animal cells or E. coli) as a fusion polypeptide with daltathione S-transferase protein or as a recombinant polypeptide to which multiple histidines are added, The expressed recombinant polypeptide can be purified using a daltathione column or a nickel column. For example, when Escherichia coli is used as a host, the vector is amplified in Escherichia coli in order to amplify the vector in large amounts with Escherichia coli (for example, JM109, DH5a, HB101, XLlBlue), etc. Particularly limited if it has an “ori” and a selected gene for transformed Escherichia coli (eg, a drug resistance gene that can be identified by ampicillin, tetracycline, kanamycin, or chloramphenicol) Examples of vectors include M13 vectors, pUC vectors, pBR322, pBluescript, pCR-Script, etc. In addition, in the case of cDNA subcloning and excision, , for example, pGE M -. T, in the case of using vectors to produce the TSG which like pDIRECT s pT7 may be mentioned, in particular, origination For example, in the case of expression in Escherichia coli, the expression vector is useful in addition to the above-mentioned characteristics such that the vector is amplified in Escherichia coli, and the host may be JM109, DH5cx, HB10U XL1. -In the case of E. coli such as Blue, a promoter that can be efficiently expressed in E. coli, such as the lacZ promoter (Ward et al., Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422-2427) ), The ai'aB promoter (Better et al., Science (1988) 240, 1041-1043), or the T7 promoter, etc. In addition to the above vectors, pGEX- 5X- 1 (Buarumashia Co.), "QIAe xpress system] (Qiagen), include pEGFP s or pET like.
また、 ベクターには、 ポリぺプチド分泌のためのシグナル配列が含まれていて もよい。 ポリぺプチド分泌のためのシグナル配列としては、 大腸菌のペリプラズ ムに産生させる場合、 pelBシグナル配列 (Lei, S. P. et al J. Bacteriol. (1 987) 169, 4379) を使用すればよい。 宿主細胞へのベクターの導入は、 例えば塩 化カルシウム法、 エレクトロポレーシヨン法を用いて行うことができる。  Further, the vector may include a signal sequence for polypeptide secretion. As a signal sequence for polypeptide secretion, the pelB signal sequence (Lei, SP et al J. Bacteriol. (1987) 169, 4379) may be used for production in E. coli periplasm. The introduction of the vector into the host cell can be performed using, for example, a calcium chloride method or an electroporation method.
大腸菌以外にも、 例えば、 TSGを製造するためのベクタ一としては、 哺乳動物 由来の発現ベクター (例えば、 pcDNA3 (インビトロゲン杜製)や、 pEGF- BOS (Nuc leic Acids. Res. 1990, 18 (17), P5322)、 pEF、 pCDM8 ) 、 昆虫細胞由来の発現 ベクター (例えば 「Bac-to - BAC baculovairus expression system] (ギプコ BR L社製) 、 PBacPAK8) 、 植物由来の発現ベクター (例えば ρΜΗ1、 pMH2) 、 動物ゥ ィルス由来の発現ベクター (例えば、 pHSV、 pMV、 pAdexLcw ) 、 レトロウイルス 由来の発現ベクター (例えば、 pZIPneo) 、 酵母由来の発現べクタ一 (例えば、 「Pichia Expression Kit」 (インビトロゲン社製) 、 pNVll、 SP-Q01) 、 枯草菌 由来の発現ベクター (例えば、 pPL608、 pKTH50) 等が挙げられる。 In addition to Escherichia coli, for example, as a vector for producing TSG, expression vectors derived from mammals (for example, pcDNA3 (manufactured by Invitrogen) and pEGF-BOS (Nucleic Acids. Res. 1990, 18 ( 17), p 5322), pEF, pCDM8), expression from insect cells Vectors (eg, “Bac-to-BAC baculovairus expression system” (manufactured by Gipco BRL), P BacPAK8), plant-derived expression vectors (eg, ρΜΗ1, pMH2), and animal virus-derived expression vectors (eg, pHSV, pMV , PAdexLcw), retrovirus-derived expression vector (for example, pZIPneo), yeast-derived expression vector (for example, “Pichia Expression Kit” (manufactured by Invitrogen), pNVll, SP-Q01), and Bacillus subtilis-derived expression Vector (for example, pPL608, pKTH50) and the like.
CH0細胞、 COS細胞、 NIH3T3細胞等の動物細胞での発現を目的とした場合には、 細胞内で発現させるために必要なプロモーター、 例えば SV40プロモーター (Mul liganら, Nature (1979) 277, 108) 、 MMLV-LTRプロモーター、 EFl aプロモ一 ター (Mizushimaら, Nucleic Acids Res. (1990) 18, 5322) 、 CMVプロモータ 一等を持っていることが不可欠であり、 細胞への形質転換を選抜するための遺伝 子 (例えば、 薬剤 (ネオマイシン、 G418等) により判別できるような薬剤耐性 遺伝子) を有すればさらに好ましい。 このような特性を有するベクターとしては、 例えば、 pMAM、 pDR2、 pBK- RSV、 pBK- CMV、 p0PRSV、 p0P13等が挙げられる。  For expression in animal cells such as CH0 cells, COS cells, and NIH3T3 cells, promoters required for expression in cells, such as the SV40 promoter (Mulligan et al., Nature (1979) 277, 108) , MMLV-LTR promoter, EFla promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322), CMV promoter, etc. are essential to select for transformation into cells. It is more preferable to have a gene (eg, a drug resistance gene that can be identified by a drug (neomycin, G418, etc.)). Examples of a vector having such properties include pMAM, pDR2, pBK-RSV, pBK-CMV, p0PRSV, p0P13, and the like.
また、 in w' でポリペプチドを産生させる系としては、 例えば、 動鈞を使用 する産生系や植物を使用する産生系が挙げられる。 この動物または植物に TSGを コードする DNAを導入し、 動物または植物の体内で TSGを産生させ、 回収する。 動物を使用する場合、 哺乳類動物、 昆虫を用いる産生系がある。 哺乳類動物と しては、 ャギ、 プタ、 ヒッジ、 マウス、 ゥシを用いることができる (Vicki Glas er, SPECTRUM Biotechnology Applications, 1993) 。 また、 哺乳類動物を用い る場合、 トランスジエニック動物を用いることができる。  In addition, examples of a system for producing a polypeptide in w 'include a production system using an animal plant and a production system using a plant. The TSG-encoding DNA is introduced into the animal or plant, and TSG is produced and recovered in the animal or plant. When using animals, there are production systems using mammals and insects. Goats, stags, sheep, mice, and mice can be used as mammals (Vicki Glasser, SPECTRUM Biotechnology Applications, 1993). When a mammal is used, a transgenic animal can be used.
例えば、 TSGをコードする DNAを、 ャギ /3カゼインのような乳汁中に固有に産 生されるポリペプチドをコードする遺伝子との融合遺伝子として調製する。 次い で、 この融合遺伝子を含む DNA断片をャギの胚へ注入し、 この胚を雌のャギへ移 植する。 胚を受容したャギから生まれるトランスジヱユックャギ又はその子孫が 産生する乳汁から、 TSGを得ることができる。 トランスジエニックャギから産生 されるポリペプチドを含む乳汁量を増加させるために、 適宜ホルモンをトランス ジエニックャギに使用してもよい (Ebert, K. M. et al. , Bio/Technology (199 4) 12, 699-702) 。 For example, a DNA encoding TSG is prepared as a fusion gene with a gene encoding a polypeptide uniquely produced in milk, such as goat / 3 casein. The DNA fragment containing the fusion gene is then injected into a goat embryo and the embryo is transferred to a female goat. TSGs can be obtained from milk produced by the transjugyan goat born from the goat that has received the embryo or its progeny. Produced from transgenic goats Hormones may optionally be used in transgenic rats to increase the amount of milk containing the polypeptide to be produced (Ebert, KM et al., Bio / Technology (1994) 12, 699-702).
また、 昆虫としては、 例えばカイコを用いることができる。 カイコを用いる場 合、 TSGをコードする DNAを挿入したパキュロウィルスをカイコに感染させるこ とにより、 このカイコの体液から TSGを得ることができる (Susumu, M. et al. , Nature (1985) 315, 592-594) 。  In addition, silkworms can be used as insects, for example. When a silkworm is used, TSG can be obtained from the body fluid of the silkworm by infecting the silkworm with a paculovirus into which DNA encoding TSG has been inserted (Susumu, M. et al., Nature (1985)). 315, 592-594).
さらに、 植物を使用する場合、 例えばタバコを用いることができる。 タパコを 用いる場合、 TSGをコードする DNAを植物発現用べクター、 例えば pMON 530に 挿入し、 このベクターをァグロバタテリゥム ·ッメファシエンス {Agrobacteriu m tumefaciens) のようなパクテリアに導入する。 このパクテリアをタバコ、 例 えば、 ニコチアナ。タバカム {Nicotiana tabacum) に感染させ、 本タバコの葉 より TSGを得ることができる (Julian IL - C. Ma et al. , Eur. J. Immunol. (19 94) 24, 131-138) 。  Furthermore, when using a plant, for example, tobacco can be used. When tapaco is used, the DNA encoding TSG is inserted into a plant expression vector, for example, pMON530, and this vector is introduced into a vector such as Agrobacterium tumefaciens. This pacteria is tobacco, for example, Nicotiana. By infecting Tabacum (Nicotiana tabacum), TSG can be obtained from the leaves of this tobacco (Julian IL-C. Ma et al., Eur. J. Immunol. (1994) 24, 131-138).
これにより得られた TSGは 宿主細胞内または細胞外 (培地等) から単離し、 実質的に純粋で均一なポリぺプチドとして精製することができる。 ポリぺプチド の分離、 精製は、 通常のポリペプチドの精製で使用されている分離、 精製方法を 使用すればよく、 何ら限定されるものではない。 例えば、 クロマトグラフィー力 ラム、 フイノレター、 限外濾過、 塩析、 溶媒沈殿、 溶媒抽出、 蒸留、 免疫沈降、 SD S-ポリアクリルアミドゲル電気泳動、 等電点電気泳動法、 透析、 再結晶等を適宜 選択、 組み合わせればポリペプチドを分離、 精製することができる。  The TSG thus obtained can be isolated from the inside or outside of the host cell (eg, medium) and purified as a substantially pure and uniform polypeptide. Separation and purification of the polypeptide may be carried out by using the separation and purification methods used in ordinary polypeptide purification, and is not limited at all. For example, chromatography, chromatography, finoletter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. If selected and combined, the polypeptide can be separated and purified.
なお、 本発明の TSGを精製前又は精製後に適当な蛋白質修飾酵素を作用させる ことにより、 任意に修飾を加えたり部分的にぺプチドを除去することもできる。 蛋白質修飾酵素としては、 例えば、 トリプシン、 キモトリブシン、 リシ エンド ぺプチダーゼ、 プロテインキナーゼ、 ダルコシダ一ゼ等が用いられる。  The TSG of the present invention can be arbitrarily modified or partially removed by applying an appropriate protein modifying enzyme before or after purification of the TSG. As the protein-modifying enzyme, for example, trypsin, chymotrypsin, lysine peptidase, protein kinase, dalcosidase and the like are used.
上記抗 TSG抗体としては特に制限はなく、 ポリクローナル抗体の他、 モノクロ ーナル抗体も含まれる。 また、 ゥサギなどの免疫動物に TSGを免疫して得た抗血 清、 すべてのクラスのポリクローナル抗体おょぴモノクローナル抗体、 さらに遺 伝子 aみ換えによるヒト型化抗体、 ヒト抗体も含まれる。 上記抗体は、 以下の方 法により調製することが可能である。 ポリクローナル抗体であれば、 例えば、 TS Gをゥサギなどの小動物に免疫し血清を得て、 これを TSGをカップリングさせた ァフィ二ティ一カラムにより、 TSGのみを認識する画分を得て、 さらにこの画分 から免疫グロプリン Gあるいは Mを、 プロテイン A、 あるいはプロテイン Gカラ ムにより精製することにより調製することができる。 また、 モノクローナル抗体 であれば、 TSG をマウスなどの小動物に免疫を行い、 同マウスより脾臓を摘出し、 これをすりつぶして細胞にし、 マウスミエローマ細胞とポリエチレングリコール などの試薬により融合させ、 これによりできた融合細胞 (ハイプリ ドーマ) の中 から、 TSGに対する抗体を産生するクローンを選択する。 次いで、 得られたハイ プリドーマをマウス腹腔内に移植し、 同マウスより腹水を回収し、 得られたモノ クローナル抗体を、 例えば、 硫安沈殿、 プロテイン A、 プロテイン Gカラム、 DE AEイオン交換クロマトグラフィー、 TSGをカップリングしたァフィ二ティーカラ ムなどにより精製することで調製することが可能である。 上記抗体は、 TSGの精 製や検出に用いられる他、 TSGの機能を制御するための薬剤として用いることが 可能である。 抗体をヒトのための薬剤として用いる場合には、 免疫原性の点で、 ヒ 1、抗体またはヒト化抗体が有効である。 ヒト抗体またはヒト化抗体は当業者に 公知の方法により調製することができる。 例えば、 ヒト抗体は、 例えば、 免疫系 をヒトと入れ換えたマウスに TSGを免疫することにより調製することが可能であ る。 また、 ヒト化抗体は、 例えば、 モノクローナル抗体産生細胞から抗体遺伝子 をクロ一ユングし、 その抗原決定部位を既存のヒト抗体に移植する CDRグラフト 法により調製することが可能である。 There is no particular limitation on the anti-TSG antibody. In addition to polyclonal antibodies, monoclonal antibodies Also included are local antibodies. Also included are antisera obtained by immunizing immunized animals such as rabbits with TSG, polyclonal antibodies and monoclonal antibodies of all classes, and humanized antibodies and human antibodies obtained by transgenes. The above antibody can be prepared by the following method. In the case of a polyclonal antibody, for example, TSG is immunized to a small animal such as a heron to obtain serum, and this is subjected to an affinity column to which TSG is coupled to obtain a fraction that recognizes only TSG. From this fraction, immunoglobulin G or M can be prepared by purifying it with protein A or protein G column. In the case of a monoclonal antibody, a small animal such as a mouse is immunized with TSG, and the spleen is excised from the mouse, crushed into cells, and fused with mouse myeloma cells using a reagent such as polyethylene glycol. A clone producing an antibody against TSG is selected from the fused cells (hybri-doma). Next, the obtained hybridoma was transplanted into the abdominal cavity of a mouse, ascites was recovered from the mouse, and the obtained monoclonal antibody was subjected to, for example, ammonium sulfate precipitation, protein A, protein G column, DE AE ion exchange chromatography, It can be prepared by purifying TSG with a coupled affinity column or the like. The above antibody can be used for purification and detection of TSG, and can also be used as an agent for controlling the function of TSG. When an antibody is used as a drug for humans, an arsenic, an antibody or a humanized antibody is effective in terms of immunogenicity. Human antibodies or humanized antibodies can be prepared by methods known to those skilled in the art. For example, a human antibody can be prepared, for example, by immunizing a mouse in which the immune system has been replaced with a human with TSG. In addition, a humanized antibody can be prepared, for example, by CDR grafting in which an antibody gene is cloned from a monoclonal antibody-producing cell and the antigen-determining site is transplanted to an existing human antibody.
上記薬剤は、 経口、 非経口投与のいずれでも可能であるが、 好ましくは非経口 投与であり、 具体的には、 注射剤型、 経鼻投与剤型、 経肺投与剤型、 経皮投与型 などが挙げられる。 注射剤型の例としては、 例えば、 静脈内注射、 筋肉内注射、 腹腔内注射、 皮下注射などにより全身または局部的に投与することができる。 The above drug can be administered either orally or parenterally, but is preferably administered parenterally. Specifically, injection, nasal administration, pulmonary administration, transdermal administration And the like. Examples of injection forms include systemic or local administration by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and the like.
TSGをコードする DNAを生体内に投与する場合には、 レトロウイルス、 アデノ ウィルス、 センダイウィルスなどのウィルスベクターゃリポソームなどの非ウイ ルスべクターを利用することができる。 投与方法としては、 in vivo法おょぴ ex vivo法を例示することができる。  When a DNA encoding TSG is administered to a living body, a non-viral vector such as a liposome such as a retrovirus, an adenovirus, or a virus vector such as Sendai virus can be used. Examples of the administration method include an in vivo method and an ex vivo method.
本発明の薬剤自体を直接患者に投与する以外に、 公知の製剤学的方法により製 剤化した薬剤として投与を行うことも可能である。 例えば、 水もしくはそれ以外 の薬学的に許容し得る液との無菌性溶液、 又は懸濁液剤の注射剤の形で使用でき る。 また、 例えば、 薬理学上許容される担体もしくは媒体、 具体的には、 滅菌水 や生理食塩水、 乳化剤、 懸濁剤、 界面活性剤、 安定剤、 べヒクル、 防腐剤などと 適宜組み合わせて、 一般に認められた製薬実施に要求される単位用量形態で混和 することによつて製剤化することが考えられる。 これら製剤における有効成分量 は指示された範囲の適当な容量が得られるようにするものである。  In addition to directly administering the drug of the present invention to a patient, it is also possible to administer the drug as a drug prepared by a known pharmaceutical method. For example, it can be used in the form of a sterile solution with water or another pharmaceutically acceptable liquid, or a suspension for injection. Also, for example, a suitable combination with a pharmacologically acceptable carrier or medium, specifically, sterile water or saline, an emulsifier, a suspending agent, a surfactant, a stabilizer, a vehicle, a preservative, or the like, It may be formulated by mixing in unit dosage form as required by generally accepted pharmaceutical practice. The amount of the active ingredient in these preparations is such that an appropriate dose in the specified range can be obtained.
注射のための無菌組成物は注射用蒸留水のようなべヒクルを用いて通常の製剤 実施に従つて処方することができる。 注射用の水溶液としては、 例えば生理食塩 水、 ブドゥ糖やその他の補助薬を含む等張液、 例えば D-ソルビトール、 D -マン ノース、 D-マンニトール、 塩化ナトリウムが挙げられ、 適当な溶解補助剤、 例え ばアルコール、 具体的にはエタノール、 ポリアルコール、 例えばプロピレングリ コール、 ポリエチレングリコ一ル、 非ィォン性界面活性剤、 例えばポリソルベー ト 80™、 HC0-50と併用してもよい。  Sterile compositions for injection can be formulated according to normal pharmaceutical practice using a vehicle such as distilled water for injection. Aqueous solutions for injection include, for example, physiological saline, isotonic solutions containing budsugar and other adjuvants, such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride. For example, alcohols, specifically, ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80 ™, and HC0-50 may be used in combination.
油性液としてはゴマ油、 大豆油があげられ、 溶解補助剤として安息香酸ベンジ ル、 ベンジルアルコールと併用してもよい。 また、 緩衝剤、 例えばリン酸塩緩衝 液、 酢酸ナトリウム緩衝液、 無痛化剤、 例えば、 塩酸プロ力イン、 安定剤、 例え ばべンジルアルコール、 フエノール、 酸化防止剤と配合してもよい。 調製された 注射液は通常、 適当なアンプルに充填させる。 また、 患者の年齢、 症状により適宜投与量を選択することができる。 例えば、 —回につき体重 lkgあたり 0. OOOlmgから lOOOmgの範囲で選ぶことが可能である。 あるいは、 例えば、 患者あたり 0. 001〜: 100000mg/bodyの範囲で投与量を選ぶこ とができる。 しかしながら、 本発明の薬剤はこれらの投与量に制限されるもので はない。 Examples of the oily liquid include sesame oil and soybean oil, which may be used in combination with benzyl benzoate or benzyl alcohol as a solubilizing agent. It may also be combined with a buffer, for example, a phosphate buffer, a sodium acetate buffer, a soothing agent, for example, proforce hydrochloride, a stabilizer, for example, benzyl alcohol, phenol, or an antioxidant. The prepared injection solution is usually filled into an appropriate ampoule. The dose can be appropriately selected depending on the age and symptoms of the patient. For example:-You can choose from 0,000 lmg to 100 mg per lkg body weight per serving. Alternatively, for example, the dose can be selected from the range of 0.001 to 100,000 mg / body per patient. However, the drug of the present invention is not limited to these doses.
本発明は、 中胚葉に由来する組織の発達不全を伴う疾患、 副腎皮質ホルモンな どの薬物による骨量減少、 骨粗しょう症、 骨折、 または、 副腎皮質ホルモンなど の薬物による成長抑止の治療または予防のための薬剤の候補化合物のスクリ一二 ング方法を提供する。 以下に本発明のスクリーニング方法の態様を例示するが、 本発明のスクリーニング方法は、 これらに限定されるものではない。  The present invention relates to the treatment or prevention of diseases associated with dysgenesis of tissues derived from mesoderm, bone loss by drugs such as adrenocortical hormone, osteoporosis, fractures, or growth suppression by drugs such as corticosteroids. The present invention provides a screening method for a candidate compound of a drug for the screening. Examples of the screening method of the present invention will be described below, but the screening method of the present invention is not limited thereto.
本発明のスクリーユング方法の第一の態様は、 TSGと結合する化合物のスクリ 一ユングに関するものである。 第一の態様においては、 まず、 TSGに被検化合物 を接触させる。 本発明のスクリーニング方法に用いる被検化合物としては、 例え ば、 天然化合物、 有機化合物、 無機化合物、 タンパク質、 ペプチドなどの単一化 合物、 並びに、 化合物ライブラリー、 遺伝子ライブラリーの発現産物、 細胞抽出 物、 細胞培養上清、 発酵微生物産生物、 海洋生物抽出物、 植物抽出物等を挙げる ことができる。  The first embodiment of the screening method of the present invention relates to a screening compound which binds to TSG. In the first embodiment, first, a test compound is brought into contact with TSG. The test compound used in the screening method of the present invention includes, for example, a single compound such as a natural compound, an organic compound, an inorganic compound, a protein, a peptide, and the like, a compound library, an expression product of a gene library, and a cell. Extracts, cell culture supernatants, fermentation microorganism products, marine organism extracts, plant extracts and the like can be mentioned.
第一の態様においては、 次いで、 該 TSGと被検化合物との結合を検出する。 次 いで、 該 TSGと結合する被検化合物を選択する。 この方法によって、 単離された 化合物は、 中胚葉に由来する組織の発達不全を伴う疾患の治療または予防のため の薬剤の候補化合物になりうる。 また、 後述のスクリーニング方法の被検化合物 として使用することもできる。  In the first embodiment, then, the binding between the TSG and a test compound is detected. Next, a test compound that binds to the TSG is selected. By this method, the isolated compound can be a candidate compound for an agent for the treatment or prevention of a disease associated with a failure to develop tissue derived from mesoderm. It can also be used as a test compound in the screening method described below.
TSGを用いて、 これに結合するポリペプチドをスクリーニングする方法として は、 当業者に公知の多くの方法を用いることが可能である。 このようなスクリー ユングは、 例えば、 免疫沈降法により行うことができる。 具体的には、 以下のよ うに行うことができる。 TSGをコードする DNAを、 pSV2neo, pcDNA I, pCD8 な 8— Many methods known to those skilled in the art can be used as a method for screening a polypeptide that binds thereto using TSG. Such screening can be performed, for example, by immunoprecipitation. Specifically, it can be performed as follows. The TSG-encoding DNA is pSV2neo, pcDNA I, pCD8, etc. 8—
どの外来遺伝子発現用のべクターに挿入することで動物細胞などで当該遺伝子を 発現させる。 発現に用いるプロモーターとしては SV40 early promoter (Rigby In Williamson 、ed. ), Genetic Engineering, Vol. 3. Academic Press, London, p. 83-141 (1982) ) , EF-1 a promoter (Kimら Gene 91, p. 217-223 (1990) ), C AG promoter (Niwa et al. Gene 108, p. 193-200 (1991) ) , RSV LTR promoter (Cullen Methods in Enzymology 152, p. 684-704 (1987) , SR promoter (Tak ebe et al. Mol. Cell. Biol. 8, p. 466 (1988) ) , CMV immediate early promot er (Seed and Aruffo Pro atl. Acad. Sci. USA 84, p. 3365-3369 (1987) ), SV40 late promoter (Gheysen and Fiers J. Mol. Appl. Genet. 1, p. 385-394 (1982) ) , Adenovirus late promoter (Kaufman et al. Mol. Cell. Biol. 9, p.The gene is expressed in animal cells by inserting it into any exogenous gene expression vector. Promoters used for expression include the SV40 early promoter (Rigby In Williamson, ed.), Genetic Engineering, Vol. 3. Academic Press, London, p. 83-141 (1982)), EF-1a promoter (Kim et al. Gene 91). , P. 217-223 (1990)), CAG promoter (Niwa et al. Gene 108, p. 193-200 (1991)), RSV LTR promoter (Cullen Methods in Enzymology 152, p. 684-704 (1987)) , SR promoter (Takebe et al. Mol. Cell. Biol. 8, p. 466 (1988)), CMV immediate early promoter (Seed and Aruffo Pro atl. Acad. Sci. USA 84, p. 3365-3369 ( 1987)), SV40 late promoter (Gheysen and Fiers J. Mol. Appl. Genet. 1, p. 385-394 (1982)), Adenovirus late promoter (Kaufman et al. Mol. Cell. Biol. 9, p.
946 (1989) ) , HSV TK promoter等の一般的に使用できるプロモーターであれば 何を用いてもよい。 946 (1989)), any commonly used promoter such as the HSV TK promoter may be used.
動物細胞に遺伝子を導入することで外来遺伝子を発現させるためには、 エレク トロポレーシヨン法 (Chu, G. et al. Nucl. Acid Res. 15, 1311-1326 (1987) )、 リン酸カルシウム法 (Chen, C and Okayama, H. Mol. Cell. Biol. 7, 2745-275 2 (1987) )、 DEAEデキストラン法 (Lopata, M. A. et al. Nucl. Acids Res. 12, 5707 - 5717 (1984); Sussman, D. J. and Milman, G. Mol. Cell. Biol. 4, 164 2-1643 (1985) )、 リポフエクチン法 (Derijard, B. Cell 7, 1025-1037 (1994); Lamb, B. T. et al. Nature Genetics 5, 22-30 (1993); Rabindran, S. K. et al. Science 259, 230-234 (1993) )等の方法があるが、 いずれの方法によって もよい。  In order to express a foreign gene by introducing a gene into animal cells, the electroporation method (Chu, G. et al. Nucl. Acid Res. 15, 1311-1326 (1987)) and the calcium phosphate method (Chen, C and Okayama, H. Mol. Cell. Biol. 7, 2745-275 2 (1987)), DEAE dextran method (Lopata, MA et al. Nucl. Acids Res. 12, 5707-5717 (1984); Sussman, DJ and Milman, G. Mol. Cell. Biol. 4, 164 2-1643 (1985)), lipofectin method (Derijard, B. Cell 7, 1025-1037 (1994)); Lamb, BT et al. Nature Genetics 5, 22- 30 (1993); Rabindran, SK et al. Science 259, 230-234 (1993)), and any of these methods may be used.
特異性の明らかとなっているモノクローナル抗体の認識部位 (ェピトープ) を TSGの N末または C末に導入することにより、 モノクローナル抗体の認識部位を 有する融合ポリペプチドとして TSGを発現させることができる。 用いるェピトー プ一抗体系としては市販されているものを利用することができる (実験医学 13, 85-90 (1995) ) 。 マルチクローニングサイトを介して、 β —ガラクトシダーゼ、 マルトース結合タンパク質、 ダルタチオン S-トランスフェラーゼ、 緑色蛍光タ ンパク質 (GFP) などとの融合ポリペプチドを発現することができるベクターが 市販されている。 また、 融合ポリペプチドにすることにより TSGの性質をできる だけ変化させないようにするために数個から十数個のアミノ酸からなる小さなェ ピトープ部分のみを導入して、 融合ポリペプチドを調製する方法も報告されてい る。 例えば、 ポリヒスチジン (His - tag) 、 インフルエンザ凝集素 HA、 ヒト c - m yc、 FLAG, Vesicular stomatitis ウィルス糖タンパク質 (VSV-GP) 、 T7 genelO タンパク質 (T7- tag) 、 ヒ ト単純へルぺスウィルス糖タンパク質 (HSV - tag) 、 E- tag (モノクローナルファージ上のェピトープ) などのェピトープとそれを認 識するモノクローナル抗体を、 TSGに結合するポリペプチドのスクリーニングの ためのェピトープー抗体系として利用できる (実験医学 13, 85-90 (1995) ) 。 免疫沈降においては、 これらの抗体を、 適当な界面活' f生剤を利用して調製した 細胞溶解液に添加することにより免疫複合体を形成させる。 この免疫複合体は T SG、 それと結合能を有するポリペプチド、 および抗体からなる。 上記ェピトープ に対する抗体を用いる以外に、 TSGに対する抗体を利用して免疫沈降を行うこと も可能である。 TSGに対する抗体は、 例えば、 TSGをコードする DNAを適当な大 腸菌発現ベクターに導入して大腸菌内で発現させ、 発現させたポリペプチドを精 製し、 これをゥサギやマウス、 ラット、 ャギ、 ニヮトリなどに免疫することで調 製することができる。 また、 合成した TSGの部分べプチドを上記の動物に免疫す ることによって調製することもできる。 TSG can be expressed as a fusion polypeptide having a monoclonal antibody recognition site by introducing a recognition site (epitope) of the monoclonal antibody, for which the specificity is known, into the N-terminal or C-terminal of TSG. As the epitope-one antibody system to be used, a commercially available one can be used (Experimental Medicine 13, 85-90 (1995)). Through a multiple cloning site, β-galactosidase, Vectors that can express fusion polypeptides with maltose binding protein, daltathione S-transferase, green fluorescent protein (GFP), and the like are commercially available. Also, a method for preparing a fusion polypeptide by introducing only a small epitope portion consisting of several to several tens of amino acids in order to minimize the properties of TSG by making the fusion polypeptide as small as possible. It has been reported. For example, polyhistidine (His-tag), influenza agglutinin HA, human c-myc, FLAG, Vesicular stomatitis virus glycoprotein (VSV-GP), T7 genelO protein (T7-tag), human simple virus Epitopes such as viral glycoproteins (HSV-tag) and E-tag (epitopes on monoclonal phage) and monoclonal antibodies that recognize them can be used as an epitope antibody system for screening for polypeptides that bind to TSG ( Experimental Medicine 13, 85-90 (1995)). In immunoprecipitation, an immunocomplex is formed by adding these antibodies to a cell lysate prepared using an appropriate surfactant. This immune complex consists of TSG, a polypeptide capable of binding thereto, and an antibody. In addition to using antibodies against the above-mentioned epitope, immunoprecipitation can also be performed using antibodies against TSG. Antibodies against TSG include, for example, introducing TSG-encoding DNA into an appropriate E. coli expression vector, expressing it in Escherichia coli, purifying the expressed polypeptide, and then purifying it from egret, mouse, rat, and goat. It can be prepared by immunizing chickens and the like. Alternatively, it can be prepared by immunizing the above animal with the synthesized partial peptide of TSG.
免疫複合体は、 例えば、 抗体がマウス IgG抗体であれば、 Protein A Sepharo seや Protein G Sepharoseを用いて沈降させることができる。 また、 TSGを、 例 えば、 GSTなどのェピトープとの融合ポリペプチドとして調製した場合には、 グ ルタチオン- Sepharose 4Bなどのこれらェピトープに特異的に結合する物質を利 用して、 TSGの抗体を利用した場合と同様に、 免疫複合体を形成させることがで さる。 免疫沈降の一般的な方法については、 例えば、 文献 (Harlow, E. and Lane, D.: Antibodies, pp. 511 - 552, Cold Spring Harbor Laboratory publications, New York (1988) ) 記載の方法に従って、 または準じて行えばよい。 The immune complex can be precipitated, for example, using Protein A Sepharose or Protein G Sepharose if the antibody is a mouse IgG antibody. Further, when TSG is prepared as a fusion polypeptide with an epitope such as GST, for example, a substance which specifically binds to these epitopes such as glutathione-Sepharose 4B is used to generate an antibody against TSG. As in the case where it is used, an immune complex can be formed. For general methods of immunoprecipitation, for example, according to the method described in the literature (Harlow, E. and Lane, D .: Antibodies, pp. 511-552, Cold Spring Harbor Laboratory publications, New York (1988)), or It may be performed according to.
免疫沈降されたポリぺプチドの解析には SDS- PAGEが一般的であり、 適当な濃 度のゲルを用いることでポリぺプチドの分子量により結合していたポリぺプチド を解析することができる。 また、 この際、 一般的には TSGに結合したポリべプチ ドは、 クマシ一染色や銀染色といったポリぺプチドの通常の染色法では検出する ことは困難であるので、 放射性同位元素である 3¾-メチォニンや35 S -システィン を含んだ培養液で細胞を培養し、 該細胞内のポリペプチドを標識して、 これを検 出することで検出感度を向上させることができる。 ポリペプチドの分子量が判明 すれば直接 SDS -ポリアクリルアミドゲルから目的のポリぺプチドを精製し、 そ の配列を決定することもできる。 SDS-PAGE is generally used for the analysis of immunoprecipitated polypeptides. By using a gel having an appropriate concentration, it is possible to analyze the polypeptides bound by the molecular weight of the polypeptide. At this time, Poribe petit de which is generally bound to TSG, since it is difficult to detect in normal staining of polypeptides such as Coomassie one staining or silver staining, a radioactive isotope 3 By culturing cells in a culture solution containing ¾-methionine or 35 S-cysteine, labeling the polypeptide in the cells, and detecting this, the detection sensitivity can be improved. Once the molecular weight of the polypeptide is known, the desired polypeptide can be directly purified from the SDS-polyacrylamide gel and its sequence determined.
また、 TSGを用いて、 該 TSGに結合するポリペプチドを単離する方法としては、 例えば、 Skolnikらの方法 (Skolnik, E. Y. et al. , Cell (1991) 65, 83 - 90) を用いて行うことができる。 すなわち、 TSGと結合するポリぺプチドを発現して いることが予想される細胞、 a織よりファージベクター ( gtii, ZAPなど) を 用いた cDNAライブラリーを作製し、 これを LB-ァガロース上で発現させフィル ターに発現させたポリペプチドを固定し、 精製して標識した TSGと上記フィルタ 一とを反応させ、 TSGと結合したポリペプチドを発現するプラークを標識により 検出すればよい。 TSGを標識する方法としては、 ビォチンとアビジンの結合性を 利用する方法、 TSG又は TSGに融合したポリペプチド (例えば GSTなど) に特異 的に結合する抗体を利用する方法、 ラジオアイソトープを利用する方法又は蛍光 を利用する方法等が挙げられる。  As a method for isolating a polypeptide binding to the TSG using TSG, for example, the method of Skolnik et al. (Skolnik, EY et al., Cell (1991) 65, 83-90) is used. be able to. In other words, a cDNA library using a phage vector (gtii, ZAP, etc.) was prepared from a cell, which is expected to express a polypeptide that binds to TSG, and expressed on LB-agarose. Then, the expressed polypeptide is immobilized on the filter, the purified and labeled TSG is allowed to react with the above filter, and the plaque expressing the polypeptide bound to the TSG may be detected by the label. Methods for labeling TSG include a method using the binding property of biotin and avidin, a method using an antibody that specifically binds to TSG or a polypeptide fused to TSG (eg, GST), a method using a radioisotope Alternatively, a method utilizing fluorescence and the like can be mentioned.
また、 本発明のスクリ一ユング方法の第一の態様としては、 細胞を用いた 2- ノヽィプリッドシステム (Fields, S. , and Sternglanz, R. , Trends. Genet. (199 4) 10, 286—292、 Dalton S, and Treisman R (1992) Characterization of SAP - 1, a protein recruited by serum response factor to the c-fos serum respo nse element. Cell 68, 597-612、 「MATCHMARKER Two-Hybrid System] , 「Ma lian MATCHMAKER Two-Hybrid Assay Kit」 , MATCHMAKER One-Hybrid System] (いずれもクロンテック社製)、 rHybriZAP Two-Hybrid Vector System] (ストラ タジーン社製)) を用いて行う方法が挙げられる。 In addition, as a first embodiment of the screening method of the present invention, a 2-neoprid system using cells (Fields, S., and Sternglanz, R., Trends. Genet. (1994) 10, 286-292, Dalton S, and Treisman R (1992) Characterization of SAP- 1, a protein recruited by serum response factor to the c-fos serum response element.Cell 68, 597-612, "MATCHMARKER Two-Hybrid System", "Malian MATCHMAKER Two-Hybrid Assay Kit", MATCHMAKER One-Hybrid System (Both manufactured by Clontech) and rHybriZAP Two-Hybrid Vector System] (manufactured by Stratagene).
2 -ハイプリッドシステムにおいては、 TSGまたはその部分ペプチドを SRF DNA 結合領域または GAL4 DNA結合領域と融合させて酵母細胞の中で発現させ、 TSG と結合するポリぺプチドを発現していることが予想される細胞より、 VP16また は GAL4転写活性化領域と融合する形で発現するような cDNAライブラリ一を作製 し、 これを上記酵母細胞に導入し、 検出された陽性クローンからライブラリ一由 来 cDNAを単離する (酵母細胞内で TSGと結合するポリべプチドが発現すると、 両者の結合によりレポーター遣伝子が活性化され、 陽性のクローンが確認でき る) 。 単離した cDNAを大腸菌に導入して発現させることにより、 該 cDNAがコー ドするポリぺプチドを得ることができる。 これにより TSGに結合するポリべプチ ドまたはその遗伝子を調製することが可能である。  In the 2-hybrid system, TSG or its partial peptide is fused with SRF DNA binding region or GAL4 DNA binding region and expressed in yeast cells, and it is expected that polypeptide that binds to TSG is expressed. A cDNA library that is expressed in a form fused with the VP16 or GAL4 transcriptional activation region is prepared from the cells to be transfected, and this is introduced into the yeast cells, and cDNA derived from the library is extracted from the positive clones detected. Isolate (When the polypeptide that binds to TSG is expressed in the yeast cells, the binding of both activates the reporter gene, and a positive clone can be confirmed). By introducing the isolated cDNA into Escherichia coli for expression, a polypeptide encoded by the cDNA can be obtained. This makes it possible to prepare a polypeptide or a gene thereof that binds to TSG.
2 -ハイプリッドシステムにおいて用いられるレポーター遺伝子としては、 例え ば、 HIS3遺伝子の他、 Ade2遗伝子、 LacZ遺伝子、 CAT遺伝子、 ルシフェラーゼ 遺伝子、 PAI-1 (Plasminogen activator inhibitor typel) 遺伝子等カ挙げられ るが、 これらに制限されない。 2ハイプリッド法によるスクリーニングは、 酵母 の他、 哺乳動物細胞などを使って行うこともできる。  Reporter genes used in the 2-hybrid system include, for example, HIS3 gene, Ade2 gene, LacZ gene, CAT gene, luciferase gene, PAI-1 (Plasminogen activator inhibitor typel) gene, etc. However, it is not limited to these. (2) Screening by the hybrid method can be performed using mammalian cells in addition to yeast cells.
TSGと結合する化合物のスクリーユングは、 ァフィ二ティクロマトグラフィー を用いて行うこともできる。 例えば、 TSGをァフィ二ティ一カラムの担体に固定 し、 ここに TSGと結合するポリペプチドを発現していることが予想される被検化 合物を適用する。 この場合の被検化合物としては、 例えば細胞抽出物、 細胞溶解 物等が挙げられる。 被検化合物を適用した後、 カラムを洗浄し、 TSGに結合した ポリぺプチドを調製することができる。 得られたポリペプチドは、 そのアミノ酸配列を分析し、 それを基にオリゴ DNA を合成し、 該 DNAをプローブとして cDNAライブラリーをスクリーニングするこ とにより、 該ポリぺプチドをコ一ドする DNAを得ることができる。 Screening of a compound that binds to TSG can also be performed using affinity chromatography. For example, TSG is immobilized on a carrier of an affinity column, and a test compound expected to express a polypeptide that binds to TSG is applied here. In this case, examples of the test compound include a cell extract, a cell lysate, and the like. After applying the test compound, the column can be washed to prepare a polypeptide bound to TSG. The obtained polypeptide is analyzed for its amino acid sequence, an oligo DNA is synthesized based on the amino acid sequence, and a cDNA library is screened using the DNA as a probe to obtain a DNA encoding the polypeptide. Obtainable.
また、 ポリペプチドに限らず、 TSG に結合する化合物を単離する方法としては、 例えば、 固定した TSGに、 合成化合物、 天然物パンク、 もしくはランダムファー ジぺプチドディスプレイライブラリ一を作用させ、 TSGに結合する分子をスクリ 一二ングする方法や、 コンビナトリアルケミストリー技術によるハイスループッ トを用いたスクリーユング方法 (Wrighton NC ; Farrell FX ; Chang R; Kashyap AK ; Barbone FP ; Mulcahy LS ; Johnson DL ; Barrett RW; Jolliffe LK; Dower W J. , Small pepti des as potent mimetics of the protein hormone erythropoie tin, Science (UNITED STATES) Jul 26 1996, 273 p458 - 64、 Verdine GL. , The combinatorial chemi stry of nature. Nature (ENGLAND) Nov 7 1996, 384 pll - 13、 Hogan JC Jr. , Directed combinatorial chemistry. Nature (ENGLAND) Nov 7 1996, 384 pl7- 9) が当業者に公知である。  Methods for isolating compounds that bind to TSGs, not limited to polypeptides, include, for example, reacting a synthetic compound, a natural product puncture, or a random phage peptide display library with immobilized TSG, A method for screening binding molecules and a screening method using high throughput by combinatorial chemistry technology (Wrighton NC; Farrell FX; Chang R; Kashyap AK; Barbone FP; Mulcahy LS; Johnson DL; Barrett RW; Jolliffe LK; Dower W J., Small pepti des as potent mimetics of the protein hormone erythropoie tin, Science (UNITED STATES) Jul 26 1996, 273 p458-64, Verdine GL., The combinatorial chemi stry of nature.Nature (ENGLAND) Nov 7 1996, 384 pll-13, Hogan JC Jr., Directed combinatorial chemistry. Nature (ENGLAND) Nov 7 1996, 384 pl7-9) are known to those skilled in the art.
本紫明において、 結合した化合物を検出又は測定する手段として表面プラズモ ン共嗚現象を利用したバイオセンサーを使用することもできる。 表面プラズモン 共鳴現象を利用したバイオセンサーは、 TSGと被検化合物との間の相互作用を微 量のポリぺプチドを用いてかつ標識することなく、 表面プラズモン共鳴シグナル としてリアルタイムに観察することが可能である (例えば BIAcore、 Pharmacia 製) 。  In the present invention, a biosensor utilizing surface plasmon resonance can be used as a means for detecting or measuring the bound compound. Biosensors using the surface plasmon resonance phenomenon enable real-time observation of the interaction between the TSG and the test compound as a surface plasmon resonance signal using a small amount of polypeptide and without labeling (Eg, BIAcore, manufactured by Pharmacia).
また、 本発明におけるスクリーニング方法の第二の態様は、 TSGの機能を代替 する化合物のスクリーニングに関するものである。 第二の態様としては、 まず、 被検化合物を本発明の遺伝子改変非ヒト哺乳動物に投与する。 本発明の遺伝子改 変非ヒト哺乳動物への被検化合物の投与は、 例えば、 経口的または非経口的に行 うことができるが、 それらに限定されない。 被検化合物がタンパク質である場合 には、 例えば、 該タンパク質をコードする遺伝子を有するウィルスベクターを構 築し、 その感染力を利用して、 本発明の遺伝子改変非ヒト哺乳動物に該遺伝子を 導入することも可能である。 第二の態様としては、 次いで、 被検化合物が TSGの 機能を代替している力否かを判定する。 次いで、 被検化合物を投与していない場 合と比較して、 TSGの機能を代替する化合物を選択する。 The second aspect of the screening method of the present invention relates to screening for a compound that substitutes for the function of TSG. In a second embodiment, first, a test compound is administered to the genetically modified non-human mammal of the present invention. Administration of the test compound to the genetically modified non-human mammal of the present invention can be performed, for example, orally or parenterally, but is not limited thereto. When the test compound is a protein, for example, a virus vector having a gene encoding the protein is used. The gene can also be introduced into the genetically modified non-human mammal of the present invention by utilizing the infectivity of the gene. In the second embodiment, it is then determined whether or not the test compound has the ability to substitute for the function of TSG. Next, a compound that substitutes for the function of TSG is selected as compared with the case where the test compound is not administered.
例えば以下のような場合に、 被検化合物が TSGの機能を代替しているものと判 定される。 鼻肛長 (鼻と肛門の距離) をノギス等により測定し、 被検化合物を投 与した遺伝子改変非ヒト動物の体長が投与しないものに比べて長い場合、 末梢血 中の白血球数を Sysmexにより計測し、 別途作成したメイ ·ギムザ染色を施した 末梢血の塗抹標本を顕微鏡下に観察して白血球百分比を算出、 両者を掛け合わせ てリンパ球数を算出し、 被検化合物を投与した遣伝子改変非ヒト動物の末梢血中 リンパ球が投与しないものに比べて多い場合、 非ヒト動物を安楽死後、 胸腺また は脾臓を摘出して天秤にて重量を測定し、 被検化合物を投与した遺伝子改変非ヒ ト動物の胸腺または脾臓重量が投与しないものに比べて重!/、場合等である。  For example, in the following cases, it is determined that the test compound substitutes for the function of TSG. The length of the anal nose (distance between the nose and anus) is measured with a vernier caliper or the like. The white blood cell smear, which was measured and separately prepared and subjected to May-Giemsa staining, was observed under a microscope to calculate the leukocyte percentage, and the two were multiplied to calculate the lymphocyte count, and the test compound was administered. If the lymphocytes in the peripheral blood of the offspring modified non-human animal were higher than those without administration, the non-human animal was euthanized, the thymus or spleen was removed, the weight was measured using a balance, and the test compound was administered. The weight of the thymus or spleen of the genetically modified non-human animal is heavier than that of the non-administered animal.
本発明におけるスクリーニング方法の第三の態様は、 TSGの活性を上昇させる 化合物のスクリーニングに関するものである。 第三の態様としては、 まず、 被検 化合物を TSGに接触させる。 第三の態様に用いられる TSGの状態としては、 特に 制限はなく、 例えば、 精製された状態、 細胞内に発現した状態、 細胞抽出液内に 発現した状態などであってもよい。  The third aspect of the screening method of the present invention relates to screening for a compound that increases the activity of TSG. In a third embodiment, first, a test compound is brought into contact with TSG. The TSG state used in the third embodiment is not particularly limited, and may be, for example, a purified state, a state expressed in a cell, a state expressed in a cell extract, and the like.
TSGの精製は周知の方法で行うことができる (羊土社 タンパク質実験ノ一ト 下 一次構造の決定まで 10-13 頁) 。 また、 TSGが発現している細胞として は、 内在性の TSGを発現している細胞、 または外来性の TSGを発現している細胞 が挙げられる。 上記内在性の TSGを発現している細胞としては、 培養細胞などを 挙げることができるが、 これに限定されるものではない。  The purification of TSG can be carried out by a well-known method (until determination of the primary structure under Protein Experiment Note, pages 10-13). Cells expressing TSG include cells expressing endogenous TSG or cells expressing exogenous TSG. Cells expressing the endogenous TSG include, but are not limited to, cultured cells.
また、 上記外来性の TSGを発現している細胞は、 例えば、 TSGをコードする DN Aを含むベクターを細胞に導入することで作製できる。 ベクターの細胞への導入 は、 当業者に一般的な方法によって実施することができる。 また、 上記外来性の TSGを有する細胞は、 例えば、 TSGをコ一ドする DNAを、 相同組み換えを利用し た遺伝子導入法により、 染色体へ挿入することで作製することができる。 このよ うな外来性の TSGが導入される細胞が由来する生物種としては、 特に限定されず、 外来タンパク質を細胞内に発現させる技術が確立されている生物種であればよい。 また、 TSGが発現している細胞抽出液は、 例えば、 試験管内転写翻訳系に含ま れる細胞抽出液に、 TSGをコードする DNAを含むベクターを添カ卩したものを挙げ ることができる。 該試験管内転写翻訳系としては、 特に制限はなく、 市販の試験 管内転写翻訳キットなどを使用することが可能である。 The cells expressing the exogenous TSG can be prepared, for example, by introducing a vector containing DNA encoding TSG into the cells. Introduction of the vector into cells can be performed by a method common to those skilled in the art. In addition, Cells having TSG can be produced, for example, by inserting DNA encoding TSG into a chromosome by a gene transfer method utilizing homologous recombination. The species from which the cell into which such exogenous TSG is introduced is not particularly limited, and may be any species for which a technique for expressing a foreign protein in cells has been established. Examples of the cell extract in which TSG is expressed include, for example, those obtained by adding a vector containing DNA encoding TSG to a cell extract contained in an in vitro transcription / translation system. The in vitro transcription / translation system is not particularly limited, and a commercially available in vitro transcription / translation kit or the like can be used.
また、 本発明において 「接触」 は、 TSGの状態に応じて行う。 例えば、 TSGが 精製された状態であれば、 精製標品に被検化合物を添加することにより行うこと ができる。 また、 細胞内に発現した状態または細胞抽出液内に発現した状態であ れば、 それぞれ、 細胞の培養液または該細胞抽出液に被検化合物を添加すること により行うことができる。 被検化合物がタンパク質の場合には、 例えば、 該タン パク質をコードする DNAを含むベクターを、 TSGが発現している細胞へ導入する、 または該べクターを TSGが発現している細胞抽出液に添加することで行うことも 可能である。 また、 例えば、 酵母または動物細胞等を用いた 2ハイブリッド法を 利用することも可能である。  In the present invention, the “contact” is performed according to the state of the TSG. For example, when TSG is in a purified state, it can be carried out by adding a test compound to a purified sample. In addition, the expression can be carried out by adding a test compound to the cell culture or the cell extract, respectively, as long as it is expressed in the cell or in the cell extract. When the test compound is a protein, for example, a vector containing DNA encoding the protein is introduced into a cell expressing TSG, or the vector is extracted from a cell extract expressing TSG. It is also possible to carry out by adding the compound. Also, for example, a two-hybrid method using yeast or animal cells can be used.
第三の態様では、 次いで、 上記 TSGの活性を測定する。 TSGの活性の測定は、 例えば、 BMP - 4との結合能を指標にすることで行うことができる (Oelgeschlage r, M. et al., 2000. Nature 405 : 757-763) 。  In the third embodiment, the activity of the TSG is then measured. The activity of TSG can be measured, for example, by using the binding ability to BMP-4 as an index (Oelgeschlage, M. et al., 2000. Nature 405: 757-763).
第三の態様においては、 次いで、 被検化合物を投与していない場合と比較して、 該 TSGの活性を上昇させる化合物を選択する。  In the third embodiment, a compound that increases the activity of the TSG is then selected as compared to when the test compound is not administered.
本発明におけるスクリーニング方法の第四の態様は、 TSG遺伝子の発現レベル を上昇させる化合物のスクリーニングに関するものである。 第四の態様としては、 まず、 TSG遺伝子のプロモーター領域の下流にレポーター遺伝子が機能的に結合 した DNAを有する細胞または細胞抽出液を提供する。 ここで、 「機能的に結合し た」 とは、 TSG遺伝子のプロモーター領域に転写因子が結合することにより、 レ ポーター遺伝子の発現が誘導されるように、 TSG遺伝子のプロモーター領域とレ ポーター遺伝子とが結合していることをいう。 従って、 レポーター遺伝子が他の 遺伝子と結合しており、 他の遺伝子産物との融合タンパク質を形成する場合であ つても、 TSG遺伝子のプロモーター領域に転写因子が結合することによって、 該 融合タンパク質の発現が誘導されるものであれば、 上記 「機能的に結合した」 の 意に含まれる。 The fourth aspect of the screening method according to the present invention relates to screening for a compound that increases the expression level of a TSG gene. As a fourth embodiment, first, a cell or a cell extract having DNA in which a reporter gene is operably linked downstream of the promoter region of the TSG gene is provided. Here, "Functionally coupled "" Means that the promoter region of the TSG gene is linked to the reporter gene such that expression of the reporter gene is induced by binding of the transcription factor to the promoter region of the TSG gene. Therefore, even when the reporter gene is linked to another gene and forms a fusion protein with another gene product, the expression of the fusion protein is caused by binding of the transcription factor to the promoter region of the TSG gene. If it is induced, it is included in the meaning of the above “functionally linked”.
上記レポーター遺伝子としては、 その発現が検出可能なものであれば特に制限 されず、 例えば、 当業者において一般的に使用される CAT遺伝子、 lacZ遺伝子、 ルシフェラーゼ遺伝子、 -ダルクロニダーゼ遺伝子 (GUS) および GFP遺伝子等 を挙げることができる。 また、 上記レポーター遺伝子には、 TSGをコードする DN Aもまた含まれる。  The reporter gene is not particularly limited as long as its expression can be detected. For example, CAT gene, lacZ gene, luciferase gene, -dalcuronidase gene (GUS) and GFP gene commonly used in the art. And the like. The reporter gene also includes DNA encoding TSG.
第四の態様においては、 次いで、 上記細胞または上記細胞抽出液に被検化合狗 を接触させる。 次いで、 該細胞または該細胞抽出液における上記レポーター遺伝 子の発現レベルを測定する。 レポーター遺伝子の発現レベルは、 使用するレポ一 ター遺伝子の種類に応じて、 当業者に公知の方法により測定することができる。 例えば、 レポーター遺伝子が CAT遺伝子である場合には、 該遺伝子産物によるク 口ラムフエェコールのァセチル化を検出することによって、 レポーター遺伝子の 発現レベルを測定することができる。 レポーター遺伝子が lacZ遗伝子である場 合には、 該遺伝子発現産物の触媒作用による色素化合物の発色を検出することに より、 また、 ルシフェラーゼ遺伝子である場合には、 該遺伝子発現産物の触媒作 用による蛍光化合物の蛍光を検出することにより、 また、 -グルクロニダーゼ 遺伝子 (GUS) である場合には、 該遺伝子発現産物の触媒作用による Glucuron (IC 社) の発光や 5 -プ口モ- 4-クロ口 -3 -ィンドリル- /3 -グルクロニド (X- Glu c) の発色を検出することにより、 さらに、 GFP遺伝子である場合には、 GFPタン パク質による蛍光を検出することにより、 レポーター遺伝子の発現レベルを測定 することができる。 In the fourth embodiment, a test compound is then brought into contact with the cells or the cell extract. Next, the expression level of the reporter gene in the cell or the cell extract is measured. The expression level of the reporter gene can be measured by a method known to those skilled in the art, depending on the type of the reporter gene used. For example, when the reporter gene is a CAT gene, the expression level of the reporter gene can be measured by detecting the acetylation of kuram ramuechol by the gene product. When the reporter gene is the lacZ 遗 gene, the coloration of the dye compound by the catalytic action of the gene expression product is detected, and when the reporter gene is the luciferase gene, the catalytic activity of the gene expression product is detected. In the case of a glucuronidase gene (GUS), the luminescence of Glucuron (IC) by the catalytic action of the gene expression product, By detecting the color development of Cloguchi-3-indrill- / 3-glucuronide (X-Gluc), and in the case of the GFP gene, by detecting the fluorescence from the GFP protein, the reporter gene Measure expression level can do.
また、 TSG遺伝子をレポーターとする場合、 該遺伝子の発現レベルの測定は、 当業者に公知の方法によって行うことができる。 例えば、 該遺伝子の mRNAを定 法に従って抽出し、 この mRNA を鎵型としたノーザンハイプリダイゼーシヨン法、 または RT-PCR法を実施することによって該遺伝子の転写レベルの測定を行うこ とができる。 さらに、 DNAアレイ技術を用いて、 該遺伝子の発現レベルを測定す ることも可能である。  When the TSG gene is used as a reporter, the expression level of the gene can be measured by a method known to those skilled in the art. For example, the transcription level of the gene can be measured by extracting the mRNA of the gene according to a standard method and performing a Northern hybridization method or RT-PCR method using the mRNA as a type II. . Furthermore, the expression level of the gene can be measured using DNA array technology.
また、 TSGを含む画分を定法に従って回収し、 該 TSGの発現を SDS-PAGE等の 電気泳動法で検出することにより、 遺伝子の翻訳レベルの測定を行うこともでき る。 また、 TSGに対する抗体を用いて、 ウェスタンプロッティング法などを実施 し、 該 TSGの発現を検出することにより、 遣伝子の翻訳レベルの測定を行うこと も可能である。  Further, the level of translation of the gene can be measured by collecting the fraction containing TSG according to a standard method and detecting the expression of TSG by electrophoresis such as SDS-PAGE. Further, it is also possible to measure the translation level of the gene by detecting the expression of the TSG by performing a Western plotting method or the like using an antibody against the TSG.
第四の態様においては、 次いで、 被検化合物を投与していない場合と比較して、 該レポータ一遺伝子の発現レベルを上昇させる化合物を選択する。  In the fourth embodiment, next, a compound that increases the expression level of the reporter gene is selected as compared with the case where the test compound is not administered.
本発明は、 TSG遺伝子の発現量を測定する工程を含む、 中胚葉に由来する組織 の発達不全を伴う疾患の検查方法を提供する。 ここで、 「TSG遺伝子の発現」 に は、 TSGmRMの発現だけでなく、 TSGの発現もまた含まれる。 該検查方法によつ て、 TSG遺伝子の発現が減少している場合に、 中胚葉に由来する組織の発達不全 を伴う疾患にすでに罹患していると判定される。  The present invention provides a method for detecting a disease associated with insufficient development of a mesodermal-derived tissue, which comprises a step of measuring the expression level of a TSG gene. Here, “TSG gene expression” includes not only TSGmRM expression but also TSG expression. When the expression of the TSG gene is decreased by the detection method, it is determined that the disease is accompanied by a disease accompanied by a failure in the development of a tissue derived from the mesoderm.
以下に、 本発明の検査方法の態様を例示するが、 本発明の検査方法はそれらに 限定されるものではない。 上記検査方法の一つの態様としては、 まず、 被検者の RNA試料を調製する。 RNA試料は、 例えば被検者の血液、 皮膚、 口腔粘膜、 毛髪、 手術により採取あるいは切除した組織または細胞から抽出することができる。 本方法においては、 次いで、 該 R A試料に含まれる TSGをコードする RNAの量 を測定する。 次いで、 測定された R Aの量を対照と比較する。 このような方法と しては、 ノーザンブロッテイング法、 DNAアレイ法、 または、 RT- PCR法等を例示 することができる。 Hereinafter, embodiments of the inspection method of the present invention will be exemplified, but the inspection method of the present invention is not limited thereto. In one embodiment of the above test method, first, an RNA sample of a subject is prepared. The RNA sample can be extracted, for example, from the subject's blood, skin, oral mucosa, hair, tissues or cells collected or excised by surgery. Next, in this method, the amount of RNA encoding TSG contained in the RA sample is measured. The measured amount of RA is then compared to a control. Examples of such a method include Northern blotting, DNA array, and RT-PCR. can do.
また、 上記検査方法は、 TSGの発現量を測定することにより、 下記の如く実施 することができる。 まず、 被検者からポリペプチド試料を調製する。 ポリべプチ ド試料は、 例えば被検者の血液、 皮膚、 口腔粘膜、 毛髪、 手術により採取あるい は切除した,祖織または細胞から調製することができる。  Further, the above test method can be carried out as follows by measuring the expression level of TSG. First, a polypeptide sample is prepared from a subject. Polypeptide samples can be prepared, for example, from the subject's blood, skin, oral mucosa, hair, surgically collected or excised dentin or cells.
本方法においては、 次いで、 該ポリペプチド試料に含まれる TSGの量を測定す る。 次いで、 測定された TSGの量を対照と比較する。 このような方法としては、 SDSポリアクリルアミド電気泳動法、 並びに TSGに結合する抗体を用いた、 ゥェ スタンプロッテイング法、 ドットプロッティング法、 免疫沈降法、 酵素結合免疫 測定法 (ELISA)、 および免疫蛍光法を例示することができる。  Next, in this method, the amount of TSG contained in the polypeptide sample is measured. The measured amount of TSG is then compared to a control. Examples of such methods include SDS polyacrylamide electrophoresis, stamp lotting, dot plotting, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA) using antibodies that bind to TSG, and An example is an immunofluorescence method.
また、 本発明は、 TSG遺伝子領域における変異を検出する工程を含む、 中胚葉 に由来する組織の発達不全を伴う疾患の検査方法を提供する。 該検査方法によつ て、 TSG遺伝子領域に変異が生じている場合に、 中胚葉に由来する組織の発達不 全を伴う疾患にすでに罹患していると判定される。  In addition, the present invention provides a method for testing a disease associated with insufficient development of a mesodermal tissue-derived tissue, comprising a step of detecting a mutation in a TSG gene region. When a mutation occurs in the TSG gene region according to the test method, it is determined that the patient is already suffering from a disease accompanied by insufficient development of a tissue derived from the mesoderm.
本 明において、 TSG遺伝子領域とは、 TSG遺伝子おょぴ該遺伝子の発現に影 響する領域を意味する。 該遺伝子の発現に影響する領域としては、 特に制限はな いが、 例えば、 プロモータ一領域などが例示できる。  In the present invention, the TSG gene region means a TSG gene or a region that affects the expression of the gene. There is no particular limitation on the region that affects the expression of the gene, and examples thereof include a promoter region.
また、 本発明における変異は、 細胞の増殖異常または分化異常を引き起こす変 異であれば、 その種類、 その数、 その部位などに制限はない。 上記変異の種類と しては、 例えば、 欠失、 置換または揷入変異などが挙げられる。  Further, the mutation in the present invention is not limited in its type, number, site, etc., so long as it is a mutation that causes abnormal growth or differentiation of cells. Examples of the type of the mutation include deletion, substitution, and insertion mutation.
以下、 TSG遺伝子領域に生じた変異を検出する工程を含む検查方法の好ましい 態様を記載するが、 本発明の方法はそれらの方法に限定されるものではない。 上記検查方法の好ましい態様においては、 まず、 被検者から DNA試料を調製す る。 DNA試料は、 例えば被検者の血液、 皮膚、 口腔粘膜、 毛髪、 手術により採取 あるいは切除した,袓織または細胞から抽出した染色体 DNA、 あるいは RNAを基に 調製することができる。 本方法においては、 次いで、 TSG遺伝子領域を含む DNA、を単離する。 該遺伝子 領域の単離は、 例えば、 該遺伝子領域を含む DNAにハイプリダイズするプライマ 一を用いて、 染色体 DNA、 あるいは RNAを铸型とした PCR等によって行うことが できる。 Hereinafter, preferred embodiments of the detection method including a step of detecting a mutation generated in the TSG gene region will be described, but the method of the present invention is not limited to these methods. In a preferred embodiment of the above detection method, first, a DNA sample is prepared from a subject. The DNA sample can be prepared based on, for example, chromosomal DNA or RNA extracted from tissue or cells collected or excised from the blood, skin, oral mucosa, hair, or surgery of the subject. In this method, DNA containing the TSG gene region is then isolated. The gene region can be isolated, for example, by using a primer that hybridizes to DNA containing the gene region and performing PCR using chromosomal DNA or RNA as a type II.
本方法においては、 次いで、 単離した DNAの塩基配列を決定する。 単離した D NAの塩基配列の決定は、 当業者に公知の方法で行うことができる。 .  Next, in this method, the base sequence of the isolated DNA is determined. The nucleotide sequence of the isolated DNA can be determined by a method known to those skilled in the art. .
本方法においては、 次いで、 決定した DNAの塩基配列を、 対照と比較する。 本 発明において、 対照とは、 正常な (野生型の) TSG遺伝子領域を含む DNAを言う。 一般に健常人の TSG遺伝子領域を含む DNAの配列は正常であるものと考えられる ことから、 上記 「対照と比較する」 とは、 通常、 健常人の TSG遺伝子領域を含む DNAの配列と比較することを意味する。  In this method, the determined DNA base sequence is then compared with a control. In the present invention, a control refers to a DNA containing a normal (wild-type) TSG gene region. Generally, the sequence of the DNA containing the TSG gene region of a healthy person is considered to be normal, so the above `` compare with control '' usually means comparing with the sequence of the DNA containing the TSG gene region of a healthy person. Means
本発明における変異の検出は、 以下のような方法によっても行うことができる。 まず、 被検者から DNA試料を調製する。 次いで、 調製した DNA試料を制限酵素に より切断する。 次いで、 DNA断片をその大きさに応じて分離する。 次いで、 検出 された DNA断片の大きさを、 対照と比較する。 また、 他の一つの態様においては、 まず、 被検者から DNA試料を調製する。 次いで、 TSG遺伝子領域を含む DNAを増 幅する。 さらに、 増幅した DNAを制限酵素により切断する。 次いで、 DNA断片を その大きさに応じて分離する。 次いで、 検出された DNA断片の大きさを、 対照と 比較する。  Detection of a mutation in the present invention can also be performed by the following method. First, a DNA sample is prepared from a subject. Next, the prepared DNA sample is cut with a restriction enzyme. Next, the DNA fragments are separated according to their size. The size of the detected DNA fragment is then compared to a control. In another embodiment, first, a DNA sample is prepared from a subject. Next, the DNA containing the TSG gene region is amplified. In addition, the amplified DNA is cut with a restriction enzyme. Next, the DNA fragments are separated according to their size. The size of the detected DNA fragment is then compared to a control.
このような方法としては、 例えば、 制限酵素断片長変異 (Restriction Fragme nt Length Polymorphism/RFLP) を利用した方法や PCR - RFLP法等が挙げられる。 具体的には、 制限酵素の認識部位に変異が存在する場合、 あるいは制限酵素処理 によって生じる DNA断片内に塩基揷入または欠失がある場合、 制限酵素処理後に 生じる断片の大きさが対照と比較して変化する。 この変異を含む部分を PCR法に よって増幅し、 それぞれの制限酵素で処理することによって、 これらの変異を電 気泳動後のパンドの移動度の差として検出することができる。 あるいは、 染色体 DMをこれらの制限酵素によって処理し、 電気泳動した後、 本発明のプローブ DN Aを用いてサザンブロッテイングを行うことにより、 変異の有無を検出すること ができる。 用いられる制限酵素は、 それぞれの変異に応じて適宜選択することが できる。 この方法では、 ゲノム DNA以外にも被検者から調製した RNAを逆転写酵 素で cDNAにし、 これをそのまま制限酵素で切断した後、 サザンプロッティング を行うことも可能である。 また、 この cDNAを錶型として PCRで TSG遺伝子領域 を含む DNAを増幅し、 それを制限酵素で切断した後、 移動度の差を調べることも 可能である。 Examples of such a method include a method using restriction fragment length polymorphism (RFLP) and a PCR-RFLP method. Specifically, when there is a mutation in the recognition site of the restriction enzyme, or when there is a base insertion or deletion in the DNA fragment generated by the restriction enzyme treatment, the size of the fragment generated after the restriction enzyme treatment is compared with that of the control. And change. By amplifying the portion containing this mutation by PCR and treating it with each restriction enzyme, these mutations can be detected as a difference in band mobility after electrophoresis. Or chromosome After treating DM with these restriction enzymes, electrophoresis, and performing Southern blotting using the probe DNA of the present invention, the presence or absence of the mutation can be detected. The restriction enzyme to be used can be appropriately selected according to each mutation. In this method, in addition to genomic DNA, RNA prepared from a subject can be converted into cDNA with a reverse transcriptase, and this can be directly cut with a restriction enzyme, followed by Southern plotting. It is also possible to amplify the DNA containing the TSG gene region by PCR using this cDNA as type I, cut it with restriction enzymes, and then examine the difference in mobility.
さらに別の方法においては、 まず、 被検者から DNA試料を調製する。 次いで、 TSG遺伝子領域を含む DNAを増幅する。 さらに、 増幅した DNAを一本鎖 DNAに解 離させる。 次いで、 解離させた一本鎖 DNAを非変性ゲル上で分離する。 分離した 一本鎖 DNAのゲル上での移動度を対照と比較する。  In yet another method, a DNA sample is first prepared from a subject. Next, DNA containing the TSG gene region is amplified. Furthermore, the amplified DNA is dissociated into single-stranded DNA. Next, the dissociated single-stranded DNA is separated on a nondenaturing gel. Compare the mobility of the separated single-stranded DNA on the gel with the control.
方法としては、 例 ば FCR-SSCP (single-strand conformation polymorphi s m、 一本 尚次構造変異)法 (Cloning and polymerase cnain reaction - single - st rand conformation polymorphism analysis of anonymous Alu repeats on chro mo some 11. Genomics. 1992 Jan 1; 12 (1) : 139-146.、 Detection of p53 gene mutations in human brain tumors by single-strand conformation polymorphi sm analysis of polymerase chain reaction products. Oncogene. 1991 Aug 1; 6 (8): 1313-1318.、 Multiple fluorescence-based PCR - SSCP analysis with po stlabeling. 、 PCR Methods Appl. 1995 Apr 1; 4 (5): 275 - 282. )が挙げられる。 この方法は操作が比較的簡便であり、 また被検試料の量も少なくて済む等の利点 を有するため、 特に多数の DNA試料をスクリーニングするのに好適である。 その 原理は次の通りである。 二本鎖 DNA断片を一本鎖に解離すると、 各鎖はその塩基 配列に依存した独自の高次構造を形成する。 この解離した DNA鎖を、 変性剤を含 まないポリアクリルアミドゲル中で電気泳動すると、 それぞれの高次構造の差に 応じて、 相補的な同じ鎖長の一本鎖 DNAが異なる位置に移動する。 一塩基の置換 によってもこの一本鎖 DNAの高次構造は変化し、 ポリアクリルアミドゲル電気泳 動において異なる移動度を示す。 従って、 この移動度の変化を検出することによ り DNA断片に点突然変異や欠失、 あるいは挿入等による変異の存在を検出するこ とができる。 Examples of the method include the FCR-SSCP (Single-strand conformation polymorphism) method (Cloning and polymerase cnain reaction-single-st rand conformation polymorphism analysis of anonymous Alu repeats on chro mo some 11.Genomics 1992 Jan 1; 12 (1): 139-146., Detection of p53 gene mutations in human brain tumors by single-strand conformation polymorphism analysis of polymerase chain reaction products.Oncogene. 1991 Aug 1; 6 (8): 1313 -1318., Multiple fluorescence-based PCR-SSCP analysis with post labeling., PCR Methods Appl. 1995 Apr 1; 4 (5): 275-282.). This method has advantages such as relatively simple operation and small amount of test sample, and is particularly suitable for screening a large number of DNA samples. The principle is as follows. When a double-stranded DNA fragment is dissociated into single strands, each strand forms a unique higher-order structure depending on its base sequence. When the dissociated DNA strand is electrophoresed in a polyacrylamide gel containing no denaturing agent, the single-stranded DNA of the same complementary length moves to a different position according to the difference in each higher-order structure. . Single base substitution The higher-order structure of this single-stranded DNA also changes, and shows different mobility in polyacrylamide gel electrophoresis. Therefore, by detecting this change in mobility, the presence of a mutation due to point mutation, deletion, insertion or the like in the DNA fragment can be detected.
具体的には、 まず、 TSG遺伝子領域を含む DNAを PCR法等によって増幅する。 増幅される範囲としては、 通常 200〜400bp程度の長さが好ましい。 PCRは、 当 業者においては反応条件等を適宜選択して行うことができる。 PCRの際に、 32P 等のアイソトープ、 蛍光色素、 またはビォチン等によって標識したプライマーを 用いることにより、 増幅 DNA産物を標識することができる。 あるいは PCR反応液 に32 P等のアイソトープ、 蛍光色素、 またはピオチン等によって標識された基質 塩基を加えて PCRを行うことにより、 増幅 DM産物を標識することも可能である。 さらに、 PCR反応後にクレノウ酵素等を用いて、 32P等のアイソトープ、 蛍光色 素、 またはピオチン等によって標識された基質塩基を、 増幅 DNA断片に付加する ことによつても標識を行うことができる。 こうして得られた標識 DNA断片を、 熱 を加えること等により変性させ、 尿素などの変性剤を含まないポリアクリルァミ ドゲルによって電気泳動を行う。 この際、 ポリアクリルアミドゲルに適量 (5力 ら 10%程度) のグリセ口ールを添加することにより、 DNA断片の分離の条件を改 善することができる。 また、 泳動条件は各 DNA断片の性質により変動するが、 通 常、 室温 (20から 25°C) で行い、 好ましい分離が得られないときには 4から 3 0°Cまでの温度で最適の移動度を与える温度の検討を行う。 電気泳動後、 DNA断 片の移動度を、 X線フィルムを用いたオートラジオグラフィーや、 蛍光を検出す るスキャナ一等で検出し、 解析を行う。 移動度に差があるパンドが検出された場 合、 このパンドを直接ゲルから切り出し、 PCRによって再度増幅し、 それを直接 シークェンシングすることにより、 変異の存在を確認することができる。 また、 標識した DNAを使わない場合においても、 電気泳動後のゲルをェチジゥムブロマ ィドゃ銀染色法などによって染色することによって、 パンドを検出することがで さる。 Specifically, first, DNA containing the TSG gene region is amplified by PCR or the like. As a range to be amplified, usually, a length of about 200 to 400 bp is preferable. PCR can be performed by those skilled in the art by appropriately selecting reaction conditions and the like. During PCR, the amplified DNA product can be labeled by using a primer labeled with an isotope such as 32 P, a fluorescent dye, or biotin. Alternatively, the amplified DM product can be labeled by adding PCR to a PCR reaction solution and adding a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin. Furthermore, labeling can also be performed by adding a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin to the amplified DNA fragment using Klenow enzyme or the like after the PCR reaction. . The labeled DNA fragment thus obtained is denatured by applying heat or the like, and electrophoresis is carried out using a polyacrylamide gel containing no denaturing agent such as urea. At this time, by adding an appropriate amount (about 5% to 10%) of glycerol to the polyacrylamide gel, the conditions for separating DNA fragments can be improved. In addition, electrophoresis conditions vary depending on the properties of each DNA fragment, but are usually performed at room temperature (20 to 25 ° C). If favorable separation cannot be obtained, the optimal mobility is used at a temperature of 4 to 30 ° C. Consider the temperature that gives After electrophoresis, the mobility of DNA fragments is detected and analyzed by autoradiography using an X-ray film or a scanner that detects fluorescence. If a band with a difference in mobility is detected, the band can be directly excised from the gel, re-amplified by PCR, and directly sequenced to confirm the presence of the mutation. Even when labeled DNA is not used, band can be detected by staining the gel after electrophoresis with ethidium bromide silver staining. Monkey
さらに別の方法においては、 まず、 被検者から DNA試料を調製する。 次いで、 TSG遺伝子領域を含む DNAを増幅する。 さらに、 増幅した DNAを、 DNA変性剤の 濃度が次第に高まるゲル上で分離する。 次いで、 分離した DNAのゲル上での移動 度を対照と比較する。  In yet another method, a DNA sample is first prepared from a subject. Next, DNA containing the TSG gene region is amplified. In addition, the amplified DNA is separated on a gel with increasing concentrations of DNA denaturant. The mobility of the separated DNA on the gel is then compared to a control.
このような方法としては、 例えば、 変性剤濃度勾配ゲル (denatmrant gradien t gel electrophoresis: DGGE法) 等を例示することができる。 DGGE法は、 変 性剤の濃度勾配のあるポリアクリルアミドゲル中で、 DNA断片の混合物を泳動し、 それぞれの不安定性の違いによって DNA断片を分離する方法である。 ミスマッチ のある不安定な DNA断片が、 ゲル中のある変性剤濃度の部分まで移動すると、 ミ スマッチ周辺の DNA配列はその不安定さのために、 部分的に 1本鎖へと解離する。 この部分的に解離した DNA断片の移動度は、 非常に遅くなり、 解離部分のない完 全な二本鎖 DNAの移動度と差がつくことから、 両者を分離することができる。 具 体的には、 TSG遺伝子領域を含む DNAを本発明のプライマー等を用いた PCR法等 によつて増幅し、 これを尿素などの変性剤の濃度が移動するに従つて徐々に高く なっているポリアクリルアミドゲル中で電気泳動し、 対照と比較する。 変異が存 在する DNA断片の場合、 より低い変性剤濃度位置で DM断片が一本鎖になり、 極 端に移動速度が遅くなるため、 この移動度の差を検出することにより変異の有無 を検出することができる。  Examples of such a method include a denaturant gradient gel electrophoresis (DGGE method) and the like. The DGGE method is a method in which a mixture of DNA fragments is electrophoresed in a polyacrylamide gel having a concentration gradient of a denaturing agent, and the DNA fragments are separated based on differences in their instabilities. When an unstable DNA fragment with a mismatch migrates to a certain denaturant concentration in the gel, the DNA sequence around the mismatch is partially dissociated into single strands due to the instability. The mobility of this partially dissociated DNA fragment becomes very slow, and the mobility of the completely dissociated double-stranded DNA without dissociated part is different from that of the partially dissociated DNA, so that the two can be separated. Specifically, DNA containing the TSG gene region is amplified by a PCR method using the primers of the present invention, etc., and gradually increases as the concentration of a denaturing agent such as urea moves. Perform electrophoresis in a polyacrylamide gel and compare to a control. In the case of a DNA fragment containing a mutation, the DM fragment becomes single-stranded at a lower denaturant concentration position, and the migration speed becomes extremely slow.Therefore, the presence or absence of the mutation can be determined by detecting this difference in mobility. Can be detected.
さらに別の方法においては、 まず、 被検者から調製した TSG遺伝子領域を含む DNA、 および、 該 DNAにハイプリダイズするヌクレオチドプローブが固定された 基板、 を提供する。  In still another method, first, a DNA containing a TSG gene region prepared from a subject and a substrate on which a nucleotide probe that hybridizes to the DNA is immobilized are provided.
本発明において 「基板」 とは、 ヌクレオチドプローブを固定することが可能な 板状の材料を意味する。 本発明においてヌクレオチドには、 オリゴヌクレオチド およびポリヌクレオチドが含まれる。 本発明の基板は、 ヌクレオチドプローブを 固定することができれば特に制限はないが、 一般に DNAァレイ技術で使用される 基板を好適に用いることができる。 一般に DNAアレイは、 高密度に基板にプリン トされた何千ものヌクレオチドで構成されている。 通常これらの DNAは非透過性 (non - porous)の基板の表層にプリントされる。 基板の表層は、 一般的にはガラ スであるが、 透過性 (porous)の膜、 例えばニトロセルロースメンプレムを使用す ることができる。 In the present invention, “substrate” means a plate-like material on which nucleotide probes can be immobilized. In the present invention, nucleotides include oligonucleotides and polynucleotides. The substrate of the present invention is not particularly limited as long as nucleotide probes can be immobilized, but is generally used in DNA array technology. A substrate can be suitably used. In general, DNA arrays are composed of thousands of nucleotides printed on a substrate at high density. Normally, these DNAs are printed on the surface of a non-porous substrate. The surface layer of the substrate is generally glass, but a permeable membrane such as a nitrocellulose membrane can be used.
本発明において、 ヌクレオチドの固定 (アレイ) 方法として、 Affymetrix社 開発によるオリゴヌクレオチドを基本としたアレイが例示できる。 才リゴヌクレ ォチドのアレイにおいて、 オリゴヌクレオチドは通常 in situで合成される。 例 えば、 photolithographicの技術 (Af fymetrix社) 、 および化学物質を固定させ るためのインクジェット (Rosetta Inpharmatics社)技術等によるオリゴヌクレ ォチドのィンサイチュ合成法が既に知られており、 V、ずれの技術も本発明の基板 の作製に利用することができる。  In the present invention, examples of the method for immobilizing (arraying) nucleotides include an oligonucleotide-based array developed by Affymetrix. In arrays of native oligonucleotides, oligonucleotides are usually synthesized in situ. For example, in situ synthesis of oligonucleotides using photolithographic technology (Affymetrix) and inkjet (Rosetta Inpharmatics) technology for immobilizing chemical substances is already known. It can be used for manufacturing the substrate of the invention.
基板に固定するヌクレオチドプローブは、 TSG遺伝子領域の変異を検出するこ とができるものであれば、 特に制限されない。 即ち該プローブは、 例えば、 TSG 遺伝子領域を含む DNAにハイプリダイズするようなプローブである。 特異的なハ イブリダィズが可能であれば、 ヌクレオチドプローブは、 該遺伝子領域を含む!) NAに対し、 完全に相補的である必要はない。 本発明において基板に結合させる ヌクレオチドプローブの長さは、 オリゴヌクレオチドを固定する場合は、 通常 1 0〜100bpであり、 好ましくは 10〜50bpであり、 さらに好ましくは 15〜25bpで ある。  The nucleotide probe immobilized on the substrate is not particularly limited as long as it can detect a mutation in the TSG gene region. That is, the probe is, for example, a probe that hybridizes to DNA containing the TSG gene region. If specific hybridization is possible, the nucleotide probe will contain the gene region! It does not need to be completely complementary to NA. In the present invention, the length of the nucleotide probe to be bound to the substrate when the oligonucleotide is immobilized is usually 10 to 100 bp, preferably 10 to 50 bp, and more preferably 15 to 25 bp.
本方法においては、 次いで、 該 TSG遺伝子領域を含む DNAと該基板を接触させ る。 この過程により、 上記ヌクレオチドプローブに対し、 DNAをハイプリダイズ させる。 ハイプリダイゼーシヨンの反応液おょぴ反応条件は、 基板に固定するヌ クレオチドプロ一ブの長さ等の諸要因により変動しうるが、 一般的に当業者に周 知の方法により行うことができる。  Next, in the present method, the DNA containing the TSG gene region is brought into contact with the substrate. By this process, DNA is hybridized to the nucleotide probe. The reaction conditions of the hybridization reaction solution can vary depending on various factors such as the length of the nucleotide probe immobilized on the substrate, but it is generally performed by a method known to those skilled in the art. it can.
本方法においては、 次いで、 該 TSG遺伝子領域を含む DNAと該基板に固定され たヌクレオチドプローブとのハイブリダィズの強度を検出する。 この検出は、 例 えば、 蛍光シグナルをスキャナ一等によって読み取ることによって行うことがで きる。 尚、 DNAアレイにおいては、 一般的にスライドガラスに固定した DNAをプ ローブといい、 一方溶液中のラベルした DNAをターゲットという。 従って、 基板 に固定された上記ヌクレオチドを、 本明細書においてヌクレオチドプローブと記 载する。 本方法においては、 さらに、 検出したハイプリダイズの強度を対照と比 較する。 In the present method, the DNA containing the TSG gene region is then immobilized on the substrate. The intensity of the hybridization with the nucleotide probe is detected. This detection can be performed, for example, by reading the fluorescent signal with a scanner or the like. In DNA arrays, DNA fixed on a slide glass is generally called a probe, while labeled DNA in a solution is called a target. Therefore, the above nucleotide immobilized on the substrate is referred to herein as a nucleotide probe. In the present method, the detected intensity of the hybridized soybean is further compared with a control.
このような方法としては、 例えば、 DMアレイ法 (SNP遺伝子変異の戦略、 松 原謙一 ·榊佳之、 中山書店、 ?128-135, Nature Genetics (1999) 22: 164-167) 等 が挙げられる。  Examples of such a method include the DM array method (SNP gene mutation strategy, Kenichi Matsubara and Yoshiyuki Sakaki, Nakayama Shoten, 128-135, Nature Genetics (1999) 22: 164-167).
上記の方法以外にも、 特定位置の変異のみを検出する目的にはァレル特異的ォ リゴヌクレオチド (Allele Specific 01 i gonucleot i de ASO) ハイプリダイゼー シヨン法が利用できる。 変異が存在すると考えられる塩基配列を含むォリゴヌク レオチドを作製し、 これと DNAでハイブリダイゼーションを行わせると、 変異が 存在する場合、 ハイプリッド形成の効率が低下する。 それをサザンプロ、yト法や、 特殊な蛍光試薬がハイプリッドのギヤップにィンターカレーシヨンすることによ り消光する性質を利用した方法等により検出することができる。  In addition to the above method, the Allele Specific 01 iigonucleotide ASO hybridization method can be used for the purpose of detecting only a mutation at a specific position. When an oligonucleotide containing a nucleotide sequence that is considered to have a mutation is prepared and hybridized with DNA, the efficiency of hybrid formation is reduced in the presence of the mutation. This can be detected by the Southern prototyping method, a method utilizing the property of quenching by intercalating a special fluorescent reagent into a hybrid gap, or the like.
また、 本発明においては、 MALDI- T0F/MS法 (S P遺伝子多型の戦略、 松原謙 一。榊佳之、 中山書店、 pl06- 117、 Trends Biotechnol (2000): 18 : 77- 84)、 TaqM an PCR法 (SNP遺伝子多型の戦略、 松原謙一 ·榊佳之、 中山書店、 p94- 105、 Gen et Anal. (1999) 14: 143-149) 、 Invader法 (SNP遺伝子多型の戦略、 松原謙一 · 榊佳之、 中山書店、 p94- 105、 Genome Research (2000) 10: 330-343) 、 Pyroseque ncing法 (Anal. Biochem. (2000) 10 : 103-110) 、 AcycloPrime法 (Genome Resea rch (1999) 9 :492-498) 、 SNuPE ¾ (Rapid Vommun Mass Spectrom. (2000) 14: 95 0 - 959)等も使用することができる。  Further, in the present invention, the MALDI-TOF / MS method (SP gene polymorphism strategy, Kenichi Matsubara; Yoshiyuki Sakaki, Nakayama Shoten, pl06-117, Trends Biotechnol (2000): 18: 77-84), TaqMan PCR method (SNP genetic polymorphism strategy, Kenichi Matsubara · Yoshiyuki Sakaki, Nakayama Shoten, p94-105, Gen et Anal. (1999) 14: 143-149), Invader method (SNP genetic polymorphism strategy, Kenichi Matsubara · Yoshiyuki Sakaki, Nakayama Shoten, p94-105, Genome Research (2000) 10: 330-343), Pyrosequencing method (Anal. Biochem. (2000) 10: 103-110), AcycloPrime method (Genome Research (1999) 9) : 492-498), SNuPE¾ (Rapid Vommun Mass Spectrom. (2000) 14: 950-959) and the like can also be used.
さらに、 本発明は、 本発明の検査方法に'使用するための検査薬を提供する。 そ の一つの態様としては、 TSG遺伝子領域にハイブリダイズし、 少なくとも 15ヌ クレオチドの鎖長を有するオリゴヌクレオチドを含む検査薬である。 ここで、 ォ リゴヌクレオチドには、 ポリヌクレオチドが含まれる。 Further, the present invention provides a test agent for use in the test method of the present invention. So In one embodiment, the test agent hybridizes to the TSG gene region and contains an oligonucleotide having a chain length of at least 15 nucleotides. Here, the term “oligonucleotide” includes a polynucleotide.
該ォリゴヌクレオチドは、 TSG遺伝子領域を含む DNA (正常型 DNAまたは変異 型 DNA) に特異的にハイプリダイズするものである。 ここで 「特異的にハイプリ ダイズする」 とは、 通常のハイプリダイゼーシヨン条件下、 好ましくはストリン ジェントなハイブリダイゼーション条件下 (例えば、 サムプルックら, Molecular Cloning, Cold Spring Harbour Laboratory Press, New York, US A,第 2 jR丄 989【こ 記載の条件) において、 他のタンパク質をコードする DNAとクロスハイプリダイ ゼーションを有意に生じないことを意味する。 特異的なハイブリダイズが可能で あれば、 該オリゴヌクレオチドは、 TSG遗伝子領域を含む DNAに対し、 完全に相 補的である必要はない。  The oligonucleotide specifically hybridizes to DNA (normal DNA or mutant DNA) containing the TSG gene region. As used herein, the term “specifically hybridizes” refers to ordinary hybridization conditions, preferably to stringent hybridization conditions (eg, Sampluck et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, New York, US A, 2nd jR 丄 989 (conditions described here) means that cross-hybridization does not significantly occur with DNA encoding other proteins. The oligonucleotide need not be completely complementary to the DNA containing the TSG gene region, as long as specific hybridization is possible.
TSG遺伝子領域を含む DNAにハイプリダイズし、 少なくとも 15ヌクレオチド の鎖長を有するオリゴヌクレオチドは、 上記本発明の検査方法におけるプローブ (該プローブが固定された基板を含む) やプライマーとして用いることができる。 該ォリゴヌクレオチドをプライマーとして用いる場合、 その長さは、 通常 15bp 〜100bpであり、 好ましくは 17bp〜30bpである。 プライマーは変異部分を含む T SG遺伝子領域の少なくとも一部を増幅しうるものであれば、 特に制限されない。 また、 上記オリゴヌクレオチドをプローブとして使用する場合、 該プローブは、 TSG遺伝子領域を含む DNAに特異的にハイブリダイズするものであれば、 特に制 限されない。 該プローブは、 合成オリゴヌクレオチドであってもよく、 通常少な くとも 15bp以上の鎖長を有する。  Oligonucleotides that hybridize to DNA containing the TSG gene region and have a chain length of at least 15 nucleotides can be used as probes (including substrates on which the probes are immobilized) and primers in the above-described test method of the present invention. When the oligonucleotide is used as a primer, its length is usually 15 bp to 100 bp, preferably 17 bp to 30 bp. The primer is not particularly limited as long as it can amplify at least a part of the TSG gene region including the mutated portion. When the above oligonucleotide is used as a probe, the probe is not particularly limited as long as it specifically hybridizes to DNA containing the TSG gene region. The probe may be a synthetic oligonucleotide, which usually has a chain length of at least 15 bp or more.
本発明のオリゴヌクレオチドは、 例えば市販のオリゴヌクレオチド合成機によ り作製することができる。 プローブは、 制限酵素処理等によって取得される二本 鎖 DNA断片として作製することもできる。  The oligonucleotide of the present invention can be produced by, for example, a commercially available oligonucleotide synthesizer. The probe can also be prepared as a double-stranded DNA fragment obtained by treatment with a restriction enzyme or the like.
本発明のオリゴヌクレオチドをプローブとして用いる場合は、 適宜標識して用 いることが好ましい。 標識する方法としては、 T4ポリヌクレオチドキナーゼを 用いて、 オリゴヌクレオチドの 5'端を 32Pでリン酸化することにより標識する方 法、 およぴクレノウ酵素等の DMポリメラーゼを用い、 ランダムへキサマーオリ ゴヌクレオチド等をプライマ一として32 P等のアイソトープ、 蛍光色素、 または ビォチン等によって標識された基質塩基を取り込ませる方法 (ランダムプライム 法等) を例示することができる。 When the oligonucleotide of the present invention is used as a probe, it may be appropriately labeled before use. Is preferred. Labeling methods include the method of labeling by phosphorylating the 5 'end of the oligonucleotide with 32 P using T4 polynucleotide kinase, and random hexamer oligonucleotide using DM polymerase such as Klenow enzyme. As a primer, a method of incorporating a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin using a nucleotide or the like as a primer (random prime method, etc.) can be exemplified.
本発明の検査薬の別の態様は、 TSGに結合する抗体を含む検査試薬である。 上 記抗体は、 検査に用いることが可能な抗体であれば、 特に制限はない。 抗体は必 要に応じて標識される。  Another embodiment of the test agent of the present invention is a test reagent containing an antibody that binds to TSG. The above antibody is not particularly limited as long as it can be used for the test. Antibodies are labeled as needed.
上記の検查薬においては、 有効成分であるオリゴヌクレオチドゃ抗体以外に、 例えば、 滅菌水、 生理食塩水、 植物油、 界面活性剤、 脂質、 溶解補助剤、 緩衝剤、 タンパク質安定剤 (BSAやゼラチンなど) 、 保存剤等が必要に応じて混合されて いてもよい。 図面の簡単な説明  In the above detection reagents, besides the oligonucleotide antibody as an active ingredient, for example, sterile water, physiological saline, vegetable oil, surfactant, lipid, solubilizer, buffer, protein stabilizer (BSA or gelatin) And the like, and preservatives and the like may be mixed as necessary. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 胚および成体マウスにおける TSG発現パターンを示す写真である。 A 〜Dは、 in situハイプリダイゼーシヨンによる 11. 5 dpcマウス胚の矢状断面 を示す。 白い点は、 ハイプリダイゼーシヨンシグナルを表す。 A、 TSGのセンス 鎖 R Aによってプロ一ビングする。 B〜D、 TSGのアンチセンス鎖によってプロ 一ビングする。 C、 D、 へマトキシリン-ェォジン (HE) 染色による Bの部分的 拡大図。 V、 脊椎が現れつつある領域; A、 大動脈; GM、 性腺-中腎。 E、 成体マ ウスからの多数の組織の TSG cDNAプロープによるノザンプロット分析。  FIG. 1 is a photograph showing TSG expression patterns in embryo and adult mice. A to D show sagittal sections of 11.5 dpc mouse embryos by in situ hybridization. White dots represent hybridization signals. A, Probing with sense strand R A of TSG. BD, probe with the antisense strand of TSG. C, D, and a partially enlarged view of B by hematoxylin and eosin (HE) staining. V, area where the spine is emerging; A, aorta; GM, gonad-mesonephros. E, Northern plot analysis of many tissues from adult mice with TSG cDNA probe.
図 2は、 17. 5 dpc野生型マウス胎仔の肺、 胸腺、 腎臓における TSG発現を示 す写真である。 各組織切片に対して、 TSGアンチセンスまたはセンスリポプロー プを用いた in situハイプリダイゼーションを行い、 HE染色した。 スケールパ 一は 100 μ ηιを示し、 全てのパネルを同じ拡大率で示している。 図 3は、 TSGの標的化破壊を示す図および写真である。 A、 TSG座 (上段) 、 ターゲティング構築物 (中央) 、 およびターグティング座 (下段) のマップ。 制 P艮酵素は EcoRI (E) 、 BamHI (B) 、 および hel (N) である。 ターゲティングべ クタ一は、 4. 8および 1. 6 kb TSGゲノム断片、 pMClNeoPolyA (ストラタジーン 社) に由来するネオマイシン耐性遺伝子 (Λ¾ο) カセット、 pMClNeoPolyAと同じ プロモーターを含む単純へルぺスウィルスチミジンキナーゼ (tk) 遺伝子カセッ トカ ら成る。 B、 マウスからの尾 DNAのサザンプロット分析。 EcoRIによって消 化したゲノム DNAを 5'隣接プロープとハイプリダイズさせた。 8. 1および 7. 4 k bのパンドはそれぞれ、 野生型おょぴ変異対立遺伝子を表す。 プロットを; Veoプ ローブと再度ハイプリダイズさせると、 7. 4 kbのバンドのみが検出され、 3'隣 接ェキソンプローブによってブロービングした BamHI消化物はさらに、 相同的組 み換えが適切であることの確証となる (データは示していない) 。 FIG. 2 is a photograph showing TSG expression in the lung, thymus, and kidney of a 17.5 dpc wild-type mouse embryo. Each tissue section was subjected to in situ hybridization using TSG antisense or sense lipoprop and stained with HE. The scale panel shows 100 μηι, and all panels show the same magnification. FIG. 3 is a diagram and a photograph showing the targeted disruption of TSG. A, Map of the TSG locus (top), targeting construct (center), and targeting locus (bottom). The enzymes are EcoRI (E), BamHI (B), and hel (N). The targeting vector was a 4.8 and 1.6 kb TSG genomic fragment, a neomycin resistance gene (Λ¾ο) cassette derived from pMClNeoPolyA (Stratagene), a simple herpesvirus thymidine kinase containing the same promoter as pMClNeoPolyA ( tk) Gene cassettes. B, Southern plot analysis of tail DNA from mice. Genomic DNA digested with EcoRI was hybridized with the 5 'flanking probe. The 8.1 and 7.4 kb bands represent the wild-type mutated allele, respectively. When the plot is rehybridized with the Veo probe, only the 7.4 kb band is detected, and the BamHI digest probed with the 3 'flanking exon probe is further homologous recombined. Confirmation (data not shown).
図 4は、 成体 TSG+/+マウスあるいは成体 TSG— マゥスの肝臓およぴ腎臓からの 総 RNAに対する 3, TSG cDNAプローブを用いたハイブリダイゼ一ンョン、 及び、 ヒトグリセルアルデヒド三リン酸脱水素酵素 (GAPDH)プローブを用いた再ハイプ リダイゼーションによるノザンプロット分析を示す写真である。 写真左に RNAラ ダーマ一力一 (kb) (プロメガ社) を示す。 Figure 4. Hybridization using total TSG cDNA probe to total RNA from adult TSG + / + mouse or adult TSG-mice liver and kidney, and human glyceraldehyde triphosphate dehydrogenase. 4 is a photograph showing Northern plot analysis by rehybridization using a (GAPDH) probe. The left side of the photo shows the RNA ladder Ichiriichi (kb) (Promega).
図 5は、 マウスにおける発育遅滞を示す図および写真である。 A、 15日齢で の TSG+/+およぴ TSG 同腹子マゥスの外観。 パーは 1 cmを表す。 B、 C、 TSG+/+TSG+/-、 および TSG マウスの日齢による成長プロフィール。 TSG— マウスは二つ の群に分類した;外観上健康と病気。 極めて小さいマウスは全て生後 1ヶ月以内 に死亡したか、 または非常に病気に見えた時点で屠殺した。 D、 日齢による TSG +/+、 TSG+/—、 および TSG— マウスの生存率。 死亡前に屠殺した病気のマウスはデー タから除外した。 FIG. 5 is a diagram and a photograph showing growth retardation in mice. A, Appearance of TSG + / + and TSG littermate mice at 15 days of age. Par represents 1 cm. Age growth profiles of B, C, TSG + / + , TSG + /-, and TSG mice. TSG—Mice were divided into two groups; apparently healthy and ill. All tiny mice died within one month of birth or were killed when they appeared very sick. D, Survival rates of TSG + / + , TSG +/— , and TSG— mice by age. Diseased mice sacrificed before death were excluded from the data.
図 6は、 TSG— マウスの縮れた尾を示す写真である。 A、 26日齢の TSG— マゥ スの縮れた尾。 B、 Aにおいて示した TSG —マウスと TSG+/+同腹子の尾の X線画 像。 C、 Bの部分的拡大図。 矢印は石灰化を伴う椎間板の部分的消失を示す。 図 7は、 22日齢の TSG— マウスおよび TSG+/+同腹子の X線画像を示す写真であ る。 -/-マウスは +/+マウスよりも骨が細くなっている。 FIG. 6 is a photograph showing the shrunken tail of a TSG-mouse. A, TSG at 26 days of age—Mice with curly tail. X-rays of TSG-mouse and TSG + / + littermates shown in B and A image. Partial enlarged view of C and B. Arrows indicate partial loss of the disc with calcification. FIG. 7 is a photograph showing an X-ray image of a 22-day-old TSG-mouse and TSG + / + littermates. -/-Mice have thinner bones than + / + mice.
図 8は、 ァリザリンレツドおよぴァリューシャンプル一によつて染色した 27 日齢 TSG— マウスと同腹子の骨格を示す写真である。  FIG. 8 is a photograph showing the skeleton of a 27-day-old TSG-mouse and litters stained with Arizarin Red and Aleu Chample.
図 9は、 TSG-/—マウスにおける軟骨内骨化遅延を伴う矮小発育症と腎臓の糸球 体の未成熟構造を示す写真である。 A、 B、 17日齢 TSG+/—および TSG— マウスの 大腿骨の遠位骨端の HE染色切片。 パー =250 μ ηι。 C、 D、 骨幹端軟骨成長板を 示す Aおよび Bのそれぞれ部分的拡大図。 成長板の休止 (R) 、 増殖 (P) 、 肥大 (H) 層を示す。 パー = 100 /i m0 E、 F、 32日齢での TSG+/+および TSG— マウス の腎臓からの HE染色切片。 パー =40 μ ιη0 FIG. 9 is a photograph showing dwarfogenesis with delayed endochondral ossification and the immature structure of the glomeruli of the kidney in TSG-/-mice. HE-stained sections of the distal epiphysis of femurs from A, B, 17-day-old TSG +/- and TSG- mice. Par = 250 μηι. C, D, and partial enlarged views of A and B showing the metaphyseal cartilage growth plate. Shows rest (R), proliferation (P) and hypertrophy (H) layers of the growth plate. Par = 100 / im 0 E, F, HE-stained sections from TSG + / + and TSG- mouse kidneys at 32 days of age. Par = 40 μιη 0
図 1 0は、 TSG+/+、 TSG+/—、 および TSG-z一マゥスの骨密度を示す図である。 右大 腿骨と腰椎 L2-4の骨ミネラル密度を DCS- 600EX- II (ァ口力社) を用いた X線撮 影によって測定した。 +/+は n=7、 +/-は n=3、 -/-は n=9である。 3匹の-/-雄性 マウス (189日齢が 1匹、 224日餘が 2匹) おょぴ 16匹の雌性マゥス(その他)に ついて分析した。 Aは大腿骨を、 Bは腰; ifを示す。 FIG. 10 is a graph showing the bone density of TSG + / + , TSG +/− , and TSG-z alone. The bone mineral density of the right femur and lumbar vertebra L2-4 was measured by X-ray imaging using DCS-600EX-II (a Kikirisha). + / + Is n = 7, +/- is n = 3, and-/-is n = 9. Three − / − male mice (1 at 189 days, 2 at 224 days) and 16 female mice (other) were analyzed. A indicates the femur, B indicates the waist;
図 1 1は、 TSG— マウスの末梢血におけるリンパ欠損を示す図である。 A、 TS G一 および TSG+/+同腹子における末梢血の分析。 WB (:、 白血球; RBC、 赤血球; Hb、 ヘモグロビン; PLT、 血小板。 12〜28日齢での典型的に病気に見える重度の矮小 発育症-/-マウス 3例、 軽度の矮小発育症を示す健康に見える-/-マウス 4例、 お よび +/+同腹子 4例を、 その末梢血に関して分析した。 それぞれのパーの模様と マウスの亜群の対応は Bと同じである。 B、 WBCsの血球像算定。 Aにおいて用い た同じ試料を分析した。 FIG. 11 is a diagram showing lymphatic deficiency in peripheral blood of TSG-mice. A, Analysis of peripheral blood in TSG-I and TSG + / + littermates. WB (:, leukocytes; RBC, erythrocytes; Hb, hemoglobin; PLT, platelets. Three severe dwarfisms typically seen as ill at 12-28 days of age-/-3 mice, showing mild dwarfism Four healthy-looking-/-mice and four + / + littermates were analyzed for their peripheral blood, and the pattern of each par and the corresponding subgroup of mice was the same as B. B, WBCs Blood cell counts of the same samples used in A were analyzed.
図 1 2は、 TSG —マウスにおけるリンパ系発達の欠損を示す図おょぴ写真であ る。 A、 B、 27日齢の TSG— マウスおょぴ TSG+/+同腹子から新しく単離した脾臓 と胸腺。 パー = Aでは 5腿、 Bでは 3匪。 15日齢 TSG—ズ—マウス (D ) および TSG+ /+同腹子 ( C ) からの胸腺の HE染色切片。 パー =30 mo E、 F、 TSG+/+、 TSG+/—、 および TSG—z—マウスにおける日齢による脾細胞数と胸腺細胞数の比較。 · FIG. 12 is a photograph showing the lack of lymphatic system development in TSG-mouse. A, B, 27-day-old TSG—Newly isolated spleen and thymus from mouse TSG + / + littermates. Par = 5 thighs in A, 3 marauders in B. 15-day-old TSG—mice (D) and TSG + / + HE-stained section of thymus from littermate (C). Par = 30 mo Comparison of splenocyte and thymocyte numbers by age in E, F, TSG + / + , TSG +/— , and TSG—z— mice. ·
図 1 3は、 ヨウ化プロビジゥム(赤) により可視化させた細胞に対するフルォ レセイン- dUTP (緑) を用いた TUNEL分析の結果を示す写真である。 Aは図 1 2 Cと同じパラフィン包埋検体由来である。 Bと図 1 2 Dの切片についても、 同様 である。  FIG. 13 is a photograph showing the results of TUNEL analysis using fluorescein-dUTP (green) on cells visualized with providide iodide (red). A is from the same paraffin-embedded specimen as in Figure 12C. The same applies to B and the section of FIG. 12D.
図 1 4は、 27日齢の TSG— マウスおょぴ TSG+/+同腹子からの胸腺細胞と骨髄細 胞のフローサイトメトリー分析を示す図である。 胸腺細胞 (Thy) 、 骨髄細胞 (B M) を、 FACS Caliburフローサイトメトリー (Becton Dickinson社) によって分 析した。 独立した 4実験の典型的なパターンを示す。 FIG. 14 is a diagram showing flow cytometry analysis of thymocytes and bone marrow cells from a 27-day-old TSG-mouse TSG + / + littermates. Thymocytes (Thy) and bone marrow cells (BM) were analyzed by FACS Calibur flow cytometry (Becton Dickinson). A typical pattern of four independent experiments is shown.
図 1 5は、 in での TSG欠損リンパ球の増殖を示す図である。 26日齢 TS G+/+および TSG— 同腹子からの胸腺細胞 (A) およぴ脾細胞 (B ) は、 様々なポ リク口一ナルァタティベータ一によって 24時間刺激して、 ¾ -チミジン取り込み を、 パルス標識後に測定した。 FIG. 15 is a diagram showing proliferation of TSG-deficient lymphocytes in the cells. 26-day-old TSG + / + and TSG—Thymocytes (A) and splenocytes (B) from littermates stimulated by various polymorphic narratative beta-cells for 24 hours to produce ¾-thymidine Incorporation was measured after pulse labeling.
図 1 6は、 TSG- S 腺細胞における RUM1転写産物の増加を伴う SMAD1のリン 酸化促進を示す写真である。 A、 抗リン酸化 SMAD1抗体を用いて 10日齢の +/+お よび-/-同腹仔の胸腺細胞をウェスタンプロット解析した。 新鮮な単離胸腺細胞 (in vivoと標記) を、 回収前にヒト BMP- 4を 100ng/ml加えた 7. 5%ノックァゥ ト血清代用 (KSR) 培地 (BMP - 4と表記) 、 ヒト BMP- 4を 100ng/mlとマウス TSG を Ι μ g/ml加えた 7. 5%KSR培地 (BMP - 4+TSGと表記) で 45分間培養した。 各レ ーンに 1. 5 X 105細胞に相当する細胞可溶ィ匕液をロードした。 結果を 2種類の独 立した写真で示した。 左の写真は^ W Wでの胸腺細胞の結果のみ示している。 FIG. 16 is a photograph showing promotion of SMAD1 phosphorylation with an increase in RUM1 transcript in TSG-S gland cells. A, Western blot analysis of thymocytes of + / + and − / − littermates at 10 days of age using anti-phosphorylated SMAD1 antibody. Freshly isolated thymocytes (labeled in vivo) were added to human BMP-4 at 100 ng / ml prior to recovery, and 7.5% knockout serum substitute (KSR) medium (denoted as BMP-4), human BMP- 4 was cultured for 45 minutes in a 7.5% KSR medium (denoted as BMP-4 + TSG) supplemented with 100 ng / ml of mouse TSG and Ι μg / ml. Each lane was loaded with cell lysate equivalent to 1.5 × 10 5 cells. The results are shown in two independent photographs. The left picture shows only the results of thymocytes in ^ WW.
B、 37日齢の +/+および-/-マウスの胸腺細胞の RT- PCR分析を示す。 RUM1 mRNA は、 292bpの PCR産物として検出された。 RNAの整合性は 373bpの] 3 2 -ミクログ 口プリン ( 2- MG) 転写物の検出によって確認した。 発明を実施するための最良の形態 B, RT-PCR analysis of thymocytes of + / + and − / − mice at 37 days of age. RUM1 mRNA was detected as a 292 bp PCR product. Integrity RNA is] 3 2 373Bp - was confirmed by detection of a - (MG 2) transcripts Mikurogu port purine. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により、 さらに具体的に説明するが本発明はこれら実施 例に制限されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
( 1 ) TSGの遺伝子ターゲティング  (1) Gene targeting of TSG
ターゲテイングベクターは TSGゲノムクローン ( ファージ (ストラタジーン 社) にクローン化された ES129/SvJ株 DNA (ストラタジーン社) に由来する) を pBluescript II (ストラタジーン社) にサプクローン後、 最初の ATGの 20bp下 流のェキソン内 Nhel部位を Sail部位に変換後、 同部位に pMClNeoPolyA (スト ラタジーン社) の 1. 1 kb Xhol-Sall断片をアンチセンス方向に挿入することに よって構築した。 HSV ^カセットも同様に、 陰性選択のために pBluescript II の Notl部位に挿入した。 ベクターを左腕の 5'末端で直線にして、 E14-1胚性幹 (ES) 細胞に電気穿孔した。 相同的組み換えに関するサザンプロット分析のスク リ一二ングは文献に記述通り実施した (Nosaka, T. et al. , 1995. Science 27 0:800-802) 。 ターゲティング効率は 5〜: 10%であった。 マウスは全て、 特定病 原体不含条件で維持した。  The targeting vector was obtained by subcloning a TSG genomic clone (derived from ES129 / SvJ strain DNA (Stratagene) cloned into phage (Stratagene)) into pBluescript II (Stratagene), followed by the first ATG 20bp After converting the Nhel site in the downstream exon into a Sail site, a 1.1 kb Xhol-Sall fragment of pMClNeoPolyA (Stratagene) was inserted into the same site in the antisense direction. The HSV ^ cassette was also inserted into the Notl site of pBluescript II for negative selection. The vector was linearized at the 5 'end of the left arm and electroporated into E14-1 embryonic stem (ES) cells. Screening of Southern blot analysis for homologous recombination was performed as described in the literature (Nosaka, T. et al., 1995. Science 270: 800-802). The targeting efficiency was between 5 and 10%. All mice were maintained under specific pathogen-free conditions.
( 2 ) in si tuハイプリダィゼーシヨン  (2) in si tu high predication
タンパタコード配列のほとんどの部分を含む、 cDNA開始部位から EcoRV部位 までの 0. 6 kbマウス TSG cDNA断片を、 pBluescript II SKの BamHI- EcoRV部位 にサプク口一ユングした。 センス RNAプローブは EcoRV消化 DNA铸型から T3 RN Aポリメラーゼによって、 ァンチセンス RNAプローブは BamHI消化铸型から T7 R NAポリメラーゼによって、 35S - UTPを用いて、 各々作製した。 ハイブリダィゼー シヨンは記載通りに (Sugiyama, T. et al. , 2000. Biochemistry 39: 15817-158 25) 実施した。 A 0.6 kb mouse TSG cDNA fragment from the cDNA start site to the EcoRV site, containing most of the protein coding sequence, was sacrificed to the BamHI-EcoRV site of pBluescript II SK. By T3 RN A polymerase sense RNA probe from the EcoRV digested DNA铸型by T7 R NA polymerase from Anchisensu RNA probes BamHI digestion铸型, 35 S - using UTP, were prepared, respectively. Hybridization was performed as described (Sugiyama, T. et al., 2000. Biochemistry 39: 15817-158 25).
( 3 ) ノザンプロット  (3) Northern plot
マウスの多数の組織プロットは、 クロンテック社から購入して、 4· 0 kbマウ ス TSG完全長 cDNAプローブとハイプリダイズさせた後、 既に記述されているよ うに (Nosaka, T. et al. , 1999. EMBO J. 18 : 4754-4765) マウス βァクチンプ 口ープと再度ハイブリダイズさせた。 A number of mouse tissue plots have been previously described after purchase from Clontech and hybridizing with a 4.0 kb mouse TSG full-length cDNA probe. Sea urchin (Nosaka, T. et al., 1999. EMBO J. 18: 4754-4765) was hybridized again with mouse β-actin pump.
( 4 ) 胸腺と脾細胞の増殖アツセィ  (4) Thymus and splenocyte proliferation
1試料あたり 3サンプルずつの胸腺細胞 (5 X 104) を、 ゥシ胎仔血清 (FBS) の代わりに 10%ノックアウト血清代用培地 (KSR) (インビトロジェン社) の存 在下で、 コンカナパリン A (Con A、 20 μ g/ml) 、 Con A+ IL-2 (10単位/ ml) 、 Con A+ IL-7 ( 5 ng/ml) 、 抗- CD3 ε抗体 (クローン 145 - 2C11、 10 μ g/ml) +ホ ルポル 12-ミリステート 13-アセテート (PMA、 10 ng/ml) 、 または抗- CD3 ε抗体 +PMA+ IL-7のいずれかによつて 24時間刺激した後、 ¾-チミジン 0. 5 /z Ciを 1 4時間パルスして、 ¾-チミジンの取り込みを測定した。 脾細胞は、 KSRまたは K SR+リポ多糖類 (LPSS 10 μ g/ml) によって同様に分析した。 Three samples of thymocytes (5 x 10 4 ) per sample were prepared using Concanapalin A (Con A) in the presence of 10% knockout serum-substitute medium (KSR) (Invitrogen) instead of fetal calf serum (FBS). , 20 μg / ml), Con A + IL-2 (10 units / ml), Con A + IL-7 (5 ng / ml), anti-CD3ε antibody (clone 145-2C11, 10 μg / ml) + After stimulation with either 12-myristate 13-acetate (PMA, 10 ng / ml) or anti-CD3 ε antibody + PMA + IL-7 for 24 hours, ¾-thymidine 0.5 / z Ci Was pulsed for 14 hours to measure ¾-thymidine incorporation. Splenocytes were similarly analyzed by KSR or KSR + lipopolysaccharide (LPS S 10 μg / ml).
[実施例 1 ] TSGの標的化破壊  [Example 1] Targeted destruction of TSG
本発明者らがマウス大動脈-性腺-中腎 (AGM) 領域から単離したマウス TSG cD NA (ァクセッション番号: NCBI NO. BD013035) は、 長さが 4· 0 kbで TSG蛋白質 (ァクセッション番号: NCBI N0. MG00605) のアミノ酸 222個をコードし、 これ は他のグノレープ (Graf, D. et al., 2001. Mamm. Genome 124: 554—560、 Ross, J. J. et al. , 2001. Nature 410 :479 - 483、 Scott, I. C. et al. , 2001. Nature 410: 475-478) によって公表された蛋白質と同一である。 11. 5 - dpcマウス胚の i ? situハイブリダイゼーシヨンにより、 TSG mRNAが、 脊椎が発達する領域, 大動 脈壁, 性腺-中腎領域、 および間質組織全般に存在することが判明した (図 1 A 〜D) 。 成体マウス組織のノザンプロット分析から、 心臓、 肺、 肝臓、 およぴ腎 臓に 4. 1 kb TSG転写物 (図 1 E ) が存在することが判明した。 肺、 胸腺、 およ ぴ腎臓の 17. 5 dpc切片における TSG mRNAの発現も調べた (図 2 ) 。 TSG mRNA は、 肺の肺胞および気管支上皮細胞、 胸腺の間質、 特に髄質、 および腎臓の尿細 管周囲の細胞で発現していた。 哺乳類の発達における TSGの生理的役割を調べる ために、 遺伝子ターグティングによって TSG欠損マウスを作製した。 本発明者ら は、 第一のコードェキソンを破壌する TSGターゲテイングベクターを構築して、 TSG遺伝子発現を完全に抑えた (図 3 A) 。 構築物を E14- 1 ES細胞に電気穿孔 して、 独立した三つのクローンを得、 それを C57BL/6胞胚に注入してキメラマウ スを作製した。 キメラマウスを C57BL/6マウスと戻し交配させて、 ヘテロ接合 (+/-) マウスを作製し、 +/-マウスを繁殖させてホモ接合変異体 (- /- ) マウス を作製した。 子孫 100例の遺伝子タイピング (図 3 B ) により、 野生型 (+/+) マウス 27例、 +/ -マウス 47例、 および-/-マウス 26例が得られた;この予想比 (1 : 2 : 1) は、 胚致死性がないことを示した。 野生型 TSGの mR Aが存在しない ことは、 ノザンプロット解析によって確認した (図 4 ) 。 The mouse TSG cDNA (accession number: NCBI NO. BD013035) isolated from the mouse aorta-gonad-mesonephros (AGM) region by the present inventors has a TSG protein (activator) of 4.0 kb in length. Session number: NCBI N0. Encodes 222 amino acids of MG00605), which is another gnorape (Graf, D. et al., 2001. Mamm. Genome 124: 554-560, Ross, JJ et al., 2001. Nature 410: 479-483, identical to the protein published by Scott, IC et al., 2001. Nature 410: 475-478). 11. 5-situ hybridization of dpc mouse embryos revealed that TSG mRNA was present in the area where the spine develops, the large arterial wall, the gonad-mesonephros area, and the interstitial tissues in general. (Figures 1A-D). Northern blot analysis of adult mouse tissues revealed the presence of a 4.1 kb TSG transcript (FIG. 1E) in heart, lung, liver, and kidney. TSG mRNA expression in 17.5 dpc sections of lung, thymus and kidney was also examined (Figure 2). TSG mRNA was expressed in pulmonary alveoli and bronchial epithelial cells, in the thymus stroma, especially in the medulla, and in the peritubular cells of the kidney. To investigate the physiological role of TSG in mammalian development, we generated TSG-deficient mice by gene targeting. The present inventors Constructed a TSG targeting vector that disrupted the first codexon and completely suppressed TSG gene expression (Figure 3A). The construct was electroporated into E14-1 ES cells to yield three independent clones, which were injected into C57BL / 6 blastocysts to produce chimeric mice. The chimeric mice were backcrossed with C57BL / 6 mice to produce heterozygous (+/-) mice, and +/- mice were bred to produce homozygous mutant (-/-) mice. Genotyping of 100 offspring (Figure 3B) yielded 27 wild-type (+ / +), 47 +/- and 26-/-mice; this expected ratio (1: 2 : 1) showed no embryo lethality. The absence of wild-type TSG mRNA was confirmed by Northern blot analysis (FIG. 4).
[実施例 2 ] TSG欠損マウスにおける成長遅延  [Example 2] Growth delay in TSG-deficient mice
-/-マウスの 12. 5%が出生日に死亡し、 -トマウスの残りは出生時健康に見え たが、 それらは +/+および +/ -の同腹子より 10〜20%小さく (後述する) 、 この 差は、 日齢と共に大きくなつた (図 5 A) 。 半数以上の-/-マウスに重度の発育 遅滞を認め、 その後病的外観およびその後の死亡が起こり、 または数例では突然 死を認めた (図 5 B〜D) 。 病気の-/-マウスの何例かは、 3週齡になっても眼 が開かず、 ぎくしゃくした歩行を示し、 全身の振せんを示して死亡した。 TSG - マウスの死因は、 衰弱を除いて統一できなかった。 新生児-/-マウスは全て、 +/+ または +/-同腹子と同等の大きさの乳白色斑を示し、 このことは、 授乳が適切で あったことを示している。 剖検により、 病気のマウス数例が、 胸腺と脾臓の発達 不全 (後述) の他に肺繊維症、 腹部内またはくも膜下出血を有することが判明し た。 病的な; Wの存在とは無関係に、 ほぼ半数の -/-マウスが明らかに縮れた尾 を示した (図 6 ) 。 BMP- 7ヌルマウス (Dudley, A. T. et al., 1995. Genes Dev 9 : 2795 - 2807、 Jena, N. et al., 1997. Exp Cell Res. 230 : 28—37、 Luo, G. et al. , 1995. Genes Dev 9 : 2808 - 2820) を含む遺伝子破壊マウスの数例におい て報告されている縮れた尾は、 TSG—/—マウスの出生後 4 S目より認められた。 X 線写真によって、 -/-マウスの縮れた尾では椎間板が部分的に消失し、 骨化して いることが判明した (図 6 ) 。 12.5% of the-/-mice died at birth and the rest of the mice appeared healthy at birth, but they were 10-20% smaller than + / + and +/- littermates (see below). This difference increased with age (Fig. 5A). More than half of the − / − mice had severe growth retardation, followed by morbid appearance and subsequent death, or in some cases sudden death (FIGS. 5B-D). Some of the sick-/-mice did not open their eyes at 3 weeks of age, exhibited jerky gait, and died of general tremor. TSG-The cause of death in mice could not be unified except for weakness. All newborn-/-mice showed milky spots of the same size as + / + or +/- littermates, indicating that lactation was appropriate. At necropsy, several diseased mice were found to have pulmonary fibrosis, intraabdominal or subarachnoid hemorrhage, as well as thymic and spleen dysfunction (described below). Pathological; irrespective of the presence of W, almost half of the − / − mice had a clearly curled tail (FIG. 6). BMP-7 null mouse (Dudley, AT et al., 1995. Genes Dev 9: 2795-2807, Jena, N. et al., 1997. Exp Cell Res. 230: 28-37, Luo, G. et al., 1995. Genes Dev 9: 2808-2820), the shrunken tail reported in several cases of gene-disrupted mice was observed at 4S postnatal in TSG-/-mice. The x-ray showed that the disc was partially lost and ossified in the shrunken tail of the-/-mouse. (Fig. 6).
[実施例 3 ] TSG欠損マウスにおける骨形成遅延と腎形成遅延  [Example 3] Delayed bone formation and renal formation in TSG-deficient mice
+/+、 +/ -、 および -/-同腹子の X線写真 (図 7に典型型を示す) および剖検と 共に、 それらのァリューシャンプル一 (軟骨に関して) ょぴァリザリンレッド (無機質に富む骨に関して) によって染色した骨格標本 (図 8 ) から、 TSG— /一マ ウスでは脚の骨が短く薄い構造であり、 頭蓋骨も非常に薄いことが判明したが、 27日齢ではそれらの無機質化領域に差を認めなかった。 大腿骨における遠位骨 幹端軟骨成長板の組織学的分析から、 軟骨細胞の薄い増殖層、 肥大層と拡大した 休止層が明らかにされ、 骨端 (二次) 骨化が +/-同腹子と比較して-/ -マゥスでは 著しく遅れており (図 9 A〜D) 、 このことは -/-マウスの軟骨内骨化が減少し ていることを示した。 さらに、 -/-マウスにおける大腿の索状の皮質骨の増殖は、 17〜32日齢で +/ -同腹子と比較して遅れていた (データは示していない) 。 32日 齢での重度の矮小発育症を有する-/-マゥスの大腿骨と腰椎の骨密度は、 +/+同腹 子のほぼ半分であり、 長く生存している-/-マウスの骨密度の減少傾向は緩やか であることも示された (図 1 0 ) 。 これらの表現型は、 骨芽細胞系列特異的プロ モーターによって駆動されるドミナントネガティブ IBタイプ BMP受容体を発現 するトランスジエニックマウスの表現型と類似である (Zhao, M. et al. , 2002. J. Cell Biol. 157: 1049 - 1060) 。 これらの知見は、 TSG欠損によって、 BMPシ グナル伝達の減弱に基づいて、 膜内骨化の減少と共に、 軟骨細胞の休止状態から 増殖状態への移行の遮断による軟骨内骨化の遅延により矮小発育症と骨減少症が 起こることを示している。 骨形成障害の他に、 - /-マウスはまた、 +/+同腹子と比 較して糸球体が小さく未成熟な、 糸且織学的に未発達な腎を示した (図 9 E、 F) 。 この知見は、 BMP- 7欠損マウスにおける腎発達障害を思い起こさせるが、 中胚葉 誘導物質としての BMP - 7の活性はホモダイマーより BMP - 4とのへテロダイマーの ほうが高いことと矛盾しない (Suzuki, A. et al. , 1997. Biochem. Biophys. R es. Commun. 232: 153-156) 。 このように、 TSGは、 骨格系おょぴ腎臓の発達の 際に BMP- 4ァゴニストとして作用する可能性が高い。 Radiographs (typically shown in Figure 7) of + / +, +/-, and-/-littermates (along with cartilage) along with their necropsy, and their aleurysample (for cartilage) Skeletal specimens stained (for bones) (Figure 8) showed that the TSG- / mouse had short and thin leg bones and a very thin skull, but at 27 days of age they had been mineralized. No difference was found in the area. Histological analysis of the distal metaphyseal cartilage growth plate in the femur reveals a thin proliferative layer of chondrocytes, an enlarged layer and an enlarged resting layer, with +/- littermate of epiphyseal (secondary) ossification There was a significant delay in-/-mice compared to offspring (Figures 9A-D), indicating reduced endochondral ossification in-/-mice. In addition, the growth of thigh cord cortical bone in − / − mice was delayed compared to +/− littermates at 17-32 days of age (data not shown). Femur and lumbar vertebrae of-/-mice with severe dwarfism at 32 days of age have a bone density of approximately half that of + / + littermates and a lower survival rate of long-lived-/-mice. The decreasing trend was also shown to be modest (Figure 10). These phenotypes are similar to those of transgenic mice expressing a dominant negative IB type BMP receptor driven by an osteoblast lineage-specific promoter (Zhao, M. et al., 2002. J. Cell Biol. 157: 1049-1060). These findings suggest that TSG deficiency leads to a decrease in intramembrane ossification, based on attenuated BMP signaling, and a dwarf development due to a delay in endochondral ossification by blocking the transition of chondrocytes from the resting to proliferating state. And osteopenia occur. In addition to the osteogenic disorders,-/-mice also showed immature, glomerularly undeveloped kidneys with small glomeruli compared to + / + littermates (Figure 9E, F). This finding reminds us of impaired renal development in BMP-7 deficient mice, but is consistent with the fact that the activity of BMP-7 as a mesodermal inducer is higher for heterodimers with BMP-4 than for homodimers (Suzuki, A et al., 1997. Biochem. Biophys. Res. Commun. 232: 153-156). In this way, TSG is responsible for the development of the skeletal system kidney It is likely to act as a BMP-4 agonist.
[実施例 4 ] TSG欠損マウスにおけるリンパ系細胞の枯渴  [Example 4] Depletion of lymphoid cells in TSG-deficient mice
本発明者らは、 AGM領域からマウス TSG cDNAを単離した。 BMP- 4はまた、 ヒト AGM領域において発現されることが判明した (Marshall, C. J. et al. , 2000. Blood 96 : 1591-1593) 。 BMP - 4は、 その上流の調節物質であるソニックヘッジホ ッグ (shh) (Bhardwaj, G. et al. , 2001. Nat. Immunol. 2 : 172—180) とは異 なり、 多能性造血細胞を増殖させることはできないが、 それらを維持すること力 S できる (Bhatia, M. et al. , 1999. J. Exp. Med. 189 : 1139 - 1147) 。 したがつ て、 本発明者らは、 造血に及ぼす TSG欠損の影響に関心を持つた。 - /-マウスか らの末梢血血球数および塗沫標本は、 リンパ様細胞数の重度の減少、 血小板の中 等度の減少、 および赤血球の中等度の減少を示した。 一方、 顆粒球と単球の相対 的割合は増加した (図 1 1 ) 。 これと一致して、 半数以上の-/ -マウスでは胸腺 および脾臓の発達が非常に不良であった。 これらの I廢器は、 その体重が +/+また は +/ 同腹子の体重より 2〜 5倍異なるに過ぎない何例かの-/-マウスでは、 3000 倍減少のような極めて少数の細胞し力含まないことが判明した (図 1 2 A、 B、 E、 F ) 。 発育遅滞とリンパ系欠損レベルには正の相関を認め、 リンパ系の欠損 が二次的な事象である可能性が生じた。 し力 し、 -/-マウスの出生時の胸腺と脾 細胞はそれぞれ、 +/+または +/-同腹子と比較して既に 2〜 4倍おょぴ 2〜 8倍減 少しており (図 1 2 E、 F ) 、 リンパ系欠損が、 単純に出生後の衰弱によるもの ではないことを示唆している。 組織学的に、 -/-の脾臓では白脾髄領域は減少し (データは示していない) 、 -/-胸腺のほとんどの細胞がアポトーシス外観を呈 したのに対し、 +/+胸腺はアポトーシス様外観を示さなかった (図 1 2 C、 D ) 。  The present inventors have isolated mouse TSG cDNA from the AGM region. BMP-4 was also found to be expressed in the human AGM region (Marshall, C.J. et al., 2000. Blood 96: 1591-1593). BMP-4, unlike its upstream regulator Sonic Hedgehog (shh) (Bhardwaj, G. et al., 2001. Nat. Immunol. 2: 172-180), is a pluripotent hematopoietic. Cells cannot grow but can maintain them (Bhatia, M. et al., 1999. J. Exp. Med. 189: 1139-1147). Therefore, we were interested in the effect of TSG deficiency on hematopoiesis. Peripheral blood cell counts and smears from-/-mice showed severely reduced lymphoid cell numbers, moderately reduced platelets, and moderately reduced red blood cells. On the other hand, the relative proportion of granulocytes and monocytes increased (Figure 11). Consistent with this, more than half of the-/-mice had very poor thymus and spleen development. These debris can cause very few cells, such as a 3000-fold loss in some-/-mice, whose body weight differs only +/- 5 or +/- (Fig. 12 A, B, E, F). Developmental delay was positively correlated with the level of lymphatic deficiency, suggesting that lymphatic deficiency could be a secondary event. At birth, the thymus and spleen cells at birth in-/-mice have already been reduced by 2 to 4 times compared to +/- or +/- littermates, respectively (Fig. 12 E, F), suggesting that the lymphatic deficiency is not simply due to postnatal weakness. Histologically, the white pulp area was reduced in the-/-spleen (data not shown), and most cells in the-/-thymus had an apoptotic appearance, whereas + / + thymus was apoptotic. It did not show the same appearance (Figs. 12C, D).
TUNEL分析によると、 病気の -/-マウスの多くの胸腺細胞が様々な程度で DNA断 片化を起こしたが、 +/+マウスの胸腺細胞はそうならないことが判明した(図 1 3 )。 胸腺のフローサイトメ トリー分析から、 +/+同腹子と比較して、 -/-マウス では CD4 -および CD8-単陽性細胞の割合が増加して二重陽性細胞が減少したこと が判明した (図 1 4、 上のパネル) 。 骨髄細胞の総数は、 数例を除いて体格によ つて標準化すると、 -/-マウスではあまり大きく減少しなかった。 骨髄細胞の CD 43/B220およぴ B220/IgM二重染色によって、 +/+同腹子と比較して-/-マウスで は、 プロ B (CD43+B220lOTIgM— ) 、 プレ B (CD43-B220lowIgM-) 、 および未成熟 B (C D43+B220lowIgM+) 細胞が劇的に減少したのに対し、 成熟 B細胞 (CD43— B220highIgM +) は保持されたことが証明された (図 1 4、 中央の 4つのパネル) 。 これらの 知見は、 TSG—/—マウスでは前駆体 Bおよび T細胞の増殖が障害されるが、 リンパ 系の分ィ匕そのものは遮断されないことを示唆している。 しかし、 -/-マウスから の脾細胞および胸腺細胞は、 in vitroで正常な***活性を示し、 それらは、 KSR 培地 (すなわち、 ゥシ胎仔 TSGの非存在下で) によって培養すると、 リポ多糖類 (LPS) 、 コンカナパリン A (ConA) 、 および抗 CD3抗体プラスホルボルミリス チルァセテート (P A) のようなポリクローナル活性化剤、 または IL-7による刺 激によって、 +/+マウスからの脾細胞および胸腺細胞と比較して、 同等またはむ しろ増強されたレベルで増殖した (図 1 5 ) 。 このように、 TSG——マウスのリン パ系欠損は、 B -および T-細胞における内因性の欠損が原因ではないように思わ れ、 間質細胞のような微小環境の異常おょぴサイトカイン産生または分布の異常 が原因であると考えられた。 また、 TSGは結合組織増殖因子と弱い相同性を有す ることにも注目しなければならない。 CDllb+Gr- 骨髄細胞の割合は、 -/-骨髄細 胞において増加し、 成熟顆粒球に富むことを示している (図 1 4、 下のパネル) ( 7月齢でのマウス (+/+, n=3 ; -/-, n=3) の骨髄細胞のクローン培養アツセィに よって、 顆粒球 -マクロファージ (GM) コロニー、 巨核球 (Meg) コロニー、 赤血 球系 (E) パースト、 赤血球-巨核球コロニー、 および混在性造血コロニー (GM/ Meg, GM/E, あるいは GM/E/Meg) の形成が、 TSG欠損マウスでは全て減少するこ とが示された (表 1 ) 。 表 1 TUNEL analysis showed that many thymocytes in diseased-/-mice underwent DNA fragmentation to varying degrees, whereas thymocytes in + / + mice did not (Figure 13). Thymic flow cytometry analysis showed that the percentage of CD4-and CD8-single positive cells increased and double positive cells decreased in-/-mice compared to + / + littermates. (Fig. 14, upper panel). The number of bone marrow cells, when normalized by physique in a few cases, did not decrease significantly in − / − mice. CD43 / B220 and B220 / IgM double staining of bone marrow cells showed that pro-B (CD43 + B220 lOT IgM-), pre-B (CD43- B220 low IgM-) and immature B (CD43 + B220 low IgM + ) cells decreased dramatically while mature B cells (CD43—B220 high IgM +) were retained (Figure 14, middle four panels). These findings suggest that the proliferation of precursor B and T cells is impaired in TSG-/-mice, but that the lymph system itself is not blocked. However, splenocytes and thymocytes from-/-mice show normal mitotic activity in vitro, and when cultured in KSR medium (i.e., in the absence of male fetal TSG), lipopolysaccharide Splenocytes and thymocytes from + / + mice by stimulation with polyclonal activators such as (LPS), concanapalin A (ConA), and anti-CD3 antibody plus phorbol myristyl acetate (PA), or IL-7 Proliferated at equal or even enhanced levels compared to (Figure 15). Thus, it appears that TSG--mouse lymphoid deficiency does not appear to be due to endogenous deficiencies in B- and T-cells, and abnormalities in microenvironments such as stromal cells and cytokine production. Or it was thought to be due to abnormal distribution. It should also be noted that TSG has weak homology to connective tissue growth factor. The percentage of CDllb + Gr− bone marrow cells increased in − / − bone marrow cells, indicating that they are rich in mature granulocytes (FIG. 14, lower panel) ( mouse at 7 months of age (+ / +, n = 3;-/-, n = 3) Clone culture of bone marrow cells, granulocyte-macrophage (GM) colony, megakaryocyte (Meg) colony, erythroid (E) perst, erythrocyte-megakaryocyte The formation of spherical colonies and mixed hematopoietic colonies (GM / Meg, GM / E, or GM / E / Meg) was all shown to be reduced in TSG-deficient mice (Table 1). table 1
SCF+IL-3+IL-6+GM-CSF+EPO  SCF + IL-3 + IL-6 + GM-CSF + EPO
5土 ± 5 soil ±
67  67
2 ± ± 2 ± ±
1
Figure imgf000046_0001
One
Figure imgf000046_0001
-/- No2 2±1 0 4+2 40±7  -/-No2 2 ± 1 0 4 + 2 40 ± 7
一/一 No3 3+2 0 2+2 33+7  1/1 No3 3 + 2 0 2 + 2 33 + 7
SCF+IL-7 SCF + IL-7
GM B-Ly 総計  GM B-Ly total
+/+ Nol 67±8 47±9 114±13  + / + Nol 67 ± 8 47 ± 9 114 ± 13
+/+ No2 34±4 17±2 51±5  + / + No2 34 ± 4 17 ± 2 51 ± 5
+/+ No3 73±18 , 69±3 142±1S  + / + No3 73 ± 18, 69 ± 3 142 ± 1S
-/- Nol 31±6 24±6 55±11  -/-Nol 31 ± 6 24 ± 6 55 ± 11
-/- No2 41±3 73±6 114±5  -/-No2 41 ± 3 73 ± 6 114 ± 5
一/一 No3 31+5 53+6 84+10  1/1 No3 31 + 5 53 + 6 84 + 10
GMは顆粒球 -マクロファージコロニー、 Megは巨核球コ口ニー、 B-Eは赤血球系 のバースト形成単位、 E/Megは赤血球一巨核球コロニー、 Mixは混在性造血コロ ニー、 B/Lyは B-リンパ球コ口ニーを示す。 興味深いことに、 B-リンパ球コ口ニー形成は -/-で減少しなかった (表 1 ) 。 この結果は図 1 5と矛盾しない。 同様のアツセィを 25〜2δ日齢でのマウス (+/+, n=3 ; -/-, n=3) でも行ったところ、 同様の結果が得られた (データは示してい ない) 。 コロニーアツセィに用いたゥシ胎仔血清に存在する可能性があるゥシ T SGが in vitroで TSG— 細胞の増殖おょぴ分ィヒを増強するように作用した可能性 は除外できないが (KSR はコロニー形成効率が非常に低いために用いなかった) 、 ァッセィは、 TSG— Λ骨髄が +/+骨髄と同等のレベルで B-リンパ球前駆体細胞を含 むことを示している。 一方、 他系列の前駆体細胞は全て減少していることを示す。 GM is granulocyte-macrophage colony, Meg is megakaryocyte colony, BE is erythroid burst forming unit, E / Meg is erythroid-megakaryocytic colony, Mix is mixed hematopoietic colony, B / Ly is B-lymph. Shows the ball mouth. Interestingly, B-lymphocyte cochlear knee formation did not decrease-/-(Table 1). This result is consistent with FIG. Similar studies were performed on mice at 25 to 2δ days of age (+ / +, n = 3;-/-, n = 3), with similar results (data not shown). Possibility of TSG, which may be present in fetal bovine serum used for colony attachment, may have acted to enhance TSG-cell proliferation in vitro. Can not be excluded (KSR was used for very low colony forming efficiency), Assi is, TSG- lambda marrow + / + bone marrow and at comparable levels B- lymphocytes precursor cells containing Mukoto Is shown. On the other hand, it shows that the precursor cells of other lineages are all reduced.
[実施例 5 ] TSG欠損胸腺細胞における SMAD1のリン酸化の促進に伴う RUNX1 転写産物の増加  [Example 5] Increase of RUNX1 transcript accompanying promotion of SMAD1 phosphorylation in TSG-deficient thymocytes
TSG機能の分子メカニズムを解明するために、 BMP-4シグナル伝達の下流で起 こる現象について調べた。 10日齢の +/+およぴ- /-同腹仔の胸腺細胞における SMA D1のセリンリン酸化について調べた。 図 1 6 Aに示されるように、 SMAD1はイン ビポにおいては、 胸腺細胞中で既にリン酸化されており、 in vitro においては、 組み換え TSGの存在あるいは非存在下での BMP- 4によるさらなる細胞の刺激は、 SMAD1のリン酸化にほとんど影響を及ぼさなかった。 しかしながら、 インビボに おける SMAD1のリン酸化の程度は、 +/+細胞より-/-細胞の方が有意に高かった。 これらの結果は、 ィンビポにおける胸腺細胞中での SMAD1のリン酸化という面か らは、 TSGが BMP - 4アンタゴニストとして機能することを示す。 これと一致して、 インビボにおいては、 RUNX1 (その遣伝子産物は SMAD1と機能的に結合し (Hanai, J. et al. , 1999. J. Biol. Chem. 274: 31577-31582) 、 R丽 1自身の転写を刺 激すると予測される) の発現は、 +/+胸腺細胞と比較して -/-胸腺細胞では上昇し ていた(図 1 6 B ) 。  In order to elucidate the molecular mechanism of TSG function, we investigated phenomena occurring downstream of BMP-4 signaling. Serum phosphorylation of SMA D1 in thymocytes of 10-day-old + / + and-/-littermates was examined. As shown in Figure 16A, SMAD1 is already phosphorylated in thymocytes in vivo, and further in vitro, BMP-4 recruits BMP-4 in the presence or absence of recombinant TSGs. Stimulation had little effect on phosphorylation of SMAD1. However, the extent of SMAD1 phosphorylation in vivo was significantly higher in − / − cells than in + / + cells. These results indicate that TSG functions as a BMP-4 antagonist in terms of phosphorylation of SMAD1 in thymocytes in in vivo. Consistent with this, in vivo, RUNX1 (the gene product of which functionally binds to SMAD1 (Hanai, J. et al., 1999. J. Biol. Chem. 274: 31577-31582)) The expression of 丽 1 (which is expected to stimulate its own transcription) was increased in − / − thymocytes compared to + / + thymocytes (FIG. 16B).
[実施例 6 ] TSG欠損マゥスの表現型の重症度の変動  [Example 6] Variation in phenotypic severity of TSG-deficient mice
TSG欠損マウスの表現型は、 個体によって変化する;生存して子孫を生じるマ ウスもあるが (雄性および雌性 TSG— マウスはいずれも念性である) 、 TSG欠損 マウスの半数以上が、 骨化の遅延による重度の矮小発育症、 リンパ系前駆細胞の 枯渴を伴うリンパ系欠損、 腎発達の遅延、 ならびに衰弱および/または免疫不全 によっておそらく引き起こされた月巿繊維症のようなさらなる疾患により出生後 1 ヶ月以内に死亡する。 TSG— マウスの表現型が多様である理由は、 TSGの非存在 下での微小環境における BMPsおよぴコーディンを含む可溶性因子の確率論的分 布の異常、 および遺伝的背景の差による BMPシグナル伝達の差に由来する可能性 がある。 母親からの TSGが子宫内で異なる局所利用率で-/ -胚を救出するとの推 測がある。 しかし、 軽度の表現型を示す生存 TSG— マウス同士を交配させると、 +/ -の親に由来する-/ -の仔と出生時に表現型を区別することができない -/-の仔 を生じることから、 この可能性は除外された (表 2 ) 。 The phenotype of TSG-deficient mice varies from one individual to another; some mice survive and produce offspring (male and female TSGs—both male and female), but more than half of TSG-deficient mice have ossification. Births due to severe dwarfism due to delays in the lymph system, lymphatic system deficits with lymphoid progenitor cell depletion, delayed renal development, and additional diseases such as lupus fibrosis possibly caused by weakness and / or immunodeficiency Dies within one month later. TSG—The phenotypic diversity of mice is attributed to the stochastic distribution of soluble factors, including BMPs and cordin, in the microenvironment in the absence of TSG. It may be due to fabric abnormalities and differences in BMP signaling due to differences in genetic background. There is speculation that TSGs from mothers rescue-/-embryos at different local utilization rates in offspring. However, mating of surviving TSG- mice with a mild phenotype can result in-/-pups with indistinguishable phenotype at birth from-/-pups from +/- parents Therefore, this possibility was excluded (Table 2).
表 2 Table 2
+/ -親から +/+  + /-From parent + / +
- /-親から-/ - +/-親から一/一 +/+親から +/+ 又は +/- n=ll n=7 n=21 n=ll -/-From parent-/-+/- one / one from parent + / + from parent + / + or +/- n = ll n = 7 n = 21 n = ll
0曰 1. 3±0. lg 1. 3±0. 1g 1· 5±0. lg 1. 6±0. lg 0 says 1.3 ± 0.lg 1.3 ± 0.1g 11.5 ± 0.lg 1.6 ± 0.lg
2. 5±0. 2cm 2. 5±0. 1cm 2. 9±0. 1cm 3. 0 + 0. 1cm 2.5 ± 0.2 cm 2.5 ± 0.1 cm 2.9 ± 0.1 cm 3.0 + 0.1 cm
4 0 2. 5±0. 2g 2· 6±0· 2g 3. 5±0. 2g 3. 4±0. 2g 4 0 2.5 ± 0.2 g 2.6 ± 0.2 g 3.5 ± 0.2 g 3.4 ± 0.2 g
3. 5±0. 2cm 3. 6±0. 1cm 4. 0±0. 1cm 4. 1 ±0. 1cm 3.5 ± 0.2 cm 3.6 ± 0.1 cm 4.0 ± 0.1 cm 4.1 ± 0.1 cm
9曰 4· 4±0· 2g 4. 3±0· 2g 6. 0±0· 2g 6. 0±0. 2g 9 says 4.4 ± 0.2g 4.3 ± 0.2g 6.0 ± 0.2g 6.0 ± 0.2g
4. 1±0. 1cm 4. 0±0· 1cm 4. 9±0. 1cm 5. 0±0, 1cm  4.1 ± 0.1 cm 14.0 ± 0.1 cm 4.9 ± 0.1 cm 5.0 ± 0, 1 cm
軽度の表現型を示す-/-の親は、 軽度の表現型を示す -/-マウスのみならず、 生 後に重度の表現型を示す-/-マウスを生じた (データは示していない) 。 Parents of-/-with a mild phenotype produced not only-/-mice with a mild phenotype but also-/-mice with a severe phenotype at birth (data not shown).
TSGは AGM領域において発現され、 TSG欠損マゥスは中等度の血小板減少症と 軽度の貧血を伴うリンパ系発達欠損を示した。 低濃度の BMP- 4は、 CD34+CD38一 Li nーヒト HSCsの増殖おょぴ分ィヒを誘導することが知られているが、 より高濃度の BMP- 4は HSCsの生存を促進する (Bhatia, M. et al. , 1999. J. Exp. Med. 18 9 : 1139-1147) 。 したがって、 TSGは、 造血の初期段階で中 葉誘発物質 BMP - 4 のァゴニストとして機能すると推測される。 しかし、 造血の BMP- 4媒介調節は、 より複雑である。 BMP- 4の上流の調節物質である Shhが、 胸腺間質によって産生 され、 その受容体であるパッチド&スムースンドが、 二重陰性 (DN) 胸腺細胞に おいて発現され、 Shhが胸腺細胞の分化を DN段階で停止させることが示された (Outram, S. V. et al. , 2000. Immunity 13 : 187 - 197) 。 最近、 胸腺間質によ つて産生された BMP - 4も同様に、 胸腺細胞の増殖および分化を阻害することが示 され、 その胸腺細胞における発現が T細胞受容体シグナル伝達によって誘導され る TSG I BMP - 4媒介胸腺発達阻害効果を遮断するようにコーディンと相乗作用 を示すことが証明された (Graf, D. et al. , 2002. J. Exp. Med. 196 : 163-17 1) 。 したがって、 BMP- 4アンタゴニストとしての TSGは胸腺細胞の発達の正の 調節物質であるように思われる。 出生前後の TSG— Λマウスにおける胸腺の発達障 害に関する本発明者らの知見は、 in vi iroでのこれらの結果と一致する。 それ にもかかわらず、 TSGは、 繊維芽細胞に対する TGF - 作用の下流の媒介物質であ る細胞***促進性ペプチドである結合組織増殖因子 (CTGF) (Brad am, D. M. . e t al, 1991. J. Cell Biol. 114: 1285-1294) に対して弱い相同性を有すること から (Grotendorst, G. R. 1997. Cytokine Growth Factor Reviews 8: 171-17 9) 、 TSGは BMP - 4シグナル伝達を調節することによって機能するのみならず、 間質機能に影響を及ぼす特定されていない標的にとっての増殖 Z分化因子として 機能する可能性もある。 TSG was expressed in the AGM region, and TSG-deficient mice exhibited lymphatic developmental deficits with moderate thrombocytopenia and mild anemia. Low concentrations of BMP-4 are known to induce proliferation of CD34 + CD38-Lin-human HSCs, while higher concentrations of BMP-4 promote HSCs survival ( Bhatia, M. et al., 1999. J. Exp. Med. 189: 1139-1147). Therefore, it is speculated that TSG functions as an agonist of the mesenchymal inducer BMP-4 at an early stage of hematopoiesis. However, BMP-4-mediated regulation of hematopoiesis is more complex. Shh, a regulator upstream of BMP-4, is produced by the thymic stroma and its receptor, Patched & Smoothened, is expressed in double-negative (DN) thymocytes. Shh has been shown to arrest thymocyte differentiation at the DN stage (Outram, SV et al., 2000. Immunity 13: 187-197). Recently, BMP-4 produced by the thymus stroma has also been shown to inhibit thymocyte proliferation and differentiation, and TSG I whose expression in thymocytes is induced by T cell receptor signaling. It has been shown to be synergistic with cordin to block BMP-4 mediated thymic developmental inhibitory effects (Graf, D. et al., 2002. J. Exp. Med. 196: 163-171). Thus, TSG as a BMP-4 antagonist appears to be a positive regulator of thymocyte development. Findings of the present inventors on the development failures thymus in TSG- lambda mice before and after birth, consistent with these results in in vi iro. Nevertheless, TSG is a connective tissue growth factor (CTGF), a mitogenic peptide that is a downstream mediator of TGF- action on fibroblasts (Brad am, DM. Et al, 1991. Cell Biol. 114: 1285-1294) (Grotendorst, GR 1997. Cytokine Growth Factor Reviews 8: 171-17 9), and TSG regulates BMP-4 signaling. In addition to functioning, it may function as a growth Z differentiation factor for unspecified targets that affect stromal function.
TSGは最近、 BMPシグナル伝達に対して時期に応じてァゴニストおよびアンタ ゴニスト機能の双方を発揮することが提唱されている;第一に、 TSGは BMPおよ び完全長のコーディンと三元複合体を形成し、 BMPのその受容体への結合を妨害 する、 そして第二に、 全てのコーディンがゾロイド (ヒト BMP- 1、 ショウジョゥ バエトロイド) によって切斬されると、 TSGは BMPとの結合に関して、 なおも抗 BMP活性を保持しているコ一ディン断片と競合することによって BMPシグナル伝 達を促進する。 このように、 BMPシグナル伝達のスィツチのオン ·オフが、 TSG によって鋭敏に行われる (Larrain, J. et al. , 2001. Development 128 : 4439 - 4 447) 。 TSG— マウスにおける本発明者らの知見は、 分子スィッチとしての TSGに よる BMP活性の微細な制御が多数の臓器の適切な発達にとつて必須であることを 示唆している。 双機龍 TSGが、 BMP、 コーディン、 TSG、 ゾロイド、 および他の関 連分子の局所濃度に応じて、 異なる動物種の発達の際に異なる BMPシグナル伝達 を誘発する可能性がある。 TSG欠損マウスは、 へッジホッグ - BMP- SMADシグナル 伝達、 および Zまたは推定の BMP-無関係シグナル伝達によって調節される、 初 期造血前駆細胞、 胸腺、 脾臓、 軟骨、 骨、 および腎臓の発達の分子メカニズムを 解明するために用いることができる。 The TSG has recently been proposed to exert both agonist and antagonist functions in BMP signaling in a timely manner; first, the TSG is a ternary complex with BMP and full-length cordin. And interfering with the binding of BMP to its receptor, and secondly, when all cordins are cut off by zoidoids (human BMP-1, dwarf baetroids), TSGs It promotes BMP signal transmission by competing with a coding fragment that still retains anti-BMP activity. Thus, the switch on and off of BMP signaling is sharply controlled by TSG (Larrain, J. et al., 2001. Development 128: 4439-4444). TSG—Our findings in mice show that the fine control of BMP activity by TSG as a molecular switch is essential for the proper development of many organs. Suggests. Twinkilong TSGs can trigger different BMP signaling during development of different animal species, depending on the local concentration of BMPs, cordins, TSGs, zoids, and other related molecules. TSG-deficient mice have molecular mechanisms of early hematopoietic progenitor, thymus, spleen, cartilage, bone, and kidney development, regulated by hedgehog-BMP-SMAD signaling and Z or putative BMP-irrelevant signaling Can be used to elucidate
ヒ ト TSG遺伝子は、 染色体パンド 18pllにマッピングされ、 これには免疫-骨 疾患はこれまで連鎖していない (Scott, I. C. et al. , 2001. Nature 410: 475- 478) 。 病気の TSG— マウスの表現型は、 SCIDを伴うヒト早期致死性短肢骨格異 常の表現型と類似である (Gatti, R. A. et al. , 1969. J. Pediatr. 75 : 675 - 68 4) 。 ほとんどのヒ ト免疫-骨疾患の病因は、 まだ分子的に明らかにされていない が、 TSG欠損マウスはまた、 これらの疾患の発病の基礎となるメカニズムを解明 するために有用となるであろう。  The human TSG gene maps to chromosome band 18pll, to which immuno-bone disease has not previously been linked (Scott, I. C. et al., 2001. Nature 410: 475-478). The phenotype of diseased TSG-mice is similar to that of human early lethal skeletal malformations with SCID (Gatti, RA et al., 1969. J. Pediatr. 75: 675-684) . Although the etiology of most human immuno-bone diseases has not yet been molecularly elucidated, TSG-deficient mice may also be useful for elucidating the mechanisms underlying the pathogenesis of these diseases .
要約すると、 TSG欠損マウスにおける構造的に未成熟な腎臓を有する矮小発育 症とリンパ系欠損の表現型は、 インビボでの TSGの双機能 (骨格-腎形成に関す る BMP - 4ァゴニストと、 胸腺発達に関する BMP- 4アンタゴニスト) を示唆してい る。 同様に、 CTGFファミリーとしての TSGのもう一つの機能は、 今後の研究に おいて解明されなければならない。 いずれにせよ、 哺乳類の TSGは、 中胚葉臓器 の適切な発達にとつて必須である。 産業上の利用の可能性  In summary, the phenotype of dwarfism with structurally immature kidneys and lymphatic deficiency in TSG-deficient mice is due to the dual function of TSGs in vivo (BMP-4 agonists for skeletal-nephrogenic and thymic BMP-4 antagonist for development). Similarly, another function of TSG as a CTGF family must be elucidated in future studies. In any case, mammalian TSGs are essential for the proper development of mesodermal organs. Industrial potential
本発明の産業上の有用性の第一点は、 本発明の動物で観察される矮小成長ゃリ ンパ球造血不全などの形質を病態として呈する諸疾患に対して、 TSG蛋白、 TSG 遺伝子および TSGと同様の生物活性を有する化合物を治療薬または予防薬として 適用できる点にある。 第二点は該動物およぴ TSG遺伝子改変哺乳動物細胞を利用 した、 TSGと同様の生物活性を有する化合物おょぴ内因性 TSGの活性を修飾する 化合物のスクリーニング法を提供できることにある。 第三点は、 TSG遺伝子また は蛋白の発現量測定により上記疾患の検査方法や検査薬を提供できる点にある。 The first point of the industrial usefulness of the present invention is that TSG protein, TSG gene and TSG gene are used for various diseases which exhibit traits such as dwarf growth and lymphocyte hematopoiesis observed in the animals of the present invention. A compound having the same biological activity as described above can be applied as a therapeutic or prophylactic agent. The second point is to modify the activity of endogenous TSG, a compound having the same biological activity as TSG, using the animal and a TSG gene-modified mammalian cell. It is to provide a method for screening compounds. The third point is that a test method or a test drug for the above-mentioned diseases can be provided by measuring the expression level of the TSG gene or protein.

Claims

請求の範囲 The scope of the claims
1 . TSG遺伝子の発現が人為的に抑制されていることを特徴とする遺伝子改変 非ヒト哺乳動物。 1. A genetically modified non-human mammal characterized in that expression of the TSG gene is artificially suppressed.
2 . TSG遺伝子の遺伝子対の一方または双方に外来遺伝子が挿入されているこ とを特徴とする遺伝子改変非ヒト哺乳動物。 2. A genetically modified non-human mammal characterized in that a foreign gene has been inserted into one or both of the TSG gene pairs.
3 . 中胚葉に由来する組織の発達不全を伴う疾患のモデル動物である、 請求項  3. A model animal of a disease accompanied by a failure in the development of tissues derived from mesoderm.
1または 2に記載の遺伝子改変非ヒト哺乳動物。  3. The genetically modified non-human mammal according to 1 or 2.
4 . 中胚葉に由来する組織の発達不全を伴う疾患が、 矮小発育症、 複合型免疫 不全症を伴う矮小発育症、 骨形成不全症、 軟骨低形成症、 リンパ球減少症、 複合型免疫不全症、 または、 腎低形成である、 請求項 3に記載の遺伝子改変 非ヒト哺乳動物。  4. Diseases associated with dysgenesis of tissues derived from mesoderm include dwarfism, dwarfism with combined immunodeficiency, osteogenesis imperfecta, hypochondrosis, lymphopenia, and combined immunodeficiency 4. The genetically modified non-human mammal according to claim 3, wherein the non-human mammal has disease or renal hypoplasia.
5 . TSG遺伝子の発現が人為的に抑制されていることを特徴とする遺伝子改変 哺乳動物細胞。  5. A genetically modified mammalian cell, wherein the expression of the TSG gene is artificially suppressed.
6 . TSG遺伝子の遺伝子対の一方または双方に外来遺伝子が挿入されているこ とを特徴とする遺伝子改変哺乳動物細胞。 6. A genetically modified mammalian cell, wherein a foreign gene has been inserted into one or both of the TSG gene pairs.
7 . TSGまたは TSGをコードする DNAを有効成分として含有する、 中胚葉に由 来する組織の発達不全を伴う疾患、 薬物による骨量減少、 骨粗しよう症、 骨 折、 または、 薬物による成長抑止の治療または予防のための薬剤。 7. Diseases associated with dysfunction of mesodermal tissue development, bone loss due to drugs, osteoporosis, fractures, or drug-suppressed growth containing TSG or DNA encoding TSG as an active ingredient For the treatment or prevention of the disease.
8 . 中胚葉に由来する組織の発達不全を伴う疾患が、 矮小発育症、 複合型免疫 不全症を伴う矮小発育症、 骨形成不全症、 軟骨低形成症、 リンパ球減少症、 複合型免疫不全症、 または、 腎低形成である、 請求項 7に記載の治療または 予防のための薬剤。 8. Diseases associated with dysfunction of tissues derived from mesodermal tissue include dwarfism, dwarfism with complex immunodeficiency, osteogenesis imperfecta, hypochondrosis, lymphopenia, and complex immunodeficiency The therapeutic or prophylactic agent according to claim 7, wherein the agent is a disease or renal hypoplasia.
9 . 以下の (a ) 〜 (c ) の工程を含む、 中胚葉に由来する組織の発達不全を 伴う疾患、 薬物による骨量減少、 骨粗しよう症、 骨折、 または、 薬物による 成長抑止の治療または予防のための薬剤の候f化合物のスクリ一ユング方法。 (a) TSGに被検化合物を接触させる工程 9. Treatment of diseases associated with dysfunction of mesodermal tissue-derived tissue, bone loss due to drugs, osteoporosis, fractures, or drug-suppressed growth, including the following steps (a) to (c): Or a method of screening a compound for prevention. (a) contacting a test compound with TSG
(b) 該 TSGと被検化合物との結合を検出する工程  (b) a step of detecting the binding between the TSG and a test compound
(c) 該 TSGと結合する被検化合物を選択する工程  (c) selecting a test compound that binds to the TSG
10. 以下の (a) 〜 (c) の工程を含む、 中胚葉に由来する組織の発達不全 - を伴う疾患、 薬物による骨量減少、 骨粗しょう症、 骨折、 または、 薬物に よる成長抑止の治療または予防のための薬剤の候補化合物のスクリーニン グ方法。  10. Diseases with impaired development of mesodermal tissue-derived tissue, including bone loss, osteoporosis, fractures, or drug-induced growth inhibition, including the following steps (a) to (c): A method for screening candidate compounds for a drug for treatment or prevention.
(a) 被検化合物を請求項 1〜4のいずれかに記載の遺伝子改変非ヒト哺 乳動物に投与する工程  (a) administering a test compound to the genetically modified non-human mammal according to any one of claims 1 to 4;
(b) 被検化合物が TSGの機能を代替しているか否かを判定する工程 (b) Step of determining whether the test compound substitutes for the function of TSG
(c) 被検化合物を投与していない場合と比較して、 TSGの機能を代替す る化合物を選択する工程 (c) selecting a compound that substitutes for the function of TSG as compared to when the test compound is not administered
1 1. 以下の (a) 〜 (c) の工程を含む、 中胚葉に由来する組織の発達不全 を伴う疾患、 薬物による骨量減少、 骨粗しょう症、 骨折、 または、 薬物に よる成長抑止の治療または予防のための薬剤の候補化合物のスクリ一ニン グ方法。  1 1. Diseases associated with dysfunction of mesodermal tissue, including bone loss, osteoporosis, fracture, or drug-induced growth inhibition, including the following steps (a) to (c): A method of screening a candidate compound for a drug for treatment or prevention.
( a ) 被検化合物を TSGに接触させる工程  (a) Contacting the test compound with TSG
(b) 該 TSGの活性を測定する工程  (b) a step of measuring the activity of the TSG
(c) 被検化合物を投与していない場合と比較して、 該 TSGの活性を上昇 させる化合物を選択する工程  (c) a step of selecting a compound that increases the activity of the TSG as compared to when the test compound is not administered
12. 以下の (a) 〜 (d) の工程を含む、 中胚葉に由来する組織の発達不全 を伴う疾患、 薬物による骨量減少、 骨粗しょう症、 骨折、 または、 薬物に よる成長抑止の治療または予防のための薬剤の候補化合物のスクリ一ニン グ方法。  12. Treatment of diseases associated with inadequate development of mesodermal tissue, bone loss due to drugs, osteoporosis, fractures, or drug-suppressed growth, including the following steps (a) to (d): Or a screening method for a candidate compound of a drug for prevention.
(a) TSG遺伝子のプロモータ一領域の下流にレポータ一遺伝子が機能的 に結合した DNAを有する細胞または細胞抽出液を提供する工程 ( b ) 該細胞または該細胞抽出液に被検化合物を接触させる工程 (a) Providing a cell or cell extract having a DNA in which a reporter gene is functionally linked downstream of a promoter region of a TSG gene (b) a step of bringing a test compound into contact with the cells or the cell extract.
( c ) 該細胞または該細胞抽出液における該レポーター遺伝子の発現レべ ルを測定する工程  (c) a step of measuring the expression level of the reporter gene in the cell or the cell extract
( d ) 被検化合物を投与していない場合と比較して、 該レポーター遺伝子 の発現レベルを上昇させる化合物を選択する工程  (d) a step of selecting a compound that increases the expression level of the reporter gene as compared to when the test compound is not administered
TSG遺伝子の発現量を測定する工程を含む、 中胚葉に由来する組織の発 達不全を伴う疾患の検査方法。  A method for testing a disease associated with insufficient delivery of a mesodermal-derived tissue, comprising a step of measuring the expression level of a TSG gene.
TSG遺伝子領域における変異を検出する工程を含む、 中胚葉に由来する 組織の発達不全を伴う疾患の検查方法。  A method for detecting a disease associated with insufficient development of a tissue derived from mesoderm, comprising a step of detecting a mutation in a TSG gene region.
中胚葉に由来する組織の発達不全を伴う疾患が、 矮小発育症、 複合型免 疫不全症を伴う矮小発育症、 骨形成不全症、 軟骨低形成症、 リンパ球減少 症、 複合型免疫不全症、 または、 腎低形成である、 請求項 9〜 1 4のいず れかに記載の検査方法。  Diseases associated with dysgenesis of mesodermal tissues include dwarfism, dwarfism with complex immunodeficiency disorders, osteogenesis imperfecta, hypochondrosis, lymphopenia, and complex immunodeficiency disorders The test method according to any one of claims 9 to 14, wherein the test is renal hypoplasia.
TSG遺伝子領域にハイブリダイズし、 少なくとも 15ヌクレオチドの鎖 長を有するオリゴヌクレオチドを含む、 中胚葉に由来する組織の発達不全 を伴う疾患の検査薬。  An agent for testing a disease associated with poor development of mesodermal-derived tissue, comprising an oligonucleotide hybridized to the TSG gene region and having a chain length of at least 15 nucleotides.
TSGに結合する抗体を含む、 中胚葉に由来する組織の発達不全を伴う疾 患の検查薬。  An agent for detecting a disease associated with dysgenesis of a tissue derived from the mesoderm, including an antibody that binds to TSG.
中胚葉に由来する組織の発達不全を伴う疾患が、 矮小発育症、 複合型免 疫不全症を伴う矮小発育症、 骨形成不全症、 軟骨低形成症、 リンパ球減少 症、 複合型免疫不全症、 または、 腎低形成である、 請求項 1 6または 1 7 に記載の検查薬。  Diseases associated with dysgenesis of mesodermal tissues include dwarfism, dwarfism with complex immunodeficiency disorders, osteogenesis imperfecta, hypochondrosis, lymphopenia, and complex immunodeficiency disorders The test drug according to claim 16 or 17, wherein the test drug has renal hypoplasia.
PCT/JP2003/011050 2003-02-20 2003-08-29 Tsg gene-knockout animal WO2004074483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004568506A JPWO2004074483A1 (en) 2003-02-20 2003-08-29 TSG gene knockout animal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003042137 2003-02-20
JP2003-42137 2003-02-20

Publications (1)

Publication Number Publication Date
WO2004074483A1 true WO2004074483A1 (en) 2004-09-02

Family

ID=32905343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011050 WO2004074483A1 (en) 2003-02-20 2003-08-29 Tsg gene-knockout animal

Country Status (2)

Country Link
JP (1) JPWO2004074483A1 (en)
WO (1) WO2004074483A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046641A1 (en) * 1997-04-16 1998-10-22 Millennium Biotherapeutics, Inc. Novel polypeptides within the growth factor superfamily
US20020168721A1 (en) * 1999-09-06 2002-11-14 Toshio Kitamura TSG-like gene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001288214A1 (en) * 2000-06-21 2002-01-02 Deltagen, Inc. Transgenic mice containing targeted gene disruptions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046641A1 (en) * 1997-04-16 1998-10-22 Millennium Biotherapeutics, Inc. Novel polypeptides within the growth factor superfamily
US20020168721A1 (en) * 1999-09-06 2002-11-14 Toshio Kitamura TSG-like gene

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CAPECCHI, M.R., "Altering the genome by homologous recombination", Science. 16 June 1989, Vol. 244(4910), pages 1288-1292 *
CHANG, C. et al., "Twisted gastrulation can function as a BMP antagonist", Nature, 22 March 2001, Vol. 410(6827), pages 483-487 *
GRAF, D. et al., "The developmentally regulated expression of Twisted gastrulation revals a role for bone morphogenetic proteins in the control of T cell development", J.Exp.Med., 15 July 2002, Vol. 196(2), pages 163-171 *
NOSAKA, T. et al., "Mammalian twisted gastrulation is essential for skeleto-lymphogenesis", Mol Cell Biol., April 2003, Vol. 23(8), pages 2969-2980 *
OELGESCHLAGER, M. et al., "The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signaling", Nature, 15 June 2000, Vol. 405(6788), pages 757-763 *
ROSS, J. et al., "Twisted gastrulation is a conserved extracellular BMP antagonist", Nature, 22 May 2001, Vol. 410(6827), pages 479-483 *
SCOTT, I. et al., "Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signalling", Nature, 22 May 2001, Vol. 410(6827), pages 475-478 *
Shinichi AIZAWA, "Sodo Kumikae ni yoru Idenshi Targeting-ho", Protein, Nucleic acid and Enzyme, 1995, Vol. 40(14), pages 2013-2016 *
Tetsuya NOSAKA, "Twisted gastrulation Kesson Mouse ni okeru Waisho Hatsuikusho to Lymph-kyu Keisei Fuzen", Japanese Journal of Clinical Hematology, August 2002, Vol. 43(8), pages 91 *

Also Published As

Publication number Publication date
JPWO2004074483A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
KR20020053066A (en) April receptor(bcma) and uses thereof
WO2000075655A1 (en) Screening method with the use of cd100
JP2001526532A (en) Osteoprotegerin binding protein and receptor
US20150139999A1 (en) Interferon antagonists, antibodies thereto, and associated methods of use
US20110020348A1 (en) Pharmaceutical compositions and methods using secreted frizzled related protein
WO2006004066A1 (en) S1-5-containing protein preparation
CZ2002903A3 (en) Pharmaceutical composition containing secreted frizzled related proteins
JP3779989B2 (en) Lymphoid antigen CD30
JP2000515727A (en) Tumor necrosis factor-related polypeptide
US9109043B2 (en) Screening method for antidiabetic agent using newly identified insulin secretion regulation factor
EP1466624A1 (en) Drug for regenerating tissue and vessel and method therefor
WO2005110433A1 (en) Nonhuman animal having expression of bach2 artificially inhibited, and use thereof
WO2004074483A1 (en) Tsg gene-knockout animal
AU2009270826B2 (en) Compositions comprising MG29 nucleic acids, polypeptides and associated methods of use
US20100329987A1 (en) Uses of Sperm Membrane Protein OBF
JP4602772B2 (en) WT1 gene transgenic animal
JPWO2004055184A1 (en) Glucose and / or fructose transporter NaGLT1 and its gene
JP2003510079A (en) Methods and compositions relating to the sodium channel β1A subunit
JP2007300845A (en) Cardiac hypertrophy and congestive cardiomyopathy non-human model animal
JPWO2006059691A1 (en) Screening method for anti-obesity drugs
Makishima et al. Mammalian Twisted Gastrulation Is
US20050130887A1 (en) Genetic sequence related to bone diseases
EP1390483A2 (en) Gene encoding molecular motor protein and diagnosis method for the disease related to the gene
JP2004512045A (en) Nucleic acids that regulate the ABCA7 gene, molecules that modulate its activity, and therapeutic uses
JP2004208662A (en) Lox-1 gene defective animal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004568506

Country of ref document: JP